Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 
 12#include <linux/interrupt.h>
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 16#include <linux/module.h>
 17#include <linux/random.h>
 18#include <linux/ftrace.h>
 19#include <linux/reboot.h>
 20#include <linux/delay.h>
 21#include <linux/kexec.h>
 22#include <linux/sched.h>
 23#include <linux/sysrq.h>
 24#include <linux/init.h>
 25#include <linux/nmi.h>
 
 
 
 
 
 26
 27#define PANIC_TIMER_STEP 100
 28#define PANIC_BLINK_SPD 18
 29
 30int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 31static unsigned long tainted_mask;
 
 32static int pause_on_oops;
 33static int pause_on_oops_flag;
 34static DEFINE_SPINLOCK(pause_on_oops_lock);
 
 
 35
 36int panic_timeout = CONFIG_PANIC_TIMEOUT;
 37EXPORT_SYMBOL_GPL(panic_timeout);
 38
 39ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 40
 41EXPORT_SYMBOL(panic_notifier_list);
 42
 43static long no_blink(int state)
 44{
 45	return 0;
 46}
 47
 48/* Returns how long it waited in ms */
 49long (*panic_blink)(int state);
 50EXPORT_SYMBOL(panic_blink);
 51
 52/*
 53 * Stop ourself in panic -- architecture code may override this
 54 */
 55void __weak panic_smp_self_stop(void)
 56{
 57	while (1)
 58		cpu_relax();
 59}
 60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61/**
 62 *	panic - halt the system
 63 *	@fmt: The text string to print
 64 *
 65 *	Display a message, then perform cleanups.
 66 *
 67 *	This function never returns.
 68 */
 69void panic(const char *fmt, ...)
 70{
 71	static DEFINE_SPINLOCK(panic_lock);
 72	static char buf[1024];
 73	va_list args;
 74	long i, i_next = 0;
 75	int state = 0;
 
 
 76
 77	/*
 78	 * Disable local interrupts. This will prevent panic_smp_self_stop
 79	 * from deadlocking the first cpu that invokes the panic, since
 80	 * there is nothing to prevent an interrupt handler (that runs
 81	 * after the panic_lock is acquired) from invoking panic again.
 82	 */
 83	local_irq_disable();
 84
 85	/*
 86	 * It's possible to come here directly from a panic-assertion and
 87	 * not have preempt disabled. Some functions called from here want
 88	 * preempt to be disabled. No point enabling it later though...
 89	 *
 90	 * Only one CPU is allowed to execute the panic code from here. For
 91	 * multiple parallel invocations of panic, all other CPUs either
 92	 * stop themself or will wait until they are stopped by the 1st CPU
 93	 * with smp_send_stop().
 
 
 
 
 
 94	 */
 95	if (!spin_trylock(&panic_lock))
 
 
 
 96		panic_smp_self_stop();
 97
 98	console_verbose();
 99	bust_spinlocks(1);
100	va_start(args, fmt);
101	vsnprintf(buf, sizeof(buf), fmt, args);
102	va_end(args);
103	pr_emerg("Kernel panic - not syncing: %s\n", buf);
104#ifdef CONFIG_DEBUG_BUGVERBOSE
105	/*
106	 * Avoid nested stack-dumping if a panic occurs during oops processing
107	 */
108	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
109		dump_stack();
110#endif
111
112	/*
113	 * If we have crashed and we have a crash kernel loaded let it handle
114	 * everything else.
115	 * Do we want to call this before we try to display a message?
 
 
 
116	 */
117	crash_kexec(NULL);
 
 
118
119	/*
120	 * Note smp_send_stop is the usual smp shutdown function, which
121	 * unfortunately means it may not be hardened to work in a panic
122	 * situation.
123	 */
124	smp_send_stop();
 
 
 
 
 
 
 
 
125
126	/*
127	 * Run any panic handlers, including those that might need to
128	 * add information to the kmsg dump output.
129	 */
130	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
131
 
 
132	kmsg_dump(KMSG_DUMP_PANIC);
133
 
 
 
 
 
 
 
 
 
 
 
 
134	bust_spinlocks(0);
135
 
 
 
 
 
 
 
 
 
 
 
136	if (!panic_blink)
137		panic_blink = no_blink;
138
139	if (panic_timeout > 0) {
140		/*
141		 * Delay timeout seconds before rebooting the machine.
142		 * We can't use the "normal" timers since we just panicked.
143		 */
144		pr_emerg("Rebooting in %d seconds..", panic_timeout);
145
146		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
147			touch_nmi_watchdog();
148			if (i >= i_next) {
149				i += panic_blink(state ^= 1);
150				i_next = i + 3600 / PANIC_BLINK_SPD;
151			}
152			mdelay(PANIC_TIMER_STEP);
153		}
154	}
155	if (panic_timeout != 0) {
156		/*
157		 * This will not be a clean reboot, with everything
158		 * shutting down.  But if there is a chance of
159		 * rebooting the system it will be rebooted.
160		 */
161		emergency_restart();
162	}
163#ifdef __sparc__
164	{
165		extern int stop_a_enabled;
166		/* Make sure the user can actually press Stop-A (L1-A) */
167		stop_a_enabled = 1;
168		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
 
169	}
170#endif
171#if defined(CONFIG_S390)
172	{
173		unsigned long caller;
174
175		caller = (unsigned long)__builtin_return_address(0);
176		disabled_wait(caller);
177	}
178#endif
179	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
180	local_irq_enable();
181	for (i = 0; ; i += PANIC_TIMER_STEP) {
182		touch_softlockup_watchdog();
183		if (i >= i_next) {
184			i += panic_blink(state ^= 1);
185			i_next = i + 3600 / PANIC_BLINK_SPD;
186		}
187		mdelay(PANIC_TIMER_STEP);
188	}
189}
190
191EXPORT_SYMBOL(panic);
192
193
194struct tnt {
195	u8	bit;
196	char	true;
197	char	false;
198};
199
200static const struct tnt tnts[] = {
201	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
202	{ TAINT_FORCED_MODULE,		'F', ' ' },
203	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
204	{ TAINT_FORCED_RMMOD,		'R', ' ' },
205	{ TAINT_MACHINE_CHECK,		'M', ' ' },
206	{ TAINT_BAD_PAGE,		'B', ' ' },
207	{ TAINT_USER,			'U', ' ' },
208	{ TAINT_DIE,			'D', ' ' },
209	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
210	{ TAINT_WARN,			'W', ' ' },
211	{ TAINT_CRAP,			'C', ' ' },
212	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
213	{ TAINT_OOT_MODULE,		'O', ' ' },
214	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
 
215};
216
217/**
218 *	print_tainted - return a string to represent the kernel taint state.
219 *
220 *  'P' - Proprietary module has been loaded.
221 *  'F' - Module has been forcibly loaded.
222 *  'S' - SMP with CPUs not designed for SMP.
223 *  'R' - User forced a module unload.
224 *  'M' - System experienced a machine check exception.
225 *  'B' - System has hit bad_page.
226 *  'U' - Userspace-defined naughtiness.
227 *  'D' - Kernel has oopsed before
228 *  'A' - ACPI table overridden.
229 *  'W' - Taint on warning.
230 *  'C' - modules from drivers/staging are loaded.
231 *  'I' - Working around severe firmware bug.
232 *  'O' - Out-of-tree module has been loaded.
233 *  'E' - Unsigned module has been loaded.
234 *
235 *	The string is overwritten by the next call to print_tainted().
 
236 */
237const char *print_tainted(void)
238{
239	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
 
 
240
241	if (tainted_mask) {
242		char *s;
243		int i;
244
245		s = buf + sprintf(buf, "Tainted: ");
246		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
247			const struct tnt *t = &tnts[i];
248			*s++ = test_bit(t->bit, &tainted_mask) ?
249					t->true : t->false;
250		}
251		*s = 0;
252	} else
253		snprintf(buf, sizeof(buf), "Not tainted");
254
255	return buf;
256}
257
258int test_taint(unsigned flag)
259{
260	return test_bit(flag, &tainted_mask);
261}
262EXPORT_SYMBOL(test_taint);
263
264unsigned long get_taint(void)
265{
266	return tainted_mask;
267}
268
269/**
270 * add_taint: add a taint flag if not already set.
271 * @flag: one of the TAINT_* constants.
272 * @lockdep_ok: whether lock debugging is still OK.
273 *
274 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
275 * some notewortht-but-not-corrupting cases, it can be set to true.
276 */
277void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
278{
279	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
280		pr_warn("Disabling lock debugging due to kernel taint\n");
281
282	set_bit(flag, &tainted_mask);
283}
284EXPORT_SYMBOL(add_taint);
285
286static void spin_msec(int msecs)
287{
288	int i;
289
290	for (i = 0; i < msecs; i++) {
291		touch_nmi_watchdog();
292		mdelay(1);
293	}
294}
295
296/*
297 * It just happens that oops_enter() and oops_exit() are identically
298 * implemented...
299 */
300static void do_oops_enter_exit(void)
301{
302	unsigned long flags;
303	static int spin_counter;
304
305	if (!pause_on_oops)
306		return;
307
308	spin_lock_irqsave(&pause_on_oops_lock, flags);
309	if (pause_on_oops_flag == 0) {
310		/* This CPU may now print the oops message */
311		pause_on_oops_flag = 1;
312	} else {
313		/* We need to stall this CPU */
314		if (!spin_counter) {
315			/* This CPU gets to do the counting */
316			spin_counter = pause_on_oops;
317			do {
318				spin_unlock(&pause_on_oops_lock);
319				spin_msec(MSEC_PER_SEC);
320				spin_lock(&pause_on_oops_lock);
321			} while (--spin_counter);
322			pause_on_oops_flag = 0;
323		} else {
324			/* This CPU waits for a different one */
325			while (spin_counter) {
326				spin_unlock(&pause_on_oops_lock);
327				spin_msec(1);
328				spin_lock(&pause_on_oops_lock);
329			}
330		}
331	}
332	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
333}
334
335/*
336 * Return true if the calling CPU is allowed to print oops-related info.
337 * This is a bit racy..
338 */
339int oops_may_print(void)
340{
341	return pause_on_oops_flag == 0;
342}
343
344/*
345 * Called when the architecture enters its oops handler, before it prints
346 * anything.  If this is the first CPU to oops, and it's oopsing the first
347 * time then let it proceed.
348 *
349 * This is all enabled by the pause_on_oops kernel boot option.  We do all
350 * this to ensure that oopses don't scroll off the screen.  It has the
351 * side-effect of preventing later-oopsing CPUs from mucking up the display,
352 * too.
353 *
354 * It turns out that the CPU which is allowed to print ends up pausing for
355 * the right duration, whereas all the other CPUs pause for twice as long:
356 * once in oops_enter(), once in oops_exit().
357 */
358void oops_enter(void)
359{
360	tracing_off();
361	/* can't trust the integrity of the kernel anymore: */
362	debug_locks_off();
363	do_oops_enter_exit();
364}
365
366/*
367 * 64-bit random ID for oopses:
368 */
369static u64 oops_id;
370
371static int init_oops_id(void)
372{
373	if (!oops_id)
374		get_random_bytes(&oops_id, sizeof(oops_id));
375	else
376		oops_id++;
377
378	return 0;
379}
380late_initcall(init_oops_id);
381
382void print_oops_end_marker(void)
383{
384	init_oops_id();
385	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
386}
387
388/*
389 * Called when the architecture exits its oops handler, after printing
390 * everything.
391 */
392void oops_exit(void)
393{
394	do_oops_enter_exit();
395	print_oops_end_marker();
396	kmsg_dump(KMSG_DUMP_OOPS);
397}
398
399#ifdef WANT_WARN_ON_SLOWPATH
400struct slowpath_args {
401	const char *fmt;
402	va_list args;
403};
404
405static void warn_slowpath_common(const char *file, int line, void *caller,
406				 unsigned taint, struct slowpath_args *args)
407{
408	disable_trace_on_warning();
409
410	pr_warn("------------[ cut here ]------------\n");
411	pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS()\n",
412		raw_smp_processor_id(), current->pid, file, line, caller);
 
 
 
 
 
 
 
413
414	if (args)
415		vprintk(args->fmt, args->args);
416
 
 
 
 
 
 
 
 
 
 
 
417	print_modules();
418	dump_stack();
 
 
 
 
 
 
 
419	print_oops_end_marker();
 
420	/* Just a warning, don't kill lockdep. */
421	add_taint(taint, LOCKDEP_STILL_OK);
422}
423
 
424void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
425{
426	struct slowpath_args args;
427
428	args.fmt = fmt;
429	va_start(args.args, fmt);
430	warn_slowpath_common(file, line, __builtin_return_address(0),
431			     TAINT_WARN, &args);
432	va_end(args.args);
433}
434EXPORT_SYMBOL(warn_slowpath_fmt);
435
436void warn_slowpath_fmt_taint(const char *file, int line,
437			     unsigned taint, const char *fmt, ...)
438{
439	struct slowpath_args args;
440
441	args.fmt = fmt;
442	va_start(args.args, fmt);
443	warn_slowpath_common(file, line, __builtin_return_address(0),
444			     taint, &args);
445	va_end(args.args);
446}
447EXPORT_SYMBOL(warn_slowpath_fmt_taint);
448
449void warn_slowpath_null(const char *file, int line)
450{
451	warn_slowpath_common(file, line, __builtin_return_address(0),
452			     TAINT_WARN, NULL);
453}
454EXPORT_SYMBOL(warn_slowpath_null);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455#endif
456
457#ifdef CONFIG_CC_STACKPROTECTOR
458
459/*
460 * Called when gcc's -fstack-protector feature is used, and
461 * gcc detects corruption of the on-stack canary value
462 */
463__visible void __stack_chk_fail(void)
464{
465	panic("stack-protector: Kernel stack is corrupted in: %p\n",
466		__builtin_return_address(0));
467}
468EXPORT_SYMBOL(__stack_chk_fail);
469
470#endif
471
 
 
 
 
 
 
 
 
 
 
 
472core_param(panic, panic_timeout, int, 0644);
473core_param(pause_on_oops, pause_on_oops, int, 0644);
 
 
474
475static int __init oops_setup(char *s)
476{
477	if (!s)
478		return -EINVAL;
479	if (!strcmp(s, "panic"))
480		panic_on_oops = 1;
481	return 0;
482}
483early_param("oops", oops_setup);
v4.17
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 12#include <linux/sched/debug.h>
 13#include <linux/interrupt.h>
 14#include <linux/kmsg_dump.h>
 15#include <linux/kallsyms.h>
 16#include <linux/notifier.h>
 17#include <linux/module.h>
 18#include <linux/random.h>
 19#include <linux/ftrace.h>
 20#include <linux/reboot.h>
 21#include <linux/delay.h>
 22#include <linux/kexec.h>
 23#include <linux/sched.h>
 24#include <linux/sysrq.h>
 25#include <linux/init.h>
 26#include <linux/nmi.h>
 27#include <linux/console.h>
 28#include <linux/bug.h>
 29#include <linux/ratelimit.h>
 30#include <linux/debugfs.h>
 31#include <asm/sections.h>
 32
 33#define PANIC_TIMER_STEP 100
 34#define PANIC_BLINK_SPD 18
 35
 36int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 37static unsigned long tainted_mask =
 38	IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 39static int pause_on_oops;
 40static int pause_on_oops_flag;
 41static DEFINE_SPINLOCK(pause_on_oops_lock);
 42bool crash_kexec_post_notifiers;
 43int panic_on_warn __read_mostly;
 44
 45int panic_timeout = CONFIG_PANIC_TIMEOUT;
 46EXPORT_SYMBOL_GPL(panic_timeout);
 47
 48ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 49
 50EXPORT_SYMBOL(panic_notifier_list);
 51
 52static long no_blink(int state)
 53{
 54	return 0;
 55}
 56
 57/* Returns how long it waited in ms */
 58long (*panic_blink)(int state);
 59EXPORT_SYMBOL(panic_blink);
 60
 61/*
 62 * Stop ourself in panic -- architecture code may override this
 63 */
 64void __weak panic_smp_self_stop(void)
 65{
 66	while (1)
 67		cpu_relax();
 68}
 69
 70/*
 71 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 72 * may override this to prepare for crash dumping, e.g. save regs info.
 73 */
 74void __weak nmi_panic_self_stop(struct pt_regs *regs)
 75{
 76	panic_smp_self_stop();
 77}
 78
 79/*
 80 * Stop other CPUs in panic.  Architecture dependent code may override this
 81 * with more suitable version.  For example, if the architecture supports
 82 * crash dump, it should save registers of each stopped CPU and disable
 83 * per-CPU features such as virtualization extensions.
 84 */
 85void __weak crash_smp_send_stop(void)
 86{
 87	static int cpus_stopped;
 88
 89	/*
 90	 * This function can be called twice in panic path, but obviously
 91	 * we execute this only once.
 92	 */
 93	if (cpus_stopped)
 94		return;
 95
 96	/*
 97	 * Note smp_send_stop is the usual smp shutdown function, which
 98	 * unfortunately means it may not be hardened to work in a panic
 99	 * situation.
100	 */
101	smp_send_stop();
102	cpus_stopped = 1;
103}
104
105atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
106
107/*
108 * A variant of panic() called from NMI context. We return if we've already
109 * panicked on this CPU. If another CPU already panicked, loop in
110 * nmi_panic_self_stop() which can provide architecture dependent code such
111 * as saving register state for crash dump.
112 */
113void nmi_panic(struct pt_regs *regs, const char *msg)
114{
115	int old_cpu, cpu;
116
117	cpu = raw_smp_processor_id();
118	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
119
120	if (old_cpu == PANIC_CPU_INVALID)
121		panic("%s", msg);
122	else if (old_cpu != cpu)
123		nmi_panic_self_stop(regs);
124}
125EXPORT_SYMBOL(nmi_panic);
126
127/**
128 *	panic - halt the system
129 *	@fmt: The text string to print
130 *
131 *	Display a message, then perform cleanups.
132 *
133 *	This function never returns.
134 */
135void panic(const char *fmt, ...)
136{
 
137	static char buf[1024];
138	va_list args;
139	long i, i_next = 0;
140	int state = 0;
141	int old_cpu, this_cpu;
142	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
143
144	/*
145	 * Disable local interrupts. This will prevent panic_smp_self_stop
146	 * from deadlocking the first cpu that invokes the panic, since
147	 * there is nothing to prevent an interrupt handler (that runs
148	 * after setting panic_cpu) from invoking panic() again.
149	 */
150	local_irq_disable();
151
152	/*
153	 * It's possible to come here directly from a panic-assertion and
154	 * not have preempt disabled. Some functions called from here want
155	 * preempt to be disabled. No point enabling it later though...
156	 *
157	 * Only one CPU is allowed to execute the panic code from here. For
158	 * multiple parallel invocations of panic, all other CPUs either
159	 * stop themself or will wait until they are stopped by the 1st CPU
160	 * with smp_send_stop().
161	 *
162	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
163	 * comes here, so go ahead.
164	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
165	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
166	 */
167	this_cpu = raw_smp_processor_id();
168	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
169
170	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
171		panic_smp_self_stop();
172
173	console_verbose();
174	bust_spinlocks(1);
175	va_start(args, fmt);
176	vsnprintf(buf, sizeof(buf), fmt, args);
177	va_end(args);
178	pr_emerg("Kernel panic - not syncing: %s\n", buf);
179#ifdef CONFIG_DEBUG_BUGVERBOSE
180	/*
181	 * Avoid nested stack-dumping if a panic occurs during oops processing
182	 */
183	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
184		dump_stack();
185#endif
186
187	/*
188	 * If we have crashed and we have a crash kernel loaded let it handle
189	 * everything else.
190	 * If we want to run this after calling panic_notifiers, pass
191	 * the "crash_kexec_post_notifiers" option to the kernel.
192	 *
193	 * Bypass the panic_cpu check and call __crash_kexec directly.
194	 */
195	if (!_crash_kexec_post_notifiers) {
196		printk_safe_flush_on_panic();
197		__crash_kexec(NULL);
198
199		/*
200		 * Note smp_send_stop is the usual smp shutdown function, which
201		 * unfortunately means it may not be hardened to work in a
202		 * panic situation.
203		 */
204		smp_send_stop();
205	} else {
206		/*
207		 * If we want to do crash dump after notifier calls and
208		 * kmsg_dump, we will need architecture dependent extra
209		 * works in addition to stopping other CPUs.
210		 */
211		crash_smp_send_stop();
212	}
213
214	/*
215	 * Run any panic handlers, including those that might need to
216	 * add information to the kmsg dump output.
217	 */
218	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
219
220	/* Call flush even twice. It tries harder with a single online CPU */
221	printk_safe_flush_on_panic();
222	kmsg_dump(KMSG_DUMP_PANIC);
223
224	/*
225	 * If you doubt kdump always works fine in any situation,
226	 * "crash_kexec_post_notifiers" offers you a chance to run
227	 * panic_notifiers and dumping kmsg before kdump.
228	 * Note: since some panic_notifiers can make crashed kernel
229	 * more unstable, it can increase risks of the kdump failure too.
230	 *
231	 * Bypass the panic_cpu check and call __crash_kexec directly.
232	 */
233	if (_crash_kexec_post_notifiers)
234		__crash_kexec(NULL);
235
236	bust_spinlocks(0);
237
238	/*
239	 * We may have ended up stopping the CPU holding the lock (in
240	 * smp_send_stop()) while still having some valuable data in the console
241	 * buffer.  Try to acquire the lock then release it regardless of the
242	 * result.  The release will also print the buffers out.  Locks debug
243	 * should be disabled to avoid reporting bad unlock balance when
244	 * panic() is not being callled from OOPS.
245	 */
246	debug_locks_off();
247	console_flush_on_panic();
248
249	if (!panic_blink)
250		panic_blink = no_blink;
251
252	if (panic_timeout > 0) {
253		/*
254		 * Delay timeout seconds before rebooting the machine.
255		 * We can't use the "normal" timers since we just panicked.
256		 */
257		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
258
259		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
260			touch_nmi_watchdog();
261			if (i >= i_next) {
262				i += panic_blink(state ^= 1);
263				i_next = i + 3600 / PANIC_BLINK_SPD;
264			}
265			mdelay(PANIC_TIMER_STEP);
266		}
267	}
268	if (panic_timeout != 0) {
269		/*
270		 * This will not be a clean reboot, with everything
271		 * shutting down.  But if there is a chance of
272		 * rebooting the system it will be rebooted.
273		 */
274		emergency_restart();
275	}
276#ifdef __sparc__
277	{
278		extern int stop_a_enabled;
279		/* Make sure the user can actually press Stop-A (L1-A) */
280		stop_a_enabled = 1;
281		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
282			 "twice on console to return to the boot prom\n");
283	}
284#endif
285#if defined(CONFIG_S390)
286	{
287		unsigned long caller;
288
289		caller = (unsigned long)__builtin_return_address(0);
290		disabled_wait(caller);
291	}
292#endif
293	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
294	local_irq_enable();
295	for (i = 0; ; i += PANIC_TIMER_STEP) {
296		touch_softlockup_watchdog();
297		if (i >= i_next) {
298			i += panic_blink(state ^= 1);
299			i_next = i + 3600 / PANIC_BLINK_SPD;
300		}
301		mdelay(PANIC_TIMER_STEP);
302	}
303}
304
305EXPORT_SYMBOL(panic);
306
307/*
308 * TAINT_FORCED_RMMOD could be a per-module flag but the module
309 * is being removed anyway.
310 */
311const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
312	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
313	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
314	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
315	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
316	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
317	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
318	[ TAINT_USER ]			= { 'U', ' ', false },
319	[ TAINT_DIE ]			= { 'D', ' ', false },
320	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
321	[ TAINT_WARN ]			= { 'W', ' ', false },
322	[ TAINT_CRAP ]			= { 'C', ' ', true },
323	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
324	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
325	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
326	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
327	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
328	[ TAINT_AUX ]			= { 'X', ' ', true },
329	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
330};
331
332/**
333 * print_tainted - return a string to represent the kernel taint state.
334 *
335 * For individual taint flag meanings, see Documentation/sysctl/kernel.txt
 
 
 
 
 
 
 
 
 
 
 
 
 
336 *
337 * The string is overwritten by the next call to print_tainted(),
338 * but is always NULL terminated.
339 */
340const char *print_tainted(void)
341{
342	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
343
344	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
345
346	if (tainted_mask) {
347		char *s;
348		int i;
349
350		s = buf + sprintf(buf, "Tainted: ");
351		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
352			const struct taint_flag *t = &taint_flags[i];
353			*s++ = test_bit(i, &tainted_mask) ?
354					t->c_true : t->c_false;
355		}
356		*s = 0;
357	} else
358		snprintf(buf, sizeof(buf), "Not tainted");
359
360	return buf;
361}
362
363int test_taint(unsigned flag)
364{
365	return test_bit(flag, &tainted_mask);
366}
367EXPORT_SYMBOL(test_taint);
368
369unsigned long get_taint(void)
370{
371	return tainted_mask;
372}
373
374/**
375 * add_taint: add a taint flag if not already set.
376 * @flag: one of the TAINT_* constants.
377 * @lockdep_ok: whether lock debugging is still OK.
378 *
379 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
380 * some notewortht-but-not-corrupting cases, it can be set to true.
381 */
382void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
383{
384	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
385		pr_warn("Disabling lock debugging due to kernel taint\n");
386
387	set_bit(flag, &tainted_mask);
388}
389EXPORT_SYMBOL(add_taint);
390
391static void spin_msec(int msecs)
392{
393	int i;
394
395	for (i = 0; i < msecs; i++) {
396		touch_nmi_watchdog();
397		mdelay(1);
398	}
399}
400
401/*
402 * It just happens that oops_enter() and oops_exit() are identically
403 * implemented...
404 */
405static void do_oops_enter_exit(void)
406{
407	unsigned long flags;
408	static int spin_counter;
409
410	if (!pause_on_oops)
411		return;
412
413	spin_lock_irqsave(&pause_on_oops_lock, flags);
414	if (pause_on_oops_flag == 0) {
415		/* This CPU may now print the oops message */
416		pause_on_oops_flag = 1;
417	} else {
418		/* We need to stall this CPU */
419		if (!spin_counter) {
420			/* This CPU gets to do the counting */
421			spin_counter = pause_on_oops;
422			do {
423				spin_unlock(&pause_on_oops_lock);
424				spin_msec(MSEC_PER_SEC);
425				spin_lock(&pause_on_oops_lock);
426			} while (--spin_counter);
427			pause_on_oops_flag = 0;
428		} else {
429			/* This CPU waits for a different one */
430			while (spin_counter) {
431				spin_unlock(&pause_on_oops_lock);
432				spin_msec(1);
433				spin_lock(&pause_on_oops_lock);
434			}
435		}
436	}
437	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
438}
439
440/*
441 * Return true if the calling CPU is allowed to print oops-related info.
442 * This is a bit racy..
443 */
444int oops_may_print(void)
445{
446	return pause_on_oops_flag == 0;
447}
448
449/*
450 * Called when the architecture enters its oops handler, before it prints
451 * anything.  If this is the first CPU to oops, and it's oopsing the first
452 * time then let it proceed.
453 *
454 * This is all enabled by the pause_on_oops kernel boot option.  We do all
455 * this to ensure that oopses don't scroll off the screen.  It has the
456 * side-effect of preventing later-oopsing CPUs from mucking up the display,
457 * too.
458 *
459 * It turns out that the CPU which is allowed to print ends up pausing for
460 * the right duration, whereas all the other CPUs pause for twice as long:
461 * once in oops_enter(), once in oops_exit().
462 */
463void oops_enter(void)
464{
465	tracing_off();
466	/* can't trust the integrity of the kernel anymore: */
467	debug_locks_off();
468	do_oops_enter_exit();
469}
470
471/*
472 * 64-bit random ID for oopses:
473 */
474static u64 oops_id;
475
476static int init_oops_id(void)
477{
478	if (!oops_id)
479		get_random_bytes(&oops_id, sizeof(oops_id));
480	else
481		oops_id++;
482
483	return 0;
484}
485late_initcall(init_oops_id);
486
487void print_oops_end_marker(void)
488{
489	init_oops_id();
490	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
491}
492
493/*
494 * Called when the architecture exits its oops handler, after printing
495 * everything.
496 */
497void oops_exit(void)
498{
499	do_oops_enter_exit();
500	print_oops_end_marker();
501	kmsg_dump(KMSG_DUMP_OOPS);
502}
503
504struct warn_args {
 
505	const char *fmt;
506	va_list args;
507};
508
509void __warn(const char *file, int line, void *caller, unsigned taint,
510	    struct pt_regs *regs, struct warn_args *args)
511{
512	disable_trace_on_warning();
513
514	if (args)
515		pr_warn(CUT_HERE);
516
517	if (file)
518		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
519			raw_smp_processor_id(), current->pid, file, line,
520			caller);
521	else
522		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
523			raw_smp_processor_id(), current->pid, caller);
524
525	if (args)
526		vprintk(args->fmt, args->args);
527
528	if (panic_on_warn) {
529		/*
530		 * This thread may hit another WARN() in the panic path.
531		 * Resetting this prevents additional WARN() from panicking the
532		 * system on this thread.  Other threads are blocked by the
533		 * panic_mutex in panic().
534		 */
535		panic_on_warn = 0;
536		panic("panic_on_warn set ...\n");
537	}
538
539	print_modules();
540
541	if (regs)
542		show_regs(regs);
543	else
544		dump_stack();
545
546	print_irqtrace_events(current);
547
548	print_oops_end_marker();
549
550	/* Just a warning, don't kill lockdep. */
551	add_taint(taint, LOCKDEP_STILL_OK);
552}
553
554#ifdef WANT_WARN_ON_SLOWPATH
555void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
556{
557	struct warn_args args;
558
559	args.fmt = fmt;
560	va_start(args.args, fmt);
561	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
562	       &args);
563	va_end(args.args);
564}
565EXPORT_SYMBOL(warn_slowpath_fmt);
566
567void warn_slowpath_fmt_taint(const char *file, int line,
568			     unsigned taint, const char *fmt, ...)
569{
570	struct warn_args args;
571
572	args.fmt = fmt;
573	va_start(args.args, fmt);
574	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
 
575	va_end(args.args);
576}
577EXPORT_SYMBOL(warn_slowpath_fmt_taint);
578
579void warn_slowpath_null(const char *file, int line)
580{
581	pr_warn(CUT_HERE);
582	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
583}
584EXPORT_SYMBOL(warn_slowpath_null);
585#else
586void __warn_printk(const char *fmt, ...)
587{
588	va_list args;
589
590	pr_warn(CUT_HERE);
591
592	va_start(args, fmt);
593	vprintk(fmt, args);
594	va_end(args);
595}
596EXPORT_SYMBOL(__warn_printk);
597#endif
598
599#ifdef CONFIG_BUG
600
601/* Support resetting WARN*_ONCE state */
602
603static int clear_warn_once_set(void *data, u64 val)
604{
605	generic_bug_clear_once();
606	memset(__start_once, 0, __end_once - __start_once);
607	return 0;
608}
609
610DEFINE_SIMPLE_ATTRIBUTE(clear_warn_once_fops,
611			NULL,
612			clear_warn_once_set,
613			"%lld\n");
614
615static __init int register_warn_debugfs(void)
616{
617	/* Don't care about failure */
618	debugfs_create_file("clear_warn_once", 0200, NULL,
619			    NULL, &clear_warn_once_fops);
620	return 0;
621}
622
623device_initcall(register_warn_debugfs);
624#endif
625
626#ifdef CONFIG_CC_STACKPROTECTOR
627
628/*
629 * Called when gcc's -fstack-protector feature is used, and
630 * gcc detects corruption of the on-stack canary value
631 */
632__visible void __stack_chk_fail(void)
633{
634	panic("stack-protector: Kernel stack is corrupted in: %pB\n",
635		__builtin_return_address(0));
636}
637EXPORT_SYMBOL(__stack_chk_fail);
638
639#endif
640
641#ifdef CONFIG_ARCH_HAS_REFCOUNT
642void refcount_error_report(struct pt_regs *regs, const char *err)
643{
644	WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
645		err, (void *)instruction_pointer(regs),
646		current->comm, task_pid_nr(current),
647		from_kuid_munged(&init_user_ns, current_uid()),
648		from_kuid_munged(&init_user_ns, current_euid()));
649}
650#endif
651
652core_param(panic, panic_timeout, int, 0644);
653core_param(pause_on_oops, pause_on_oops, int, 0644);
654core_param(panic_on_warn, panic_on_warn, int, 0644);
655core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
656
657static int __init oops_setup(char *s)
658{
659	if (!s)
660		return -EINVAL;
661	if (!strcmp(s, "panic"))
662		panic_on_oops = 1;
663	return 0;
664}
665early_param("oops", oops_setup);