Loading...
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#include "core.h"
40#include "bus.h"
41#include "host.h"
42#include "sdio_bus.h"
43
44#include "mmc_ops.h"
45#include "sd_ops.h"
46#include "sdio_ops.h"
47
48/* If the device is not responding */
49#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
50
51/*
52 * Background operations can take a long time, depending on the housekeeping
53 * operations the card has to perform.
54 */
55#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
56
57static struct workqueue_struct *workqueue;
58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59
60/*
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
64 */
65bool use_spi_crc = 1;
66module_param(use_spi_crc, bool, 0);
67
68/*
69 * Internal function. Schedule delayed work in the MMC work queue.
70 */
71static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73{
74 return queue_delayed_work(workqueue, work, delay);
75}
76
77/*
78 * Internal function. Flush all scheduled work from the MMC work queue.
79 */
80static void mmc_flush_scheduled_work(void)
81{
82 flush_workqueue(workqueue);
83}
84
85#ifdef CONFIG_FAIL_MMC_REQUEST
86
87/*
88 * Internal function. Inject random data errors.
89 * If mmc_data is NULL no errors are injected.
90 */
91static void mmc_should_fail_request(struct mmc_host *host,
92 struct mmc_request *mrq)
93{
94 struct mmc_command *cmd = mrq->cmd;
95 struct mmc_data *data = mrq->data;
96 static const int data_errors[] = {
97 -ETIMEDOUT,
98 -EILSEQ,
99 -EIO,
100 };
101
102 if (!data)
103 return;
104
105 if (cmd->error || data->error ||
106 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 return;
108
109 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
111}
112
113#else /* CONFIG_FAIL_MMC_REQUEST */
114
115static inline void mmc_should_fail_request(struct mmc_host *host,
116 struct mmc_request *mrq)
117{
118}
119
120#endif /* CONFIG_FAIL_MMC_REQUEST */
121
122/**
123 * mmc_request_done - finish processing an MMC request
124 * @host: MMC host which completed request
125 * @mrq: MMC request which request
126 *
127 * MMC drivers should call this function when they have completed
128 * their processing of a request.
129 */
130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131{
132 struct mmc_command *cmd = mrq->cmd;
133 int err = cmd->error;
134
135 if (err && cmd->retries && mmc_host_is_spi(host)) {
136 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 cmd->retries = 0;
138 }
139
140 if (err && cmd->retries && !mmc_card_removed(host->card)) {
141 /*
142 * Request starter must handle retries - see
143 * mmc_wait_for_req_done().
144 */
145 if (mrq->done)
146 mrq->done(mrq);
147 } else {
148 mmc_should_fail_request(host, mrq);
149
150 led_trigger_event(host->led, LED_OFF);
151
152 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
153 mmc_hostname(host), cmd->opcode, err,
154 cmd->resp[0], cmd->resp[1],
155 cmd->resp[2], cmd->resp[3]);
156
157 if (mrq->data) {
158 pr_debug("%s: %d bytes transferred: %d\n",
159 mmc_hostname(host),
160 mrq->data->bytes_xfered, mrq->data->error);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->error,
167 mrq->stop->resp[0], mrq->stop->resp[1],
168 mrq->stop->resp[2], mrq->stop->resp[3]);
169 }
170
171 if (mrq->done)
172 mrq->done(mrq);
173
174 mmc_host_clk_release(host);
175 }
176}
177
178EXPORT_SYMBOL(mmc_request_done);
179
180static void
181mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
182{
183#ifdef CONFIG_MMC_DEBUG
184 unsigned int i, sz;
185 struct scatterlist *sg;
186#endif
187
188 if (mrq->sbc) {
189 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
190 mmc_hostname(host), mrq->sbc->opcode,
191 mrq->sbc->arg, mrq->sbc->flags);
192 }
193
194 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
195 mmc_hostname(host), mrq->cmd->opcode,
196 mrq->cmd->arg, mrq->cmd->flags);
197
198 if (mrq->data) {
199 pr_debug("%s: blksz %d blocks %d flags %08x "
200 "tsac %d ms nsac %d\n",
201 mmc_hostname(host), mrq->data->blksz,
202 mrq->data->blocks, mrq->data->flags,
203 mrq->data->timeout_ns / 1000000,
204 mrq->data->timeout_clks);
205 }
206
207 if (mrq->stop) {
208 pr_debug("%s: CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->stop->opcode,
210 mrq->stop->arg, mrq->stop->flags);
211 }
212
213 WARN_ON(!host->claimed);
214
215 mrq->cmd->error = 0;
216 mrq->cmd->mrq = mrq;
217 if (mrq->data) {
218 BUG_ON(mrq->data->blksz > host->max_blk_size);
219 BUG_ON(mrq->data->blocks > host->max_blk_count);
220 BUG_ON(mrq->data->blocks * mrq->data->blksz >
221 host->max_req_size);
222
223#ifdef CONFIG_MMC_DEBUG
224 sz = 0;
225 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
226 sz += sg->length;
227 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
228#endif
229
230 mrq->cmd->data = mrq->data;
231 mrq->data->error = 0;
232 mrq->data->mrq = mrq;
233 if (mrq->stop) {
234 mrq->data->stop = mrq->stop;
235 mrq->stop->error = 0;
236 mrq->stop->mrq = mrq;
237 }
238 }
239 mmc_host_clk_hold(host);
240 led_trigger_event(host->led, LED_FULL);
241 host->ops->request(host, mrq);
242}
243
244/**
245 * mmc_start_bkops - start BKOPS for supported cards
246 * @card: MMC card to start BKOPS
247 * @form_exception: A flag to indicate if this function was
248 * called due to an exception raised by the card
249 *
250 * Start background operations whenever requested.
251 * When the urgent BKOPS bit is set in a R1 command response
252 * then background operations should be started immediately.
253*/
254void mmc_start_bkops(struct mmc_card *card, bool from_exception)
255{
256 int err;
257 int timeout;
258 bool use_busy_signal;
259
260 BUG_ON(!card);
261
262 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
263 return;
264
265 err = mmc_read_bkops_status(card);
266 if (err) {
267 pr_err("%s: Failed to read bkops status: %d\n",
268 mmc_hostname(card->host), err);
269 return;
270 }
271
272 if (!card->ext_csd.raw_bkops_status)
273 return;
274
275 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
276 from_exception)
277 return;
278
279 mmc_claim_host(card->host);
280 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
281 timeout = MMC_BKOPS_MAX_TIMEOUT;
282 use_busy_signal = true;
283 } else {
284 timeout = 0;
285 use_busy_signal = false;
286 }
287
288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
289 EXT_CSD_BKOPS_START, 1, timeout,
290 use_busy_signal, true, false);
291 if (err) {
292 pr_warn("%s: Error %d starting bkops\n",
293 mmc_hostname(card->host), err);
294 goto out;
295 }
296
297 /*
298 * For urgent bkops status (LEVEL_2 and more)
299 * bkops executed synchronously, otherwise
300 * the operation is in progress
301 */
302 if (!use_busy_signal)
303 mmc_card_set_doing_bkops(card);
304out:
305 mmc_release_host(card->host);
306}
307EXPORT_SYMBOL(mmc_start_bkops);
308
309/*
310 * mmc_wait_data_done() - done callback for data request
311 * @mrq: done data request
312 *
313 * Wakes up mmc context, passed as a callback to host controller driver
314 */
315static void mmc_wait_data_done(struct mmc_request *mrq)
316{
317 mrq->host->context_info.is_done_rcv = true;
318 wake_up_interruptible(&mrq->host->context_info.wait);
319}
320
321static void mmc_wait_done(struct mmc_request *mrq)
322{
323 complete(&mrq->completion);
324}
325
326/*
327 *__mmc_start_data_req() - starts data request
328 * @host: MMC host to start the request
329 * @mrq: data request to start
330 *
331 * Sets the done callback to be called when request is completed by the card.
332 * Starts data mmc request execution
333 */
334static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
335{
336 mrq->done = mmc_wait_data_done;
337 mrq->host = host;
338 if (mmc_card_removed(host->card)) {
339 mrq->cmd->error = -ENOMEDIUM;
340 mmc_wait_data_done(mrq);
341 return -ENOMEDIUM;
342 }
343 mmc_start_request(host, mrq);
344
345 return 0;
346}
347
348static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
349{
350 init_completion(&mrq->completion);
351 mrq->done = mmc_wait_done;
352 if (mmc_card_removed(host->card)) {
353 mrq->cmd->error = -ENOMEDIUM;
354 complete(&mrq->completion);
355 return -ENOMEDIUM;
356 }
357 mmc_start_request(host, mrq);
358 return 0;
359}
360
361/*
362 * mmc_wait_for_data_req_done() - wait for request completed
363 * @host: MMC host to prepare the command.
364 * @mrq: MMC request to wait for
365 *
366 * Blocks MMC context till host controller will ack end of data request
367 * execution or new request notification arrives from the block layer.
368 * Handles command retries.
369 *
370 * Returns enum mmc_blk_status after checking errors.
371 */
372static int mmc_wait_for_data_req_done(struct mmc_host *host,
373 struct mmc_request *mrq,
374 struct mmc_async_req *next_req)
375{
376 struct mmc_command *cmd;
377 struct mmc_context_info *context_info = &host->context_info;
378 int err;
379 unsigned long flags;
380
381 while (1) {
382 wait_event_interruptible(context_info->wait,
383 (context_info->is_done_rcv ||
384 context_info->is_new_req));
385 spin_lock_irqsave(&context_info->lock, flags);
386 context_info->is_waiting_last_req = false;
387 spin_unlock_irqrestore(&context_info->lock, flags);
388 if (context_info->is_done_rcv) {
389 context_info->is_done_rcv = false;
390 context_info->is_new_req = false;
391 cmd = mrq->cmd;
392
393 if (!cmd->error || !cmd->retries ||
394 mmc_card_removed(host->card)) {
395 err = host->areq->err_check(host->card,
396 host->areq);
397 break; /* return err */
398 } else {
399 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
400 mmc_hostname(host),
401 cmd->opcode, cmd->error);
402 cmd->retries--;
403 cmd->error = 0;
404 host->ops->request(host, mrq);
405 continue; /* wait for done/new event again */
406 }
407 } else if (context_info->is_new_req) {
408 context_info->is_new_req = false;
409 if (!next_req) {
410 err = MMC_BLK_NEW_REQUEST;
411 break; /* return err */
412 }
413 }
414 }
415 return err;
416}
417
418static void mmc_wait_for_req_done(struct mmc_host *host,
419 struct mmc_request *mrq)
420{
421 struct mmc_command *cmd;
422
423 while (1) {
424 wait_for_completion(&mrq->completion);
425
426 cmd = mrq->cmd;
427
428 /*
429 * If host has timed out waiting for the sanitize
430 * to complete, card might be still in programming state
431 * so let's try to bring the card out of programming
432 * state.
433 */
434 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
435 if (!mmc_interrupt_hpi(host->card)) {
436 pr_warning("%s: %s: Interrupted sanitize\n",
437 mmc_hostname(host), __func__);
438 cmd->error = 0;
439 break;
440 } else {
441 pr_err("%s: %s: Failed to interrupt sanitize\n",
442 mmc_hostname(host), __func__);
443 }
444 }
445 if (!cmd->error || !cmd->retries ||
446 mmc_card_removed(host->card))
447 break;
448
449 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
450 mmc_hostname(host), cmd->opcode, cmd->error);
451 cmd->retries--;
452 cmd->error = 0;
453 host->ops->request(host, mrq);
454 }
455}
456
457/**
458 * mmc_pre_req - Prepare for a new request
459 * @host: MMC host to prepare command
460 * @mrq: MMC request to prepare for
461 * @is_first_req: true if there is no previous started request
462 * that may run in parellel to this call, otherwise false
463 *
464 * mmc_pre_req() is called in prior to mmc_start_req() to let
465 * host prepare for the new request. Preparation of a request may be
466 * performed while another request is running on the host.
467 */
468static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
469 bool is_first_req)
470{
471 if (host->ops->pre_req) {
472 mmc_host_clk_hold(host);
473 host->ops->pre_req(host, mrq, is_first_req);
474 mmc_host_clk_release(host);
475 }
476}
477
478/**
479 * mmc_post_req - Post process a completed request
480 * @host: MMC host to post process command
481 * @mrq: MMC request to post process for
482 * @err: Error, if non zero, clean up any resources made in pre_req
483 *
484 * Let the host post process a completed request. Post processing of
485 * a request may be performed while another reuqest is running.
486 */
487static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
488 int err)
489{
490 if (host->ops->post_req) {
491 mmc_host_clk_hold(host);
492 host->ops->post_req(host, mrq, err);
493 mmc_host_clk_release(host);
494 }
495}
496
497/**
498 * mmc_start_req - start a non-blocking request
499 * @host: MMC host to start command
500 * @areq: async request to start
501 * @error: out parameter returns 0 for success, otherwise non zero
502 *
503 * Start a new MMC custom command request for a host.
504 * If there is on ongoing async request wait for completion
505 * of that request and start the new one and return.
506 * Does not wait for the new request to complete.
507 *
508 * Returns the completed request, NULL in case of none completed.
509 * Wait for the an ongoing request (previoulsy started) to complete and
510 * return the completed request. If there is no ongoing request, NULL
511 * is returned without waiting. NULL is not an error condition.
512 */
513struct mmc_async_req *mmc_start_req(struct mmc_host *host,
514 struct mmc_async_req *areq, int *error)
515{
516 int err = 0;
517 int start_err = 0;
518 struct mmc_async_req *data = host->areq;
519
520 /* Prepare a new request */
521 if (areq)
522 mmc_pre_req(host, areq->mrq, !host->areq);
523
524 if (host->areq) {
525 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
526 if (err == MMC_BLK_NEW_REQUEST) {
527 if (error)
528 *error = err;
529 /*
530 * The previous request was not completed,
531 * nothing to return
532 */
533 return NULL;
534 }
535 /*
536 * Check BKOPS urgency for each R1 response
537 */
538 if (host->card && mmc_card_mmc(host->card) &&
539 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
540 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
541 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
542 mmc_start_bkops(host->card, true);
543 }
544
545 if (!err && areq)
546 start_err = __mmc_start_data_req(host, areq->mrq);
547
548 if (host->areq)
549 mmc_post_req(host, host->areq->mrq, 0);
550
551 /* Cancel a prepared request if it was not started. */
552 if ((err || start_err) && areq)
553 mmc_post_req(host, areq->mrq, -EINVAL);
554
555 if (err)
556 host->areq = NULL;
557 else
558 host->areq = areq;
559
560 if (error)
561 *error = err;
562 return data;
563}
564EXPORT_SYMBOL(mmc_start_req);
565
566/**
567 * mmc_wait_for_req - start a request and wait for completion
568 * @host: MMC host to start command
569 * @mrq: MMC request to start
570 *
571 * Start a new MMC custom command request for a host, and wait
572 * for the command to complete. Does not attempt to parse the
573 * response.
574 */
575void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
576{
577 __mmc_start_req(host, mrq);
578 mmc_wait_for_req_done(host, mrq);
579}
580EXPORT_SYMBOL(mmc_wait_for_req);
581
582/**
583 * mmc_interrupt_hpi - Issue for High priority Interrupt
584 * @card: the MMC card associated with the HPI transfer
585 *
586 * Issued High Priority Interrupt, and check for card status
587 * until out-of prg-state.
588 */
589int mmc_interrupt_hpi(struct mmc_card *card)
590{
591 int err;
592 u32 status;
593 unsigned long prg_wait;
594
595 BUG_ON(!card);
596
597 if (!card->ext_csd.hpi_en) {
598 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
599 return 1;
600 }
601
602 mmc_claim_host(card->host);
603 err = mmc_send_status(card, &status);
604 if (err) {
605 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
606 goto out;
607 }
608
609 switch (R1_CURRENT_STATE(status)) {
610 case R1_STATE_IDLE:
611 case R1_STATE_READY:
612 case R1_STATE_STBY:
613 case R1_STATE_TRAN:
614 /*
615 * In idle and transfer states, HPI is not needed and the caller
616 * can issue the next intended command immediately
617 */
618 goto out;
619 case R1_STATE_PRG:
620 break;
621 default:
622 /* In all other states, it's illegal to issue HPI */
623 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
624 mmc_hostname(card->host), R1_CURRENT_STATE(status));
625 err = -EINVAL;
626 goto out;
627 }
628
629 err = mmc_send_hpi_cmd(card, &status);
630 if (err)
631 goto out;
632
633 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
634 do {
635 err = mmc_send_status(card, &status);
636
637 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
638 break;
639 if (time_after(jiffies, prg_wait))
640 err = -ETIMEDOUT;
641 } while (!err);
642
643out:
644 mmc_release_host(card->host);
645 return err;
646}
647EXPORT_SYMBOL(mmc_interrupt_hpi);
648
649/**
650 * mmc_wait_for_cmd - start a command and wait for completion
651 * @host: MMC host to start command
652 * @cmd: MMC command to start
653 * @retries: maximum number of retries
654 *
655 * Start a new MMC command for a host, and wait for the command
656 * to complete. Return any error that occurred while the command
657 * was executing. Do not attempt to parse the response.
658 */
659int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
660{
661 struct mmc_request mrq = {NULL};
662
663 WARN_ON(!host->claimed);
664
665 memset(cmd->resp, 0, sizeof(cmd->resp));
666 cmd->retries = retries;
667
668 mrq.cmd = cmd;
669 cmd->data = NULL;
670
671 mmc_wait_for_req(host, &mrq);
672
673 return cmd->error;
674}
675
676EXPORT_SYMBOL(mmc_wait_for_cmd);
677
678/**
679 * mmc_stop_bkops - stop ongoing BKOPS
680 * @card: MMC card to check BKOPS
681 *
682 * Send HPI command to stop ongoing background operations to
683 * allow rapid servicing of foreground operations, e.g. read/
684 * writes. Wait until the card comes out of the programming state
685 * to avoid errors in servicing read/write requests.
686 */
687int mmc_stop_bkops(struct mmc_card *card)
688{
689 int err = 0;
690
691 BUG_ON(!card);
692 err = mmc_interrupt_hpi(card);
693
694 /*
695 * If err is EINVAL, we can't issue an HPI.
696 * It should complete the BKOPS.
697 */
698 if (!err || (err == -EINVAL)) {
699 mmc_card_clr_doing_bkops(card);
700 err = 0;
701 }
702
703 return err;
704}
705EXPORT_SYMBOL(mmc_stop_bkops);
706
707int mmc_read_bkops_status(struct mmc_card *card)
708{
709 int err;
710 u8 *ext_csd;
711
712 /*
713 * In future work, we should consider storing the entire ext_csd.
714 */
715 ext_csd = kmalloc(512, GFP_KERNEL);
716 if (!ext_csd) {
717 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
718 mmc_hostname(card->host));
719 return -ENOMEM;
720 }
721
722 mmc_claim_host(card->host);
723 err = mmc_send_ext_csd(card, ext_csd);
724 mmc_release_host(card->host);
725 if (err)
726 goto out;
727
728 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
729 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
730out:
731 kfree(ext_csd);
732 return err;
733}
734EXPORT_SYMBOL(mmc_read_bkops_status);
735
736/**
737 * mmc_set_data_timeout - set the timeout for a data command
738 * @data: data phase for command
739 * @card: the MMC card associated with the data transfer
740 *
741 * Computes the data timeout parameters according to the
742 * correct algorithm given the card type.
743 */
744void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
745{
746 unsigned int mult;
747
748 /*
749 * SDIO cards only define an upper 1 s limit on access.
750 */
751 if (mmc_card_sdio(card)) {
752 data->timeout_ns = 1000000000;
753 data->timeout_clks = 0;
754 return;
755 }
756
757 /*
758 * SD cards use a 100 multiplier rather than 10
759 */
760 mult = mmc_card_sd(card) ? 100 : 10;
761
762 /*
763 * Scale up the multiplier (and therefore the timeout) by
764 * the r2w factor for writes.
765 */
766 if (data->flags & MMC_DATA_WRITE)
767 mult <<= card->csd.r2w_factor;
768
769 data->timeout_ns = card->csd.tacc_ns * mult;
770 data->timeout_clks = card->csd.tacc_clks * mult;
771
772 /*
773 * SD cards also have an upper limit on the timeout.
774 */
775 if (mmc_card_sd(card)) {
776 unsigned int timeout_us, limit_us;
777
778 timeout_us = data->timeout_ns / 1000;
779 if (mmc_host_clk_rate(card->host))
780 timeout_us += data->timeout_clks * 1000 /
781 (mmc_host_clk_rate(card->host) / 1000);
782
783 if (data->flags & MMC_DATA_WRITE)
784 /*
785 * The MMC spec "It is strongly recommended
786 * for hosts to implement more than 500ms
787 * timeout value even if the card indicates
788 * the 250ms maximum busy length." Even the
789 * previous value of 300ms is known to be
790 * insufficient for some cards.
791 */
792 limit_us = 3000000;
793 else
794 limit_us = 100000;
795
796 /*
797 * SDHC cards always use these fixed values.
798 */
799 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
800 data->timeout_ns = limit_us * 1000;
801 data->timeout_clks = 0;
802 }
803 }
804
805 /*
806 * Some cards require longer data read timeout than indicated in CSD.
807 * Address this by setting the read timeout to a "reasonably high"
808 * value. For the cards tested, 300ms has proven enough. If necessary,
809 * this value can be increased if other problematic cards require this.
810 */
811 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
812 data->timeout_ns = 300000000;
813 data->timeout_clks = 0;
814 }
815
816 /*
817 * Some cards need very high timeouts if driven in SPI mode.
818 * The worst observed timeout was 900ms after writing a
819 * continuous stream of data until the internal logic
820 * overflowed.
821 */
822 if (mmc_host_is_spi(card->host)) {
823 if (data->flags & MMC_DATA_WRITE) {
824 if (data->timeout_ns < 1000000000)
825 data->timeout_ns = 1000000000; /* 1s */
826 } else {
827 if (data->timeout_ns < 100000000)
828 data->timeout_ns = 100000000; /* 100ms */
829 }
830 }
831}
832EXPORT_SYMBOL(mmc_set_data_timeout);
833
834/**
835 * mmc_align_data_size - pads a transfer size to a more optimal value
836 * @card: the MMC card associated with the data transfer
837 * @sz: original transfer size
838 *
839 * Pads the original data size with a number of extra bytes in
840 * order to avoid controller bugs and/or performance hits
841 * (e.g. some controllers revert to PIO for certain sizes).
842 *
843 * Returns the improved size, which might be unmodified.
844 *
845 * Note that this function is only relevant when issuing a
846 * single scatter gather entry.
847 */
848unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
849{
850 /*
851 * FIXME: We don't have a system for the controller to tell
852 * the core about its problems yet, so for now we just 32-bit
853 * align the size.
854 */
855 sz = ((sz + 3) / 4) * 4;
856
857 return sz;
858}
859EXPORT_SYMBOL(mmc_align_data_size);
860
861/**
862 * __mmc_claim_host - exclusively claim a host
863 * @host: mmc host to claim
864 * @abort: whether or not the operation should be aborted
865 *
866 * Claim a host for a set of operations. If @abort is non null and
867 * dereference a non-zero value then this will return prematurely with
868 * that non-zero value without acquiring the lock. Returns zero
869 * with the lock held otherwise.
870 */
871int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
872{
873 DECLARE_WAITQUEUE(wait, current);
874 unsigned long flags;
875 int stop;
876
877 might_sleep();
878
879 add_wait_queue(&host->wq, &wait);
880 spin_lock_irqsave(&host->lock, flags);
881 while (1) {
882 set_current_state(TASK_UNINTERRUPTIBLE);
883 stop = abort ? atomic_read(abort) : 0;
884 if (stop || !host->claimed || host->claimer == current)
885 break;
886 spin_unlock_irqrestore(&host->lock, flags);
887 schedule();
888 spin_lock_irqsave(&host->lock, flags);
889 }
890 set_current_state(TASK_RUNNING);
891 if (!stop) {
892 host->claimed = 1;
893 host->claimer = current;
894 host->claim_cnt += 1;
895 } else
896 wake_up(&host->wq);
897 spin_unlock_irqrestore(&host->lock, flags);
898 remove_wait_queue(&host->wq, &wait);
899 if (host->ops->enable && !stop && host->claim_cnt == 1)
900 host->ops->enable(host);
901 return stop;
902}
903
904EXPORT_SYMBOL(__mmc_claim_host);
905
906/**
907 * mmc_release_host - release a host
908 * @host: mmc host to release
909 *
910 * Release a MMC host, allowing others to claim the host
911 * for their operations.
912 */
913void mmc_release_host(struct mmc_host *host)
914{
915 unsigned long flags;
916
917 WARN_ON(!host->claimed);
918
919 if (host->ops->disable && host->claim_cnt == 1)
920 host->ops->disable(host);
921
922 spin_lock_irqsave(&host->lock, flags);
923 if (--host->claim_cnt) {
924 /* Release for nested claim */
925 spin_unlock_irqrestore(&host->lock, flags);
926 } else {
927 host->claimed = 0;
928 host->claimer = NULL;
929 spin_unlock_irqrestore(&host->lock, flags);
930 wake_up(&host->wq);
931 }
932}
933EXPORT_SYMBOL(mmc_release_host);
934
935/*
936 * This is a helper function, which fetches a runtime pm reference for the
937 * card device and also claims the host.
938 */
939void mmc_get_card(struct mmc_card *card)
940{
941 pm_runtime_get_sync(&card->dev);
942 mmc_claim_host(card->host);
943}
944EXPORT_SYMBOL(mmc_get_card);
945
946/*
947 * This is a helper function, which releases the host and drops the runtime
948 * pm reference for the card device.
949 */
950void mmc_put_card(struct mmc_card *card)
951{
952 mmc_release_host(card->host);
953 pm_runtime_mark_last_busy(&card->dev);
954 pm_runtime_put_autosuspend(&card->dev);
955}
956EXPORT_SYMBOL(mmc_put_card);
957
958/*
959 * Internal function that does the actual ios call to the host driver,
960 * optionally printing some debug output.
961 */
962static inline void mmc_set_ios(struct mmc_host *host)
963{
964 struct mmc_ios *ios = &host->ios;
965
966 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
967 "width %u timing %u\n",
968 mmc_hostname(host), ios->clock, ios->bus_mode,
969 ios->power_mode, ios->chip_select, ios->vdd,
970 ios->bus_width, ios->timing);
971
972 if (ios->clock > 0)
973 mmc_set_ungated(host);
974 host->ops->set_ios(host, ios);
975}
976
977/*
978 * Control chip select pin on a host.
979 */
980void mmc_set_chip_select(struct mmc_host *host, int mode)
981{
982 mmc_host_clk_hold(host);
983 host->ios.chip_select = mode;
984 mmc_set_ios(host);
985 mmc_host_clk_release(host);
986}
987
988/*
989 * Sets the host clock to the highest possible frequency that
990 * is below "hz".
991 */
992static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
993{
994 WARN_ON(hz < host->f_min);
995
996 if (hz > host->f_max)
997 hz = host->f_max;
998
999 host->ios.clock = hz;
1000 mmc_set_ios(host);
1001}
1002
1003void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004{
1005 mmc_host_clk_hold(host);
1006 __mmc_set_clock(host, hz);
1007 mmc_host_clk_release(host);
1008}
1009
1010#ifdef CONFIG_MMC_CLKGATE
1011/*
1012 * This gates the clock by setting it to 0 Hz.
1013 */
1014void mmc_gate_clock(struct mmc_host *host)
1015{
1016 unsigned long flags;
1017
1018 spin_lock_irqsave(&host->clk_lock, flags);
1019 host->clk_old = host->ios.clock;
1020 host->ios.clock = 0;
1021 host->clk_gated = true;
1022 spin_unlock_irqrestore(&host->clk_lock, flags);
1023 mmc_set_ios(host);
1024}
1025
1026/*
1027 * This restores the clock from gating by using the cached
1028 * clock value.
1029 */
1030void mmc_ungate_clock(struct mmc_host *host)
1031{
1032 /*
1033 * We should previously have gated the clock, so the clock shall
1034 * be 0 here! The clock may however be 0 during initialization,
1035 * when some request operations are performed before setting
1036 * the frequency. When ungate is requested in that situation
1037 * we just ignore the call.
1038 */
1039 if (host->clk_old) {
1040 BUG_ON(host->ios.clock);
1041 /* This call will also set host->clk_gated to false */
1042 __mmc_set_clock(host, host->clk_old);
1043 }
1044}
1045
1046void mmc_set_ungated(struct mmc_host *host)
1047{
1048 unsigned long flags;
1049
1050 /*
1051 * We've been given a new frequency while the clock is gated,
1052 * so make sure we regard this as ungating it.
1053 */
1054 spin_lock_irqsave(&host->clk_lock, flags);
1055 host->clk_gated = false;
1056 spin_unlock_irqrestore(&host->clk_lock, flags);
1057}
1058
1059#else
1060void mmc_set_ungated(struct mmc_host *host)
1061{
1062}
1063#endif
1064
1065/*
1066 * Change the bus mode (open drain/push-pull) of a host.
1067 */
1068void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069{
1070 mmc_host_clk_hold(host);
1071 host->ios.bus_mode = mode;
1072 mmc_set_ios(host);
1073 mmc_host_clk_release(host);
1074}
1075
1076/*
1077 * Change data bus width of a host.
1078 */
1079void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080{
1081 mmc_host_clk_hold(host);
1082 host->ios.bus_width = width;
1083 mmc_set_ios(host);
1084 mmc_host_clk_release(host);
1085}
1086
1087/**
1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089 * @vdd: voltage (mV)
1090 * @low_bits: prefer low bits in boundary cases
1091 *
1092 * This function returns the OCR bit number according to the provided @vdd
1093 * value. If conversion is not possible a negative errno value returned.
1094 *
1095 * Depending on the @low_bits flag the function prefers low or high OCR bits
1096 * on boundary voltages. For example,
1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099 *
1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101 */
1102static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103{
1104 const int max_bit = ilog2(MMC_VDD_35_36);
1105 int bit;
1106
1107 if (vdd < 1650 || vdd > 3600)
1108 return -EINVAL;
1109
1110 if (vdd >= 1650 && vdd <= 1950)
1111 return ilog2(MMC_VDD_165_195);
1112
1113 if (low_bits)
1114 vdd -= 1;
1115
1116 /* Base 2000 mV, step 100 mV, bit's base 8. */
1117 bit = (vdd - 2000) / 100 + 8;
1118 if (bit > max_bit)
1119 return max_bit;
1120 return bit;
1121}
1122
1123/**
1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125 * @vdd_min: minimum voltage value (mV)
1126 * @vdd_max: maximum voltage value (mV)
1127 *
1128 * This function returns the OCR mask bits according to the provided @vdd_min
1129 * and @vdd_max values. If conversion is not possible the function returns 0.
1130 *
1131 * Notes wrt boundary cases:
1132 * This function sets the OCR bits for all boundary voltages, for example
1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134 * MMC_VDD_34_35 mask.
1135 */
1136u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137{
1138 u32 mask = 0;
1139
1140 if (vdd_max < vdd_min)
1141 return 0;
1142
1143 /* Prefer high bits for the boundary vdd_max values. */
1144 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145 if (vdd_max < 0)
1146 return 0;
1147
1148 /* Prefer low bits for the boundary vdd_min values. */
1149 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150 if (vdd_min < 0)
1151 return 0;
1152
1153 /* Fill the mask, from max bit to min bit. */
1154 while (vdd_max >= vdd_min)
1155 mask |= 1 << vdd_max--;
1156
1157 return mask;
1158}
1159EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160
1161#ifdef CONFIG_OF
1162
1163/**
1164 * mmc_of_parse_voltage - return mask of supported voltages
1165 * @np: The device node need to be parsed.
1166 * @mask: mask of voltages available for MMC/SD/SDIO
1167 *
1168 * 1. Return zero on success.
1169 * 2. Return negative errno: voltage-range is invalid.
1170 */
1171int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172{
1173 const u32 *voltage_ranges;
1174 int num_ranges, i;
1175
1176 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178 if (!voltage_ranges || !num_ranges) {
1179 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1180 return -EINVAL;
1181 }
1182
1183 for (i = 0; i < num_ranges; i++) {
1184 const int j = i * 2;
1185 u32 ocr_mask;
1186
1187 ocr_mask = mmc_vddrange_to_ocrmask(
1188 be32_to_cpu(voltage_ranges[j]),
1189 be32_to_cpu(voltage_ranges[j + 1]));
1190 if (!ocr_mask) {
1191 pr_err("%s: voltage-range #%d is invalid\n",
1192 np->full_name, i);
1193 return -EINVAL;
1194 }
1195 *mask |= ocr_mask;
1196 }
1197
1198 return 0;
1199}
1200EXPORT_SYMBOL(mmc_of_parse_voltage);
1201
1202#endif /* CONFIG_OF */
1203
1204#ifdef CONFIG_REGULATOR
1205
1206/**
1207 * mmc_regulator_get_ocrmask - return mask of supported voltages
1208 * @supply: regulator to use
1209 *
1210 * This returns either a negative errno, or a mask of voltages that
1211 * can be provided to MMC/SD/SDIO devices using the specified voltage
1212 * regulator. This would normally be called before registering the
1213 * MMC host adapter.
1214 */
1215int mmc_regulator_get_ocrmask(struct regulator *supply)
1216{
1217 int result = 0;
1218 int count;
1219 int i;
1220
1221 count = regulator_count_voltages(supply);
1222 if (count < 0)
1223 return count;
1224
1225 for (i = 0; i < count; i++) {
1226 int vdd_uV;
1227 int vdd_mV;
1228
1229 vdd_uV = regulator_list_voltage(supply, i);
1230 if (vdd_uV <= 0)
1231 continue;
1232
1233 vdd_mV = vdd_uV / 1000;
1234 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1235 }
1236
1237 return result;
1238}
1239EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240
1241/**
1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243 * @mmc: the host to regulate
1244 * @supply: regulator to use
1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246 *
1247 * Returns zero on success, else negative errno.
1248 *
1249 * MMC host drivers may use this to enable or disable a regulator using
1250 * a particular supply voltage. This would normally be called from the
1251 * set_ios() method.
1252 */
1253int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254 struct regulator *supply,
1255 unsigned short vdd_bit)
1256{
1257 int result = 0;
1258 int min_uV, max_uV;
1259
1260 if (vdd_bit) {
1261 int tmp;
1262 int voltage;
1263
1264 /*
1265 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266 * bits this regulator doesn't quite support ... don't
1267 * be too picky, most cards and regulators are OK with
1268 * a 0.1V range goof (it's a small error percentage).
1269 */
1270 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271 if (tmp == 0) {
1272 min_uV = 1650 * 1000;
1273 max_uV = 1950 * 1000;
1274 } else {
1275 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276 max_uV = min_uV + 100 * 1000;
1277 }
1278
1279 /*
1280 * If we're using a fixed/static regulator, don't call
1281 * regulator_set_voltage; it would fail.
1282 */
1283 voltage = regulator_get_voltage(supply);
1284
1285 if (!regulator_can_change_voltage(supply))
1286 min_uV = max_uV = voltage;
1287
1288 if (voltage < 0)
1289 result = voltage;
1290 else if (voltage < min_uV || voltage > max_uV)
1291 result = regulator_set_voltage(supply, min_uV, max_uV);
1292 else
1293 result = 0;
1294
1295 if (result == 0 && !mmc->regulator_enabled) {
1296 result = regulator_enable(supply);
1297 if (!result)
1298 mmc->regulator_enabled = true;
1299 }
1300 } else if (mmc->regulator_enabled) {
1301 result = regulator_disable(supply);
1302 if (result == 0)
1303 mmc->regulator_enabled = false;
1304 }
1305
1306 if (result)
1307 dev_err(mmc_dev(mmc),
1308 "could not set regulator OCR (%d)\n", result);
1309 return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313int mmc_regulator_get_supply(struct mmc_host *mmc)
1314{
1315 struct device *dev = mmc_dev(mmc);
1316 struct regulator *supply;
1317 int ret;
1318
1319 supply = devm_regulator_get(dev, "vmmc");
1320 mmc->supply.vmmc = supply;
1321 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322
1323 if (IS_ERR(supply))
1324 return PTR_ERR(supply);
1325
1326 ret = mmc_regulator_get_ocrmask(supply);
1327 if (ret > 0)
1328 mmc->ocr_avail = ret;
1329 else
1330 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331
1332 return 0;
1333}
1334EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335
1336#endif /* CONFIG_REGULATOR */
1337
1338/*
1339 * Mask off any voltages we don't support and select
1340 * the lowest voltage
1341 */
1342u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343{
1344 int bit;
1345
1346 /*
1347 * Sanity check the voltages that the card claims to
1348 * support.
1349 */
1350 if (ocr & 0x7F) {
1351 dev_warn(mmc_dev(host),
1352 "card claims to support voltages below defined range\n");
1353 ocr &= ~0x7F;
1354 }
1355
1356 ocr &= host->ocr_avail;
1357 if (!ocr) {
1358 dev_warn(mmc_dev(host), "no support for card's volts\n");
1359 return 0;
1360 }
1361
1362 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363 bit = ffs(ocr) - 1;
1364 ocr &= 3 << bit;
1365 mmc_power_cycle(host, ocr);
1366 } else {
1367 bit = fls(ocr) - 1;
1368 ocr &= 3 << bit;
1369 if (bit != host->ios.vdd)
1370 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371 }
1372
1373 return ocr;
1374}
1375
1376int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377{
1378 int err = 0;
1379 int old_signal_voltage = host->ios.signal_voltage;
1380
1381 host->ios.signal_voltage = signal_voltage;
1382 if (host->ops->start_signal_voltage_switch) {
1383 mmc_host_clk_hold(host);
1384 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1385 mmc_host_clk_release(host);
1386 }
1387
1388 if (err)
1389 host->ios.signal_voltage = old_signal_voltage;
1390
1391 return err;
1392
1393}
1394
1395int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1396{
1397 struct mmc_command cmd = {0};
1398 int err = 0;
1399 u32 clock;
1400
1401 BUG_ON(!host);
1402
1403 /*
1404 * Send CMD11 only if the request is to switch the card to
1405 * 1.8V signalling.
1406 */
1407 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408 return __mmc_set_signal_voltage(host, signal_voltage);
1409
1410 /*
1411 * If we cannot switch voltages, return failure so the caller
1412 * can continue without UHS mode
1413 */
1414 if (!host->ops->start_signal_voltage_switch)
1415 return -EPERM;
1416 if (!host->ops->card_busy)
1417 pr_warning("%s: cannot verify signal voltage switch\n",
1418 mmc_hostname(host));
1419
1420 cmd.opcode = SD_SWITCH_VOLTAGE;
1421 cmd.arg = 0;
1422 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423
1424 err = mmc_wait_for_cmd(host, &cmd, 0);
1425 if (err)
1426 return err;
1427
1428 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429 return -EIO;
1430
1431 mmc_host_clk_hold(host);
1432 /*
1433 * The card should drive cmd and dat[0:3] low immediately
1434 * after the response of cmd11, but wait 1 ms to be sure
1435 */
1436 mmc_delay(1);
1437 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438 err = -EAGAIN;
1439 goto power_cycle;
1440 }
1441 /*
1442 * During a signal voltage level switch, the clock must be gated
1443 * for 5 ms according to the SD spec
1444 */
1445 clock = host->ios.clock;
1446 host->ios.clock = 0;
1447 mmc_set_ios(host);
1448
1449 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450 /*
1451 * Voltages may not have been switched, but we've already
1452 * sent CMD11, so a power cycle is required anyway
1453 */
1454 err = -EAGAIN;
1455 goto power_cycle;
1456 }
1457
1458 /* Keep clock gated for at least 5 ms */
1459 mmc_delay(5);
1460 host->ios.clock = clock;
1461 mmc_set_ios(host);
1462
1463 /* Wait for at least 1 ms according to spec */
1464 mmc_delay(1);
1465
1466 /*
1467 * Failure to switch is indicated by the card holding
1468 * dat[0:3] low
1469 */
1470 if (host->ops->card_busy && host->ops->card_busy(host))
1471 err = -EAGAIN;
1472
1473power_cycle:
1474 if (err) {
1475 pr_debug("%s: Signal voltage switch failed, "
1476 "power cycling card\n", mmc_hostname(host));
1477 mmc_power_cycle(host, ocr);
1478 }
1479
1480 mmc_host_clk_release(host);
1481
1482 return err;
1483}
1484
1485/*
1486 * Select timing parameters for host.
1487 */
1488void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489{
1490 mmc_host_clk_hold(host);
1491 host->ios.timing = timing;
1492 mmc_set_ios(host);
1493 mmc_host_clk_release(host);
1494}
1495
1496/*
1497 * Select appropriate driver type for host.
1498 */
1499void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500{
1501 mmc_host_clk_hold(host);
1502 host->ios.drv_type = drv_type;
1503 mmc_set_ios(host);
1504 mmc_host_clk_release(host);
1505}
1506
1507/*
1508 * Apply power to the MMC stack. This is a two-stage process.
1509 * First, we enable power to the card without the clock running.
1510 * We then wait a bit for the power to stabilise. Finally,
1511 * enable the bus drivers and clock to the card.
1512 *
1513 * We must _NOT_ enable the clock prior to power stablising.
1514 *
1515 * If a host does all the power sequencing itself, ignore the
1516 * initial MMC_POWER_UP stage.
1517 */
1518void mmc_power_up(struct mmc_host *host, u32 ocr)
1519{
1520 if (host->ios.power_mode == MMC_POWER_ON)
1521 return;
1522
1523 mmc_host_clk_hold(host);
1524
1525 host->ios.vdd = fls(ocr) - 1;
1526 if (mmc_host_is_spi(host))
1527 host->ios.chip_select = MMC_CS_HIGH;
1528 else
1529 host->ios.chip_select = MMC_CS_DONTCARE;
1530 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1531 host->ios.power_mode = MMC_POWER_UP;
1532 host->ios.bus_width = MMC_BUS_WIDTH_1;
1533 host->ios.timing = MMC_TIMING_LEGACY;
1534 mmc_set_ios(host);
1535
1536 /* Set signal voltage to 3.3V */
1537 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1538
1539 /*
1540 * This delay should be sufficient to allow the power supply
1541 * to reach the minimum voltage.
1542 */
1543 mmc_delay(10);
1544
1545 host->ios.clock = host->f_init;
1546
1547 host->ios.power_mode = MMC_POWER_ON;
1548 mmc_set_ios(host);
1549
1550 /*
1551 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552 * time required to reach a stable voltage.
1553 */
1554 mmc_delay(10);
1555
1556 mmc_host_clk_release(host);
1557}
1558
1559void mmc_power_off(struct mmc_host *host)
1560{
1561 if (host->ios.power_mode == MMC_POWER_OFF)
1562 return;
1563
1564 mmc_host_clk_hold(host);
1565
1566 host->ios.clock = 0;
1567 host->ios.vdd = 0;
1568
1569 if (!mmc_host_is_spi(host)) {
1570 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571 host->ios.chip_select = MMC_CS_DONTCARE;
1572 }
1573 host->ios.power_mode = MMC_POWER_OFF;
1574 host->ios.bus_width = MMC_BUS_WIDTH_1;
1575 host->ios.timing = MMC_TIMING_LEGACY;
1576 mmc_set_ios(host);
1577
1578 /*
1579 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580 * XO-1.5, require a short delay after poweroff before the card
1581 * can be successfully turned on again.
1582 */
1583 mmc_delay(1);
1584
1585 mmc_host_clk_release(host);
1586}
1587
1588void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589{
1590 mmc_power_off(host);
1591 /* Wait at least 1 ms according to SD spec */
1592 mmc_delay(1);
1593 mmc_power_up(host, ocr);
1594}
1595
1596/*
1597 * Cleanup when the last reference to the bus operator is dropped.
1598 */
1599static void __mmc_release_bus(struct mmc_host *host)
1600{
1601 BUG_ON(!host);
1602 BUG_ON(host->bus_refs);
1603 BUG_ON(!host->bus_dead);
1604
1605 host->bus_ops = NULL;
1606}
1607
1608/*
1609 * Increase reference count of bus operator
1610 */
1611static inline void mmc_bus_get(struct mmc_host *host)
1612{
1613 unsigned long flags;
1614
1615 spin_lock_irqsave(&host->lock, flags);
1616 host->bus_refs++;
1617 spin_unlock_irqrestore(&host->lock, flags);
1618}
1619
1620/*
1621 * Decrease reference count of bus operator and free it if
1622 * it is the last reference.
1623 */
1624static inline void mmc_bus_put(struct mmc_host *host)
1625{
1626 unsigned long flags;
1627
1628 spin_lock_irqsave(&host->lock, flags);
1629 host->bus_refs--;
1630 if ((host->bus_refs == 0) && host->bus_ops)
1631 __mmc_release_bus(host);
1632 spin_unlock_irqrestore(&host->lock, flags);
1633}
1634
1635/*
1636 * Assign a mmc bus handler to a host. Only one bus handler may control a
1637 * host at any given time.
1638 */
1639void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640{
1641 unsigned long flags;
1642
1643 BUG_ON(!host);
1644 BUG_ON(!ops);
1645
1646 WARN_ON(!host->claimed);
1647
1648 spin_lock_irqsave(&host->lock, flags);
1649
1650 BUG_ON(host->bus_ops);
1651 BUG_ON(host->bus_refs);
1652
1653 host->bus_ops = ops;
1654 host->bus_refs = 1;
1655 host->bus_dead = 0;
1656
1657 spin_unlock_irqrestore(&host->lock, flags);
1658}
1659
1660/*
1661 * Remove the current bus handler from a host.
1662 */
1663void mmc_detach_bus(struct mmc_host *host)
1664{
1665 unsigned long flags;
1666
1667 BUG_ON(!host);
1668
1669 WARN_ON(!host->claimed);
1670 WARN_ON(!host->bus_ops);
1671
1672 spin_lock_irqsave(&host->lock, flags);
1673
1674 host->bus_dead = 1;
1675
1676 spin_unlock_irqrestore(&host->lock, flags);
1677
1678 mmc_bus_put(host);
1679}
1680
1681static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682 bool cd_irq)
1683{
1684#ifdef CONFIG_MMC_DEBUG
1685 unsigned long flags;
1686 spin_lock_irqsave(&host->lock, flags);
1687 WARN_ON(host->removed);
1688 spin_unlock_irqrestore(&host->lock, flags);
1689#endif
1690
1691 /*
1692 * If the device is configured as wakeup, we prevent a new sleep for
1693 * 5 s to give provision for user space to consume the event.
1694 */
1695 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696 device_can_wakeup(mmc_dev(host)))
1697 pm_wakeup_event(mmc_dev(host), 5000);
1698
1699 host->detect_change = 1;
1700 mmc_schedule_delayed_work(&host->detect, delay);
1701}
1702
1703/**
1704 * mmc_detect_change - process change of state on a MMC socket
1705 * @host: host which changed state.
1706 * @delay: optional delay to wait before detection (jiffies)
1707 *
1708 * MMC drivers should call this when they detect a card has been
1709 * inserted or removed. The MMC layer will confirm that any
1710 * present card is still functional, and initialize any newly
1711 * inserted.
1712 */
1713void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714{
1715 _mmc_detect_change(host, delay, true);
1716}
1717EXPORT_SYMBOL(mmc_detect_change);
1718
1719void mmc_init_erase(struct mmc_card *card)
1720{
1721 unsigned int sz;
1722
1723 if (is_power_of_2(card->erase_size))
1724 card->erase_shift = ffs(card->erase_size) - 1;
1725 else
1726 card->erase_shift = 0;
1727
1728 /*
1729 * It is possible to erase an arbitrarily large area of an SD or MMC
1730 * card. That is not desirable because it can take a long time
1731 * (minutes) potentially delaying more important I/O, and also the
1732 * timeout calculations become increasingly hugely over-estimated.
1733 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734 * to that size and alignment.
1735 *
1736 * For SD cards that define Allocation Unit size, limit erases to one
1737 * Allocation Unit at a time. For MMC cards that define High Capacity
1738 * Erase Size, whether it is switched on or not, limit to that size.
1739 * Otherwise just have a stab at a good value. For modern cards it
1740 * will end up being 4MiB. Note that if the value is too small, it
1741 * can end up taking longer to erase.
1742 */
1743 if (mmc_card_sd(card) && card->ssr.au) {
1744 card->pref_erase = card->ssr.au;
1745 card->erase_shift = ffs(card->ssr.au) - 1;
1746 } else if (card->ext_csd.hc_erase_size) {
1747 card->pref_erase = card->ext_csd.hc_erase_size;
1748 } else {
1749 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750 if (sz < 128)
1751 card->pref_erase = 512 * 1024 / 512;
1752 else if (sz < 512)
1753 card->pref_erase = 1024 * 1024 / 512;
1754 else if (sz < 1024)
1755 card->pref_erase = 2 * 1024 * 1024 / 512;
1756 else
1757 card->pref_erase = 4 * 1024 * 1024 / 512;
1758 if (card->pref_erase < card->erase_size)
1759 card->pref_erase = card->erase_size;
1760 else {
1761 sz = card->pref_erase % card->erase_size;
1762 if (sz)
1763 card->pref_erase += card->erase_size - sz;
1764 }
1765 }
1766}
1767
1768static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769 unsigned int arg, unsigned int qty)
1770{
1771 unsigned int erase_timeout;
1772
1773 if (arg == MMC_DISCARD_ARG ||
1774 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775 erase_timeout = card->ext_csd.trim_timeout;
1776 } else if (card->ext_csd.erase_group_def & 1) {
1777 /* High Capacity Erase Group Size uses HC timeouts */
1778 if (arg == MMC_TRIM_ARG)
1779 erase_timeout = card->ext_csd.trim_timeout;
1780 else
1781 erase_timeout = card->ext_csd.hc_erase_timeout;
1782 } else {
1783 /* CSD Erase Group Size uses write timeout */
1784 unsigned int mult = (10 << card->csd.r2w_factor);
1785 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786 unsigned int timeout_us;
1787
1788 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789 if (card->csd.tacc_ns < 1000000)
1790 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791 else
1792 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793
1794 /*
1795 * ios.clock is only a target. The real clock rate might be
1796 * less but not that much less, so fudge it by multiplying by 2.
1797 */
1798 timeout_clks <<= 1;
1799 timeout_us += (timeout_clks * 1000) /
1800 (mmc_host_clk_rate(card->host) / 1000);
1801
1802 erase_timeout = timeout_us / 1000;
1803
1804 /*
1805 * Theoretically, the calculation could underflow so round up
1806 * to 1ms in that case.
1807 */
1808 if (!erase_timeout)
1809 erase_timeout = 1;
1810 }
1811
1812 /* Multiplier for secure operations */
1813 if (arg & MMC_SECURE_ARGS) {
1814 if (arg == MMC_SECURE_ERASE_ARG)
1815 erase_timeout *= card->ext_csd.sec_erase_mult;
1816 else
1817 erase_timeout *= card->ext_csd.sec_trim_mult;
1818 }
1819
1820 erase_timeout *= qty;
1821
1822 /*
1823 * Ensure at least a 1 second timeout for SPI as per
1824 * 'mmc_set_data_timeout()'
1825 */
1826 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827 erase_timeout = 1000;
1828
1829 return erase_timeout;
1830}
1831
1832static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833 unsigned int arg,
1834 unsigned int qty)
1835{
1836 unsigned int erase_timeout;
1837
1838 if (card->ssr.erase_timeout) {
1839 /* Erase timeout specified in SD Status Register (SSR) */
1840 erase_timeout = card->ssr.erase_timeout * qty +
1841 card->ssr.erase_offset;
1842 } else {
1843 /*
1844 * Erase timeout not specified in SD Status Register (SSR) so
1845 * use 250ms per write block.
1846 */
1847 erase_timeout = 250 * qty;
1848 }
1849
1850 /* Must not be less than 1 second */
1851 if (erase_timeout < 1000)
1852 erase_timeout = 1000;
1853
1854 return erase_timeout;
1855}
1856
1857static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858 unsigned int arg,
1859 unsigned int qty)
1860{
1861 if (mmc_card_sd(card))
1862 return mmc_sd_erase_timeout(card, arg, qty);
1863 else
1864 return mmc_mmc_erase_timeout(card, arg, qty);
1865}
1866
1867static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868 unsigned int to, unsigned int arg)
1869{
1870 struct mmc_command cmd = {0};
1871 unsigned int qty = 0;
1872 unsigned long timeout;
1873 int err;
1874
1875 /*
1876 * qty is used to calculate the erase timeout which depends on how many
1877 * erase groups (or allocation units in SD terminology) are affected.
1878 * We count erasing part of an erase group as one erase group.
1879 * For SD, the allocation units are always a power of 2. For MMC, the
1880 * erase group size is almost certainly also power of 2, but it does not
1881 * seem to insist on that in the JEDEC standard, so we fall back to
1882 * division in that case. SD may not specify an allocation unit size,
1883 * in which case the timeout is based on the number of write blocks.
1884 *
1885 * Note that the timeout for secure trim 2 will only be correct if the
1886 * number of erase groups specified is the same as the total of all
1887 * preceding secure trim 1 commands. Since the power may have been
1888 * lost since the secure trim 1 commands occurred, it is generally
1889 * impossible to calculate the secure trim 2 timeout correctly.
1890 */
1891 if (card->erase_shift)
1892 qty += ((to >> card->erase_shift) -
1893 (from >> card->erase_shift)) + 1;
1894 else if (mmc_card_sd(card))
1895 qty += to - from + 1;
1896 else
1897 qty += ((to / card->erase_size) -
1898 (from / card->erase_size)) + 1;
1899
1900 if (!mmc_card_blockaddr(card)) {
1901 from <<= 9;
1902 to <<= 9;
1903 }
1904
1905 if (mmc_card_sd(card))
1906 cmd.opcode = SD_ERASE_WR_BLK_START;
1907 else
1908 cmd.opcode = MMC_ERASE_GROUP_START;
1909 cmd.arg = from;
1910 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912 if (err) {
1913 pr_err("mmc_erase: group start error %d, "
1914 "status %#x\n", err, cmd.resp[0]);
1915 err = -EIO;
1916 goto out;
1917 }
1918
1919 memset(&cmd, 0, sizeof(struct mmc_command));
1920 if (mmc_card_sd(card))
1921 cmd.opcode = SD_ERASE_WR_BLK_END;
1922 else
1923 cmd.opcode = MMC_ERASE_GROUP_END;
1924 cmd.arg = to;
1925 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927 if (err) {
1928 pr_err("mmc_erase: group end error %d, status %#x\n",
1929 err, cmd.resp[0]);
1930 err = -EIO;
1931 goto out;
1932 }
1933
1934 memset(&cmd, 0, sizeof(struct mmc_command));
1935 cmd.opcode = MMC_ERASE;
1936 cmd.arg = arg;
1937 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1939 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940 if (err) {
1941 pr_err("mmc_erase: erase error %d, status %#x\n",
1942 err, cmd.resp[0]);
1943 err = -EIO;
1944 goto out;
1945 }
1946
1947 if (mmc_host_is_spi(card->host))
1948 goto out;
1949
1950 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1951 do {
1952 memset(&cmd, 0, sizeof(struct mmc_command));
1953 cmd.opcode = MMC_SEND_STATUS;
1954 cmd.arg = card->rca << 16;
1955 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956 /* Do not retry else we can't see errors */
1957 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958 if (err || (cmd.resp[0] & 0xFDF92000)) {
1959 pr_err("error %d requesting status %#x\n",
1960 err, cmd.resp[0]);
1961 err = -EIO;
1962 goto out;
1963 }
1964
1965 /* Timeout if the device never becomes ready for data and
1966 * never leaves the program state.
1967 */
1968 if (time_after(jiffies, timeout)) {
1969 pr_err("%s: Card stuck in programming state! %s\n",
1970 mmc_hostname(card->host), __func__);
1971 err = -EIO;
1972 goto out;
1973 }
1974
1975 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977out:
1978 return err;
1979}
1980
1981/**
1982 * mmc_erase - erase sectors.
1983 * @card: card to erase
1984 * @from: first sector to erase
1985 * @nr: number of sectors to erase
1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987 *
1988 * Caller must claim host before calling this function.
1989 */
1990int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991 unsigned int arg)
1992{
1993 unsigned int rem, to = from + nr;
1994
1995 if (!(card->host->caps & MMC_CAP_ERASE) ||
1996 !(card->csd.cmdclass & CCC_ERASE))
1997 return -EOPNOTSUPP;
1998
1999 if (!card->erase_size)
2000 return -EOPNOTSUPP;
2001
2002 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003 return -EOPNOTSUPP;
2004
2005 if ((arg & MMC_SECURE_ARGS) &&
2006 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007 return -EOPNOTSUPP;
2008
2009 if ((arg & MMC_TRIM_ARGS) &&
2010 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011 return -EOPNOTSUPP;
2012
2013 if (arg == MMC_SECURE_ERASE_ARG) {
2014 if (from % card->erase_size || nr % card->erase_size)
2015 return -EINVAL;
2016 }
2017
2018 if (arg == MMC_ERASE_ARG) {
2019 rem = from % card->erase_size;
2020 if (rem) {
2021 rem = card->erase_size - rem;
2022 from += rem;
2023 if (nr > rem)
2024 nr -= rem;
2025 else
2026 return 0;
2027 }
2028 rem = nr % card->erase_size;
2029 if (rem)
2030 nr -= rem;
2031 }
2032
2033 if (nr == 0)
2034 return 0;
2035
2036 to = from + nr;
2037
2038 if (to <= from)
2039 return -EINVAL;
2040
2041 /* 'from' and 'to' are inclusive */
2042 to -= 1;
2043
2044 return mmc_do_erase(card, from, to, arg);
2045}
2046EXPORT_SYMBOL(mmc_erase);
2047
2048int mmc_can_erase(struct mmc_card *card)
2049{
2050 if ((card->host->caps & MMC_CAP_ERASE) &&
2051 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052 return 1;
2053 return 0;
2054}
2055EXPORT_SYMBOL(mmc_can_erase);
2056
2057int mmc_can_trim(struct mmc_card *card)
2058{
2059 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2060 return 1;
2061 return 0;
2062}
2063EXPORT_SYMBOL(mmc_can_trim);
2064
2065int mmc_can_discard(struct mmc_card *card)
2066{
2067 /*
2068 * As there's no way to detect the discard support bit at v4.5
2069 * use the s/w feature support filed.
2070 */
2071 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072 return 1;
2073 return 0;
2074}
2075EXPORT_SYMBOL(mmc_can_discard);
2076
2077int mmc_can_sanitize(struct mmc_card *card)
2078{
2079 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080 return 0;
2081 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082 return 1;
2083 return 0;
2084}
2085EXPORT_SYMBOL(mmc_can_sanitize);
2086
2087int mmc_can_secure_erase_trim(struct mmc_card *card)
2088{
2089 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2090 return 1;
2091 return 0;
2092}
2093EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094
2095int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096 unsigned int nr)
2097{
2098 if (!card->erase_size)
2099 return 0;
2100 if (from % card->erase_size || nr % card->erase_size)
2101 return 0;
2102 return 1;
2103}
2104EXPORT_SYMBOL(mmc_erase_group_aligned);
2105
2106static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107 unsigned int arg)
2108{
2109 struct mmc_host *host = card->host;
2110 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111 unsigned int last_timeout = 0;
2112
2113 if (card->erase_shift)
2114 max_qty = UINT_MAX >> card->erase_shift;
2115 else if (mmc_card_sd(card))
2116 max_qty = UINT_MAX;
2117 else
2118 max_qty = UINT_MAX / card->erase_size;
2119
2120 /* Find the largest qty with an OK timeout */
2121 do {
2122 y = 0;
2123 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124 timeout = mmc_erase_timeout(card, arg, qty + x);
2125 if (timeout > host->max_busy_timeout)
2126 break;
2127 if (timeout < last_timeout)
2128 break;
2129 last_timeout = timeout;
2130 y = x;
2131 }
2132 qty += y;
2133 } while (y);
2134
2135 if (!qty)
2136 return 0;
2137
2138 if (qty == 1)
2139 return 1;
2140
2141 /* Convert qty to sectors */
2142 if (card->erase_shift)
2143 max_discard = --qty << card->erase_shift;
2144 else if (mmc_card_sd(card))
2145 max_discard = qty;
2146 else
2147 max_discard = --qty * card->erase_size;
2148
2149 return max_discard;
2150}
2151
2152unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153{
2154 struct mmc_host *host = card->host;
2155 unsigned int max_discard, max_trim;
2156
2157 if (!host->max_busy_timeout)
2158 return UINT_MAX;
2159
2160 /*
2161 * Without erase_group_def set, MMC erase timeout depends on clock
2162 * frequence which can change. In that case, the best choice is
2163 * just the preferred erase size.
2164 */
2165 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166 return card->pref_erase;
2167
2168 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169 if (mmc_can_trim(card)) {
2170 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171 if (max_trim < max_discard)
2172 max_discard = max_trim;
2173 } else if (max_discard < card->erase_size) {
2174 max_discard = 0;
2175 }
2176 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177 mmc_hostname(host), max_discard, host->max_busy_timeout);
2178 return max_discard;
2179}
2180EXPORT_SYMBOL(mmc_calc_max_discard);
2181
2182int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183{
2184 struct mmc_command cmd = {0};
2185
2186 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2187 return 0;
2188
2189 cmd.opcode = MMC_SET_BLOCKLEN;
2190 cmd.arg = blocklen;
2191 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192 return mmc_wait_for_cmd(card->host, &cmd, 5);
2193}
2194EXPORT_SYMBOL(mmc_set_blocklen);
2195
2196int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197 bool is_rel_write)
2198{
2199 struct mmc_command cmd = {0};
2200
2201 cmd.opcode = MMC_SET_BLOCK_COUNT;
2202 cmd.arg = blockcount & 0x0000FFFF;
2203 if (is_rel_write)
2204 cmd.arg |= 1 << 31;
2205 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206 return mmc_wait_for_cmd(card->host, &cmd, 5);
2207}
2208EXPORT_SYMBOL(mmc_set_blockcount);
2209
2210static void mmc_hw_reset_for_init(struct mmc_host *host)
2211{
2212 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2213 return;
2214 mmc_host_clk_hold(host);
2215 host->ops->hw_reset(host);
2216 mmc_host_clk_release(host);
2217}
2218
2219int mmc_can_reset(struct mmc_card *card)
2220{
2221 u8 rst_n_function;
2222
2223 if (!mmc_card_mmc(card))
2224 return 0;
2225 rst_n_function = card->ext_csd.rst_n_function;
2226 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227 return 0;
2228 return 1;
2229}
2230EXPORT_SYMBOL(mmc_can_reset);
2231
2232static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233{
2234 struct mmc_card *card = host->card;
2235
2236 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237 return -EOPNOTSUPP;
2238
2239 if (!card)
2240 return -EINVAL;
2241
2242 if (!mmc_can_reset(card))
2243 return -EOPNOTSUPP;
2244
2245 mmc_host_clk_hold(host);
2246 mmc_set_clock(host, host->f_init);
2247
2248 host->ops->hw_reset(host);
2249
2250 /* If the reset has happened, then a status command will fail */
2251 if (check) {
2252 struct mmc_command cmd = {0};
2253 int err;
2254
2255 cmd.opcode = MMC_SEND_STATUS;
2256 if (!mmc_host_is_spi(card->host))
2257 cmd.arg = card->rca << 16;
2258 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260 if (!err) {
2261 mmc_host_clk_release(host);
2262 return -ENOSYS;
2263 }
2264 }
2265
2266 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267 if (mmc_host_is_spi(host)) {
2268 host->ios.chip_select = MMC_CS_HIGH;
2269 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270 } else {
2271 host->ios.chip_select = MMC_CS_DONTCARE;
2272 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273 }
2274 host->ios.bus_width = MMC_BUS_WIDTH_1;
2275 host->ios.timing = MMC_TIMING_LEGACY;
2276 mmc_set_ios(host);
2277
2278 mmc_host_clk_release(host);
2279
2280 return host->bus_ops->power_restore(host);
2281}
2282
2283int mmc_hw_reset(struct mmc_host *host)
2284{
2285 return mmc_do_hw_reset(host, 0);
2286}
2287EXPORT_SYMBOL(mmc_hw_reset);
2288
2289int mmc_hw_reset_check(struct mmc_host *host)
2290{
2291 return mmc_do_hw_reset(host, 1);
2292}
2293EXPORT_SYMBOL(mmc_hw_reset_check);
2294
2295static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296{
2297 host->f_init = freq;
2298
2299#ifdef CONFIG_MMC_DEBUG
2300 pr_info("%s: %s: trying to init card at %u Hz\n",
2301 mmc_hostname(host), __func__, host->f_init);
2302#endif
2303 mmc_power_up(host, host->ocr_avail);
2304
2305 /*
2306 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307 * do a hardware reset if possible.
2308 */
2309 mmc_hw_reset_for_init(host);
2310
2311 /*
2312 * sdio_reset sends CMD52 to reset card. Since we do not know
2313 * if the card is being re-initialized, just send it. CMD52
2314 * should be ignored by SD/eMMC cards.
2315 */
2316 sdio_reset(host);
2317 mmc_go_idle(host);
2318
2319 mmc_send_if_cond(host, host->ocr_avail);
2320
2321 /* Order's important: probe SDIO, then SD, then MMC */
2322 if (!mmc_attach_sdio(host))
2323 return 0;
2324 if (!mmc_attach_sd(host))
2325 return 0;
2326 if (!mmc_attach_mmc(host))
2327 return 0;
2328
2329 mmc_power_off(host);
2330 return -EIO;
2331}
2332
2333int _mmc_detect_card_removed(struct mmc_host *host)
2334{
2335 int ret;
2336
2337 if (host->caps & MMC_CAP_NONREMOVABLE)
2338 return 0;
2339
2340 if (!host->card || mmc_card_removed(host->card))
2341 return 1;
2342
2343 ret = host->bus_ops->alive(host);
2344
2345 /*
2346 * Card detect status and alive check may be out of sync if card is
2347 * removed slowly, when card detect switch changes while card/slot
2348 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350 * detect work 200ms later for this case.
2351 */
2352 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353 mmc_detect_change(host, msecs_to_jiffies(200));
2354 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355 }
2356
2357 if (ret) {
2358 mmc_card_set_removed(host->card);
2359 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360 }
2361
2362 return ret;
2363}
2364
2365int mmc_detect_card_removed(struct mmc_host *host)
2366{
2367 struct mmc_card *card = host->card;
2368 int ret;
2369
2370 WARN_ON(!host->claimed);
2371
2372 if (!card)
2373 return 1;
2374
2375 ret = mmc_card_removed(card);
2376 /*
2377 * The card will be considered unchanged unless we have been asked to
2378 * detect a change or host requires polling to provide card detection.
2379 */
2380 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2381 return ret;
2382
2383 host->detect_change = 0;
2384 if (!ret) {
2385 ret = _mmc_detect_card_removed(host);
2386 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387 /*
2388 * Schedule a detect work as soon as possible to let a
2389 * rescan handle the card removal.
2390 */
2391 cancel_delayed_work(&host->detect);
2392 _mmc_detect_change(host, 0, false);
2393 }
2394 }
2395
2396 return ret;
2397}
2398EXPORT_SYMBOL(mmc_detect_card_removed);
2399
2400void mmc_rescan(struct work_struct *work)
2401{
2402 struct mmc_host *host =
2403 container_of(work, struct mmc_host, detect.work);
2404 int i;
2405
2406 if (host->rescan_disable)
2407 return;
2408
2409 /* If there is a non-removable card registered, only scan once */
2410 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411 return;
2412 host->rescan_entered = 1;
2413
2414 mmc_bus_get(host);
2415
2416 /*
2417 * if there is a _removable_ card registered, check whether it is
2418 * still present
2419 */
2420 if (host->bus_ops && !host->bus_dead
2421 && !(host->caps & MMC_CAP_NONREMOVABLE))
2422 host->bus_ops->detect(host);
2423
2424 host->detect_change = 0;
2425
2426 /*
2427 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428 * the card is no longer present.
2429 */
2430 mmc_bus_put(host);
2431 mmc_bus_get(host);
2432
2433 /* if there still is a card present, stop here */
2434 if (host->bus_ops != NULL) {
2435 mmc_bus_put(host);
2436 goto out;
2437 }
2438
2439 /*
2440 * Only we can add a new handler, so it's safe to
2441 * release the lock here.
2442 */
2443 mmc_bus_put(host);
2444
2445 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2446 host->ops->get_cd(host) == 0) {
2447 mmc_claim_host(host);
2448 mmc_power_off(host);
2449 mmc_release_host(host);
2450 goto out;
2451 }
2452
2453 mmc_claim_host(host);
2454 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2456 break;
2457 if (freqs[i] <= host->f_min)
2458 break;
2459 }
2460 mmc_release_host(host);
2461
2462 out:
2463 if (host->caps & MMC_CAP_NEEDS_POLL)
2464 mmc_schedule_delayed_work(&host->detect, HZ);
2465}
2466
2467void mmc_start_host(struct mmc_host *host)
2468{
2469 host->f_init = max(freqs[0], host->f_min);
2470 host->rescan_disable = 0;
2471 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472 mmc_power_off(host);
2473 else
2474 mmc_power_up(host, host->ocr_avail);
2475 mmc_gpiod_request_cd_irq(host);
2476 _mmc_detect_change(host, 0, false);
2477}
2478
2479void mmc_stop_host(struct mmc_host *host)
2480{
2481#ifdef CONFIG_MMC_DEBUG
2482 unsigned long flags;
2483 spin_lock_irqsave(&host->lock, flags);
2484 host->removed = 1;
2485 spin_unlock_irqrestore(&host->lock, flags);
2486#endif
2487 if (host->slot.cd_irq >= 0)
2488 disable_irq(host->slot.cd_irq);
2489
2490 host->rescan_disable = 1;
2491 cancel_delayed_work_sync(&host->detect);
2492 mmc_flush_scheduled_work();
2493
2494 /* clear pm flags now and let card drivers set them as needed */
2495 host->pm_flags = 0;
2496
2497 mmc_bus_get(host);
2498 if (host->bus_ops && !host->bus_dead) {
2499 /* Calling bus_ops->remove() with a claimed host can deadlock */
2500 host->bus_ops->remove(host);
2501 mmc_claim_host(host);
2502 mmc_detach_bus(host);
2503 mmc_power_off(host);
2504 mmc_release_host(host);
2505 mmc_bus_put(host);
2506 return;
2507 }
2508 mmc_bus_put(host);
2509
2510 BUG_ON(host->card);
2511
2512 mmc_power_off(host);
2513}
2514
2515int mmc_power_save_host(struct mmc_host *host)
2516{
2517 int ret = 0;
2518
2519#ifdef CONFIG_MMC_DEBUG
2520 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521#endif
2522
2523 mmc_bus_get(host);
2524
2525 if (!host->bus_ops || host->bus_dead) {
2526 mmc_bus_put(host);
2527 return -EINVAL;
2528 }
2529
2530 if (host->bus_ops->power_save)
2531 ret = host->bus_ops->power_save(host);
2532
2533 mmc_bus_put(host);
2534
2535 mmc_power_off(host);
2536
2537 return ret;
2538}
2539EXPORT_SYMBOL(mmc_power_save_host);
2540
2541int mmc_power_restore_host(struct mmc_host *host)
2542{
2543 int ret;
2544
2545#ifdef CONFIG_MMC_DEBUG
2546 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547#endif
2548
2549 mmc_bus_get(host);
2550
2551 if (!host->bus_ops || host->bus_dead) {
2552 mmc_bus_put(host);
2553 return -EINVAL;
2554 }
2555
2556 mmc_power_up(host, host->card->ocr);
2557 ret = host->bus_ops->power_restore(host);
2558
2559 mmc_bus_put(host);
2560
2561 return ret;
2562}
2563EXPORT_SYMBOL(mmc_power_restore_host);
2564
2565/*
2566 * Flush the cache to the non-volatile storage.
2567 */
2568int mmc_flush_cache(struct mmc_card *card)
2569{
2570 int err = 0;
2571
2572 if (mmc_card_mmc(card) &&
2573 (card->ext_csd.cache_size > 0) &&
2574 (card->ext_csd.cache_ctrl & 1)) {
2575 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576 EXT_CSD_FLUSH_CACHE, 1, 0);
2577 if (err)
2578 pr_err("%s: cache flush error %d\n",
2579 mmc_hostname(card->host), err);
2580 }
2581
2582 return err;
2583}
2584EXPORT_SYMBOL(mmc_flush_cache);
2585
2586#ifdef CONFIG_PM
2587
2588/* Do the card removal on suspend if card is assumed removeable
2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590 to sync the card.
2591*/
2592int mmc_pm_notify(struct notifier_block *notify_block,
2593 unsigned long mode, void *unused)
2594{
2595 struct mmc_host *host = container_of(
2596 notify_block, struct mmc_host, pm_notify);
2597 unsigned long flags;
2598 int err = 0;
2599
2600 switch (mode) {
2601 case PM_HIBERNATION_PREPARE:
2602 case PM_SUSPEND_PREPARE:
2603 spin_lock_irqsave(&host->lock, flags);
2604 host->rescan_disable = 1;
2605 spin_unlock_irqrestore(&host->lock, flags);
2606 cancel_delayed_work_sync(&host->detect);
2607
2608 if (!host->bus_ops)
2609 break;
2610
2611 /* Validate prerequisites for suspend */
2612 if (host->bus_ops->pre_suspend)
2613 err = host->bus_ops->pre_suspend(host);
2614 if (!err)
2615 break;
2616
2617 /* Calling bus_ops->remove() with a claimed host can deadlock */
2618 host->bus_ops->remove(host);
2619 mmc_claim_host(host);
2620 mmc_detach_bus(host);
2621 mmc_power_off(host);
2622 mmc_release_host(host);
2623 host->pm_flags = 0;
2624 break;
2625
2626 case PM_POST_SUSPEND:
2627 case PM_POST_HIBERNATION:
2628 case PM_POST_RESTORE:
2629
2630 spin_lock_irqsave(&host->lock, flags);
2631 host->rescan_disable = 0;
2632 spin_unlock_irqrestore(&host->lock, flags);
2633 _mmc_detect_change(host, 0, false);
2634
2635 }
2636
2637 return 0;
2638}
2639#endif
2640
2641/**
2642 * mmc_init_context_info() - init synchronization context
2643 * @host: mmc host
2644 *
2645 * Init struct context_info needed to implement asynchronous
2646 * request mechanism, used by mmc core, host driver and mmc requests
2647 * supplier.
2648 */
2649void mmc_init_context_info(struct mmc_host *host)
2650{
2651 spin_lock_init(&host->context_info.lock);
2652 host->context_info.is_new_req = false;
2653 host->context_info.is_done_rcv = false;
2654 host->context_info.is_waiting_last_req = false;
2655 init_waitqueue_head(&host->context_info.wait);
2656}
2657
2658static int __init mmc_init(void)
2659{
2660 int ret;
2661
2662 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663 if (!workqueue)
2664 return -ENOMEM;
2665
2666 ret = mmc_register_bus();
2667 if (ret)
2668 goto destroy_workqueue;
2669
2670 ret = mmc_register_host_class();
2671 if (ret)
2672 goto unregister_bus;
2673
2674 ret = sdio_register_bus();
2675 if (ret)
2676 goto unregister_host_class;
2677
2678 return 0;
2679
2680unregister_host_class:
2681 mmc_unregister_host_class();
2682unregister_bus:
2683 mmc_unregister_bus();
2684destroy_workqueue:
2685 destroy_workqueue(workqueue);
2686
2687 return ret;
2688}
2689
2690static void __exit mmc_exit(void)
2691{
2692 sdio_unregister_bus();
2693 mmc_unregister_host_class();
2694 mmc_unregister_bus();
2695 destroy_workqueue(workqueue);
2696}
2697
2698subsys_initcall(mmc_init);
2699module_exit(mmc_exit);
2700
2701MODULE_LICENSE("GPL");
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/mmc.h>
41
42#include "core.h"
43#include "card.h"
44#include "bus.h"
45#include "host.h"
46#include "sdio_bus.h"
47#include "pwrseq.h"
48
49#include "mmc_ops.h"
50#include "sd_ops.h"
51#include "sdio_ops.h"
52
53/* If the device is not responding */
54#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
55
56/* The max erase timeout, used when host->max_busy_timeout isn't specified */
57#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
58
59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60
61/*
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
65 */
66bool use_spi_crc = 1;
67module_param(use_spi_crc, bool, 0);
68
69static int mmc_schedule_delayed_work(struct delayed_work *work,
70 unsigned long delay)
71{
72 /*
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
77 */
78 return queue_delayed_work(system_freezable_wq, work, delay);
79}
80
81#ifdef CONFIG_FAIL_MMC_REQUEST
82
83/*
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
86 */
87static void mmc_should_fail_request(struct mmc_host *host,
88 struct mmc_request *mrq)
89{
90 struct mmc_command *cmd = mrq->cmd;
91 struct mmc_data *data = mrq->data;
92 static const int data_errors[] = {
93 -ETIMEDOUT,
94 -EILSEQ,
95 -EIO,
96 };
97
98 if (!data)
99 return;
100
101 if (cmd->error || data->error ||
102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
103 return;
104
105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
107}
108
109#else /* CONFIG_FAIL_MMC_REQUEST */
110
111static inline void mmc_should_fail_request(struct mmc_host *host,
112 struct mmc_request *mrq)
113{
114}
115
116#endif /* CONFIG_FAIL_MMC_REQUEST */
117
118static inline void mmc_complete_cmd(struct mmc_request *mrq)
119{
120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 complete_all(&mrq->cmd_completion);
122}
123
124void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
125{
126 if (!mrq->cap_cmd_during_tfr)
127 return;
128
129 mmc_complete_cmd(mrq);
130
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host), mrq->cmd->opcode);
133}
134EXPORT_SYMBOL(mmc_command_done);
135
136/**
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
140 *
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
143 */
144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145{
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
148
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 (mrq->data && mrq->data->error == -EILSEQ) ||
154 (mrq->stop && mrq->stop->error == -EILSEQ)))
155 mmc_retune_needed(host);
156
157 if (err && cmd->retries && mmc_host_is_spi(host)) {
158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
159 cmd->retries = 0;
160 }
161
162 if (host->ongoing_mrq == mrq)
163 host->ongoing_mrq = NULL;
164
165 mmc_complete_cmd(mrq);
166
167 trace_mmc_request_done(host, mrq);
168
169 /*
170 * We list various conditions for the command to be considered
171 * properly done:
172 *
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
177 */
178 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 mmc_should_fail_request(host, mrq);
180
181 if (!host->ongoing_mrq)
182 led_trigger_event(host->led, LED_OFF);
183
184 if (mrq->sbc) {
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host), mrq->sbc->opcode,
187 mrq->sbc->error,
188 mrq->sbc->resp[0], mrq->sbc->resp[1],
189 mrq->sbc->resp[2], mrq->sbc->resp[3]);
190 }
191
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host), cmd->opcode, err,
194 cmd->resp[0], cmd->resp[1],
195 cmd->resp[2], cmd->resp[3]);
196
197 if (mrq->data) {
198 pr_debug("%s: %d bytes transferred: %d\n",
199 mmc_hostname(host),
200 mrq->data->bytes_xfered, mrq->data->error);
201 }
202
203 if (mrq->stop) {
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host), mrq->stop->opcode,
206 mrq->stop->error,
207 mrq->stop->resp[0], mrq->stop->resp[1],
208 mrq->stop->resp[2], mrq->stop->resp[3]);
209 }
210 }
211 /*
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
214 */
215 if (mrq->done)
216 mrq->done(mrq);
217}
218
219EXPORT_SYMBOL(mmc_request_done);
220
221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222{
223 int err;
224
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
227 if (err) {
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
230 return;
231 }
232
233 /*
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
237 */
238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 host->ops->card_busy) {
240 int tries = 500; /* Wait aprox 500ms at maximum */
241
242 while (host->ops->card_busy(host) && --tries)
243 mmc_delay(1);
244
245 if (tries == 0) {
246 mrq->cmd->error = -EBUSY;
247 mmc_request_done(host, mrq);
248 return;
249 }
250 }
251
252 if (mrq->cap_cmd_during_tfr) {
253 host->ongoing_mrq = mrq;
254 /*
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
257 */
258 reinit_completion(&mrq->cmd_completion);
259 }
260
261 trace_mmc_request_start(host, mrq);
262
263 if (host->cqe_on)
264 host->cqe_ops->cqe_off(host);
265
266 host->ops->request(host, mrq);
267}
268
269static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
270 bool cqe)
271{
272 if (mrq->sbc) {
273 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
274 mmc_hostname(host), mrq->sbc->opcode,
275 mrq->sbc->arg, mrq->sbc->flags);
276 }
277
278 if (mrq->cmd) {
279 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
280 mmc_hostname(host), cqe ? "CQE direct " : "",
281 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
282 } else if (cqe) {
283 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
284 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
285 }
286
287 if (mrq->data) {
288 pr_debug("%s: blksz %d blocks %d flags %08x "
289 "tsac %d ms nsac %d\n",
290 mmc_hostname(host), mrq->data->blksz,
291 mrq->data->blocks, mrq->data->flags,
292 mrq->data->timeout_ns / 1000000,
293 mrq->data->timeout_clks);
294 }
295
296 if (mrq->stop) {
297 pr_debug("%s: CMD%u arg %08x flags %08x\n",
298 mmc_hostname(host), mrq->stop->opcode,
299 mrq->stop->arg, mrq->stop->flags);
300 }
301}
302
303static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
304{
305 unsigned int i, sz = 0;
306 struct scatterlist *sg;
307
308 if (mrq->cmd) {
309 mrq->cmd->error = 0;
310 mrq->cmd->mrq = mrq;
311 mrq->cmd->data = mrq->data;
312 }
313 if (mrq->sbc) {
314 mrq->sbc->error = 0;
315 mrq->sbc->mrq = mrq;
316 }
317 if (mrq->data) {
318 if (mrq->data->blksz > host->max_blk_size ||
319 mrq->data->blocks > host->max_blk_count ||
320 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
321 return -EINVAL;
322
323 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
324 sz += sg->length;
325 if (sz != mrq->data->blocks * mrq->data->blksz)
326 return -EINVAL;
327
328 mrq->data->error = 0;
329 mrq->data->mrq = mrq;
330 if (mrq->stop) {
331 mrq->data->stop = mrq->stop;
332 mrq->stop->error = 0;
333 mrq->stop->mrq = mrq;
334 }
335 }
336
337 return 0;
338}
339
340int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
341{
342 int err;
343
344 init_completion(&mrq->cmd_completion);
345
346 mmc_retune_hold(host);
347
348 if (mmc_card_removed(host->card))
349 return -ENOMEDIUM;
350
351 mmc_mrq_pr_debug(host, mrq, false);
352
353 WARN_ON(!host->claimed);
354
355 err = mmc_mrq_prep(host, mrq);
356 if (err)
357 return err;
358
359 led_trigger_event(host->led, LED_FULL);
360 __mmc_start_request(host, mrq);
361
362 return 0;
363}
364EXPORT_SYMBOL(mmc_start_request);
365
366static void mmc_wait_done(struct mmc_request *mrq)
367{
368 complete(&mrq->completion);
369}
370
371static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372{
373 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374
375 /*
376 * If there is an ongoing transfer, wait for the command line to become
377 * available.
378 */
379 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 wait_for_completion(&ongoing_mrq->cmd_completion);
381}
382
383static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384{
385 int err;
386
387 mmc_wait_ongoing_tfr_cmd(host);
388
389 init_completion(&mrq->completion);
390 mrq->done = mmc_wait_done;
391
392 err = mmc_start_request(host, mrq);
393 if (err) {
394 mrq->cmd->error = err;
395 mmc_complete_cmd(mrq);
396 complete(&mrq->completion);
397 }
398
399 return err;
400}
401
402void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403{
404 struct mmc_command *cmd;
405
406 while (1) {
407 wait_for_completion(&mrq->completion);
408
409 cmd = mrq->cmd;
410
411 /*
412 * If host has timed out waiting for the sanitize
413 * to complete, card might be still in programming state
414 * so let's try to bring the card out of programming
415 * state.
416 */
417 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
418 if (!mmc_interrupt_hpi(host->card)) {
419 pr_warn("%s: %s: Interrupted sanitize\n",
420 mmc_hostname(host), __func__);
421 cmd->error = 0;
422 break;
423 } else {
424 pr_err("%s: %s: Failed to interrupt sanitize\n",
425 mmc_hostname(host), __func__);
426 }
427 }
428 if (!cmd->error || !cmd->retries ||
429 mmc_card_removed(host->card))
430 break;
431
432 mmc_retune_recheck(host);
433
434 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
435 mmc_hostname(host), cmd->opcode, cmd->error);
436 cmd->retries--;
437 cmd->error = 0;
438 __mmc_start_request(host, mrq);
439 }
440
441 mmc_retune_release(host);
442}
443EXPORT_SYMBOL(mmc_wait_for_req_done);
444
445/*
446 * mmc_cqe_start_req - Start a CQE request.
447 * @host: MMC host to start the request
448 * @mrq: request to start
449 *
450 * Start the request, re-tuning if needed and it is possible. Returns an error
451 * code if the request fails to start or -EBUSY if CQE is busy.
452 */
453int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
454{
455 int err;
456
457 /*
458 * CQE cannot process re-tuning commands. Caller must hold retuning
459 * while CQE is in use. Re-tuning can happen here only when CQE has no
460 * active requests i.e. this is the first. Note, re-tuning will call
461 * ->cqe_off().
462 */
463 err = mmc_retune(host);
464 if (err)
465 goto out_err;
466
467 mrq->host = host;
468
469 mmc_mrq_pr_debug(host, mrq, true);
470
471 err = mmc_mrq_prep(host, mrq);
472 if (err)
473 goto out_err;
474
475 err = host->cqe_ops->cqe_request(host, mrq);
476 if (err)
477 goto out_err;
478
479 trace_mmc_request_start(host, mrq);
480
481 return 0;
482
483out_err:
484 if (mrq->cmd) {
485 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
486 mmc_hostname(host), mrq->cmd->opcode, err);
487 } else {
488 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
489 mmc_hostname(host), mrq->tag, err);
490 }
491 return err;
492}
493EXPORT_SYMBOL(mmc_cqe_start_req);
494
495/**
496 * mmc_cqe_request_done - CQE has finished processing an MMC request
497 * @host: MMC host which completed request
498 * @mrq: MMC request which completed
499 *
500 * CQE drivers should call this function when they have completed
501 * their processing of a request.
502 */
503void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
504{
505 mmc_should_fail_request(host, mrq);
506
507 /* Flag re-tuning needed on CRC errors */
508 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
509 (mrq->data && mrq->data->error == -EILSEQ))
510 mmc_retune_needed(host);
511
512 trace_mmc_request_done(host, mrq);
513
514 if (mrq->cmd) {
515 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
516 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
517 } else {
518 pr_debug("%s: CQE transfer done tag %d\n",
519 mmc_hostname(host), mrq->tag);
520 }
521
522 if (mrq->data) {
523 pr_debug("%s: %d bytes transferred: %d\n",
524 mmc_hostname(host),
525 mrq->data->bytes_xfered, mrq->data->error);
526 }
527
528 mrq->done(mrq);
529}
530EXPORT_SYMBOL(mmc_cqe_request_done);
531
532/**
533 * mmc_cqe_post_req - CQE post process of a completed MMC request
534 * @host: MMC host
535 * @mrq: MMC request to be processed
536 */
537void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
538{
539 if (host->cqe_ops->cqe_post_req)
540 host->cqe_ops->cqe_post_req(host, mrq);
541}
542EXPORT_SYMBOL(mmc_cqe_post_req);
543
544/* Arbitrary 1 second timeout */
545#define MMC_CQE_RECOVERY_TIMEOUT 1000
546
547/*
548 * mmc_cqe_recovery - Recover from CQE errors.
549 * @host: MMC host to recover
550 *
551 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
552 * in eMMC, and discarding the queue in CQE. CQE must call
553 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
554 * fails to discard its queue.
555 */
556int mmc_cqe_recovery(struct mmc_host *host)
557{
558 struct mmc_command cmd;
559 int err;
560
561 mmc_retune_hold_now(host);
562
563 /*
564 * Recovery is expected seldom, if at all, but it reduces performance,
565 * so make sure it is not completely silent.
566 */
567 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
568
569 host->cqe_ops->cqe_recovery_start(host);
570
571 memset(&cmd, 0, sizeof(cmd));
572 cmd.opcode = MMC_STOP_TRANSMISSION,
573 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
574 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
575 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
576 mmc_wait_for_cmd(host, &cmd, 0);
577
578 memset(&cmd, 0, sizeof(cmd));
579 cmd.opcode = MMC_CMDQ_TASK_MGMT;
580 cmd.arg = 1; /* Discard entire queue */
581 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
582 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
583 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
584 err = mmc_wait_for_cmd(host, &cmd, 0);
585
586 host->cqe_ops->cqe_recovery_finish(host);
587
588 mmc_retune_release(host);
589
590 return err;
591}
592EXPORT_SYMBOL(mmc_cqe_recovery);
593
594/**
595 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
596 * @host: MMC host
597 * @mrq: MMC request
598 *
599 * mmc_is_req_done() is used with requests that have
600 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
601 * starting a request and before waiting for it to complete. That is,
602 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
603 * and before mmc_wait_for_req_done(). If it is called at other times the
604 * result is not meaningful.
605 */
606bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
607{
608 return completion_done(&mrq->completion);
609}
610EXPORT_SYMBOL(mmc_is_req_done);
611
612/**
613 * mmc_wait_for_req - start a request and wait for completion
614 * @host: MMC host to start command
615 * @mrq: MMC request to start
616 *
617 * Start a new MMC custom command request for a host, and wait
618 * for the command to complete. In the case of 'cap_cmd_during_tfr'
619 * requests, the transfer is ongoing and the caller can issue further
620 * commands that do not use the data lines, and then wait by calling
621 * mmc_wait_for_req_done().
622 * Does not attempt to parse the response.
623 */
624void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
625{
626 __mmc_start_req(host, mrq);
627
628 if (!mrq->cap_cmd_during_tfr)
629 mmc_wait_for_req_done(host, mrq);
630}
631EXPORT_SYMBOL(mmc_wait_for_req);
632
633/**
634 * mmc_wait_for_cmd - start a command and wait for completion
635 * @host: MMC host to start command
636 * @cmd: MMC command to start
637 * @retries: maximum number of retries
638 *
639 * Start a new MMC command for a host, and wait for the command
640 * to complete. Return any error that occurred while the command
641 * was executing. Do not attempt to parse the response.
642 */
643int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
644{
645 struct mmc_request mrq = {};
646
647 WARN_ON(!host->claimed);
648
649 memset(cmd->resp, 0, sizeof(cmd->resp));
650 cmd->retries = retries;
651
652 mrq.cmd = cmd;
653 cmd->data = NULL;
654
655 mmc_wait_for_req(host, &mrq);
656
657 return cmd->error;
658}
659
660EXPORT_SYMBOL(mmc_wait_for_cmd);
661
662/**
663 * mmc_set_data_timeout - set the timeout for a data command
664 * @data: data phase for command
665 * @card: the MMC card associated with the data transfer
666 *
667 * Computes the data timeout parameters according to the
668 * correct algorithm given the card type.
669 */
670void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
671{
672 unsigned int mult;
673
674 /*
675 * SDIO cards only define an upper 1 s limit on access.
676 */
677 if (mmc_card_sdio(card)) {
678 data->timeout_ns = 1000000000;
679 data->timeout_clks = 0;
680 return;
681 }
682
683 /*
684 * SD cards use a 100 multiplier rather than 10
685 */
686 mult = mmc_card_sd(card) ? 100 : 10;
687
688 /*
689 * Scale up the multiplier (and therefore the timeout) by
690 * the r2w factor for writes.
691 */
692 if (data->flags & MMC_DATA_WRITE)
693 mult <<= card->csd.r2w_factor;
694
695 data->timeout_ns = card->csd.taac_ns * mult;
696 data->timeout_clks = card->csd.taac_clks * mult;
697
698 /*
699 * SD cards also have an upper limit on the timeout.
700 */
701 if (mmc_card_sd(card)) {
702 unsigned int timeout_us, limit_us;
703
704 timeout_us = data->timeout_ns / 1000;
705 if (card->host->ios.clock)
706 timeout_us += data->timeout_clks * 1000 /
707 (card->host->ios.clock / 1000);
708
709 if (data->flags & MMC_DATA_WRITE)
710 /*
711 * The MMC spec "It is strongly recommended
712 * for hosts to implement more than 500ms
713 * timeout value even if the card indicates
714 * the 250ms maximum busy length." Even the
715 * previous value of 300ms is known to be
716 * insufficient for some cards.
717 */
718 limit_us = 3000000;
719 else
720 limit_us = 100000;
721
722 /*
723 * SDHC cards always use these fixed values.
724 */
725 if (timeout_us > limit_us) {
726 data->timeout_ns = limit_us * 1000;
727 data->timeout_clks = 0;
728 }
729
730 /* assign limit value if invalid */
731 if (timeout_us == 0)
732 data->timeout_ns = limit_us * 1000;
733 }
734
735 /*
736 * Some cards require longer data read timeout than indicated in CSD.
737 * Address this by setting the read timeout to a "reasonably high"
738 * value. For the cards tested, 600ms has proven enough. If necessary,
739 * this value can be increased if other problematic cards require this.
740 */
741 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
742 data->timeout_ns = 600000000;
743 data->timeout_clks = 0;
744 }
745
746 /*
747 * Some cards need very high timeouts if driven in SPI mode.
748 * The worst observed timeout was 900ms after writing a
749 * continuous stream of data until the internal logic
750 * overflowed.
751 */
752 if (mmc_host_is_spi(card->host)) {
753 if (data->flags & MMC_DATA_WRITE) {
754 if (data->timeout_ns < 1000000000)
755 data->timeout_ns = 1000000000; /* 1s */
756 } else {
757 if (data->timeout_ns < 100000000)
758 data->timeout_ns = 100000000; /* 100ms */
759 }
760 }
761}
762EXPORT_SYMBOL(mmc_set_data_timeout);
763
764/**
765 * mmc_align_data_size - pads a transfer size to a more optimal value
766 * @card: the MMC card associated with the data transfer
767 * @sz: original transfer size
768 *
769 * Pads the original data size with a number of extra bytes in
770 * order to avoid controller bugs and/or performance hits
771 * (e.g. some controllers revert to PIO for certain sizes).
772 *
773 * Returns the improved size, which might be unmodified.
774 *
775 * Note that this function is only relevant when issuing a
776 * single scatter gather entry.
777 */
778unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
779{
780 /*
781 * FIXME: We don't have a system for the controller to tell
782 * the core about its problems yet, so for now we just 32-bit
783 * align the size.
784 */
785 sz = ((sz + 3) / 4) * 4;
786
787 return sz;
788}
789EXPORT_SYMBOL(mmc_align_data_size);
790
791/*
792 * Allow claiming an already claimed host if the context is the same or there is
793 * no context but the task is the same.
794 */
795static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
796 struct task_struct *task)
797{
798 return host->claimer == ctx ||
799 (!ctx && task && host->claimer->task == task);
800}
801
802static inline void mmc_ctx_set_claimer(struct mmc_host *host,
803 struct mmc_ctx *ctx,
804 struct task_struct *task)
805{
806 if (!host->claimer) {
807 if (ctx)
808 host->claimer = ctx;
809 else
810 host->claimer = &host->default_ctx;
811 }
812 if (task)
813 host->claimer->task = task;
814}
815
816/**
817 * __mmc_claim_host - exclusively claim a host
818 * @host: mmc host to claim
819 * @ctx: context that claims the host or NULL in which case the default
820 * context will be used
821 * @abort: whether or not the operation should be aborted
822 *
823 * Claim a host for a set of operations. If @abort is non null and
824 * dereference a non-zero value then this will return prematurely with
825 * that non-zero value without acquiring the lock. Returns zero
826 * with the lock held otherwise.
827 */
828int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
829 atomic_t *abort)
830{
831 struct task_struct *task = ctx ? NULL : current;
832 DECLARE_WAITQUEUE(wait, current);
833 unsigned long flags;
834 int stop;
835 bool pm = false;
836
837 might_sleep();
838
839 add_wait_queue(&host->wq, &wait);
840 spin_lock_irqsave(&host->lock, flags);
841 while (1) {
842 set_current_state(TASK_UNINTERRUPTIBLE);
843 stop = abort ? atomic_read(abort) : 0;
844 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
845 break;
846 spin_unlock_irqrestore(&host->lock, flags);
847 schedule();
848 spin_lock_irqsave(&host->lock, flags);
849 }
850 set_current_state(TASK_RUNNING);
851 if (!stop) {
852 host->claimed = 1;
853 mmc_ctx_set_claimer(host, ctx, task);
854 host->claim_cnt += 1;
855 if (host->claim_cnt == 1)
856 pm = true;
857 } else
858 wake_up(&host->wq);
859 spin_unlock_irqrestore(&host->lock, flags);
860 remove_wait_queue(&host->wq, &wait);
861
862 if (pm)
863 pm_runtime_get_sync(mmc_dev(host));
864
865 return stop;
866}
867EXPORT_SYMBOL(__mmc_claim_host);
868
869/**
870 * mmc_release_host - release a host
871 * @host: mmc host to release
872 *
873 * Release a MMC host, allowing others to claim the host
874 * for their operations.
875 */
876void mmc_release_host(struct mmc_host *host)
877{
878 unsigned long flags;
879
880 WARN_ON(!host->claimed);
881
882 spin_lock_irqsave(&host->lock, flags);
883 if (--host->claim_cnt) {
884 /* Release for nested claim */
885 spin_unlock_irqrestore(&host->lock, flags);
886 } else {
887 host->claimed = 0;
888 host->claimer->task = NULL;
889 host->claimer = NULL;
890 spin_unlock_irqrestore(&host->lock, flags);
891 wake_up(&host->wq);
892 pm_runtime_mark_last_busy(mmc_dev(host));
893 pm_runtime_put_autosuspend(mmc_dev(host));
894 }
895}
896EXPORT_SYMBOL(mmc_release_host);
897
898/*
899 * This is a helper function, which fetches a runtime pm reference for the
900 * card device and also claims the host.
901 */
902void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
903{
904 pm_runtime_get_sync(&card->dev);
905 __mmc_claim_host(card->host, ctx, NULL);
906}
907EXPORT_SYMBOL(mmc_get_card);
908
909/*
910 * This is a helper function, which releases the host and drops the runtime
911 * pm reference for the card device.
912 */
913void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
914{
915 struct mmc_host *host = card->host;
916
917 WARN_ON(ctx && host->claimer != ctx);
918
919 mmc_release_host(host);
920 pm_runtime_mark_last_busy(&card->dev);
921 pm_runtime_put_autosuspend(&card->dev);
922}
923EXPORT_SYMBOL(mmc_put_card);
924
925/*
926 * Internal function that does the actual ios call to the host driver,
927 * optionally printing some debug output.
928 */
929static inline void mmc_set_ios(struct mmc_host *host)
930{
931 struct mmc_ios *ios = &host->ios;
932
933 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
934 "width %u timing %u\n",
935 mmc_hostname(host), ios->clock, ios->bus_mode,
936 ios->power_mode, ios->chip_select, ios->vdd,
937 1 << ios->bus_width, ios->timing);
938
939 host->ops->set_ios(host, ios);
940}
941
942/*
943 * Control chip select pin on a host.
944 */
945void mmc_set_chip_select(struct mmc_host *host, int mode)
946{
947 host->ios.chip_select = mode;
948 mmc_set_ios(host);
949}
950
951/*
952 * Sets the host clock to the highest possible frequency that
953 * is below "hz".
954 */
955void mmc_set_clock(struct mmc_host *host, unsigned int hz)
956{
957 WARN_ON(hz && hz < host->f_min);
958
959 if (hz > host->f_max)
960 hz = host->f_max;
961
962 host->ios.clock = hz;
963 mmc_set_ios(host);
964}
965
966int mmc_execute_tuning(struct mmc_card *card)
967{
968 struct mmc_host *host = card->host;
969 u32 opcode;
970 int err;
971
972 if (!host->ops->execute_tuning)
973 return 0;
974
975 if (host->cqe_on)
976 host->cqe_ops->cqe_off(host);
977
978 if (mmc_card_mmc(card))
979 opcode = MMC_SEND_TUNING_BLOCK_HS200;
980 else
981 opcode = MMC_SEND_TUNING_BLOCK;
982
983 err = host->ops->execute_tuning(host, opcode);
984
985 if (err)
986 pr_err("%s: tuning execution failed: %d\n",
987 mmc_hostname(host), err);
988 else
989 mmc_retune_enable(host);
990
991 return err;
992}
993
994/*
995 * Change the bus mode (open drain/push-pull) of a host.
996 */
997void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
998{
999 host->ios.bus_mode = mode;
1000 mmc_set_ios(host);
1001}
1002
1003/*
1004 * Change data bus width of a host.
1005 */
1006void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1007{
1008 host->ios.bus_width = width;
1009 mmc_set_ios(host);
1010}
1011
1012/*
1013 * Set initial state after a power cycle or a hw_reset.
1014 */
1015void mmc_set_initial_state(struct mmc_host *host)
1016{
1017 if (host->cqe_on)
1018 host->cqe_ops->cqe_off(host);
1019
1020 mmc_retune_disable(host);
1021
1022 if (mmc_host_is_spi(host))
1023 host->ios.chip_select = MMC_CS_HIGH;
1024 else
1025 host->ios.chip_select = MMC_CS_DONTCARE;
1026 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1027 host->ios.bus_width = MMC_BUS_WIDTH_1;
1028 host->ios.timing = MMC_TIMING_LEGACY;
1029 host->ios.drv_type = 0;
1030 host->ios.enhanced_strobe = false;
1031
1032 /*
1033 * Make sure we are in non-enhanced strobe mode before we
1034 * actually enable it in ext_csd.
1035 */
1036 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1037 host->ops->hs400_enhanced_strobe)
1038 host->ops->hs400_enhanced_strobe(host, &host->ios);
1039
1040 mmc_set_ios(host);
1041}
1042
1043/**
1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045 * @vdd: voltage (mV)
1046 * @low_bits: prefer low bits in boundary cases
1047 *
1048 * This function returns the OCR bit number according to the provided @vdd
1049 * value. If conversion is not possible a negative errno value returned.
1050 *
1051 * Depending on the @low_bits flag the function prefers low or high OCR bits
1052 * on boundary voltages. For example,
1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055 *
1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057 */
1058static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1059{
1060 const int max_bit = ilog2(MMC_VDD_35_36);
1061 int bit;
1062
1063 if (vdd < 1650 || vdd > 3600)
1064 return -EINVAL;
1065
1066 if (vdd >= 1650 && vdd <= 1950)
1067 return ilog2(MMC_VDD_165_195);
1068
1069 if (low_bits)
1070 vdd -= 1;
1071
1072 /* Base 2000 mV, step 100 mV, bit's base 8. */
1073 bit = (vdd - 2000) / 100 + 8;
1074 if (bit > max_bit)
1075 return max_bit;
1076 return bit;
1077}
1078
1079/**
1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081 * @vdd_min: minimum voltage value (mV)
1082 * @vdd_max: maximum voltage value (mV)
1083 *
1084 * This function returns the OCR mask bits according to the provided @vdd_min
1085 * and @vdd_max values. If conversion is not possible the function returns 0.
1086 *
1087 * Notes wrt boundary cases:
1088 * This function sets the OCR bits for all boundary voltages, for example
1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090 * MMC_VDD_34_35 mask.
1091 */
1092u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1093{
1094 u32 mask = 0;
1095
1096 if (vdd_max < vdd_min)
1097 return 0;
1098
1099 /* Prefer high bits for the boundary vdd_max values. */
1100 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1101 if (vdd_max < 0)
1102 return 0;
1103
1104 /* Prefer low bits for the boundary vdd_min values. */
1105 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1106 if (vdd_min < 0)
1107 return 0;
1108
1109 /* Fill the mask, from max bit to min bit. */
1110 while (vdd_max >= vdd_min)
1111 mask |= 1 << vdd_max--;
1112
1113 return mask;
1114}
1115EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1116
1117#ifdef CONFIG_OF
1118
1119/**
1120 * mmc_of_parse_voltage - return mask of supported voltages
1121 * @np: The device node need to be parsed.
1122 * @mask: mask of voltages available for MMC/SD/SDIO
1123 *
1124 * Parse the "voltage-ranges" DT property, returning zero if it is not
1125 * found, negative errno if the voltage-range specification is invalid,
1126 * or one if the voltage-range is specified and successfully parsed.
1127 */
1128int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1129{
1130 const u32 *voltage_ranges;
1131 int num_ranges, i;
1132
1133 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1134 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1135 if (!voltage_ranges) {
1136 pr_debug("%pOF: voltage-ranges unspecified\n", np);
1137 return 0;
1138 }
1139 if (!num_ranges) {
1140 pr_err("%pOF: voltage-ranges empty\n", np);
1141 return -EINVAL;
1142 }
1143
1144 for (i = 0; i < num_ranges; i++) {
1145 const int j = i * 2;
1146 u32 ocr_mask;
1147
1148 ocr_mask = mmc_vddrange_to_ocrmask(
1149 be32_to_cpu(voltage_ranges[j]),
1150 be32_to_cpu(voltage_ranges[j + 1]));
1151 if (!ocr_mask) {
1152 pr_err("%pOF: voltage-range #%d is invalid\n",
1153 np, i);
1154 return -EINVAL;
1155 }
1156 *mask |= ocr_mask;
1157 }
1158
1159 return 1;
1160}
1161EXPORT_SYMBOL(mmc_of_parse_voltage);
1162
1163#endif /* CONFIG_OF */
1164
1165static int mmc_of_get_func_num(struct device_node *node)
1166{
1167 u32 reg;
1168 int ret;
1169
1170 ret = of_property_read_u32(node, "reg", ®);
1171 if (ret < 0)
1172 return ret;
1173
1174 return reg;
1175}
1176
1177struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1178 unsigned func_num)
1179{
1180 struct device_node *node;
1181
1182 if (!host->parent || !host->parent->of_node)
1183 return NULL;
1184
1185 for_each_child_of_node(host->parent->of_node, node) {
1186 if (mmc_of_get_func_num(node) == func_num)
1187 return node;
1188 }
1189
1190 return NULL;
1191}
1192
1193#ifdef CONFIG_REGULATOR
1194
1195/**
1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197 * @vdd_bit: OCR bit number
1198 * @min_uV: minimum voltage value (mV)
1199 * @max_uV: maximum voltage value (mV)
1200 *
1201 * This function returns the voltage range according to the provided OCR
1202 * bit number. If conversion is not possible a negative errno value returned.
1203 */
1204static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1205{
1206 int tmp;
1207
1208 if (!vdd_bit)
1209 return -EINVAL;
1210
1211 /*
1212 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213 * bits this regulator doesn't quite support ... don't
1214 * be too picky, most cards and regulators are OK with
1215 * a 0.1V range goof (it's a small error percentage).
1216 */
1217 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1218 if (tmp == 0) {
1219 *min_uV = 1650 * 1000;
1220 *max_uV = 1950 * 1000;
1221 } else {
1222 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1223 *max_uV = *min_uV + 100 * 1000;
1224 }
1225
1226 return 0;
1227}
1228
1229/**
1230 * mmc_regulator_get_ocrmask - return mask of supported voltages
1231 * @supply: regulator to use
1232 *
1233 * This returns either a negative errno, or a mask of voltages that
1234 * can be provided to MMC/SD/SDIO devices using the specified voltage
1235 * regulator. This would normally be called before registering the
1236 * MMC host adapter.
1237 */
1238int mmc_regulator_get_ocrmask(struct regulator *supply)
1239{
1240 int result = 0;
1241 int count;
1242 int i;
1243 int vdd_uV;
1244 int vdd_mV;
1245
1246 count = regulator_count_voltages(supply);
1247 if (count < 0)
1248 return count;
1249
1250 for (i = 0; i < count; i++) {
1251 vdd_uV = regulator_list_voltage(supply, i);
1252 if (vdd_uV <= 0)
1253 continue;
1254
1255 vdd_mV = vdd_uV / 1000;
1256 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1257 }
1258
1259 if (!result) {
1260 vdd_uV = regulator_get_voltage(supply);
1261 if (vdd_uV <= 0)
1262 return vdd_uV;
1263
1264 vdd_mV = vdd_uV / 1000;
1265 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1266 }
1267
1268 return result;
1269}
1270EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1271
1272/**
1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274 * @mmc: the host to regulate
1275 * @supply: regulator to use
1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1277 *
1278 * Returns zero on success, else negative errno.
1279 *
1280 * MMC host drivers may use this to enable or disable a regulator using
1281 * a particular supply voltage. This would normally be called from the
1282 * set_ios() method.
1283 */
1284int mmc_regulator_set_ocr(struct mmc_host *mmc,
1285 struct regulator *supply,
1286 unsigned short vdd_bit)
1287{
1288 int result = 0;
1289 int min_uV, max_uV;
1290
1291 if (vdd_bit) {
1292 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1293
1294 result = regulator_set_voltage(supply, min_uV, max_uV);
1295 if (result == 0 && !mmc->regulator_enabled) {
1296 result = regulator_enable(supply);
1297 if (!result)
1298 mmc->regulator_enabled = true;
1299 }
1300 } else if (mmc->regulator_enabled) {
1301 result = regulator_disable(supply);
1302 if (result == 0)
1303 mmc->regulator_enabled = false;
1304 }
1305
1306 if (result)
1307 dev_err(mmc_dev(mmc),
1308 "could not set regulator OCR (%d)\n", result);
1309 return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1314 int min_uV, int target_uV,
1315 int max_uV)
1316{
1317 /*
1318 * Check if supported first to avoid errors since we may try several
1319 * signal levels during power up and don't want to show errors.
1320 */
1321 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1322 return -EINVAL;
1323
1324 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1325 max_uV);
1326}
1327
1328/**
1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1330 *
1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1334 * SD card spec also define VQMMC in terms of VMMC.
1335 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1336 *
1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338 * requested voltage. This is definitely a good idea for UHS where there's a
1339 * separate regulator on the card that's trying to make 1.8V and it's best if
1340 * we match.
1341 *
1342 * This function is expected to be used by a controller's
1343 * start_signal_voltage_switch() function.
1344 */
1345int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1346{
1347 struct device *dev = mmc_dev(mmc);
1348 int ret, volt, min_uV, max_uV;
1349
1350 /* If no vqmmc supply then we can't change the voltage */
1351 if (IS_ERR(mmc->supply.vqmmc))
1352 return -EINVAL;
1353
1354 switch (ios->signal_voltage) {
1355 case MMC_SIGNAL_VOLTAGE_120:
1356 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357 1100000, 1200000, 1300000);
1358 case MMC_SIGNAL_VOLTAGE_180:
1359 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1360 1700000, 1800000, 1950000);
1361 case MMC_SIGNAL_VOLTAGE_330:
1362 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1363 if (ret < 0)
1364 return ret;
1365
1366 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1367 __func__, volt, max_uV);
1368
1369 min_uV = max(volt - 300000, 2700000);
1370 max_uV = min(max_uV + 200000, 3600000);
1371
1372 /*
1373 * Due to a limitation in the current implementation of
1374 * regulator_set_voltage_triplet() which is taking the lowest
1375 * voltage possible if below the target, search for a suitable
1376 * voltage in two steps and try to stay close to vmmc
1377 * with a 0.3V tolerance at first.
1378 */
1379 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1380 min_uV, volt, max_uV))
1381 return 0;
1382
1383 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384 2700000, volt, 3600000);
1385 default:
1386 return -EINVAL;
1387 }
1388}
1389EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1390
1391#endif /* CONFIG_REGULATOR */
1392
1393/**
1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395 * @mmc: the host to regulate
1396 *
1397 * Returns 0 or errno. errno should be handled, it is either a critical error
1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399 * regulators have been found because they all are optional. If you require
1400 * certain regulators, you need to check separately in your driver if they got
1401 * populated after calling this function.
1402 */
1403int mmc_regulator_get_supply(struct mmc_host *mmc)
1404{
1405 struct device *dev = mmc_dev(mmc);
1406 int ret;
1407
1408 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410
1411 if (IS_ERR(mmc->supply.vmmc)) {
1412 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413 return -EPROBE_DEFER;
1414 dev_dbg(dev, "No vmmc regulator found\n");
1415 } else {
1416 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417 if (ret > 0)
1418 mmc->ocr_avail = ret;
1419 else
1420 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421 }
1422
1423 if (IS_ERR(mmc->supply.vqmmc)) {
1424 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425 return -EPROBE_DEFER;
1426 dev_dbg(dev, "No vqmmc regulator found\n");
1427 }
1428
1429 return 0;
1430}
1431EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432
1433/*
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1436 */
1437u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438{
1439 int bit;
1440
1441 /*
1442 * Sanity check the voltages that the card claims to
1443 * support.
1444 */
1445 if (ocr & 0x7F) {
1446 dev_warn(mmc_dev(host),
1447 "card claims to support voltages below defined range\n");
1448 ocr &= ~0x7F;
1449 }
1450
1451 ocr &= host->ocr_avail;
1452 if (!ocr) {
1453 dev_warn(mmc_dev(host), "no support for card's volts\n");
1454 return 0;
1455 }
1456
1457 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458 bit = ffs(ocr) - 1;
1459 ocr &= 3 << bit;
1460 mmc_power_cycle(host, ocr);
1461 } else {
1462 bit = fls(ocr) - 1;
1463 ocr &= 3 << bit;
1464 if (bit != host->ios.vdd)
1465 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466 }
1467
1468 return ocr;
1469}
1470
1471int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472{
1473 int err = 0;
1474 int old_signal_voltage = host->ios.signal_voltage;
1475
1476 host->ios.signal_voltage = signal_voltage;
1477 if (host->ops->start_signal_voltage_switch)
1478 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479
1480 if (err)
1481 host->ios.signal_voltage = old_signal_voltage;
1482
1483 return err;
1484
1485}
1486
1487int mmc_host_set_uhs_voltage(struct mmc_host *host)
1488{
1489 u32 clock;
1490
1491 /*
1492 * During a signal voltage level switch, the clock must be gated
1493 * for 5 ms according to the SD spec
1494 */
1495 clock = host->ios.clock;
1496 host->ios.clock = 0;
1497 mmc_set_ios(host);
1498
1499 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1500 return -EAGAIN;
1501
1502 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1503 mmc_delay(10);
1504 host->ios.clock = clock;
1505 mmc_set_ios(host);
1506
1507 return 0;
1508}
1509
1510int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1511{
1512 struct mmc_command cmd = {};
1513 int err = 0;
1514
1515 /*
1516 * If we cannot switch voltages, return failure so the caller
1517 * can continue without UHS mode
1518 */
1519 if (!host->ops->start_signal_voltage_switch)
1520 return -EPERM;
1521 if (!host->ops->card_busy)
1522 pr_warn("%s: cannot verify signal voltage switch\n",
1523 mmc_hostname(host));
1524
1525 cmd.opcode = SD_SWITCH_VOLTAGE;
1526 cmd.arg = 0;
1527 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1528
1529 err = mmc_wait_for_cmd(host, &cmd, 0);
1530 if (err)
1531 return err;
1532
1533 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1534 return -EIO;
1535
1536 /*
1537 * The card should drive cmd and dat[0:3] low immediately
1538 * after the response of cmd11, but wait 1 ms to be sure
1539 */
1540 mmc_delay(1);
1541 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1542 err = -EAGAIN;
1543 goto power_cycle;
1544 }
1545
1546 if (mmc_host_set_uhs_voltage(host)) {
1547 /*
1548 * Voltages may not have been switched, but we've already
1549 * sent CMD11, so a power cycle is required anyway
1550 */
1551 err = -EAGAIN;
1552 goto power_cycle;
1553 }
1554
1555 /* Wait for at least 1 ms according to spec */
1556 mmc_delay(1);
1557
1558 /*
1559 * Failure to switch is indicated by the card holding
1560 * dat[0:3] low
1561 */
1562 if (host->ops->card_busy && host->ops->card_busy(host))
1563 err = -EAGAIN;
1564
1565power_cycle:
1566 if (err) {
1567 pr_debug("%s: Signal voltage switch failed, "
1568 "power cycling card\n", mmc_hostname(host));
1569 mmc_power_cycle(host, ocr);
1570 }
1571
1572 return err;
1573}
1574
1575/*
1576 * Select timing parameters for host.
1577 */
1578void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1579{
1580 host->ios.timing = timing;
1581 mmc_set_ios(host);
1582}
1583
1584/*
1585 * Select appropriate driver type for host.
1586 */
1587void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1588{
1589 host->ios.drv_type = drv_type;
1590 mmc_set_ios(host);
1591}
1592
1593int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1594 int card_drv_type, int *drv_type)
1595{
1596 struct mmc_host *host = card->host;
1597 int host_drv_type = SD_DRIVER_TYPE_B;
1598
1599 *drv_type = 0;
1600
1601 if (!host->ops->select_drive_strength)
1602 return 0;
1603
1604 /* Use SD definition of driver strength for hosts */
1605 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1606 host_drv_type |= SD_DRIVER_TYPE_A;
1607
1608 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1609 host_drv_type |= SD_DRIVER_TYPE_C;
1610
1611 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1612 host_drv_type |= SD_DRIVER_TYPE_D;
1613
1614 /*
1615 * The drive strength that the hardware can support
1616 * depends on the board design. Pass the appropriate
1617 * information and let the hardware specific code
1618 * return what is possible given the options
1619 */
1620 return host->ops->select_drive_strength(card, max_dtr,
1621 host_drv_type,
1622 card_drv_type,
1623 drv_type);
1624}
1625
1626/*
1627 * Apply power to the MMC stack. This is a two-stage process.
1628 * First, we enable power to the card without the clock running.
1629 * We then wait a bit for the power to stabilise. Finally,
1630 * enable the bus drivers and clock to the card.
1631 *
1632 * We must _NOT_ enable the clock prior to power stablising.
1633 *
1634 * If a host does all the power sequencing itself, ignore the
1635 * initial MMC_POWER_UP stage.
1636 */
1637void mmc_power_up(struct mmc_host *host, u32 ocr)
1638{
1639 if (host->ios.power_mode == MMC_POWER_ON)
1640 return;
1641
1642 mmc_pwrseq_pre_power_on(host);
1643
1644 host->ios.vdd = fls(ocr) - 1;
1645 host->ios.power_mode = MMC_POWER_UP;
1646 /* Set initial state and call mmc_set_ios */
1647 mmc_set_initial_state(host);
1648
1649 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1650 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1651 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1652 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1653 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1654 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1655 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1656
1657 /*
1658 * This delay should be sufficient to allow the power supply
1659 * to reach the minimum voltage.
1660 */
1661 mmc_delay(10);
1662
1663 mmc_pwrseq_post_power_on(host);
1664
1665 host->ios.clock = host->f_init;
1666
1667 host->ios.power_mode = MMC_POWER_ON;
1668 mmc_set_ios(host);
1669
1670 /*
1671 * This delay must be at least 74 clock sizes, or 1 ms, or the
1672 * time required to reach a stable voltage.
1673 */
1674 mmc_delay(10);
1675}
1676
1677void mmc_power_off(struct mmc_host *host)
1678{
1679 if (host->ios.power_mode == MMC_POWER_OFF)
1680 return;
1681
1682 mmc_pwrseq_power_off(host);
1683
1684 host->ios.clock = 0;
1685 host->ios.vdd = 0;
1686
1687 host->ios.power_mode = MMC_POWER_OFF;
1688 /* Set initial state and call mmc_set_ios */
1689 mmc_set_initial_state(host);
1690
1691 /*
1692 * Some configurations, such as the 802.11 SDIO card in the OLPC
1693 * XO-1.5, require a short delay after poweroff before the card
1694 * can be successfully turned on again.
1695 */
1696 mmc_delay(1);
1697}
1698
1699void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1700{
1701 mmc_power_off(host);
1702 /* Wait at least 1 ms according to SD spec */
1703 mmc_delay(1);
1704 mmc_power_up(host, ocr);
1705}
1706
1707/*
1708 * Cleanup when the last reference to the bus operator is dropped.
1709 */
1710static void __mmc_release_bus(struct mmc_host *host)
1711{
1712 WARN_ON(!host->bus_dead);
1713
1714 host->bus_ops = NULL;
1715}
1716
1717/*
1718 * Increase reference count of bus operator
1719 */
1720static inline void mmc_bus_get(struct mmc_host *host)
1721{
1722 unsigned long flags;
1723
1724 spin_lock_irqsave(&host->lock, flags);
1725 host->bus_refs++;
1726 spin_unlock_irqrestore(&host->lock, flags);
1727}
1728
1729/*
1730 * Decrease reference count of bus operator and free it if
1731 * it is the last reference.
1732 */
1733static inline void mmc_bus_put(struct mmc_host *host)
1734{
1735 unsigned long flags;
1736
1737 spin_lock_irqsave(&host->lock, flags);
1738 host->bus_refs--;
1739 if ((host->bus_refs == 0) && host->bus_ops)
1740 __mmc_release_bus(host);
1741 spin_unlock_irqrestore(&host->lock, flags);
1742}
1743
1744/*
1745 * Assign a mmc bus handler to a host. Only one bus handler may control a
1746 * host at any given time.
1747 */
1748void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1749{
1750 unsigned long flags;
1751
1752 WARN_ON(!host->claimed);
1753
1754 spin_lock_irqsave(&host->lock, flags);
1755
1756 WARN_ON(host->bus_ops);
1757 WARN_ON(host->bus_refs);
1758
1759 host->bus_ops = ops;
1760 host->bus_refs = 1;
1761 host->bus_dead = 0;
1762
1763 spin_unlock_irqrestore(&host->lock, flags);
1764}
1765
1766/*
1767 * Remove the current bus handler from a host.
1768 */
1769void mmc_detach_bus(struct mmc_host *host)
1770{
1771 unsigned long flags;
1772
1773 WARN_ON(!host->claimed);
1774 WARN_ON(!host->bus_ops);
1775
1776 spin_lock_irqsave(&host->lock, flags);
1777
1778 host->bus_dead = 1;
1779
1780 spin_unlock_irqrestore(&host->lock, flags);
1781
1782 mmc_bus_put(host);
1783}
1784
1785static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1786 bool cd_irq)
1787{
1788 /*
1789 * If the device is configured as wakeup, we prevent a new sleep for
1790 * 5 s to give provision for user space to consume the event.
1791 */
1792 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1793 device_can_wakeup(mmc_dev(host)))
1794 pm_wakeup_event(mmc_dev(host), 5000);
1795
1796 host->detect_change = 1;
1797 mmc_schedule_delayed_work(&host->detect, delay);
1798}
1799
1800/**
1801 * mmc_detect_change - process change of state on a MMC socket
1802 * @host: host which changed state.
1803 * @delay: optional delay to wait before detection (jiffies)
1804 *
1805 * MMC drivers should call this when they detect a card has been
1806 * inserted or removed. The MMC layer will confirm that any
1807 * present card is still functional, and initialize any newly
1808 * inserted.
1809 */
1810void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1811{
1812 _mmc_detect_change(host, delay, true);
1813}
1814EXPORT_SYMBOL(mmc_detect_change);
1815
1816void mmc_init_erase(struct mmc_card *card)
1817{
1818 unsigned int sz;
1819
1820 if (is_power_of_2(card->erase_size))
1821 card->erase_shift = ffs(card->erase_size) - 1;
1822 else
1823 card->erase_shift = 0;
1824
1825 /*
1826 * It is possible to erase an arbitrarily large area of an SD or MMC
1827 * card. That is not desirable because it can take a long time
1828 * (minutes) potentially delaying more important I/O, and also the
1829 * timeout calculations become increasingly hugely over-estimated.
1830 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831 * to that size and alignment.
1832 *
1833 * For SD cards that define Allocation Unit size, limit erases to one
1834 * Allocation Unit at a time.
1835 * For MMC, have a stab at ai good value and for modern cards it will
1836 * end up being 4MiB. Note that if the value is too small, it can end
1837 * up taking longer to erase. Also note, erase_size is already set to
1838 * High Capacity Erase Size if available when this function is called.
1839 */
1840 if (mmc_card_sd(card) && card->ssr.au) {
1841 card->pref_erase = card->ssr.au;
1842 card->erase_shift = ffs(card->ssr.au) - 1;
1843 } else if (card->erase_size) {
1844 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1845 if (sz < 128)
1846 card->pref_erase = 512 * 1024 / 512;
1847 else if (sz < 512)
1848 card->pref_erase = 1024 * 1024 / 512;
1849 else if (sz < 1024)
1850 card->pref_erase = 2 * 1024 * 1024 / 512;
1851 else
1852 card->pref_erase = 4 * 1024 * 1024 / 512;
1853 if (card->pref_erase < card->erase_size)
1854 card->pref_erase = card->erase_size;
1855 else {
1856 sz = card->pref_erase % card->erase_size;
1857 if (sz)
1858 card->pref_erase += card->erase_size - sz;
1859 }
1860 } else
1861 card->pref_erase = 0;
1862}
1863
1864static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1865 unsigned int arg, unsigned int qty)
1866{
1867 unsigned int erase_timeout;
1868
1869 if (arg == MMC_DISCARD_ARG ||
1870 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1871 erase_timeout = card->ext_csd.trim_timeout;
1872 } else if (card->ext_csd.erase_group_def & 1) {
1873 /* High Capacity Erase Group Size uses HC timeouts */
1874 if (arg == MMC_TRIM_ARG)
1875 erase_timeout = card->ext_csd.trim_timeout;
1876 else
1877 erase_timeout = card->ext_csd.hc_erase_timeout;
1878 } else {
1879 /* CSD Erase Group Size uses write timeout */
1880 unsigned int mult = (10 << card->csd.r2w_factor);
1881 unsigned int timeout_clks = card->csd.taac_clks * mult;
1882 unsigned int timeout_us;
1883
1884 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1885 if (card->csd.taac_ns < 1000000)
1886 timeout_us = (card->csd.taac_ns * mult) / 1000;
1887 else
1888 timeout_us = (card->csd.taac_ns / 1000) * mult;
1889
1890 /*
1891 * ios.clock is only a target. The real clock rate might be
1892 * less but not that much less, so fudge it by multiplying by 2.
1893 */
1894 timeout_clks <<= 1;
1895 timeout_us += (timeout_clks * 1000) /
1896 (card->host->ios.clock / 1000);
1897
1898 erase_timeout = timeout_us / 1000;
1899
1900 /*
1901 * Theoretically, the calculation could underflow so round up
1902 * to 1ms in that case.
1903 */
1904 if (!erase_timeout)
1905 erase_timeout = 1;
1906 }
1907
1908 /* Multiplier for secure operations */
1909 if (arg & MMC_SECURE_ARGS) {
1910 if (arg == MMC_SECURE_ERASE_ARG)
1911 erase_timeout *= card->ext_csd.sec_erase_mult;
1912 else
1913 erase_timeout *= card->ext_csd.sec_trim_mult;
1914 }
1915
1916 erase_timeout *= qty;
1917
1918 /*
1919 * Ensure at least a 1 second timeout for SPI as per
1920 * 'mmc_set_data_timeout()'
1921 */
1922 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1923 erase_timeout = 1000;
1924
1925 return erase_timeout;
1926}
1927
1928static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1929 unsigned int arg,
1930 unsigned int qty)
1931{
1932 unsigned int erase_timeout;
1933
1934 if (card->ssr.erase_timeout) {
1935 /* Erase timeout specified in SD Status Register (SSR) */
1936 erase_timeout = card->ssr.erase_timeout * qty +
1937 card->ssr.erase_offset;
1938 } else {
1939 /*
1940 * Erase timeout not specified in SD Status Register (SSR) so
1941 * use 250ms per write block.
1942 */
1943 erase_timeout = 250 * qty;
1944 }
1945
1946 /* Must not be less than 1 second */
1947 if (erase_timeout < 1000)
1948 erase_timeout = 1000;
1949
1950 return erase_timeout;
1951}
1952
1953static unsigned int mmc_erase_timeout(struct mmc_card *card,
1954 unsigned int arg,
1955 unsigned int qty)
1956{
1957 if (mmc_card_sd(card))
1958 return mmc_sd_erase_timeout(card, arg, qty);
1959 else
1960 return mmc_mmc_erase_timeout(card, arg, qty);
1961}
1962
1963static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1964 unsigned int to, unsigned int arg)
1965{
1966 struct mmc_command cmd = {};
1967 unsigned int qty = 0, busy_timeout = 0;
1968 bool use_r1b_resp = false;
1969 unsigned long timeout;
1970 int err;
1971
1972 mmc_retune_hold(card->host);
1973
1974 /*
1975 * qty is used to calculate the erase timeout which depends on how many
1976 * erase groups (or allocation units in SD terminology) are affected.
1977 * We count erasing part of an erase group as one erase group.
1978 * For SD, the allocation units are always a power of 2. For MMC, the
1979 * erase group size is almost certainly also power of 2, but it does not
1980 * seem to insist on that in the JEDEC standard, so we fall back to
1981 * division in that case. SD may not specify an allocation unit size,
1982 * in which case the timeout is based on the number of write blocks.
1983 *
1984 * Note that the timeout for secure trim 2 will only be correct if the
1985 * number of erase groups specified is the same as the total of all
1986 * preceding secure trim 1 commands. Since the power may have been
1987 * lost since the secure trim 1 commands occurred, it is generally
1988 * impossible to calculate the secure trim 2 timeout correctly.
1989 */
1990 if (card->erase_shift)
1991 qty += ((to >> card->erase_shift) -
1992 (from >> card->erase_shift)) + 1;
1993 else if (mmc_card_sd(card))
1994 qty += to - from + 1;
1995 else
1996 qty += ((to / card->erase_size) -
1997 (from / card->erase_size)) + 1;
1998
1999 if (!mmc_card_blockaddr(card)) {
2000 from <<= 9;
2001 to <<= 9;
2002 }
2003
2004 if (mmc_card_sd(card))
2005 cmd.opcode = SD_ERASE_WR_BLK_START;
2006 else
2007 cmd.opcode = MMC_ERASE_GROUP_START;
2008 cmd.arg = from;
2009 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2010 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2011 if (err) {
2012 pr_err("mmc_erase: group start error %d, "
2013 "status %#x\n", err, cmd.resp[0]);
2014 err = -EIO;
2015 goto out;
2016 }
2017
2018 memset(&cmd, 0, sizeof(struct mmc_command));
2019 if (mmc_card_sd(card))
2020 cmd.opcode = SD_ERASE_WR_BLK_END;
2021 else
2022 cmd.opcode = MMC_ERASE_GROUP_END;
2023 cmd.arg = to;
2024 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2025 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2026 if (err) {
2027 pr_err("mmc_erase: group end error %d, status %#x\n",
2028 err, cmd.resp[0]);
2029 err = -EIO;
2030 goto out;
2031 }
2032
2033 memset(&cmd, 0, sizeof(struct mmc_command));
2034 cmd.opcode = MMC_ERASE;
2035 cmd.arg = arg;
2036 busy_timeout = mmc_erase_timeout(card, arg, qty);
2037 /*
2038 * If the host controller supports busy signalling and the timeout for
2039 * the erase operation does not exceed the max_busy_timeout, we should
2040 * use R1B response. Or we need to prevent the host from doing hw busy
2041 * detection, which is done by converting to a R1 response instead.
2042 */
2043 if (card->host->max_busy_timeout &&
2044 busy_timeout > card->host->max_busy_timeout) {
2045 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2046 } else {
2047 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2048 cmd.busy_timeout = busy_timeout;
2049 use_r1b_resp = true;
2050 }
2051
2052 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2053 if (err) {
2054 pr_err("mmc_erase: erase error %d, status %#x\n",
2055 err, cmd.resp[0]);
2056 err = -EIO;
2057 goto out;
2058 }
2059
2060 if (mmc_host_is_spi(card->host))
2061 goto out;
2062
2063 /*
2064 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2065 * shall be avoided.
2066 */
2067 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2068 goto out;
2069
2070 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2071 do {
2072 memset(&cmd, 0, sizeof(struct mmc_command));
2073 cmd.opcode = MMC_SEND_STATUS;
2074 cmd.arg = card->rca << 16;
2075 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2076 /* Do not retry else we can't see errors */
2077 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2078 if (err || (cmd.resp[0] & 0xFDF92000)) {
2079 pr_err("error %d requesting status %#x\n",
2080 err, cmd.resp[0]);
2081 err = -EIO;
2082 goto out;
2083 }
2084
2085 /* Timeout if the device never becomes ready for data and
2086 * never leaves the program state.
2087 */
2088 if (time_after(jiffies, timeout)) {
2089 pr_err("%s: Card stuck in programming state! %s\n",
2090 mmc_hostname(card->host), __func__);
2091 err = -EIO;
2092 goto out;
2093 }
2094
2095 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2096 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2097out:
2098 mmc_retune_release(card->host);
2099 return err;
2100}
2101
2102static unsigned int mmc_align_erase_size(struct mmc_card *card,
2103 unsigned int *from,
2104 unsigned int *to,
2105 unsigned int nr)
2106{
2107 unsigned int from_new = *from, nr_new = nr, rem;
2108
2109 /*
2110 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2111 * to align the erase size efficiently.
2112 */
2113 if (is_power_of_2(card->erase_size)) {
2114 unsigned int temp = from_new;
2115
2116 from_new = round_up(temp, card->erase_size);
2117 rem = from_new - temp;
2118
2119 if (nr_new > rem)
2120 nr_new -= rem;
2121 else
2122 return 0;
2123
2124 nr_new = round_down(nr_new, card->erase_size);
2125 } else {
2126 rem = from_new % card->erase_size;
2127 if (rem) {
2128 rem = card->erase_size - rem;
2129 from_new += rem;
2130 if (nr_new > rem)
2131 nr_new -= rem;
2132 else
2133 return 0;
2134 }
2135
2136 rem = nr_new % card->erase_size;
2137 if (rem)
2138 nr_new -= rem;
2139 }
2140
2141 if (nr_new == 0)
2142 return 0;
2143
2144 *to = from_new + nr_new;
2145 *from = from_new;
2146
2147 return nr_new;
2148}
2149
2150/**
2151 * mmc_erase - erase sectors.
2152 * @card: card to erase
2153 * @from: first sector to erase
2154 * @nr: number of sectors to erase
2155 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2156 *
2157 * Caller must claim host before calling this function.
2158 */
2159int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2160 unsigned int arg)
2161{
2162 unsigned int rem, to = from + nr;
2163 int err;
2164
2165 if (!(card->host->caps & MMC_CAP_ERASE) ||
2166 !(card->csd.cmdclass & CCC_ERASE))
2167 return -EOPNOTSUPP;
2168
2169 if (!card->erase_size)
2170 return -EOPNOTSUPP;
2171
2172 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2173 return -EOPNOTSUPP;
2174
2175 if ((arg & MMC_SECURE_ARGS) &&
2176 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2177 return -EOPNOTSUPP;
2178
2179 if ((arg & MMC_TRIM_ARGS) &&
2180 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2181 return -EOPNOTSUPP;
2182
2183 if (arg == MMC_SECURE_ERASE_ARG) {
2184 if (from % card->erase_size || nr % card->erase_size)
2185 return -EINVAL;
2186 }
2187
2188 if (arg == MMC_ERASE_ARG)
2189 nr = mmc_align_erase_size(card, &from, &to, nr);
2190
2191 if (nr == 0)
2192 return 0;
2193
2194 if (to <= from)
2195 return -EINVAL;
2196
2197 /* 'from' and 'to' are inclusive */
2198 to -= 1;
2199
2200 /*
2201 * Special case where only one erase-group fits in the timeout budget:
2202 * If the region crosses an erase-group boundary on this particular
2203 * case, we will be trimming more than one erase-group which, does not
2204 * fit in the timeout budget of the controller, so we need to split it
2205 * and call mmc_do_erase() twice if necessary. This special case is
2206 * identified by the card->eg_boundary flag.
2207 */
2208 rem = card->erase_size - (from % card->erase_size);
2209 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2210 err = mmc_do_erase(card, from, from + rem - 1, arg);
2211 from += rem;
2212 if ((err) || (to <= from))
2213 return err;
2214 }
2215
2216 return mmc_do_erase(card, from, to, arg);
2217}
2218EXPORT_SYMBOL(mmc_erase);
2219
2220int mmc_can_erase(struct mmc_card *card)
2221{
2222 if ((card->host->caps & MMC_CAP_ERASE) &&
2223 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2224 return 1;
2225 return 0;
2226}
2227EXPORT_SYMBOL(mmc_can_erase);
2228
2229int mmc_can_trim(struct mmc_card *card)
2230{
2231 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2232 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2233 return 1;
2234 return 0;
2235}
2236EXPORT_SYMBOL(mmc_can_trim);
2237
2238int mmc_can_discard(struct mmc_card *card)
2239{
2240 /*
2241 * As there's no way to detect the discard support bit at v4.5
2242 * use the s/w feature support filed.
2243 */
2244 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2245 return 1;
2246 return 0;
2247}
2248EXPORT_SYMBOL(mmc_can_discard);
2249
2250int mmc_can_sanitize(struct mmc_card *card)
2251{
2252 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2253 return 0;
2254 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2255 return 1;
2256 return 0;
2257}
2258EXPORT_SYMBOL(mmc_can_sanitize);
2259
2260int mmc_can_secure_erase_trim(struct mmc_card *card)
2261{
2262 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2263 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2264 return 1;
2265 return 0;
2266}
2267EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2268
2269int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2270 unsigned int nr)
2271{
2272 if (!card->erase_size)
2273 return 0;
2274 if (from % card->erase_size || nr % card->erase_size)
2275 return 0;
2276 return 1;
2277}
2278EXPORT_SYMBOL(mmc_erase_group_aligned);
2279
2280static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2281 unsigned int arg)
2282{
2283 struct mmc_host *host = card->host;
2284 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2285 unsigned int last_timeout = 0;
2286 unsigned int max_busy_timeout = host->max_busy_timeout ?
2287 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2288
2289 if (card->erase_shift) {
2290 max_qty = UINT_MAX >> card->erase_shift;
2291 min_qty = card->pref_erase >> card->erase_shift;
2292 } else if (mmc_card_sd(card)) {
2293 max_qty = UINT_MAX;
2294 min_qty = card->pref_erase;
2295 } else {
2296 max_qty = UINT_MAX / card->erase_size;
2297 min_qty = card->pref_erase / card->erase_size;
2298 }
2299
2300 /*
2301 * We should not only use 'host->max_busy_timeout' as the limitation
2302 * when deciding the max discard sectors. We should set a balance value
2303 * to improve the erase speed, and it can not get too long timeout at
2304 * the same time.
2305 *
2306 * Here we set 'card->pref_erase' as the minimal discard sectors no
2307 * matter what size of 'host->max_busy_timeout', but if the
2308 * 'host->max_busy_timeout' is large enough for more discard sectors,
2309 * then we can continue to increase the max discard sectors until we
2310 * get a balance value. In cases when the 'host->max_busy_timeout'
2311 * isn't specified, use the default max erase timeout.
2312 */
2313 do {
2314 y = 0;
2315 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2316 timeout = mmc_erase_timeout(card, arg, qty + x);
2317
2318 if (qty + x > min_qty && timeout > max_busy_timeout)
2319 break;
2320
2321 if (timeout < last_timeout)
2322 break;
2323 last_timeout = timeout;
2324 y = x;
2325 }
2326 qty += y;
2327 } while (y);
2328
2329 if (!qty)
2330 return 0;
2331
2332 /*
2333 * When specifying a sector range to trim, chances are we might cross
2334 * an erase-group boundary even if the amount of sectors is less than
2335 * one erase-group.
2336 * If we can only fit one erase-group in the controller timeout budget,
2337 * we have to care that erase-group boundaries are not crossed by a
2338 * single trim operation. We flag that special case with "eg_boundary".
2339 * In all other cases we can just decrement qty and pretend that we
2340 * always touch (qty + 1) erase-groups as a simple optimization.
2341 */
2342 if (qty == 1)
2343 card->eg_boundary = 1;
2344 else
2345 qty--;
2346
2347 /* Convert qty to sectors */
2348 if (card->erase_shift)
2349 max_discard = qty << card->erase_shift;
2350 else if (mmc_card_sd(card))
2351 max_discard = qty + 1;
2352 else
2353 max_discard = qty * card->erase_size;
2354
2355 return max_discard;
2356}
2357
2358unsigned int mmc_calc_max_discard(struct mmc_card *card)
2359{
2360 struct mmc_host *host = card->host;
2361 unsigned int max_discard, max_trim;
2362
2363 /*
2364 * Without erase_group_def set, MMC erase timeout depends on clock
2365 * frequence which can change. In that case, the best choice is
2366 * just the preferred erase size.
2367 */
2368 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2369 return card->pref_erase;
2370
2371 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2372 if (max_discard && mmc_can_trim(card)) {
2373 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2374 if (max_trim < max_discard)
2375 max_discard = max_trim;
2376 } else if (max_discard < card->erase_size) {
2377 max_discard = 0;
2378 }
2379 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2380 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2381 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2382 return max_discard;
2383}
2384EXPORT_SYMBOL(mmc_calc_max_discard);
2385
2386bool mmc_card_is_blockaddr(struct mmc_card *card)
2387{
2388 return card ? mmc_card_blockaddr(card) : false;
2389}
2390EXPORT_SYMBOL(mmc_card_is_blockaddr);
2391
2392int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2393{
2394 struct mmc_command cmd = {};
2395
2396 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2397 mmc_card_hs400(card) || mmc_card_hs400es(card))
2398 return 0;
2399
2400 cmd.opcode = MMC_SET_BLOCKLEN;
2401 cmd.arg = blocklen;
2402 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2403 return mmc_wait_for_cmd(card->host, &cmd, 5);
2404}
2405EXPORT_SYMBOL(mmc_set_blocklen);
2406
2407int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2408 bool is_rel_write)
2409{
2410 struct mmc_command cmd = {};
2411
2412 cmd.opcode = MMC_SET_BLOCK_COUNT;
2413 cmd.arg = blockcount & 0x0000FFFF;
2414 if (is_rel_write)
2415 cmd.arg |= 1 << 31;
2416 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2417 return mmc_wait_for_cmd(card->host, &cmd, 5);
2418}
2419EXPORT_SYMBOL(mmc_set_blockcount);
2420
2421static void mmc_hw_reset_for_init(struct mmc_host *host)
2422{
2423 mmc_pwrseq_reset(host);
2424
2425 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2426 return;
2427 host->ops->hw_reset(host);
2428}
2429
2430int mmc_hw_reset(struct mmc_host *host)
2431{
2432 int ret;
2433
2434 if (!host->card)
2435 return -EINVAL;
2436
2437 mmc_bus_get(host);
2438 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2439 mmc_bus_put(host);
2440 return -EOPNOTSUPP;
2441 }
2442
2443 ret = host->bus_ops->reset(host);
2444 mmc_bus_put(host);
2445
2446 if (ret)
2447 pr_warn("%s: tried to reset card, got error %d\n",
2448 mmc_hostname(host), ret);
2449
2450 return ret;
2451}
2452EXPORT_SYMBOL(mmc_hw_reset);
2453
2454static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2455{
2456 host->f_init = freq;
2457
2458 pr_debug("%s: %s: trying to init card at %u Hz\n",
2459 mmc_hostname(host), __func__, host->f_init);
2460
2461 mmc_power_up(host, host->ocr_avail);
2462
2463 /*
2464 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465 * do a hardware reset if possible.
2466 */
2467 mmc_hw_reset_for_init(host);
2468
2469 /*
2470 * sdio_reset sends CMD52 to reset card. Since we do not know
2471 * if the card is being re-initialized, just send it. CMD52
2472 * should be ignored by SD/eMMC cards.
2473 * Skip it if we already know that we do not support SDIO commands
2474 */
2475 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2476 sdio_reset(host);
2477
2478 mmc_go_idle(host);
2479
2480 if (!(host->caps2 & MMC_CAP2_NO_SD))
2481 mmc_send_if_cond(host, host->ocr_avail);
2482
2483 /* Order's important: probe SDIO, then SD, then MMC */
2484 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2485 if (!mmc_attach_sdio(host))
2486 return 0;
2487
2488 if (!(host->caps2 & MMC_CAP2_NO_SD))
2489 if (!mmc_attach_sd(host))
2490 return 0;
2491
2492 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2493 if (!mmc_attach_mmc(host))
2494 return 0;
2495
2496 mmc_power_off(host);
2497 return -EIO;
2498}
2499
2500int _mmc_detect_card_removed(struct mmc_host *host)
2501{
2502 int ret;
2503
2504 if (!host->card || mmc_card_removed(host->card))
2505 return 1;
2506
2507 ret = host->bus_ops->alive(host);
2508
2509 /*
2510 * Card detect status and alive check may be out of sync if card is
2511 * removed slowly, when card detect switch changes while card/slot
2512 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514 * detect work 200ms later for this case.
2515 */
2516 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2517 mmc_detect_change(host, msecs_to_jiffies(200));
2518 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2519 }
2520
2521 if (ret) {
2522 mmc_card_set_removed(host->card);
2523 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2524 }
2525
2526 return ret;
2527}
2528
2529int mmc_detect_card_removed(struct mmc_host *host)
2530{
2531 struct mmc_card *card = host->card;
2532 int ret;
2533
2534 WARN_ON(!host->claimed);
2535
2536 if (!card)
2537 return 1;
2538
2539 if (!mmc_card_is_removable(host))
2540 return 0;
2541
2542 ret = mmc_card_removed(card);
2543 /*
2544 * The card will be considered unchanged unless we have been asked to
2545 * detect a change or host requires polling to provide card detection.
2546 */
2547 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2548 return ret;
2549
2550 host->detect_change = 0;
2551 if (!ret) {
2552 ret = _mmc_detect_card_removed(host);
2553 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2554 /*
2555 * Schedule a detect work as soon as possible to let a
2556 * rescan handle the card removal.
2557 */
2558 cancel_delayed_work(&host->detect);
2559 _mmc_detect_change(host, 0, false);
2560 }
2561 }
2562
2563 return ret;
2564}
2565EXPORT_SYMBOL(mmc_detect_card_removed);
2566
2567void mmc_rescan(struct work_struct *work)
2568{
2569 struct mmc_host *host =
2570 container_of(work, struct mmc_host, detect.work);
2571 int i;
2572
2573 if (host->rescan_disable)
2574 return;
2575
2576 /* If there is a non-removable card registered, only scan once */
2577 if (!mmc_card_is_removable(host) && host->rescan_entered)
2578 return;
2579 host->rescan_entered = 1;
2580
2581 if (host->trigger_card_event && host->ops->card_event) {
2582 mmc_claim_host(host);
2583 host->ops->card_event(host);
2584 mmc_release_host(host);
2585 host->trigger_card_event = false;
2586 }
2587
2588 mmc_bus_get(host);
2589
2590 /*
2591 * if there is a _removable_ card registered, check whether it is
2592 * still present
2593 */
2594 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2595 host->bus_ops->detect(host);
2596
2597 host->detect_change = 0;
2598
2599 /*
2600 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2601 * the card is no longer present.
2602 */
2603 mmc_bus_put(host);
2604 mmc_bus_get(host);
2605
2606 /* if there still is a card present, stop here */
2607 if (host->bus_ops != NULL) {
2608 mmc_bus_put(host);
2609 goto out;
2610 }
2611
2612 /*
2613 * Only we can add a new handler, so it's safe to
2614 * release the lock here.
2615 */
2616 mmc_bus_put(host);
2617
2618 mmc_claim_host(host);
2619 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2620 host->ops->get_cd(host) == 0) {
2621 mmc_power_off(host);
2622 mmc_release_host(host);
2623 goto out;
2624 }
2625
2626 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2627 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2628 break;
2629 if (freqs[i] <= host->f_min)
2630 break;
2631 }
2632 mmc_release_host(host);
2633
2634 out:
2635 if (host->caps & MMC_CAP_NEEDS_POLL)
2636 mmc_schedule_delayed_work(&host->detect, HZ);
2637}
2638
2639void mmc_start_host(struct mmc_host *host)
2640{
2641 host->f_init = max(freqs[0], host->f_min);
2642 host->rescan_disable = 0;
2643 host->ios.power_mode = MMC_POWER_UNDEFINED;
2644
2645 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2646 mmc_claim_host(host);
2647 mmc_power_up(host, host->ocr_avail);
2648 mmc_release_host(host);
2649 }
2650
2651 mmc_gpiod_request_cd_irq(host);
2652 _mmc_detect_change(host, 0, false);
2653}
2654
2655void mmc_stop_host(struct mmc_host *host)
2656{
2657 if (host->slot.cd_irq >= 0) {
2658 mmc_gpio_set_cd_wake(host, false);
2659 disable_irq(host->slot.cd_irq);
2660 }
2661
2662 host->rescan_disable = 1;
2663 cancel_delayed_work_sync(&host->detect);
2664
2665 /* clear pm flags now and let card drivers set them as needed */
2666 host->pm_flags = 0;
2667
2668 mmc_bus_get(host);
2669 if (host->bus_ops && !host->bus_dead) {
2670 /* Calling bus_ops->remove() with a claimed host can deadlock */
2671 host->bus_ops->remove(host);
2672 mmc_claim_host(host);
2673 mmc_detach_bus(host);
2674 mmc_power_off(host);
2675 mmc_release_host(host);
2676 mmc_bus_put(host);
2677 return;
2678 }
2679 mmc_bus_put(host);
2680
2681 mmc_claim_host(host);
2682 mmc_power_off(host);
2683 mmc_release_host(host);
2684}
2685
2686int mmc_power_save_host(struct mmc_host *host)
2687{
2688 int ret = 0;
2689
2690 pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2691
2692 mmc_bus_get(host);
2693
2694 if (!host->bus_ops || host->bus_dead) {
2695 mmc_bus_put(host);
2696 return -EINVAL;
2697 }
2698
2699 if (host->bus_ops->power_save)
2700 ret = host->bus_ops->power_save(host);
2701
2702 mmc_bus_put(host);
2703
2704 mmc_power_off(host);
2705
2706 return ret;
2707}
2708EXPORT_SYMBOL(mmc_power_save_host);
2709
2710int mmc_power_restore_host(struct mmc_host *host)
2711{
2712 int ret;
2713
2714 pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2715
2716 mmc_bus_get(host);
2717
2718 if (!host->bus_ops || host->bus_dead) {
2719 mmc_bus_put(host);
2720 return -EINVAL;
2721 }
2722
2723 mmc_power_up(host, host->card->ocr);
2724 ret = host->bus_ops->power_restore(host);
2725
2726 mmc_bus_put(host);
2727
2728 return ret;
2729}
2730EXPORT_SYMBOL(mmc_power_restore_host);
2731
2732#ifdef CONFIG_PM_SLEEP
2733/* Do the card removal on suspend if card is assumed removeable
2734 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2735 to sync the card.
2736*/
2737static int mmc_pm_notify(struct notifier_block *notify_block,
2738 unsigned long mode, void *unused)
2739{
2740 struct mmc_host *host = container_of(
2741 notify_block, struct mmc_host, pm_notify);
2742 unsigned long flags;
2743 int err = 0;
2744
2745 switch (mode) {
2746 case PM_HIBERNATION_PREPARE:
2747 case PM_SUSPEND_PREPARE:
2748 case PM_RESTORE_PREPARE:
2749 spin_lock_irqsave(&host->lock, flags);
2750 host->rescan_disable = 1;
2751 spin_unlock_irqrestore(&host->lock, flags);
2752 cancel_delayed_work_sync(&host->detect);
2753
2754 if (!host->bus_ops)
2755 break;
2756
2757 /* Validate prerequisites for suspend */
2758 if (host->bus_ops->pre_suspend)
2759 err = host->bus_ops->pre_suspend(host);
2760 if (!err)
2761 break;
2762
2763 if (!mmc_card_is_removable(host)) {
2764 dev_warn(mmc_dev(host),
2765 "pre_suspend failed for non-removable host: "
2766 "%d\n", err);
2767 /* Avoid removing non-removable hosts */
2768 break;
2769 }
2770
2771 /* Calling bus_ops->remove() with a claimed host can deadlock */
2772 host->bus_ops->remove(host);
2773 mmc_claim_host(host);
2774 mmc_detach_bus(host);
2775 mmc_power_off(host);
2776 mmc_release_host(host);
2777 host->pm_flags = 0;
2778 break;
2779
2780 case PM_POST_SUSPEND:
2781 case PM_POST_HIBERNATION:
2782 case PM_POST_RESTORE:
2783
2784 spin_lock_irqsave(&host->lock, flags);
2785 host->rescan_disable = 0;
2786 spin_unlock_irqrestore(&host->lock, flags);
2787 _mmc_detect_change(host, 0, false);
2788
2789 }
2790
2791 return 0;
2792}
2793
2794void mmc_register_pm_notifier(struct mmc_host *host)
2795{
2796 host->pm_notify.notifier_call = mmc_pm_notify;
2797 register_pm_notifier(&host->pm_notify);
2798}
2799
2800void mmc_unregister_pm_notifier(struct mmc_host *host)
2801{
2802 unregister_pm_notifier(&host->pm_notify);
2803}
2804#endif
2805
2806static int __init mmc_init(void)
2807{
2808 int ret;
2809
2810 ret = mmc_register_bus();
2811 if (ret)
2812 return ret;
2813
2814 ret = mmc_register_host_class();
2815 if (ret)
2816 goto unregister_bus;
2817
2818 ret = sdio_register_bus();
2819 if (ret)
2820 goto unregister_host_class;
2821
2822 return 0;
2823
2824unregister_host_class:
2825 mmc_unregister_host_class();
2826unregister_bus:
2827 mmc_unregister_bus();
2828 return ret;
2829}
2830
2831static void __exit mmc_exit(void)
2832{
2833 sdio_unregister_bus();
2834 mmc_unregister_host_class();
2835 mmc_unregister_bus();
2836}
2837
2838subsys_initcall(mmc_init);
2839module_exit(mmc_exit);
2840
2841MODULE_LICENSE("GPL");