Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * This is a maximally equidistributed combined Tausworthe generator
  3 * based on code from GNU Scientific Library 1.5 (30 Jun 2004)
  4 *
  5 * lfsr113 version:
  6 *
  7 * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
  8 *
  9 * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
 10 * s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
 11 * s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
 12 * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))
 13 *
 14 * The period of this generator is about 2^113 (see erratum paper).
 15 *
 16 * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
 17 * Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
 18 * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
 19 * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
 20 *
 21 * There is an erratum in the paper "Tables of Maximally Equidistributed
 22 * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
 23 * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
 24 *
 25 *      ... the k_j most significant bits of z_j must be non-zero,
 26 *      for each j. (Note: this restriction also applies to the
 27 *      computer code given in [4], but was mistakenly not mentioned
 28 *      in that paper.)
 29 *
 30 * This affects the seeding procedure by imposing the requirement
 31 * s1 > 1, s2 > 7, s3 > 15, s4 > 127.
 32 */
 33
 34#include <linux/types.h>
 35#include <linux/percpu.h>
 36#include <linux/export.h>
 37#include <linux/jiffies.h>
 38#include <linux/random.h>
 39#include <linux/sched.h>
 
 40
 41#ifdef CONFIG_RANDOM32_SELFTEST
 42static void __init prandom_state_selftest(void);
 
 
 
 
 43#endif
 44
 45static DEFINE_PER_CPU(struct rnd_state, net_rand_state);
 46
 47/**
 48 *	prandom_u32_state - seeded pseudo-random number generator.
 49 *	@state: pointer to state structure holding seeded state.
 50 *
 51 *	This is used for pseudo-randomness with no outside seeding.
 52 *	For more random results, use prandom_u32().
 53 */
 54u32 prandom_u32_state(struct rnd_state *state)
 55{
 56#define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b)
 57
 58	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
 59	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
 60	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
 61	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);
 62
 63	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
 64}
 65EXPORT_SYMBOL(prandom_u32_state);
 66
 67/**
 68 *	prandom_u32 - pseudo random number generator
 69 *
 70 *	A 32 bit pseudo-random number is generated using a fast
 71 *	algorithm suitable for simulation. This algorithm is NOT
 72 *	considered safe for cryptographic use.
 73 */
 74u32 prandom_u32(void)
 75{
 76	struct rnd_state *state = &get_cpu_var(net_rand_state);
 77	u32 res;
 78
 79	res = prandom_u32_state(state);
 80	put_cpu_var(state);
 81
 82	return res;
 83}
 84EXPORT_SYMBOL(prandom_u32);
 85
 86/**
 87 *	prandom_bytes_state - get the requested number of pseudo-random bytes
 88 *
 89 *	@state: pointer to state structure holding seeded state.
 90 *	@buf: where to copy the pseudo-random bytes to
 91 *	@bytes: the requested number of bytes
 92 *
 93 *	This is used for pseudo-randomness with no outside seeding.
 94 *	For more random results, use prandom_bytes().
 95 */
 96void prandom_bytes_state(struct rnd_state *state, void *buf, int bytes)
 97{
 98	unsigned char *p = buf;
 99	int i;
100
101	for (i = 0; i < round_down(bytes, sizeof(u32)); i += sizeof(u32)) {
102		u32 random = prandom_u32_state(state);
103		int j;
104
105		for (j = 0; j < sizeof(u32); j++) {
106			p[i + j] = random;
107			random >>= BITS_PER_BYTE;
108		}
109	}
110	if (i < bytes) {
111		u32 random = prandom_u32_state(state);
112
113		for (; i < bytes; i++) {
114			p[i] = random;
115			random >>= BITS_PER_BYTE;
116		}
 
 
 
117	}
118}
119EXPORT_SYMBOL(prandom_bytes_state);
120
121/**
122 *	prandom_bytes - get the requested number of pseudo-random bytes
123 *	@buf: where to copy the pseudo-random bytes to
124 *	@bytes: the requested number of bytes
125 */
126void prandom_bytes(void *buf, int bytes)
127{
128	struct rnd_state *state = &get_cpu_var(net_rand_state);
129
130	prandom_bytes_state(state, buf, bytes);
131	put_cpu_var(state);
132}
133EXPORT_SYMBOL(prandom_bytes);
134
135static void prandom_warmup(struct rnd_state *state)
136{
137	/* Calling RNG ten times to satify recurrence condition */
138	prandom_u32_state(state);
139	prandom_u32_state(state);
140	prandom_u32_state(state);
141	prandom_u32_state(state);
142	prandom_u32_state(state);
143	prandom_u32_state(state);
144	prandom_u32_state(state);
145	prandom_u32_state(state);
146	prandom_u32_state(state);
147	prandom_u32_state(state);
148}
149
150static void prandom_seed_very_weak(struct rnd_state *state, u32 seed)
151{
152	/* Note: This sort of seeding is ONLY used in test cases and
153	 * during boot at the time from core_initcall until late_initcall
154	 * as we don't have a stronger entropy source available yet.
155	 * After late_initcall, we reseed entire state, we have to (!),
156	 * otherwise an attacker just needs to search 32 bit space to
157	 * probe for our internal 128 bit state if he knows a couple
158	 * of prandom32 outputs!
159	 */
160#define LCG(x)	((x) * 69069U)	/* super-duper LCG */
161	state->s1 = __seed(LCG(seed),        2U);
162	state->s2 = __seed(LCG(state->s1),   8U);
163	state->s3 = __seed(LCG(state->s2),  16U);
164	state->s4 = __seed(LCG(state->s3), 128U);
 
 
 
 
165}
166
167/**
168 *	prandom_seed - add entropy to pseudo random number generator
169 *	@seed: seed value
170 *
171 *	Add some additional seeding to the prandom pool.
172 */
173void prandom_seed(u32 entropy)
174{
175	int i;
176	/*
177	 * No locking on the CPUs, but then somewhat random results are, well,
178	 * expected.
179	 */
180	for_each_possible_cpu (i) {
181		struct rnd_state *state = &per_cpu(net_rand_state, i);
182
183		state->s1 = __seed(state->s1 ^ entropy, 2U);
184		prandom_warmup(state);
185	}
186}
187EXPORT_SYMBOL(prandom_seed);
188
189/*
190 *	Generate some initially weak seeding values to allow
191 *	to start the prandom_u32() engine.
192 */
193static int __init prandom_init(void)
194{
195	int i;
196
197#ifdef CONFIG_RANDOM32_SELFTEST
198	prandom_state_selftest();
199#endif
200
201	for_each_possible_cpu(i) {
202		struct rnd_state *state = &per_cpu(net_rand_state,i);
 
203
204		prandom_seed_very_weak(state, (i + jiffies) ^ random_get_entropy());
205		prandom_warmup(state);
206	}
207
208	return 0;
209}
210core_initcall(prandom_init);
211
212static void __prandom_timer(unsigned long dontcare);
213static DEFINE_TIMER(seed_timer, __prandom_timer, 0, 0);
214
215static void __prandom_timer(unsigned long dontcare)
 
 
216{
217	u32 entropy;
218	unsigned long expires;
219
220	get_random_bytes(&entropy, sizeof(entropy));
221	prandom_seed(entropy);
222
223	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
224	expires = 40 + (prandom_u32() % 40);
225	seed_timer.expires = jiffies + msecs_to_jiffies(expires * MSEC_PER_SEC);
226
227	add_timer(&seed_timer);
228}
229
230static void __init __prandom_start_seed_timer(void)
231{
232	set_timer_slack(&seed_timer, HZ);
233	seed_timer.expires = jiffies + msecs_to_jiffies(40 * MSEC_PER_SEC);
234	add_timer(&seed_timer);
235}
236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237/*
238 *	Generate better values after random number generator
239 *	is fully initialized.
240 */
241static void __prandom_reseed(bool late)
242{
243	int i;
244	unsigned long flags;
245	static bool latch = false;
246	static DEFINE_SPINLOCK(lock);
247
248	/* Asking for random bytes might result in bytes getting
249	 * moved into the nonblocking pool and thus marking it
250	 * as initialized. In this case we would double back into
251	 * this function and attempt to do a late reseed.
252	 * Ignore the pointless attempt to reseed again if we're
253	 * already waiting for bytes when the nonblocking pool
254	 * got initialized.
255	 */
256
257	/* only allow initial seeding (late == false) once */
258	if (!spin_trylock_irqsave(&lock, flags))
259		return;
260
261	if (latch && !late)
262		goto out;
263
264	latch = true;
265
266	for_each_possible_cpu(i) {
267		struct rnd_state *state = &per_cpu(net_rand_state,i);
268		u32 seeds[4];
269
270		get_random_bytes(&seeds, sizeof(seeds));
271		state->s1 = __seed(seeds[0],   2U);
272		state->s2 = __seed(seeds[1],   8U);
273		state->s3 = __seed(seeds[2],  16U);
274		state->s4 = __seed(seeds[3], 128U);
275
276		prandom_warmup(state);
277	}
278out:
279	spin_unlock_irqrestore(&lock, flags);
280}
281
282void prandom_reseed_late(void)
283{
284	__prandom_reseed(true);
285}
286
287static int __init prandom_reseed(void)
288{
289	__prandom_reseed(false);
290	__prandom_start_seed_timer();
291	return 0;
292}
293late_initcall(prandom_reseed);
294
295#ifdef CONFIG_RANDOM32_SELFTEST
296static struct prandom_test1 {
297	u32 seed;
298	u32 result;
299} test1[] = {
300	{ 1U, 3484351685U },
301	{ 2U, 2623130059U },
302	{ 3U, 3125133893U },
303	{ 4U,  984847254U },
304};
305
306static struct prandom_test2 {
307	u32 seed;
308	u32 iteration;
309	u32 result;
310} test2[] = {
311	/* Test cases against taus113 from GSL library. */
312	{  931557656U, 959U, 2975593782U },
313	{ 1339693295U, 876U, 3887776532U },
314	{ 1545556285U, 961U, 1615538833U },
315	{  601730776U, 723U, 1776162651U },
316	{ 1027516047U, 687U,  511983079U },
317	{  416526298U, 700U,  916156552U },
318	{ 1395522032U, 652U, 2222063676U },
319	{  366221443U, 617U, 2992857763U },
320	{ 1539836965U, 714U, 3783265725U },
321	{  556206671U, 994U,  799626459U },
322	{  684907218U, 799U,  367789491U },
323	{ 2121230701U, 931U, 2115467001U },
324	{ 1668516451U, 644U, 3620590685U },
325	{  768046066U, 883U, 2034077390U },
326	{ 1989159136U, 833U, 1195767305U },
327	{  536585145U, 996U, 3577259204U },
328	{ 1008129373U, 642U, 1478080776U },
329	{ 1740775604U, 939U, 1264980372U },
330	{ 1967883163U, 508U,   10734624U },
331	{ 1923019697U, 730U, 3821419629U },
332	{  442079932U, 560U, 3440032343U },
333	{ 1961302714U, 845U,  841962572U },
334	{ 2030205964U, 962U, 1325144227U },
335	{ 1160407529U, 507U,  240940858U },
336	{  635482502U, 779U, 4200489746U },
337	{ 1252788931U, 699U,  867195434U },
338	{ 1961817131U, 719U,  668237657U },
339	{ 1071468216U, 983U,  917876630U },
340	{ 1281848367U, 932U, 1003100039U },
341	{  582537119U, 780U, 1127273778U },
342	{ 1973672777U, 853U, 1071368872U },
343	{ 1896756996U, 762U, 1127851055U },
344	{  847917054U, 500U, 1717499075U },
345	{ 1240520510U, 951U, 2849576657U },
346	{ 1685071682U, 567U, 1961810396U },
347	{ 1516232129U, 557U,    3173877U },
348	{ 1208118903U, 612U, 1613145022U },
349	{ 1817269927U, 693U, 4279122573U },
350	{ 1510091701U, 717U,  638191229U },
351	{  365916850U, 807U,  600424314U },
352	{  399324359U, 702U, 1803598116U },
353	{ 1318480274U, 779U, 2074237022U },
354	{  697758115U, 840U, 1483639402U },
355	{ 1696507773U, 840U,  577415447U },
356	{ 2081979121U, 981U, 3041486449U },
357	{  955646687U, 742U, 3846494357U },
358	{ 1250683506U, 749U,  836419859U },
359	{  595003102U, 534U,  366794109U },
360	{   47485338U, 558U, 3521120834U },
361	{  619433479U, 610U, 3991783875U },
362	{  704096520U, 518U, 4139493852U },
363	{ 1712224984U, 606U, 2393312003U },
364	{ 1318233152U, 922U, 3880361134U },
365	{  855572992U, 761U, 1472974787U },
366	{   64721421U, 703U,  683860550U },
367	{  678931758U, 840U,  380616043U },
368	{  692711973U, 778U, 1382361947U },
369	{  677703619U, 530U, 2826914161U },
370	{   92393223U, 586U, 1522128471U },
371	{ 1222592920U, 743U, 3466726667U },
372	{  358288986U, 695U, 1091956998U },
373	{ 1935056945U, 958U,  514864477U },
374	{  735675993U, 990U, 1294239989U },
375	{ 1560089402U, 897U, 2238551287U },
376	{   70616361U, 829U,   22483098U },
377	{  368234700U, 731U, 2913875084U },
378	{   20221190U, 879U, 1564152970U },
379	{  539444654U, 682U, 1835141259U },
380	{ 1314987297U, 840U, 1801114136U },
381	{ 2019295544U, 645U, 3286438930U },
382	{  469023838U, 716U, 1637918202U },
383	{ 1843754496U, 653U, 2562092152U },
384	{  400672036U, 809U, 4264212785U },
385	{  404722249U, 965U, 2704116999U },
386	{  600702209U, 758U,  584979986U },
387	{  519953954U, 667U, 2574436237U },
388	{ 1658071126U, 694U, 2214569490U },
389	{  420480037U, 749U, 3430010866U },
390	{  690103647U, 969U, 3700758083U },
391	{ 1029424799U, 937U, 3787746841U },
392	{ 2012608669U, 506U, 3362628973U },
393	{ 1535432887U, 998U,   42610943U },
394	{ 1330635533U, 857U, 3040806504U },
395	{ 1223800550U, 539U, 3954229517U },
396	{ 1322411537U, 680U, 3223250324U },
397	{ 1877847898U, 945U, 2915147143U },
398	{ 1646356099U, 874U,  965988280U },
399	{  805687536U, 744U, 4032277920U },
400	{ 1948093210U, 633U, 1346597684U },
401	{  392609744U, 783U, 1636083295U },
402	{  690241304U, 770U, 1201031298U },
403	{ 1360302965U, 696U, 1665394461U },
404	{ 1220090946U, 780U, 1316922812U },
405	{  447092251U, 500U, 3438743375U },
406	{ 1613868791U, 592U,  828546883U },
407	{  523430951U, 548U, 2552392304U },
408	{  726692899U, 810U, 1656872867U },
409	{ 1364340021U, 836U, 3710513486U },
410	{ 1986257729U, 931U,  935013962U },
411	{  407983964U, 921U,  728767059U },
412};
413
414static void __init prandom_state_selftest(void)
415{
416	int i, j, errors = 0, runs = 0;
417	bool error = false;
418
419	for (i = 0; i < ARRAY_SIZE(test1); i++) {
420		struct rnd_state state;
421
422		prandom_seed_very_weak(&state, test1[i].seed);
423		prandom_warmup(&state);
424
425		if (test1[i].result != prandom_u32_state(&state))
426			error = true;
427	}
428
429	if (error)
430		pr_warn("prandom: seed boundary self test failed\n");
431	else
432		pr_info("prandom: seed boundary self test passed\n");
433
434	for (i = 0; i < ARRAY_SIZE(test2); i++) {
435		struct rnd_state state;
436
437		prandom_seed_very_weak(&state, test2[i].seed);
438		prandom_warmup(&state);
439
440		for (j = 0; j < test2[i].iteration - 1; j++)
441			prandom_u32_state(&state);
442
443		if (test2[i].result != prandom_u32_state(&state))
444			errors++;
445
446		runs++;
447		cond_resched();
448	}
449
450	if (errors)
451		pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
452	else
453		pr_info("prandom: %d self tests passed\n", runs);
454}
455#endif
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This is a maximally equidistributed combined Tausworthe generator
  4 * based on code from GNU Scientific Library 1.5 (30 Jun 2004)
  5 *
  6 * lfsr113 version:
  7 *
  8 * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
  9 *
 10 * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
 11 * s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
 12 * s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
 13 * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))
 14 *
 15 * The period of this generator is about 2^113 (see erratum paper).
 16 *
 17 * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
 18 * Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
 19 * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
 20 * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
 21 *
 22 * There is an erratum in the paper "Tables of Maximally Equidistributed
 23 * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
 24 * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
 25 *
 26 *      ... the k_j most significant bits of z_j must be non-zero,
 27 *      for each j. (Note: this restriction also applies to the
 28 *      computer code given in [4], but was mistakenly not mentioned
 29 *      in that paper.)
 30 *
 31 * This affects the seeding procedure by imposing the requirement
 32 * s1 > 1, s2 > 7, s3 > 15, s4 > 127.
 33 */
 34
 35#include <linux/types.h>
 36#include <linux/percpu.h>
 37#include <linux/export.h>
 38#include <linux/jiffies.h>
 39#include <linux/random.h>
 40#include <linux/sched.h>
 41#include <asm/unaligned.h>
 42
 43#ifdef CONFIG_RANDOM32_SELFTEST
 44static void __init prandom_state_selftest(void);
 45#else
 46static inline void prandom_state_selftest(void)
 47{
 48}
 49#endif
 50
 51static DEFINE_PER_CPU(struct rnd_state, net_rand_state) __latent_entropy;
 52
 53/**
 54 *	prandom_u32_state - seeded pseudo-random number generator.
 55 *	@state: pointer to state structure holding seeded state.
 56 *
 57 *	This is used for pseudo-randomness with no outside seeding.
 58 *	For more random results, use prandom_u32().
 59 */
 60u32 prandom_u32_state(struct rnd_state *state)
 61{
 62#define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b)
 
 63	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
 64	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
 65	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
 66	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);
 67
 68	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
 69}
 70EXPORT_SYMBOL(prandom_u32_state);
 71
 72/**
 73 *	prandom_u32 - pseudo random number generator
 74 *
 75 *	A 32 bit pseudo-random number is generated using a fast
 76 *	algorithm suitable for simulation. This algorithm is NOT
 77 *	considered safe for cryptographic use.
 78 */
 79u32 prandom_u32(void)
 80{
 81	struct rnd_state *state = &get_cpu_var(net_rand_state);
 82	u32 res;
 83
 84	res = prandom_u32_state(state);
 85	put_cpu_var(net_rand_state);
 86
 87	return res;
 88}
 89EXPORT_SYMBOL(prandom_u32);
 90
 91/**
 92 *	prandom_bytes_state - get the requested number of pseudo-random bytes
 93 *
 94 *	@state: pointer to state structure holding seeded state.
 95 *	@buf: where to copy the pseudo-random bytes to
 96 *	@bytes: the requested number of bytes
 97 *
 98 *	This is used for pseudo-randomness with no outside seeding.
 99 *	For more random results, use prandom_bytes().
100 */
101void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
102{
103	u8 *ptr = buf;
 
104
105	while (bytes >= sizeof(u32)) {
106		put_unaligned(prandom_u32_state(state), (u32 *) ptr);
107		ptr += sizeof(u32);
108		bytes -= sizeof(u32);
 
 
 
 
109	}
 
 
110
111	if (bytes > 0) {
112		u32 rem = prandom_u32_state(state);
113		do {
114			*ptr++ = (u8) rem;
115			bytes--;
116			rem >>= BITS_PER_BYTE;
117		} while (bytes > 0);
118	}
119}
120EXPORT_SYMBOL(prandom_bytes_state);
121
122/**
123 *	prandom_bytes - get the requested number of pseudo-random bytes
124 *	@buf: where to copy the pseudo-random bytes to
125 *	@bytes: the requested number of bytes
126 */
127void prandom_bytes(void *buf, size_t bytes)
128{
129	struct rnd_state *state = &get_cpu_var(net_rand_state);
130
131	prandom_bytes_state(state, buf, bytes);
132	put_cpu_var(net_rand_state);
133}
134EXPORT_SYMBOL(prandom_bytes);
135
136static void prandom_warmup(struct rnd_state *state)
137{
138	/* Calling RNG ten times to satisfy recurrence condition */
139	prandom_u32_state(state);
140	prandom_u32_state(state);
141	prandom_u32_state(state);
142	prandom_u32_state(state);
143	prandom_u32_state(state);
144	prandom_u32_state(state);
145	prandom_u32_state(state);
146	prandom_u32_state(state);
147	prandom_u32_state(state);
148	prandom_u32_state(state);
149}
150
151static u32 __extract_hwseed(void)
152{
153	unsigned int val = 0;
154
155	(void)(arch_get_random_seed_int(&val) ||
156	       arch_get_random_int(&val));
157
158	return val;
159}
160
161static void prandom_seed_early(struct rnd_state *state, u32 seed,
162			       bool mix_with_hwseed)
163{
164#define LCG(x)	 ((x) * 69069U)	/* super-duper LCG */
165#define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
166	state->s1 = __seed(HWSEED() ^ LCG(seed),        2U);
167	state->s2 = __seed(HWSEED() ^ LCG(state->s1),   8U);
168	state->s3 = __seed(HWSEED() ^ LCG(state->s2),  16U);
169	state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
170}
171
172/**
173 *	prandom_seed - add entropy to pseudo random number generator
174 *	@seed: seed value
175 *
176 *	Add some additional seeding to the prandom pool.
177 */
178void prandom_seed(u32 entropy)
179{
180	int i;
181	/*
182	 * No locking on the CPUs, but then somewhat random results are, well,
183	 * expected.
184	 */
185	for_each_possible_cpu(i) {
186		struct rnd_state *state = &per_cpu(net_rand_state, i);
187
188		state->s1 = __seed(state->s1 ^ entropy, 2U);
189		prandom_warmup(state);
190	}
191}
192EXPORT_SYMBOL(prandom_seed);
193
194/*
195 *	Generate some initially weak seeding values to allow
196 *	to start the prandom_u32() engine.
197 */
198static int __init prandom_init(void)
199{
200	int i;
201
 
202	prandom_state_selftest();
 
203
204	for_each_possible_cpu(i) {
205		struct rnd_state *state = &per_cpu(net_rand_state, i);
206		u32 weak_seed = (i + jiffies) ^ random_get_entropy();
207
208		prandom_seed_early(state, weak_seed, true);
209		prandom_warmup(state);
210	}
211
212	return 0;
213}
214core_initcall(prandom_init);
215
216static void __prandom_timer(struct timer_list *unused);
 
217
218static DEFINE_TIMER(seed_timer, __prandom_timer);
219
220static void __prandom_timer(struct timer_list *unused)
221{
222	u32 entropy;
223	unsigned long expires;
224
225	get_random_bytes(&entropy, sizeof(entropy));
226	prandom_seed(entropy);
227
228	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
229	expires = 40 + prandom_u32_max(40);
230	seed_timer.expires = jiffies + msecs_to_jiffies(expires * MSEC_PER_SEC);
231
232	add_timer(&seed_timer);
233}
234
235static void __init __prandom_start_seed_timer(void)
236{
 
237	seed_timer.expires = jiffies + msecs_to_jiffies(40 * MSEC_PER_SEC);
238	add_timer(&seed_timer);
239}
240
241void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
242{
243	int i;
244
245	for_each_possible_cpu(i) {
246		struct rnd_state *state = per_cpu_ptr(pcpu_state, i);
247		u32 seeds[4];
248
249		get_random_bytes(&seeds, sizeof(seeds));
250		state->s1 = __seed(seeds[0],   2U);
251		state->s2 = __seed(seeds[1],   8U);
252		state->s3 = __seed(seeds[2],  16U);
253		state->s4 = __seed(seeds[3], 128U);
254
255		prandom_warmup(state);
256	}
257}
258EXPORT_SYMBOL(prandom_seed_full_state);
259
260/*
261 *	Generate better values after random number generator
262 *	is fully initialized.
263 */
264static void __prandom_reseed(bool late)
265{
 
266	unsigned long flags;
267	static bool latch = false;
268	static DEFINE_SPINLOCK(lock);
269
270	/* Asking for random bytes might result in bytes getting
271	 * moved into the nonblocking pool and thus marking it
272	 * as initialized. In this case we would double back into
273	 * this function and attempt to do a late reseed.
274	 * Ignore the pointless attempt to reseed again if we're
275	 * already waiting for bytes when the nonblocking pool
276	 * got initialized.
277	 */
278
279	/* only allow initial seeding (late == false) once */
280	if (!spin_trylock_irqsave(&lock, flags))
281		return;
282
283	if (latch && !late)
284		goto out;
285
286	latch = true;
287	prandom_seed_full_state(&net_rand_state);
 
 
 
 
 
 
 
 
 
 
 
 
288out:
289	spin_unlock_irqrestore(&lock, flags);
290}
291
292void prandom_reseed_late(void)
293{
294	__prandom_reseed(true);
295}
296
297static int __init prandom_reseed(void)
298{
299	__prandom_reseed(false);
300	__prandom_start_seed_timer();
301	return 0;
302}
303late_initcall(prandom_reseed);
304
305#ifdef CONFIG_RANDOM32_SELFTEST
306static struct prandom_test1 {
307	u32 seed;
308	u32 result;
309} test1[] = {
310	{ 1U, 3484351685U },
311	{ 2U, 2623130059U },
312	{ 3U, 3125133893U },
313	{ 4U,  984847254U },
314};
315
316static struct prandom_test2 {
317	u32 seed;
318	u32 iteration;
319	u32 result;
320} test2[] = {
321	/* Test cases against taus113 from GSL library. */
322	{  931557656U, 959U, 2975593782U },
323	{ 1339693295U, 876U, 3887776532U },
324	{ 1545556285U, 961U, 1615538833U },
325	{  601730776U, 723U, 1776162651U },
326	{ 1027516047U, 687U,  511983079U },
327	{  416526298U, 700U,  916156552U },
328	{ 1395522032U, 652U, 2222063676U },
329	{  366221443U, 617U, 2992857763U },
330	{ 1539836965U, 714U, 3783265725U },
331	{  556206671U, 994U,  799626459U },
332	{  684907218U, 799U,  367789491U },
333	{ 2121230701U, 931U, 2115467001U },
334	{ 1668516451U, 644U, 3620590685U },
335	{  768046066U, 883U, 2034077390U },
336	{ 1989159136U, 833U, 1195767305U },
337	{  536585145U, 996U, 3577259204U },
338	{ 1008129373U, 642U, 1478080776U },
339	{ 1740775604U, 939U, 1264980372U },
340	{ 1967883163U, 508U,   10734624U },
341	{ 1923019697U, 730U, 3821419629U },
342	{  442079932U, 560U, 3440032343U },
343	{ 1961302714U, 845U,  841962572U },
344	{ 2030205964U, 962U, 1325144227U },
345	{ 1160407529U, 507U,  240940858U },
346	{  635482502U, 779U, 4200489746U },
347	{ 1252788931U, 699U,  867195434U },
348	{ 1961817131U, 719U,  668237657U },
349	{ 1071468216U, 983U,  917876630U },
350	{ 1281848367U, 932U, 1003100039U },
351	{  582537119U, 780U, 1127273778U },
352	{ 1973672777U, 853U, 1071368872U },
353	{ 1896756996U, 762U, 1127851055U },
354	{  847917054U, 500U, 1717499075U },
355	{ 1240520510U, 951U, 2849576657U },
356	{ 1685071682U, 567U, 1961810396U },
357	{ 1516232129U, 557U,    3173877U },
358	{ 1208118903U, 612U, 1613145022U },
359	{ 1817269927U, 693U, 4279122573U },
360	{ 1510091701U, 717U,  638191229U },
361	{  365916850U, 807U,  600424314U },
362	{  399324359U, 702U, 1803598116U },
363	{ 1318480274U, 779U, 2074237022U },
364	{  697758115U, 840U, 1483639402U },
365	{ 1696507773U, 840U,  577415447U },
366	{ 2081979121U, 981U, 3041486449U },
367	{  955646687U, 742U, 3846494357U },
368	{ 1250683506U, 749U,  836419859U },
369	{  595003102U, 534U,  366794109U },
370	{   47485338U, 558U, 3521120834U },
371	{  619433479U, 610U, 3991783875U },
372	{  704096520U, 518U, 4139493852U },
373	{ 1712224984U, 606U, 2393312003U },
374	{ 1318233152U, 922U, 3880361134U },
375	{  855572992U, 761U, 1472974787U },
376	{   64721421U, 703U,  683860550U },
377	{  678931758U, 840U,  380616043U },
378	{  692711973U, 778U, 1382361947U },
379	{  677703619U, 530U, 2826914161U },
380	{   92393223U, 586U, 1522128471U },
381	{ 1222592920U, 743U, 3466726667U },
382	{  358288986U, 695U, 1091956998U },
383	{ 1935056945U, 958U,  514864477U },
384	{  735675993U, 990U, 1294239989U },
385	{ 1560089402U, 897U, 2238551287U },
386	{   70616361U, 829U,   22483098U },
387	{  368234700U, 731U, 2913875084U },
388	{   20221190U, 879U, 1564152970U },
389	{  539444654U, 682U, 1835141259U },
390	{ 1314987297U, 840U, 1801114136U },
391	{ 2019295544U, 645U, 3286438930U },
392	{  469023838U, 716U, 1637918202U },
393	{ 1843754496U, 653U, 2562092152U },
394	{  400672036U, 809U, 4264212785U },
395	{  404722249U, 965U, 2704116999U },
396	{  600702209U, 758U,  584979986U },
397	{  519953954U, 667U, 2574436237U },
398	{ 1658071126U, 694U, 2214569490U },
399	{  420480037U, 749U, 3430010866U },
400	{  690103647U, 969U, 3700758083U },
401	{ 1029424799U, 937U, 3787746841U },
402	{ 2012608669U, 506U, 3362628973U },
403	{ 1535432887U, 998U,   42610943U },
404	{ 1330635533U, 857U, 3040806504U },
405	{ 1223800550U, 539U, 3954229517U },
406	{ 1322411537U, 680U, 3223250324U },
407	{ 1877847898U, 945U, 2915147143U },
408	{ 1646356099U, 874U,  965988280U },
409	{  805687536U, 744U, 4032277920U },
410	{ 1948093210U, 633U, 1346597684U },
411	{  392609744U, 783U, 1636083295U },
412	{  690241304U, 770U, 1201031298U },
413	{ 1360302965U, 696U, 1665394461U },
414	{ 1220090946U, 780U, 1316922812U },
415	{  447092251U, 500U, 3438743375U },
416	{ 1613868791U, 592U,  828546883U },
417	{  523430951U, 548U, 2552392304U },
418	{  726692899U, 810U, 1656872867U },
419	{ 1364340021U, 836U, 3710513486U },
420	{ 1986257729U, 931U,  935013962U },
421	{  407983964U, 921U,  728767059U },
422};
423
424static void __init prandom_state_selftest(void)
425{
426	int i, j, errors = 0, runs = 0;
427	bool error = false;
428
429	for (i = 0; i < ARRAY_SIZE(test1); i++) {
430		struct rnd_state state;
431
432		prandom_seed_early(&state, test1[i].seed, false);
433		prandom_warmup(&state);
434
435		if (test1[i].result != prandom_u32_state(&state))
436			error = true;
437	}
438
439	if (error)
440		pr_warn("prandom: seed boundary self test failed\n");
441	else
442		pr_info("prandom: seed boundary self test passed\n");
443
444	for (i = 0; i < ARRAY_SIZE(test2); i++) {
445		struct rnd_state state;
446
447		prandom_seed_early(&state, test2[i].seed, false);
448		prandom_warmup(&state);
449
450		for (j = 0; j < test2[i].iteration - 1; j++)
451			prandom_u32_state(&state);
452
453		if (test2[i].result != prandom_u32_state(&state))
454			errors++;
455
456		runs++;
457		cond_resched();
458	}
459
460	if (errors)
461		pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
462	else
463		pr_info("prandom: %d self tests passed\n", runs);
464}
465#endif