Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * regmap based irq_chip
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/export.h>
 14#include <linux/device.h>
 15#include <linux/regmap.h>
 16#include <linux/irq.h>
 17#include <linux/interrupt.h>
 
 18#include <linux/irqdomain.h>
 19#include <linux/pm_runtime.h>
 
 20#include <linux/slab.h>
 21
 22#include "internal.h"
 23
 24struct regmap_irq_chip_data {
 25	struct mutex lock;
 26	struct irq_chip irq_chip;
 27
 28	struct regmap *map;
 29	const struct regmap_irq_chip *chip;
 30
 31	int irq_base;
 32	struct irq_domain *domain;
 33
 34	int irq;
 35	int wake_count;
 36
 37	void *status_reg_buf;
 38	unsigned int *status_buf;
 39	unsigned int *mask_buf;
 40	unsigned int *mask_buf_def;
 41	unsigned int *wake_buf;
 
 
 42
 43	unsigned int irq_reg_stride;
 
 44};
 45
 46static inline const
 47struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
 48				     int irq)
 49{
 50	return &data->chip->irqs[irq];
 51}
 52
 53static void regmap_irq_lock(struct irq_data *data)
 54{
 55	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 56
 57	mutex_lock(&d->lock);
 58}
 59
 
 
 
 
 
 
 
 
 
 
 60static void regmap_irq_sync_unlock(struct irq_data *data)
 61{
 62	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 63	struct regmap *map = d->map;
 64	int i, ret;
 65	u32 reg;
 
 66
 67	if (d->chip->runtime_pm) {
 68		ret = pm_runtime_get_sync(map->dev);
 69		if (ret < 0)
 70			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 71				ret);
 72	}
 73
 74	/*
 75	 * If there's been a change in the mask write it back to the
 76	 * hardware.  We rely on the use of the regmap core cache to
 77	 * suppress pointless writes.
 78	 */
 79	for (i = 0; i < d->chip->num_regs; i++) {
 80		reg = d->chip->mask_base +
 81			(i * map->reg_stride * d->irq_reg_stride);
 82		if (d->chip->mask_invert)
 83			ret = regmap_update_bits(d->map, reg,
 84					 d->mask_buf_def[i], ~d->mask_buf[i]);
 85		else
 86			ret = regmap_update_bits(d->map, reg,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87					 d->mask_buf_def[i], d->mask_buf[i]);
 
 88		if (ret != 0)
 89			dev_err(d->map->dev, "Failed to sync masks in %x\n",
 90				reg);
 91
 92		reg = d->chip->wake_base +
 93			(i * map->reg_stride * d->irq_reg_stride);
 94		if (d->wake_buf) {
 95			if (d->chip->wake_invert)
 96				ret = regmap_update_bits(d->map, reg,
 97							 d->mask_buf_def[i],
 98							 ~d->wake_buf[i]);
 99			else
100				ret = regmap_update_bits(d->map, reg,
101							 d->mask_buf_def[i],
102							 d->wake_buf[i]);
103			if (ret != 0)
104				dev_err(d->map->dev,
105					"Failed to sync wakes in %x: %d\n",
106					reg, ret);
107		}
108
109		if (!d->chip->init_ack_masked)
110			continue;
111		/*
112		 * Ack all the masked interrupts uncondictionly,
113		 * OR if there is masked interrupt which hasn't been Acked,
114		 * it'll be ignored in irq handler, then may introduce irq storm
115		 */
116		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
117			reg = d->chip->ack_base +
118				(i * map->reg_stride * d->irq_reg_stride);
119			ret = regmap_write(map, reg, d->mask_buf[i]);
 
 
 
 
120			if (ret != 0)
121				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
122					reg, ret);
123		}
124	}
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126	if (d->chip->runtime_pm)
127		pm_runtime_put(map->dev);
128
129	/* If we've changed our wakeup count propagate it to the parent */
130	if (d->wake_count < 0)
131		for (i = d->wake_count; i < 0; i++)
132			irq_set_irq_wake(d->irq, 0);
133	else if (d->wake_count > 0)
134		for (i = 0; i < d->wake_count; i++)
135			irq_set_irq_wake(d->irq, 1);
136
137	d->wake_count = 0;
138
139	mutex_unlock(&d->lock);
140}
141
142static void regmap_irq_enable(struct irq_data *data)
143{
144	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
145	struct regmap *map = d->map;
146	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
147
148	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
149}
150
151static void regmap_irq_disable(struct irq_data *data)
152{
153	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
154	struct regmap *map = d->map;
155	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
156
157	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
158}
159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
161{
162	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
163	struct regmap *map = d->map;
164	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
165
166	if (on) {
167		if (d->wake_buf)
168			d->wake_buf[irq_data->reg_offset / map->reg_stride]
169				&= ~irq_data->mask;
170		d->wake_count++;
171	} else {
172		if (d->wake_buf)
173			d->wake_buf[irq_data->reg_offset / map->reg_stride]
174				|= irq_data->mask;
175		d->wake_count--;
176	}
177
178	return 0;
179}
180
181static const struct irq_chip regmap_irq_chip = {
182	.irq_bus_lock		= regmap_irq_lock,
183	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
184	.irq_disable		= regmap_irq_disable,
185	.irq_enable		= regmap_irq_enable,
 
186	.irq_set_wake		= regmap_irq_set_wake,
187};
188
189static irqreturn_t regmap_irq_thread(int irq, void *d)
190{
191	struct regmap_irq_chip_data *data = d;
192	const struct regmap_irq_chip *chip = data->chip;
193	struct regmap *map = data->map;
194	int ret, i;
195	bool handled = false;
196	u32 reg;
197
 
 
 
198	if (chip->runtime_pm) {
199		ret = pm_runtime_get_sync(map->dev);
200		if (ret < 0) {
201			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
202				ret);
203			pm_runtime_put(map->dev);
204			return IRQ_NONE;
205		}
206	}
207
208	/*
209	 * Read in the statuses, using a single bulk read if possible
210	 * in order to reduce the I/O overheads.
211	 */
212	if (!map->use_single_rw && map->reg_stride == 1 &&
213	    data->irq_reg_stride == 1) {
214		u8 *buf8 = data->status_reg_buf;
215		u16 *buf16 = data->status_reg_buf;
216		u32 *buf32 = data->status_reg_buf;
217
218		BUG_ON(!data->status_reg_buf);
219
220		ret = regmap_bulk_read(map, chip->status_base,
221				       data->status_reg_buf,
222				       chip->num_regs);
223		if (ret != 0) {
224			dev_err(map->dev, "Failed to read IRQ status: %d\n",
225				ret);
226			return IRQ_NONE;
227		}
228
229		for (i = 0; i < data->chip->num_regs; i++) {
230			switch (map->format.val_bytes) {
231			case 1:
232				data->status_buf[i] = buf8[i];
233				break;
234			case 2:
235				data->status_buf[i] = buf16[i];
236				break;
237			case 4:
238				data->status_buf[i] = buf32[i];
239				break;
240			default:
241				BUG();
242				return IRQ_NONE;
243			}
244		}
245
246	} else {
247		for (i = 0; i < data->chip->num_regs; i++) {
248			ret = regmap_read(map, chip->status_base +
249					  (i * map->reg_stride
250					   * data->irq_reg_stride),
251					  &data->status_buf[i]);
252
253			if (ret != 0) {
254				dev_err(map->dev,
255					"Failed to read IRQ status: %d\n",
256					ret);
257				if (chip->runtime_pm)
258					pm_runtime_put(map->dev);
259				return IRQ_NONE;
260			}
261		}
262	}
263
264	/*
265	 * Ignore masked IRQs and ack if we need to; we ack early so
266	 * there is no race between handling and acknowleding the
267	 * interrupt.  We assume that typically few of the interrupts
268	 * will fire simultaneously so don't worry about overhead from
269	 * doing a write per register.
270	 */
271	for (i = 0; i < data->chip->num_regs; i++) {
272		data->status_buf[i] &= ~data->mask_buf[i];
273
274		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
275			reg = chip->ack_base +
276				(i * map->reg_stride * data->irq_reg_stride);
277			ret = regmap_write(map, reg, data->status_buf[i]);
278			if (ret != 0)
279				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
280					reg, ret);
281		}
282	}
283
284	for (i = 0; i < chip->num_irqs; i++) {
285		if (data->status_buf[chip->irqs[i].reg_offset /
286				     map->reg_stride] & chip->irqs[i].mask) {
287			handle_nested_irq(irq_find_mapping(data->domain, i));
288			handled = true;
289		}
290	}
291
292	if (chip->runtime_pm)
293		pm_runtime_put(map->dev);
294
 
 
 
 
295	if (handled)
296		return IRQ_HANDLED;
297	else
298		return IRQ_NONE;
299}
300
301static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
302			  irq_hw_number_t hw)
303{
304	struct regmap_irq_chip_data *data = h->host_data;
305
306	irq_set_chip_data(virq, data);
307	irq_set_chip(virq, &data->irq_chip);
308	irq_set_nested_thread(virq, 1);
309
310	/* ARM needs us to explicitly flag the IRQ as valid
311	 * and will set them noprobe when we do so. */
312#ifdef CONFIG_ARM
313	set_irq_flags(virq, IRQF_VALID);
314#else
315	irq_set_noprobe(virq);
316#endif
317
318	return 0;
319}
320
321static struct irq_domain_ops regmap_domain_ops = {
322	.map	= regmap_irq_map,
323	.xlate	= irq_domain_xlate_twocell,
324};
325
326/**
327 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
328 *
329 * map:       The regmap for the device.
330 * irq:       The IRQ the device uses to signal interrupts
331 * irq_flags: The IRQF_ flags to use for the primary interrupt.
332 * chip:      Configuration for the interrupt controller.
333 * data:      Runtime data structure for the controller, allocated on success
 
334 *
335 * Returns 0 on success or an errno on failure.
336 *
337 * In order for this to be efficient the chip really should use a
338 * register cache.  The chip driver is responsible for restoring the
339 * register values used by the IRQ controller over suspend and resume.
340 */
341int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
342			int irq_base, const struct regmap_irq_chip *chip,
343			struct regmap_irq_chip_data **data)
344{
345	struct regmap_irq_chip_data *d;
346	int i;
347	int ret = -ENOMEM;
348	u32 reg;
 
 
 
 
349
350	for (i = 0; i < chip->num_irqs; i++) {
351		if (chip->irqs[i].reg_offset % map->reg_stride)
352			return -EINVAL;
353		if (chip->irqs[i].reg_offset / map->reg_stride >=
354		    chip->num_regs)
355			return -EINVAL;
356	}
357
358	if (irq_base) {
359		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
360		if (irq_base < 0) {
361			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
362				 irq_base);
363			return irq_base;
364		}
365	}
366
367	d = kzalloc(sizeof(*d), GFP_KERNEL);
368	if (!d)
369		return -ENOMEM;
370
371	d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
372				GFP_KERNEL);
373	if (!d->status_buf)
374		goto err_alloc;
375
376	d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
377			      GFP_KERNEL);
378	if (!d->mask_buf)
379		goto err_alloc;
380
381	d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
382				  GFP_KERNEL);
383	if (!d->mask_buf_def)
384		goto err_alloc;
385
386	if (chip->wake_base) {
387		d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
388				      GFP_KERNEL);
389		if (!d->wake_buf)
390			goto err_alloc;
391	}
392
 
 
 
 
 
 
 
 
 
 
 
 
393	d->irq_chip = regmap_irq_chip;
394	d->irq_chip.name = chip->name;
395	d->irq = irq;
396	d->map = map;
397	d->chip = chip;
398	d->irq_base = irq_base;
399
400	if (chip->irq_reg_stride)
401		d->irq_reg_stride = chip->irq_reg_stride;
402	else
403		d->irq_reg_stride = 1;
404
405	if (!map->use_single_rw && map->reg_stride == 1 &&
 
 
 
 
 
406	    d->irq_reg_stride == 1) {
407		d->status_reg_buf = kmalloc(map->format.val_bytes *
408					    chip->num_regs, GFP_KERNEL);
 
409		if (!d->status_reg_buf)
410			goto err_alloc;
411	}
412
413	mutex_init(&d->lock);
414
415	for (i = 0; i < chip->num_irqs; i++)
416		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
417			|= chip->irqs[i].mask;
418
419	/* Mask all the interrupts by default */
420	for (i = 0; i < chip->num_regs; i++) {
421		d->mask_buf[i] = d->mask_buf_def[i];
422		reg = chip->mask_base +
423			(i * map->reg_stride * d->irq_reg_stride);
424		if (chip->mask_invert)
425			ret = regmap_update_bits(map, reg,
426					 d->mask_buf[i], ~d->mask_buf[i]);
427		else
428			ret = regmap_update_bits(map, reg,
 
 
 
 
 
 
 
429					 d->mask_buf[i], d->mask_buf[i]);
430		if (ret != 0) {
431			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
432				reg, ret);
433			goto err_alloc;
434		}
435
436		if (!chip->init_ack_masked)
437			continue;
438
439		/* Ack masked but set interrupts */
440		reg = chip->status_base +
441			(i * map->reg_stride * d->irq_reg_stride);
442		ret = regmap_read(map, reg, &d->status_buf[i]);
443		if (ret != 0) {
444			dev_err(map->dev, "Failed to read IRQ status: %d\n",
445				ret);
446			goto err_alloc;
447		}
448
449		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
450			reg = chip->ack_base +
451				(i * map->reg_stride * d->irq_reg_stride);
452			ret = regmap_write(map, reg,
 
 
 
 
453					d->status_buf[i] & d->mask_buf[i]);
454			if (ret != 0) {
455				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
456					reg, ret);
457				goto err_alloc;
458			}
459		}
460	}
461
462	/* Wake is disabled by default */
463	if (d->wake_buf) {
464		for (i = 0; i < chip->num_regs; i++) {
465			d->wake_buf[i] = d->mask_buf_def[i];
466			reg = chip->wake_base +
467				(i * map->reg_stride * d->irq_reg_stride);
468
469			if (chip->wake_invert)
470				ret = regmap_update_bits(map, reg,
471							 d->mask_buf_def[i],
472							 0);
473			else
474				ret = regmap_update_bits(map, reg,
475							 d->mask_buf_def[i],
476							 d->wake_buf[i]);
477			if (ret != 0) {
478				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
479					reg, ret);
480				goto err_alloc;
481			}
482		}
483	}
484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485	if (irq_base)
486		d->domain = irq_domain_add_legacy(map->dev->of_node,
487						  chip->num_irqs, irq_base, 0,
488						  &regmap_domain_ops, d);
489	else
490		d->domain = irq_domain_add_linear(map->dev->of_node,
491						  chip->num_irqs,
492						  &regmap_domain_ops, d);
493	if (!d->domain) {
494		dev_err(map->dev, "Failed to create IRQ domain\n");
495		ret = -ENOMEM;
496		goto err_alloc;
497	}
498
499	ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
 
500				   chip->name, d);
501	if (ret != 0) {
502		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
503			irq, chip->name, ret);
504		goto err_domain;
505	}
506
507	*data = d;
508
509	return 0;
510
511err_domain:
512	/* Should really dispose of the domain but... */
513err_alloc:
 
 
514	kfree(d->wake_buf);
515	kfree(d->mask_buf_def);
516	kfree(d->mask_buf);
517	kfree(d->status_buf);
518	kfree(d->status_reg_buf);
519	kfree(d);
520	return ret;
521}
522EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
523
524/**
525 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
526 *
527 * @irq: Primary IRQ for the device
528 * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
 
 
529 */
530void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
531{
 
 
 
532	if (!d)
533		return;
534
535	free_irq(irq, d);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536	irq_domain_remove(d->domain);
 
 
537	kfree(d->wake_buf);
538	kfree(d->mask_buf_def);
539	kfree(d->mask_buf);
540	kfree(d->status_reg_buf);
541	kfree(d->status_buf);
542	kfree(d);
543}
544EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546/**
547 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
548 *
549 * Useful for drivers to request their own IRQs.
 
 
 
 
 
 
550 *
551 * @data: regmap_irq controller to operate on.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552 */
553int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
554{
555	WARN_ON(!data->irq_base);
556	return data->irq_base;
557}
558EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
559
560/**
561 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
562 *
563 * Useful for drivers to request their own IRQs.
 
564 *
565 * @data: regmap_irq controller to operate on.
566 * @irq: index of the interrupt requested in the chip IRQs
567 */
568int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
569{
570	/* Handle holes in the IRQ list */
571	if (!data->chip->irqs[irq].mask)
572		return -EINVAL;
573
574	return irq_create_mapping(data->domain, irq);
575}
576EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
577
578/**
579 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
 
 
580 *
581 * Useful for drivers to request their own IRQs and for integration
582 * with subsystems.  For ease of integration NULL is accepted as a
583 * domain, allowing devices to just call this even if no domain is
584 * allocated.
585 *
586 * @data: regmap_irq controller to operate on.
587 */
588struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
589{
590	if (data)
591		return data->domain;
592	else
593		return NULL;
594}
595EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
v4.17
  1/*
  2 * regmap based irq_chip
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 
 13#include <linux/device.h>
 14#include <linux/export.h>
 
 15#include <linux/interrupt.h>
 16#include <linux/irq.h>
 17#include <linux/irqdomain.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/regmap.h>
 20#include <linux/slab.h>
 21
 22#include "internal.h"
 23
 24struct regmap_irq_chip_data {
 25	struct mutex lock;
 26	struct irq_chip irq_chip;
 27
 28	struct regmap *map;
 29	const struct regmap_irq_chip *chip;
 30
 31	int irq_base;
 32	struct irq_domain *domain;
 33
 34	int irq;
 35	int wake_count;
 36
 37	void *status_reg_buf;
 38	unsigned int *status_buf;
 39	unsigned int *mask_buf;
 40	unsigned int *mask_buf_def;
 41	unsigned int *wake_buf;
 42	unsigned int *type_buf;
 43	unsigned int *type_buf_def;
 44
 45	unsigned int irq_reg_stride;
 46	unsigned int type_reg_stride;
 47};
 48
 49static inline const
 50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
 51				     int irq)
 52{
 53	return &data->chip->irqs[irq];
 54}
 55
 56static void regmap_irq_lock(struct irq_data *data)
 57{
 58	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 59
 60	mutex_lock(&d->lock);
 61}
 62
 63static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
 64				  unsigned int reg, unsigned int mask,
 65				  unsigned int val)
 66{
 67	if (d->chip->mask_writeonly)
 68		return regmap_write_bits(d->map, reg, mask, val);
 69	else
 70		return regmap_update_bits(d->map, reg, mask, val);
 71}
 72
 73static void regmap_irq_sync_unlock(struct irq_data *data)
 74{
 75	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 76	struct regmap *map = d->map;
 77	int i, ret;
 78	u32 reg;
 79	u32 unmask_offset;
 80
 81	if (d->chip->runtime_pm) {
 82		ret = pm_runtime_get_sync(map->dev);
 83		if (ret < 0)
 84			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 85				ret);
 86	}
 87
 88	/*
 89	 * If there's been a change in the mask write it back to the
 90	 * hardware.  We rely on the use of the regmap core cache to
 91	 * suppress pointless writes.
 92	 */
 93	for (i = 0; i < d->chip->num_regs; i++) {
 94		reg = d->chip->mask_base +
 95			(i * map->reg_stride * d->irq_reg_stride);
 96		if (d->chip->mask_invert) {
 97			ret = regmap_irq_update_bits(d, reg,
 98					 d->mask_buf_def[i], ~d->mask_buf[i]);
 99		} else if (d->chip->unmask_base) {
100			/* set mask with mask_base register */
101			ret = regmap_irq_update_bits(d, reg,
102					d->mask_buf_def[i], ~d->mask_buf[i]);
103			if (ret < 0)
104				dev_err(d->map->dev,
105					"Failed to sync unmasks in %x\n",
106					reg);
107			unmask_offset = d->chip->unmask_base -
108							d->chip->mask_base;
109			/* clear mask with unmask_base register */
110			ret = regmap_irq_update_bits(d,
111					reg + unmask_offset,
112					d->mask_buf_def[i],
113					d->mask_buf[i]);
114		} else {
115			ret = regmap_irq_update_bits(d, reg,
116					 d->mask_buf_def[i], d->mask_buf[i]);
117		}
118		if (ret != 0)
119			dev_err(d->map->dev, "Failed to sync masks in %x\n",
120				reg);
121
122		reg = d->chip->wake_base +
123			(i * map->reg_stride * d->irq_reg_stride);
124		if (d->wake_buf) {
125			if (d->chip->wake_invert)
126				ret = regmap_irq_update_bits(d, reg,
127							 d->mask_buf_def[i],
128							 ~d->wake_buf[i]);
129			else
130				ret = regmap_irq_update_bits(d, reg,
131							 d->mask_buf_def[i],
132							 d->wake_buf[i]);
133			if (ret != 0)
134				dev_err(d->map->dev,
135					"Failed to sync wakes in %x: %d\n",
136					reg, ret);
137		}
138
139		if (!d->chip->init_ack_masked)
140			continue;
141		/*
142		 * Ack all the masked interrupts unconditionally,
143		 * OR if there is masked interrupt which hasn't been Acked,
144		 * it'll be ignored in irq handler, then may introduce irq storm
145		 */
146		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
147			reg = d->chip->ack_base +
148				(i * map->reg_stride * d->irq_reg_stride);
149			/* some chips ack by write 0 */
150			if (d->chip->ack_invert)
151				ret = regmap_write(map, reg, ~d->mask_buf[i]);
152			else
153				ret = regmap_write(map, reg, d->mask_buf[i]);
154			if (ret != 0)
155				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
156					reg, ret);
157		}
158	}
159
160	for (i = 0; i < d->chip->num_type_reg; i++) {
161		if (!d->type_buf_def[i])
162			continue;
163		reg = d->chip->type_base +
164			(i * map->reg_stride * d->type_reg_stride);
165		if (d->chip->type_invert)
166			ret = regmap_irq_update_bits(d, reg,
167				d->type_buf_def[i], ~d->type_buf[i]);
168		else
169			ret = regmap_irq_update_bits(d, reg,
170				d->type_buf_def[i], d->type_buf[i]);
171		if (ret != 0)
172			dev_err(d->map->dev, "Failed to sync type in %x\n",
173				reg);
174	}
175
176	if (d->chip->runtime_pm)
177		pm_runtime_put(map->dev);
178
179	/* If we've changed our wakeup count propagate it to the parent */
180	if (d->wake_count < 0)
181		for (i = d->wake_count; i < 0; i++)
182			irq_set_irq_wake(d->irq, 0);
183	else if (d->wake_count > 0)
184		for (i = 0; i < d->wake_count; i++)
185			irq_set_irq_wake(d->irq, 1);
186
187	d->wake_count = 0;
188
189	mutex_unlock(&d->lock);
190}
191
192static void regmap_irq_enable(struct irq_data *data)
193{
194	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
195	struct regmap *map = d->map;
196	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
197
198	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
199}
200
201static void regmap_irq_disable(struct irq_data *data)
202{
203	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
204	struct regmap *map = d->map;
205	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
206
207	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
208}
209
210static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
211{
212	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213	struct regmap *map = d->map;
214	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215	int reg = irq_data->type_reg_offset / map->reg_stride;
216
217	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
218		return 0;
219
220	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
221					irq_data->type_rising_mask);
222	switch (type) {
223	case IRQ_TYPE_EDGE_FALLING:
224		d->type_buf[reg] |= irq_data->type_falling_mask;
225		break;
226
227	case IRQ_TYPE_EDGE_RISING:
228		d->type_buf[reg] |= irq_data->type_rising_mask;
229		break;
230
231	case IRQ_TYPE_EDGE_BOTH:
232		d->type_buf[reg] |= (irq_data->type_falling_mask |
233					irq_data->type_rising_mask);
234		break;
235
236	default:
237		return -EINVAL;
238	}
239	return 0;
240}
241
242static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
243{
244	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
245	struct regmap *map = d->map;
246	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
247
248	if (on) {
249		if (d->wake_buf)
250			d->wake_buf[irq_data->reg_offset / map->reg_stride]
251				&= ~irq_data->mask;
252		d->wake_count++;
253	} else {
254		if (d->wake_buf)
255			d->wake_buf[irq_data->reg_offset / map->reg_stride]
256				|= irq_data->mask;
257		d->wake_count--;
258	}
259
260	return 0;
261}
262
263static const struct irq_chip regmap_irq_chip = {
264	.irq_bus_lock		= regmap_irq_lock,
265	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
266	.irq_disable		= regmap_irq_disable,
267	.irq_enable		= regmap_irq_enable,
268	.irq_set_type		= regmap_irq_set_type,
269	.irq_set_wake		= regmap_irq_set_wake,
270};
271
272static irqreturn_t regmap_irq_thread(int irq, void *d)
273{
274	struct regmap_irq_chip_data *data = d;
275	const struct regmap_irq_chip *chip = data->chip;
276	struct regmap *map = data->map;
277	int ret, i;
278	bool handled = false;
279	u32 reg;
280
281	if (chip->handle_pre_irq)
282		chip->handle_pre_irq(chip->irq_drv_data);
283
284	if (chip->runtime_pm) {
285		ret = pm_runtime_get_sync(map->dev);
286		if (ret < 0) {
287			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
288				ret);
289			pm_runtime_put(map->dev);
290			goto exit;
291		}
292	}
293
294	/*
295	 * Read in the statuses, using a single bulk read if possible
296	 * in order to reduce the I/O overheads.
297	 */
298	if (!map->use_single_read && map->reg_stride == 1 &&
299	    data->irq_reg_stride == 1) {
300		u8 *buf8 = data->status_reg_buf;
301		u16 *buf16 = data->status_reg_buf;
302		u32 *buf32 = data->status_reg_buf;
303
304		BUG_ON(!data->status_reg_buf);
305
306		ret = regmap_bulk_read(map, chip->status_base,
307				       data->status_reg_buf,
308				       chip->num_regs);
309		if (ret != 0) {
310			dev_err(map->dev, "Failed to read IRQ status: %d\n",
311				ret);
312			goto exit;
313		}
314
315		for (i = 0; i < data->chip->num_regs; i++) {
316			switch (map->format.val_bytes) {
317			case 1:
318				data->status_buf[i] = buf8[i];
319				break;
320			case 2:
321				data->status_buf[i] = buf16[i];
322				break;
323			case 4:
324				data->status_buf[i] = buf32[i];
325				break;
326			default:
327				BUG();
328				goto exit;
329			}
330		}
331
332	} else {
333		for (i = 0; i < data->chip->num_regs; i++) {
334			ret = regmap_read(map, chip->status_base +
335					  (i * map->reg_stride
336					   * data->irq_reg_stride),
337					  &data->status_buf[i]);
338
339			if (ret != 0) {
340				dev_err(map->dev,
341					"Failed to read IRQ status: %d\n",
342					ret);
343				if (chip->runtime_pm)
344					pm_runtime_put(map->dev);
345				goto exit;
346			}
347		}
348	}
349
350	/*
351	 * Ignore masked IRQs and ack if we need to; we ack early so
352	 * there is no race between handling and acknowleding the
353	 * interrupt.  We assume that typically few of the interrupts
354	 * will fire simultaneously so don't worry about overhead from
355	 * doing a write per register.
356	 */
357	for (i = 0; i < data->chip->num_regs; i++) {
358		data->status_buf[i] &= ~data->mask_buf[i];
359
360		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
361			reg = chip->ack_base +
362				(i * map->reg_stride * data->irq_reg_stride);
363			ret = regmap_write(map, reg, data->status_buf[i]);
364			if (ret != 0)
365				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
366					reg, ret);
367		}
368	}
369
370	for (i = 0; i < chip->num_irqs; i++) {
371		if (data->status_buf[chip->irqs[i].reg_offset /
372				     map->reg_stride] & chip->irqs[i].mask) {
373			handle_nested_irq(irq_find_mapping(data->domain, i));
374			handled = true;
375		}
376	}
377
378	if (chip->runtime_pm)
379		pm_runtime_put(map->dev);
380
381exit:
382	if (chip->handle_post_irq)
383		chip->handle_post_irq(chip->irq_drv_data);
384
385	if (handled)
386		return IRQ_HANDLED;
387	else
388		return IRQ_NONE;
389}
390
391static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
392			  irq_hw_number_t hw)
393{
394	struct regmap_irq_chip_data *data = h->host_data;
395
396	irq_set_chip_data(virq, data);
397	irq_set_chip(virq, &data->irq_chip);
398	irq_set_nested_thread(virq, 1);
399	irq_set_parent(virq, data->irq);
 
 
 
 
 
400	irq_set_noprobe(virq);
 
401
402	return 0;
403}
404
405static const struct irq_domain_ops regmap_domain_ops = {
406	.map	= regmap_irq_map,
407	.xlate	= irq_domain_xlate_onetwocell,
408};
409
410/**
411 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
412 *
413 * @map: The regmap for the device.
414 * @irq: The IRQ the device uses to signal interrupts.
415 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
416 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
417 * @chip: Configuration for the interrupt controller.
418 * @data: Runtime data structure for the controller, allocated on success.
419 *
420 * Returns 0 on success or an errno on failure.
421 *
422 * In order for this to be efficient the chip really should use a
423 * register cache.  The chip driver is responsible for restoring the
424 * register values used by the IRQ controller over suspend and resume.
425 */
426int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
427			int irq_base, const struct regmap_irq_chip *chip,
428			struct regmap_irq_chip_data **data)
429{
430	struct regmap_irq_chip_data *d;
431	int i;
432	int ret = -ENOMEM;
433	u32 reg;
434	u32 unmask_offset;
435
436	if (chip->num_regs <= 0)
437		return -EINVAL;
438
439	for (i = 0; i < chip->num_irqs; i++) {
440		if (chip->irqs[i].reg_offset % map->reg_stride)
441			return -EINVAL;
442		if (chip->irqs[i].reg_offset / map->reg_stride >=
443		    chip->num_regs)
444			return -EINVAL;
445	}
446
447	if (irq_base) {
448		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
449		if (irq_base < 0) {
450			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
451				 irq_base);
452			return irq_base;
453		}
454	}
455
456	d = kzalloc(sizeof(*d), GFP_KERNEL);
457	if (!d)
458		return -ENOMEM;
459
460	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
461				GFP_KERNEL);
462	if (!d->status_buf)
463		goto err_alloc;
464
465	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466			      GFP_KERNEL);
467	if (!d->mask_buf)
468		goto err_alloc;
469
470	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
471				  GFP_KERNEL);
472	if (!d->mask_buf_def)
473		goto err_alloc;
474
475	if (chip->wake_base) {
476		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
477				      GFP_KERNEL);
478		if (!d->wake_buf)
479			goto err_alloc;
480	}
481
482	if (chip->num_type_reg) {
483		d->type_buf_def = kcalloc(chip->num_type_reg,
484					sizeof(unsigned int), GFP_KERNEL);
485		if (!d->type_buf_def)
486			goto err_alloc;
487
488		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
489				      GFP_KERNEL);
490		if (!d->type_buf)
491			goto err_alloc;
492	}
493
494	d->irq_chip = regmap_irq_chip;
495	d->irq_chip.name = chip->name;
496	d->irq = irq;
497	d->map = map;
498	d->chip = chip;
499	d->irq_base = irq_base;
500
501	if (chip->irq_reg_stride)
502		d->irq_reg_stride = chip->irq_reg_stride;
503	else
504		d->irq_reg_stride = 1;
505
506	if (chip->type_reg_stride)
507		d->type_reg_stride = chip->type_reg_stride;
508	else
509		d->type_reg_stride = 1;
510
511	if (!map->use_single_read && map->reg_stride == 1 &&
512	    d->irq_reg_stride == 1) {
513		d->status_reg_buf = kmalloc_array(chip->num_regs,
514						  map->format.val_bytes,
515						  GFP_KERNEL);
516		if (!d->status_reg_buf)
517			goto err_alloc;
518	}
519
520	mutex_init(&d->lock);
521
522	for (i = 0; i < chip->num_irqs; i++)
523		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
524			|= chip->irqs[i].mask;
525
526	/* Mask all the interrupts by default */
527	for (i = 0; i < chip->num_regs; i++) {
528		d->mask_buf[i] = d->mask_buf_def[i];
529		reg = chip->mask_base +
530			(i * map->reg_stride * d->irq_reg_stride);
531		if (chip->mask_invert)
532			ret = regmap_irq_update_bits(d, reg,
533					 d->mask_buf[i], ~d->mask_buf[i]);
534		else if (d->chip->unmask_base) {
535			unmask_offset = d->chip->unmask_base -
536					d->chip->mask_base;
537			ret = regmap_irq_update_bits(d,
538					reg + unmask_offset,
539					d->mask_buf[i],
540					d->mask_buf[i]);
541		} else
542			ret = regmap_irq_update_bits(d, reg,
543					 d->mask_buf[i], d->mask_buf[i]);
544		if (ret != 0) {
545			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
546				reg, ret);
547			goto err_alloc;
548		}
549
550		if (!chip->init_ack_masked)
551			continue;
552
553		/* Ack masked but set interrupts */
554		reg = chip->status_base +
555			(i * map->reg_stride * d->irq_reg_stride);
556		ret = regmap_read(map, reg, &d->status_buf[i]);
557		if (ret != 0) {
558			dev_err(map->dev, "Failed to read IRQ status: %d\n",
559				ret);
560			goto err_alloc;
561		}
562
563		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
564			reg = chip->ack_base +
565				(i * map->reg_stride * d->irq_reg_stride);
566			if (chip->ack_invert)
567				ret = regmap_write(map, reg,
568					~(d->status_buf[i] & d->mask_buf[i]));
569			else
570				ret = regmap_write(map, reg,
571					d->status_buf[i] & d->mask_buf[i]);
572			if (ret != 0) {
573				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
574					reg, ret);
575				goto err_alloc;
576			}
577		}
578	}
579
580	/* Wake is disabled by default */
581	if (d->wake_buf) {
582		for (i = 0; i < chip->num_regs; i++) {
583			d->wake_buf[i] = d->mask_buf_def[i];
584			reg = chip->wake_base +
585				(i * map->reg_stride * d->irq_reg_stride);
586
587			if (chip->wake_invert)
588				ret = regmap_irq_update_bits(d, reg,
589							 d->mask_buf_def[i],
590							 0);
591			else
592				ret = regmap_irq_update_bits(d, reg,
593							 d->mask_buf_def[i],
594							 d->wake_buf[i]);
595			if (ret != 0) {
596				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
597					reg, ret);
598				goto err_alloc;
599			}
600		}
601	}
602
603	if (chip->num_type_reg) {
604		for (i = 0; i < chip->num_irqs; i++) {
605			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
606			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
607					chip->irqs[i].type_falling_mask;
608		}
609		for (i = 0; i < chip->num_type_reg; ++i) {
610			if (!d->type_buf_def[i])
611				continue;
612
613			reg = chip->type_base +
614				(i * map->reg_stride * d->type_reg_stride);
615			if (chip->type_invert)
616				ret = regmap_irq_update_bits(d, reg,
617					d->type_buf_def[i], 0xFF);
618			else
619				ret = regmap_irq_update_bits(d, reg,
620					d->type_buf_def[i], 0x0);
621			if (ret != 0) {
622				dev_err(map->dev,
623					"Failed to set type in 0x%x: %x\n",
624					reg, ret);
625				goto err_alloc;
626			}
627		}
628	}
629
630	if (irq_base)
631		d->domain = irq_domain_add_legacy(map->dev->of_node,
632						  chip->num_irqs, irq_base, 0,
633						  &regmap_domain_ops, d);
634	else
635		d->domain = irq_domain_add_linear(map->dev->of_node,
636						  chip->num_irqs,
637						  &regmap_domain_ops, d);
638	if (!d->domain) {
639		dev_err(map->dev, "Failed to create IRQ domain\n");
640		ret = -ENOMEM;
641		goto err_alloc;
642	}
643
644	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
645				   irq_flags | IRQF_ONESHOT,
646				   chip->name, d);
647	if (ret != 0) {
648		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
649			irq, chip->name, ret);
650		goto err_domain;
651	}
652
653	*data = d;
654
655	return 0;
656
657err_domain:
658	/* Should really dispose of the domain but... */
659err_alloc:
660	kfree(d->type_buf);
661	kfree(d->type_buf_def);
662	kfree(d->wake_buf);
663	kfree(d->mask_buf_def);
664	kfree(d->mask_buf);
665	kfree(d->status_buf);
666	kfree(d->status_reg_buf);
667	kfree(d);
668	return ret;
669}
670EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
671
672/**
673 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
674 *
675 * @irq: Primary IRQ for the device
676 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
677 *
678 * This function also disposes of all mapped IRQs on the chip.
679 */
680void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
681{
682	unsigned int virq;
683	int hwirq;
684
685	if (!d)
686		return;
687
688	free_irq(irq, d);
689
690	/* Dispose all virtual irq from irq domain before removing it */
691	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
692		/* Ignore hwirq if holes in the IRQ list */
693		if (!d->chip->irqs[hwirq].mask)
694			continue;
695
696		/*
697		 * Find the virtual irq of hwirq on chip and if it is
698		 * there then dispose it
699		 */
700		virq = irq_find_mapping(d->domain, hwirq);
701		if (virq)
702			irq_dispose_mapping(virq);
703	}
704
705	irq_domain_remove(d->domain);
706	kfree(d->type_buf);
707	kfree(d->type_buf_def);
708	kfree(d->wake_buf);
709	kfree(d->mask_buf_def);
710	kfree(d->mask_buf);
711	kfree(d->status_reg_buf);
712	kfree(d->status_buf);
713	kfree(d);
714}
715EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
716
717static void devm_regmap_irq_chip_release(struct device *dev, void *res)
718{
719	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
720
721	regmap_del_irq_chip(d->irq, d);
722}
723
724static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
725
726{
727	struct regmap_irq_chip_data **r = res;
728
729	if (!r || !*r) {
730		WARN_ON(!r || !*r);
731		return 0;
732	}
733	return *r == data;
734}
735
736/**
737 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
738 *
739 * @dev: The device pointer on which irq_chip belongs to.
740 * @map: The regmap for the device.
741 * @irq: The IRQ the device uses to signal interrupts
742 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
743 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
744 * @chip: Configuration for the interrupt controller.
745 * @data: Runtime data structure for the controller, allocated on success
746 *
747 * Returns 0 on success or an errno on failure.
748 *
749 * The &regmap_irq_chip_data will be automatically released when the device is
750 * unbound.
751 */
752int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
753			     int irq_flags, int irq_base,
754			     const struct regmap_irq_chip *chip,
755			     struct regmap_irq_chip_data **data)
756{
757	struct regmap_irq_chip_data **ptr, *d;
758	int ret;
759
760	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
761			   GFP_KERNEL);
762	if (!ptr)
763		return -ENOMEM;
764
765	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
766				  chip, &d);
767	if (ret < 0) {
768		devres_free(ptr);
769		return ret;
770	}
771
772	*ptr = d;
773	devres_add(dev, ptr);
774	*data = d;
775	return 0;
776}
777EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
778
779/**
780 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
781 *
782 * @dev: Device for which which resource was allocated.
783 * @irq: Primary IRQ for the device.
784 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
785 *
786 * A resource managed version of regmap_del_irq_chip().
787 */
788void devm_regmap_del_irq_chip(struct device *dev, int irq,
789			      struct regmap_irq_chip_data *data)
790{
791	int rc;
792
793	WARN_ON(irq != data->irq);
794	rc = devres_release(dev, devm_regmap_irq_chip_release,
795			    devm_regmap_irq_chip_match, data);
796
797	if (rc != 0)
798		WARN_ON(rc);
799}
800EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
801
802/**
803 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
804 *
805 * @data: regmap irq controller to operate on.
806 *
807 * Useful for drivers to request their own IRQs.
808 */
809int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
810{
811	WARN_ON(!data->irq_base);
812	return data->irq_base;
813}
814EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
815
816/**
817 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
818 *
819 * @data: regmap irq controller to operate on.
820 * @irq: index of the interrupt requested in the chip IRQs.
821 *
822 * Useful for drivers to request their own IRQs.
 
823 */
824int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
825{
826	/* Handle holes in the IRQ list */
827	if (!data->chip->irqs[irq].mask)
828		return -EINVAL;
829
830	return irq_create_mapping(data->domain, irq);
831}
832EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
833
834/**
835 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
836 *
837 * @data: regmap_irq controller to operate on.
838 *
839 * Useful for drivers to request their own IRQs and for integration
840 * with subsystems.  For ease of integration NULL is accepted as a
841 * domain, allowing devices to just call this even if no domain is
842 * allocated.
 
 
843 */
844struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
845{
846	if (data)
847		return data->domain;
848	else
849		return NULL;
850}
851EXPORT_SYMBOL_GPL(regmap_irq_get_domain);