Linux Audio

Check our new training course

Loading...
v3.15
  1#include <linux/atomic.h>
  2#include <linux/rwsem.h>
  3#include <linux/percpu.h>
  4#include <linux/wait.h>
  5#include <linux/lockdep.h>
  6#include <linux/percpu-rwsem.h>
  7#include <linux/rcupdate.h>
  8#include <linux/sched.h>
  9#include <linux/errno.h>
 10
 11int __percpu_init_rwsem(struct percpu_rw_semaphore *brw,
 12			const char *name, struct lock_class_key *rwsem_key)
 13{
 14	brw->fast_read_ctr = alloc_percpu(int);
 15	if (unlikely(!brw->fast_read_ctr))
 16		return -ENOMEM;
 17
 18	/* ->rw_sem represents the whole percpu_rw_semaphore for lockdep */
 19	__init_rwsem(&brw->rw_sem, name, rwsem_key);
 20	atomic_set(&brw->write_ctr, 0);
 21	atomic_set(&brw->slow_read_ctr, 0);
 22	init_waitqueue_head(&brw->write_waitq);
 23	return 0;
 24}
 
 25
 26void percpu_free_rwsem(struct percpu_rw_semaphore *brw)
 27{
 28	free_percpu(brw->fast_read_ctr);
 29	brw->fast_read_ctr = NULL; /* catch use after free bugs */
 
 
 
 
 
 
 
 
 30}
 
 31
 32/*
 33 * This is the fast-path for down_read/up_read, it only needs to ensure
 34 * there is no pending writer (atomic_read(write_ctr) == 0) and inc/dec the
 35 * fast per-cpu counter. The writer uses synchronize_sched_expedited() to
 36 * serialize with the preempt-disabled section below.
 37 *
 38 * The nontrivial part is that we should guarantee acquire/release semantics
 39 * in case when
 40 *
 41 *	R_W: down_write() comes after up_read(), the writer should see all
 42 *	     changes done by the reader
 43 * or
 44 *	W_R: down_read() comes after up_write(), the reader should see all
 45 *	     changes done by the writer
 46 *
 47 * If this helper fails the callers rely on the normal rw_semaphore and
 48 * atomic_dec_and_test(), so in this case we have the necessary barriers.
 49 *
 50 * But if it succeeds we do not have any barriers, atomic_read(write_ctr) or
 51 * __this_cpu_add() below can be reordered with any LOAD/STORE done by the
 52 * reader inside the critical section. See the comments in down_write and
 53 * up_write below.
 54 */
 55static bool update_fast_ctr(struct percpu_rw_semaphore *brw, unsigned int val)
 56{
 57	bool success = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58
 59	preempt_disable();
 60	if (likely(!atomic_read(&brw->write_ctr))) {
 61		__this_cpu_add(*brw->fast_read_ctr, val);
 62		success = true;
 63	}
 64	preempt_enable();
 65
 66	return success;
 
 
 
 
 
 
 
 
 
 
 
 67}
 
 
 
 
 
 
 
 
 
 
 
 68
 69/*
 70 * Like the normal down_read() this is not recursive, the writer can
 71 * come after the first percpu_down_read() and create the deadlock.
 72 *
 73 * Note: returns with lock_is_held(brw->rw_sem) == T for lockdep,
 74 * percpu_up_read() does rwsem_release(). This pairs with the usage
 75 * of ->rw_sem in percpu_down/up_write().
 76 */
 77void percpu_down_read(struct percpu_rw_semaphore *brw)
 78{
 79	might_sleep();
 80	if (likely(update_fast_ctr(brw, +1))) {
 81		rwsem_acquire_read(&brw->rw_sem.dep_map, 0, 0, _RET_IP_);
 82		return;
 83	}
 84
 85	down_read(&brw->rw_sem);
 86	atomic_inc(&brw->slow_read_ctr);
 87	/* avoid up_read()->rwsem_release() */
 88	__up_read(&brw->rw_sem);
 
 
 
 
 89}
 90
 91void percpu_up_read(struct percpu_rw_semaphore *brw)
 92{
 93	rwsem_release(&brw->rw_sem.dep_map, 1, _RET_IP_);
 
 94
 95	if (likely(update_fast_ctr(brw, -1)))
 96		return;
 97
 98	/* false-positive is possible but harmless */
 99	if (atomic_dec_and_test(&brw->slow_read_ctr))
100		wake_up_all(&brw->write_waitq);
101}
 
102
103static int clear_fast_ctr(struct percpu_rw_semaphore *brw)
104{
105	unsigned int sum = 0;
106	int cpu;
107
108	for_each_possible_cpu(cpu) {
109		sum += per_cpu(*brw->fast_read_ctr, cpu);
110		per_cpu(*brw->fast_read_ctr, cpu) = 0;
111	}
 
112
113	return sum;
 
114}
 
115
116/*
117 * A writer increments ->write_ctr to force the readers to switch to the
118 * slow mode, note the atomic_read() check in update_fast_ctr().
119 *
120 * After that the readers can only inc/dec the slow ->slow_read_ctr counter,
121 * ->fast_read_ctr is stable. Once the writer moves its sum into the slow
122 * counter it represents the number of active readers.
123 *
124 * Finally the writer takes ->rw_sem for writing and blocks the new readers,
125 * then waits until the slow counter becomes zero.
126 */
127void percpu_down_write(struct percpu_rw_semaphore *brw)
128{
129	/* tell update_fast_ctr() there is a pending writer */
130	atomic_inc(&brw->write_ctr);
131	/*
132	 * 1. Ensures that write_ctr != 0 is visible to any down_read/up_read
133	 *    so that update_fast_ctr() can't succeed.
134	 *
135	 * 2. Ensures we see the result of every previous this_cpu_add() in
136	 *    update_fast_ctr().
 
137	 *
138	 * 3. Ensures that if any reader has exited its critical section via
139	 *    fast-path, it executes a full memory barrier before we return.
140	 *    See R_W case in the comment above update_fast_ctr().
141	 */
142	synchronize_sched_expedited();
143
144	/* exclude other writers, and block the new readers completely */
145	down_write(&brw->rw_sem);
146
147	/* nobody can use fast_read_ctr, move its sum into slow_read_ctr */
148	atomic_add(clear_fast_ctr(brw), &brw->slow_read_ctr);
149
150	/* wait for all readers to complete their percpu_up_read() */
151	wait_event(brw->write_waitq, !atomic_read(&brw->slow_read_ctr));
152}
153
154void percpu_up_write(struct percpu_rw_semaphore *brw)
155{
156	/* release the lock, but the readers can't use the fast-path */
157	up_write(&brw->rw_sem);
158	/*
159	 * Insert the barrier before the next fast-path in down_read,
160	 * see W_R case in the comment above update_fast_ctr().
 
161	 */
162	synchronize_sched_expedited();
163	/* the last writer unblocks update_fast_ctr() */
164	atomic_dec(&brw->write_ctr);
165}
v4.17
  1#include <linux/atomic.h>
  2#include <linux/rwsem.h>
  3#include <linux/percpu.h>
 
  4#include <linux/lockdep.h>
  5#include <linux/percpu-rwsem.h>
  6#include <linux/rcupdate.h>
  7#include <linux/sched.h>
  8#include <linux/errno.h>
  9
 10int __percpu_init_rwsem(struct percpu_rw_semaphore *sem,
 11			const char *name, struct lock_class_key *rwsem_key)
 12{
 13	sem->read_count = alloc_percpu(int);
 14	if (unlikely(!sem->read_count))
 15		return -ENOMEM;
 16
 17	/* ->rw_sem represents the whole percpu_rw_semaphore for lockdep */
 18	rcu_sync_init(&sem->rss, RCU_SCHED_SYNC);
 19	__init_rwsem(&sem->rw_sem, name, rwsem_key);
 20	rcuwait_init(&sem->writer);
 21	sem->readers_block = 0;
 22	return 0;
 23}
 24EXPORT_SYMBOL_GPL(__percpu_init_rwsem);
 25
 26void percpu_free_rwsem(struct percpu_rw_semaphore *sem)
 27{
 28	/*
 29	 * XXX: temporary kludge. The error path in alloc_super()
 30	 * assumes that percpu_free_rwsem() is safe after kzalloc().
 31	 */
 32	if (!sem->read_count)
 33		return;
 34
 35	rcu_sync_dtor(&sem->rss);
 36	free_percpu(sem->read_count);
 37	sem->read_count = NULL; /* catch use after free bugs */
 38}
 39EXPORT_SYMBOL_GPL(percpu_free_rwsem);
 40
 41int __percpu_down_read(struct percpu_rw_semaphore *sem, int try)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42{
 43	/*
 44	 * Due to having preemption disabled the decrement happens on
 45	 * the same CPU as the increment, avoiding the
 46	 * increment-on-one-CPU-and-decrement-on-another problem.
 47	 *
 48	 * If the reader misses the writer's assignment of readers_block, then
 49	 * the writer is guaranteed to see the reader's increment.
 50	 *
 51	 * Conversely, any readers that increment their sem->read_count after
 52	 * the writer looks are guaranteed to see the readers_block value,
 53	 * which in turn means that they are guaranteed to immediately
 54	 * decrement their sem->read_count, so that it doesn't matter that the
 55	 * writer missed them.
 56	 */
 57
 58	smp_mb(); /* A matches D */
 59
 60	/*
 61	 * If !readers_block the critical section starts here, matched by the
 62	 * release in percpu_up_write().
 63	 */
 64	if (likely(!smp_load_acquire(&sem->readers_block)))
 65		return 1;
 66
 67	/*
 68	 * Per the above comment; we still have preemption disabled and
 69	 * will thus decrement on the same CPU as we incremented.
 70	 */
 71	__percpu_up_read(sem);
 72
 73	if (try)
 74		return 0;
 75
 76	/*
 77	 * We either call schedule() in the wait, or we'll fall through
 78	 * and reschedule on the preempt_enable() in percpu_down_read().
 79	 */
 80	preempt_enable_no_resched();
 81
 82	/*
 83	 * Avoid lockdep for the down/up_read() we already have them.
 84	 */
 85	__down_read(&sem->rw_sem);
 86	this_cpu_inc(*sem->read_count);
 87	__up_read(&sem->rw_sem);
 88
 89	preempt_disable();
 90	return 1;
 91}
 92EXPORT_SYMBOL_GPL(__percpu_down_read);
 
 
 93
 94void __percpu_up_read(struct percpu_rw_semaphore *sem)
 95{
 96	smp_mb(); /* B matches C */
 97	/*
 98	 * In other words, if they see our decrement (presumably to aggregate
 99	 * zero, as that is the only time it matters) they will also see our
100	 * critical section.
101	 */
102	__this_cpu_dec(*sem->read_count);
103
104	/* Prod writer to recheck readers_active */
105	rcuwait_wake_up(&sem->writer);
106}
107EXPORT_SYMBOL_GPL(__percpu_up_read);
108
109#define per_cpu_sum(var)						\
110({									\
111	typeof(var) __sum = 0;						\
112	int cpu;							\
113	compiletime_assert_atomic_type(__sum);				\
114	for_each_possible_cpu(cpu)					\
115		__sum += per_cpu(var, cpu);				\
116	__sum;								\
117})
118
119/*
120 * Return true if the modular sum of the sem->read_count per-CPU variable is
121 * zero.  If this sum is zero, then it is stable due to the fact that if any
122 * newly arriving readers increment a given counter, they will immediately
123 * decrement that same counter.
 
 
124 */
125static bool readers_active_check(struct percpu_rw_semaphore *sem)
126{
127	if (per_cpu_sum(*sem->read_count) != 0)
128		return false;
 
 
 
129
130	/*
131	 * If we observed the decrement; ensure we see the entire critical
132	 * section.
133	 */
134
135	smp_mb(); /* C matches B */
136
137	return true;
138}
139
140void percpu_down_write(struct percpu_rw_semaphore *sem)
141{
142	/* Notify readers to take the slow path. */
143	rcu_sync_enter(&sem->rss);
144
145	down_write(&sem->rw_sem);
 
146
147	/*
148	 * Notify new readers to block; up until now, and thus throughout the
149	 * longish rcu_sync_enter() above, new readers could still come in.
150	 */
151	WRITE_ONCE(sem->readers_block, 1);
152
153	smp_mb(); /* D matches A */
 
 
 
154
155	/*
156	 * If they don't see our writer of readers_block, then we are
157	 * guaranteed to see their sem->read_count increment, and therefore
158	 * will wait for them.
159	 */
160
161	/* Wait for all now active readers to complete. */
162	rcuwait_wait_event(&sem->writer, readers_active_check(sem));
163}
164EXPORT_SYMBOL_GPL(percpu_down_write);
165
166void percpu_up_write(struct percpu_rw_semaphore *sem)
 
 
 
 
 
 
 
 
 
 
 
167{
 
 
168	/*
169	 * Signal the writer is done, no fast path yet.
 
170	 *
171	 * One reason that we cannot just immediately flip to readers_fast is
172	 * that new readers might fail to see the results of this writer's
173	 * critical section.
174	 *
175	 * Therefore we force it through the slow path which guarantees an
176	 * acquire and thereby guarantees the critical section's consistency.
 
177	 */
178	smp_store_release(&sem->readers_block, 0);
179
180	/*
181	 * Release the write lock, this will allow readers back in the game.
182	 */
183	up_write(&sem->rw_sem);
 
 
 
 
 
184
 
 
 
 
185	/*
186	 * Once this completes (at least one RCU-sched grace period hence) the
187	 * reader fast path will be available again. Safe to use outside the
188	 * exclusive write lock because its counting.
189	 */
190	rcu_sync_exit(&sem->rss);
 
 
191}
192EXPORT_SYMBOL_GPL(percpu_up_write);