Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
 
 
 
  39#include "core.h"
 
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
 
  43
  44#include "mmc_ops.h"
  45#include "sd_ops.h"
  46#include "sdio_ops.h"
  47
  48/* If the device is not responding */
  49#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
  50
  51/*
  52 * Background operations can take a long time, depending on the housekeeping
  53 * operations the card has to perform.
  54 */
  55#define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
  56
  57static struct workqueue_struct *workqueue;
  58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  59
  60/*
  61 * Enabling software CRCs on the data blocks can be a significant (30%)
  62 * performance cost, and for other reasons may not always be desired.
  63 * So we allow it it to be disabled.
  64 */
  65bool use_spi_crc = 1;
  66module_param(use_spi_crc, bool, 0);
  67
  68/*
  69 * Internal function. Schedule delayed work in the MMC work queue.
  70 */
  71static int mmc_schedule_delayed_work(struct delayed_work *work,
  72				     unsigned long delay)
  73{
  74	return queue_delayed_work(workqueue, work, delay);
  75}
  76
  77/*
  78 * Internal function. Flush all scheduled work from the MMC work queue.
  79 */
  80static void mmc_flush_scheduled_work(void)
  81{
  82	flush_workqueue(workqueue);
  83}
  84
  85#ifdef CONFIG_FAIL_MMC_REQUEST
  86
  87/*
  88 * Internal function. Inject random data errors.
  89 * If mmc_data is NULL no errors are injected.
  90 */
  91static void mmc_should_fail_request(struct mmc_host *host,
  92				    struct mmc_request *mrq)
  93{
  94	struct mmc_command *cmd = mrq->cmd;
  95	struct mmc_data *data = mrq->data;
  96	static const int data_errors[] = {
  97		-ETIMEDOUT,
  98		-EILSEQ,
  99		-EIO,
 100	};
 101
 102	if (!data)
 103		return;
 104
 105	if (cmd->error || data->error ||
 106	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 107		return;
 108
 109	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 110	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 111}
 112
 113#else /* CONFIG_FAIL_MMC_REQUEST */
 114
 115static inline void mmc_should_fail_request(struct mmc_host *host,
 116					   struct mmc_request *mrq)
 117{
 118}
 119
 120#endif /* CONFIG_FAIL_MMC_REQUEST */
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122/**
 123 *	mmc_request_done - finish processing an MMC request
 124 *	@host: MMC host which completed request
 125 *	@mrq: MMC request which request
 126 *
 127 *	MMC drivers should call this function when they have completed
 128 *	their processing of a request.
 129 */
 130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 131{
 132	struct mmc_command *cmd = mrq->cmd;
 133	int err = cmd->error;
 134
 
 
 
 
 
 
 
 
 135	if (err && cmd->retries && mmc_host_is_spi(host)) {
 136		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 137			cmd->retries = 0;
 138	}
 139
 140	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 141		/*
 142		 * Request starter must handle retries - see
 143		 * mmc_wait_for_req_done().
 144		 */
 145		if (mrq->done)
 146			mrq->done(mrq);
 147	} else {
 
 
 
 
 
 
 
 
 
 148		mmc_should_fail_request(host, mrq);
 149
 150		led_trigger_event(host->led, LED_OFF);
 
 
 
 
 
 
 
 
 
 151
 152		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 153			mmc_hostname(host), cmd->opcode, err,
 154			cmd->resp[0], cmd->resp[1],
 155			cmd->resp[2], cmd->resp[3]);
 156
 157		if (mrq->data) {
 158			pr_debug("%s:     %d bytes transferred: %d\n",
 159				mmc_hostname(host),
 160				mrq->data->bytes_xfered, mrq->data->error);
 161		}
 162
 163		if (mrq->stop) {
 164			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 165				mmc_hostname(host), mrq->stop->opcode,
 166				mrq->stop->error,
 167				mrq->stop->resp[0], mrq->stop->resp[1],
 168				mrq->stop->resp[2], mrq->stop->resp[3]);
 169		}
 170
 171		if (mrq->done)
 172			mrq->done(mrq);
 173
 174		mmc_host_clk_release(host);
 175	}
 
 
 
 
 
 
 176}
 177
 178EXPORT_SYMBOL(mmc_request_done);
 179
 180static void
 181mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 182{
 183#ifdef CONFIG_MMC_DEBUG
 184	unsigned int i, sz;
 185	struct scatterlist *sg;
 186#endif
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188	if (mrq->sbc) {
 189		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 190			 mmc_hostname(host), mrq->sbc->opcode,
 191			 mrq->sbc->arg, mrq->sbc->flags);
 192	}
 193
 194	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 195		 mmc_hostname(host), mrq->cmd->opcode,
 196		 mrq->cmd->arg, mrq->cmd->flags);
 
 
 
 
 
 197
 198	if (mrq->data) {
 199		pr_debug("%s:     blksz %d blocks %d flags %08x "
 200			"tsac %d ms nsac %d\n",
 201			mmc_hostname(host), mrq->data->blksz,
 202			mrq->data->blocks, mrq->data->flags,
 203			mrq->data->timeout_ns / 1000000,
 204			mrq->data->timeout_clks);
 205	}
 206
 207	if (mrq->stop) {
 208		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 209			 mmc_hostname(host), mrq->stop->opcode,
 210			 mrq->stop->arg, mrq->stop->flags);
 211	}
 
 212
 213	WARN_ON(!host->claimed);
 
 
 
 214
 215	mrq->cmd->error = 0;
 216	mrq->cmd->mrq = mrq;
 
 
 
 
 
 
 
 217	if (mrq->data) {
 218		BUG_ON(mrq->data->blksz > host->max_blk_size);
 219		BUG_ON(mrq->data->blocks > host->max_blk_count);
 220		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 221			host->max_req_size);
 222
 223#ifdef CONFIG_MMC_DEBUG
 224		sz = 0;
 225		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 226			sz += sg->length;
 227		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 228#endif
 229
 230		mrq->cmd->data = mrq->data;
 231		mrq->data->error = 0;
 232		mrq->data->mrq = mrq;
 233		if (mrq->stop) {
 234			mrq->data->stop = mrq->stop;
 235			mrq->stop->error = 0;
 236			mrq->stop->mrq = mrq;
 237		}
 238	}
 239	mmc_host_clk_hold(host);
 240	led_trigger_event(host->led, LED_FULL);
 241	host->ops->request(host, mrq);
 242}
 243
 244/**
 245 *	mmc_start_bkops - start BKOPS for supported cards
 246 *	@card: MMC card to start BKOPS
 247 *	@form_exception: A flag to indicate if this function was
 248 *			 called due to an exception raised by the card
 249 *
 250 *	Start background operations whenever requested.
 251 *	When the urgent BKOPS bit is set in a R1 command response
 252 *	then background operations should be started immediately.
 253*/
 254void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 255{
 256	int err;
 257	int timeout;
 258	bool use_busy_signal;
 259
 260	BUG_ON(!card);
 261
 262	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
 263		return;
 264
 265	err = mmc_read_bkops_status(card);
 266	if (err) {
 267		pr_err("%s: Failed to read bkops status: %d\n",
 268		       mmc_hostname(card->host), err);
 269		return;
 270	}
 271
 272	if (!card->ext_csd.raw_bkops_status)
 273		return;
 274
 275	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 276	    from_exception)
 277		return;
 278
 279	mmc_claim_host(card->host);
 280	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 281		timeout = MMC_BKOPS_MAX_TIMEOUT;
 282		use_busy_signal = true;
 283	} else {
 284		timeout = 0;
 285		use_busy_signal = false;
 286	}
 287
 288	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 289			EXT_CSD_BKOPS_START, 1, timeout,
 290			use_busy_signal, true, false);
 291	if (err) {
 292		pr_warn("%s: Error %d starting bkops\n",
 293			mmc_hostname(card->host), err);
 294		goto out;
 295	}
 296
 297	/*
 298	 * For urgent bkops status (LEVEL_2 and more)
 299	 * bkops executed synchronously, otherwise
 300	 * the operation is in progress
 301	 */
 302	if (!use_busy_signal)
 303		mmc_card_set_doing_bkops(card);
 304out:
 305	mmc_release_host(card->host);
 306}
 307EXPORT_SYMBOL(mmc_start_bkops);
 308
 309/*
 310 * mmc_wait_data_done() - done callback for data request
 311 * @mrq: done data request
 312 *
 313 * Wakes up mmc context, passed as a callback to host controller driver
 314 */
 315static void mmc_wait_data_done(struct mmc_request *mrq)
 316{
 317	mrq->host->context_info.is_done_rcv = true;
 318	wake_up_interruptible(&mrq->host->context_info.wait);
 319}
 
 320
 321static void mmc_wait_done(struct mmc_request *mrq)
 322{
 323	complete(&mrq->completion);
 324}
 325
 326/*
 327 *__mmc_start_data_req() - starts data request
 328 * @host: MMC host to start the request
 329 * @mrq: data request to start
 330 *
 331 * Sets the done callback to be called when request is completed by the card.
 332 * Starts data mmc request execution
 333 */
 334static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 335{
 336	mrq->done = mmc_wait_data_done;
 337	mrq->host = host;
 338	if (mmc_card_removed(host->card)) {
 339		mrq->cmd->error = -ENOMEDIUM;
 340		mmc_wait_data_done(mrq);
 341		return -ENOMEDIUM;
 342	}
 343	mmc_start_request(host, mrq);
 344
 345	return 0;
 
 
 
 
 
 346}
 347
 348static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 349{
 
 
 
 
 350	init_completion(&mrq->completion);
 351	mrq->done = mmc_wait_done;
 352	if (mmc_card_removed(host->card)) {
 353		mrq->cmd->error = -ENOMEDIUM;
 
 
 
 354		complete(&mrq->completion);
 355		return -ENOMEDIUM;
 356	}
 357	mmc_start_request(host, mrq);
 358	return 0;
 359}
 360
 361/*
 362 * mmc_wait_for_data_req_done() - wait for request completed
 363 * @host: MMC host to prepare the command.
 364 * @mrq: MMC request to wait for
 365 *
 366 * Blocks MMC context till host controller will ack end of data request
 367 * execution or new request notification arrives from the block layer.
 368 * Handles command retries.
 369 *
 370 * Returns enum mmc_blk_status after checking errors.
 371 */
 372static int mmc_wait_for_data_req_done(struct mmc_host *host,
 373				      struct mmc_request *mrq,
 374				      struct mmc_async_req *next_req)
 375{
 376	struct mmc_command *cmd;
 377	struct mmc_context_info *context_info = &host->context_info;
 378	int err;
 379	unsigned long flags;
 380
 381	while (1) {
 382		wait_event_interruptible(context_info->wait,
 383				(context_info->is_done_rcv ||
 384				 context_info->is_new_req));
 385		spin_lock_irqsave(&context_info->lock, flags);
 386		context_info->is_waiting_last_req = false;
 387		spin_unlock_irqrestore(&context_info->lock, flags);
 388		if (context_info->is_done_rcv) {
 389			context_info->is_done_rcv = false;
 390			context_info->is_new_req = false;
 391			cmd = mrq->cmd;
 392
 393			if (!cmd->error || !cmd->retries ||
 394			    mmc_card_removed(host->card)) {
 395				err = host->areq->err_check(host->card,
 396							    host->areq);
 397				break; /* return err */
 398			} else {
 399				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 400					mmc_hostname(host),
 401					cmd->opcode, cmd->error);
 402				cmd->retries--;
 403				cmd->error = 0;
 404				host->ops->request(host, mrq);
 405				continue; /* wait for done/new event again */
 406			}
 407		} else if (context_info->is_new_req) {
 408			context_info->is_new_req = false;
 409			if (!next_req) {
 410				err = MMC_BLK_NEW_REQUEST;
 411				break; /* return err */
 412			}
 413		}
 414	}
 415	return err;
 416}
 417
 418static void mmc_wait_for_req_done(struct mmc_host *host,
 419				  struct mmc_request *mrq)
 420{
 421	struct mmc_command *cmd;
 422
 423	while (1) {
 424		wait_for_completion(&mrq->completion);
 425
 426		cmd = mrq->cmd;
 427
 428		/*
 429		 * If host has timed out waiting for the sanitize
 430		 * to complete, card might be still in programming state
 431		 * so let's try to bring the card out of programming
 432		 * state.
 433		 */
 434		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 435			if (!mmc_interrupt_hpi(host->card)) {
 436				pr_warning("%s: %s: Interrupted sanitize\n",
 437					   mmc_hostname(host), __func__);
 438				cmd->error = 0;
 439				break;
 440			} else {
 441				pr_err("%s: %s: Failed to interrupt sanitize\n",
 442				       mmc_hostname(host), __func__);
 443			}
 444		}
 445		if (!cmd->error || !cmd->retries ||
 446		    mmc_card_removed(host->card))
 447			break;
 448
 
 
 449		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 450			 mmc_hostname(host), cmd->opcode, cmd->error);
 451		cmd->retries--;
 452		cmd->error = 0;
 453		host->ops->request(host, mrq);
 454	}
 455}
 456
 457/**
 458 *	mmc_pre_req - Prepare for a new request
 459 *	@host: MMC host to prepare command
 460 *	@mrq: MMC request to prepare for
 461 *	@is_first_req: true if there is no previous started request
 462 *                     that may run in parellel to this call, otherwise false
 463 *
 464 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 465 *	host prepare for the new request. Preparation of a request may be
 466 *	performed while another request is running on the host.
 467 */
 468static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 469		 bool is_first_req)
 470{
 471	if (host->ops->pre_req) {
 472		mmc_host_clk_hold(host);
 473		host->ops->pre_req(host, mrq, is_first_req);
 474		mmc_host_clk_release(host);
 475	}
 476}
 
 477
 478/**
 479 *	mmc_post_req - Post process a completed request
 480 *	@host: MMC host to post process command
 481 *	@mrq: MMC request to post process for
 482 *	@err: Error, if non zero, clean up any resources made in pre_req
 483 *
 484 *	Let the host post process a completed request. Post processing of
 485 *	a request may be performed while another reuqest is running.
 486 */
 487static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 488			 int err)
 489{
 490	if (host->ops->post_req) {
 491		mmc_host_clk_hold(host);
 492		host->ops->post_req(host, mrq, err);
 493		mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494	}
 
 495}
 
 496
 497/**
 498 *	mmc_start_req - start a non-blocking request
 499 *	@host: MMC host to start command
 500 *	@areq: async request to start
 501 *	@error: out parameter returns 0 for success, otherwise non zero
 502 *
 503 *	Start a new MMC custom command request for a host.
 504 *	If there is on ongoing async request wait for completion
 505 *	of that request and start the new one and return.
 506 *	Does not wait for the new request to complete.
 507 *
 508 *      Returns the completed request, NULL in case of none completed.
 509 *	Wait for the an ongoing request (previoulsy started) to complete and
 510 *	return the completed request. If there is no ongoing request, NULL
 511 *	is returned without waiting. NULL is not an error condition.
 512 */
 513struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 514				    struct mmc_async_req *areq, int *error)
 515{
 516	int err = 0;
 517	int start_err = 0;
 518	struct mmc_async_req *data = host->areq;
 519
 520	/* Prepare a new request */
 521	if (areq)
 522		mmc_pre_req(host, areq->mrq, !host->areq);
 523
 524	if (host->areq) {
 525		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
 526		if (err == MMC_BLK_NEW_REQUEST) {
 527			if (error)
 528				*error = err;
 529			/*
 530			 * The previous request was not completed,
 531			 * nothing to return
 532			 */
 533			return NULL;
 534		}
 535		/*
 536		 * Check BKOPS urgency for each R1 response
 537		 */
 538		if (host->card && mmc_card_mmc(host->card) &&
 539		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 540		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 541		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
 542			mmc_start_bkops(host->card, true);
 543	}
 544
 545	if (!err && areq)
 546		start_err = __mmc_start_data_req(host, areq->mrq);
 547
 548	if (host->areq)
 549		mmc_post_req(host, host->areq->mrq, 0);
 550
 551	 /* Cancel a prepared request if it was not started. */
 552	if ((err || start_err) && areq)
 553		mmc_post_req(host, areq->mrq, -EINVAL);
 554
 555	if (err)
 556		host->areq = NULL;
 557	else
 558		host->areq = areq;
 559
 560	if (error)
 561		*error = err;
 562	return data;
 
 
 
 
 
 
 
 
 
 
 
 
 563}
 564EXPORT_SYMBOL(mmc_start_req);
 565
 566/**
 567 *	mmc_wait_for_req - start a request and wait for completion
 568 *	@host: MMC host to start command
 569 *	@mrq: MMC request to start
 570 *
 571 *	Start a new MMC custom command request for a host, and wait
 572 *	for the command to complete. Does not attempt to parse the
 573 *	response.
 574 */
 575void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 576{
 577	__mmc_start_req(host, mrq);
 578	mmc_wait_for_req_done(host, mrq);
 579}
 580EXPORT_SYMBOL(mmc_wait_for_req);
 581
 582/**
 583 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 584 *	@card: the MMC card associated with the HPI transfer
 
 
 
 585 *
 586 *	Issued High Priority Interrupt, and check for card status
 587 *	until out-of prg-state.
 
 
 588 */
 589int mmc_interrupt_hpi(struct mmc_card *card)
 590{
 
 591	int err;
 592	u32 status;
 593	unsigned long prg_wait;
 594
 595	BUG_ON(!card);
 596
 597	if (!card->ext_csd.hpi_en) {
 598		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 599		return 1;
 600	}
 
 601
 602	mmc_claim_host(card->host);
 603	err = mmc_send_status(card, &status);
 604	if (err) {
 605		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 606		goto out;
 607	}
 608
 609	switch (R1_CURRENT_STATE(status)) {
 610	case R1_STATE_IDLE:
 611	case R1_STATE_READY:
 612	case R1_STATE_STBY:
 613	case R1_STATE_TRAN:
 614		/*
 615		 * In idle and transfer states, HPI is not needed and the caller
 616		 * can issue the next intended command immediately
 617		 */
 618		goto out;
 619	case R1_STATE_PRG:
 620		break;
 621	default:
 622		/* In all other states, it's illegal to issue HPI */
 623		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 624			mmc_hostname(card->host), R1_CURRENT_STATE(status));
 625		err = -EINVAL;
 626		goto out;
 627	}
 628
 629	err = mmc_send_hpi_cmd(card, &status);
 630	if (err)
 631		goto out;
 
 
 
 
 632
 633	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 634	do {
 635		err = mmc_send_status(card, &status);
 636
 637		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 638			break;
 639		if (time_after(jiffies, prg_wait))
 640			err = -ETIMEDOUT;
 641	} while (!err);
 642
 643out:
 644	mmc_release_host(card->host);
 645	return err;
 646}
 647EXPORT_SYMBOL(mmc_interrupt_hpi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648
 649/**
 650 *	mmc_wait_for_cmd - start a command and wait for completion
 651 *	@host: MMC host to start command
 652 *	@cmd: MMC command to start
 653 *	@retries: maximum number of retries
 654 *
 655 *	Start a new MMC command for a host, and wait for the command
 656 *	to complete.  Return any error that occurred while the command
 657 *	was executing.  Do not attempt to parse the response.
 658 */
 659int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 660{
 661	struct mmc_request mrq = {NULL};
 662
 663	WARN_ON(!host->claimed);
 664
 665	memset(cmd->resp, 0, sizeof(cmd->resp));
 666	cmd->retries = retries;
 667
 668	mrq.cmd = cmd;
 669	cmd->data = NULL;
 670
 671	mmc_wait_for_req(host, &mrq);
 672
 673	return cmd->error;
 674}
 675
 676EXPORT_SYMBOL(mmc_wait_for_cmd);
 677
 678/**
 679 *	mmc_stop_bkops - stop ongoing BKOPS
 680 *	@card: MMC card to check BKOPS
 681 *
 682 *	Send HPI command to stop ongoing background operations to
 683 *	allow rapid servicing of foreground operations, e.g. read/
 684 *	writes. Wait until the card comes out of the programming state
 685 *	to avoid errors in servicing read/write requests.
 686 */
 687int mmc_stop_bkops(struct mmc_card *card)
 688{
 689	int err = 0;
 690
 691	BUG_ON(!card);
 692	err = mmc_interrupt_hpi(card);
 693
 694	/*
 695	 * If err is EINVAL, we can't issue an HPI.
 696	 * It should complete the BKOPS.
 697	 */
 698	if (!err || (err == -EINVAL)) {
 699		mmc_card_clr_doing_bkops(card);
 700		err = 0;
 701	}
 702
 703	return err;
 704}
 705EXPORT_SYMBOL(mmc_stop_bkops);
 706
 707int mmc_read_bkops_status(struct mmc_card *card)
 708{
 709	int err;
 710	u8 *ext_csd;
 711
 712	/*
 713	 * In future work, we should consider storing the entire ext_csd.
 714	 */
 715	ext_csd = kmalloc(512, GFP_KERNEL);
 716	if (!ext_csd) {
 717		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
 718		       mmc_hostname(card->host));
 719		return -ENOMEM;
 720	}
 721
 722	mmc_claim_host(card->host);
 723	err = mmc_send_ext_csd(card, ext_csd);
 724	mmc_release_host(card->host);
 725	if (err)
 726		goto out;
 727
 728	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 729	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 730out:
 731	kfree(ext_csd);
 732	return err;
 733}
 734EXPORT_SYMBOL(mmc_read_bkops_status);
 735
 736/**
 737 *	mmc_set_data_timeout - set the timeout for a data command
 738 *	@data: data phase for command
 739 *	@card: the MMC card associated with the data transfer
 740 *
 741 *	Computes the data timeout parameters according to the
 742 *	correct algorithm given the card type.
 743 */
 744void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 745{
 746	unsigned int mult;
 747
 748	/*
 749	 * SDIO cards only define an upper 1 s limit on access.
 750	 */
 751	if (mmc_card_sdio(card)) {
 752		data->timeout_ns = 1000000000;
 753		data->timeout_clks = 0;
 754		return;
 755	}
 756
 757	/*
 758	 * SD cards use a 100 multiplier rather than 10
 759	 */
 760	mult = mmc_card_sd(card) ? 100 : 10;
 761
 762	/*
 763	 * Scale up the multiplier (and therefore the timeout) by
 764	 * the r2w factor for writes.
 765	 */
 766	if (data->flags & MMC_DATA_WRITE)
 767		mult <<= card->csd.r2w_factor;
 768
 769	data->timeout_ns = card->csd.tacc_ns * mult;
 770	data->timeout_clks = card->csd.tacc_clks * mult;
 771
 772	/*
 773	 * SD cards also have an upper limit on the timeout.
 774	 */
 775	if (mmc_card_sd(card)) {
 776		unsigned int timeout_us, limit_us;
 777
 778		timeout_us = data->timeout_ns / 1000;
 779		if (mmc_host_clk_rate(card->host))
 780			timeout_us += data->timeout_clks * 1000 /
 781				(mmc_host_clk_rate(card->host) / 1000);
 782
 783		if (data->flags & MMC_DATA_WRITE)
 784			/*
 785			 * The MMC spec "It is strongly recommended
 786			 * for hosts to implement more than 500ms
 787			 * timeout value even if the card indicates
 788			 * the 250ms maximum busy length."  Even the
 789			 * previous value of 300ms is known to be
 790			 * insufficient for some cards.
 791			 */
 792			limit_us = 3000000;
 793		else
 794			limit_us = 100000;
 795
 796		/*
 797		 * SDHC cards always use these fixed values.
 798		 */
 799		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 800			data->timeout_ns = limit_us * 1000;
 801			data->timeout_clks = 0;
 802		}
 
 
 
 
 803	}
 804
 805	/*
 806	 * Some cards require longer data read timeout than indicated in CSD.
 807	 * Address this by setting the read timeout to a "reasonably high"
 808	 * value. For the cards tested, 300ms has proven enough. If necessary,
 809	 * this value can be increased if other problematic cards require this.
 810	 */
 811	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 812		data->timeout_ns = 300000000;
 813		data->timeout_clks = 0;
 814	}
 815
 816	/*
 817	 * Some cards need very high timeouts if driven in SPI mode.
 818	 * The worst observed timeout was 900ms after writing a
 819	 * continuous stream of data until the internal logic
 820	 * overflowed.
 821	 */
 822	if (mmc_host_is_spi(card->host)) {
 823		if (data->flags & MMC_DATA_WRITE) {
 824			if (data->timeout_ns < 1000000000)
 825				data->timeout_ns = 1000000000;	/* 1s */
 826		} else {
 827			if (data->timeout_ns < 100000000)
 828				data->timeout_ns =  100000000;	/* 100ms */
 829		}
 830	}
 831}
 832EXPORT_SYMBOL(mmc_set_data_timeout);
 833
 834/**
 835 *	mmc_align_data_size - pads a transfer size to a more optimal value
 836 *	@card: the MMC card associated with the data transfer
 837 *	@sz: original transfer size
 838 *
 839 *	Pads the original data size with a number of extra bytes in
 840 *	order to avoid controller bugs and/or performance hits
 841 *	(e.g. some controllers revert to PIO for certain sizes).
 842 *
 843 *	Returns the improved size, which might be unmodified.
 844 *
 845 *	Note that this function is only relevant when issuing a
 846 *	single scatter gather entry.
 847 */
 848unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 849{
 850	/*
 851	 * FIXME: We don't have a system for the controller to tell
 852	 * the core about its problems yet, so for now we just 32-bit
 853	 * align the size.
 854	 */
 855	sz = ((sz + 3) / 4) * 4;
 856
 857	return sz;
 858}
 859EXPORT_SYMBOL(mmc_align_data_size);
 860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861/**
 862 *	__mmc_claim_host - exclusively claim a host
 863 *	@host: mmc host to claim
 
 
 864 *	@abort: whether or not the operation should be aborted
 865 *
 866 *	Claim a host for a set of operations.  If @abort is non null and
 867 *	dereference a non-zero value then this will return prematurely with
 868 *	that non-zero value without acquiring the lock.  Returns zero
 869 *	with the lock held otherwise.
 870 */
 871int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 
 872{
 
 873	DECLARE_WAITQUEUE(wait, current);
 874	unsigned long flags;
 875	int stop;
 
 876
 877	might_sleep();
 878
 879	add_wait_queue(&host->wq, &wait);
 880	spin_lock_irqsave(&host->lock, flags);
 881	while (1) {
 882		set_current_state(TASK_UNINTERRUPTIBLE);
 883		stop = abort ? atomic_read(abort) : 0;
 884		if (stop || !host->claimed || host->claimer == current)
 885			break;
 886		spin_unlock_irqrestore(&host->lock, flags);
 887		schedule();
 888		spin_lock_irqsave(&host->lock, flags);
 889	}
 890	set_current_state(TASK_RUNNING);
 891	if (!stop) {
 892		host->claimed = 1;
 893		host->claimer = current;
 894		host->claim_cnt += 1;
 
 
 895	} else
 896		wake_up(&host->wq);
 897	spin_unlock_irqrestore(&host->lock, flags);
 898	remove_wait_queue(&host->wq, &wait);
 899	if (host->ops->enable && !stop && host->claim_cnt == 1)
 900		host->ops->enable(host);
 
 
 901	return stop;
 902}
 903
 904EXPORT_SYMBOL(__mmc_claim_host);
 905
 906/**
 907 *	mmc_release_host - release a host
 908 *	@host: mmc host to release
 909 *
 910 *	Release a MMC host, allowing others to claim the host
 911 *	for their operations.
 912 */
 913void mmc_release_host(struct mmc_host *host)
 914{
 915	unsigned long flags;
 916
 917	WARN_ON(!host->claimed);
 918
 919	if (host->ops->disable && host->claim_cnt == 1)
 920		host->ops->disable(host);
 921
 922	spin_lock_irqsave(&host->lock, flags);
 923	if (--host->claim_cnt) {
 924		/* Release for nested claim */
 925		spin_unlock_irqrestore(&host->lock, flags);
 926	} else {
 927		host->claimed = 0;
 
 928		host->claimer = NULL;
 929		spin_unlock_irqrestore(&host->lock, flags);
 930		wake_up(&host->wq);
 
 
 931	}
 932}
 933EXPORT_SYMBOL(mmc_release_host);
 934
 935/*
 936 * This is a helper function, which fetches a runtime pm reference for the
 937 * card device and also claims the host.
 938 */
 939void mmc_get_card(struct mmc_card *card)
 940{
 941	pm_runtime_get_sync(&card->dev);
 942	mmc_claim_host(card->host);
 943}
 944EXPORT_SYMBOL(mmc_get_card);
 945
 946/*
 947 * This is a helper function, which releases the host and drops the runtime
 948 * pm reference for the card device.
 949 */
 950void mmc_put_card(struct mmc_card *card)
 951{
 952	mmc_release_host(card->host);
 
 
 
 
 953	pm_runtime_mark_last_busy(&card->dev);
 954	pm_runtime_put_autosuspend(&card->dev);
 955}
 956EXPORT_SYMBOL(mmc_put_card);
 957
 958/*
 959 * Internal function that does the actual ios call to the host driver,
 960 * optionally printing some debug output.
 961 */
 962static inline void mmc_set_ios(struct mmc_host *host)
 963{
 964	struct mmc_ios *ios = &host->ios;
 965
 966	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 967		"width %u timing %u\n",
 968		 mmc_hostname(host), ios->clock, ios->bus_mode,
 969		 ios->power_mode, ios->chip_select, ios->vdd,
 970		 ios->bus_width, ios->timing);
 971
 972	if (ios->clock > 0)
 973		mmc_set_ungated(host);
 974	host->ops->set_ios(host, ios);
 975}
 976
 977/*
 978 * Control chip select pin on a host.
 979 */
 980void mmc_set_chip_select(struct mmc_host *host, int mode)
 981{
 982	mmc_host_clk_hold(host);
 983	host->ios.chip_select = mode;
 984	mmc_set_ios(host);
 985	mmc_host_clk_release(host);
 986}
 987
 988/*
 989 * Sets the host clock to the highest possible frequency that
 990 * is below "hz".
 991 */
 992static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 993{
 994	WARN_ON(hz < host->f_min);
 995
 996	if (hz > host->f_max)
 997		hz = host->f_max;
 998
 999	host->ios.clock = hz;
1000	mmc_set_ios(host);
1001}
1002
1003void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004{
1005	mmc_host_clk_hold(host);
1006	__mmc_set_clock(host, hz);
1007	mmc_host_clk_release(host);
1008}
1009
1010#ifdef CONFIG_MMC_CLKGATE
1011/*
1012 * This gates the clock by setting it to 0 Hz.
1013 */
1014void mmc_gate_clock(struct mmc_host *host)
1015{
1016	unsigned long flags;
1017
1018	spin_lock_irqsave(&host->clk_lock, flags);
1019	host->clk_old = host->ios.clock;
1020	host->ios.clock = 0;
1021	host->clk_gated = true;
1022	spin_unlock_irqrestore(&host->clk_lock, flags);
1023	mmc_set_ios(host);
1024}
1025
1026/*
1027 * This restores the clock from gating by using the cached
1028 * clock value.
1029 */
1030void mmc_ungate_clock(struct mmc_host *host)
1031{
1032	/*
1033	 * We should previously have gated the clock, so the clock shall
1034	 * be 0 here! The clock may however be 0 during initialization,
1035	 * when some request operations are performed before setting
1036	 * the frequency. When ungate is requested in that situation
1037	 * we just ignore the call.
1038	 */
1039	if (host->clk_old) {
1040		BUG_ON(host->ios.clock);
1041		/* This call will also set host->clk_gated to false */
1042		__mmc_set_clock(host, host->clk_old);
1043	}
1044}
1045
1046void mmc_set_ungated(struct mmc_host *host)
1047{
1048	unsigned long flags;
1049
1050	/*
1051	 * We've been given a new frequency while the clock is gated,
1052	 * so make sure we regard this as ungating it.
1053	 */
1054	spin_lock_irqsave(&host->clk_lock, flags);
1055	host->clk_gated = false;
1056	spin_unlock_irqrestore(&host->clk_lock, flags);
1057}
1058
1059#else
1060void mmc_set_ungated(struct mmc_host *host)
1061{
1062}
1063#endif
1064
1065/*
1066 * Change the bus mode (open drain/push-pull) of a host.
1067 */
1068void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069{
1070	mmc_host_clk_hold(host);
1071	host->ios.bus_mode = mode;
1072	mmc_set_ios(host);
1073	mmc_host_clk_release(host);
1074}
1075
1076/*
1077 * Change data bus width of a host.
1078 */
1079void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080{
1081	mmc_host_clk_hold(host);
1082	host->ios.bus_width = width;
1083	mmc_set_ios(host);
1084	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085}
1086
1087/**
1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089 * @vdd:	voltage (mV)
1090 * @low_bits:	prefer low bits in boundary cases
1091 *
1092 * This function returns the OCR bit number according to the provided @vdd
1093 * value. If conversion is not possible a negative errno value returned.
1094 *
1095 * Depending on the @low_bits flag the function prefers low or high OCR bits
1096 * on boundary voltages. For example,
1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099 *
1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101 */
1102static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103{
1104	const int max_bit = ilog2(MMC_VDD_35_36);
1105	int bit;
1106
1107	if (vdd < 1650 || vdd > 3600)
1108		return -EINVAL;
1109
1110	if (vdd >= 1650 && vdd <= 1950)
1111		return ilog2(MMC_VDD_165_195);
1112
1113	if (low_bits)
1114		vdd -= 1;
1115
1116	/* Base 2000 mV, step 100 mV, bit's base 8. */
1117	bit = (vdd - 2000) / 100 + 8;
1118	if (bit > max_bit)
1119		return max_bit;
1120	return bit;
1121}
1122
1123/**
1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125 * @vdd_min:	minimum voltage value (mV)
1126 * @vdd_max:	maximum voltage value (mV)
1127 *
1128 * This function returns the OCR mask bits according to the provided @vdd_min
1129 * and @vdd_max values. If conversion is not possible the function returns 0.
1130 *
1131 * Notes wrt boundary cases:
1132 * This function sets the OCR bits for all boundary voltages, for example
1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134 * MMC_VDD_34_35 mask.
1135 */
1136u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137{
1138	u32 mask = 0;
1139
1140	if (vdd_max < vdd_min)
1141		return 0;
1142
1143	/* Prefer high bits for the boundary vdd_max values. */
1144	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145	if (vdd_max < 0)
1146		return 0;
1147
1148	/* Prefer low bits for the boundary vdd_min values. */
1149	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150	if (vdd_min < 0)
1151		return 0;
1152
1153	/* Fill the mask, from max bit to min bit. */
1154	while (vdd_max >= vdd_min)
1155		mask |= 1 << vdd_max--;
1156
1157	return mask;
1158}
1159EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160
1161#ifdef CONFIG_OF
1162
1163/**
1164 * mmc_of_parse_voltage - return mask of supported voltages
1165 * @np: The device node need to be parsed.
1166 * @mask: mask of voltages available for MMC/SD/SDIO
1167 *
1168 * 1. Return zero on success.
1169 * 2. Return negative errno: voltage-range is invalid.
 
1170 */
1171int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172{
1173	const u32 *voltage_ranges;
1174	int num_ranges, i;
1175
1176	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178	if (!voltage_ranges || !num_ranges) {
1179		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
 
 
 
 
1180		return -EINVAL;
1181	}
1182
1183	for (i = 0; i < num_ranges; i++) {
1184		const int j = i * 2;
1185		u32 ocr_mask;
1186
1187		ocr_mask = mmc_vddrange_to_ocrmask(
1188				be32_to_cpu(voltage_ranges[j]),
1189				be32_to_cpu(voltage_ranges[j + 1]));
1190		if (!ocr_mask) {
1191			pr_err("%s: voltage-range #%d is invalid\n",
1192				np->full_name, i);
1193			return -EINVAL;
1194		}
1195		*mask |= ocr_mask;
1196	}
1197
1198	return 0;
1199}
1200EXPORT_SYMBOL(mmc_of_parse_voltage);
1201
1202#endif /* CONFIG_OF */
1203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204#ifdef CONFIG_REGULATOR
1205
1206/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207 * mmc_regulator_get_ocrmask - return mask of supported voltages
1208 * @supply: regulator to use
1209 *
1210 * This returns either a negative errno, or a mask of voltages that
1211 * can be provided to MMC/SD/SDIO devices using the specified voltage
1212 * regulator.  This would normally be called before registering the
1213 * MMC host adapter.
1214 */
1215int mmc_regulator_get_ocrmask(struct regulator *supply)
1216{
1217	int			result = 0;
1218	int			count;
1219	int			i;
 
 
1220
1221	count = regulator_count_voltages(supply);
1222	if (count < 0)
1223		return count;
1224
1225	for (i = 0; i < count; i++) {
1226		int		vdd_uV;
1227		int		vdd_mV;
1228
1229		vdd_uV = regulator_list_voltage(supply, i);
1230		if (vdd_uV <= 0)
1231			continue;
1232
1233		vdd_mV = vdd_uV / 1000;
1234		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1235	}
1236
 
 
 
 
 
 
 
 
 
1237	return result;
1238}
1239EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240
1241/**
1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243 * @mmc: the host to regulate
1244 * @supply: regulator to use
1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246 *
1247 * Returns zero on success, else negative errno.
1248 *
1249 * MMC host drivers may use this to enable or disable a regulator using
1250 * a particular supply voltage.  This would normally be called from the
1251 * set_ios() method.
1252 */
1253int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254			struct regulator *supply,
1255			unsigned short vdd_bit)
1256{
1257	int			result = 0;
1258	int			min_uV, max_uV;
1259
1260	if (vdd_bit) {
1261		int		tmp;
1262		int		voltage;
1263
1264		/*
1265		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266		 * bits this regulator doesn't quite support ... don't
1267		 * be too picky, most cards and regulators are OK with
1268		 * a 0.1V range goof (it's a small error percentage).
1269		 */
1270		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271		if (tmp == 0) {
1272			min_uV = 1650 * 1000;
1273			max_uV = 1950 * 1000;
1274		} else {
1275			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276			max_uV = min_uV + 100 * 1000;
1277		}
1278
1279		/*
1280		 * If we're using a fixed/static regulator, don't call
1281		 * regulator_set_voltage; it would fail.
1282		 */
1283		voltage = regulator_get_voltage(supply);
1284
1285		if (!regulator_can_change_voltage(supply))
1286			min_uV = max_uV = voltage;
1287
1288		if (voltage < 0)
1289			result = voltage;
1290		else if (voltage < min_uV || voltage > max_uV)
1291			result = regulator_set_voltage(supply, min_uV, max_uV);
1292		else
1293			result = 0;
1294
 
1295		if (result == 0 && !mmc->regulator_enabled) {
1296			result = regulator_enable(supply);
1297			if (!result)
1298				mmc->regulator_enabled = true;
1299		}
1300	} else if (mmc->regulator_enabled) {
1301		result = regulator_disable(supply);
1302		if (result == 0)
1303			mmc->regulator_enabled = false;
1304	}
1305
1306	if (result)
1307		dev_err(mmc_dev(mmc),
1308			"could not set regulator OCR (%d)\n", result);
1309	return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313int mmc_regulator_get_supply(struct mmc_host *mmc)
1314{
1315	struct device *dev = mmc_dev(mmc);
1316	struct regulator *supply;
1317	int ret;
1318
1319	supply = devm_regulator_get(dev, "vmmc");
1320	mmc->supply.vmmc = supply;
1321	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322
1323	if (IS_ERR(supply))
1324		return PTR_ERR(supply);
 
 
 
 
 
 
 
 
 
1325
1326	ret = mmc_regulator_get_ocrmask(supply);
1327	if (ret > 0)
1328		mmc->ocr_avail = ret;
1329	else
1330		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331
1332	return 0;
1333}
1334EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335
1336#endif /* CONFIG_REGULATOR */
1337
1338/*
1339 * Mask off any voltages we don't support and select
1340 * the lowest voltage
1341 */
1342u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343{
1344	int bit;
1345
1346	/*
1347	 * Sanity check the voltages that the card claims to
1348	 * support.
1349	 */
1350	if (ocr & 0x7F) {
1351		dev_warn(mmc_dev(host),
1352		"card claims to support voltages below defined range\n");
1353		ocr &= ~0x7F;
1354	}
1355
1356	ocr &= host->ocr_avail;
1357	if (!ocr) {
1358		dev_warn(mmc_dev(host), "no support for card's volts\n");
1359		return 0;
1360	}
1361
1362	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363		bit = ffs(ocr) - 1;
1364		ocr &= 3 << bit;
1365		mmc_power_cycle(host, ocr);
1366	} else {
1367		bit = fls(ocr) - 1;
1368		ocr &= 3 << bit;
1369		if (bit != host->ios.vdd)
1370			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371	}
1372
1373	return ocr;
1374}
1375
1376int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377{
1378	int err = 0;
1379	int old_signal_voltage = host->ios.signal_voltage;
1380
1381	host->ios.signal_voltage = signal_voltage;
1382	if (host->ops->start_signal_voltage_switch) {
1383		mmc_host_clk_hold(host);
1384		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1385		mmc_host_clk_release(host);
1386	}
1387
1388	if (err)
1389		host->ios.signal_voltage = old_signal_voltage;
1390
1391	return err;
1392
1393}
1394
1395int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1396{
1397	struct mmc_command cmd = {0};
1398	int err = 0;
1399	u32 clock;
1400
1401	BUG_ON(!host);
1402
1403	/*
1404	 * Send CMD11 only if the request is to switch the card to
1405	 * 1.8V signalling.
1406	 */
1407	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408		return __mmc_set_signal_voltage(host, signal_voltage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
1410	/*
1411	 * If we cannot switch voltages, return failure so the caller
1412	 * can continue without UHS mode
1413	 */
1414	if (!host->ops->start_signal_voltage_switch)
1415		return -EPERM;
1416	if (!host->ops->card_busy)
1417		pr_warning("%s: cannot verify signal voltage switch\n",
1418				mmc_hostname(host));
1419
1420	cmd.opcode = SD_SWITCH_VOLTAGE;
1421	cmd.arg = 0;
1422	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423
1424	err = mmc_wait_for_cmd(host, &cmd, 0);
1425	if (err)
1426		return err;
1427
1428	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429		return -EIO;
1430
1431	mmc_host_clk_hold(host);
1432	/*
1433	 * The card should drive cmd and dat[0:3] low immediately
1434	 * after the response of cmd11, but wait 1 ms to be sure
1435	 */
1436	mmc_delay(1);
1437	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438		err = -EAGAIN;
1439		goto power_cycle;
1440	}
1441	/*
1442	 * During a signal voltage level switch, the clock must be gated
1443	 * for 5 ms according to the SD spec
1444	 */
1445	clock = host->ios.clock;
1446	host->ios.clock = 0;
1447	mmc_set_ios(host);
1448
1449	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450		/*
1451		 * Voltages may not have been switched, but we've already
1452		 * sent CMD11, so a power cycle is required anyway
1453		 */
1454		err = -EAGAIN;
1455		goto power_cycle;
1456	}
1457
1458	/* Keep clock gated for at least 5 ms */
1459	mmc_delay(5);
1460	host->ios.clock = clock;
1461	mmc_set_ios(host);
1462
1463	/* Wait for at least 1 ms according to spec */
1464	mmc_delay(1);
1465
1466	/*
1467	 * Failure to switch is indicated by the card holding
1468	 * dat[0:3] low
1469	 */
1470	if (host->ops->card_busy && host->ops->card_busy(host))
1471		err = -EAGAIN;
1472
1473power_cycle:
1474	if (err) {
1475		pr_debug("%s: Signal voltage switch failed, "
1476			"power cycling card\n", mmc_hostname(host));
1477		mmc_power_cycle(host, ocr);
1478	}
1479
1480	mmc_host_clk_release(host);
1481
1482	return err;
1483}
1484
1485/*
1486 * Select timing parameters for host.
1487 */
1488void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489{
1490	mmc_host_clk_hold(host);
1491	host->ios.timing = timing;
1492	mmc_set_ios(host);
1493	mmc_host_clk_release(host);
1494}
1495
1496/*
1497 * Select appropriate driver type for host.
1498 */
1499void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500{
1501	mmc_host_clk_hold(host);
1502	host->ios.drv_type = drv_type;
1503	mmc_set_ios(host);
1504	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505}
1506
1507/*
1508 * Apply power to the MMC stack.  This is a two-stage process.
1509 * First, we enable power to the card without the clock running.
1510 * We then wait a bit for the power to stabilise.  Finally,
1511 * enable the bus drivers and clock to the card.
1512 *
1513 * We must _NOT_ enable the clock prior to power stablising.
1514 *
1515 * If a host does all the power sequencing itself, ignore the
1516 * initial MMC_POWER_UP stage.
1517 */
1518void mmc_power_up(struct mmc_host *host, u32 ocr)
1519{
1520	if (host->ios.power_mode == MMC_POWER_ON)
1521		return;
1522
1523	mmc_host_clk_hold(host);
1524
1525	host->ios.vdd = fls(ocr) - 1;
1526	if (mmc_host_is_spi(host))
1527		host->ios.chip_select = MMC_CS_HIGH;
1528	else
1529		host->ios.chip_select = MMC_CS_DONTCARE;
1530	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1531	host->ios.power_mode = MMC_POWER_UP;
1532	host->ios.bus_width = MMC_BUS_WIDTH_1;
1533	host->ios.timing = MMC_TIMING_LEGACY;
1534	mmc_set_ios(host);
1535
1536	/* Set signal voltage to 3.3V */
1537	__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
 
 
 
 
 
1538
1539	/*
1540	 * This delay should be sufficient to allow the power supply
1541	 * to reach the minimum voltage.
1542	 */
1543	mmc_delay(10);
1544
 
 
1545	host->ios.clock = host->f_init;
1546
1547	host->ios.power_mode = MMC_POWER_ON;
1548	mmc_set_ios(host);
1549
1550	/*
1551	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552	 * time required to reach a stable voltage.
1553	 */
1554	mmc_delay(10);
1555
1556	mmc_host_clk_release(host);
1557}
1558
1559void mmc_power_off(struct mmc_host *host)
1560{
1561	if (host->ios.power_mode == MMC_POWER_OFF)
1562		return;
1563
1564	mmc_host_clk_hold(host);
1565
1566	host->ios.clock = 0;
1567	host->ios.vdd = 0;
1568
1569	if (!mmc_host_is_spi(host)) {
1570		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571		host->ios.chip_select = MMC_CS_DONTCARE;
1572	}
1573	host->ios.power_mode = MMC_POWER_OFF;
1574	host->ios.bus_width = MMC_BUS_WIDTH_1;
1575	host->ios.timing = MMC_TIMING_LEGACY;
1576	mmc_set_ios(host);
1577
1578	/*
1579	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580	 * XO-1.5, require a short delay after poweroff before the card
1581	 * can be successfully turned on again.
1582	 */
1583	mmc_delay(1);
1584
1585	mmc_host_clk_release(host);
1586}
1587
1588void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589{
1590	mmc_power_off(host);
1591	/* Wait at least 1 ms according to SD spec */
1592	mmc_delay(1);
1593	mmc_power_up(host, ocr);
1594}
1595
1596/*
1597 * Cleanup when the last reference to the bus operator is dropped.
1598 */
1599static void __mmc_release_bus(struct mmc_host *host)
1600{
1601	BUG_ON(!host);
1602	BUG_ON(host->bus_refs);
1603	BUG_ON(!host->bus_dead);
1604
1605	host->bus_ops = NULL;
1606}
1607
1608/*
1609 * Increase reference count of bus operator
1610 */
1611static inline void mmc_bus_get(struct mmc_host *host)
1612{
1613	unsigned long flags;
1614
1615	spin_lock_irqsave(&host->lock, flags);
1616	host->bus_refs++;
1617	spin_unlock_irqrestore(&host->lock, flags);
1618}
1619
1620/*
1621 * Decrease reference count of bus operator and free it if
1622 * it is the last reference.
1623 */
1624static inline void mmc_bus_put(struct mmc_host *host)
1625{
1626	unsigned long flags;
1627
1628	spin_lock_irqsave(&host->lock, flags);
1629	host->bus_refs--;
1630	if ((host->bus_refs == 0) && host->bus_ops)
1631		__mmc_release_bus(host);
1632	spin_unlock_irqrestore(&host->lock, flags);
1633}
1634
1635/*
1636 * Assign a mmc bus handler to a host. Only one bus handler may control a
1637 * host at any given time.
1638 */
1639void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640{
1641	unsigned long flags;
1642
1643	BUG_ON(!host);
1644	BUG_ON(!ops);
1645
1646	WARN_ON(!host->claimed);
1647
1648	spin_lock_irqsave(&host->lock, flags);
1649
1650	BUG_ON(host->bus_ops);
1651	BUG_ON(host->bus_refs);
1652
1653	host->bus_ops = ops;
1654	host->bus_refs = 1;
1655	host->bus_dead = 0;
1656
1657	spin_unlock_irqrestore(&host->lock, flags);
1658}
1659
1660/*
1661 * Remove the current bus handler from a host.
1662 */
1663void mmc_detach_bus(struct mmc_host *host)
1664{
1665	unsigned long flags;
1666
1667	BUG_ON(!host);
1668
1669	WARN_ON(!host->claimed);
1670	WARN_ON(!host->bus_ops);
1671
1672	spin_lock_irqsave(&host->lock, flags);
1673
1674	host->bus_dead = 1;
1675
1676	spin_unlock_irqrestore(&host->lock, flags);
1677
1678	mmc_bus_put(host);
1679}
1680
1681static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682				bool cd_irq)
1683{
1684#ifdef CONFIG_MMC_DEBUG
1685	unsigned long flags;
1686	spin_lock_irqsave(&host->lock, flags);
1687	WARN_ON(host->removed);
1688	spin_unlock_irqrestore(&host->lock, flags);
1689#endif
1690
1691	/*
1692	 * If the device is configured as wakeup, we prevent a new sleep for
1693	 * 5 s to give provision for user space to consume the event.
1694	 */
1695	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696		device_can_wakeup(mmc_dev(host)))
1697		pm_wakeup_event(mmc_dev(host), 5000);
1698
1699	host->detect_change = 1;
1700	mmc_schedule_delayed_work(&host->detect, delay);
1701}
1702
1703/**
1704 *	mmc_detect_change - process change of state on a MMC socket
1705 *	@host: host which changed state.
1706 *	@delay: optional delay to wait before detection (jiffies)
1707 *
1708 *	MMC drivers should call this when they detect a card has been
1709 *	inserted or removed. The MMC layer will confirm that any
1710 *	present card is still functional, and initialize any newly
1711 *	inserted.
1712 */
1713void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714{
1715	_mmc_detect_change(host, delay, true);
1716}
1717EXPORT_SYMBOL(mmc_detect_change);
1718
1719void mmc_init_erase(struct mmc_card *card)
1720{
1721	unsigned int sz;
1722
1723	if (is_power_of_2(card->erase_size))
1724		card->erase_shift = ffs(card->erase_size) - 1;
1725	else
1726		card->erase_shift = 0;
1727
1728	/*
1729	 * It is possible to erase an arbitrarily large area of an SD or MMC
1730	 * card.  That is not desirable because it can take a long time
1731	 * (minutes) potentially delaying more important I/O, and also the
1732	 * timeout calculations become increasingly hugely over-estimated.
1733	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734	 * to that size and alignment.
1735	 *
1736	 * For SD cards that define Allocation Unit size, limit erases to one
1737	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1738	 * Erase Size, whether it is switched on or not, limit to that size.
1739	 * Otherwise just have a stab at a good value.  For modern cards it
1740	 * will end up being 4MiB.  Note that if the value is too small, it
1741	 * can end up taking longer to erase.
1742	 */
1743	if (mmc_card_sd(card) && card->ssr.au) {
1744		card->pref_erase = card->ssr.au;
1745		card->erase_shift = ffs(card->ssr.au) - 1;
1746	} else if (card->ext_csd.hc_erase_size) {
1747		card->pref_erase = card->ext_csd.hc_erase_size;
1748	} else {
1749		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750		if (sz < 128)
1751			card->pref_erase = 512 * 1024 / 512;
1752		else if (sz < 512)
1753			card->pref_erase = 1024 * 1024 / 512;
1754		else if (sz < 1024)
1755			card->pref_erase = 2 * 1024 * 1024 / 512;
1756		else
1757			card->pref_erase = 4 * 1024 * 1024 / 512;
1758		if (card->pref_erase < card->erase_size)
1759			card->pref_erase = card->erase_size;
1760		else {
1761			sz = card->pref_erase % card->erase_size;
1762			if (sz)
1763				card->pref_erase += card->erase_size - sz;
1764		}
1765	}
 
1766}
1767
1768static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769				          unsigned int arg, unsigned int qty)
1770{
1771	unsigned int erase_timeout;
1772
1773	if (arg == MMC_DISCARD_ARG ||
1774	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775		erase_timeout = card->ext_csd.trim_timeout;
1776	} else if (card->ext_csd.erase_group_def & 1) {
1777		/* High Capacity Erase Group Size uses HC timeouts */
1778		if (arg == MMC_TRIM_ARG)
1779			erase_timeout = card->ext_csd.trim_timeout;
1780		else
1781			erase_timeout = card->ext_csd.hc_erase_timeout;
1782	} else {
1783		/* CSD Erase Group Size uses write timeout */
1784		unsigned int mult = (10 << card->csd.r2w_factor);
1785		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786		unsigned int timeout_us;
1787
1788		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789		if (card->csd.tacc_ns < 1000000)
1790			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791		else
1792			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793
1794		/*
1795		 * ios.clock is only a target.  The real clock rate might be
1796		 * less but not that much less, so fudge it by multiplying by 2.
1797		 */
1798		timeout_clks <<= 1;
1799		timeout_us += (timeout_clks * 1000) /
1800			      (mmc_host_clk_rate(card->host) / 1000);
1801
1802		erase_timeout = timeout_us / 1000;
1803
1804		/*
1805		 * Theoretically, the calculation could underflow so round up
1806		 * to 1ms in that case.
1807		 */
1808		if (!erase_timeout)
1809			erase_timeout = 1;
1810	}
1811
1812	/* Multiplier for secure operations */
1813	if (arg & MMC_SECURE_ARGS) {
1814		if (arg == MMC_SECURE_ERASE_ARG)
1815			erase_timeout *= card->ext_csd.sec_erase_mult;
1816		else
1817			erase_timeout *= card->ext_csd.sec_trim_mult;
1818	}
1819
1820	erase_timeout *= qty;
1821
1822	/*
1823	 * Ensure at least a 1 second timeout for SPI as per
1824	 * 'mmc_set_data_timeout()'
1825	 */
1826	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827		erase_timeout = 1000;
1828
1829	return erase_timeout;
1830}
1831
1832static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833					 unsigned int arg,
1834					 unsigned int qty)
1835{
1836	unsigned int erase_timeout;
1837
1838	if (card->ssr.erase_timeout) {
1839		/* Erase timeout specified in SD Status Register (SSR) */
1840		erase_timeout = card->ssr.erase_timeout * qty +
1841				card->ssr.erase_offset;
1842	} else {
1843		/*
1844		 * Erase timeout not specified in SD Status Register (SSR) so
1845		 * use 250ms per write block.
1846		 */
1847		erase_timeout = 250 * qty;
1848	}
1849
1850	/* Must not be less than 1 second */
1851	if (erase_timeout < 1000)
1852		erase_timeout = 1000;
1853
1854	return erase_timeout;
1855}
1856
1857static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858				      unsigned int arg,
1859				      unsigned int qty)
1860{
1861	if (mmc_card_sd(card))
1862		return mmc_sd_erase_timeout(card, arg, qty);
1863	else
1864		return mmc_mmc_erase_timeout(card, arg, qty);
1865}
1866
1867static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868			unsigned int to, unsigned int arg)
1869{
1870	struct mmc_command cmd = {0};
1871	unsigned int qty = 0;
 
1872	unsigned long timeout;
1873	int err;
1874
 
 
1875	/*
1876	 * qty is used to calculate the erase timeout which depends on how many
1877	 * erase groups (or allocation units in SD terminology) are affected.
1878	 * We count erasing part of an erase group as one erase group.
1879	 * For SD, the allocation units are always a power of 2.  For MMC, the
1880	 * erase group size is almost certainly also power of 2, but it does not
1881	 * seem to insist on that in the JEDEC standard, so we fall back to
1882	 * division in that case.  SD may not specify an allocation unit size,
1883	 * in which case the timeout is based on the number of write blocks.
1884	 *
1885	 * Note that the timeout for secure trim 2 will only be correct if the
1886	 * number of erase groups specified is the same as the total of all
1887	 * preceding secure trim 1 commands.  Since the power may have been
1888	 * lost since the secure trim 1 commands occurred, it is generally
1889	 * impossible to calculate the secure trim 2 timeout correctly.
1890	 */
1891	if (card->erase_shift)
1892		qty += ((to >> card->erase_shift) -
1893			(from >> card->erase_shift)) + 1;
1894	else if (mmc_card_sd(card))
1895		qty += to - from + 1;
1896	else
1897		qty += ((to / card->erase_size) -
1898			(from / card->erase_size)) + 1;
1899
1900	if (!mmc_card_blockaddr(card)) {
1901		from <<= 9;
1902		to <<= 9;
1903	}
1904
1905	if (mmc_card_sd(card))
1906		cmd.opcode = SD_ERASE_WR_BLK_START;
1907	else
1908		cmd.opcode = MMC_ERASE_GROUP_START;
1909	cmd.arg = from;
1910	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912	if (err) {
1913		pr_err("mmc_erase: group start error %d, "
1914		       "status %#x\n", err, cmd.resp[0]);
1915		err = -EIO;
1916		goto out;
1917	}
1918
1919	memset(&cmd, 0, sizeof(struct mmc_command));
1920	if (mmc_card_sd(card))
1921		cmd.opcode = SD_ERASE_WR_BLK_END;
1922	else
1923		cmd.opcode = MMC_ERASE_GROUP_END;
1924	cmd.arg = to;
1925	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927	if (err) {
1928		pr_err("mmc_erase: group end error %d, status %#x\n",
1929		       err, cmd.resp[0]);
1930		err = -EIO;
1931		goto out;
1932	}
1933
1934	memset(&cmd, 0, sizeof(struct mmc_command));
1935	cmd.opcode = MMC_ERASE;
1936	cmd.arg = arg;
1937	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940	if (err) {
1941		pr_err("mmc_erase: erase error %d, status %#x\n",
1942		       err, cmd.resp[0]);
1943		err = -EIO;
1944		goto out;
1945	}
1946
1947	if (mmc_host_is_spi(card->host))
1948		goto out;
1949
1950	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
 
 
 
 
 
 
 
1951	do {
1952		memset(&cmd, 0, sizeof(struct mmc_command));
1953		cmd.opcode = MMC_SEND_STATUS;
1954		cmd.arg = card->rca << 16;
1955		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956		/* Do not retry else we can't see errors */
1957		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958		if (err || (cmd.resp[0] & 0xFDF92000)) {
1959			pr_err("error %d requesting status %#x\n",
1960				err, cmd.resp[0]);
1961			err = -EIO;
1962			goto out;
1963		}
1964
1965		/* Timeout if the device never becomes ready for data and
1966		 * never leaves the program state.
1967		 */
1968		if (time_after(jiffies, timeout)) {
1969			pr_err("%s: Card stuck in programming state! %s\n",
1970				mmc_hostname(card->host), __func__);
1971			err =  -EIO;
1972			goto out;
1973		}
1974
1975	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977out:
 
1978	return err;
1979}
1980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981/**
1982 * mmc_erase - erase sectors.
1983 * @card: card to erase
1984 * @from: first sector to erase
1985 * @nr: number of sectors to erase
1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987 *
1988 * Caller must claim host before calling this function.
1989 */
1990int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991	      unsigned int arg)
1992{
1993	unsigned int rem, to = from + nr;
 
1994
1995	if (!(card->host->caps & MMC_CAP_ERASE) ||
1996	    !(card->csd.cmdclass & CCC_ERASE))
1997		return -EOPNOTSUPP;
1998
1999	if (!card->erase_size)
2000		return -EOPNOTSUPP;
2001
2002	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003		return -EOPNOTSUPP;
2004
2005	if ((arg & MMC_SECURE_ARGS) &&
2006	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007		return -EOPNOTSUPP;
2008
2009	if ((arg & MMC_TRIM_ARGS) &&
2010	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011		return -EOPNOTSUPP;
2012
2013	if (arg == MMC_SECURE_ERASE_ARG) {
2014		if (from % card->erase_size || nr % card->erase_size)
2015			return -EINVAL;
2016	}
2017
2018	if (arg == MMC_ERASE_ARG) {
2019		rem = from % card->erase_size;
2020		if (rem) {
2021			rem = card->erase_size - rem;
2022			from += rem;
2023			if (nr > rem)
2024				nr -= rem;
2025			else
2026				return 0;
2027		}
2028		rem = nr % card->erase_size;
2029		if (rem)
2030			nr -= rem;
2031	}
2032
2033	if (nr == 0)
2034		return 0;
2035
2036	to = from + nr;
2037
2038	if (to <= from)
2039		return -EINVAL;
2040
2041	/* 'from' and 'to' are inclusive */
2042	to -= 1;
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044	return mmc_do_erase(card, from, to, arg);
2045}
2046EXPORT_SYMBOL(mmc_erase);
2047
2048int mmc_can_erase(struct mmc_card *card)
2049{
2050	if ((card->host->caps & MMC_CAP_ERASE) &&
2051	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052		return 1;
2053	return 0;
2054}
2055EXPORT_SYMBOL(mmc_can_erase);
2056
2057int mmc_can_trim(struct mmc_card *card)
2058{
2059	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
 
2060		return 1;
2061	return 0;
2062}
2063EXPORT_SYMBOL(mmc_can_trim);
2064
2065int mmc_can_discard(struct mmc_card *card)
2066{
2067	/*
2068	 * As there's no way to detect the discard support bit at v4.5
2069	 * use the s/w feature support filed.
2070	 */
2071	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072		return 1;
2073	return 0;
2074}
2075EXPORT_SYMBOL(mmc_can_discard);
2076
2077int mmc_can_sanitize(struct mmc_card *card)
2078{
2079	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080		return 0;
2081	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082		return 1;
2083	return 0;
2084}
2085EXPORT_SYMBOL(mmc_can_sanitize);
2086
2087int mmc_can_secure_erase_trim(struct mmc_card *card)
2088{
2089	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
 
2090		return 1;
2091	return 0;
2092}
2093EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094
2095int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096			    unsigned int nr)
2097{
2098	if (!card->erase_size)
2099		return 0;
2100	if (from % card->erase_size || nr % card->erase_size)
2101		return 0;
2102	return 1;
2103}
2104EXPORT_SYMBOL(mmc_erase_group_aligned);
2105
2106static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107					    unsigned int arg)
2108{
2109	struct mmc_host *host = card->host;
2110	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111	unsigned int last_timeout = 0;
 
 
2112
2113	if (card->erase_shift)
2114		max_qty = UINT_MAX >> card->erase_shift;
2115	else if (mmc_card_sd(card))
 
2116		max_qty = UINT_MAX;
2117	else
 
2118		max_qty = UINT_MAX / card->erase_size;
 
 
2119
2120	/* Find the largest qty with an OK timeout */
 
 
 
 
 
 
 
 
 
 
 
 
2121	do {
2122		y = 0;
2123		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124			timeout = mmc_erase_timeout(card, arg, qty + x);
2125			if (timeout > host->max_busy_timeout)
 
2126				break;
 
2127			if (timeout < last_timeout)
2128				break;
2129			last_timeout = timeout;
2130			y = x;
2131		}
2132		qty += y;
2133	} while (y);
2134
2135	if (!qty)
2136		return 0;
2137
 
 
 
 
 
 
 
 
 
 
2138	if (qty == 1)
2139		return 1;
 
 
2140
2141	/* Convert qty to sectors */
2142	if (card->erase_shift)
2143		max_discard = --qty << card->erase_shift;
2144	else if (mmc_card_sd(card))
2145		max_discard = qty;
2146	else
2147		max_discard = --qty * card->erase_size;
2148
2149	return max_discard;
2150}
2151
2152unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153{
2154	struct mmc_host *host = card->host;
2155	unsigned int max_discard, max_trim;
2156
2157	if (!host->max_busy_timeout)
2158		return UINT_MAX;
2159
2160	/*
2161	 * Without erase_group_def set, MMC erase timeout depends on clock
2162	 * frequence which can change.  In that case, the best choice is
2163	 * just the preferred erase size.
2164	 */
2165	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166		return card->pref_erase;
2167
2168	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169	if (mmc_can_trim(card)) {
2170		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171		if (max_trim < max_discard)
2172			max_discard = max_trim;
2173	} else if (max_discard < card->erase_size) {
2174		max_discard = 0;
2175	}
2176	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177		 mmc_hostname(host), max_discard, host->max_busy_timeout);
 
2178	return max_discard;
2179}
2180EXPORT_SYMBOL(mmc_calc_max_discard);
2181
 
 
 
 
 
 
2182int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183{
2184	struct mmc_command cmd = {0};
2185
2186	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
 
2187		return 0;
2188
2189	cmd.opcode = MMC_SET_BLOCKLEN;
2190	cmd.arg = blocklen;
2191	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192	return mmc_wait_for_cmd(card->host, &cmd, 5);
2193}
2194EXPORT_SYMBOL(mmc_set_blocklen);
2195
2196int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197			bool is_rel_write)
2198{
2199	struct mmc_command cmd = {0};
2200
2201	cmd.opcode = MMC_SET_BLOCK_COUNT;
2202	cmd.arg = blockcount & 0x0000FFFF;
2203	if (is_rel_write)
2204		cmd.arg |= 1 << 31;
2205	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206	return mmc_wait_for_cmd(card->host, &cmd, 5);
2207}
2208EXPORT_SYMBOL(mmc_set_blockcount);
2209
2210static void mmc_hw_reset_for_init(struct mmc_host *host)
2211{
 
 
2212	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2213		return;
2214	mmc_host_clk_hold(host);
2215	host->ops->hw_reset(host);
2216	mmc_host_clk_release(host);
2217}
2218
2219int mmc_can_reset(struct mmc_card *card)
2220{
2221	u8 rst_n_function;
2222
2223	if (!mmc_card_mmc(card))
2224		return 0;
2225	rst_n_function = card->ext_csd.rst_n_function;
2226	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227		return 0;
2228	return 1;
2229}
2230EXPORT_SYMBOL(mmc_can_reset);
2231
2232static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233{
2234	struct mmc_card *card = host->card;
2235
2236	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237		return -EOPNOTSUPP;
2238
2239	if (!card)
2240		return -EINVAL;
2241
2242	if (!mmc_can_reset(card))
 
 
2243		return -EOPNOTSUPP;
2244
2245	mmc_host_clk_hold(host);
2246	mmc_set_clock(host, host->f_init);
2247
2248	host->ops->hw_reset(host);
2249
2250	/* If the reset has happened, then a status command will fail */
2251	if (check) {
2252		struct mmc_command cmd = {0};
2253		int err;
2254
2255		cmd.opcode = MMC_SEND_STATUS;
2256		if (!mmc_host_is_spi(card->host))
2257			cmd.arg = card->rca << 16;
2258		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260		if (!err) {
2261			mmc_host_clk_release(host);
2262			return -ENOSYS;
2263		}
2264	}
2265
2266	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267	if (mmc_host_is_spi(host)) {
2268		host->ios.chip_select = MMC_CS_HIGH;
2269		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270	} else {
2271		host->ios.chip_select = MMC_CS_DONTCARE;
2272		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273	}
2274	host->ios.bus_width = MMC_BUS_WIDTH_1;
2275	host->ios.timing = MMC_TIMING_LEGACY;
2276	mmc_set_ios(host);
2277
2278	mmc_host_clk_release(host);
 
2279
2280	return host->bus_ops->power_restore(host);
2281}
 
2282
2283int mmc_hw_reset(struct mmc_host *host)
2284{
2285	return mmc_do_hw_reset(host, 0);
2286}
2287EXPORT_SYMBOL(mmc_hw_reset);
2288
2289int mmc_hw_reset_check(struct mmc_host *host)
2290{
2291	return mmc_do_hw_reset(host, 1);
2292}
2293EXPORT_SYMBOL(mmc_hw_reset_check);
2294
2295static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296{
2297	host->f_init = freq;
2298
2299#ifdef CONFIG_MMC_DEBUG
2300	pr_info("%s: %s: trying to init card at %u Hz\n",
2301		mmc_hostname(host), __func__, host->f_init);
2302#endif
2303	mmc_power_up(host, host->ocr_avail);
2304
2305	/*
2306	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307	 * do a hardware reset if possible.
2308	 */
2309	mmc_hw_reset_for_init(host);
2310
2311	/*
2312	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2313	 * if the card is being re-initialized, just send it.  CMD52
2314	 * should be ignored by SD/eMMC cards.
 
2315	 */
2316	sdio_reset(host);
 
 
2317	mmc_go_idle(host);
2318
2319	mmc_send_if_cond(host, host->ocr_avail);
 
2320
2321	/* Order's important: probe SDIO, then SD, then MMC */
2322	if (!mmc_attach_sdio(host))
2323		return 0;
2324	if (!mmc_attach_sd(host))
2325		return 0;
2326	if (!mmc_attach_mmc(host))
2327		return 0;
 
 
 
 
 
2328
2329	mmc_power_off(host);
2330	return -EIO;
2331}
2332
2333int _mmc_detect_card_removed(struct mmc_host *host)
2334{
2335	int ret;
2336
2337	if (host->caps & MMC_CAP_NONREMOVABLE)
2338		return 0;
2339
2340	if (!host->card || mmc_card_removed(host->card))
2341		return 1;
2342
2343	ret = host->bus_ops->alive(host);
2344
2345	/*
2346	 * Card detect status and alive check may be out of sync if card is
2347	 * removed slowly, when card detect switch changes while card/slot
2348	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350	 * detect work 200ms later for this case.
2351	 */
2352	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353		mmc_detect_change(host, msecs_to_jiffies(200));
2354		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355	}
2356
2357	if (ret) {
2358		mmc_card_set_removed(host->card);
2359		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360	}
2361
2362	return ret;
2363}
2364
2365int mmc_detect_card_removed(struct mmc_host *host)
2366{
2367	struct mmc_card *card = host->card;
2368	int ret;
2369
2370	WARN_ON(!host->claimed);
2371
2372	if (!card)
2373		return 1;
2374
 
 
 
2375	ret = mmc_card_removed(card);
2376	/*
2377	 * The card will be considered unchanged unless we have been asked to
2378	 * detect a change or host requires polling to provide card detection.
2379	 */
2380	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2381		return ret;
2382
2383	host->detect_change = 0;
2384	if (!ret) {
2385		ret = _mmc_detect_card_removed(host);
2386		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387			/*
2388			 * Schedule a detect work as soon as possible to let a
2389			 * rescan handle the card removal.
2390			 */
2391			cancel_delayed_work(&host->detect);
2392			_mmc_detect_change(host, 0, false);
2393		}
2394	}
2395
2396	return ret;
2397}
2398EXPORT_SYMBOL(mmc_detect_card_removed);
2399
2400void mmc_rescan(struct work_struct *work)
2401{
2402	struct mmc_host *host =
2403		container_of(work, struct mmc_host, detect.work);
2404	int i;
2405
2406	if (host->rescan_disable)
2407		return;
2408
2409	/* If there is a non-removable card registered, only scan once */
2410	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411		return;
2412	host->rescan_entered = 1;
2413
 
 
 
 
 
 
 
2414	mmc_bus_get(host);
2415
2416	/*
2417	 * if there is a _removable_ card registered, check whether it is
2418	 * still present
2419	 */
2420	if (host->bus_ops && !host->bus_dead
2421	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2422		host->bus_ops->detect(host);
2423
2424	host->detect_change = 0;
2425
2426	/*
2427	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428	 * the card is no longer present.
2429	 */
2430	mmc_bus_put(host);
2431	mmc_bus_get(host);
2432
2433	/* if there still is a card present, stop here */
2434	if (host->bus_ops != NULL) {
2435		mmc_bus_put(host);
2436		goto out;
2437	}
2438
2439	/*
2440	 * Only we can add a new handler, so it's safe to
2441	 * release the lock here.
2442	 */
2443	mmc_bus_put(host);
2444
2445	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
 
2446			host->ops->get_cd(host) == 0) {
2447		mmc_claim_host(host);
2448		mmc_power_off(host);
2449		mmc_release_host(host);
2450		goto out;
2451	}
2452
2453	mmc_claim_host(host);
2454	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2456			break;
2457		if (freqs[i] <= host->f_min)
2458			break;
2459	}
2460	mmc_release_host(host);
2461
2462 out:
2463	if (host->caps & MMC_CAP_NEEDS_POLL)
2464		mmc_schedule_delayed_work(&host->detect, HZ);
2465}
2466
2467void mmc_start_host(struct mmc_host *host)
2468{
2469	host->f_init = max(freqs[0], host->f_min);
2470	host->rescan_disable = 0;
2471	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472		mmc_power_off(host);
2473	else
 
2474		mmc_power_up(host, host->ocr_avail);
 
 
 
2475	mmc_gpiod_request_cd_irq(host);
2476	_mmc_detect_change(host, 0, false);
2477}
2478
2479void mmc_stop_host(struct mmc_host *host)
2480{
2481#ifdef CONFIG_MMC_DEBUG
2482	unsigned long flags;
2483	spin_lock_irqsave(&host->lock, flags);
2484	host->removed = 1;
2485	spin_unlock_irqrestore(&host->lock, flags);
2486#endif
2487	if (host->slot.cd_irq >= 0)
2488		disable_irq(host->slot.cd_irq);
 
2489
2490	host->rescan_disable = 1;
2491	cancel_delayed_work_sync(&host->detect);
2492	mmc_flush_scheduled_work();
2493
2494	/* clear pm flags now and let card drivers set them as needed */
2495	host->pm_flags = 0;
2496
2497	mmc_bus_get(host);
2498	if (host->bus_ops && !host->bus_dead) {
2499		/* Calling bus_ops->remove() with a claimed host can deadlock */
2500		host->bus_ops->remove(host);
2501		mmc_claim_host(host);
2502		mmc_detach_bus(host);
2503		mmc_power_off(host);
2504		mmc_release_host(host);
2505		mmc_bus_put(host);
2506		return;
2507	}
2508	mmc_bus_put(host);
2509
2510	BUG_ON(host->card);
2511
2512	mmc_power_off(host);
 
2513}
2514
2515int mmc_power_save_host(struct mmc_host *host)
2516{
2517	int ret = 0;
2518
2519#ifdef CONFIG_MMC_DEBUG
2520	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521#endif
2522
2523	mmc_bus_get(host);
2524
2525	if (!host->bus_ops || host->bus_dead) {
2526		mmc_bus_put(host);
2527		return -EINVAL;
2528	}
2529
2530	if (host->bus_ops->power_save)
2531		ret = host->bus_ops->power_save(host);
2532
2533	mmc_bus_put(host);
2534
2535	mmc_power_off(host);
2536
2537	return ret;
2538}
2539EXPORT_SYMBOL(mmc_power_save_host);
2540
2541int mmc_power_restore_host(struct mmc_host *host)
2542{
2543	int ret;
2544
2545#ifdef CONFIG_MMC_DEBUG
2546	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547#endif
2548
2549	mmc_bus_get(host);
2550
2551	if (!host->bus_ops || host->bus_dead) {
2552		mmc_bus_put(host);
2553		return -EINVAL;
2554	}
2555
2556	mmc_power_up(host, host->card->ocr);
2557	ret = host->bus_ops->power_restore(host);
2558
2559	mmc_bus_put(host);
2560
2561	return ret;
2562}
2563EXPORT_SYMBOL(mmc_power_restore_host);
2564
2565/*
2566 * Flush the cache to the non-volatile storage.
2567 */
2568int mmc_flush_cache(struct mmc_card *card)
2569{
2570	int err = 0;
2571
2572	if (mmc_card_mmc(card) &&
2573			(card->ext_csd.cache_size > 0) &&
2574			(card->ext_csd.cache_ctrl & 1)) {
2575		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576				EXT_CSD_FLUSH_CACHE, 1, 0);
2577		if (err)
2578			pr_err("%s: cache flush error %d\n",
2579					mmc_hostname(card->host), err);
2580	}
2581
2582	return err;
2583}
2584EXPORT_SYMBOL(mmc_flush_cache);
2585
2586#ifdef CONFIG_PM
2587
2588/* Do the card removal on suspend if card is assumed removeable
2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590   to sync the card.
2591*/
2592int mmc_pm_notify(struct notifier_block *notify_block,
2593					unsigned long mode, void *unused)
2594{
2595	struct mmc_host *host = container_of(
2596		notify_block, struct mmc_host, pm_notify);
2597	unsigned long flags;
2598	int err = 0;
2599
2600	switch (mode) {
2601	case PM_HIBERNATION_PREPARE:
2602	case PM_SUSPEND_PREPARE:
 
2603		spin_lock_irqsave(&host->lock, flags);
2604		host->rescan_disable = 1;
2605		spin_unlock_irqrestore(&host->lock, flags);
2606		cancel_delayed_work_sync(&host->detect);
2607
2608		if (!host->bus_ops)
2609			break;
2610
2611		/* Validate prerequisites for suspend */
2612		if (host->bus_ops->pre_suspend)
2613			err = host->bus_ops->pre_suspend(host);
2614		if (!err)
2615			break;
2616
 
 
 
 
 
 
 
 
2617		/* Calling bus_ops->remove() with a claimed host can deadlock */
2618		host->bus_ops->remove(host);
2619		mmc_claim_host(host);
2620		mmc_detach_bus(host);
2621		mmc_power_off(host);
2622		mmc_release_host(host);
2623		host->pm_flags = 0;
2624		break;
2625
2626	case PM_POST_SUSPEND:
2627	case PM_POST_HIBERNATION:
2628	case PM_POST_RESTORE:
2629
2630		spin_lock_irqsave(&host->lock, flags);
2631		host->rescan_disable = 0;
2632		spin_unlock_irqrestore(&host->lock, flags);
2633		_mmc_detect_change(host, 0, false);
2634
2635	}
2636
2637	return 0;
2638}
2639#endif
2640
2641/**
2642 * mmc_init_context_info() - init synchronization context
2643 * @host: mmc host
2644 *
2645 * Init struct context_info needed to implement asynchronous
2646 * request mechanism, used by mmc core, host driver and mmc requests
2647 * supplier.
2648 */
2649void mmc_init_context_info(struct mmc_host *host)
2650{
2651	spin_lock_init(&host->context_info.lock);
2652	host->context_info.is_new_req = false;
2653	host->context_info.is_done_rcv = false;
2654	host->context_info.is_waiting_last_req = false;
2655	init_waitqueue_head(&host->context_info.wait);
2656}
 
2657
2658static int __init mmc_init(void)
2659{
2660	int ret;
2661
2662	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663	if (!workqueue)
2664		return -ENOMEM;
2665
2666	ret = mmc_register_bus();
2667	if (ret)
2668		goto destroy_workqueue;
2669
2670	ret = mmc_register_host_class();
2671	if (ret)
2672		goto unregister_bus;
2673
2674	ret = sdio_register_bus();
2675	if (ret)
2676		goto unregister_host_class;
2677
2678	return 0;
2679
2680unregister_host_class:
2681	mmc_unregister_host_class();
2682unregister_bus:
2683	mmc_unregister_bus();
2684destroy_workqueue:
2685	destroy_workqueue(workqueue);
2686
2687	return ret;
2688}
2689
2690static void __exit mmc_exit(void)
2691{
2692	sdio_unregister_bus();
2693	mmc_unregister_host_class();
2694	mmc_unregister_bus();
2695	destroy_workqueue(workqueue);
2696}
2697
2698subsys_initcall(mmc_init);
2699module_exit(mmc_exit);
2700
2701MODULE_LICENSE("GPL");
v4.17
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/mmc.h>
  41
  42#include "core.h"
  43#include "card.h"
  44#include "bus.h"
  45#include "host.h"
  46#include "sdio_bus.h"
  47#include "pwrseq.h"
  48
  49#include "mmc_ops.h"
  50#include "sd_ops.h"
  51#include "sdio_ops.h"
  52
  53/* If the device is not responding */
  54#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
  55
  56/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  57#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
 
 
 
  58
 
  59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  60
  61/*
  62 * Enabling software CRCs on the data blocks can be a significant (30%)
  63 * performance cost, and for other reasons may not always be desired.
  64 * So we allow it it to be disabled.
  65 */
  66bool use_spi_crc = 1;
  67module_param(use_spi_crc, bool, 0);
  68
 
 
 
  69static int mmc_schedule_delayed_work(struct delayed_work *work,
  70				     unsigned long delay)
  71{
  72	/*
  73	 * We use the system_freezable_wq, because of two reasons.
  74	 * First, it allows several works (not the same work item) to be
  75	 * executed simultaneously. Second, the queue becomes frozen when
  76	 * userspace becomes frozen during system PM.
  77	 */
  78	return queue_delayed_work(system_freezable_wq, work, delay);
 
 
  79}
  80
  81#ifdef CONFIG_FAIL_MMC_REQUEST
  82
  83/*
  84 * Internal function. Inject random data errors.
  85 * If mmc_data is NULL no errors are injected.
  86 */
  87static void mmc_should_fail_request(struct mmc_host *host,
  88				    struct mmc_request *mrq)
  89{
  90	struct mmc_command *cmd = mrq->cmd;
  91	struct mmc_data *data = mrq->data;
  92	static const int data_errors[] = {
  93		-ETIMEDOUT,
  94		-EILSEQ,
  95		-EIO,
  96	};
  97
  98	if (!data)
  99		return;
 100
 101	if (cmd->error || data->error ||
 102	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 103		return;
 104
 105	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 106	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 107}
 108
 109#else /* CONFIG_FAIL_MMC_REQUEST */
 110
 111static inline void mmc_should_fail_request(struct mmc_host *host,
 112					   struct mmc_request *mrq)
 113{
 114}
 115
 116#endif /* CONFIG_FAIL_MMC_REQUEST */
 117
 118static inline void mmc_complete_cmd(struct mmc_request *mrq)
 119{
 120	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 121		complete_all(&mrq->cmd_completion);
 122}
 123
 124void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 125{
 126	if (!mrq->cap_cmd_during_tfr)
 127		return;
 128
 129	mmc_complete_cmd(mrq);
 130
 131	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 132		 mmc_hostname(host), mrq->cmd->opcode);
 133}
 134EXPORT_SYMBOL(mmc_command_done);
 135
 136/**
 137 *	mmc_request_done - finish processing an MMC request
 138 *	@host: MMC host which completed request
 139 *	@mrq: MMC request which request
 140 *
 141 *	MMC drivers should call this function when they have completed
 142 *	their processing of a request.
 143 */
 144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 145{
 146	struct mmc_command *cmd = mrq->cmd;
 147	int err = cmd->error;
 148
 149	/* Flag re-tuning needed on CRC errors */
 150	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 151	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
 152	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 153	    (mrq->data && mrq->data->error == -EILSEQ) ||
 154	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 155		mmc_retune_needed(host);
 156
 157	if (err && cmd->retries && mmc_host_is_spi(host)) {
 158		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 159			cmd->retries = 0;
 160	}
 161
 162	if (host->ongoing_mrq == mrq)
 163		host->ongoing_mrq = NULL;
 164
 165	mmc_complete_cmd(mrq);
 166
 167	trace_mmc_request_done(host, mrq);
 168
 169	/*
 170	 * We list various conditions for the command to be considered
 171	 * properly done:
 172	 *
 173	 * - There was no error, OK fine then
 174	 * - We are not doing some kind of retry
 175	 * - The card was removed (...so just complete everything no matter
 176	 *   if there are errors or retries)
 177	 */
 178	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 179		mmc_should_fail_request(host, mrq);
 180
 181		if (!host->ongoing_mrq)
 182			led_trigger_event(host->led, LED_OFF);
 183
 184		if (mrq->sbc) {
 185			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 186				mmc_hostname(host), mrq->sbc->opcode,
 187				mrq->sbc->error,
 188				mrq->sbc->resp[0], mrq->sbc->resp[1],
 189				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 190		}
 191
 192		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 193			mmc_hostname(host), cmd->opcode, err,
 194			cmd->resp[0], cmd->resp[1],
 195			cmd->resp[2], cmd->resp[3]);
 196
 197		if (mrq->data) {
 198			pr_debug("%s:     %d bytes transferred: %d\n",
 199				mmc_hostname(host),
 200				mrq->data->bytes_xfered, mrq->data->error);
 201		}
 202
 203		if (mrq->stop) {
 204			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 205				mmc_hostname(host), mrq->stop->opcode,
 206				mrq->stop->error,
 207				mrq->stop->resp[0], mrq->stop->resp[1],
 208				mrq->stop->resp[2], mrq->stop->resp[3]);
 209		}
 
 
 
 
 
 210	}
 211	/*
 212	 * Request starter must handle retries - see
 213	 * mmc_wait_for_req_done().
 214	 */
 215	if (mrq->done)
 216		mrq->done(mrq);
 217}
 218
 219EXPORT_SYMBOL(mmc_request_done);
 220
 221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 222{
 223	int err;
 
 
 
 224
 225	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 226	err = mmc_retune(host);
 227	if (err) {
 228		mrq->cmd->error = err;
 229		mmc_request_done(host, mrq);
 230		return;
 231	}
 232
 233	/*
 234	 * For sdio rw commands we must wait for card busy otherwise some
 235	 * sdio devices won't work properly.
 236	 * And bypass I/O abort, reset and bus suspend operations.
 237	 */
 238	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 239	    host->ops->card_busy) {
 240		int tries = 500; /* Wait aprox 500ms at maximum */
 241
 242		while (host->ops->card_busy(host) && --tries)
 243			mmc_delay(1);
 244
 245		if (tries == 0) {
 246			mrq->cmd->error = -EBUSY;
 247			mmc_request_done(host, mrq);
 248			return;
 249		}
 250	}
 251
 252	if (mrq->cap_cmd_during_tfr) {
 253		host->ongoing_mrq = mrq;
 254		/*
 255		 * Retry path could come through here without having waiting on
 256		 * cmd_completion, so ensure it is reinitialised.
 257		 */
 258		reinit_completion(&mrq->cmd_completion);
 259	}
 260
 261	trace_mmc_request_start(host, mrq);
 262
 263	if (host->cqe_on)
 264		host->cqe_ops->cqe_off(host);
 265
 266	host->ops->request(host, mrq);
 267}
 268
 269static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 270			     bool cqe)
 271{
 272	if (mrq->sbc) {
 273		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 274			 mmc_hostname(host), mrq->sbc->opcode,
 275			 mrq->sbc->arg, mrq->sbc->flags);
 276	}
 277
 278	if (mrq->cmd) {
 279		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 280			 mmc_hostname(host), cqe ? "CQE direct " : "",
 281			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 282	} else if (cqe) {
 283		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 284			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 285	}
 286
 287	if (mrq->data) {
 288		pr_debug("%s:     blksz %d blocks %d flags %08x "
 289			"tsac %d ms nsac %d\n",
 290			mmc_hostname(host), mrq->data->blksz,
 291			mrq->data->blocks, mrq->data->flags,
 292			mrq->data->timeout_ns / 1000000,
 293			mrq->data->timeout_clks);
 294	}
 295
 296	if (mrq->stop) {
 297		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 298			 mmc_hostname(host), mrq->stop->opcode,
 299			 mrq->stop->arg, mrq->stop->flags);
 300	}
 301}
 302
 303static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 304{
 305	unsigned int i, sz = 0;
 306	struct scatterlist *sg;
 307
 308	if (mrq->cmd) {
 309		mrq->cmd->error = 0;
 310		mrq->cmd->mrq = mrq;
 311		mrq->cmd->data = mrq->data;
 312	}
 313	if (mrq->sbc) {
 314		mrq->sbc->error = 0;
 315		mrq->sbc->mrq = mrq;
 316	}
 317	if (mrq->data) {
 318		if (mrq->data->blksz > host->max_blk_size ||
 319		    mrq->data->blocks > host->max_blk_count ||
 320		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 321			return -EINVAL;
 322
 
 
 323		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 324			sz += sg->length;
 325		if (sz != mrq->data->blocks * mrq->data->blksz)
 326			return -EINVAL;
 327
 
 328		mrq->data->error = 0;
 329		mrq->data->mrq = mrq;
 330		if (mrq->stop) {
 331			mrq->data->stop = mrq->stop;
 332			mrq->stop->error = 0;
 333			mrq->stop->mrq = mrq;
 334		}
 335	}
 336
 337	return 0;
 
 338}
 339
 340int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 
 
 
 
 
 
 
 
 
 341{
 342	int err;
 
 
 
 
 343
 344	init_completion(&mrq->cmd_completion);
 
 345
 346	mmc_retune_hold(host);
 
 
 
 
 
 347
 348	if (mmc_card_removed(host->card))
 349		return -ENOMEDIUM;
 350
 351	mmc_mrq_pr_debug(host, mrq, false);
 
 
 352
 353	WARN_ON(!host->claimed);
 
 
 
 
 
 
 
 354
 355	err = mmc_mrq_prep(host, mrq);
 356	if (err)
 357		return err;
 
 
 
 
 
 358
 359	led_trigger_event(host->led, LED_FULL);
 360	__mmc_start_request(host, mrq);
 
 
 
 
 
 
 
 
 
 361
 362	return 0;
 
 
 
 
 
 
 
 
 
 363}
 364EXPORT_SYMBOL(mmc_start_request);
 365
 366static void mmc_wait_done(struct mmc_request *mrq)
 367{
 368	complete(&mrq->completion);
 369}
 370
 371static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 
 
 
 
 
 
 
 
 372{
 373	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 
 
 
 
 
 
 
 374
 375	/*
 376	 * If there is an ongoing transfer, wait for the command line to become
 377	 * available.
 378	 */
 379	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 380		wait_for_completion(&ongoing_mrq->cmd_completion);
 381}
 382
 383static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 384{
 385	int err;
 386
 387	mmc_wait_ongoing_tfr_cmd(host);
 388
 389	init_completion(&mrq->completion);
 390	mrq->done = mmc_wait_done;
 391
 392	err = mmc_start_request(host, mrq);
 393	if (err) {
 394		mrq->cmd->error = err;
 395		mmc_complete_cmd(mrq);
 396		complete(&mrq->completion);
 
 397	}
 
 
 
 398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399	return err;
 400}
 401
 402void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 
 403{
 404	struct mmc_command *cmd;
 405
 406	while (1) {
 407		wait_for_completion(&mrq->completion);
 408
 409		cmd = mrq->cmd;
 410
 411		/*
 412		 * If host has timed out waiting for the sanitize
 413		 * to complete, card might be still in programming state
 414		 * so let's try to bring the card out of programming
 415		 * state.
 416		 */
 417		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 418			if (!mmc_interrupt_hpi(host->card)) {
 419				pr_warn("%s: %s: Interrupted sanitize\n",
 420					mmc_hostname(host), __func__);
 421				cmd->error = 0;
 422				break;
 423			} else {
 424				pr_err("%s: %s: Failed to interrupt sanitize\n",
 425				       mmc_hostname(host), __func__);
 426			}
 427		}
 428		if (!cmd->error || !cmd->retries ||
 429		    mmc_card_removed(host->card))
 430			break;
 431
 432		mmc_retune_recheck(host);
 433
 434		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 435			 mmc_hostname(host), cmd->opcode, cmd->error);
 436		cmd->retries--;
 437		cmd->error = 0;
 438		__mmc_start_request(host, mrq);
 439	}
 
 440
 441	mmc_retune_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 442}
 443EXPORT_SYMBOL(mmc_wait_for_req_done);
 444
 445/*
 446 * mmc_cqe_start_req - Start a CQE request.
 447 * @host: MMC host to start the request
 448 * @mrq: request to start
 449 *
 450 * Start the request, re-tuning if needed and it is possible. Returns an error
 451 * code if the request fails to start or -EBUSY if CQE is busy.
 452 */
 453int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 454{
 455	int err;
 456
 457	/*
 458	 * CQE cannot process re-tuning commands. Caller must hold retuning
 459	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 460	 * active requests i.e. this is the first.  Note, re-tuning will call
 461	 * ->cqe_off().
 462	 */
 463	err = mmc_retune(host);
 464	if (err)
 465		goto out_err;
 466
 467	mrq->host = host;
 468
 469	mmc_mrq_pr_debug(host, mrq, true);
 470
 471	err = mmc_mrq_prep(host, mrq);
 472	if (err)
 473		goto out_err;
 474
 475	err = host->cqe_ops->cqe_request(host, mrq);
 476	if (err)
 477		goto out_err;
 478
 479	trace_mmc_request_start(host, mrq);
 480
 481	return 0;
 482
 483out_err:
 484	if (mrq->cmd) {
 485		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 486			 mmc_hostname(host), mrq->cmd->opcode, err);
 487	} else {
 488		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 489			 mmc_hostname(host), mrq->tag, err);
 490	}
 491	return err;
 492}
 493EXPORT_SYMBOL(mmc_cqe_start_req);
 494
 495/**
 496 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 497 *	@host: MMC host which completed request
 498 *	@mrq: MMC request which completed
 
 499 *
 500 *	CQE drivers should call this function when they have completed
 501 *	their processing of a request.
 
 
 
 
 
 
 
 502 */
 503void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 
 504{
 505	mmc_should_fail_request(host, mrq);
 
 
 506
 507	/* Flag re-tuning needed on CRC errors */
 508	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 509	    (mrq->data && mrq->data->error == -EILSEQ))
 510		mmc_retune_needed(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511
 512	trace_mmc_request_done(host, mrq);
 
 
 
 513
 514	if (mrq->cmd) {
 515		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 516			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 517	} else {
 518		pr_debug("%s: CQE transfer done tag %d\n",
 519			 mmc_hostname(host), mrq->tag);
 520	}
 521
 522	if (mrq->data) {
 523		pr_debug("%s:     %d bytes transferred: %d\n",
 524			 mmc_hostname(host),
 525			 mrq->data->bytes_xfered, mrq->data->error);
 526	}
 527
 528	mrq->done(mrq);
 529}
 530EXPORT_SYMBOL(mmc_cqe_request_done);
 531
 532/**
 533 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 534 *	@host: MMC host
 535 *	@mrq: MMC request to be processed
 
 
 
 
 536 */
 537void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 538{
 539	if (host->cqe_ops->cqe_post_req)
 540		host->cqe_ops->cqe_post_req(host, mrq);
 541}
 542EXPORT_SYMBOL(mmc_cqe_post_req);
 543
 544/* Arbitrary 1 second timeout */
 545#define MMC_CQE_RECOVERY_TIMEOUT	1000
 546
 547/*
 548 * mmc_cqe_recovery - Recover from CQE errors.
 549 * @host: MMC host to recover
 550 *
 551 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
 552 * in eMMC, and discarding the queue in CQE. CQE must call
 553 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 554 * fails to discard its queue.
 555 */
 556int mmc_cqe_recovery(struct mmc_host *host)
 557{
 558	struct mmc_command cmd;
 559	int err;
 
 
 560
 561	mmc_retune_hold_now(host);
 562
 563	/*
 564	 * Recovery is expected seldom, if at all, but it reduces performance,
 565	 * so make sure it is not completely silent.
 566	 */
 567	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 568
 569	host->cqe_ops->cqe_recovery_start(host);
 
 
 
 
 
 570
 571	memset(&cmd, 0, sizeof(cmd));
 572	cmd.opcode       = MMC_STOP_TRANSMISSION,
 573	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
 574	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 575	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 576	mmc_wait_for_cmd(host, &cmd, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 577
 578	memset(&cmd, 0, sizeof(cmd));
 579	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 580	cmd.arg          = 1; /* Discard entire queue */
 581	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 582	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 583	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 584	err = mmc_wait_for_cmd(host, &cmd, 0);
 585
 586	host->cqe_ops->cqe_recovery_finish(host);
 
 
 587
 588	mmc_retune_release(host);
 
 
 
 
 589
 
 
 590	return err;
 591}
 592EXPORT_SYMBOL(mmc_cqe_recovery);
 593
 594/**
 595 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 596 *	@host: MMC host
 597 *	@mrq: MMC request
 598 *
 599 *	mmc_is_req_done() is used with requests that have
 600 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 601 *	starting a request and before waiting for it to complete. That is,
 602 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 603 *	and before mmc_wait_for_req_done(). If it is called at other times the
 604 *	result is not meaningful.
 605 */
 606bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 607{
 608	return completion_done(&mrq->completion);
 609}
 610EXPORT_SYMBOL(mmc_is_req_done);
 611
 612/**
 613 *	mmc_wait_for_req - start a request and wait for completion
 614 *	@host: MMC host to start command
 615 *	@mrq: MMC request to start
 616 *
 617 *	Start a new MMC custom command request for a host, and wait
 618 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 619 *	requests, the transfer is ongoing and the caller can issue further
 620 *	commands that do not use the data lines, and then wait by calling
 621 *	mmc_wait_for_req_done().
 622 *	Does not attempt to parse the response.
 623 */
 624void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 625{
 626	__mmc_start_req(host, mrq);
 627
 628	if (!mrq->cap_cmd_during_tfr)
 629		mmc_wait_for_req_done(host, mrq);
 630}
 631EXPORT_SYMBOL(mmc_wait_for_req);
 632
 633/**
 634 *	mmc_wait_for_cmd - start a command and wait for completion
 635 *	@host: MMC host to start command
 636 *	@cmd: MMC command to start
 637 *	@retries: maximum number of retries
 638 *
 639 *	Start a new MMC command for a host, and wait for the command
 640 *	to complete.  Return any error that occurred while the command
 641 *	was executing.  Do not attempt to parse the response.
 642 */
 643int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 644{
 645	struct mmc_request mrq = {};
 646
 647	WARN_ON(!host->claimed);
 648
 649	memset(cmd->resp, 0, sizeof(cmd->resp));
 650	cmd->retries = retries;
 651
 652	mrq.cmd = cmd;
 653	cmd->data = NULL;
 654
 655	mmc_wait_for_req(host, &mrq);
 656
 657	return cmd->error;
 658}
 659
 660EXPORT_SYMBOL(mmc_wait_for_cmd);
 661
 662/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663 *	mmc_set_data_timeout - set the timeout for a data command
 664 *	@data: data phase for command
 665 *	@card: the MMC card associated with the data transfer
 666 *
 667 *	Computes the data timeout parameters according to the
 668 *	correct algorithm given the card type.
 669 */
 670void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 671{
 672	unsigned int mult;
 673
 674	/*
 675	 * SDIO cards only define an upper 1 s limit on access.
 676	 */
 677	if (mmc_card_sdio(card)) {
 678		data->timeout_ns = 1000000000;
 679		data->timeout_clks = 0;
 680		return;
 681	}
 682
 683	/*
 684	 * SD cards use a 100 multiplier rather than 10
 685	 */
 686	mult = mmc_card_sd(card) ? 100 : 10;
 687
 688	/*
 689	 * Scale up the multiplier (and therefore the timeout) by
 690	 * the r2w factor for writes.
 691	 */
 692	if (data->flags & MMC_DATA_WRITE)
 693		mult <<= card->csd.r2w_factor;
 694
 695	data->timeout_ns = card->csd.taac_ns * mult;
 696	data->timeout_clks = card->csd.taac_clks * mult;
 697
 698	/*
 699	 * SD cards also have an upper limit on the timeout.
 700	 */
 701	if (mmc_card_sd(card)) {
 702		unsigned int timeout_us, limit_us;
 703
 704		timeout_us = data->timeout_ns / 1000;
 705		if (card->host->ios.clock)
 706			timeout_us += data->timeout_clks * 1000 /
 707				(card->host->ios.clock / 1000);
 708
 709		if (data->flags & MMC_DATA_WRITE)
 710			/*
 711			 * The MMC spec "It is strongly recommended
 712			 * for hosts to implement more than 500ms
 713			 * timeout value even if the card indicates
 714			 * the 250ms maximum busy length."  Even the
 715			 * previous value of 300ms is known to be
 716			 * insufficient for some cards.
 717			 */
 718			limit_us = 3000000;
 719		else
 720			limit_us = 100000;
 721
 722		/*
 723		 * SDHC cards always use these fixed values.
 724		 */
 725		if (timeout_us > limit_us) {
 726			data->timeout_ns = limit_us * 1000;
 727			data->timeout_clks = 0;
 728		}
 729
 730		/* assign limit value if invalid */
 731		if (timeout_us == 0)
 732			data->timeout_ns = limit_us * 1000;
 733	}
 734
 735	/*
 736	 * Some cards require longer data read timeout than indicated in CSD.
 737	 * Address this by setting the read timeout to a "reasonably high"
 738	 * value. For the cards tested, 600ms has proven enough. If necessary,
 739	 * this value can be increased if other problematic cards require this.
 740	 */
 741	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 742		data->timeout_ns = 600000000;
 743		data->timeout_clks = 0;
 744	}
 745
 746	/*
 747	 * Some cards need very high timeouts if driven in SPI mode.
 748	 * The worst observed timeout was 900ms after writing a
 749	 * continuous stream of data until the internal logic
 750	 * overflowed.
 751	 */
 752	if (mmc_host_is_spi(card->host)) {
 753		if (data->flags & MMC_DATA_WRITE) {
 754			if (data->timeout_ns < 1000000000)
 755				data->timeout_ns = 1000000000;	/* 1s */
 756		} else {
 757			if (data->timeout_ns < 100000000)
 758				data->timeout_ns =  100000000;	/* 100ms */
 759		}
 760	}
 761}
 762EXPORT_SYMBOL(mmc_set_data_timeout);
 763
 764/**
 765 *	mmc_align_data_size - pads a transfer size to a more optimal value
 766 *	@card: the MMC card associated with the data transfer
 767 *	@sz: original transfer size
 768 *
 769 *	Pads the original data size with a number of extra bytes in
 770 *	order to avoid controller bugs and/or performance hits
 771 *	(e.g. some controllers revert to PIO for certain sizes).
 772 *
 773 *	Returns the improved size, which might be unmodified.
 774 *
 775 *	Note that this function is only relevant when issuing a
 776 *	single scatter gather entry.
 777 */
 778unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 779{
 780	/*
 781	 * FIXME: We don't have a system for the controller to tell
 782	 * the core about its problems yet, so for now we just 32-bit
 783	 * align the size.
 784	 */
 785	sz = ((sz + 3) / 4) * 4;
 786
 787	return sz;
 788}
 789EXPORT_SYMBOL(mmc_align_data_size);
 790
 791/*
 792 * Allow claiming an already claimed host if the context is the same or there is
 793 * no context but the task is the same.
 794 */
 795static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 796				   struct task_struct *task)
 797{
 798	return host->claimer == ctx ||
 799	       (!ctx && task && host->claimer->task == task);
 800}
 801
 802static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 803				       struct mmc_ctx *ctx,
 804				       struct task_struct *task)
 805{
 806	if (!host->claimer) {
 807		if (ctx)
 808			host->claimer = ctx;
 809		else
 810			host->claimer = &host->default_ctx;
 811	}
 812	if (task)
 813		host->claimer->task = task;
 814}
 815
 816/**
 817 *	__mmc_claim_host - exclusively claim a host
 818 *	@host: mmc host to claim
 819 *	@ctx: context that claims the host or NULL in which case the default
 820 *	context will be used
 821 *	@abort: whether or not the operation should be aborted
 822 *
 823 *	Claim a host for a set of operations.  If @abort is non null and
 824 *	dereference a non-zero value then this will return prematurely with
 825 *	that non-zero value without acquiring the lock.  Returns zero
 826 *	with the lock held otherwise.
 827 */
 828int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 829		     atomic_t *abort)
 830{
 831	struct task_struct *task = ctx ? NULL : current;
 832	DECLARE_WAITQUEUE(wait, current);
 833	unsigned long flags;
 834	int stop;
 835	bool pm = false;
 836
 837	might_sleep();
 838
 839	add_wait_queue(&host->wq, &wait);
 840	spin_lock_irqsave(&host->lock, flags);
 841	while (1) {
 842		set_current_state(TASK_UNINTERRUPTIBLE);
 843		stop = abort ? atomic_read(abort) : 0;
 844		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 845			break;
 846		spin_unlock_irqrestore(&host->lock, flags);
 847		schedule();
 848		spin_lock_irqsave(&host->lock, flags);
 849	}
 850	set_current_state(TASK_RUNNING);
 851	if (!stop) {
 852		host->claimed = 1;
 853		mmc_ctx_set_claimer(host, ctx, task);
 854		host->claim_cnt += 1;
 855		if (host->claim_cnt == 1)
 856			pm = true;
 857	} else
 858		wake_up(&host->wq);
 859	spin_unlock_irqrestore(&host->lock, flags);
 860	remove_wait_queue(&host->wq, &wait);
 861
 862	if (pm)
 863		pm_runtime_get_sync(mmc_dev(host));
 864
 865	return stop;
 866}
 
 867EXPORT_SYMBOL(__mmc_claim_host);
 868
 869/**
 870 *	mmc_release_host - release a host
 871 *	@host: mmc host to release
 872 *
 873 *	Release a MMC host, allowing others to claim the host
 874 *	for their operations.
 875 */
 876void mmc_release_host(struct mmc_host *host)
 877{
 878	unsigned long flags;
 879
 880	WARN_ON(!host->claimed);
 881
 
 
 
 882	spin_lock_irqsave(&host->lock, flags);
 883	if (--host->claim_cnt) {
 884		/* Release for nested claim */
 885		spin_unlock_irqrestore(&host->lock, flags);
 886	} else {
 887		host->claimed = 0;
 888		host->claimer->task = NULL;
 889		host->claimer = NULL;
 890		spin_unlock_irqrestore(&host->lock, flags);
 891		wake_up(&host->wq);
 892		pm_runtime_mark_last_busy(mmc_dev(host));
 893		pm_runtime_put_autosuspend(mmc_dev(host));
 894	}
 895}
 896EXPORT_SYMBOL(mmc_release_host);
 897
 898/*
 899 * This is a helper function, which fetches a runtime pm reference for the
 900 * card device and also claims the host.
 901 */
 902void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 903{
 904	pm_runtime_get_sync(&card->dev);
 905	__mmc_claim_host(card->host, ctx, NULL);
 906}
 907EXPORT_SYMBOL(mmc_get_card);
 908
 909/*
 910 * This is a helper function, which releases the host and drops the runtime
 911 * pm reference for the card device.
 912 */
 913void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 914{
 915	struct mmc_host *host = card->host;
 916
 917	WARN_ON(ctx && host->claimer != ctx);
 918
 919	mmc_release_host(host);
 920	pm_runtime_mark_last_busy(&card->dev);
 921	pm_runtime_put_autosuspend(&card->dev);
 922}
 923EXPORT_SYMBOL(mmc_put_card);
 924
 925/*
 926 * Internal function that does the actual ios call to the host driver,
 927 * optionally printing some debug output.
 928 */
 929static inline void mmc_set_ios(struct mmc_host *host)
 930{
 931	struct mmc_ios *ios = &host->ios;
 932
 933	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 934		"width %u timing %u\n",
 935		 mmc_hostname(host), ios->clock, ios->bus_mode,
 936		 ios->power_mode, ios->chip_select, ios->vdd,
 937		 1 << ios->bus_width, ios->timing);
 938
 
 
 939	host->ops->set_ios(host, ios);
 940}
 941
 942/*
 943 * Control chip select pin on a host.
 944 */
 945void mmc_set_chip_select(struct mmc_host *host, int mode)
 946{
 
 947	host->ios.chip_select = mode;
 948	mmc_set_ios(host);
 
 949}
 950
 951/*
 952 * Sets the host clock to the highest possible frequency that
 953 * is below "hz".
 954 */
 955void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 956{
 957	WARN_ON(hz && hz < host->f_min);
 958
 959	if (hz > host->f_max)
 960		hz = host->f_max;
 961
 962	host->ios.clock = hz;
 963	mmc_set_ios(host);
 964}
 965
 966int mmc_execute_tuning(struct mmc_card *card)
 967{
 968	struct mmc_host *host = card->host;
 969	u32 opcode;
 970	int err;
 
 971
 972	if (!host->ops->execute_tuning)
 973		return 0;
 
 
 
 
 
 974
 975	if (host->cqe_on)
 976		host->cqe_ops->cqe_off(host);
 
 
 
 
 
 977
 978	if (mmc_card_mmc(card))
 979		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 980	else
 981		opcode = MMC_SEND_TUNING_BLOCK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982
 983	err = host->ops->execute_tuning(host, opcode);
 
 
 984
 985	if (err)
 986		pr_err("%s: tuning execution failed: %d\n",
 987			mmc_hostname(host), err);
 988	else
 989		mmc_retune_enable(host);
 
 
 
 990
 991	return err;
 
 
 992}
 
 993
 994/*
 995 * Change the bus mode (open drain/push-pull) of a host.
 996 */
 997void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 998{
 
 999	host->ios.bus_mode = mode;
1000	mmc_set_ios(host);
 
1001}
1002
1003/*
1004 * Change data bus width of a host.
1005 */
1006void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1007{
 
1008	host->ios.bus_width = width;
1009	mmc_set_ios(host);
1010}
1011
1012/*
1013 * Set initial state after a power cycle or a hw_reset.
1014 */
1015void mmc_set_initial_state(struct mmc_host *host)
1016{
1017	if (host->cqe_on)
1018		host->cqe_ops->cqe_off(host);
1019
1020	mmc_retune_disable(host);
1021
1022	if (mmc_host_is_spi(host))
1023		host->ios.chip_select = MMC_CS_HIGH;
1024	else
1025		host->ios.chip_select = MMC_CS_DONTCARE;
1026	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1027	host->ios.bus_width = MMC_BUS_WIDTH_1;
1028	host->ios.timing = MMC_TIMING_LEGACY;
1029	host->ios.drv_type = 0;
1030	host->ios.enhanced_strobe = false;
1031
1032	/*
1033	 * Make sure we are in non-enhanced strobe mode before we
1034	 * actually enable it in ext_csd.
1035	 */
1036	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1037	     host->ops->hs400_enhanced_strobe)
1038		host->ops->hs400_enhanced_strobe(host, &host->ios);
1039
1040	mmc_set_ios(host);
1041}
1042
1043/**
1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045 * @vdd:	voltage (mV)
1046 * @low_bits:	prefer low bits in boundary cases
1047 *
1048 * This function returns the OCR bit number according to the provided @vdd
1049 * value. If conversion is not possible a negative errno value returned.
1050 *
1051 * Depending on the @low_bits flag the function prefers low or high OCR bits
1052 * on boundary voltages. For example,
1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055 *
1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057 */
1058static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1059{
1060	const int max_bit = ilog2(MMC_VDD_35_36);
1061	int bit;
1062
1063	if (vdd < 1650 || vdd > 3600)
1064		return -EINVAL;
1065
1066	if (vdd >= 1650 && vdd <= 1950)
1067		return ilog2(MMC_VDD_165_195);
1068
1069	if (low_bits)
1070		vdd -= 1;
1071
1072	/* Base 2000 mV, step 100 mV, bit's base 8. */
1073	bit = (vdd - 2000) / 100 + 8;
1074	if (bit > max_bit)
1075		return max_bit;
1076	return bit;
1077}
1078
1079/**
1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081 * @vdd_min:	minimum voltage value (mV)
1082 * @vdd_max:	maximum voltage value (mV)
1083 *
1084 * This function returns the OCR mask bits according to the provided @vdd_min
1085 * and @vdd_max values. If conversion is not possible the function returns 0.
1086 *
1087 * Notes wrt boundary cases:
1088 * This function sets the OCR bits for all boundary voltages, for example
1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090 * MMC_VDD_34_35 mask.
1091 */
1092u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1093{
1094	u32 mask = 0;
1095
1096	if (vdd_max < vdd_min)
1097		return 0;
1098
1099	/* Prefer high bits for the boundary vdd_max values. */
1100	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1101	if (vdd_max < 0)
1102		return 0;
1103
1104	/* Prefer low bits for the boundary vdd_min values. */
1105	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1106	if (vdd_min < 0)
1107		return 0;
1108
1109	/* Fill the mask, from max bit to min bit. */
1110	while (vdd_max >= vdd_min)
1111		mask |= 1 << vdd_max--;
1112
1113	return mask;
1114}
1115EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1116
1117#ifdef CONFIG_OF
1118
1119/**
1120 * mmc_of_parse_voltage - return mask of supported voltages
1121 * @np: The device node need to be parsed.
1122 * @mask: mask of voltages available for MMC/SD/SDIO
1123 *
1124 * Parse the "voltage-ranges" DT property, returning zero if it is not
1125 * found, negative errno if the voltage-range specification is invalid,
1126 * or one if the voltage-range is specified and successfully parsed.
1127 */
1128int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1129{
1130	const u32 *voltage_ranges;
1131	int num_ranges, i;
1132
1133	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1134	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1135	if (!voltage_ranges) {
1136		pr_debug("%pOF: voltage-ranges unspecified\n", np);
1137		return 0;
1138	}
1139	if (!num_ranges) {
1140		pr_err("%pOF: voltage-ranges empty\n", np);
1141		return -EINVAL;
1142	}
1143
1144	for (i = 0; i < num_ranges; i++) {
1145		const int j = i * 2;
1146		u32 ocr_mask;
1147
1148		ocr_mask = mmc_vddrange_to_ocrmask(
1149				be32_to_cpu(voltage_ranges[j]),
1150				be32_to_cpu(voltage_ranges[j + 1]));
1151		if (!ocr_mask) {
1152			pr_err("%pOF: voltage-range #%d is invalid\n",
1153				np, i);
1154			return -EINVAL;
1155		}
1156		*mask |= ocr_mask;
1157	}
1158
1159	return 1;
1160}
1161EXPORT_SYMBOL(mmc_of_parse_voltage);
1162
1163#endif /* CONFIG_OF */
1164
1165static int mmc_of_get_func_num(struct device_node *node)
1166{
1167	u32 reg;
1168	int ret;
1169
1170	ret = of_property_read_u32(node, "reg", &reg);
1171	if (ret < 0)
1172		return ret;
1173
1174	return reg;
1175}
1176
1177struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1178		unsigned func_num)
1179{
1180	struct device_node *node;
1181
1182	if (!host->parent || !host->parent->of_node)
1183		return NULL;
1184
1185	for_each_child_of_node(host->parent->of_node, node) {
1186		if (mmc_of_get_func_num(node) == func_num)
1187			return node;
1188	}
1189
1190	return NULL;
1191}
1192
1193#ifdef CONFIG_REGULATOR
1194
1195/**
1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197 * @vdd_bit:	OCR bit number
1198 * @min_uV:	minimum voltage value (mV)
1199 * @max_uV:	maximum voltage value (mV)
1200 *
1201 * This function returns the voltage range according to the provided OCR
1202 * bit number. If conversion is not possible a negative errno value returned.
1203 */
1204static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1205{
1206	int		tmp;
1207
1208	if (!vdd_bit)
1209		return -EINVAL;
1210
1211	/*
1212	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213	 * bits this regulator doesn't quite support ... don't
1214	 * be too picky, most cards and regulators are OK with
1215	 * a 0.1V range goof (it's a small error percentage).
1216	 */
1217	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1218	if (tmp == 0) {
1219		*min_uV = 1650 * 1000;
1220		*max_uV = 1950 * 1000;
1221	} else {
1222		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1223		*max_uV = *min_uV + 100 * 1000;
1224	}
1225
1226	return 0;
1227}
1228
1229/**
1230 * mmc_regulator_get_ocrmask - return mask of supported voltages
1231 * @supply: regulator to use
1232 *
1233 * This returns either a negative errno, or a mask of voltages that
1234 * can be provided to MMC/SD/SDIO devices using the specified voltage
1235 * regulator.  This would normally be called before registering the
1236 * MMC host adapter.
1237 */
1238int mmc_regulator_get_ocrmask(struct regulator *supply)
1239{
1240	int			result = 0;
1241	int			count;
1242	int			i;
1243	int			vdd_uV;
1244	int			vdd_mV;
1245
1246	count = regulator_count_voltages(supply);
1247	if (count < 0)
1248		return count;
1249
1250	for (i = 0; i < count; i++) {
 
 
 
1251		vdd_uV = regulator_list_voltage(supply, i);
1252		if (vdd_uV <= 0)
1253			continue;
1254
1255		vdd_mV = vdd_uV / 1000;
1256		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1257	}
1258
1259	if (!result) {
1260		vdd_uV = regulator_get_voltage(supply);
1261		if (vdd_uV <= 0)
1262			return vdd_uV;
1263
1264		vdd_mV = vdd_uV / 1000;
1265		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1266	}
1267
1268	return result;
1269}
1270EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1271
1272/**
1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274 * @mmc: the host to regulate
1275 * @supply: regulator to use
1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1277 *
1278 * Returns zero on success, else negative errno.
1279 *
1280 * MMC host drivers may use this to enable or disable a regulator using
1281 * a particular supply voltage.  This would normally be called from the
1282 * set_ios() method.
1283 */
1284int mmc_regulator_set_ocr(struct mmc_host *mmc,
1285			struct regulator *supply,
1286			unsigned short vdd_bit)
1287{
1288	int			result = 0;
1289	int			min_uV, max_uV;
1290
1291	if (vdd_bit) {
1292		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293
1294		result = regulator_set_voltage(supply, min_uV, max_uV);
1295		if (result == 0 && !mmc->regulator_enabled) {
1296			result = regulator_enable(supply);
1297			if (!result)
1298				mmc->regulator_enabled = true;
1299		}
1300	} else if (mmc->regulator_enabled) {
1301		result = regulator_disable(supply);
1302		if (result == 0)
1303			mmc->regulator_enabled = false;
1304	}
1305
1306	if (result)
1307		dev_err(mmc_dev(mmc),
1308			"could not set regulator OCR (%d)\n", result);
1309	return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1314						  int min_uV, int target_uV,
1315						  int max_uV)
1316{
1317	/*
1318	 * Check if supported first to avoid errors since we may try several
1319	 * signal levels during power up and don't want to show errors.
1320	 */
1321	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1322		return -EINVAL;
1323
1324	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1325					     max_uV);
1326}
1327
1328/**
1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1330 *
1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333 * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1334 * SD card spec also define VQMMC in terms of VMMC.
1335 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1336 *
1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338 * requested voltage.  This is definitely a good idea for UHS where there's a
1339 * separate regulator on the card that's trying to make 1.8V and it's best if
1340 * we match.
1341 *
1342 * This function is expected to be used by a controller's
1343 * start_signal_voltage_switch() function.
1344 */
1345int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1346{
1347	struct device *dev = mmc_dev(mmc);
1348	int ret, volt, min_uV, max_uV;
1349
1350	/* If no vqmmc supply then we can't change the voltage */
1351	if (IS_ERR(mmc->supply.vqmmc))
1352		return -EINVAL;
1353
1354	switch (ios->signal_voltage) {
1355	case MMC_SIGNAL_VOLTAGE_120:
1356		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357						1100000, 1200000, 1300000);
1358	case MMC_SIGNAL_VOLTAGE_180:
1359		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1360						1700000, 1800000, 1950000);
1361	case MMC_SIGNAL_VOLTAGE_330:
1362		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1363		if (ret < 0)
1364			return ret;
1365
1366		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1367			__func__, volt, max_uV);
1368
1369		min_uV = max(volt - 300000, 2700000);
1370		max_uV = min(max_uV + 200000, 3600000);
1371
1372		/*
1373		 * Due to a limitation in the current implementation of
1374		 * regulator_set_voltage_triplet() which is taking the lowest
1375		 * voltage possible if below the target, search for a suitable
1376		 * voltage in two steps and try to stay close to vmmc
1377		 * with a 0.3V tolerance at first.
1378		 */
1379		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1380						min_uV, volt, max_uV))
1381			return 0;
1382
1383		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384						2700000, volt, 3600000);
1385	default:
1386		return -EINVAL;
1387	}
1388}
1389EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1390
1391#endif /* CONFIG_REGULATOR */
1392
1393/**
1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395 * @mmc: the host to regulate
1396 *
1397 * Returns 0 or errno. errno should be handled, it is either a critical error
1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399 * regulators have been found because they all are optional. If you require
1400 * certain regulators, you need to check separately in your driver if they got
1401 * populated after calling this function.
1402 */
1403int mmc_regulator_get_supply(struct mmc_host *mmc)
1404{
1405	struct device *dev = mmc_dev(mmc);
 
1406	int ret;
1407
1408	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
 
1409	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410
1411	if (IS_ERR(mmc->supply.vmmc)) {
1412		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413			return -EPROBE_DEFER;
1414		dev_dbg(dev, "No vmmc regulator found\n");
1415	} else {
1416		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417		if (ret > 0)
1418			mmc->ocr_avail = ret;
1419		else
1420			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421	}
1422
1423	if (IS_ERR(mmc->supply.vqmmc)) {
1424		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425			return -EPROBE_DEFER;
1426		dev_dbg(dev, "No vqmmc regulator found\n");
1427	}
1428
1429	return 0;
1430}
1431EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432
 
 
1433/*
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1436 */
1437u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438{
1439	int bit;
1440
1441	/*
1442	 * Sanity check the voltages that the card claims to
1443	 * support.
1444	 */
1445	if (ocr & 0x7F) {
1446		dev_warn(mmc_dev(host),
1447		"card claims to support voltages below defined range\n");
1448		ocr &= ~0x7F;
1449	}
1450
1451	ocr &= host->ocr_avail;
1452	if (!ocr) {
1453		dev_warn(mmc_dev(host), "no support for card's volts\n");
1454		return 0;
1455	}
1456
1457	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458		bit = ffs(ocr) - 1;
1459		ocr &= 3 << bit;
1460		mmc_power_cycle(host, ocr);
1461	} else {
1462		bit = fls(ocr) - 1;
1463		ocr &= 3 << bit;
1464		if (bit != host->ios.vdd)
1465			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466	}
1467
1468	return ocr;
1469}
1470
1471int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472{
1473	int err = 0;
1474	int old_signal_voltage = host->ios.signal_voltage;
1475
1476	host->ios.signal_voltage = signal_voltage;
1477	if (host->ops->start_signal_voltage_switch)
 
1478		err = host->ops->start_signal_voltage_switch(host, &host->ios);
 
 
1479
1480	if (err)
1481		host->ios.signal_voltage = old_signal_voltage;
1482
1483	return err;
1484
1485}
1486
1487int mmc_host_set_uhs_voltage(struct mmc_host *host)
1488{
 
 
1489	u32 clock;
1490
 
 
1491	/*
1492	 * During a signal voltage level switch, the clock must be gated
1493	 * for 5 ms according to the SD spec
1494	 */
1495	clock = host->ios.clock;
1496	host->ios.clock = 0;
1497	mmc_set_ios(host);
1498
1499	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1500		return -EAGAIN;
1501
1502	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1503	mmc_delay(10);
1504	host->ios.clock = clock;
1505	mmc_set_ios(host);
1506
1507	return 0;
1508}
1509
1510int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1511{
1512	struct mmc_command cmd = {};
1513	int err = 0;
1514
1515	/*
1516	 * If we cannot switch voltages, return failure so the caller
1517	 * can continue without UHS mode
1518	 */
1519	if (!host->ops->start_signal_voltage_switch)
1520		return -EPERM;
1521	if (!host->ops->card_busy)
1522		pr_warn("%s: cannot verify signal voltage switch\n",
1523			mmc_hostname(host));
1524
1525	cmd.opcode = SD_SWITCH_VOLTAGE;
1526	cmd.arg = 0;
1527	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1528
1529	err = mmc_wait_for_cmd(host, &cmd, 0);
1530	if (err)
1531		return err;
1532
1533	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1534		return -EIO;
1535
 
1536	/*
1537	 * The card should drive cmd and dat[0:3] low immediately
1538	 * after the response of cmd11, but wait 1 ms to be sure
1539	 */
1540	mmc_delay(1);
1541	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1542		err = -EAGAIN;
1543		goto power_cycle;
1544	}
 
 
 
 
 
 
 
1545
1546	if (mmc_host_set_uhs_voltage(host)) {
1547		/*
1548		 * Voltages may not have been switched, but we've already
1549		 * sent CMD11, so a power cycle is required anyway
1550		 */
1551		err = -EAGAIN;
1552		goto power_cycle;
1553	}
1554
 
 
 
 
 
1555	/* Wait for at least 1 ms according to spec */
1556	mmc_delay(1);
1557
1558	/*
1559	 * Failure to switch is indicated by the card holding
1560	 * dat[0:3] low
1561	 */
1562	if (host->ops->card_busy && host->ops->card_busy(host))
1563		err = -EAGAIN;
1564
1565power_cycle:
1566	if (err) {
1567		pr_debug("%s: Signal voltage switch failed, "
1568			"power cycling card\n", mmc_hostname(host));
1569		mmc_power_cycle(host, ocr);
1570	}
1571
 
 
1572	return err;
1573}
1574
1575/*
1576 * Select timing parameters for host.
1577 */
1578void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1579{
 
1580	host->ios.timing = timing;
1581	mmc_set_ios(host);
 
1582}
1583
1584/*
1585 * Select appropriate driver type for host.
1586 */
1587void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1588{
 
1589	host->ios.drv_type = drv_type;
1590	mmc_set_ios(host);
1591}
1592
1593int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1594			      int card_drv_type, int *drv_type)
1595{
1596	struct mmc_host *host = card->host;
1597	int host_drv_type = SD_DRIVER_TYPE_B;
1598
1599	*drv_type = 0;
1600
1601	if (!host->ops->select_drive_strength)
1602		return 0;
1603
1604	/* Use SD definition of driver strength for hosts */
1605	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1606		host_drv_type |= SD_DRIVER_TYPE_A;
1607
1608	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1609		host_drv_type |= SD_DRIVER_TYPE_C;
1610
1611	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1612		host_drv_type |= SD_DRIVER_TYPE_D;
1613
1614	/*
1615	 * The drive strength that the hardware can support
1616	 * depends on the board design.  Pass the appropriate
1617	 * information and let the hardware specific code
1618	 * return what is possible given the options
1619	 */
1620	return host->ops->select_drive_strength(card, max_dtr,
1621						host_drv_type,
1622						card_drv_type,
1623						drv_type);
1624}
1625
1626/*
1627 * Apply power to the MMC stack.  This is a two-stage process.
1628 * First, we enable power to the card without the clock running.
1629 * We then wait a bit for the power to stabilise.  Finally,
1630 * enable the bus drivers and clock to the card.
1631 *
1632 * We must _NOT_ enable the clock prior to power stablising.
1633 *
1634 * If a host does all the power sequencing itself, ignore the
1635 * initial MMC_POWER_UP stage.
1636 */
1637void mmc_power_up(struct mmc_host *host, u32 ocr)
1638{
1639	if (host->ios.power_mode == MMC_POWER_ON)
1640		return;
1641
1642	mmc_pwrseq_pre_power_on(host);
1643
1644	host->ios.vdd = fls(ocr) - 1;
 
 
 
 
 
1645	host->ios.power_mode = MMC_POWER_UP;
1646	/* Set initial state and call mmc_set_ios */
1647	mmc_set_initial_state(host);
 
1648
1649	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1650	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1651		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1652	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1653		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1654	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1655		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1656
1657	/*
1658	 * This delay should be sufficient to allow the power supply
1659	 * to reach the minimum voltage.
1660	 */
1661	mmc_delay(10);
1662
1663	mmc_pwrseq_post_power_on(host);
1664
1665	host->ios.clock = host->f_init;
1666
1667	host->ios.power_mode = MMC_POWER_ON;
1668	mmc_set_ios(host);
1669
1670	/*
1671	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1672	 * time required to reach a stable voltage.
1673	 */
1674	mmc_delay(10);
 
 
1675}
1676
1677void mmc_power_off(struct mmc_host *host)
1678{
1679	if (host->ios.power_mode == MMC_POWER_OFF)
1680		return;
1681
1682	mmc_pwrseq_power_off(host);
1683
1684	host->ios.clock = 0;
1685	host->ios.vdd = 0;
1686
 
 
 
 
1687	host->ios.power_mode = MMC_POWER_OFF;
1688	/* Set initial state and call mmc_set_ios */
1689	mmc_set_initial_state(host);
 
1690
1691	/*
1692	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1693	 * XO-1.5, require a short delay after poweroff before the card
1694	 * can be successfully turned on again.
1695	 */
1696	mmc_delay(1);
 
 
1697}
1698
1699void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1700{
1701	mmc_power_off(host);
1702	/* Wait at least 1 ms according to SD spec */
1703	mmc_delay(1);
1704	mmc_power_up(host, ocr);
1705}
1706
1707/*
1708 * Cleanup when the last reference to the bus operator is dropped.
1709 */
1710static void __mmc_release_bus(struct mmc_host *host)
1711{
1712	WARN_ON(!host->bus_dead);
 
 
1713
1714	host->bus_ops = NULL;
1715}
1716
1717/*
1718 * Increase reference count of bus operator
1719 */
1720static inline void mmc_bus_get(struct mmc_host *host)
1721{
1722	unsigned long flags;
1723
1724	spin_lock_irqsave(&host->lock, flags);
1725	host->bus_refs++;
1726	spin_unlock_irqrestore(&host->lock, flags);
1727}
1728
1729/*
1730 * Decrease reference count of bus operator and free it if
1731 * it is the last reference.
1732 */
1733static inline void mmc_bus_put(struct mmc_host *host)
1734{
1735	unsigned long flags;
1736
1737	spin_lock_irqsave(&host->lock, flags);
1738	host->bus_refs--;
1739	if ((host->bus_refs == 0) && host->bus_ops)
1740		__mmc_release_bus(host);
1741	spin_unlock_irqrestore(&host->lock, flags);
1742}
1743
1744/*
1745 * Assign a mmc bus handler to a host. Only one bus handler may control a
1746 * host at any given time.
1747 */
1748void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1749{
1750	unsigned long flags;
1751
 
 
 
1752	WARN_ON(!host->claimed);
1753
1754	spin_lock_irqsave(&host->lock, flags);
1755
1756	WARN_ON(host->bus_ops);
1757	WARN_ON(host->bus_refs);
1758
1759	host->bus_ops = ops;
1760	host->bus_refs = 1;
1761	host->bus_dead = 0;
1762
1763	spin_unlock_irqrestore(&host->lock, flags);
1764}
1765
1766/*
1767 * Remove the current bus handler from a host.
1768 */
1769void mmc_detach_bus(struct mmc_host *host)
1770{
1771	unsigned long flags;
1772
 
 
1773	WARN_ON(!host->claimed);
1774	WARN_ON(!host->bus_ops);
1775
1776	spin_lock_irqsave(&host->lock, flags);
1777
1778	host->bus_dead = 1;
1779
1780	spin_unlock_irqrestore(&host->lock, flags);
1781
1782	mmc_bus_put(host);
1783}
1784
1785static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1786				bool cd_irq)
1787{
 
 
 
 
 
 
 
1788	/*
1789	 * If the device is configured as wakeup, we prevent a new sleep for
1790	 * 5 s to give provision for user space to consume the event.
1791	 */
1792	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1793		device_can_wakeup(mmc_dev(host)))
1794		pm_wakeup_event(mmc_dev(host), 5000);
1795
1796	host->detect_change = 1;
1797	mmc_schedule_delayed_work(&host->detect, delay);
1798}
1799
1800/**
1801 *	mmc_detect_change - process change of state on a MMC socket
1802 *	@host: host which changed state.
1803 *	@delay: optional delay to wait before detection (jiffies)
1804 *
1805 *	MMC drivers should call this when they detect a card has been
1806 *	inserted or removed. The MMC layer will confirm that any
1807 *	present card is still functional, and initialize any newly
1808 *	inserted.
1809 */
1810void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1811{
1812	_mmc_detect_change(host, delay, true);
1813}
1814EXPORT_SYMBOL(mmc_detect_change);
1815
1816void mmc_init_erase(struct mmc_card *card)
1817{
1818	unsigned int sz;
1819
1820	if (is_power_of_2(card->erase_size))
1821		card->erase_shift = ffs(card->erase_size) - 1;
1822	else
1823		card->erase_shift = 0;
1824
1825	/*
1826	 * It is possible to erase an arbitrarily large area of an SD or MMC
1827	 * card.  That is not desirable because it can take a long time
1828	 * (minutes) potentially delaying more important I/O, and also the
1829	 * timeout calculations become increasingly hugely over-estimated.
1830	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831	 * to that size and alignment.
1832	 *
1833	 * For SD cards that define Allocation Unit size, limit erases to one
1834	 * Allocation Unit at a time.
1835	 * For MMC, have a stab at ai good value and for modern cards it will
1836	 * end up being 4MiB. Note that if the value is too small, it can end
1837	 * up taking longer to erase. Also note, erase_size is already set to
1838	 * High Capacity Erase Size if available when this function is called.
1839	 */
1840	if (mmc_card_sd(card) && card->ssr.au) {
1841		card->pref_erase = card->ssr.au;
1842		card->erase_shift = ffs(card->ssr.au) - 1;
1843	} else if (card->erase_size) {
 
 
1844		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1845		if (sz < 128)
1846			card->pref_erase = 512 * 1024 / 512;
1847		else if (sz < 512)
1848			card->pref_erase = 1024 * 1024 / 512;
1849		else if (sz < 1024)
1850			card->pref_erase = 2 * 1024 * 1024 / 512;
1851		else
1852			card->pref_erase = 4 * 1024 * 1024 / 512;
1853		if (card->pref_erase < card->erase_size)
1854			card->pref_erase = card->erase_size;
1855		else {
1856			sz = card->pref_erase % card->erase_size;
1857			if (sz)
1858				card->pref_erase += card->erase_size - sz;
1859		}
1860	} else
1861		card->pref_erase = 0;
1862}
1863
1864static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1865				          unsigned int arg, unsigned int qty)
1866{
1867	unsigned int erase_timeout;
1868
1869	if (arg == MMC_DISCARD_ARG ||
1870	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1871		erase_timeout = card->ext_csd.trim_timeout;
1872	} else if (card->ext_csd.erase_group_def & 1) {
1873		/* High Capacity Erase Group Size uses HC timeouts */
1874		if (arg == MMC_TRIM_ARG)
1875			erase_timeout = card->ext_csd.trim_timeout;
1876		else
1877			erase_timeout = card->ext_csd.hc_erase_timeout;
1878	} else {
1879		/* CSD Erase Group Size uses write timeout */
1880		unsigned int mult = (10 << card->csd.r2w_factor);
1881		unsigned int timeout_clks = card->csd.taac_clks * mult;
1882		unsigned int timeout_us;
1883
1884		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1885		if (card->csd.taac_ns < 1000000)
1886			timeout_us = (card->csd.taac_ns * mult) / 1000;
1887		else
1888			timeout_us = (card->csd.taac_ns / 1000) * mult;
1889
1890		/*
1891		 * ios.clock is only a target.  The real clock rate might be
1892		 * less but not that much less, so fudge it by multiplying by 2.
1893		 */
1894		timeout_clks <<= 1;
1895		timeout_us += (timeout_clks * 1000) /
1896			      (card->host->ios.clock / 1000);
1897
1898		erase_timeout = timeout_us / 1000;
1899
1900		/*
1901		 * Theoretically, the calculation could underflow so round up
1902		 * to 1ms in that case.
1903		 */
1904		if (!erase_timeout)
1905			erase_timeout = 1;
1906	}
1907
1908	/* Multiplier for secure operations */
1909	if (arg & MMC_SECURE_ARGS) {
1910		if (arg == MMC_SECURE_ERASE_ARG)
1911			erase_timeout *= card->ext_csd.sec_erase_mult;
1912		else
1913			erase_timeout *= card->ext_csd.sec_trim_mult;
1914	}
1915
1916	erase_timeout *= qty;
1917
1918	/*
1919	 * Ensure at least a 1 second timeout for SPI as per
1920	 * 'mmc_set_data_timeout()'
1921	 */
1922	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1923		erase_timeout = 1000;
1924
1925	return erase_timeout;
1926}
1927
1928static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1929					 unsigned int arg,
1930					 unsigned int qty)
1931{
1932	unsigned int erase_timeout;
1933
1934	if (card->ssr.erase_timeout) {
1935		/* Erase timeout specified in SD Status Register (SSR) */
1936		erase_timeout = card->ssr.erase_timeout * qty +
1937				card->ssr.erase_offset;
1938	} else {
1939		/*
1940		 * Erase timeout not specified in SD Status Register (SSR) so
1941		 * use 250ms per write block.
1942		 */
1943		erase_timeout = 250 * qty;
1944	}
1945
1946	/* Must not be less than 1 second */
1947	if (erase_timeout < 1000)
1948		erase_timeout = 1000;
1949
1950	return erase_timeout;
1951}
1952
1953static unsigned int mmc_erase_timeout(struct mmc_card *card,
1954				      unsigned int arg,
1955				      unsigned int qty)
1956{
1957	if (mmc_card_sd(card))
1958		return mmc_sd_erase_timeout(card, arg, qty);
1959	else
1960		return mmc_mmc_erase_timeout(card, arg, qty);
1961}
1962
1963static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1964			unsigned int to, unsigned int arg)
1965{
1966	struct mmc_command cmd = {};
1967	unsigned int qty = 0, busy_timeout = 0;
1968	bool use_r1b_resp = false;
1969	unsigned long timeout;
1970	int err;
1971
1972	mmc_retune_hold(card->host);
1973
1974	/*
1975	 * qty is used to calculate the erase timeout which depends on how many
1976	 * erase groups (or allocation units in SD terminology) are affected.
1977	 * We count erasing part of an erase group as one erase group.
1978	 * For SD, the allocation units are always a power of 2.  For MMC, the
1979	 * erase group size is almost certainly also power of 2, but it does not
1980	 * seem to insist on that in the JEDEC standard, so we fall back to
1981	 * division in that case.  SD may not specify an allocation unit size,
1982	 * in which case the timeout is based on the number of write blocks.
1983	 *
1984	 * Note that the timeout for secure trim 2 will only be correct if the
1985	 * number of erase groups specified is the same as the total of all
1986	 * preceding secure trim 1 commands.  Since the power may have been
1987	 * lost since the secure trim 1 commands occurred, it is generally
1988	 * impossible to calculate the secure trim 2 timeout correctly.
1989	 */
1990	if (card->erase_shift)
1991		qty += ((to >> card->erase_shift) -
1992			(from >> card->erase_shift)) + 1;
1993	else if (mmc_card_sd(card))
1994		qty += to - from + 1;
1995	else
1996		qty += ((to / card->erase_size) -
1997			(from / card->erase_size)) + 1;
1998
1999	if (!mmc_card_blockaddr(card)) {
2000		from <<= 9;
2001		to <<= 9;
2002	}
2003
2004	if (mmc_card_sd(card))
2005		cmd.opcode = SD_ERASE_WR_BLK_START;
2006	else
2007		cmd.opcode = MMC_ERASE_GROUP_START;
2008	cmd.arg = from;
2009	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2010	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2011	if (err) {
2012		pr_err("mmc_erase: group start error %d, "
2013		       "status %#x\n", err, cmd.resp[0]);
2014		err = -EIO;
2015		goto out;
2016	}
2017
2018	memset(&cmd, 0, sizeof(struct mmc_command));
2019	if (mmc_card_sd(card))
2020		cmd.opcode = SD_ERASE_WR_BLK_END;
2021	else
2022		cmd.opcode = MMC_ERASE_GROUP_END;
2023	cmd.arg = to;
2024	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2025	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2026	if (err) {
2027		pr_err("mmc_erase: group end error %d, status %#x\n",
2028		       err, cmd.resp[0]);
2029		err = -EIO;
2030		goto out;
2031	}
2032
2033	memset(&cmd, 0, sizeof(struct mmc_command));
2034	cmd.opcode = MMC_ERASE;
2035	cmd.arg = arg;
2036	busy_timeout = mmc_erase_timeout(card, arg, qty);
2037	/*
2038	 * If the host controller supports busy signalling and the timeout for
2039	 * the erase operation does not exceed the max_busy_timeout, we should
2040	 * use R1B response. Or we need to prevent the host from doing hw busy
2041	 * detection, which is done by converting to a R1 response instead.
2042	 */
2043	if (card->host->max_busy_timeout &&
2044	    busy_timeout > card->host->max_busy_timeout) {
2045		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2046	} else {
2047		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2048		cmd.busy_timeout = busy_timeout;
2049		use_r1b_resp = true;
2050	}
2051
2052	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2053	if (err) {
2054		pr_err("mmc_erase: erase error %d, status %#x\n",
2055		       err, cmd.resp[0]);
2056		err = -EIO;
2057		goto out;
2058	}
2059
2060	if (mmc_host_is_spi(card->host))
2061		goto out;
2062
2063	/*
2064	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2065	 * shall be avoided.
2066	 */
2067	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2068		goto out;
2069
2070	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2071	do {
2072		memset(&cmd, 0, sizeof(struct mmc_command));
2073		cmd.opcode = MMC_SEND_STATUS;
2074		cmd.arg = card->rca << 16;
2075		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2076		/* Do not retry else we can't see errors */
2077		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2078		if (err || (cmd.resp[0] & 0xFDF92000)) {
2079			pr_err("error %d requesting status %#x\n",
2080				err, cmd.resp[0]);
2081			err = -EIO;
2082			goto out;
2083		}
2084
2085		/* Timeout if the device never becomes ready for data and
2086		 * never leaves the program state.
2087		 */
2088		if (time_after(jiffies, timeout)) {
2089			pr_err("%s: Card stuck in programming state! %s\n",
2090				mmc_hostname(card->host), __func__);
2091			err =  -EIO;
2092			goto out;
2093		}
2094
2095	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2096		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2097out:
2098	mmc_retune_release(card->host);
2099	return err;
2100}
2101
2102static unsigned int mmc_align_erase_size(struct mmc_card *card,
2103					 unsigned int *from,
2104					 unsigned int *to,
2105					 unsigned int nr)
2106{
2107	unsigned int from_new = *from, nr_new = nr, rem;
2108
2109	/*
2110	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2111	 * to align the erase size efficiently.
2112	 */
2113	if (is_power_of_2(card->erase_size)) {
2114		unsigned int temp = from_new;
2115
2116		from_new = round_up(temp, card->erase_size);
2117		rem = from_new - temp;
2118
2119		if (nr_new > rem)
2120			nr_new -= rem;
2121		else
2122			return 0;
2123
2124		nr_new = round_down(nr_new, card->erase_size);
2125	} else {
2126		rem = from_new % card->erase_size;
2127		if (rem) {
2128			rem = card->erase_size - rem;
2129			from_new += rem;
2130			if (nr_new > rem)
2131				nr_new -= rem;
2132			else
2133				return 0;
2134		}
2135
2136		rem = nr_new % card->erase_size;
2137		if (rem)
2138			nr_new -= rem;
2139	}
2140
2141	if (nr_new == 0)
2142		return 0;
2143
2144	*to = from_new + nr_new;
2145	*from = from_new;
2146
2147	return nr_new;
2148}
2149
2150/**
2151 * mmc_erase - erase sectors.
2152 * @card: card to erase
2153 * @from: first sector to erase
2154 * @nr: number of sectors to erase
2155 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2156 *
2157 * Caller must claim host before calling this function.
2158 */
2159int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2160	      unsigned int arg)
2161{
2162	unsigned int rem, to = from + nr;
2163	int err;
2164
2165	if (!(card->host->caps & MMC_CAP_ERASE) ||
2166	    !(card->csd.cmdclass & CCC_ERASE))
2167		return -EOPNOTSUPP;
2168
2169	if (!card->erase_size)
2170		return -EOPNOTSUPP;
2171
2172	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2173		return -EOPNOTSUPP;
2174
2175	if ((arg & MMC_SECURE_ARGS) &&
2176	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2177		return -EOPNOTSUPP;
2178
2179	if ((arg & MMC_TRIM_ARGS) &&
2180	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2181		return -EOPNOTSUPP;
2182
2183	if (arg == MMC_SECURE_ERASE_ARG) {
2184		if (from % card->erase_size || nr % card->erase_size)
2185			return -EINVAL;
2186	}
2187
2188	if (arg == MMC_ERASE_ARG)
2189		nr = mmc_align_erase_size(card, &from, &to, nr);
 
 
 
 
 
 
 
 
 
 
 
 
2190
2191	if (nr == 0)
2192		return 0;
2193
 
 
2194	if (to <= from)
2195		return -EINVAL;
2196
2197	/* 'from' and 'to' are inclusive */
2198	to -= 1;
2199
2200	/*
2201	 * Special case where only one erase-group fits in the timeout budget:
2202	 * If the region crosses an erase-group boundary on this particular
2203	 * case, we will be trimming more than one erase-group which, does not
2204	 * fit in the timeout budget of the controller, so we need to split it
2205	 * and call mmc_do_erase() twice if necessary. This special case is
2206	 * identified by the card->eg_boundary flag.
2207	 */
2208	rem = card->erase_size - (from % card->erase_size);
2209	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2210		err = mmc_do_erase(card, from, from + rem - 1, arg);
2211		from += rem;
2212		if ((err) || (to <= from))
2213			return err;
2214	}
2215
2216	return mmc_do_erase(card, from, to, arg);
2217}
2218EXPORT_SYMBOL(mmc_erase);
2219
2220int mmc_can_erase(struct mmc_card *card)
2221{
2222	if ((card->host->caps & MMC_CAP_ERASE) &&
2223	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2224		return 1;
2225	return 0;
2226}
2227EXPORT_SYMBOL(mmc_can_erase);
2228
2229int mmc_can_trim(struct mmc_card *card)
2230{
2231	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2232	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2233		return 1;
2234	return 0;
2235}
2236EXPORT_SYMBOL(mmc_can_trim);
2237
2238int mmc_can_discard(struct mmc_card *card)
2239{
2240	/*
2241	 * As there's no way to detect the discard support bit at v4.5
2242	 * use the s/w feature support filed.
2243	 */
2244	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2245		return 1;
2246	return 0;
2247}
2248EXPORT_SYMBOL(mmc_can_discard);
2249
2250int mmc_can_sanitize(struct mmc_card *card)
2251{
2252	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2253		return 0;
2254	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2255		return 1;
2256	return 0;
2257}
2258EXPORT_SYMBOL(mmc_can_sanitize);
2259
2260int mmc_can_secure_erase_trim(struct mmc_card *card)
2261{
2262	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2263	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2264		return 1;
2265	return 0;
2266}
2267EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2268
2269int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2270			    unsigned int nr)
2271{
2272	if (!card->erase_size)
2273		return 0;
2274	if (from % card->erase_size || nr % card->erase_size)
2275		return 0;
2276	return 1;
2277}
2278EXPORT_SYMBOL(mmc_erase_group_aligned);
2279
2280static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2281					    unsigned int arg)
2282{
2283	struct mmc_host *host = card->host;
2284	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2285	unsigned int last_timeout = 0;
2286	unsigned int max_busy_timeout = host->max_busy_timeout ?
2287			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2288
2289	if (card->erase_shift) {
2290		max_qty = UINT_MAX >> card->erase_shift;
2291		min_qty = card->pref_erase >> card->erase_shift;
2292	} else if (mmc_card_sd(card)) {
2293		max_qty = UINT_MAX;
2294		min_qty = card->pref_erase;
2295	} else {
2296		max_qty = UINT_MAX / card->erase_size;
2297		min_qty = card->pref_erase / card->erase_size;
2298	}
2299
2300	/*
2301	 * We should not only use 'host->max_busy_timeout' as the limitation
2302	 * when deciding the max discard sectors. We should set a balance value
2303	 * to improve the erase speed, and it can not get too long timeout at
2304	 * the same time.
2305	 *
2306	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2307	 * matter what size of 'host->max_busy_timeout', but if the
2308	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2309	 * then we can continue to increase the max discard sectors until we
2310	 * get a balance value. In cases when the 'host->max_busy_timeout'
2311	 * isn't specified, use the default max erase timeout.
2312	 */
2313	do {
2314		y = 0;
2315		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2316			timeout = mmc_erase_timeout(card, arg, qty + x);
2317
2318			if (qty + x > min_qty && timeout > max_busy_timeout)
2319				break;
2320
2321			if (timeout < last_timeout)
2322				break;
2323			last_timeout = timeout;
2324			y = x;
2325		}
2326		qty += y;
2327	} while (y);
2328
2329	if (!qty)
2330		return 0;
2331
2332	/*
2333	 * When specifying a sector range to trim, chances are we might cross
2334	 * an erase-group boundary even if the amount of sectors is less than
2335	 * one erase-group.
2336	 * If we can only fit one erase-group in the controller timeout budget,
2337	 * we have to care that erase-group boundaries are not crossed by a
2338	 * single trim operation. We flag that special case with "eg_boundary".
2339	 * In all other cases we can just decrement qty and pretend that we
2340	 * always touch (qty + 1) erase-groups as a simple optimization.
2341	 */
2342	if (qty == 1)
2343		card->eg_boundary = 1;
2344	else
2345		qty--;
2346
2347	/* Convert qty to sectors */
2348	if (card->erase_shift)
2349		max_discard = qty << card->erase_shift;
2350	else if (mmc_card_sd(card))
2351		max_discard = qty + 1;
2352	else
2353		max_discard = qty * card->erase_size;
2354
2355	return max_discard;
2356}
2357
2358unsigned int mmc_calc_max_discard(struct mmc_card *card)
2359{
2360	struct mmc_host *host = card->host;
2361	unsigned int max_discard, max_trim;
2362
 
 
 
2363	/*
2364	 * Without erase_group_def set, MMC erase timeout depends on clock
2365	 * frequence which can change.  In that case, the best choice is
2366	 * just the preferred erase size.
2367	 */
2368	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2369		return card->pref_erase;
2370
2371	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2372	if (max_discard && mmc_can_trim(card)) {
2373		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2374		if (max_trim < max_discard)
2375			max_discard = max_trim;
2376	} else if (max_discard < card->erase_size) {
2377		max_discard = 0;
2378	}
2379	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2380		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2381		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2382	return max_discard;
2383}
2384EXPORT_SYMBOL(mmc_calc_max_discard);
2385
2386bool mmc_card_is_blockaddr(struct mmc_card *card)
2387{
2388	return card ? mmc_card_blockaddr(card) : false;
2389}
2390EXPORT_SYMBOL(mmc_card_is_blockaddr);
2391
2392int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2393{
2394	struct mmc_command cmd = {};
2395
2396	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2397	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2398		return 0;
2399
2400	cmd.opcode = MMC_SET_BLOCKLEN;
2401	cmd.arg = blocklen;
2402	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2403	return mmc_wait_for_cmd(card->host, &cmd, 5);
2404}
2405EXPORT_SYMBOL(mmc_set_blocklen);
2406
2407int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2408			bool is_rel_write)
2409{
2410	struct mmc_command cmd = {};
2411
2412	cmd.opcode = MMC_SET_BLOCK_COUNT;
2413	cmd.arg = blockcount & 0x0000FFFF;
2414	if (is_rel_write)
2415		cmd.arg |= 1 << 31;
2416	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2417	return mmc_wait_for_cmd(card->host, &cmd, 5);
2418}
2419EXPORT_SYMBOL(mmc_set_blockcount);
2420
2421static void mmc_hw_reset_for_init(struct mmc_host *host)
2422{
2423	mmc_pwrseq_reset(host);
2424
2425	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2426		return;
 
2427	host->ops->hw_reset(host);
 
2428}
2429
2430int mmc_hw_reset(struct mmc_host *host)
 
 
 
 
 
 
 
 
 
 
 
 
 
2431{
2432	int ret;
 
 
 
2433
2434	if (!host->card)
2435		return -EINVAL;
2436
2437	mmc_bus_get(host);
2438	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2439		mmc_bus_put(host);
2440		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441	}
 
 
 
2442
2443	ret = host->bus_ops->reset(host);
2444	mmc_bus_put(host);
2445
2446	if (ret)
2447		pr_warn("%s: tried to reset card, got error %d\n",
2448			mmc_hostname(host), ret);
2449
2450	return ret;
 
 
2451}
2452EXPORT_SYMBOL(mmc_hw_reset);
2453
 
 
 
 
 
 
2454static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2455{
2456	host->f_init = freq;
2457
2458	pr_debug("%s: %s: trying to init card at %u Hz\n",
 
2459		mmc_hostname(host), __func__, host->f_init);
2460
2461	mmc_power_up(host, host->ocr_avail);
2462
2463	/*
2464	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465	 * do a hardware reset if possible.
2466	 */
2467	mmc_hw_reset_for_init(host);
2468
2469	/*
2470	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2471	 * if the card is being re-initialized, just send it.  CMD52
2472	 * should be ignored by SD/eMMC cards.
2473	 * Skip it if we already know that we do not support SDIO commands
2474	 */
2475	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2476		sdio_reset(host);
2477
2478	mmc_go_idle(host);
2479
2480	if (!(host->caps2 & MMC_CAP2_NO_SD))
2481		mmc_send_if_cond(host, host->ocr_avail);
2482
2483	/* Order's important: probe SDIO, then SD, then MMC */
2484	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2485		if (!mmc_attach_sdio(host))
2486			return 0;
2487
2488	if (!(host->caps2 & MMC_CAP2_NO_SD))
2489		if (!mmc_attach_sd(host))
2490			return 0;
2491
2492	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2493		if (!mmc_attach_mmc(host))
2494			return 0;
2495
2496	mmc_power_off(host);
2497	return -EIO;
2498}
2499
2500int _mmc_detect_card_removed(struct mmc_host *host)
2501{
2502	int ret;
2503
 
 
 
2504	if (!host->card || mmc_card_removed(host->card))
2505		return 1;
2506
2507	ret = host->bus_ops->alive(host);
2508
2509	/*
2510	 * Card detect status and alive check may be out of sync if card is
2511	 * removed slowly, when card detect switch changes while card/slot
2512	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514	 * detect work 200ms later for this case.
2515	 */
2516	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2517		mmc_detect_change(host, msecs_to_jiffies(200));
2518		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2519	}
2520
2521	if (ret) {
2522		mmc_card_set_removed(host->card);
2523		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2524	}
2525
2526	return ret;
2527}
2528
2529int mmc_detect_card_removed(struct mmc_host *host)
2530{
2531	struct mmc_card *card = host->card;
2532	int ret;
2533
2534	WARN_ON(!host->claimed);
2535
2536	if (!card)
2537		return 1;
2538
2539	if (!mmc_card_is_removable(host))
2540		return 0;
2541
2542	ret = mmc_card_removed(card);
2543	/*
2544	 * The card will be considered unchanged unless we have been asked to
2545	 * detect a change or host requires polling to provide card detection.
2546	 */
2547	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2548		return ret;
2549
2550	host->detect_change = 0;
2551	if (!ret) {
2552		ret = _mmc_detect_card_removed(host);
2553		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2554			/*
2555			 * Schedule a detect work as soon as possible to let a
2556			 * rescan handle the card removal.
2557			 */
2558			cancel_delayed_work(&host->detect);
2559			_mmc_detect_change(host, 0, false);
2560		}
2561	}
2562
2563	return ret;
2564}
2565EXPORT_SYMBOL(mmc_detect_card_removed);
2566
2567void mmc_rescan(struct work_struct *work)
2568{
2569	struct mmc_host *host =
2570		container_of(work, struct mmc_host, detect.work);
2571	int i;
2572
2573	if (host->rescan_disable)
2574		return;
2575
2576	/* If there is a non-removable card registered, only scan once */
2577	if (!mmc_card_is_removable(host) && host->rescan_entered)
2578		return;
2579	host->rescan_entered = 1;
2580
2581	if (host->trigger_card_event && host->ops->card_event) {
2582		mmc_claim_host(host);
2583		host->ops->card_event(host);
2584		mmc_release_host(host);
2585		host->trigger_card_event = false;
2586	}
2587
2588	mmc_bus_get(host);
2589
2590	/*
2591	 * if there is a _removable_ card registered, check whether it is
2592	 * still present
2593	 */
2594	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
 
2595		host->bus_ops->detect(host);
2596
2597	host->detect_change = 0;
2598
2599	/*
2600	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2601	 * the card is no longer present.
2602	 */
2603	mmc_bus_put(host);
2604	mmc_bus_get(host);
2605
2606	/* if there still is a card present, stop here */
2607	if (host->bus_ops != NULL) {
2608		mmc_bus_put(host);
2609		goto out;
2610	}
2611
2612	/*
2613	 * Only we can add a new handler, so it's safe to
2614	 * release the lock here.
2615	 */
2616	mmc_bus_put(host);
2617
2618	mmc_claim_host(host);
2619	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2620			host->ops->get_cd(host) == 0) {
 
2621		mmc_power_off(host);
2622		mmc_release_host(host);
2623		goto out;
2624	}
2625
 
2626	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2627		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2628			break;
2629		if (freqs[i] <= host->f_min)
2630			break;
2631	}
2632	mmc_release_host(host);
2633
2634 out:
2635	if (host->caps & MMC_CAP_NEEDS_POLL)
2636		mmc_schedule_delayed_work(&host->detect, HZ);
2637}
2638
2639void mmc_start_host(struct mmc_host *host)
2640{
2641	host->f_init = max(freqs[0], host->f_min);
2642	host->rescan_disable = 0;
2643	host->ios.power_mode = MMC_POWER_UNDEFINED;
2644
2645	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2646		mmc_claim_host(host);
2647		mmc_power_up(host, host->ocr_avail);
2648		mmc_release_host(host);
2649	}
2650
2651	mmc_gpiod_request_cd_irq(host);
2652	_mmc_detect_change(host, 0, false);
2653}
2654
2655void mmc_stop_host(struct mmc_host *host)
2656{
2657	if (host->slot.cd_irq >= 0) {
2658		mmc_gpio_set_cd_wake(host, false);
 
 
 
 
 
2659		disable_irq(host->slot.cd_irq);
2660	}
2661
2662	host->rescan_disable = 1;
2663	cancel_delayed_work_sync(&host->detect);
 
2664
2665	/* clear pm flags now and let card drivers set them as needed */
2666	host->pm_flags = 0;
2667
2668	mmc_bus_get(host);
2669	if (host->bus_ops && !host->bus_dead) {
2670		/* Calling bus_ops->remove() with a claimed host can deadlock */
2671		host->bus_ops->remove(host);
2672		mmc_claim_host(host);
2673		mmc_detach_bus(host);
2674		mmc_power_off(host);
2675		mmc_release_host(host);
2676		mmc_bus_put(host);
2677		return;
2678	}
2679	mmc_bus_put(host);
2680
2681	mmc_claim_host(host);
 
2682	mmc_power_off(host);
2683	mmc_release_host(host);
2684}
2685
2686int mmc_power_save_host(struct mmc_host *host)
2687{
2688	int ret = 0;
2689
2690	pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
 
 
2691
2692	mmc_bus_get(host);
2693
2694	if (!host->bus_ops || host->bus_dead) {
2695		mmc_bus_put(host);
2696		return -EINVAL;
2697	}
2698
2699	if (host->bus_ops->power_save)
2700		ret = host->bus_ops->power_save(host);
2701
2702	mmc_bus_put(host);
2703
2704	mmc_power_off(host);
2705
2706	return ret;
2707}
2708EXPORT_SYMBOL(mmc_power_save_host);
2709
2710int mmc_power_restore_host(struct mmc_host *host)
2711{
2712	int ret;
2713
2714	pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
 
 
2715
2716	mmc_bus_get(host);
2717
2718	if (!host->bus_ops || host->bus_dead) {
2719		mmc_bus_put(host);
2720		return -EINVAL;
2721	}
2722
2723	mmc_power_up(host, host->card->ocr);
2724	ret = host->bus_ops->power_restore(host);
2725
2726	mmc_bus_put(host);
2727
2728	return ret;
2729}
2730EXPORT_SYMBOL(mmc_power_restore_host);
2731
2732#ifdef CONFIG_PM_SLEEP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2733/* Do the card removal on suspend if card is assumed removeable
2734 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2735   to sync the card.
2736*/
2737static int mmc_pm_notify(struct notifier_block *notify_block,
2738			unsigned long mode, void *unused)
2739{
2740	struct mmc_host *host = container_of(
2741		notify_block, struct mmc_host, pm_notify);
2742	unsigned long flags;
2743	int err = 0;
2744
2745	switch (mode) {
2746	case PM_HIBERNATION_PREPARE:
2747	case PM_SUSPEND_PREPARE:
2748	case PM_RESTORE_PREPARE:
2749		spin_lock_irqsave(&host->lock, flags);
2750		host->rescan_disable = 1;
2751		spin_unlock_irqrestore(&host->lock, flags);
2752		cancel_delayed_work_sync(&host->detect);
2753
2754		if (!host->bus_ops)
2755			break;
2756
2757		/* Validate prerequisites for suspend */
2758		if (host->bus_ops->pre_suspend)
2759			err = host->bus_ops->pre_suspend(host);
2760		if (!err)
2761			break;
2762
2763		if (!mmc_card_is_removable(host)) {
2764			dev_warn(mmc_dev(host),
2765				 "pre_suspend failed for non-removable host: "
2766				 "%d\n", err);
2767			/* Avoid removing non-removable hosts */
2768			break;
2769		}
2770
2771		/* Calling bus_ops->remove() with a claimed host can deadlock */
2772		host->bus_ops->remove(host);
2773		mmc_claim_host(host);
2774		mmc_detach_bus(host);
2775		mmc_power_off(host);
2776		mmc_release_host(host);
2777		host->pm_flags = 0;
2778		break;
2779
2780	case PM_POST_SUSPEND:
2781	case PM_POST_HIBERNATION:
2782	case PM_POST_RESTORE:
2783
2784		spin_lock_irqsave(&host->lock, flags);
2785		host->rescan_disable = 0;
2786		spin_unlock_irqrestore(&host->lock, flags);
2787		_mmc_detect_change(host, 0, false);
2788
2789	}
2790
2791	return 0;
2792}
 
2793
2794void mmc_register_pm_notifier(struct mmc_host *host)
2795{
2796	host->pm_notify.notifier_call = mmc_pm_notify;
2797	register_pm_notifier(&host->pm_notify);
2798}
2799
2800void mmc_unregister_pm_notifier(struct mmc_host *host)
2801{
2802	unregister_pm_notifier(&host->pm_notify);
 
 
 
 
 
 
2803}
2804#endif
2805
2806static int __init mmc_init(void)
2807{
2808	int ret;
2809
 
 
 
 
2810	ret = mmc_register_bus();
2811	if (ret)
2812		return ret;
2813
2814	ret = mmc_register_host_class();
2815	if (ret)
2816		goto unregister_bus;
2817
2818	ret = sdio_register_bus();
2819	if (ret)
2820		goto unregister_host_class;
2821
2822	return 0;
2823
2824unregister_host_class:
2825	mmc_unregister_host_class();
2826unregister_bus:
2827	mmc_unregister_bus();
 
 
 
2828	return ret;
2829}
2830
2831static void __exit mmc_exit(void)
2832{
2833	sdio_unregister_bus();
2834	mmc_unregister_host_class();
2835	mmc_unregister_bus();
 
2836}
2837
2838subsys_initcall(mmc_init);
2839module_exit(mmc_exit);
2840
2841MODULE_LICENSE("GPL");