Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Copyright (c) 2006-2008 Simtec Electronics
  3 *	http://armlinux.simtec.co.uk/
  4 *	Ben Dooks <ben@simtec.co.uk>
  5 *
  6 * S3C2412/S3C2443 (PL093 based) IO timing support
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11*/
 12
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/interrupt.h>
 16#include <linux/ioport.h>
 17#include <linux/cpufreq.h>
 18#include <linux/seq_file.h>
 19#include <linux/device.h>
 20#include <linux/delay.h>
 21#include <linux/clk.h>
 22#include <linux/err.h>
 23#include <linux/slab.h>
 24
 25#include <linux/amba/pl093.h>
 26
 27#include <asm/mach/arch.h>
 28#include <asm/mach/map.h>
 29
 30#include <plat/cpu.h>
 31#include <plat/cpu-freq-core.h>
 32#include <plat/clock.h>
 33
 34#include <mach/s3c2412.h>
 35
 36#define print_ns(x) ((x) / 10), ((x) % 10)
 37
 38/**
 39 * s3c2412_print_timing - print timing infromation via printk.
 40 * @pfx: The prefix to print each line with.
 41 * @iot: The IO timing information
 42 */
 43static void s3c2412_print_timing(const char *pfx, struct s3c_iotimings *iot)
 44{
 45	struct s3c2412_iobank_timing *bt;
 46	unsigned int bank;
 47
 48	for (bank = 0; bank < MAX_BANKS; bank++) {
 49		bt = iot->bank[bank].io_2412;
 50		if (!bt)
 51			continue;
 52
 53		printk(KERN_DEBUG "%s: %d: idcy=%d.%d wstrd=%d.%d wstwr=%d,%d"
 54		       "wstoen=%d.%d wstwen=%d.%d wstbrd=%d.%d\n", pfx, bank,
 55		       print_ns(bt->idcy),
 56		       print_ns(bt->wstrd),
 57		       print_ns(bt->wstwr),
 58		       print_ns(bt->wstoen),
 59		       print_ns(bt->wstwen),
 60		       print_ns(bt->wstbrd));
 61	}
 62}
 63
 64/**
 65 * to_div - turn a cycle length into a divisor setting.
 66 * @cyc_tns: The cycle time in 10ths of nanoseconds.
 67 * @clk_tns: The clock period in 10ths of nanoseconds.
 68 */
 69static inline unsigned int to_div(unsigned int cyc_tns, unsigned int clk_tns)
 70{
 71	return cyc_tns ? DIV_ROUND_UP(cyc_tns, clk_tns) : 0;
 72}
 73
 74/**
 75 * calc_timing - calculate timing divisor value and check in range.
 76 * @hwtm: The hardware timing in 10ths of nanoseconds.
 77 * @clk_tns: The clock period in 10ths of nanoseconds.
 78 * @err: Pointer to err variable to update in event of failure.
 79 */
 80static unsigned int calc_timing(unsigned int hwtm, unsigned int clk_tns,
 81				unsigned int *err)
 82{
 83	unsigned int ret = to_div(hwtm, clk_tns);
 84
 85	if (ret > 0xf)
 86		*err = -EINVAL;
 87
 88	return ret;
 89}
 90
 91/**
 92 * s3c2412_calc_bank - calculate the bank divisor settings.
 93 * @cfg: The current frequency configuration.
 94 * @bt: The bank timing.
 95 */
 96static int s3c2412_calc_bank(struct s3c_cpufreq_config *cfg,
 97			     struct s3c2412_iobank_timing *bt)
 98{
 99	unsigned int hclk = cfg->freq.hclk_tns;
100	int err = 0;
101
102	bt->smbidcyr = calc_timing(bt->idcy, hclk, &err);
103	bt->smbwstrd = calc_timing(bt->wstrd, hclk, &err);
104	bt->smbwstwr = calc_timing(bt->wstwr, hclk, &err);
105	bt->smbwstoen = calc_timing(bt->wstoen, hclk, &err);
106	bt->smbwstwen = calc_timing(bt->wstwen, hclk, &err);
107	bt->smbwstbrd = calc_timing(bt->wstbrd, hclk, &err);
108
109	return err;
110}
111
112/**
113 * s3c2412_iotiming_debugfs - debugfs show io bank timing information
114 * @seq: The seq_file to write output to using seq_printf().
115 * @cfg: The current configuration.
116 * @iob: The IO bank information to decode.
117*/
118void s3c2412_iotiming_debugfs(struct seq_file *seq,
119			      struct s3c_cpufreq_config *cfg,
120			      union s3c_iobank *iob)
121{
122	struct s3c2412_iobank_timing *bt = iob->io_2412;
123
124	seq_printf(seq,
125		   "\tRead: idcy=%d.%d wstrd=%d.%d wstwr=%d,%d"
126		   "wstoen=%d.%d wstwen=%d.%d wstbrd=%d.%d\n",
127		   print_ns(bt->idcy),
128		   print_ns(bt->wstrd),
129		   print_ns(bt->wstwr),
130		   print_ns(bt->wstoen),
131		   print_ns(bt->wstwen),
132		   print_ns(bt->wstbrd));
133}
134
135/**
136 * s3c2412_iotiming_calc - calculate all the bank divisor settings.
137 * @cfg: The current frequency configuration.
138 * @iot: The bank timing information.
139 *
140 * Calculate the timing information for all the banks that are
141 * configured as IO, using s3c2412_calc_bank().
142 */
143int s3c2412_iotiming_calc(struct s3c_cpufreq_config *cfg,
144			  struct s3c_iotimings *iot)
145{
146	struct s3c2412_iobank_timing *bt;
147	int bank;
148	int ret;
149
150	for (bank = 0; bank < MAX_BANKS; bank++) {
151		bt = iot->bank[bank].io_2412;
152		if (!bt)
153			continue;
154
155		ret = s3c2412_calc_bank(cfg, bt);
156		if (ret) {
157			printk(KERN_ERR "%s: cannot calculate bank %d io\n",
158			       __func__, bank);
159			goto err;
160		}
161	}
162
163	return 0;
164 err:
165	return ret;
166}
167
168/**
169 * s3c2412_iotiming_set - set the timing information
170 * @cfg: The current frequency configuration.
171 * @iot: The bank timing information.
172 *
173 * Set the IO bank information from the details calculated earlier from
174 * calling s3c2412_iotiming_calc().
175 */
176void s3c2412_iotiming_set(struct s3c_cpufreq_config *cfg,
177			  struct s3c_iotimings *iot)
178{
179	struct s3c2412_iobank_timing *bt;
180	void __iomem *regs;
181	int bank;
182
183	/* set the io timings from the specifier */
184
185	for (bank = 0; bank < MAX_BANKS; bank++) {
186		bt = iot->bank[bank].io_2412;
187		if (!bt)
188			continue;
189
190		regs = S3C2412_SSMC_BANK(bank);
191
192		__raw_writel(bt->smbidcyr, regs + SMBIDCYR);
193		__raw_writel(bt->smbwstrd, regs + SMBWSTRDR);
194		__raw_writel(bt->smbwstwr, regs + SMBWSTWRR);
195		__raw_writel(bt->smbwstoen, regs + SMBWSTOENR);
196		__raw_writel(bt->smbwstwen, regs + SMBWSTWENR);
197		__raw_writel(bt->smbwstbrd, regs + SMBWSTBRDR);
198	}
199}
200
201static inline unsigned int s3c2412_decode_timing(unsigned int clock, u32 reg)
202{
203	return (reg & 0xf) * clock;
204}
205
206static void s3c2412_iotiming_getbank(struct s3c_cpufreq_config *cfg,
207				     struct s3c2412_iobank_timing *bt,
208				     unsigned int bank)
209{
210	unsigned long clk = cfg->freq.hclk_tns;  /* ssmc clock??? */
211	void __iomem *regs = S3C2412_SSMC_BANK(bank);
212
213	bt->idcy = s3c2412_decode_timing(clk, __raw_readl(regs + SMBIDCYR));
214	bt->wstrd = s3c2412_decode_timing(clk, __raw_readl(regs + SMBWSTRDR));
215	bt->wstoen = s3c2412_decode_timing(clk, __raw_readl(regs + SMBWSTOENR));
216	bt->wstwen = s3c2412_decode_timing(clk, __raw_readl(regs + SMBWSTWENR));
217	bt->wstbrd = s3c2412_decode_timing(clk, __raw_readl(regs + SMBWSTBRDR));
218}
219
220/**
221 * bank_is_io - return true if bank is (possibly) IO.
222 * @bank: The bank number.
223 * @bankcfg: The value of S3C2412_EBI_BANKCFG.
224 */
225static inline bool bank_is_io(unsigned int bank, u32 bankcfg)
226{
227	if (bank < 2)
228		return true;
229
230	return !(bankcfg & (1 << bank));
231}
232
233int s3c2412_iotiming_get(struct s3c_cpufreq_config *cfg,
234			 struct s3c_iotimings *timings)
235{
236	struct s3c2412_iobank_timing *bt;
237	u32 bankcfg = __raw_readl(S3C2412_EBI_BANKCFG);
238	unsigned int bank;
239
240	/* look through all banks to see what is currently set. */
241
242	for (bank = 0; bank < MAX_BANKS; bank++) {
243		if (!bank_is_io(bank, bankcfg))
244			continue;
245
246		bt = kzalloc(sizeof(struct s3c2412_iobank_timing), GFP_KERNEL);
247		if (!bt) {
248			printk(KERN_ERR "%s: no memory for bank\n", __func__);
249			return -ENOMEM;
250		}
251
252		timings->bank[bank].io_2412 = bt;
253		s3c2412_iotiming_getbank(cfg, bt, bank);
254	}
255
256	s3c2412_print_timing("get", timings);
257	return 0;
258}
259
260/* this is in here as it is so small, it doesn't currently warrant a file
261 * to itself. We expect that any s3c24xx needing this is going to also
262 * need the iotiming support.
263 */
264void s3c2412_cpufreq_setrefresh(struct s3c_cpufreq_config *cfg)
265{
266	struct s3c_cpufreq_board *board = cfg->board;
267	u32 refresh;
268
269	WARN_ON(board == NULL);
270
271	/* Reduce both the refresh time (in ns) and the frequency (in MHz)
272	 * down to ensure that we do not overflow 32 bit numbers.
273	 *
274	 * This should work for HCLK up to 133MHz and refresh period up
275	 * to 30usec.
276	 */
277
278	refresh = (cfg->freq.hclk / 100) * (board->refresh / 10);
279	refresh = DIV_ROUND_UP(refresh, (1000 * 1000)); /* apply scale  */
280	refresh &= ((1 << 16) - 1);
281
282	s3c_freq_dbg("%s: refresh value %u\n", __func__, (unsigned int)refresh);
283
284	__raw_writel(refresh, S3C2412_REFRESH);
285}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2//
  3// Copyright (c) 2006-2008 Simtec Electronics
  4//	http://armlinux.simtec.co.uk/
  5//	Ben Dooks <ben@simtec.co.uk>
  6//
  7// S3C2412/S3C2443 (PL093 based) IO timing support
 
 
 
 
  8
  9#include <linux/init.h>
 10#include <linux/module.h>
 11#include <linux/interrupt.h>
 12#include <linux/ioport.h>
 13#include <linux/cpufreq.h>
 14#include <linux/seq_file.h>
 15#include <linux/device.h>
 16#include <linux/delay.h>
 17#include <linux/clk.h>
 18#include <linux/err.h>
 19#include <linux/slab.h>
 20
 21#include <linux/amba/pl093.h>
 22
 23#include <asm/mach/arch.h>
 24#include <asm/mach/map.h>
 25
 26#include <plat/cpu.h>
 27#include <plat/cpu-freq-core.h>
 
 28
 29#include <mach/s3c2412.h>
 30
 31#define print_ns(x) ((x) / 10), ((x) % 10)
 32
 33/**
 34 * s3c2412_print_timing - print timing information via printk.
 35 * @pfx: The prefix to print each line with.
 36 * @iot: The IO timing information
 37 */
 38static void s3c2412_print_timing(const char *pfx, struct s3c_iotimings *iot)
 39{
 40	struct s3c2412_iobank_timing *bt;
 41	unsigned int bank;
 42
 43	for (bank = 0; bank < MAX_BANKS; bank++) {
 44		bt = iot->bank[bank].io_2412;
 45		if (!bt)
 46			continue;
 47
 48		printk(KERN_DEBUG "%s: %d: idcy=%d.%d wstrd=%d.%d wstwr=%d,%d"
 49		       "wstoen=%d.%d wstwen=%d.%d wstbrd=%d.%d\n", pfx, bank,
 50		       print_ns(bt->idcy),
 51		       print_ns(bt->wstrd),
 52		       print_ns(bt->wstwr),
 53		       print_ns(bt->wstoen),
 54		       print_ns(bt->wstwen),
 55		       print_ns(bt->wstbrd));
 56	}
 57}
 58
 59/**
 60 * to_div - turn a cycle length into a divisor setting.
 61 * @cyc_tns: The cycle time in 10ths of nanoseconds.
 62 * @clk_tns: The clock period in 10ths of nanoseconds.
 63 */
 64static inline unsigned int to_div(unsigned int cyc_tns, unsigned int clk_tns)
 65{
 66	return cyc_tns ? DIV_ROUND_UP(cyc_tns, clk_tns) : 0;
 67}
 68
 69/**
 70 * calc_timing - calculate timing divisor value and check in range.
 71 * @hwtm: The hardware timing in 10ths of nanoseconds.
 72 * @clk_tns: The clock period in 10ths of nanoseconds.
 73 * @err: Pointer to err variable to update in event of failure.
 74 */
 75static unsigned int calc_timing(unsigned int hwtm, unsigned int clk_tns,
 76				unsigned int *err)
 77{
 78	unsigned int ret = to_div(hwtm, clk_tns);
 79
 80	if (ret > 0xf)
 81		*err = -EINVAL;
 82
 83	return ret;
 84}
 85
 86/**
 87 * s3c2412_calc_bank - calculate the bank divisor settings.
 88 * @cfg: The current frequency configuration.
 89 * @bt: The bank timing.
 90 */
 91static int s3c2412_calc_bank(struct s3c_cpufreq_config *cfg,
 92			     struct s3c2412_iobank_timing *bt)
 93{
 94	unsigned int hclk = cfg->freq.hclk_tns;
 95	int err = 0;
 96
 97	bt->smbidcyr = calc_timing(bt->idcy, hclk, &err);
 98	bt->smbwstrd = calc_timing(bt->wstrd, hclk, &err);
 99	bt->smbwstwr = calc_timing(bt->wstwr, hclk, &err);
100	bt->smbwstoen = calc_timing(bt->wstoen, hclk, &err);
101	bt->smbwstwen = calc_timing(bt->wstwen, hclk, &err);
102	bt->smbwstbrd = calc_timing(bt->wstbrd, hclk, &err);
103
104	return err;
105}
106
107/**
108 * s3c2412_iotiming_debugfs - debugfs show io bank timing information
109 * @seq: The seq_file to write output to using seq_printf().
110 * @cfg: The current configuration.
111 * @iob: The IO bank information to decode.
112*/
113void s3c2412_iotiming_debugfs(struct seq_file *seq,
114			      struct s3c_cpufreq_config *cfg,
115			      union s3c_iobank *iob)
116{
117	struct s3c2412_iobank_timing *bt = iob->io_2412;
118
119	seq_printf(seq,
120		   "\tRead: idcy=%d.%d wstrd=%d.%d wstwr=%d,%d"
121		   "wstoen=%d.%d wstwen=%d.%d wstbrd=%d.%d\n",
122		   print_ns(bt->idcy),
123		   print_ns(bt->wstrd),
124		   print_ns(bt->wstwr),
125		   print_ns(bt->wstoen),
126		   print_ns(bt->wstwen),
127		   print_ns(bt->wstbrd));
128}
129
130/**
131 * s3c2412_iotiming_calc - calculate all the bank divisor settings.
132 * @cfg: The current frequency configuration.
133 * @iot: The bank timing information.
134 *
135 * Calculate the timing information for all the banks that are
136 * configured as IO, using s3c2412_calc_bank().
137 */
138int s3c2412_iotiming_calc(struct s3c_cpufreq_config *cfg,
139			  struct s3c_iotimings *iot)
140{
141	struct s3c2412_iobank_timing *bt;
142	int bank;
143	int ret;
144
145	for (bank = 0; bank < MAX_BANKS; bank++) {
146		bt = iot->bank[bank].io_2412;
147		if (!bt)
148			continue;
149
150		ret = s3c2412_calc_bank(cfg, bt);
151		if (ret) {
152			printk(KERN_ERR "%s: cannot calculate bank %d io\n",
153			       __func__, bank);
154			goto err;
155		}
156	}
157
158	return 0;
159 err:
160	return ret;
161}
162
163/**
164 * s3c2412_iotiming_set - set the timing information
165 * @cfg: The current frequency configuration.
166 * @iot: The bank timing information.
167 *
168 * Set the IO bank information from the details calculated earlier from
169 * calling s3c2412_iotiming_calc().
170 */
171void s3c2412_iotiming_set(struct s3c_cpufreq_config *cfg,
172			  struct s3c_iotimings *iot)
173{
174	struct s3c2412_iobank_timing *bt;
175	void __iomem *regs;
176	int bank;
177
178	/* set the io timings from the specifier */
179
180	for (bank = 0; bank < MAX_BANKS; bank++) {
181		bt = iot->bank[bank].io_2412;
182		if (!bt)
183			continue;
184
185		regs = S3C2412_SSMC_BANK(bank);
186
187		__raw_writel(bt->smbidcyr, regs + SMBIDCYR);
188		__raw_writel(bt->smbwstrd, regs + SMBWSTRDR);
189		__raw_writel(bt->smbwstwr, regs + SMBWSTWRR);
190		__raw_writel(bt->smbwstoen, regs + SMBWSTOENR);
191		__raw_writel(bt->smbwstwen, regs + SMBWSTWENR);
192		__raw_writel(bt->smbwstbrd, regs + SMBWSTBRDR);
193	}
194}
195
196static inline unsigned int s3c2412_decode_timing(unsigned int clock, u32 reg)
197{
198	return (reg & 0xf) * clock;
199}
200
201static void s3c2412_iotiming_getbank(struct s3c_cpufreq_config *cfg,
202				     struct s3c2412_iobank_timing *bt,
203				     unsigned int bank)
204{
205	unsigned long clk = cfg->freq.hclk_tns;  /* ssmc clock??? */
206	void __iomem *regs = S3C2412_SSMC_BANK(bank);
207
208	bt->idcy = s3c2412_decode_timing(clk, __raw_readl(regs + SMBIDCYR));
209	bt->wstrd = s3c2412_decode_timing(clk, __raw_readl(regs + SMBWSTRDR));
210	bt->wstoen = s3c2412_decode_timing(clk, __raw_readl(regs + SMBWSTOENR));
211	bt->wstwen = s3c2412_decode_timing(clk, __raw_readl(regs + SMBWSTWENR));
212	bt->wstbrd = s3c2412_decode_timing(clk, __raw_readl(regs + SMBWSTBRDR));
213}
214
215/**
216 * bank_is_io - return true if bank is (possibly) IO.
217 * @bank: The bank number.
218 * @bankcfg: The value of S3C2412_EBI_BANKCFG.
219 */
220static inline bool bank_is_io(unsigned int bank, u32 bankcfg)
221{
222	if (bank < 2)
223		return true;
224
225	return !(bankcfg & (1 << bank));
226}
227
228int s3c2412_iotiming_get(struct s3c_cpufreq_config *cfg,
229			 struct s3c_iotimings *timings)
230{
231	struct s3c2412_iobank_timing *bt;
232	u32 bankcfg = __raw_readl(S3C2412_EBI_BANKCFG);
233	unsigned int bank;
234
235	/* look through all banks to see what is currently set. */
236
237	for (bank = 0; bank < MAX_BANKS; bank++) {
238		if (!bank_is_io(bank, bankcfg))
239			continue;
240
241		bt = kzalloc(sizeof(*bt), GFP_KERNEL);
242		if (!bt)
 
243			return -ENOMEM;
 
244
245		timings->bank[bank].io_2412 = bt;
246		s3c2412_iotiming_getbank(cfg, bt, bank);
247	}
248
249	s3c2412_print_timing("get", timings);
250	return 0;
251}
252
253/* this is in here as it is so small, it doesn't currently warrant a file
254 * to itself. We expect that any s3c24xx needing this is going to also
255 * need the iotiming support.
256 */
257void s3c2412_cpufreq_setrefresh(struct s3c_cpufreq_config *cfg)
258{
259	struct s3c_cpufreq_board *board = cfg->board;
260	u32 refresh;
261
262	WARN_ON(board == NULL);
263
264	/* Reduce both the refresh time (in ns) and the frequency (in MHz)
265	 * down to ensure that we do not overflow 32 bit numbers.
266	 *
267	 * This should work for HCLK up to 133MHz and refresh period up
268	 * to 30usec.
269	 */
270
271	refresh = (cfg->freq.hclk / 100) * (board->refresh / 10);
272	refresh = DIV_ROUND_UP(refresh, (1000 * 1000)); /* apply scale  */
273	refresh &= ((1 << 16) - 1);
274
275	s3c_freq_dbg("%s: refresh value %u\n", __func__, (unsigned int)refresh);
276
277	__raw_writel(refresh, S3C2412_REFRESH);
278}