Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v3.15.
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/cred.h>
  34#include <linux/errno.h>
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/magic.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/sched/task.h>
  45#include <linux/slab.h>
  46#include <linux/spinlock.h>
  47#include <linux/percpu-rwsem.h>
  48#include <linux/string.h>
  49#include <linux/hashtable.h>
  50#include <linux/idr.h>
  51#include <linux/kthread.h>
  52#include <linux/atomic.h>
  53#include <linux/cpuset.h>
  54#include <linux/proc_ns.h>
  55#include <linux/nsproxy.h>
  56#include <linux/file.h>
  57#include <net/sock.h>
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/cgroup.h>
  61
  62#define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
  63					 MAX_CFTYPE_NAME + 2)
  64
  65/*
  66 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  67 * hierarchy must be performed while holding it.
  68 *
  69 * css_set_lock protects task->cgroups pointer, the list of css_set
  70 * objects, and the chain of tasks off each css_set.
  71 *
  72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  73 * cgroup.h can use them for lockdep annotations.
  74 */
  75DEFINE_MUTEX(cgroup_mutex);
  76DEFINE_SPINLOCK(css_set_lock);
  77
  78#ifdef CONFIG_PROVE_RCU
  79EXPORT_SYMBOL_GPL(cgroup_mutex);
  80EXPORT_SYMBOL_GPL(css_set_lock);
  81#endif
  82
  83/*
  84 * Protects cgroup_idr and css_idr so that IDs can be released without
  85 * grabbing cgroup_mutex.
  86 */
  87static DEFINE_SPINLOCK(cgroup_idr_lock);
  88
  89/*
  90 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
  91 * against file removal/re-creation across css hiding.
  92 */
  93static DEFINE_SPINLOCK(cgroup_file_kn_lock);
  94
  95struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
  96
  97#define cgroup_assert_mutex_or_rcu_locked()				\
  98	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
  99			   !lockdep_is_held(&cgroup_mutex),		\
 100			   "cgroup_mutex or RCU read lock required");
 101
 102/*
 103 * cgroup destruction makes heavy use of work items and there can be a lot
 104 * of concurrent destructions.  Use a separate workqueue so that cgroup
 105 * destruction work items don't end up filling up max_active of system_wq
 106 * which may lead to deadlock.
 107 */
 108static struct workqueue_struct *cgroup_destroy_wq;
 109
 110/* generate an array of cgroup subsystem pointers */
 111#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 112struct cgroup_subsys *cgroup_subsys[] = {
 113#include <linux/cgroup_subsys.h>
 114};
 115#undef SUBSYS
 116
 117/* array of cgroup subsystem names */
 118#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 119static const char *cgroup_subsys_name[] = {
 120#include <linux/cgroup_subsys.h>
 121};
 122#undef SUBSYS
 123
 124/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 125#define SUBSYS(_x)								\
 126	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
 127	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
 128	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
 129	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 130#include <linux/cgroup_subsys.h>
 131#undef SUBSYS
 132
 133#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 134static struct static_key_true *cgroup_subsys_enabled_key[] = {
 135#include <linux/cgroup_subsys.h>
 136};
 137#undef SUBSYS
 138
 139#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 140static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 141#include <linux/cgroup_subsys.h>
 142};
 143#undef SUBSYS
 144
 145static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat);
 146
 147/*
 148 * The default hierarchy, reserved for the subsystems that are otherwise
 149 * unattached - it never has more than a single cgroup, and all tasks are
 150 * part of that cgroup.
 151 */
 152struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat };
 153EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 154
 155/*
 156 * The default hierarchy always exists but is hidden until mounted for the
 157 * first time.  This is for backward compatibility.
 158 */
 159static bool cgrp_dfl_visible;
 160
 161/* some controllers are not supported in the default hierarchy */
 162static u16 cgrp_dfl_inhibit_ss_mask;
 163
 164/* some controllers are implicitly enabled on the default hierarchy */
 165static u16 cgrp_dfl_implicit_ss_mask;
 166
 167/* some controllers can be threaded on the default hierarchy */
 168static u16 cgrp_dfl_threaded_ss_mask;
 169
 170/* The list of hierarchy roots */
 171LIST_HEAD(cgroup_roots);
 172static int cgroup_root_count;
 173
 174/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 175static DEFINE_IDR(cgroup_hierarchy_idr);
 176
 177/*
 178 * Assign a monotonically increasing serial number to csses.  It guarantees
 179 * cgroups with bigger numbers are newer than those with smaller numbers.
 180 * Also, as csses are always appended to the parent's ->children list, it
 181 * guarantees that sibling csses are always sorted in the ascending serial
 182 * number order on the list.  Protected by cgroup_mutex.
 183 */
 184static u64 css_serial_nr_next = 1;
 185
 186/*
 187 * These bitmasks identify subsystems with specific features to avoid
 188 * having to do iterative checks repeatedly.
 189 */
 190static u16 have_fork_callback __read_mostly;
 191static u16 have_exit_callback __read_mostly;
 192static u16 have_free_callback __read_mostly;
 193static u16 have_canfork_callback __read_mostly;
 194
 195/* cgroup namespace for init task */
 196struct cgroup_namespace init_cgroup_ns = {
 197	.count		= REFCOUNT_INIT(2),
 198	.user_ns	= &init_user_ns,
 199	.ns.ops		= &cgroupns_operations,
 200	.ns.inum	= PROC_CGROUP_INIT_INO,
 201	.root_cset	= &init_css_set,
 202};
 203
 204static struct file_system_type cgroup2_fs_type;
 205static struct cftype cgroup_base_files[];
 206
 207static int cgroup_apply_control(struct cgroup *cgrp);
 208static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 209static void css_task_iter_advance(struct css_task_iter *it);
 210static int cgroup_destroy_locked(struct cgroup *cgrp);
 211static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 212					      struct cgroup_subsys *ss);
 213static void css_release(struct percpu_ref *ref);
 214static void kill_css(struct cgroup_subsys_state *css);
 215static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 216			      struct cgroup *cgrp, struct cftype cfts[],
 217			      bool is_add);
 218
 219/**
 220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 221 * @ssid: subsys ID of interest
 222 *
 223 * cgroup_subsys_enabled() can only be used with literal subsys names which
 224 * is fine for individual subsystems but unsuitable for cgroup core.  This
 225 * is slower static_key_enabled() based test indexed by @ssid.
 226 */
 227bool cgroup_ssid_enabled(int ssid)
 228{
 229	if (CGROUP_SUBSYS_COUNT == 0)
 230		return false;
 231
 232	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 233}
 234
 235/**
 236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 237 * @cgrp: the cgroup of interest
 238 *
 239 * The default hierarchy is the v2 interface of cgroup and this function
 240 * can be used to test whether a cgroup is on the default hierarchy for
 241 * cases where a subsystem should behave differnetly depending on the
 242 * interface version.
 243 *
 244 * The set of behaviors which change on the default hierarchy are still
 245 * being determined and the mount option is prefixed with __DEVEL__.
 246 *
 247 * List of changed behaviors:
 248 *
 249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 250 *   and "name" are disallowed.
 251 *
 252 * - When mounting an existing superblock, mount options should match.
 253 *
 254 * - Remount is disallowed.
 255 *
 256 * - rename(2) is disallowed.
 257 *
 258 * - "tasks" is removed.  Everything should be at process granularity.  Use
 259 *   "cgroup.procs" instead.
 260 *
 261 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 262 *   recycled inbetween reads.
 263 *
 264 * - "release_agent" and "notify_on_release" are removed.  Replacement
 265 *   notification mechanism will be implemented.
 266 *
 267 * - "cgroup.clone_children" is removed.
 268 *
 269 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 270 *   and its descendants contain no task; otherwise, 1.  The file also
 271 *   generates kernfs notification which can be monitored through poll and
 272 *   [di]notify when the value of the file changes.
 273 *
 274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 275 *   take masks of ancestors with non-empty cpus/mems, instead of being
 276 *   moved to an ancestor.
 277 *
 278 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 279 *   masks of ancestors.
 280 *
 281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 282 *   is not created.
 283 *
 284 * - blkcg: blk-throttle becomes properly hierarchical.
 285 *
 286 * - debug: disallowed on the default hierarchy.
 287 */
 288bool cgroup_on_dfl(const struct cgroup *cgrp)
 289{
 290	return cgrp->root == &cgrp_dfl_root;
 291}
 292
 293/* IDR wrappers which synchronize using cgroup_idr_lock */
 294static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 295			    gfp_t gfp_mask)
 296{
 297	int ret;
 298
 299	idr_preload(gfp_mask);
 300	spin_lock_bh(&cgroup_idr_lock);
 301	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 302	spin_unlock_bh(&cgroup_idr_lock);
 303	idr_preload_end();
 304	return ret;
 305}
 306
 307static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 308{
 309	void *ret;
 310
 311	spin_lock_bh(&cgroup_idr_lock);
 312	ret = idr_replace(idr, ptr, id);
 313	spin_unlock_bh(&cgroup_idr_lock);
 314	return ret;
 315}
 316
 317static void cgroup_idr_remove(struct idr *idr, int id)
 318{
 319	spin_lock_bh(&cgroup_idr_lock);
 320	idr_remove(idr, id);
 321	spin_unlock_bh(&cgroup_idr_lock);
 322}
 323
 324static bool cgroup_has_tasks(struct cgroup *cgrp)
 325{
 326	return cgrp->nr_populated_csets;
 327}
 328
 329bool cgroup_is_threaded(struct cgroup *cgrp)
 330{
 331	return cgrp->dom_cgrp != cgrp;
 332}
 333
 334/* can @cgrp host both domain and threaded children? */
 335static bool cgroup_is_mixable(struct cgroup *cgrp)
 336{
 337	/*
 338	 * Root isn't under domain level resource control exempting it from
 339	 * the no-internal-process constraint, so it can serve as a thread
 340	 * root and a parent of resource domains at the same time.
 341	 */
 342	return !cgroup_parent(cgrp);
 343}
 344
 345/* can @cgrp become a thread root? should always be true for a thread root */
 346static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 347{
 348	/* mixables don't care */
 349	if (cgroup_is_mixable(cgrp))
 350		return true;
 351
 352	/* domain roots can't be nested under threaded */
 353	if (cgroup_is_threaded(cgrp))
 354		return false;
 355
 356	/* can only have either domain or threaded children */
 357	if (cgrp->nr_populated_domain_children)
 358		return false;
 359
 360	/* and no domain controllers can be enabled */
 361	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 362		return false;
 363
 364	return true;
 365}
 366
 367/* is @cgrp root of a threaded subtree? */
 368bool cgroup_is_thread_root(struct cgroup *cgrp)
 369{
 370	/* thread root should be a domain */
 371	if (cgroup_is_threaded(cgrp))
 372		return false;
 373
 374	/* a domain w/ threaded children is a thread root */
 375	if (cgrp->nr_threaded_children)
 376		return true;
 377
 378	/*
 379	 * A domain which has tasks and explicit threaded controllers
 380	 * enabled is a thread root.
 381	 */
 382	if (cgroup_has_tasks(cgrp) &&
 383	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 384		return true;
 385
 386	return false;
 387}
 388
 389/* a domain which isn't connected to the root w/o brekage can't be used */
 390static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 391{
 392	/* the cgroup itself can be a thread root */
 393	if (cgroup_is_threaded(cgrp))
 394		return false;
 395
 396	/* but the ancestors can't be unless mixable */
 397	while ((cgrp = cgroup_parent(cgrp))) {
 398		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 399			return false;
 400		if (cgroup_is_threaded(cgrp))
 401			return false;
 402	}
 403
 404	return true;
 405}
 406
 407/* subsystems visibly enabled on a cgroup */
 408static u16 cgroup_control(struct cgroup *cgrp)
 409{
 410	struct cgroup *parent = cgroup_parent(cgrp);
 411	u16 root_ss_mask = cgrp->root->subsys_mask;
 412
 413	if (parent) {
 414		u16 ss_mask = parent->subtree_control;
 415
 416		/* threaded cgroups can only have threaded controllers */
 417		if (cgroup_is_threaded(cgrp))
 418			ss_mask &= cgrp_dfl_threaded_ss_mask;
 419		return ss_mask;
 420	}
 421
 422	if (cgroup_on_dfl(cgrp))
 423		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 424				  cgrp_dfl_implicit_ss_mask);
 425	return root_ss_mask;
 426}
 427
 428/* subsystems enabled on a cgroup */
 429static u16 cgroup_ss_mask(struct cgroup *cgrp)
 430{
 431	struct cgroup *parent = cgroup_parent(cgrp);
 432
 433	if (parent) {
 434		u16 ss_mask = parent->subtree_ss_mask;
 435
 436		/* threaded cgroups can only have threaded controllers */
 437		if (cgroup_is_threaded(cgrp))
 438			ss_mask &= cgrp_dfl_threaded_ss_mask;
 439		return ss_mask;
 440	}
 441
 442	return cgrp->root->subsys_mask;
 443}
 444
 445/**
 446 * cgroup_css - obtain a cgroup's css for the specified subsystem
 447 * @cgrp: the cgroup of interest
 448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 449 *
 450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 451 * function must be called either under cgroup_mutex or rcu_read_lock() and
 452 * the caller is responsible for pinning the returned css if it wants to
 453 * keep accessing it outside the said locks.  This function may return
 454 * %NULL if @cgrp doesn't have @subsys_id enabled.
 455 */
 456static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 457					      struct cgroup_subsys *ss)
 458{
 459	if (ss)
 460		return rcu_dereference_check(cgrp->subsys[ss->id],
 461					lockdep_is_held(&cgroup_mutex));
 462	else
 463		return &cgrp->self;
 464}
 465
 466/**
 467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 468 * @cgrp: the cgroup of interest
 469 * @ss: the subsystem of interest
 470 *
 471 * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
 472 * or is offline, %NULL is returned.
 473 */
 474static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 475						     struct cgroup_subsys *ss)
 476{
 477	struct cgroup_subsys_state *css;
 478
 479	rcu_read_lock();
 480	css = cgroup_css(cgrp, ss);
 481	if (!css || !css_tryget_online(css))
 482		css = NULL;
 483	rcu_read_unlock();
 484
 485	return css;
 486}
 487
 488/**
 489 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 490 * @cgrp: the cgroup of interest
 491 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 492 *
 493 * Similar to cgroup_css() but returns the effective css, which is defined
 494 * as the matching css of the nearest ancestor including self which has @ss
 495 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 496 * function is guaranteed to return non-NULL css.
 497 */
 498static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 499						struct cgroup_subsys *ss)
 500{
 501	lockdep_assert_held(&cgroup_mutex);
 502
 503	if (!ss)
 504		return &cgrp->self;
 505
 506	/*
 507	 * This function is used while updating css associations and thus
 508	 * can't test the csses directly.  Test ss_mask.
 509	 */
 510	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 511		cgrp = cgroup_parent(cgrp);
 512		if (!cgrp)
 513			return NULL;
 514	}
 515
 516	return cgroup_css(cgrp, ss);
 517}
 518
 519/**
 520 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 521 * @cgrp: the cgroup of interest
 522 * @ss: the subsystem of interest
 523 *
 524 * Find and get the effective css of @cgrp for @ss.  The effective css is
 525 * defined as the matching css of the nearest ancestor including self which
 526 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 527 * the root css is returned, so this function always returns a valid css.
 528 * The returned css must be put using css_put().
 529 */
 530struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 531					     struct cgroup_subsys *ss)
 532{
 533	struct cgroup_subsys_state *css;
 534
 535	rcu_read_lock();
 536
 537	do {
 538		css = cgroup_css(cgrp, ss);
 539
 540		if (css && css_tryget_online(css))
 541			goto out_unlock;
 542		cgrp = cgroup_parent(cgrp);
 543	} while (cgrp);
 544
 545	css = init_css_set.subsys[ss->id];
 546	css_get(css);
 547out_unlock:
 548	rcu_read_unlock();
 549	return css;
 550}
 551
 552static void cgroup_get_live(struct cgroup *cgrp)
 553{
 554	WARN_ON_ONCE(cgroup_is_dead(cgrp));
 555	css_get(&cgrp->self);
 556}
 557
 558struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 559{
 560	struct cgroup *cgrp = of->kn->parent->priv;
 561	struct cftype *cft = of_cft(of);
 562
 563	/*
 564	 * This is open and unprotected implementation of cgroup_css().
 565	 * seq_css() is only called from a kernfs file operation which has
 566	 * an active reference on the file.  Because all the subsystem
 567	 * files are drained before a css is disassociated with a cgroup,
 568	 * the matching css from the cgroup's subsys table is guaranteed to
 569	 * be and stay valid until the enclosing operation is complete.
 570	 */
 571	if (cft->ss)
 572		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 573	else
 574		return &cgrp->self;
 575}
 576EXPORT_SYMBOL_GPL(of_css);
 577
 578/**
 579 * for_each_css - iterate all css's of a cgroup
 580 * @css: the iteration cursor
 581 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 582 * @cgrp: the target cgroup to iterate css's of
 583 *
 584 * Should be called under cgroup_[tree_]mutex.
 585 */
 586#define for_each_css(css, ssid, cgrp)					\
 587	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
 588		if (!((css) = rcu_dereference_check(			\
 589				(cgrp)->subsys[(ssid)],			\
 590				lockdep_is_held(&cgroup_mutex)))) { }	\
 591		else
 592
 593/**
 594 * for_each_e_css - iterate all effective css's of a cgroup
 595 * @css: the iteration cursor
 596 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 597 * @cgrp: the target cgroup to iterate css's of
 598 *
 599 * Should be called under cgroup_[tree_]mutex.
 600 */
 601#define for_each_e_css(css, ssid, cgrp)					\
 602	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
 603		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
 604			;						\
 605		else
 606
 607/**
 608 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 609 * @ss: the iteration cursor
 610 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 611 * @ss_mask: the bitmask
 612 *
 613 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 614 * @ss_mask is set.
 615 */
 616#define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
 617	unsigned long __ss_mask = (ss_mask);				\
 618	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
 619		(ssid) = 0;						\
 620		break;							\
 621	}								\
 622	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
 623		(ss) = cgroup_subsys[ssid];				\
 624		{
 625
 626#define while_each_subsys_mask()					\
 627		}							\
 628	}								\
 629} while (false)
 630
 631/* iterate over child cgrps, lock should be held throughout iteration */
 632#define cgroup_for_each_live_child(child, cgrp)				\
 633	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 634		if (({ lockdep_assert_held(&cgroup_mutex);		\
 635		       cgroup_is_dead(child); }))			\
 636			;						\
 637		else
 638
 639/* walk live descendants in preorder */
 640#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
 641	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
 642		if (({ lockdep_assert_held(&cgroup_mutex);		\
 643		       (dsct) = (d_css)->cgroup;			\
 644		       cgroup_is_dead(dsct); }))			\
 645			;						\
 646		else
 647
 648/* walk live descendants in postorder */
 649#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
 650	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
 651		if (({ lockdep_assert_held(&cgroup_mutex);		\
 652		       (dsct) = (d_css)->cgroup;			\
 653		       cgroup_is_dead(dsct); }))			\
 654			;						\
 655		else
 656
 657/*
 658 * The default css_set - used by init and its children prior to any
 659 * hierarchies being mounted. It contains a pointer to the root state
 660 * for each subsystem. Also used to anchor the list of css_sets. Not
 661 * reference-counted, to improve performance when child cgroups
 662 * haven't been created.
 663 */
 664struct css_set init_css_set = {
 665	.refcount		= REFCOUNT_INIT(1),
 666	.dom_cset		= &init_css_set,
 667	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
 668	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
 669	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
 670	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
 671	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
 672	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
 673	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
 674
 675	/*
 676	 * The following field is re-initialized when this cset gets linked
 677	 * in cgroup_init().  However, let's initialize the field
 678	 * statically too so that the default cgroup can be accessed safely
 679	 * early during boot.
 680	 */
 681	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
 682};
 683
 684static int css_set_count	= 1;	/* 1 for init_css_set */
 685
 686static bool css_set_threaded(struct css_set *cset)
 687{
 688	return cset->dom_cset != cset;
 689}
 690
 691/**
 692 * css_set_populated - does a css_set contain any tasks?
 693 * @cset: target css_set
 694 *
 695 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 696 * state. However, css_set_populated() can be called while a task is being
 697 * added to or removed from the linked list before the nr_tasks is
 698 * properly updated. Hence, we can't just look at ->nr_tasks here.
 699 */
 700static bool css_set_populated(struct css_set *cset)
 701{
 702	lockdep_assert_held(&css_set_lock);
 703
 704	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 705}
 706
 707/**
 708 * cgroup_update_populated - update the populated count of a cgroup
 709 * @cgrp: the target cgroup
 710 * @populated: inc or dec populated count
 711 *
 712 * One of the css_sets associated with @cgrp is either getting its first
 713 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 714 * count is propagated towards root so that a given cgroup's
 715 * nr_populated_children is zero iff none of its descendants contain any
 716 * tasks.
 717 *
 718 * @cgrp's interface file "cgroup.populated" is zero if both
 719 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 720 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 721 * that the content of the interface file has changed.  This can be used to
 722 * detect when @cgrp and its descendants become populated or empty.
 723 */
 724static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 725{
 726	struct cgroup *child = NULL;
 727	int adj = populated ? 1 : -1;
 728
 729	lockdep_assert_held(&css_set_lock);
 730
 731	do {
 732		bool was_populated = cgroup_is_populated(cgrp);
 733
 734		if (!child) {
 735			cgrp->nr_populated_csets += adj;
 736		} else {
 737			if (cgroup_is_threaded(child))
 738				cgrp->nr_populated_threaded_children += adj;
 739			else
 740				cgrp->nr_populated_domain_children += adj;
 741		}
 742
 743		if (was_populated == cgroup_is_populated(cgrp))
 744			break;
 745
 746		cgroup1_check_for_release(cgrp);
 747		cgroup_file_notify(&cgrp->events_file);
 748
 749		child = cgrp;
 750		cgrp = cgroup_parent(cgrp);
 751	} while (cgrp);
 752}
 753
 754/**
 755 * css_set_update_populated - update populated state of a css_set
 756 * @cset: target css_set
 757 * @populated: whether @cset is populated or depopulated
 758 *
 759 * @cset is either getting the first task or losing the last.  Update the
 760 * populated counters of all associated cgroups accordingly.
 761 */
 762static void css_set_update_populated(struct css_set *cset, bool populated)
 763{
 764	struct cgrp_cset_link *link;
 765
 766	lockdep_assert_held(&css_set_lock);
 767
 768	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 769		cgroup_update_populated(link->cgrp, populated);
 770}
 771
 772/**
 773 * css_set_move_task - move a task from one css_set to another
 774 * @task: task being moved
 775 * @from_cset: css_set @task currently belongs to (may be NULL)
 776 * @to_cset: new css_set @task is being moved to (may be NULL)
 777 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 778 *
 779 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 780 * css_set, @from_cset can be NULL.  If @task is being disassociated
 781 * instead of moved, @to_cset can be NULL.
 782 *
 783 * This function automatically handles populated counter updates and
 784 * css_task_iter adjustments but the caller is responsible for managing
 785 * @from_cset and @to_cset's reference counts.
 786 */
 787static void css_set_move_task(struct task_struct *task,
 788			      struct css_set *from_cset, struct css_set *to_cset,
 789			      bool use_mg_tasks)
 790{
 791	lockdep_assert_held(&css_set_lock);
 792
 793	if (to_cset && !css_set_populated(to_cset))
 794		css_set_update_populated(to_cset, true);
 795
 796	if (from_cset) {
 797		struct css_task_iter *it, *pos;
 798
 799		WARN_ON_ONCE(list_empty(&task->cg_list));
 800
 801		/*
 802		 * @task is leaving, advance task iterators which are
 803		 * pointing to it so that they can resume at the next
 804		 * position.  Advancing an iterator might remove it from
 805		 * the list, use safe walk.  See css_task_iter_advance*()
 806		 * for details.
 807		 */
 808		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
 809					 iters_node)
 810			if (it->task_pos == &task->cg_list)
 811				css_task_iter_advance(it);
 812
 813		list_del_init(&task->cg_list);
 814		if (!css_set_populated(from_cset))
 815			css_set_update_populated(from_cset, false);
 816	} else {
 817		WARN_ON_ONCE(!list_empty(&task->cg_list));
 818	}
 819
 820	if (to_cset) {
 821		/*
 822		 * We are synchronized through cgroup_threadgroup_rwsem
 823		 * against PF_EXITING setting such that we can't race
 824		 * against cgroup_exit() changing the css_set to
 825		 * init_css_set and dropping the old one.
 826		 */
 827		WARN_ON_ONCE(task->flags & PF_EXITING);
 828
 829		rcu_assign_pointer(task->cgroups, to_cset);
 830		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 831							     &to_cset->tasks);
 832	}
 833}
 834
 835/*
 836 * hash table for cgroup groups. This improves the performance to find
 837 * an existing css_set. This hash doesn't (currently) take into
 838 * account cgroups in empty hierarchies.
 839 */
 840#define CSS_SET_HASH_BITS	7
 841static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 842
 843static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 844{
 845	unsigned long key = 0UL;
 846	struct cgroup_subsys *ss;
 847	int i;
 848
 849	for_each_subsys(ss, i)
 850		key += (unsigned long)css[i];
 851	key = (key >> 16) ^ key;
 852
 853	return key;
 854}
 855
 856void put_css_set_locked(struct css_set *cset)
 857{
 858	struct cgrp_cset_link *link, *tmp_link;
 859	struct cgroup_subsys *ss;
 860	int ssid;
 861
 862	lockdep_assert_held(&css_set_lock);
 863
 864	if (!refcount_dec_and_test(&cset->refcount))
 865		return;
 866
 867	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 868
 869	/* This css_set is dead. unlink it and release cgroup and css refs */
 870	for_each_subsys(ss, ssid) {
 871		list_del(&cset->e_cset_node[ssid]);
 872		css_put(cset->subsys[ssid]);
 873	}
 874	hash_del(&cset->hlist);
 875	css_set_count--;
 876
 877	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 878		list_del(&link->cset_link);
 879		list_del(&link->cgrp_link);
 880		if (cgroup_parent(link->cgrp))
 881			cgroup_put(link->cgrp);
 882		kfree(link);
 883	}
 884
 885	if (css_set_threaded(cset)) {
 886		list_del(&cset->threaded_csets_node);
 887		put_css_set_locked(cset->dom_cset);
 888	}
 889
 890	kfree_rcu(cset, rcu_head);
 891}
 892
 893/**
 894 * compare_css_sets - helper function for find_existing_css_set().
 895 * @cset: candidate css_set being tested
 896 * @old_cset: existing css_set for a task
 897 * @new_cgrp: cgroup that's being entered by the task
 898 * @template: desired set of css pointers in css_set (pre-calculated)
 899 *
 900 * Returns true if "cset" matches "old_cset" except for the hierarchy
 901 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 902 */
 903static bool compare_css_sets(struct css_set *cset,
 904			     struct css_set *old_cset,
 905			     struct cgroup *new_cgrp,
 906			     struct cgroup_subsys_state *template[])
 907{
 908	struct cgroup *new_dfl_cgrp;
 909	struct list_head *l1, *l2;
 910
 911	/*
 912	 * On the default hierarchy, there can be csets which are
 913	 * associated with the same set of cgroups but different csses.
 914	 * Let's first ensure that csses match.
 915	 */
 916	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 917		return false;
 918
 919
 920	/* @cset's domain should match the default cgroup's */
 921	if (cgroup_on_dfl(new_cgrp))
 922		new_dfl_cgrp = new_cgrp;
 923	else
 924		new_dfl_cgrp = old_cset->dfl_cgrp;
 925
 926	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
 927		return false;
 928
 929	/*
 930	 * Compare cgroup pointers in order to distinguish between
 931	 * different cgroups in hierarchies.  As different cgroups may
 932	 * share the same effective css, this comparison is always
 933	 * necessary.
 934	 */
 935	l1 = &cset->cgrp_links;
 936	l2 = &old_cset->cgrp_links;
 937	while (1) {
 938		struct cgrp_cset_link *link1, *link2;
 939		struct cgroup *cgrp1, *cgrp2;
 940
 941		l1 = l1->next;
 942		l2 = l2->next;
 943		/* See if we reached the end - both lists are equal length. */
 944		if (l1 == &cset->cgrp_links) {
 945			BUG_ON(l2 != &old_cset->cgrp_links);
 946			break;
 947		} else {
 948			BUG_ON(l2 == &old_cset->cgrp_links);
 949		}
 950		/* Locate the cgroups associated with these links. */
 951		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
 952		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
 953		cgrp1 = link1->cgrp;
 954		cgrp2 = link2->cgrp;
 955		/* Hierarchies should be linked in the same order. */
 956		BUG_ON(cgrp1->root != cgrp2->root);
 957
 958		/*
 959		 * If this hierarchy is the hierarchy of the cgroup
 960		 * that's changing, then we need to check that this
 961		 * css_set points to the new cgroup; if it's any other
 962		 * hierarchy, then this css_set should point to the
 963		 * same cgroup as the old css_set.
 964		 */
 965		if (cgrp1->root == new_cgrp->root) {
 966			if (cgrp1 != new_cgrp)
 967				return false;
 968		} else {
 969			if (cgrp1 != cgrp2)
 970				return false;
 971		}
 972	}
 973	return true;
 974}
 975
 976/**
 977 * find_existing_css_set - init css array and find the matching css_set
 978 * @old_cset: the css_set that we're using before the cgroup transition
 979 * @cgrp: the cgroup that we're moving into
 980 * @template: out param for the new set of csses, should be clear on entry
 981 */
 982static struct css_set *find_existing_css_set(struct css_set *old_cset,
 983					struct cgroup *cgrp,
 984					struct cgroup_subsys_state *template[])
 985{
 986	struct cgroup_root *root = cgrp->root;
 987	struct cgroup_subsys *ss;
 988	struct css_set *cset;
 989	unsigned long key;
 990	int i;
 991
 992	/*
 993	 * Build the set of subsystem state objects that we want to see in the
 994	 * new css_set. while subsystems can change globally, the entries here
 995	 * won't change, so no need for locking.
 996	 */
 997	for_each_subsys(ss, i) {
 998		if (root->subsys_mask & (1UL << i)) {
 999			/*
1000			 * @ss is in this hierarchy, so we want the
1001			 * effective css from @cgrp.
1002			 */
1003			template[i] = cgroup_e_css(cgrp, ss);
1004		} else {
1005			/*
1006			 * @ss is not in this hierarchy, so we don't want
1007			 * to change the css.
1008			 */
1009			template[i] = old_cset->subsys[i];
1010		}
1011	}
1012
1013	key = css_set_hash(template);
1014	hash_for_each_possible(css_set_table, cset, hlist, key) {
1015		if (!compare_css_sets(cset, old_cset, cgrp, template))
1016			continue;
1017
1018		/* This css_set matches what we need */
1019		return cset;
1020	}
1021
1022	/* No existing cgroup group matched */
1023	return NULL;
1024}
1025
1026static void free_cgrp_cset_links(struct list_head *links_to_free)
1027{
1028	struct cgrp_cset_link *link, *tmp_link;
1029
1030	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1031		list_del(&link->cset_link);
1032		kfree(link);
1033	}
1034}
1035
1036/**
1037 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1038 * @count: the number of links to allocate
1039 * @tmp_links: list_head the allocated links are put on
1040 *
1041 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1042 * through ->cset_link.  Returns 0 on success or -errno.
1043 */
1044static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1045{
1046	struct cgrp_cset_link *link;
1047	int i;
1048
1049	INIT_LIST_HEAD(tmp_links);
1050
1051	for (i = 0; i < count; i++) {
1052		link = kzalloc(sizeof(*link), GFP_KERNEL);
1053		if (!link) {
1054			free_cgrp_cset_links(tmp_links);
1055			return -ENOMEM;
1056		}
1057		list_add(&link->cset_link, tmp_links);
1058	}
1059	return 0;
1060}
1061
1062/**
1063 * link_css_set - a helper function to link a css_set to a cgroup
1064 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1065 * @cset: the css_set to be linked
1066 * @cgrp: the destination cgroup
1067 */
1068static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1069			 struct cgroup *cgrp)
1070{
1071	struct cgrp_cset_link *link;
1072
1073	BUG_ON(list_empty(tmp_links));
1074
1075	if (cgroup_on_dfl(cgrp))
1076		cset->dfl_cgrp = cgrp;
1077
1078	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1079	link->cset = cset;
1080	link->cgrp = cgrp;
1081
1082	/*
1083	 * Always add links to the tail of the lists so that the lists are
1084	 * in choronological order.
1085	 */
1086	list_move_tail(&link->cset_link, &cgrp->cset_links);
1087	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1088
1089	if (cgroup_parent(cgrp))
1090		cgroup_get_live(cgrp);
1091}
1092
1093/**
1094 * find_css_set - return a new css_set with one cgroup updated
1095 * @old_cset: the baseline css_set
1096 * @cgrp: the cgroup to be updated
1097 *
1098 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1099 * substituted into the appropriate hierarchy.
1100 */
1101static struct css_set *find_css_set(struct css_set *old_cset,
1102				    struct cgroup *cgrp)
1103{
1104	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1105	struct css_set *cset;
1106	struct list_head tmp_links;
1107	struct cgrp_cset_link *link;
1108	struct cgroup_subsys *ss;
1109	unsigned long key;
1110	int ssid;
1111
1112	lockdep_assert_held(&cgroup_mutex);
1113
1114	/* First see if we already have a cgroup group that matches
1115	 * the desired set */
1116	spin_lock_irq(&css_set_lock);
1117	cset = find_existing_css_set(old_cset, cgrp, template);
1118	if (cset)
1119		get_css_set(cset);
1120	spin_unlock_irq(&css_set_lock);
1121
1122	if (cset)
1123		return cset;
1124
1125	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1126	if (!cset)
1127		return NULL;
1128
1129	/* Allocate all the cgrp_cset_link objects that we'll need */
1130	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1131		kfree(cset);
1132		return NULL;
1133	}
1134
1135	refcount_set(&cset->refcount, 1);
1136	cset->dom_cset = cset;
1137	INIT_LIST_HEAD(&cset->tasks);
1138	INIT_LIST_HEAD(&cset->mg_tasks);
1139	INIT_LIST_HEAD(&cset->task_iters);
1140	INIT_LIST_HEAD(&cset->threaded_csets);
1141	INIT_HLIST_NODE(&cset->hlist);
1142	INIT_LIST_HEAD(&cset->cgrp_links);
1143	INIT_LIST_HEAD(&cset->mg_preload_node);
1144	INIT_LIST_HEAD(&cset->mg_node);
1145
1146	/* Copy the set of subsystem state objects generated in
1147	 * find_existing_css_set() */
1148	memcpy(cset->subsys, template, sizeof(cset->subsys));
1149
1150	spin_lock_irq(&css_set_lock);
1151	/* Add reference counts and links from the new css_set. */
1152	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1153		struct cgroup *c = link->cgrp;
1154
1155		if (c->root == cgrp->root)
1156			c = cgrp;
1157		link_css_set(&tmp_links, cset, c);
1158	}
1159
1160	BUG_ON(!list_empty(&tmp_links));
1161
1162	css_set_count++;
1163
1164	/* Add @cset to the hash table */
1165	key = css_set_hash(cset->subsys);
1166	hash_add(css_set_table, &cset->hlist, key);
1167
1168	for_each_subsys(ss, ssid) {
1169		struct cgroup_subsys_state *css = cset->subsys[ssid];
1170
1171		list_add_tail(&cset->e_cset_node[ssid],
1172			      &css->cgroup->e_csets[ssid]);
1173		css_get(css);
1174	}
1175
1176	spin_unlock_irq(&css_set_lock);
1177
1178	/*
1179	 * If @cset should be threaded, look up the matching dom_cset and
1180	 * link them up.  We first fully initialize @cset then look for the
1181	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1182	 * to stay empty until we return.
1183	 */
1184	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1185		struct css_set *dcset;
1186
1187		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1188		if (!dcset) {
1189			put_css_set(cset);
1190			return NULL;
1191		}
1192
1193		spin_lock_irq(&css_set_lock);
1194		cset->dom_cset = dcset;
1195		list_add_tail(&cset->threaded_csets_node,
1196			      &dcset->threaded_csets);
1197		spin_unlock_irq(&css_set_lock);
1198	}
1199
1200	return cset;
1201}
1202
1203struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1204{
1205	struct cgroup *root_cgrp = kf_root->kn->priv;
1206
1207	return root_cgrp->root;
1208}
1209
1210static int cgroup_init_root_id(struct cgroup_root *root)
1211{
1212	int id;
1213
1214	lockdep_assert_held(&cgroup_mutex);
1215
1216	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1217	if (id < 0)
1218		return id;
1219
1220	root->hierarchy_id = id;
1221	return 0;
1222}
1223
1224static void cgroup_exit_root_id(struct cgroup_root *root)
1225{
1226	lockdep_assert_held(&cgroup_mutex);
1227
1228	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1229}
1230
1231void cgroup_free_root(struct cgroup_root *root)
1232{
1233	if (root) {
1234		idr_destroy(&root->cgroup_idr);
1235		kfree(root);
1236	}
1237}
1238
1239static void cgroup_destroy_root(struct cgroup_root *root)
1240{
1241	struct cgroup *cgrp = &root->cgrp;
1242	struct cgrp_cset_link *link, *tmp_link;
1243
1244	trace_cgroup_destroy_root(root);
1245
1246	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1247
1248	BUG_ON(atomic_read(&root->nr_cgrps));
1249	BUG_ON(!list_empty(&cgrp->self.children));
1250
1251	/* Rebind all subsystems back to the default hierarchy */
1252	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1253
1254	/*
1255	 * Release all the links from cset_links to this hierarchy's
1256	 * root cgroup
1257	 */
1258	spin_lock_irq(&css_set_lock);
1259
1260	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1261		list_del(&link->cset_link);
1262		list_del(&link->cgrp_link);
1263		kfree(link);
1264	}
1265
1266	spin_unlock_irq(&css_set_lock);
1267
1268	if (!list_empty(&root->root_list)) {
1269		list_del(&root->root_list);
1270		cgroup_root_count--;
1271	}
1272
1273	cgroup_exit_root_id(root);
1274
1275	mutex_unlock(&cgroup_mutex);
1276
1277	kernfs_destroy_root(root->kf_root);
1278	cgroup_free_root(root);
1279}
1280
1281/*
1282 * look up cgroup associated with current task's cgroup namespace on the
1283 * specified hierarchy
1284 */
1285static struct cgroup *
1286current_cgns_cgroup_from_root(struct cgroup_root *root)
1287{
1288	struct cgroup *res = NULL;
1289	struct css_set *cset;
1290
1291	lockdep_assert_held(&css_set_lock);
1292
1293	rcu_read_lock();
1294
1295	cset = current->nsproxy->cgroup_ns->root_cset;
1296	if (cset == &init_css_set) {
1297		res = &root->cgrp;
1298	} else {
1299		struct cgrp_cset_link *link;
1300
1301		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1302			struct cgroup *c = link->cgrp;
1303
1304			if (c->root == root) {
1305				res = c;
1306				break;
1307			}
1308		}
1309	}
1310	rcu_read_unlock();
1311
1312	BUG_ON(!res);
1313	return res;
1314}
1315
1316/* look up cgroup associated with given css_set on the specified hierarchy */
1317static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1318					    struct cgroup_root *root)
1319{
1320	struct cgroup *res = NULL;
1321
1322	lockdep_assert_held(&cgroup_mutex);
1323	lockdep_assert_held(&css_set_lock);
1324
1325	if (cset == &init_css_set) {
1326		res = &root->cgrp;
1327	} else if (root == &cgrp_dfl_root) {
1328		res = cset->dfl_cgrp;
1329	} else {
1330		struct cgrp_cset_link *link;
1331
1332		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1333			struct cgroup *c = link->cgrp;
1334
1335			if (c->root == root) {
1336				res = c;
1337				break;
1338			}
1339		}
1340	}
1341
1342	BUG_ON(!res);
1343	return res;
1344}
1345
1346/*
1347 * Return the cgroup for "task" from the given hierarchy. Must be
1348 * called with cgroup_mutex and css_set_lock held.
1349 */
1350struct cgroup *task_cgroup_from_root(struct task_struct *task,
1351				     struct cgroup_root *root)
1352{
1353	/*
1354	 * No need to lock the task - since we hold cgroup_mutex the
1355	 * task can't change groups, so the only thing that can happen
1356	 * is that it exits and its css is set back to init_css_set.
1357	 */
1358	return cset_cgroup_from_root(task_css_set(task), root);
1359}
1360
1361/*
1362 * A task must hold cgroup_mutex to modify cgroups.
1363 *
1364 * Any task can increment and decrement the count field without lock.
1365 * So in general, code holding cgroup_mutex can't rely on the count
1366 * field not changing.  However, if the count goes to zero, then only
1367 * cgroup_attach_task() can increment it again.  Because a count of zero
1368 * means that no tasks are currently attached, therefore there is no
1369 * way a task attached to that cgroup can fork (the other way to
1370 * increment the count).  So code holding cgroup_mutex can safely
1371 * assume that if the count is zero, it will stay zero. Similarly, if
1372 * a task holds cgroup_mutex on a cgroup with zero count, it
1373 * knows that the cgroup won't be removed, as cgroup_rmdir()
1374 * needs that mutex.
1375 *
1376 * A cgroup can only be deleted if both its 'count' of using tasks
1377 * is zero, and its list of 'children' cgroups is empty.  Since all
1378 * tasks in the system use _some_ cgroup, and since there is always at
1379 * least one task in the system (init, pid == 1), therefore, root cgroup
1380 * always has either children cgroups and/or using tasks.  So we don't
1381 * need a special hack to ensure that root cgroup cannot be deleted.
1382 *
1383 * P.S.  One more locking exception.  RCU is used to guard the
1384 * update of a tasks cgroup pointer by cgroup_attach_task()
1385 */
1386
1387static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1388
1389static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1390			      char *buf)
1391{
1392	struct cgroup_subsys *ss = cft->ss;
1393
1394	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1395	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1396		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1397			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1398			 cft->name);
1399	else
1400		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1401	return buf;
1402}
1403
1404/**
1405 * cgroup_file_mode - deduce file mode of a control file
1406 * @cft: the control file in question
1407 *
1408 * S_IRUGO for read, S_IWUSR for write.
1409 */
1410static umode_t cgroup_file_mode(const struct cftype *cft)
1411{
1412	umode_t mode = 0;
1413
1414	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1415		mode |= S_IRUGO;
1416
1417	if (cft->write_u64 || cft->write_s64 || cft->write) {
1418		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1419			mode |= S_IWUGO;
1420		else
1421			mode |= S_IWUSR;
1422	}
1423
1424	return mode;
1425}
1426
1427/**
1428 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1429 * @subtree_control: the new subtree_control mask to consider
1430 * @this_ss_mask: available subsystems
1431 *
1432 * On the default hierarchy, a subsystem may request other subsystems to be
1433 * enabled together through its ->depends_on mask.  In such cases, more
1434 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1435 *
1436 * This function calculates which subsystems need to be enabled if
1437 * @subtree_control is to be applied while restricted to @this_ss_mask.
1438 */
1439static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1440{
1441	u16 cur_ss_mask = subtree_control;
1442	struct cgroup_subsys *ss;
1443	int ssid;
1444
1445	lockdep_assert_held(&cgroup_mutex);
1446
1447	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1448
1449	while (true) {
1450		u16 new_ss_mask = cur_ss_mask;
1451
1452		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1453			new_ss_mask |= ss->depends_on;
1454		} while_each_subsys_mask();
1455
1456		/*
1457		 * Mask out subsystems which aren't available.  This can
1458		 * happen only if some depended-upon subsystems were bound
1459		 * to non-default hierarchies.
1460		 */
1461		new_ss_mask &= this_ss_mask;
1462
1463		if (new_ss_mask == cur_ss_mask)
1464			break;
1465		cur_ss_mask = new_ss_mask;
1466	}
1467
1468	return cur_ss_mask;
1469}
1470
1471/**
1472 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1473 * @kn: the kernfs_node being serviced
1474 *
1475 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1476 * the method finishes if locking succeeded.  Note that once this function
1477 * returns the cgroup returned by cgroup_kn_lock_live() may become
1478 * inaccessible any time.  If the caller intends to continue to access the
1479 * cgroup, it should pin it before invoking this function.
1480 */
1481void cgroup_kn_unlock(struct kernfs_node *kn)
1482{
1483	struct cgroup *cgrp;
1484
1485	if (kernfs_type(kn) == KERNFS_DIR)
1486		cgrp = kn->priv;
1487	else
1488		cgrp = kn->parent->priv;
1489
1490	mutex_unlock(&cgroup_mutex);
1491
1492	kernfs_unbreak_active_protection(kn);
1493	cgroup_put(cgrp);
1494}
1495
1496/**
1497 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1498 * @kn: the kernfs_node being serviced
1499 * @drain_offline: perform offline draining on the cgroup
1500 *
1501 * This helper is to be used by a cgroup kernfs method currently servicing
1502 * @kn.  It breaks the active protection, performs cgroup locking and
1503 * verifies that the associated cgroup is alive.  Returns the cgroup if
1504 * alive; otherwise, %NULL.  A successful return should be undone by a
1505 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1506 * cgroup is drained of offlining csses before return.
1507 *
1508 * Any cgroup kernfs method implementation which requires locking the
1509 * associated cgroup should use this helper.  It avoids nesting cgroup
1510 * locking under kernfs active protection and allows all kernfs operations
1511 * including self-removal.
1512 */
1513struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1514{
1515	struct cgroup *cgrp;
1516
1517	if (kernfs_type(kn) == KERNFS_DIR)
1518		cgrp = kn->priv;
1519	else
1520		cgrp = kn->parent->priv;
1521
1522	/*
1523	 * We're gonna grab cgroup_mutex which nests outside kernfs
1524	 * active_ref.  cgroup liveliness check alone provides enough
1525	 * protection against removal.  Ensure @cgrp stays accessible and
1526	 * break the active_ref protection.
1527	 */
1528	if (!cgroup_tryget(cgrp))
1529		return NULL;
1530	kernfs_break_active_protection(kn);
1531
1532	if (drain_offline)
1533		cgroup_lock_and_drain_offline(cgrp);
1534	else
1535		mutex_lock(&cgroup_mutex);
1536
1537	if (!cgroup_is_dead(cgrp))
1538		return cgrp;
1539
1540	cgroup_kn_unlock(kn);
1541	return NULL;
1542}
1543
1544static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1545{
1546	char name[CGROUP_FILE_NAME_MAX];
1547
1548	lockdep_assert_held(&cgroup_mutex);
1549
1550	if (cft->file_offset) {
1551		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1552		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1553
1554		spin_lock_irq(&cgroup_file_kn_lock);
1555		cfile->kn = NULL;
1556		spin_unlock_irq(&cgroup_file_kn_lock);
1557	}
1558
1559	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1560}
1561
1562/**
1563 * css_clear_dir - remove subsys files in a cgroup directory
1564 * @css: taget css
1565 */
1566static void css_clear_dir(struct cgroup_subsys_state *css)
1567{
1568	struct cgroup *cgrp = css->cgroup;
1569	struct cftype *cfts;
1570
1571	if (!(css->flags & CSS_VISIBLE))
1572		return;
1573
1574	css->flags &= ~CSS_VISIBLE;
1575
1576	list_for_each_entry(cfts, &css->ss->cfts, node)
1577		cgroup_addrm_files(css, cgrp, cfts, false);
1578}
1579
1580/**
1581 * css_populate_dir - create subsys files in a cgroup directory
1582 * @css: target css
1583 *
1584 * On failure, no file is added.
1585 */
1586static int css_populate_dir(struct cgroup_subsys_state *css)
1587{
1588	struct cgroup *cgrp = css->cgroup;
1589	struct cftype *cfts, *failed_cfts;
1590	int ret;
1591
1592	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1593		return 0;
1594
1595	if (!css->ss) {
1596		if (cgroup_on_dfl(cgrp))
1597			cfts = cgroup_base_files;
1598		else
1599			cfts = cgroup1_base_files;
1600
1601		return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1602	}
1603
1604	list_for_each_entry(cfts, &css->ss->cfts, node) {
1605		ret = cgroup_addrm_files(css, cgrp, cfts, true);
1606		if (ret < 0) {
1607			failed_cfts = cfts;
1608			goto err;
1609		}
1610	}
1611
1612	css->flags |= CSS_VISIBLE;
1613
1614	return 0;
1615err:
1616	list_for_each_entry(cfts, &css->ss->cfts, node) {
1617		if (cfts == failed_cfts)
1618			break;
1619		cgroup_addrm_files(css, cgrp, cfts, false);
1620	}
1621	return ret;
1622}
1623
1624int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1625{
1626	struct cgroup *dcgrp = &dst_root->cgrp;
1627	struct cgroup_subsys *ss;
1628	int ssid, i, ret;
1629
1630	lockdep_assert_held(&cgroup_mutex);
1631
1632	do_each_subsys_mask(ss, ssid, ss_mask) {
1633		/*
1634		 * If @ss has non-root csses attached to it, can't move.
1635		 * If @ss is an implicit controller, it is exempt from this
1636		 * rule and can be stolen.
1637		 */
1638		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1639		    !ss->implicit_on_dfl)
1640			return -EBUSY;
1641
1642		/* can't move between two non-dummy roots either */
1643		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1644			return -EBUSY;
1645	} while_each_subsys_mask();
1646
1647	do_each_subsys_mask(ss, ssid, ss_mask) {
1648		struct cgroup_root *src_root = ss->root;
1649		struct cgroup *scgrp = &src_root->cgrp;
1650		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1651		struct css_set *cset;
1652
1653		WARN_ON(!css || cgroup_css(dcgrp, ss));
1654
1655		/* disable from the source */
1656		src_root->subsys_mask &= ~(1 << ssid);
1657		WARN_ON(cgroup_apply_control(scgrp));
1658		cgroup_finalize_control(scgrp, 0);
1659
1660		/* rebind */
1661		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1662		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1663		ss->root = dst_root;
1664		css->cgroup = dcgrp;
1665
1666		spin_lock_irq(&css_set_lock);
1667		hash_for_each(css_set_table, i, cset, hlist)
1668			list_move_tail(&cset->e_cset_node[ss->id],
1669				       &dcgrp->e_csets[ss->id]);
1670		spin_unlock_irq(&css_set_lock);
1671
1672		/* default hierarchy doesn't enable controllers by default */
1673		dst_root->subsys_mask |= 1 << ssid;
1674		if (dst_root == &cgrp_dfl_root) {
1675			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1676		} else {
1677			dcgrp->subtree_control |= 1 << ssid;
1678			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1679		}
1680
1681		ret = cgroup_apply_control(dcgrp);
1682		if (ret)
1683			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1684				ss->name, ret);
1685
1686		if (ss->bind)
1687			ss->bind(css);
1688	} while_each_subsys_mask();
1689
1690	kernfs_activate(dcgrp->kn);
1691	return 0;
1692}
1693
1694int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1695		     struct kernfs_root *kf_root)
1696{
1697	int len = 0;
1698	char *buf = NULL;
1699	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1700	struct cgroup *ns_cgroup;
1701
1702	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1703	if (!buf)
1704		return -ENOMEM;
1705
1706	spin_lock_irq(&css_set_lock);
1707	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1708	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1709	spin_unlock_irq(&css_set_lock);
1710
1711	if (len >= PATH_MAX)
1712		len = -ERANGE;
1713	else if (len > 0) {
1714		seq_escape(sf, buf, " \t\n\\");
1715		len = 0;
1716	}
1717	kfree(buf);
1718	return len;
1719}
1720
1721static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1722{
1723	char *token;
1724
1725	*root_flags = 0;
1726
1727	if (!data)
1728		return 0;
1729
1730	while ((token = strsep(&data, ",")) != NULL) {
1731		if (!strcmp(token, "nsdelegate")) {
1732			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1733			continue;
1734		}
1735
1736		pr_err("cgroup2: unknown option \"%s\"\n", token);
1737		return -EINVAL;
1738	}
1739
1740	return 0;
1741}
1742
1743static void apply_cgroup_root_flags(unsigned int root_flags)
1744{
1745	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1746		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1747			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1748		else
1749			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1750	}
1751}
1752
1753static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1754{
1755	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1756		seq_puts(seq, ",nsdelegate");
1757	return 0;
1758}
1759
1760static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1761{
1762	unsigned int root_flags;
1763	int ret;
1764
1765	ret = parse_cgroup_root_flags(data, &root_flags);
1766	if (ret)
1767		return ret;
1768
1769	apply_cgroup_root_flags(root_flags);
1770	return 0;
1771}
1772
1773/*
1774 * To reduce the fork() overhead for systems that are not actually using
1775 * their cgroups capability, we don't maintain the lists running through
1776 * each css_set to its tasks until we see the list actually used - in other
1777 * words after the first mount.
1778 */
1779static bool use_task_css_set_links __read_mostly;
1780
1781static void cgroup_enable_task_cg_lists(void)
1782{
1783	struct task_struct *p, *g;
1784
1785	spin_lock_irq(&css_set_lock);
1786
1787	if (use_task_css_set_links)
1788		goto out_unlock;
1789
1790	use_task_css_set_links = true;
1791
1792	/*
1793	 * We need tasklist_lock because RCU is not safe against
1794	 * while_each_thread(). Besides, a forking task that has passed
1795	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1796	 * is not guaranteed to have its child immediately visible in the
1797	 * tasklist if we walk through it with RCU.
1798	 */
1799	read_lock(&tasklist_lock);
1800	do_each_thread(g, p) {
1801		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1802			     task_css_set(p) != &init_css_set);
1803
1804		/*
1805		 * We should check if the process is exiting, otherwise
1806		 * it will race with cgroup_exit() in that the list
1807		 * entry won't be deleted though the process has exited.
1808		 * Do it while holding siglock so that we don't end up
1809		 * racing against cgroup_exit().
1810		 *
1811		 * Interrupts were already disabled while acquiring
1812		 * the css_set_lock, so we do not need to disable it
1813		 * again when acquiring the sighand->siglock here.
1814		 */
1815		spin_lock(&p->sighand->siglock);
1816		if (!(p->flags & PF_EXITING)) {
1817			struct css_set *cset = task_css_set(p);
1818
1819			if (!css_set_populated(cset))
1820				css_set_update_populated(cset, true);
1821			list_add_tail(&p->cg_list, &cset->tasks);
1822			get_css_set(cset);
1823			cset->nr_tasks++;
1824		}
1825		spin_unlock(&p->sighand->siglock);
1826	} while_each_thread(g, p);
1827	read_unlock(&tasklist_lock);
1828out_unlock:
1829	spin_unlock_irq(&css_set_lock);
1830}
1831
1832static void init_cgroup_housekeeping(struct cgroup *cgrp)
1833{
1834	struct cgroup_subsys *ss;
1835	int ssid;
1836
1837	INIT_LIST_HEAD(&cgrp->self.sibling);
1838	INIT_LIST_HEAD(&cgrp->self.children);
1839	INIT_LIST_HEAD(&cgrp->cset_links);
1840	INIT_LIST_HEAD(&cgrp->pidlists);
1841	mutex_init(&cgrp->pidlist_mutex);
1842	cgrp->self.cgroup = cgrp;
1843	cgrp->self.flags |= CSS_ONLINE;
1844	cgrp->dom_cgrp = cgrp;
1845	cgrp->max_descendants = INT_MAX;
1846	cgrp->max_depth = INT_MAX;
1847
1848	for_each_subsys(ss, ssid)
1849		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1850
1851	init_waitqueue_head(&cgrp->offline_waitq);
1852	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1853}
1854
1855void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1856{
1857	struct cgroup *cgrp = &root->cgrp;
1858
1859	INIT_LIST_HEAD(&root->root_list);
1860	atomic_set(&root->nr_cgrps, 1);
1861	cgrp->root = root;
1862	init_cgroup_housekeeping(cgrp);
1863	idr_init(&root->cgroup_idr);
1864
1865	root->flags = opts->flags;
1866	if (opts->release_agent)
1867		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1868	if (opts->name)
1869		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1870	if (opts->cpuset_clone_children)
1871		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1872}
1873
1874int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1875{
1876	LIST_HEAD(tmp_links);
1877	struct cgroup *root_cgrp = &root->cgrp;
1878	struct kernfs_syscall_ops *kf_sops;
1879	struct css_set *cset;
1880	int i, ret;
1881
1882	lockdep_assert_held(&cgroup_mutex);
1883
1884	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1885	if (ret < 0)
1886		goto out;
1887	root_cgrp->id = ret;
1888	root_cgrp->ancestor_ids[0] = ret;
1889
1890	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1891			      ref_flags, GFP_KERNEL);
1892	if (ret)
1893		goto out;
1894
1895	/*
1896	 * We're accessing css_set_count without locking css_set_lock here,
1897	 * but that's OK - it can only be increased by someone holding
1898	 * cgroup_lock, and that's us.  Later rebinding may disable
1899	 * controllers on the default hierarchy and thus create new csets,
1900	 * which can't be more than the existing ones.  Allocate 2x.
1901	 */
1902	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1903	if (ret)
1904		goto cancel_ref;
1905
1906	ret = cgroup_init_root_id(root);
1907	if (ret)
1908		goto cancel_ref;
1909
1910	kf_sops = root == &cgrp_dfl_root ?
1911		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1912
1913	root->kf_root = kernfs_create_root(kf_sops,
1914					   KERNFS_ROOT_CREATE_DEACTIVATED |
1915					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1916					   root_cgrp);
1917	if (IS_ERR(root->kf_root)) {
1918		ret = PTR_ERR(root->kf_root);
1919		goto exit_root_id;
1920	}
1921	root_cgrp->kn = root->kf_root->kn;
1922
1923	ret = css_populate_dir(&root_cgrp->self);
1924	if (ret)
1925		goto destroy_root;
1926
1927	ret = rebind_subsystems(root, ss_mask);
1928	if (ret)
1929		goto destroy_root;
1930
1931	ret = cgroup_bpf_inherit(root_cgrp);
1932	WARN_ON_ONCE(ret);
1933
1934	trace_cgroup_setup_root(root);
1935
1936	/*
1937	 * There must be no failure case after here, since rebinding takes
1938	 * care of subsystems' refcounts, which are explicitly dropped in
1939	 * the failure exit path.
1940	 */
1941	list_add(&root->root_list, &cgroup_roots);
1942	cgroup_root_count++;
1943
1944	/*
1945	 * Link the root cgroup in this hierarchy into all the css_set
1946	 * objects.
1947	 */
1948	spin_lock_irq(&css_set_lock);
1949	hash_for_each(css_set_table, i, cset, hlist) {
1950		link_css_set(&tmp_links, cset, root_cgrp);
1951		if (css_set_populated(cset))
1952			cgroup_update_populated(root_cgrp, true);
1953	}
1954	spin_unlock_irq(&css_set_lock);
1955
1956	BUG_ON(!list_empty(&root_cgrp->self.children));
1957	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1958
1959	kernfs_activate(root_cgrp->kn);
1960	ret = 0;
1961	goto out;
1962
1963destroy_root:
1964	kernfs_destroy_root(root->kf_root);
1965	root->kf_root = NULL;
1966exit_root_id:
1967	cgroup_exit_root_id(root);
1968cancel_ref:
1969	percpu_ref_exit(&root_cgrp->self.refcnt);
1970out:
1971	free_cgrp_cset_links(&tmp_links);
1972	return ret;
1973}
1974
1975struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1976			       struct cgroup_root *root, unsigned long magic,
1977			       struct cgroup_namespace *ns)
1978{
1979	struct dentry *dentry;
1980	bool new_sb;
1981
1982	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1983
1984	/*
1985	 * In non-init cgroup namespace, instead of root cgroup's dentry,
1986	 * we return the dentry corresponding to the cgroupns->root_cgrp.
1987	 */
1988	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1989		struct dentry *nsdentry;
1990		struct cgroup *cgrp;
1991
1992		mutex_lock(&cgroup_mutex);
1993		spin_lock_irq(&css_set_lock);
1994
1995		cgrp = cset_cgroup_from_root(ns->root_cset, root);
1996
1997		spin_unlock_irq(&css_set_lock);
1998		mutex_unlock(&cgroup_mutex);
1999
2000		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2001		dput(dentry);
2002		dentry = nsdentry;
2003	}
2004
2005	if (IS_ERR(dentry) || !new_sb)
2006		cgroup_put(&root->cgrp);
2007
2008	return dentry;
2009}
2010
2011static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2012			 int flags, const char *unused_dev_name,
2013			 void *data)
2014{
2015	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2016	struct dentry *dentry;
2017	int ret;
2018
2019	get_cgroup_ns(ns);
2020
2021	/* Check if the caller has permission to mount. */
2022	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2023		put_cgroup_ns(ns);
2024		return ERR_PTR(-EPERM);
2025	}
2026
2027	/*
2028	 * The first time anyone tries to mount a cgroup, enable the list
2029	 * linking each css_set to its tasks and fix up all existing tasks.
2030	 */
2031	if (!use_task_css_set_links)
2032		cgroup_enable_task_cg_lists();
2033
2034	if (fs_type == &cgroup2_fs_type) {
2035		unsigned int root_flags;
2036
2037		ret = parse_cgroup_root_flags(data, &root_flags);
2038		if (ret) {
2039			put_cgroup_ns(ns);
2040			return ERR_PTR(ret);
2041		}
2042
2043		cgrp_dfl_visible = true;
2044		cgroup_get_live(&cgrp_dfl_root.cgrp);
2045
2046		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2047					 CGROUP2_SUPER_MAGIC, ns);
2048		if (!IS_ERR(dentry))
2049			apply_cgroup_root_flags(root_flags);
2050	} else {
2051		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2052				       CGROUP_SUPER_MAGIC, ns);
2053	}
2054
2055	put_cgroup_ns(ns);
2056	return dentry;
2057}
2058
2059static void cgroup_kill_sb(struct super_block *sb)
2060{
2061	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2062	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2063
2064	/*
2065	 * If @root doesn't have any mounts or children, start killing it.
2066	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2067	 * cgroup_mount() may wait for @root's release.
2068	 *
2069	 * And don't kill the default root.
2070	 */
2071	if (!list_empty(&root->cgrp.self.children) ||
2072	    root == &cgrp_dfl_root)
2073		cgroup_put(&root->cgrp);
2074	else
2075		percpu_ref_kill(&root->cgrp.self.refcnt);
2076
2077	kernfs_kill_sb(sb);
2078}
2079
2080struct file_system_type cgroup_fs_type = {
2081	.name = "cgroup",
2082	.mount = cgroup_mount,
2083	.kill_sb = cgroup_kill_sb,
2084	.fs_flags = FS_USERNS_MOUNT,
2085};
2086
2087static struct file_system_type cgroup2_fs_type = {
2088	.name = "cgroup2",
2089	.mount = cgroup_mount,
2090	.kill_sb = cgroup_kill_sb,
2091	.fs_flags = FS_USERNS_MOUNT,
2092};
2093
2094int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2095			  struct cgroup_namespace *ns)
2096{
2097	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2098
2099	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2100}
2101
2102int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2103		   struct cgroup_namespace *ns)
2104{
2105	int ret;
2106
2107	mutex_lock(&cgroup_mutex);
2108	spin_lock_irq(&css_set_lock);
2109
2110	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2111
2112	spin_unlock_irq(&css_set_lock);
2113	mutex_unlock(&cgroup_mutex);
2114
2115	return ret;
2116}
2117EXPORT_SYMBOL_GPL(cgroup_path_ns);
2118
2119/**
2120 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2121 * @task: target task
2122 * @buf: the buffer to write the path into
2123 * @buflen: the length of the buffer
2124 *
2125 * Determine @task's cgroup on the first (the one with the lowest non-zero
2126 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2127 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2128 * cgroup controller callbacks.
2129 *
2130 * Return value is the same as kernfs_path().
2131 */
2132int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2133{
2134	struct cgroup_root *root;
2135	struct cgroup *cgrp;
2136	int hierarchy_id = 1;
2137	int ret;
2138
2139	mutex_lock(&cgroup_mutex);
2140	spin_lock_irq(&css_set_lock);
2141
2142	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2143
2144	if (root) {
2145		cgrp = task_cgroup_from_root(task, root);
2146		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2147	} else {
2148		/* if no hierarchy exists, everyone is in "/" */
2149		ret = strlcpy(buf, "/", buflen);
2150	}
2151
2152	spin_unlock_irq(&css_set_lock);
2153	mutex_unlock(&cgroup_mutex);
2154	return ret;
2155}
2156EXPORT_SYMBOL_GPL(task_cgroup_path);
2157
2158/**
2159 * cgroup_migrate_add_task - add a migration target task to a migration context
2160 * @task: target task
2161 * @mgctx: target migration context
2162 *
2163 * Add @task, which is a migration target, to @mgctx->tset.  This function
2164 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2165 * should have been added as a migration source and @task->cg_list will be
2166 * moved from the css_set's tasks list to mg_tasks one.
2167 */
2168static void cgroup_migrate_add_task(struct task_struct *task,
2169				    struct cgroup_mgctx *mgctx)
2170{
2171	struct css_set *cset;
2172
2173	lockdep_assert_held(&css_set_lock);
2174
2175	/* @task either already exited or can't exit until the end */
2176	if (task->flags & PF_EXITING)
2177		return;
2178
2179	/* leave @task alone if post_fork() hasn't linked it yet */
2180	if (list_empty(&task->cg_list))
2181		return;
2182
2183	cset = task_css_set(task);
2184	if (!cset->mg_src_cgrp)
2185		return;
2186
2187	mgctx->tset.nr_tasks++;
2188
2189	list_move_tail(&task->cg_list, &cset->mg_tasks);
2190	if (list_empty(&cset->mg_node))
2191		list_add_tail(&cset->mg_node,
2192			      &mgctx->tset.src_csets);
2193	if (list_empty(&cset->mg_dst_cset->mg_node))
2194		list_add_tail(&cset->mg_dst_cset->mg_node,
2195			      &mgctx->tset.dst_csets);
2196}
2197
2198/**
2199 * cgroup_taskset_first - reset taskset and return the first task
2200 * @tset: taskset of interest
2201 * @dst_cssp: output variable for the destination css
2202 *
2203 * @tset iteration is initialized and the first task is returned.
2204 */
2205struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2206					 struct cgroup_subsys_state **dst_cssp)
2207{
2208	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2209	tset->cur_task = NULL;
2210
2211	return cgroup_taskset_next(tset, dst_cssp);
2212}
2213
2214/**
2215 * cgroup_taskset_next - iterate to the next task in taskset
2216 * @tset: taskset of interest
2217 * @dst_cssp: output variable for the destination css
2218 *
2219 * Return the next task in @tset.  Iteration must have been initialized
2220 * with cgroup_taskset_first().
2221 */
2222struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2223					struct cgroup_subsys_state **dst_cssp)
2224{
2225	struct css_set *cset = tset->cur_cset;
2226	struct task_struct *task = tset->cur_task;
2227
2228	while (&cset->mg_node != tset->csets) {
2229		if (!task)
2230			task = list_first_entry(&cset->mg_tasks,
2231						struct task_struct, cg_list);
2232		else
2233			task = list_next_entry(task, cg_list);
2234
2235		if (&task->cg_list != &cset->mg_tasks) {
2236			tset->cur_cset = cset;
2237			tset->cur_task = task;
2238
2239			/*
2240			 * This function may be called both before and
2241			 * after cgroup_taskset_migrate().  The two cases
2242			 * can be distinguished by looking at whether @cset
2243			 * has its ->mg_dst_cset set.
2244			 */
2245			if (cset->mg_dst_cset)
2246				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2247			else
2248				*dst_cssp = cset->subsys[tset->ssid];
2249
2250			return task;
2251		}
2252
2253		cset = list_next_entry(cset, mg_node);
2254		task = NULL;
2255	}
2256
2257	return NULL;
2258}
2259
2260/**
2261 * cgroup_taskset_migrate - migrate a taskset
2262 * @mgctx: migration context
2263 *
2264 * Migrate tasks in @mgctx as setup by migration preparation functions.
2265 * This function fails iff one of the ->can_attach callbacks fails and
2266 * guarantees that either all or none of the tasks in @mgctx are migrated.
2267 * @mgctx is consumed regardless of success.
2268 */
2269static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2270{
2271	struct cgroup_taskset *tset = &mgctx->tset;
2272	struct cgroup_subsys *ss;
2273	struct task_struct *task, *tmp_task;
2274	struct css_set *cset, *tmp_cset;
2275	int ssid, failed_ssid, ret;
2276
2277	/* check that we can legitimately attach to the cgroup */
2278	if (tset->nr_tasks) {
2279		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2280			if (ss->can_attach) {
2281				tset->ssid = ssid;
2282				ret = ss->can_attach(tset);
2283				if (ret) {
2284					failed_ssid = ssid;
2285					goto out_cancel_attach;
2286				}
2287			}
2288		} while_each_subsys_mask();
2289	}
2290
2291	/*
2292	 * Now that we're guaranteed success, proceed to move all tasks to
2293	 * the new cgroup.  There are no failure cases after here, so this
2294	 * is the commit point.
2295	 */
2296	spin_lock_irq(&css_set_lock);
2297	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2298		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2299			struct css_set *from_cset = task_css_set(task);
2300			struct css_set *to_cset = cset->mg_dst_cset;
2301
2302			get_css_set(to_cset);
2303			to_cset->nr_tasks++;
2304			css_set_move_task(task, from_cset, to_cset, true);
2305			put_css_set_locked(from_cset);
2306			from_cset->nr_tasks--;
2307		}
2308	}
2309	spin_unlock_irq(&css_set_lock);
2310
2311	/*
2312	 * Migration is committed, all target tasks are now on dst_csets.
2313	 * Nothing is sensitive to fork() after this point.  Notify
2314	 * controllers that migration is complete.
2315	 */
2316	tset->csets = &tset->dst_csets;
2317
2318	if (tset->nr_tasks) {
2319		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2320			if (ss->attach) {
2321				tset->ssid = ssid;
2322				ss->attach(tset);
2323			}
2324		} while_each_subsys_mask();
2325	}
2326
2327	ret = 0;
2328	goto out_release_tset;
2329
2330out_cancel_attach:
2331	if (tset->nr_tasks) {
2332		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2333			if (ssid == failed_ssid)
2334				break;
2335			if (ss->cancel_attach) {
2336				tset->ssid = ssid;
2337				ss->cancel_attach(tset);
2338			}
2339		} while_each_subsys_mask();
2340	}
2341out_release_tset:
2342	spin_lock_irq(&css_set_lock);
2343	list_splice_init(&tset->dst_csets, &tset->src_csets);
2344	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2345		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2346		list_del_init(&cset->mg_node);
2347	}
2348	spin_unlock_irq(&css_set_lock);
2349
2350	/*
2351	 * Re-initialize the cgroup_taskset structure in case it is reused
2352	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2353	 * iteration.
2354	 */
2355	tset->nr_tasks = 0;
2356	tset->csets    = &tset->src_csets;
2357	return ret;
2358}
2359
2360/**
2361 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2362 * @dst_cgrp: destination cgroup to test
2363 *
2364 * On the default hierarchy, except for the mixable, (possible) thread root
2365 * and threaded cgroups, subtree_control must be zero for migration
2366 * destination cgroups with tasks so that child cgroups don't compete
2367 * against tasks.
2368 */
2369int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2370{
2371	/* v1 doesn't have any restriction */
2372	if (!cgroup_on_dfl(dst_cgrp))
2373		return 0;
2374
2375	/* verify @dst_cgrp can host resources */
2376	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2377		return -EOPNOTSUPP;
2378
2379	/* mixables don't care */
2380	if (cgroup_is_mixable(dst_cgrp))
2381		return 0;
2382
2383	/*
2384	 * If @dst_cgrp is already or can become a thread root or is
2385	 * threaded, it doesn't matter.
2386	 */
2387	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2388		return 0;
2389
2390	/* apply no-internal-process constraint */
2391	if (dst_cgrp->subtree_control)
2392		return -EBUSY;
2393
2394	return 0;
2395}
2396
2397/**
2398 * cgroup_migrate_finish - cleanup after attach
2399 * @mgctx: migration context
2400 *
2401 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2402 * those functions for details.
2403 */
2404void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2405{
2406	LIST_HEAD(preloaded);
2407	struct css_set *cset, *tmp_cset;
2408
2409	lockdep_assert_held(&cgroup_mutex);
2410
2411	spin_lock_irq(&css_set_lock);
2412
2413	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2414	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2415
2416	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2417		cset->mg_src_cgrp = NULL;
2418		cset->mg_dst_cgrp = NULL;
2419		cset->mg_dst_cset = NULL;
2420		list_del_init(&cset->mg_preload_node);
2421		put_css_set_locked(cset);
2422	}
2423
2424	spin_unlock_irq(&css_set_lock);
2425}
2426
2427/**
2428 * cgroup_migrate_add_src - add a migration source css_set
2429 * @src_cset: the source css_set to add
2430 * @dst_cgrp: the destination cgroup
2431 * @mgctx: migration context
2432 *
2433 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2434 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2435 * up by cgroup_migrate_finish().
2436 *
2437 * This function may be called without holding cgroup_threadgroup_rwsem
2438 * even if the target is a process.  Threads may be created and destroyed
2439 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2440 * into play and the preloaded css_sets are guaranteed to cover all
2441 * migrations.
2442 */
2443void cgroup_migrate_add_src(struct css_set *src_cset,
2444			    struct cgroup *dst_cgrp,
2445			    struct cgroup_mgctx *mgctx)
2446{
2447	struct cgroup *src_cgrp;
2448
2449	lockdep_assert_held(&cgroup_mutex);
2450	lockdep_assert_held(&css_set_lock);
2451
2452	/*
2453	 * If ->dead, @src_set is associated with one or more dead cgroups
2454	 * and doesn't contain any migratable tasks.  Ignore it early so
2455	 * that the rest of migration path doesn't get confused by it.
2456	 */
2457	if (src_cset->dead)
2458		return;
2459
2460	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2461
2462	if (!list_empty(&src_cset->mg_preload_node))
2463		return;
2464
2465	WARN_ON(src_cset->mg_src_cgrp);
2466	WARN_ON(src_cset->mg_dst_cgrp);
2467	WARN_ON(!list_empty(&src_cset->mg_tasks));
2468	WARN_ON(!list_empty(&src_cset->mg_node));
2469
2470	src_cset->mg_src_cgrp = src_cgrp;
2471	src_cset->mg_dst_cgrp = dst_cgrp;
2472	get_css_set(src_cset);
2473	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2474}
2475
2476/**
2477 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2478 * @mgctx: migration context
2479 *
2480 * Tasks are about to be moved and all the source css_sets have been
2481 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2482 * pins all destination css_sets, links each to its source, and append them
2483 * to @mgctx->preloaded_dst_csets.
2484 *
2485 * This function must be called after cgroup_migrate_add_src() has been
2486 * called on each migration source css_set.  After migration is performed
2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2488 * @mgctx.
2489 */
2490int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2491{
2492	struct css_set *src_cset, *tmp_cset;
2493
2494	lockdep_assert_held(&cgroup_mutex);
2495
2496	/* look up the dst cset for each src cset and link it to src */
2497	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2498				 mg_preload_node) {
2499		struct css_set *dst_cset;
2500		struct cgroup_subsys *ss;
2501		int ssid;
2502
2503		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2504		if (!dst_cset)
2505			goto err;
2506
2507		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2508
2509		/*
2510		 * If src cset equals dst, it's noop.  Drop the src.
2511		 * cgroup_migrate() will skip the cset too.  Note that we
2512		 * can't handle src == dst as some nodes are used by both.
2513		 */
2514		if (src_cset == dst_cset) {
2515			src_cset->mg_src_cgrp = NULL;
2516			src_cset->mg_dst_cgrp = NULL;
2517			list_del_init(&src_cset->mg_preload_node);
2518			put_css_set(src_cset);
2519			put_css_set(dst_cset);
2520			continue;
2521		}
2522
2523		src_cset->mg_dst_cset = dst_cset;
2524
2525		if (list_empty(&dst_cset->mg_preload_node))
2526			list_add_tail(&dst_cset->mg_preload_node,
2527				      &mgctx->preloaded_dst_csets);
2528		else
2529			put_css_set(dst_cset);
2530
2531		for_each_subsys(ss, ssid)
2532			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2533				mgctx->ss_mask |= 1 << ssid;
2534	}
2535
2536	return 0;
2537err:
2538	cgroup_migrate_finish(mgctx);
2539	return -ENOMEM;
2540}
2541
2542/**
2543 * cgroup_migrate - migrate a process or task to a cgroup
2544 * @leader: the leader of the process or the task to migrate
2545 * @threadgroup: whether @leader points to the whole process or a single task
2546 * @mgctx: migration context
2547 *
2548 * Migrate a process or task denoted by @leader.  If migrating a process,
2549 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2550 * responsible for invoking cgroup_migrate_add_src() and
2551 * cgroup_migrate_prepare_dst() on the targets before invoking this
2552 * function and following up with cgroup_migrate_finish().
2553 *
2554 * As long as a controller's ->can_attach() doesn't fail, this function is
2555 * guaranteed to succeed.  This means that, excluding ->can_attach()
2556 * failure, when migrating multiple targets, the success or failure can be
2557 * decided for all targets by invoking group_migrate_prepare_dst() before
2558 * actually starting migrating.
2559 */
2560int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2561		   struct cgroup_mgctx *mgctx)
2562{
2563	struct task_struct *task;
2564
2565	/*
2566	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2567	 * already PF_EXITING could be freed from underneath us unless we
2568	 * take an rcu_read_lock.
2569	 */
2570	spin_lock_irq(&css_set_lock);
2571	rcu_read_lock();
2572	task = leader;
2573	do {
2574		cgroup_migrate_add_task(task, mgctx);
2575		if (!threadgroup)
2576			break;
2577	} while_each_thread(leader, task);
2578	rcu_read_unlock();
2579	spin_unlock_irq(&css_set_lock);
2580
2581	return cgroup_migrate_execute(mgctx);
2582}
2583
2584/**
2585 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2586 * @dst_cgrp: the cgroup to attach to
2587 * @leader: the task or the leader of the threadgroup to be attached
2588 * @threadgroup: attach the whole threadgroup?
2589 *
2590 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2591 */
2592int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2593		       bool threadgroup)
2594{
2595	DEFINE_CGROUP_MGCTX(mgctx);
2596	struct task_struct *task;
2597	int ret;
2598
2599	ret = cgroup_migrate_vet_dst(dst_cgrp);
2600	if (ret)
2601		return ret;
2602
2603	/* look up all src csets */
2604	spin_lock_irq(&css_set_lock);
2605	rcu_read_lock();
2606	task = leader;
2607	do {
2608		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2609		if (!threadgroup)
2610			break;
2611	} while_each_thread(leader, task);
2612	rcu_read_unlock();
2613	spin_unlock_irq(&css_set_lock);
2614
2615	/* prepare dst csets and commit */
2616	ret = cgroup_migrate_prepare_dst(&mgctx);
2617	if (!ret)
2618		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2619
2620	cgroup_migrate_finish(&mgctx);
2621
2622	if (!ret)
2623		trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2624
2625	return ret;
2626}
2627
2628struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2629	__acquires(&cgroup_threadgroup_rwsem)
2630{
2631	struct task_struct *tsk;
2632	pid_t pid;
2633
2634	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2635		return ERR_PTR(-EINVAL);
2636
2637	percpu_down_write(&cgroup_threadgroup_rwsem);
2638
2639	rcu_read_lock();
2640	if (pid) {
2641		tsk = find_task_by_vpid(pid);
2642		if (!tsk) {
2643			tsk = ERR_PTR(-ESRCH);
2644			goto out_unlock_threadgroup;
2645		}
2646	} else {
2647		tsk = current;
2648	}
2649
2650	if (threadgroup)
2651		tsk = tsk->group_leader;
2652
2653	/*
2654	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2655	 * If userland migrates such a kthread to a non-root cgroup, it can
2656	 * become trapped in a cpuset, or RT kthread may be born in a
2657	 * cgroup with no rt_runtime allocated.  Just say no.
2658	 */
2659	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2660		tsk = ERR_PTR(-EINVAL);
2661		goto out_unlock_threadgroup;
2662	}
2663
2664	get_task_struct(tsk);
2665	goto out_unlock_rcu;
2666
2667out_unlock_threadgroup:
2668	percpu_up_write(&cgroup_threadgroup_rwsem);
2669out_unlock_rcu:
2670	rcu_read_unlock();
2671	return tsk;
2672}
2673
2674void cgroup_procs_write_finish(struct task_struct *task)
2675	__releases(&cgroup_threadgroup_rwsem)
2676{
2677	struct cgroup_subsys *ss;
2678	int ssid;
2679
2680	/* release reference from cgroup_procs_write_start() */
2681	put_task_struct(task);
2682
2683	percpu_up_write(&cgroup_threadgroup_rwsem);
2684	for_each_subsys(ss, ssid)
2685		if (ss->post_attach)
2686			ss->post_attach();
2687}
2688
2689static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2690{
2691	struct cgroup_subsys *ss;
2692	bool printed = false;
2693	int ssid;
2694
2695	do_each_subsys_mask(ss, ssid, ss_mask) {
2696		if (printed)
2697			seq_putc(seq, ' ');
2698		seq_printf(seq, "%s", ss->name);
2699		printed = true;
2700	} while_each_subsys_mask();
2701	if (printed)
2702		seq_putc(seq, '\n');
2703}
2704
2705/* show controllers which are enabled from the parent */
2706static int cgroup_controllers_show(struct seq_file *seq, void *v)
2707{
2708	struct cgroup *cgrp = seq_css(seq)->cgroup;
2709
2710	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2711	return 0;
2712}
2713
2714/* show controllers which are enabled for a given cgroup's children */
2715static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2716{
2717	struct cgroup *cgrp = seq_css(seq)->cgroup;
2718
2719	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2720	return 0;
2721}
2722
2723/**
2724 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2725 * @cgrp: root of the subtree to update csses for
2726 *
2727 * @cgrp's control masks have changed and its subtree's css associations
2728 * need to be updated accordingly.  This function looks up all css_sets
2729 * which are attached to the subtree, creates the matching updated css_sets
2730 * and migrates the tasks to the new ones.
2731 */
2732static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2733{
2734	DEFINE_CGROUP_MGCTX(mgctx);
2735	struct cgroup_subsys_state *d_css;
2736	struct cgroup *dsct;
2737	struct css_set *src_cset;
2738	int ret;
2739
2740	lockdep_assert_held(&cgroup_mutex);
2741
2742	percpu_down_write(&cgroup_threadgroup_rwsem);
2743
2744	/* look up all csses currently attached to @cgrp's subtree */
2745	spin_lock_irq(&css_set_lock);
2746	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2747		struct cgrp_cset_link *link;
2748
2749		list_for_each_entry(link, &dsct->cset_links, cset_link)
2750			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2751	}
2752	spin_unlock_irq(&css_set_lock);
2753
2754	/* NULL dst indicates self on default hierarchy */
2755	ret = cgroup_migrate_prepare_dst(&mgctx);
2756	if (ret)
2757		goto out_finish;
2758
2759	spin_lock_irq(&css_set_lock);
2760	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2761		struct task_struct *task, *ntask;
2762
2763		/* all tasks in src_csets need to be migrated */
2764		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2765			cgroup_migrate_add_task(task, &mgctx);
2766	}
2767	spin_unlock_irq(&css_set_lock);
2768
2769	ret = cgroup_migrate_execute(&mgctx);
2770out_finish:
2771	cgroup_migrate_finish(&mgctx);
2772	percpu_up_write(&cgroup_threadgroup_rwsem);
2773	return ret;
2774}
2775
2776/**
2777 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2778 * @cgrp: root of the target subtree
2779 *
2780 * Because css offlining is asynchronous, userland may try to re-enable a
2781 * controller while the previous css is still around.  This function grabs
2782 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2783 */
2784void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2785	__acquires(&cgroup_mutex)
2786{
2787	struct cgroup *dsct;
2788	struct cgroup_subsys_state *d_css;
2789	struct cgroup_subsys *ss;
2790	int ssid;
2791
2792restart:
2793	mutex_lock(&cgroup_mutex);
2794
2795	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2796		for_each_subsys(ss, ssid) {
2797			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2798			DEFINE_WAIT(wait);
2799
2800			if (!css || !percpu_ref_is_dying(&css->refcnt))
2801				continue;
2802
2803			cgroup_get_live(dsct);
2804			prepare_to_wait(&dsct->offline_waitq, &wait,
2805					TASK_UNINTERRUPTIBLE);
2806
2807			mutex_unlock(&cgroup_mutex);
2808			schedule();
2809			finish_wait(&dsct->offline_waitq, &wait);
2810
2811			cgroup_put(dsct);
2812			goto restart;
2813		}
2814	}
2815}
2816
2817/**
2818 * cgroup_save_control - save control masks of a subtree
2819 * @cgrp: root of the target subtree
2820 *
2821 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2822 * prefixed fields for @cgrp's subtree including @cgrp itself.
2823 */
2824static void cgroup_save_control(struct cgroup *cgrp)
2825{
2826	struct cgroup *dsct;
2827	struct cgroup_subsys_state *d_css;
2828
2829	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2830		dsct->old_subtree_control = dsct->subtree_control;
2831		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2832	}
2833}
2834
2835/**
2836 * cgroup_propagate_control - refresh control masks of a subtree
2837 * @cgrp: root of the target subtree
2838 *
2839 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2840 * ->subtree_control and propagate controller availability through the
2841 * subtree so that descendants don't have unavailable controllers enabled.
2842 */
2843static void cgroup_propagate_control(struct cgroup *cgrp)
2844{
2845	struct cgroup *dsct;
2846	struct cgroup_subsys_state *d_css;
2847
2848	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2849		dsct->subtree_control &= cgroup_control(dsct);
2850		dsct->subtree_ss_mask =
2851			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2852						    cgroup_ss_mask(dsct));
2853	}
2854}
2855
2856/**
2857 * cgroup_restore_control - restore control masks of a subtree
2858 * @cgrp: root of the target subtree
2859 *
2860 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2861 * prefixed fields for @cgrp's subtree including @cgrp itself.
2862 */
2863static void cgroup_restore_control(struct cgroup *cgrp)
2864{
2865	struct cgroup *dsct;
2866	struct cgroup_subsys_state *d_css;
2867
2868	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2869		dsct->subtree_control = dsct->old_subtree_control;
2870		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2871	}
2872}
2873
2874static bool css_visible(struct cgroup_subsys_state *css)
2875{
2876	struct cgroup_subsys *ss = css->ss;
2877	struct cgroup *cgrp = css->cgroup;
2878
2879	if (cgroup_control(cgrp) & (1 << ss->id))
2880		return true;
2881	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2882		return false;
2883	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2884}
2885
2886/**
2887 * cgroup_apply_control_enable - enable or show csses according to control
2888 * @cgrp: root of the target subtree
2889 *
2890 * Walk @cgrp's subtree and create new csses or make the existing ones
2891 * visible.  A css is created invisible if it's being implicitly enabled
2892 * through dependency.  An invisible css is made visible when the userland
2893 * explicitly enables it.
2894 *
2895 * Returns 0 on success, -errno on failure.  On failure, csses which have
2896 * been processed already aren't cleaned up.  The caller is responsible for
2897 * cleaning up with cgroup_apply_control_disable().
2898 */
2899static int cgroup_apply_control_enable(struct cgroup *cgrp)
2900{
2901	struct cgroup *dsct;
2902	struct cgroup_subsys_state *d_css;
2903	struct cgroup_subsys *ss;
2904	int ssid, ret;
2905
2906	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2907		for_each_subsys(ss, ssid) {
2908			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2909
2910			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2911
2912			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2913				continue;
2914
2915			if (!css) {
2916				css = css_create(dsct, ss);
2917				if (IS_ERR(css))
2918					return PTR_ERR(css);
2919			}
2920
2921			if (css_visible(css)) {
2922				ret = css_populate_dir(css);
2923				if (ret)
2924					return ret;
2925			}
2926		}
2927	}
2928
2929	return 0;
2930}
2931
2932/**
2933 * cgroup_apply_control_disable - kill or hide csses according to control
2934 * @cgrp: root of the target subtree
2935 *
2936 * Walk @cgrp's subtree and kill and hide csses so that they match
2937 * cgroup_ss_mask() and cgroup_visible_mask().
2938 *
2939 * A css is hidden when the userland requests it to be disabled while other
2940 * subsystems are still depending on it.  The css must not actively control
2941 * resources and be in the vanilla state if it's made visible again later.
2942 * Controllers which may be depended upon should provide ->css_reset() for
2943 * this purpose.
2944 */
2945static void cgroup_apply_control_disable(struct cgroup *cgrp)
2946{
2947	struct cgroup *dsct;
2948	struct cgroup_subsys_state *d_css;
2949	struct cgroup_subsys *ss;
2950	int ssid;
2951
2952	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2953		for_each_subsys(ss, ssid) {
2954			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2955
2956			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2957
2958			if (!css)
2959				continue;
2960
2961			if (css->parent &&
2962			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2963				kill_css(css);
2964			} else if (!css_visible(css)) {
2965				css_clear_dir(css);
2966				if (ss->css_reset)
2967					ss->css_reset(css);
2968			}
2969		}
2970	}
2971}
2972
2973/**
2974 * cgroup_apply_control - apply control mask updates to the subtree
2975 * @cgrp: root of the target subtree
2976 *
2977 * subsystems can be enabled and disabled in a subtree using the following
2978 * steps.
2979 *
2980 * 1. Call cgroup_save_control() to stash the current state.
2981 * 2. Update ->subtree_control masks in the subtree as desired.
2982 * 3. Call cgroup_apply_control() to apply the changes.
2983 * 4. Optionally perform other related operations.
2984 * 5. Call cgroup_finalize_control() to finish up.
2985 *
2986 * This function implements step 3 and propagates the mask changes
2987 * throughout @cgrp's subtree, updates csses accordingly and perform
2988 * process migrations.
2989 */
2990static int cgroup_apply_control(struct cgroup *cgrp)
2991{
2992	int ret;
2993
2994	cgroup_propagate_control(cgrp);
2995
2996	ret = cgroup_apply_control_enable(cgrp);
2997	if (ret)
2998		return ret;
2999
3000	/*
3001	 * At this point, cgroup_e_css() results reflect the new csses
3002	 * making the following cgroup_update_dfl_csses() properly update
3003	 * css associations of all tasks in the subtree.
3004	 */
3005	ret = cgroup_update_dfl_csses(cgrp);
3006	if (ret)
3007		return ret;
3008
3009	return 0;
3010}
3011
3012/**
3013 * cgroup_finalize_control - finalize control mask update
3014 * @cgrp: root of the target subtree
3015 * @ret: the result of the update
3016 *
3017 * Finalize control mask update.  See cgroup_apply_control() for more info.
3018 */
3019static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3020{
3021	if (ret) {
3022		cgroup_restore_control(cgrp);
3023		cgroup_propagate_control(cgrp);
3024	}
3025
3026	cgroup_apply_control_disable(cgrp);
3027}
3028
3029static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3030{
3031	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3032
3033	/* if nothing is getting enabled, nothing to worry about */
3034	if (!enable)
3035		return 0;
3036
3037	/* can @cgrp host any resources? */
3038	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3039		return -EOPNOTSUPP;
3040
3041	/* mixables don't care */
3042	if (cgroup_is_mixable(cgrp))
3043		return 0;
3044
3045	if (domain_enable) {
3046		/* can't enable domain controllers inside a thread subtree */
3047		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3048			return -EOPNOTSUPP;
3049	} else {
3050		/*
3051		 * Threaded controllers can handle internal competitions
3052		 * and are always allowed inside a (prospective) thread
3053		 * subtree.
3054		 */
3055		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3056			return 0;
3057	}
3058
3059	/*
3060	 * Controllers can't be enabled for a cgroup with tasks to avoid
3061	 * child cgroups competing against tasks.
3062	 */
3063	if (cgroup_has_tasks(cgrp))
3064		return -EBUSY;
3065
3066	return 0;
3067}
3068
3069/* change the enabled child controllers for a cgroup in the default hierarchy */
3070static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3071					    char *buf, size_t nbytes,
3072					    loff_t off)
3073{
3074	u16 enable = 0, disable = 0;
3075	struct cgroup *cgrp, *child;
3076	struct cgroup_subsys *ss;
3077	char *tok;
3078	int ssid, ret;
3079
3080	/*
3081	 * Parse input - space separated list of subsystem names prefixed
3082	 * with either + or -.
3083	 */
3084	buf = strstrip(buf);
3085	while ((tok = strsep(&buf, " "))) {
3086		if (tok[0] == '\0')
3087			continue;
3088		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3089			if (!cgroup_ssid_enabled(ssid) ||
3090			    strcmp(tok + 1, ss->name))
3091				continue;
3092
3093			if (*tok == '+') {
3094				enable |= 1 << ssid;
3095				disable &= ~(1 << ssid);
3096			} else if (*tok == '-') {
3097				disable |= 1 << ssid;
3098				enable &= ~(1 << ssid);
3099			} else {
3100				return -EINVAL;
3101			}
3102			break;
3103		} while_each_subsys_mask();
3104		if (ssid == CGROUP_SUBSYS_COUNT)
3105			return -EINVAL;
3106	}
3107
3108	cgrp = cgroup_kn_lock_live(of->kn, true);
3109	if (!cgrp)
3110		return -ENODEV;
3111
3112	for_each_subsys(ss, ssid) {
3113		if (enable & (1 << ssid)) {
3114			if (cgrp->subtree_control & (1 << ssid)) {
3115				enable &= ~(1 << ssid);
3116				continue;
3117			}
3118
3119			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3120				ret = -ENOENT;
3121				goto out_unlock;
3122			}
3123		} else if (disable & (1 << ssid)) {
3124			if (!(cgrp->subtree_control & (1 << ssid))) {
3125				disable &= ~(1 << ssid);
3126				continue;
3127			}
3128
3129			/* a child has it enabled? */
3130			cgroup_for_each_live_child(child, cgrp) {
3131				if (child->subtree_control & (1 << ssid)) {
3132					ret = -EBUSY;
3133					goto out_unlock;
3134				}
3135			}
3136		}
3137	}
3138
3139	if (!enable && !disable) {
3140		ret = 0;
3141		goto out_unlock;
3142	}
3143
3144	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3145	if (ret)
3146		goto out_unlock;
3147
3148	/* save and update control masks and prepare csses */
3149	cgroup_save_control(cgrp);
3150
3151	cgrp->subtree_control |= enable;
3152	cgrp->subtree_control &= ~disable;
3153
3154	ret = cgroup_apply_control(cgrp);
3155	cgroup_finalize_control(cgrp, ret);
3156	if (ret)
3157		goto out_unlock;
3158
3159	kernfs_activate(cgrp->kn);
3160out_unlock:
3161	cgroup_kn_unlock(of->kn);
3162	return ret ?: nbytes;
3163}
3164
3165/**
3166 * cgroup_enable_threaded - make @cgrp threaded
3167 * @cgrp: the target cgroup
3168 *
3169 * Called when "threaded" is written to the cgroup.type interface file and
3170 * tries to make @cgrp threaded and join the parent's resource domain.
3171 * This function is never called on the root cgroup as cgroup.type doesn't
3172 * exist on it.
3173 */
3174static int cgroup_enable_threaded(struct cgroup *cgrp)
3175{
3176	struct cgroup *parent = cgroup_parent(cgrp);
3177	struct cgroup *dom_cgrp = parent->dom_cgrp;
3178	int ret;
3179
3180	lockdep_assert_held(&cgroup_mutex);
3181
3182	/* noop if already threaded */
3183	if (cgroup_is_threaded(cgrp))
3184		return 0;
3185
3186	/*
3187	 * If @cgroup is populated or has domain controllers enabled, it
3188	 * can't be switched.  While the below cgroup_can_be_thread_root()
3189	 * test can catch the same conditions, that's only when @parent is
3190	 * not mixable, so let's check it explicitly.
3191	 */
3192	if (cgroup_is_populated(cgrp) ||
3193	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3194		return -EOPNOTSUPP;
3195
3196	/* we're joining the parent's domain, ensure its validity */
3197	if (!cgroup_is_valid_domain(dom_cgrp) ||
3198	    !cgroup_can_be_thread_root(dom_cgrp))
3199		return -EOPNOTSUPP;
3200
3201	/*
3202	 * The following shouldn't cause actual migrations and should
3203	 * always succeed.
3204	 */
3205	cgroup_save_control(cgrp);
3206
3207	cgrp->dom_cgrp = dom_cgrp;
3208	ret = cgroup_apply_control(cgrp);
3209	if (!ret)
3210		parent->nr_threaded_children++;
3211	else
3212		cgrp->dom_cgrp = cgrp;
3213
3214	cgroup_finalize_control(cgrp, ret);
3215	return ret;
3216}
3217
3218static int cgroup_type_show(struct seq_file *seq, void *v)
3219{
3220	struct cgroup *cgrp = seq_css(seq)->cgroup;
3221
3222	if (cgroup_is_threaded(cgrp))
3223		seq_puts(seq, "threaded\n");
3224	else if (!cgroup_is_valid_domain(cgrp))
3225		seq_puts(seq, "domain invalid\n");
3226	else if (cgroup_is_thread_root(cgrp))
3227		seq_puts(seq, "domain threaded\n");
3228	else
3229		seq_puts(seq, "domain\n");
3230
3231	return 0;
3232}
3233
3234static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3235				 size_t nbytes, loff_t off)
3236{
3237	struct cgroup *cgrp;
3238	int ret;
3239
3240	/* only switching to threaded mode is supported */
3241	if (strcmp(strstrip(buf), "threaded"))
3242		return -EINVAL;
3243
3244	cgrp = cgroup_kn_lock_live(of->kn, false);
3245	if (!cgrp)
3246		return -ENOENT;
3247
3248	/* threaded can only be enabled */
3249	ret = cgroup_enable_threaded(cgrp);
3250
3251	cgroup_kn_unlock(of->kn);
3252	return ret ?: nbytes;
3253}
3254
3255static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3256{
3257	struct cgroup *cgrp = seq_css(seq)->cgroup;
3258	int descendants = READ_ONCE(cgrp->max_descendants);
3259
3260	if (descendants == INT_MAX)
3261		seq_puts(seq, "max\n");
3262	else
3263		seq_printf(seq, "%d\n", descendants);
3264
3265	return 0;
3266}
3267
3268static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3269					   char *buf, size_t nbytes, loff_t off)
3270{
3271	struct cgroup *cgrp;
3272	int descendants;
3273	ssize_t ret;
3274
3275	buf = strstrip(buf);
3276	if (!strcmp(buf, "max")) {
3277		descendants = INT_MAX;
3278	} else {
3279		ret = kstrtoint(buf, 0, &descendants);
3280		if (ret)
3281			return ret;
3282	}
3283
3284	if (descendants < 0)
3285		return -ERANGE;
3286
3287	cgrp = cgroup_kn_lock_live(of->kn, false);
3288	if (!cgrp)
3289		return -ENOENT;
3290
3291	cgrp->max_descendants = descendants;
3292
3293	cgroup_kn_unlock(of->kn);
3294
3295	return nbytes;
3296}
3297
3298static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3299{
3300	struct cgroup *cgrp = seq_css(seq)->cgroup;
3301	int depth = READ_ONCE(cgrp->max_depth);
3302
3303	if (depth == INT_MAX)
3304		seq_puts(seq, "max\n");
3305	else
3306		seq_printf(seq, "%d\n", depth);
3307
3308	return 0;
3309}
3310
3311static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3312				      char *buf, size_t nbytes, loff_t off)
3313{
3314	struct cgroup *cgrp;
3315	ssize_t ret;
3316	int depth;
3317
3318	buf = strstrip(buf);
3319	if (!strcmp(buf, "max")) {
3320		depth = INT_MAX;
3321	} else {
3322		ret = kstrtoint(buf, 0, &depth);
3323		if (ret)
3324			return ret;
3325	}
3326
3327	if (depth < 0)
3328		return -ERANGE;
3329
3330	cgrp = cgroup_kn_lock_live(of->kn, false);
3331	if (!cgrp)
3332		return -ENOENT;
3333
3334	cgrp->max_depth = depth;
3335
3336	cgroup_kn_unlock(of->kn);
3337
3338	return nbytes;
3339}
3340
3341static int cgroup_events_show(struct seq_file *seq, void *v)
3342{
3343	seq_printf(seq, "populated %d\n",
3344		   cgroup_is_populated(seq_css(seq)->cgroup));
3345	return 0;
3346}
3347
3348static int cgroup_stat_show(struct seq_file *seq, void *v)
3349{
3350	struct cgroup *cgroup = seq_css(seq)->cgroup;
3351
3352	seq_printf(seq, "nr_descendants %d\n",
3353		   cgroup->nr_descendants);
3354	seq_printf(seq, "nr_dying_descendants %d\n",
3355		   cgroup->nr_dying_descendants);
3356
3357	return 0;
3358}
3359
3360static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3361						 struct cgroup *cgrp, int ssid)
3362{
3363	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3364	struct cgroup_subsys_state *css;
3365	int ret;
3366
3367	if (!ss->css_extra_stat_show)
3368		return 0;
3369
3370	css = cgroup_tryget_css(cgrp, ss);
3371	if (!css)
3372		return 0;
3373
3374	ret = ss->css_extra_stat_show(seq, css);
3375	css_put(css);
3376	return ret;
3377}
3378
3379static int cpu_stat_show(struct seq_file *seq, void *v)
3380{
3381	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3382	int ret = 0;
3383
3384	cgroup_stat_show_cputime(seq);
3385#ifdef CONFIG_CGROUP_SCHED
3386	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3387#endif
3388	return ret;
3389}
3390
3391static int cgroup_file_open(struct kernfs_open_file *of)
3392{
3393	struct cftype *cft = of->kn->priv;
3394
3395	if (cft->open)
3396		return cft->open(of);
3397	return 0;
3398}
3399
3400static void cgroup_file_release(struct kernfs_open_file *of)
3401{
3402	struct cftype *cft = of->kn->priv;
3403
3404	if (cft->release)
3405		cft->release(of);
3406}
3407
3408static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3409				 size_t nbytes, loff_t off)
3410{
3411	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3412	struct cgroup *cgrp = of->kn->parent->priv;
3413	struct cftype *cft = of->kn->priv;
3414	struct cgroup_subsys_state *css;
3415	int ret;
3416
3417	/*
3418	 * If namespaces are delegation boundaries, disallow writes to
3419	 * files in an non-init namespace root from inside the namespace
3420	 * except for the files explicitly marked delegatable -
3421	 * cgroup.procs and cgroup.subtree_control.
3422	 */
3423	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3424	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3425	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3426		return -EPERM;
3427
3428	if (cft->write)
3429		return cft->write(of, buf, nbytes, off);
3430
3431	/*
3432	 * kernfs guarantees that a file isn't deleted with operations in
3433	 * flight, which means that the matching css is and stays alive and
3434	 * doesn't need to be pinned.  The RCU locking is not necessary
3435	 * either.  It's just for the convenience of using cgroup_css().
3436	 */
3437	rcu_read_lock();
3438	css = cgroup_css(cgrp, cft->ss);
3439	rcu_read_unlock();
3440
3441	if (cft->write_u64) {
3442		unsigned long long v;
3443		ret = kstrtoull(buf, 0, &v);
3444		if (!ret)
3445			ret = cft->write_u64(css, cft, v);
3446	} else if (cft->write_s64) {
3447		long long v;
3448		ret = kstrtoll(buf, 0, &v);
3449		if (!ret)
3450			ret = cft->write_s64(css, cft, v);
3451	} else {
3452		ret = -EINVAL;
3453	}
3454
3455	return ret ?: nbytes;
3456}
3457
3458static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3459{
3460	return seq_cft(seq)->seq_start(seq, ppos);
3461}
3462
3463static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3464{
3465	return seq_cft(seq)->seq_next(seq, v, ppos);
3466}
3467
3468static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3469{
3470	if (seq_cft(seq)->seq_stop)
3471		seq_cft(seq)->seq_stop(seq, v);
3472}
3473
3474static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3475{
3476	struct cftype *cft = seq_cft(m);
3477	struct cgroup_subsys_state *css = seq_css(m);
3478
3479	if (cft->seq_show)
3480		return cft->seq_show(m, arg);
3481
3482	if (cft->read_u64)
3483		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3484	else if (cft->read_s64)
3485		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3486	else
3487		return -EINVAL;
3488	return 0;
3489}
3490
3491static struct kernfs_ops cgroup_kf_single_ops = {
3492	.atomic_write_len	= PAGE_SIZE,
3493	.open			= cgroup_file_open,
3494	.release		= cgroup_file_release,
3495	.write			= cgroup_file_write,
3496	.seq_show		= cgroup_seqfile_show,
3497};
3498
3499static struct kernfs_ops cgroup_kf_ops = {
3500	.atomic_write_len	= PAGE_SIZE,
3501	.open			= cgroup_file_open,
3502	.release		= cgroup_file_release,
3503	.write			= cgroup_file_write,
3504	.seq_start		= cgroup_seqfile_start,
3505	.seq_next		= cgroup_seqfile_next,
3506	.seq_stop		= cgroup_seqfile_stop,
3507	.seq_show		= cgroup_seqfile_show,
3508};
3509
3510/* set uid and gid of cgroup dirs and files to that of the creator */
3511static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3512{
3513	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3514			       .ia_uid = current_fsuid(),
3515			       .ia_gid = current_fsgid(), };
3516
3517	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3518	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3519		return 0;
3520
3521	return kernfs_setattr(kn, &iattr);
3522}
3523
3524static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3525			   struct cftype *cft)
3526{
3527	char name[CGROUP_FILE_NAME_MAX];
3528	struct kernfs_node *kn;
3529	struct lock_class_key *key = NULL;
3530	int ret;
3531
3532#ifdef CONFIG_DEBUG_LOCK_ALLOC
3533	key = &cft->lockdep_key;
3534#endif
3535	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3536				  cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3537				  NULL, key);
3538	if (IS_ERR(kn))
3539		return PTR_ERR(kn);
3540
3541	ret = cgroup_kn_set_ugid(kn);
3542	if (ret) {
3543		kernfs_remove(kn);
3544		return ret;
3545	}
3546
3547	if (cft->file_offset) {
3548		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3549
3550		spin_lock_irq(&cgroup_file_kn_lock);
3551		cfile->kn = kn;
3552		spin_unlock_irq(&cgroup_file_kn_lock);
3553	}
3554
3555	return 0;
3556}
3557
3558/**
3559 * cgroup_addrm_files - add or remove files to a cgroup directory
3560 * @css: the target css
3561 * @cgrp: the target cgroup (usually css->cgroup)
3562 * @cfts: array of cftypes to be added
3563 * @is_add: whether to add or remove
3564 *
3565 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3566 * For removals, this function never fails.
3567 */
3568static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3569			      struct cgroup *cgrp, struct cftype cfts[],
3570			      bool is_add)
3571{
3572	struct cftype *cft, *cft_end = NULL;
3573	int ret = 0;
3574
3575	lockdep_assert_held(&cgroup_mutex);
3576
3577restart:
3578	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3579		/* does cft->flags tell us to skip this file on @cgrp? */
3580		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3581			continue;
3582		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3583			continue;
3584		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3585			continue;
3586		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3587			continue;
3588
3589		if (is_add) {
3590			ret = cgroup_add_file(css, cgrp, cft);
3591			if (ret) {
3592				pr_warn("%s: failed to add %s, err=%d\n",
3593					__func__, cft->name, ret);
3594				cft_end = cft;
3595				is_add = false;
3596				goto restart;
3597			}
3598		} else {
3599			cgroup_rm_file(cgrp, cft);
3600		}
3601	}
3602	return ret;
3603}
3604
3605static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3606{
3607	struct cgroup_subsys *ss = cfts[0].ss;
3608	struct cgroup *root = &ss->root->cgrp;
3609	struct cgroup_subsys_state *css;
3610	int ret = 0;
3611
3612	lockdep_assert_held(&cgroup_mutex);
3613
3614	/* add/rm files for all cgroups created before */
3615	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3616		struct cgroup *cgrp = css->cgroup;
3617
3618		if (!(css->flags & CSS_VISIBLE))
3619			continue;
3620
3621		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3622		if (ret)
3623			break;
3624	}
3625
3626	if (is_add && !ret)
3627		kernfs_activate(root->kn);
3628	return ret;
3629}
3630
3631static void cgroup_exit_cftypes(struct cftype *cfts)
3632{
3633	struct cftype *cft;
3634
3635	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3636		/* free copy for custom atomic_write_len, see init_cftypes() */
3637		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3638			kfree(cft->kf_ops);
3639		cft->kf_ops = NULL;
3640		cft->ss = NULL;
3641
3642		/* revert flags set by cgroup core while adding @cfts */
3643		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3644	}
3645}
3646
3647static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3648{
3649	struct cftype *cft;
3650
3651	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3652		struct kernfs_ops *kf_ops;
3653
3654		WARN_ON(cft->ss || cft->kf_ops);
3655
3656		if (cft->seq_start)
3657			kf_ops = &cgroup_kf_ops;
3658		else
3659			kf_ops = &cgroup_kf_single_ops;
3660
3661		/*
3662		 * Ugh... if @cft wants a custom max_write_len, we need to
3663		 * make a copy of kf_ops to set its atomic_write_len.
3664		 */
3665		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3666			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3667			if (!kf_ops) {
3668				cgroup_exit_cftypes(cfts);
3669				return -ENOMEM;
3670			}
3671			kf_ops->atomic_write_len = cft->max_write_len;
3672		}
3673
3674		cft->kf_ops = kf_ops;
3675		cft->ss = ss;
3676	}
3677
3678	return 0;
3679}
3680
3681static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3682{
3683	lockdep_assert_held(&cgroup_mutex);
3684
3685	if (!cfts || !cfts[0].ss)
3686		return -ENOENT;
3687
3688	list_del(&cfts->node);
3689	cgroup_apply_cftypes(cfts, false);
3690	cgroup_exit_cftypes(cfts);
3691	return 0;
3692}
3693
3694/**
3695 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3696 * @cfts: zero-length name terminated array of cftypes
3697 *
3698 * Unregister @cfts.  Files described by @cfts are removed from all
3699 * existing cgroups and all future cgroups won't have them either.  This
3700 * function can be called anytime whether @cfts' subsys is attached or not.
3701 *
3702 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3703 * registered.
3704 */
3705int cgroup_rm_cftypes(struct cftype *cfts)
3706{
3707	int ret;
3708
3709	mutex_lock(&cgroup_mutex);
3710	ret = cgroup_rm_cftypes_locked(cfts);
3711	mutex_unlock(&cgroup_mutex);
3712	return ret;
3713}
3714
3715/**
3716 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3717 * @ss: target cgroup subsystem
3718 * @cfts: zero-length name terminated array of cftypes
3719 *
3720 * Register @cfts to @ss.  Files described by @cfts are created for all
3721 * existing cgroups to which @ss is attached and all future cgroups will
3722 * have them too.  This function can be called anytime whether @ss is
3723 * attached or not.
3724 *
3725 * Returns 0 on successful registration, -errno on failure.  Note that this
3726 * function currently returns 0 as long as @cfts registration is successful
3727 * even if some file creation attempts on existing cgroups fail.
3728 */
3729static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3730{
3731	int ret;
3732
3733	if (!cgroup_ssid_enabled(ss->id))
3734		return 0;
3735
3736	if (!cfts || cfts[0].name[0] == '\0')
3737		return 0;
3738
3739	ret = cgroup_init_cftypes(ss, cfts);
3740	if (ret)
3741		return ret;
3742
3743	mutex_lock(&cgroup_mutex);
3744
3745	list_add_tail(&cfts->node, &ss->cfts);
3746	ret = cgroup_apply_cftypes(cfts, true);
3747	if (ret)
3748		cgroup_rm_cftypes_locked(cfts);
3749
3750	mutex_unlock(&cgroup_mutex);
3751	return ret;
3752}
3753
3754/**
3755 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3756 * @ss: target cgroup subsystem
3757 * @cfts: zero-length name terminated array of cftypes
3758 *
3759 * Similar to cgroup_add_cftypes() but the added files are only used for
3760 * the default hierarchy.
3761 */
3762int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3763{
3764	struct cftype *cft;
3765
3766	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3767		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3768	return cgroup_add_cftypes(ss, cfts);
3769}
3770
3771/**
3772 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3773 * @ss: target cgroup subsystem
3774 * @cfts: zero-length name terminated array of cftypes
3775 *
3776 * Similar to cgroup_add_cftypes() but the added files are only used for
3777 * the legacy hierarchies.
3778 */
3779int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3780{
3781	struct cftype *cft;
3782
3783	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3784		cft->flags |= __CFTYPE_NOT_ON_DFL;
3785	return cgroup_add_cftypes(ss, cfts);
3786}
3787
3788/**
3789 * cgroup_file_notify - generate a file modified event for a cgroup_file
3790 * @cfile: target cgroup_file
3791 *
3792 * @cfile must have been obtained by setting cftype->file_offset.
3793 */
3794void cgroup_file_notify(struct cgroup_file *cfile)
3795{
3796	unsigned long flags;
3797
3798	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3799	if (cfile->kn)
3800		kernfs_notify(cfile->kn);
3801	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3802}
3803
3804/**
3805 * css_next_child - find the next child of a given css
3806 * @pos: the current position (%NULL to initiate traversal)
3807 * @parent: css whose children to walk
3808 *
3809 * This function returns the next child of @parent and should be called
3810 * under either cgroup_mutex or RCU read lock.  The only requirement is
3811 * that @parent and @pos are accessible.  The next sibling is guaranteed to
3812 * be returned regardless of their states.
3813 *
3814 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3815 * css which finished ->css_online() is guaranteed to be visible in the
3816 * future iterations and will stay visible until the last reference is put.
3817 * A css which hasn't finished ->css_online() or already finished
3818 * ->css_offline() may show up during traversal.  It's each subsystem's
3819 * responsibility to synchronize against on/offlining.
3820 */
3821struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3822					   struct cgroup_subsys_state *parent)
3823{
3824	struct cgroup_subsys_state *next;
3825
3826	cgroup_assert_mutex_or_rcu_locked();
3827
3828	/*
3829	 * @pos could already have been unlinked from the sibling list.
3830	 * Once a cgroup is removed, its ->sibling.next is no longer
3831	 * updated when its next sibling changes.  CSS_RELEASED is set when
3832	 * @pos is taken off list, at which time its next pointer is valid,
3833	 * and, as releases are serialized, the one pointed to by the next
3834	 * pointer is guaranteed to not have started release yet.  This
3835	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3836	 * critical section, the one pointed to by its next pointer is
3837	 * guaranteed to not have finished its RCU grace period even if we
3838	 * have dropped rcu_read_lock() inbetween iterations.
3839	 *
3840	 * If @pos has CSS_RELEASED set, its next pointer can't be
3841	 * dereferenced; however, as each css is given a monotonically
3842	 * increasing unique serial number and always appended to the
3843	 * sibling list, the next one can be found by walking the parent's
3844	 * children until the first css with higher serial number than
3845	 * @pos's.  While this path can be slower, it happens iff iteration
3846	 * races against release and the race window is very small.
3847	 */
3848	if (!pos) {
3849		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3850	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3851		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3852	} else {
3853		list_for_each_entry_rcu(next, &parent->children, sibling)
3854			if (next->serial_nr > pos->serial_nr)
3855				break;
3856	}
3857
3858	/*
3859	 * @next, if not pointing to the head, can be dereferenced and is
3860	 * the next sibling.
3861	 */
3862	if (&next->sibling != &parent->children)
3863		return next;
3864	return NULL;
3865}
3866
3867/**
3868 * css_next_descendant_pre - find the next descendant for pre-order walk
3869 * @pos: the current position (%NULL to initiate traversal)
3870 * @root: css whose descendants to walk
3871 *
3872 * To be used by css_for_each_descendant_pre().  Find the next descendant
3873 * to visit for pre-order traversal of @root's descendants.  @root is
3874 * included in the iteration and the first node to be visited.
3875 *
3876 * While this function requires cgroup_mutex or RCU read locking, it
3877 * doesn't require the whole traversal to be contained in a single critical
3878 * section.  This function will return the correct next descendant as long
3879 * as both @pos and @root are accessible and @pos is a descendant of @root.
3880 *
3881 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3882 * css which finished ->css_online() is guaranteed to be visible in the
3883 * future iterations and will stay visible until the last reference is put.
3884 * A css which hasn't finished ->css_online() or already finished
3885 * ->css_offline() may show up during traversal.  It's each subsystem's
3886 * responsibility to synchronize against on/offlining.
3887 */
3888struct cgroup_subsys_state *
3889css_next_descendant_pre(struct cgroup_subsys_state *pos,
3890			struct cgroup_subsys_state *root)
3891{
3892	struct cgroup_subsys_state *next;
3893
3894	cgroup_assert_mutex_or_rcu_locked();
3895
3896	/* if first iteration, visit @root */
3897	if (!pos)
3898		return root;
3899
3900	/* visit the first child if exists */
3901	next = css_next_child(NULL, pos);
3902	if (next)
3903		return next;
3904
3905	/* no child, visit my or the closest ancestor's next sibling */
3906	while (pos != root) {
3907		next = css_next_child(pos, pos->parent);
3908		if (next)
3909			return next;
3910		pos = pos->parent;
3911	}
3912
3913	return NULL;
3914}
3915
3916/**
3917 * css_rightmost_descendant - return the rightmost descendant of a css
3918 * @pos: css of interest
3919 *
3920 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3921 * is returned.  This can be used during pre-order traversal to skip
3922 * subtree of @pos.
3923 *
3924 * While this function requires cgroup_mutex or RCU read locking, it
3925 * doesn't require the whole traversal to be contained in a single critical
3926 * section.  This function will return the correct rightmost descendant as
3927 * long as @pos is accessible.
3928 */
3929struct cgroup_subsys_state *
3930css_rightmost_descendant(struct cgroup_subsys_state *pos)
3931{
3932	struct cgroup_subsys_state *last, *tmp;
3933
3934	cgroup_assert_mutex_or_rcu_locked();
3935
3936	do {
3937		last = pos;
3938		/* ->prev isn't RCU safe, walk ->next till the end */
3939		pos = NULL;
3940		css_for_each_child(tmp, last)
3941			pos = tmp;
3942	} while (pos);
3943
3944	return last;
3945}
3946
3947static struct cgroup_subsys_state *
3948css_leftmost_descendant(struct cgroup_subsys_state *pos)
3949{
3950	struct cgroup_subsys_state *last;
3951
3952	do {
3953		last = pos;
3954		pos = css_next_child(NULL, pos);
3955	} while (pos);
3956
3957	return last;
3958}
3959
3960/**
3961 * css_next_descendant_post - find the next descendant for post-order walk
3962 * @pos: the current position (%NULL to initiate traversal)
3963 * @root: css whose descendants to walk
3964 *
3965 * To be used by css_for_each_descendant_post().  Find the next descendant
3966 * to visit for post-order traversal of @root's descendants.  @root is
3967 * included in the iteration and the last node to be visited.
3968 *
3969 * While this function requires cgroup_mutex or RCU read locking, it
3970 * doesn't require the whole traversal to be contained in a single critical
3971 * section.  This function will return the correct next descendant as long
3972 * as both @pos and @cgroup are accessible and @pos is a descendant of
3973 * @cgroup.
3974 *
3975 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3976 * css which finished ->css_online() is guaranteed to be visible in the
3977 * future iterations and will stay visible until the last reference is put.
3978 * A css which hasn't finished ->css_online() or already finished
3979 * ->css_offline() may show up during traversal.  It's each subsystem's
3980 * responsibility to synchronize against on/offlining.
3981 */
3982struct cgroup_subsys_state *
3983css_next_descendant_post(struct cgroup_subsys_state *pos,
3984			 struct cgroup_subsys_state *root)
3985{
3986	struct cgroup_subsys_state *next;
3987
3988	cgroup_assert_mutex_or_rcu_locked();
3989
3990	/* if first iteration, visit leftmost descendant which may be @root */
3991	if (!pos)
3992		return css_leftmost_descendant(root);
3993
3994	/* if we visited @root, we're done */
3995	if (pos == root)
3996		return NULL;
3997
3998	/* if there's an unvisited sibling, visit its leftmost descendant */
3999	next = css_next_child(pos, pos->parent);
4000	if (next)
4001		return css_leftmost_descendant(next);
4002
4003	/* no sibling left, visit parent */
4004	return pos->parent;
4005}
4006
4007/**
4008 * css_has_online_children - does a css have online children
4009 * @css: the target css
4010 *
4011 * Returns %true if @css has any online children; otherwise, %false.  This
4012 * function can be called from any context but the caller is responsible
4013 * for synchronizing against on/offlining as necessary.
4014 */
4015bool css_has_online_children(struct cgroup_subsys_state *css)
4016{
4017	struct cgroup_subsys_state *child;
4018	bool ret = false;
4019
4020	rcu_read_lock();
4021	css_for_each_child(child, css) {
4022		if (child->flags & CSS_ONLINE) {
4023			ret = true;
4024			break;
4025		}
4026	}
4027	rcu_read_unlock();
4028	return ret;
4029}
4030
4031static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4032{
4033	struct list_head *l;
4034	struct cgrp_cset_link *link;
4035	struct css_set *cset;
4036
4037	lockdep_assert_held(&css_set_lock);
4038
4039	/* find the next threaded cset */
4040	if (it->tcset_pos) {
4041		l = it->tcset_pos->next;
4042
4043		if (l != it->tcset_head) {
4044			it->tcset_pos = l;
4045			return container_of(l, struct css_set,
4046					    threaded_csets_node);
4047		}
4048
4049		it->tcset_pos = NULL;
4050	}
4051
4052	/* find the next cset */
4053	l = it->cset_pos;
4054	l = l->next;
4055	if (l == it->cset_head) {
4056		it->cset_pos = NULL;
4057		return NULL;
4058	}
4059
4060	if (it->ss) {
4061		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4062	} else {
4063		link = list_entry(l, struct cgrp_cset_link, cset_link);
4064		cset = link->cset;
4065	}
4066
4067	it->cset_pos = l;
4068
4069	/* initialize threaded css_set walking */
4070	if (it->flags & CSS_TASK_ITER_THREADED) {
4071		if (it->cur_dcset)
4072			put_css_set_locked(it->cur_dcset);
4073		it->cur_dcset = cset;
4074		get_css_set(cset);
4075
4076		it->tcset_head = &cset->threaded_csets;
4077		it->tcset_pos = &cset->threaded_csets;
4078	}
4079
4080	return cset;
4081}
4082
4083/**
4084 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4085 * @it: the iterator to advance
4086 *
4087 * Advance @it to the next css_set to walk.
4088 */
4089static void css_task_iter_advance_css_set(struct css_task_iter *it)
4090{
4091	struct css_set *cset;
4092
4093	lockdep_assert_held(&css_set_lock);
4094
4095	/* Advance to the next non-empty css_set */
4096	do {
4097		cset = css_task_iter_next_css_set(it);
4098		if (!cset) {
4099			it->task_pos = NULL;
4100			return;
4101		}
4102	} while (!css_set_populated(cset));
4103
4104	if (!list_empty(&cset->tasks))
4105		it->task_pos = cset->tasks.next;
4106	else
4107		it->task_pos = cset->mg_tasks.next;
4108
4109	it->tasks_head = &cset->tasks;
4110	it->mg_tasks_head = &cset->mg_tasks;
4111
4112	/*
4113	 * We don't keep css_sets locked across iteration steps and thus
4114	 * need to take steps to ensure that iteration can be resumed after
4115	 * the lock is re-acquired.  Iteration is performed at two levels -
4116	 * css_sets and tasks in them.
4117	 *
4118	 * Once created, a css_set never leaves its cgroup lists, so a
4119	 * pinned css_set is guaranteed to stay put and we can resume
4120	 * iteration afterwards.
4121	 *
4122	 * Tasks may leave @cset across iteration steps.  This is resolved
4123	 * by registering each iterator with the css_set currently being
4124	 * walked and making css_set_move_task() advance iterators whose
4125	 * next task is leaving.
4126	 */
4127	if (it->cur_cset) {
4128		list_del(&it->iters_node);
4129		put_css_set_locked(it->cur_cset);
4130	}
4131	get_css_set(cset);
4132	it->cur_cset = cset;
4133	list_add(&it->iters_node, &cset->task_iters);
4134}
4135
4136static void css_task_iter_advance(struct css_task_iter *it)
4137{
4138	struct list_head *next;
4139
4140	lockdep_assert_held(&css_set_lock);
4141repeat:
4142	/*
4143	 * Advance iterator to find next entry.  cset->tasks is consumed
4144	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4145	 * next cset.
4146	 */
4147	next = it->task_pos->next;
4148
4149	if (next == it->tasks_head)
4150		next = it->mg_tasks_head->next;
4151
4152	if (next == it->mg_tasks_head)
4153		css_task_iter_advance_css_set(it);
4154	else
4155		it->task_pos = next;
4156
4157	/* if PROCS, skip over tasks which aren't group leaders */
4158	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4159	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4160					    cg_list)))
4161		goto repeat;
4162}
4163
4164/**
4165 * css_task_iter_start - initiate task iteration
4166 * @css: the css to walk tasks of
4167 * @flags: CSS_TASK_ITER_* flags
4168 * @it: the task iterator to use
4169 *
4170 * Initiate iteration through the tasks of @css.  The caller can call
4171 * css_task_iter_next() to walk through the tasks until the function
4172 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4173 * called.
4174 */
4175void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4176			 struct css_task_iter *it)
4177{
4178	/* no one should try to iterate before mounting cgroups */
4179	WARN_ON_ONCE(!use_task_css_set_links);
4180
4181	memset(it, 0, sizeof(*it));
4182
4183	spin_lock_irq(&css_set_lock);
4184
4185	it->ss = css->ss;
4186	it->flags = flags;
4187
4188	if (it->ss)
4189		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4190	else
4191		it->cset_pos = &css->cgroup->cset_links;
4192
4193	it->cset_head = it->cset_pos;
4194
4195	css_task_iter_advance_css_set(it);
4196
4197	spin_unlock_irq(&css_set_lock);
4198}
4199
4200/**
4201 * css_task_iter_next - return the next task for the iterator
4202 * @it: the task iterator being iterated
4203 *
4204 * The "next" function for task iteration.  @it should have been
4205 * initialized via css_task_iter_start().  Returns NULL when the iteration
4206 * reaches the end.
4207 */
4208struct task_struct *css_task_iter_next(struct css_task_iter *it)
4209{
4210	if (it->cur_task) {
4211		put_task_struct(it->cur_task);
4212		it->cur_task = NULL;
4213	}
4214
4215	spin_lock_irq(&css_set_lock);
4216
4217	if (it->task_pos) {
4218		it->cur_task = list_entry(it->task_pos, struct task_struct,
4219					  cg_list);
4220		get_task_struct(it->cur_task);
4221		css_task_iter_advance(it);
4222	}
4223
4224	spin_unlock_irq(&css_set_lock);
4225
4226	return it->cur_task;
4227}
4228
4229/**
4230 * css_task_iter_end - finish task iteration
4231 * @it: the task iterator to finish
4232 *
4233 * Finish task iteration started by css_task_iter_start().
4234 */
4235void css_task_iter_end(struct css_task_iter *it)
4236{
4237	if (it->cur_cset) {
4238		spin_lock_irq(&css_set_lock);
4239		list_del(&it->iters_node);
4240		put_css_set_locked(it->cur_cset);
4241		spin_unlock_irq(&css_set_lock);
4242	}
4243
4244	if (it->cur_dcset)
4245		put_css_set(it->cur_dcset);
4246
4247	if (it->cur_task)
4248		put_task_struct(it->cur_task);
4249}
4250
4251static void cgroup_procs_release(struct kernfs_open_file *of)
4252{
4253	if (of->priv) {
4254		css_task_iter_end(of->priv);
4255		kfree(of->priv);
4256	}
4257}
4258
4259static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4260{
4261	struct kernfs_open_file *of = s->private;
4262	struct css_task_iter *it = of->priv;
4263
4264	return css_task_iter_next(it);
4265}
4266
4267static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4268				  unsigned int iter_flags)
4269{
4270	struct kernfs_open_file *of = s->private;
4271	struct cgroup *cgrp = seq_css(s)->cgroup;
4272	struct css_task_iter *it = of->priv;
4273
4274	/*
4275	 * When a seq_file is seeked, it's always traversed sequentially
4276	 * from position 0, so we can simply keep iterating on !0 *pos.
4277	 */
4278	if (!it) {
4279		if (WARN_ON_ONCE((*pos)++))
4280			return ERR_PTR(-EINVAL);
4281
4282		it = kzalloc(sizeof(*it), GFP_KERNEL);
4283		if (!it)
4284			return ERR_PTR(-ENOMEM);
4285		of->priv = it;
4286		css_task_iter_start(&cgrp->self, iter_flags, it);
4287	} else if (!(*pos)++) {
4288		css_task_iter_end(it);
4289		css_task_iter_start(&cgrp->self, iter_flags, it);
4290	}
4291
4292	return cgroup_procs_next(s, NULL, NULL);
4293}
4294
4295static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4296{
4297	struct cgroup *cgrp = seq_css(s)->cgroup;
4298
4299	/*
4300	 * All processes of a threaded subtree belong to the domain cgroup
4301	 * of the subtree.  Only threads can be distributed across the
4302	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4303	 * They're always empty anyway.
4304	 */
4305	if (cgroup_is_threaded(cgrp))
4306		return ERR_PTR(-EOPNOTSUPP);
4307
4308	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4309					    CSS_TASK_ITER_THREADED);
4310}
4311
4312static int cgroup_procs_show(struct seq_file *s, void *v)
4313{
4314	seq_printf(s, "%d\n", task_pid_vnr(v));
4315	return 0;
4316}
4317
4318static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4319					 struct cgroup *dst_cgrp,
4320					 struct super_block *sb)
4321{
4322	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4323	struct cgroup *com_cgrp = src_cgrp;
4324	struct inode *inode;
4325	int ret;
4326
4327	lockdep_assert_held(&cgroup_mutex);
4328
4329	/* find the common ancestor */
4330	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4331		com_cgrp = cgroup_parent(com_cgrp);
4332
4333	/* %current should be authorized to migrate to the common ancestor */
4334	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4335	if (!inode)
4336		return -ENOMEM;
4337
4338	ret = inode_permission(inode, MAY_WRITE);
4339	iput(inode);
4340	if (ret)
4341		return ret;
4342
4343	/*
4344	 * If namespaces are delegation boundaries, %current must be able
4345	 * to see both source and destination cgroups from its namespace.
4346	 */
4347	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4348	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4349	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4350		return -ENOENT;
4351
4352	return 0;
4353}
4354
4355static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4356				  char *buf, size_t nbytes, loff_t off)
4357{
4358	struct cgroup *src_cgrp, *dst_cgrp;
4359	struct task_struct *task;
4360	ssize_t ret;
4361
4362	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4363	if (!dst_cgrp)
4364		return -ENODEV;
4365
4366	task = cgroup_procs_write_start(buf, true);
4367	ret = PTR_ERR_OR_ZERO(task);
4368	if (ret)
4369		goto out_unlock;
4370
4371	/* find the source cgroup */
4372	spin_lock_irq(&css_set_lock);
4373	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4374	spin_unlock_irq(&css_set_lock);
4375
4376	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4377					    of->file->f_path.dentry->d_sb);
4378	if (ret)
4379		goto out_finish;
4380
4381	ret = cgroup_attach_task(dst_cgrp, task, true);
4382
4383out_finish:
4384	cgroup_procs_write_finish(task);
4385out_unlock:
4386	cgroup_kn_unlock(of->kn);
4387
4388	return ret ?: nbytes;
4389}
4390
4391static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4392{
4393	return __cgroup_procs_start(s, pos, 0);
4394}
4395
4396static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4397				    char *buf, size_t nbytes, loff_t off)
4398{
4399	struct cgroup *src_cgrp, *dst_cgrp;
4400	struct task_struct *task;
4401	ssize_t ret;
4402
4403	buf = strstrip(buf);
4404
4405	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4406	if (!dst_cgrp)
4407		return -ENODEV;
4408
4409	task = cgroup_procs_write_start(buf, false);
4410	ret = PTR_ERR_OR_ZERO(task);
4411	if (ret)
4412		goto out_unlock;
4413
4414	/* find the source cgroup */
4415	spin_lock_irq(&css_set_lock);
4416	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4417	spin_unlock_irq(&css_set_lock);
4418
4419	/* thread migrations follow the cgroup.procs delegation rule */
4420	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4421					    of->file->f_path.dentry->d_sb);
4422	if (ret)
4423		goto out_finish;
4424
4425	/* and must be contained in the same domain */
4426	ret = -EOPNOTSUPP;
4427	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4428		goto out_finish;
4429
4430	ret = cgroup_attach_task(dst_cgrp, task, false);
4431
4432out_finish:
4433	cgroup_procs_write_finish(task);
4434out_unlock:
4435	cgroup_kn_unlock(of->kn);
4436
4437	return ret ?: nbytes;
4438}
4439
4440/* cgroup core interface files for the default hierarchy */
4441static struct cftype cgroup_base_files[] = {
4442	{
4443		.name = "cgroup.type",
4444		.flags = CFTYPE_NOT_ON_ROOT,
4445		.seq_show = cgroup_type_show,
4446		.write = cgroup_type_write,
4447	},
4448	{
4449		.name = "cgroup.procs",
4450		.flags = CFTYPE_NS_DELEGATABLE,
4451		.file_offset = offsetof(struct cgroup, procs_file),
4452		.release = cgroup_procs_release,
4453		.seq_start = cgroup_procs_start,
4454		.seq_next = cgroup_procs_next,
4455		.seq_show = cgroup_procs_show,
4456		.write = cgroup_procs_write,
4457	},
4458	{
4459		.name = "cgroup.threads",
4460		.flags = CFTYPE_NS_DELEGATABLE,
4461		.release = cgroup_procs_release,
4462		.seq_start = cgroup_threads_start,
4463		.seq_next = cgroup_procs_next,
4464		.seq_show = cgroup_procs_show,
4465		.write = cgroup_threads_write,
4466	},
4467	{
4468		.name = "cgroup.controllers",
4469		.seq_show = cgroup_controllers_show,
4470	},
4471	{
4472		.name = "cgroup.subtree_control",
4473		.flags = CFTYPE_NS_DELEGATABLE,
4474		.seq_show = cgroup_subtree_control_show,
4475		.write = cgroup_subtree_control_write,
4476	},
4477	{
4478		.name = "cgroup.events",
4479		.flags = CFTYPE_NOT_ON_ROOT,
4480		.file_offset = offsetof(struct cgroup, events_file),
4481		.seq_show = cgroup_events_show,
4482	},
4483	{
4484		.name = "cgroup.max.descendants",
4485		.seq_show = cgroup_max_descendants_show,
4486		.write = cgroup_max_descendants_write,
4487	},
4488	{
4489		.name = "cgroup.max.depth",
4490		.seq_show = cgroup_max_depth_show,
4491		.write = cgroup_max_depth_write,
4492	},
4493	{
4494		.name = "cgroup.stat",
4495		.seq_show = cgroup_stat_show,
4496	},
4497	{
4498		.name = "cpu.stat",
4499		.flags = CFTYPE_NOT_ON_ROOT,
4500		.seq_show = cpu_stat_show,
4501	},
4502	{ }	/* terminate */
4503};
4504
4505/*
4506 * css destruction is four-stage process.
4507 *
4508 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4509 *    Implemented in kill_css().
4510 *
4511 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4512 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4513 *    offlined by invoking offline_css().  After offlining, the base ref is
4514 *    put.  Implemented in css_killed_work_fn().
4515 *
4516 * 3. When the percpu_ref reaches zero, the only possible remaining
4517 *    accessors are inside RCU read sections.  css_release() schedules the
4518 *    RCU callback.
4519 *
4520 * 4. After the grace period, the css can be freed.  Implemented in
4521 *    css_free_work_fn().
4522 *
4523 * It is actually hairier because both step 2 and 4 require process context
4524 * and thus involve punting to css->destroy_work adding two additional
4525 * steps to the already complex sequence.
4526 */
4527static void css_free_rwork_fn(struct work_struct *work)
4528{
4529	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4530				struct cgroup_subsys_state, destroy_rwork);
4531	struct cgroup_subsys *ss = css->ss;
4532	struct cgroup *cgrp = css->cgroup;
4533
4534	percpu_ref_exit(&css->refcnt);
4535
4536	if (ss) {
4537		/* css free path */
4538		struct cgroup_subsys_state *parent = css->parent;
4539		int id = css->id;
4540
4541		ss->css_free(css);
4542		cgroup_idr_remove(&ss->css_idr, id);
4543		cgroup_put(cgrp);
4544
4545		if (parent)
4546			css_put(parent);
4547	} else {
4548		/* cgroup free path */
4549		atomic_dec(&cgrp->root->nr_cgrps);
4550		cgroup1_pidlist_destroy_all(cgrp);
4551		cancel_work_sync(&cgrp->release_agent_work);
4552
4553		if (cgroup_parent(cgrp)) {
4554			/*
4555			 * We get a ref to the parent, and put the ref when
4556			 * this cgroup is being freed, so it's guaranteed
4557			 * that the parent won't be destroyed before its
4558			 * children.
4559			 */
4560			cgroup_put(cgroup_parent(cgrp));
4561			kernfs_put(cgrp->kn);
4562			if (cgroup_on_dfl(cgrp))
4563				cgroup_stat_exit(cgrp);
4564			kfree(cgrp);
4565		} else {
4566			/*
4567			 * This is root cgroup's refcnt reaching zero,
4568			 * which indicates that the root should be
4569			 * released.
4570			 */
4571			cgroup_destroy_root(cgrp->root);
4572		}
4573	}
4574}
4575
4576static void css_release_work_fn(struct work_struct *work)
4577{
4578	struct cgroup_subsys_state *css =
4579		container_of(work, struct cgroup_subsys_state, destroy_work);
4580	struct cgroup_subsys *ss = css->ss;
4581	struct cgroup *cgrp = css->cgroup;
4582
4583	mutex_lock(&cgroup_mutex);
4584
4585	css->flags |= CSS_RELEASED;
4586	list_del_rcu(&css->sibling);
4587
4588	if (ss) {
4589		/* css release path */
4590		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4591		if (ss->css_released)
4592			ss->css_released(css);
4593	} else {
4594		struct cgroup *tcgrp;
4595
4596		/* cgroup release path */
4597		trace_cgroup_release(cgrp);
4598
4599		if (cgroup_on_dfl(cgrp))
4600			cgroup_stat_flush(cgrp);
4601
4602		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4603		     tcgrp = cgroup_parent(tcgrp))
4604			tcgrp->nr_dying_descendants--;
4605
4606		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4607		cgrp->id = -1;
4608
4609		/*
4610		 * There are two control paths which try to determine
4611		 * cgroup from dentry without going through kernfs -
4612		 * cgroupstats_build() and css_tryget_online_from_dir().
4613		 * Those are supported by RCU protecting clearing of
4614		 * cgrp->kn->priv backpointer.
4615		 */
4616		if (cgrp->kn)
4617			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4618					 NULL);
4619
4620		cgroup_bpf_put(cgrp);
4621	}
4622
4623	mutex_unlock(&cgroup_mutex);
4624
4625	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4626	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4627}
4628
4629static void css_release(struct percpu_ref *ref)
4630{
4631	struct cgroup_subsys_state *css =
4632		container_of(ref, struct cgroup_subsys_state, refcnt);
4633
4634	INIT_WORK(&css->destroy_work, css_release_work_fn);
4635	queue_work(cgroup_destroy_wq, &css->destroy_work);
4636}
4637
4638static void init_and_link_css(struct cgroup_subsys_state *css,
4639			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4640{
4641	lockdep_assert_held(&cgroup_mutex);
4642
4643	cgroup_get_live(cgrp);
4644
4645	memset(css, 0, sizeof(*css));
4646	css->cgroup = cgrp;
4647	css->ss = ss;
4648	css->id = -1;
4649	INIT_LIST_HEAD(&css->sibling);
4650	INIT_LIST_HEAD(&css->children);
4651	css->serial_nr = css_serial_nr_next++;
4652	atomic_set(&css->online_cnt, 0);
4653
4654	if (cgroup_parent(cgrp)) {
4655		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4656		css_get(css->parent);
4657	}
4658
4659	BUG_ON(cgroup_css(cgrp, ss));
4660}
4661
4662/* invoke ->css_online() on a new CSS and mark it online if successful */
4663static int online_css(struct cgroup_subsys_state *css)
4664{
4665	struct cgroup_subsys *ss = css->ss;
4666	int ret = 0;
4667
4668	lockdep_assert_held(&cgroup_mutex);
4669
4670	if (ss->css_online)
4671		ret = ss->css_online(css);
4672	if (!ret) {
4673		css->flags |= CSS_ONLINE;
4674		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4675
4676		atomic_inc(&css->online_cnt);
4677		if (css->parent)
4678			atomic_inc(&css->parent->online_cnt);
4679	}
4680	return ret;
4681}
4682
4683/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4684static void offline_css(struct cgroup_subsys_state *css)
4685{
4686	struct cgroup_subsys *ss = css->ss;
4687
4688	lockdep_assert_held(&cgroup_mutex);
4689
4690	if (!(css->flags & CSS_ONLINE))
4691		return;
4692
4693	if (ss->css_offline)
4694		ss->css_offline(css);
4695
4696	css->flags &= ~CSS_ONLINE;
4697	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4698
4699	wake_up_all(&css->cgroup->offline_waitq);
4700}
4701
4702/**
4703 * css_create - create a cgroup_subsys_state
4704 * @cgrp: the cgroup new css will be associated with
4705 * @ss: the subsys of new css
4706 *
4707 * Create a new css associated with @cgrp - @ss pair.  On success, the new
4708 * css is online and installed in @cgrp.  This function doesn't create the
4709 * interface files.  Returns 0 on success, -errno on failure.
4710 */
4711static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4712					      struct cgroup_subsys *ss)
4713{
4714	struct cgroup *parent = cgroup_parent(cgrp);
4715	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4716	struct cgroup_subsys_state *css;
4717	int err;
4718
4719	lockdep_assert_held(&cgroup_mutex);
4720
4721	css = ss->css_alloc(parent_css);
4722	if (!css)
4723		css = ERR_PTR(-ENOMEM);
4724	if (IS_ERR(css))
4725		return css;
4726
4727	init_and_link_css(css, ss, cgrp);
4728
4729	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4730	if (err)
4731		goto err_free_css;
4732
4733	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4734	if (err < 0)
4735		goto err_free_css;
4736	css->id = err;
4737
4738	/* @css is ready to be brought online now, make it visible */
4739	list_add_tail_rcu(&css->sibling, &parent_css->children);
4740	cgroup_idr_replace(&ss->css_idr, css, css->id);
4741
4742	err = online_css(css);
4743	if (err)
4744		goto err_list_del;
4745
4746	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4747	    cgroup_parent(parent)) {
4748		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4749			current->comm, current->pid, ss->name);
4750		if (!strcmp(ss->name, "memory"))
4751			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4752		ss->warned_broken_hierarchy = true;
4753	}
4754
4755	return css;
4756
4757err_list_del:
4758	list_del_rcu(&css->sibling);
4759err_free_css:
4760	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4761	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4762	return ERR_PTR(err);
4763}
4764
4765/*
4766 * The returned cgroup is fully initialized including its control mask, but
4767 * it isn't associated with its kernfs_node and doesn't have the control
4768 * mask applied.
4769 */
4770static struct cgroup *cgroup_create(struct cgroup *parent)
4771{
4772	struct cgroup_root *root = parent->root;
4773	struct cgroup *cgrp, *tcgrp;
4774	int level = parent->level + 1;
4775	int ret;
4776
4777	/* allocate the cgroup and its ID, 0 is reserved for the root */
4778	cgrp = kzalloc(sizeof(*cgrp) +
4779		       sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4780	if (!cgrp)
4781		return ERR_PTR(-ENOMEM);
4782
4783	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4784	if (ret)
4785		goto out_free_cgrp;
4786
4787	if (cgroup_on_dfl(parent)) {
4788		ret = cgroup_stat_init(cgrp);
4789		if (ret)
4790			goto out_cancel_ref;
4791	}
4792
4793	/*
4794	 * Temporarily set the pointer to NULL, so idr_find() won't return
4795	 * a half-baked cgroup.
4796	 */
4797	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4798	if (cgrp->id < 0) {
4799		ret = -ENOMEM;
4800		goto out_stat_exit;
4801	}
4802
4803	init_cgroup_housekeeping(cgrp);
4804
4805	cgrp->self.parent = &parent->self;
4806	cgrp->root = root;
4807	cgrp->level = level;
4808	ret = cgroup_bpf_inherit(cgrp);
4809	if (ret)
4810		goto out_idr_free;
4811
4812	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4813		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4814
4815		if (tcgrp != cgrp)
4816			tcgrp->nr_descendants++;
4817	}
4818
4819	if (notify_on_release(parent))
4820		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4821
4822	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4823		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4824
4825	cgrp->self.serial_nr = css_serial_nr_next++;
4826
4827	/* allocation complete, commit to creation */
4828	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4829	atomic_inc(&root->nr_cgrps);
4830	cgroup_get_live(parent);
4831
4832	/*
4833	 * @cgrp is now fully operational.  If something fails after this
4834	 * point, it'll be released via the normal destruction path.
4835	 */
4836	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4837
4838	/*
4839	 * On the default hierarchy, a child doesn't automatically inherit
4840	 * subtree_control from the parent.  Each is configured manually.
4841	 */
4842	if (!cgroup_on_dfl(cgrp))
4843		cgrp->subtree_control = cgroup_control(cgrp);
4844
4845	cgroup_propagate_control(cgrp);
4846
4847	return cgrp;
4848
4849out_idr_free:
4850	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4851out_stat_exit:
4852	if (cgroup_on_dfl(parent))
4853		cgroup_stat_exit(cgrp);
4854out_cancel_ref:
4855	percpu_ref_exit(&cgrp->self.refcnt);
4856out_free_cgrp:
4857	kfree(cgrp);
4858	return ERR_PTR(ret);
4859}
4860
4861static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4862{
4863	struct cgroup *cgroup;
4864	int ret = false;
4865	int level = 1;
4866
4867	lockdep_assert_held(&cgroup_mutex);
4868
4869	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4870		if (cgroup->nr_descendants >= cgroup->max_descendants)
4871			goto fail;
4872
4873		if (level > cgroup->max_depth)
4874			goto fail;
4875
4876		level++;
4877	}
4878
4879	ret = true;
4880fail:
4881	return ret;
4882}
4883
4884int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4885{
4886	struct cgroup *parent, *cgrp;
4887	struct kernfs_node *kn;
4888	int ret;
4889
4890	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4891	if (strchr(name, '\n'))
4892		return -EINVAL;
4893
4894	parent = cgroup_kn_lock_live(parent_kn, false);
4895	if (!parent)
4896		return -ENODEV;
4897
4898	if (!cgroup_check_hierarchy_limits(parent)) {
4899		ret = -EAGAIN;
4900		goto out_unlock;
4901	}
4902
4903	cgrp = cgroup_create(parent);
4904	if (IS_ERR(cgrp)) {
4905		ret = PTR_ERR(cgrp);
4906		goto out_unlock;
4907	}
4908
4909	/* create the directory */
4910	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4911	if (IS_ERR(kn)) {
4912		ret = PTR_ERR(kn);
4913		goto out_destroy;
4914	}
4915	cgrp->kn = kn;
4916
4917	/*
4918	 * This extra ref will be put in cgroup_free_fn() and guarantees
4919	 * that @cgrp->kn is always accessible.
4920	 */
4921	kernfs_get(kn);
4922
4923	ret = cgroup_kn_set_ugid(kn);
4924	if (ret)
4925		goto out_destroy;
4926
4927	ret = css_populate_dir(&cgrp->self);
4928	if (ret)
4929		goto out_destroy;
4930
4931	ret = cgroup_apply_control_enable(cgrp);
4932	if (ret)
4933		goto out_destroy;
4934
4935	trace_cgroup_mkdir(cgrp);
4936
4937	/* let's create and online css's */
4938	kernfs_activate(kn);
4939
4940	ret = 0;
4941	goto out_unlock;
4942
4943out_destroy:
4944	cgroup_destroy_locked(cgrp);
4945out_unlock:
4946	cgroup_kn_unlock(parent_kn);
4947	return ret;
4948}
4949
4950/*
4951 * This is called when the refcnt of a css is confirmed to be killed.
4952 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
4953 * initate destruction and put the css ref from kill_css().
4954 */
4955static void css_killed_work_fn(struct work_struct *work)
4956{
4957	struct cgroup_subsys_state *css =
4958		container_of(work, struct cgroup_subsys_state, destroy_work);
4959
4960	mutex_lock(&cgroup_mutex);
4961
4962	do {
4963		offline_css(css);
4964		css_put(css);
4965		/* @css can't go away while we're holding cgroup_mutex */
4966		css = css->parent;
4967	} while (css && atomic_dec_and_test(&css->online_cnt));
4968
4969	mutex_unlock(&cgroup_mutex);
4970}
4971
4972/* css kill confirmation processing requires process context, bounce */
4973static void css_killed_ref_fn(struct percpu_ref *ref)
4974{
4975	struct cgroup_subsys_state *css =
4976		container_of(ref, struct cgroup_subsys_state, refcnt);
4977
4978	if (atomic_dec_and_test(&css->online_cnt)) {
4979		INIT_WORK(&css->destroy_work, css_killed_work_fn);
4980		queue_work(cgroup_destroy_wq, &css->destroy_work);
4981	}
4982}
4983
4984/**
4985 * kill_css - destroy a css
4986 * @css: css to destroy
4987 *
4988 * This function initiates destruction of @css by removing cgroup interface
4989 * files and putting its base reference.  ->css_offline() will be invoked
4990 * asynchronously once css_tryget_online() is guaranteed to fail and when
4991 * the reference count reaches zero, @css will be released.
4992 */
4993static void kill_css(struct cgroup_subsys_state *css)
4994{
4995	lockdep_assert_held(&cgroup_mutex);
4996
4997	if (css->flags & CSS_DYING)
4998		return;
4999
5000	css->flags |= CSS_DYING;
5001
5002	/*
5003	 * This must happen before css is disassociated with its cgroup.
5004	 * See seq_css() for details.
5005	 */
5006	css_clear_dir(css);
5007
5008	/*
5009	 * Killing would put the base ref, but we need to keep it alive
5010	 * until after ->css_offline().
5011	 */
5012	css_get(css);
5013
5014	/*
5015	 * cgroup core guarantees that, by the time ->css_offline() is
5016	 * invoked, no new css reference will be given out via
5017	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5018	 * proceed to offlining css's because percpu_ref_kill() doesn't
5019	 * guarantee that the ref is seen as killed on all CPUs on return.
5020	 *
5021	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5022	 * css is confirmed to be seen as killed on all CPUs.
5023	 */
5024	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5025}
5026
5027/**
5028 * cgroup_destroy_locked - the first stage of cgroup destruction
5029 * @cgrp: cgroup to be destroyed
5030 *
5031 * css's make use of percpu refcnts whose killing latency shouldn't be
5032 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5033 * guarantee that css_tryget_online() won't succeed by the time
5034 * ->css_offline() is invoked.  To satisfy all the requirements,
5035 * destruction is implemented in the following two steps.
5036 *
5037 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5038 *     userland visible parts and start killing the percpu refcnts of
5039 *     css's.  Set up so that the next stage will be kicked off once all
5040 *     the percpu refcnts are confirmed to be killed.
5041 *
5042 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5043 *     rest of destruction.  Once all cgroup references are gone, the
5044 *     cgroup is RCU-freed.
5045 *
5046 * This function implements s1.  After this step, @cgrp is gone as far as
5047 * the userland is concerned and a new cgroup with the same name may be
5048 * created.  As cgroup doesn't care about the names internally, this
5049 * doesn't cause any problem.
5050 */
5051static int cgroup_destroy_locked(struct cgroup *cgrp)
5052	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5053{
5054	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5055	struct cgroup_subsys_state *css;
5056	struct cgrp_cset_link *link;
5057	int ssid;
5058
5059	lockdep_assert_held(&cgroup_mutex);
5060
5061	/*
5062	 * Only migration can raise populated from zero and we're already
5063	 * holding cgroup_mutex.
5064	 */
5065	if (cgroup_is_populated(cgrp))
5066		return -EBUSY;
5067
5068	/*
5069	 * Make sure there's no live children.  We can't test emptiness of
5070	 * ->self.children as dead children linger on it while being
5071	 * drained; otherwise, "rmdir parent/child parent" may fail.
5072	 */
5073	if (css_has_online_children(&cgrp->self))
5074		return -EBUSY;
5075
5076	/*
5077	 * Mark @cgrp and the associated csets dead.  The former prevents
5078	 * further task migration and child creation by disabling
5079	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5080	 * the migration path.
5081	 */
5082	cgrp->self.flags &= ~CSS_ONLINE;
5083
5084	spin_lock_irq(&css_set_lock);
5085	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5086		link->cset->dead = true;
5087	spin_unlock_irq(&css_set_lock);
5088
5089	/* initiate massacre of all css's */
5090	for_each_css(css, ssid, cgrp)
5091		kill_css(css);
5092
5093	/*
5094	 * Remove @cgrp directory along with the base files.  @cgrp has an
5095	 * extra ref on its kn.
5096	 */
5097	kernfs_remove(cgrp->kn);
5098
5099	if (parent && cgroup_is_threaded(cgrp))
5100		parent->nr_threaded_children--;
5101
5102	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5103		tcgrp->nr_descendants--;
5104		tcgrp->nr_dying_descendants++;
5105	}
5106
5107	cgroup1_check_for_release(parent);
5108
5109	/* put the base reference */
5110	percpu_ref_kill(&cgrp->self.refcnt);
5111
5112	return 0;
5113};
5114
5115int cgroup_rmdir(struct kernfs_node *kn)
5116{
5117	struct cgroup *cgrp;
5118	int ret = 0;
5119
5120	cgrp = cgroup_kn_lock_live(kn, false);
5121	if (!cgrp)
5122		return 0;
5123
5124	ret = cgroup_destroy_locked(cgrp);
5125
5126	if (!ret)
5127		trace_cgroup_rmdir(cgrp);
5128
5129	cgroup_kn_unlock(kn);
5130	return ret;
5131}
5132
5133static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5134	.show_options		= cgroup_show_options,
5135	.remount_fs		= cgroup_remount,
5136	.mkdir			= cgroup_mkdir,
5137	.rmdir			= cgroup_rmdir,
5138	.show_path		= cgroup_show_path,
5139};
5140
5141static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5142{
5143	struct cgroup_subsys_state *css;
5144
5145	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5146
5147	mutex_lock(&cgroup_mutex);
5148
5149	idr_init(&ss->css_idr);
5150	INIT_LIST_HEAD(&ss->cfts);
5151
5152	/* Create the root cgroup state for this subsystem */
5153	ss->root = &cgrp_dfl_root;
5154	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5155	/* We don't handle early failures gracefully */
5156	BUG_ON(IS_ERR(css));
5157	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5158
5159	/*
5160	 * Root csses are never destroyed and we can't initialize
5161	 * percpu_ref during early init.  Disable refcnting.
5162	 */
5163	css->flags |= CSS_NO_REF;
5164
5165	if (early) {
5166		/* allocation can't be done safely during early init */
5167		css->id = 1;
5168	} else {
5169		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5170		BUG_ON(css->id < 0);
5171	}
5172
5173	/* Update the init_css_set to contain a subsys
5174	 * pointer to this state - since the subsystem is
5175	 * newly registered, all tasks and hence the
5176	 * init_css_set is in the subsystem's root cgroup. */
5177	init_css_set.subsys[ss->id] = css;
5178
5179	have_fork_callback |= (bool)ss->fork << ss->id;
5180	have_exit_callback |= (bool)ss->exit << ss->id;
5181	have_free_callback |= (bool)ss->free << ss->id;
5182	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5183
5184	/* At system boot, before all subsystems have been
5185	 * registered, no tasks have been forked, so we don't
5186	 * need to invoke fork callbacks here. */
5187	BUG_ON(!list_empty(&init_task.tasks));
5188
5189	BUG_ON(online_css(css));
5190
5191	mutex_unlock(&cgroup_mutex);
5192}
5193
5194/**
5195 * cgroup_init_early - cgroup initialization at system boot
5196 *
5197 * Initialize cgroups at system boot, and initialize any
5198 * subsystems that request early init.
5199 */
5200int __init cgroup_init_early(void)
5201{
5202	static struct cgroup_sb_opts __initdata opts;
5203	struct cgroup_subsys *ss;
5204	int i;
5205
5206	init_cgroup_root(&cgrp_dfl_root, &opts);
5207	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5208
5209	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5210
5211	for_each_subsys(ss, i) {
5212		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5213		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5214		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5215		     ss->id, ss->name);
5216		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5217		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5218
5219		ss->id = i;
5220		ss->name = cgroup_subsys_name[i];
5221		if (!ss->legacy_name)
5222			ss->legacy_name = cgroup_subsys_name[i];
5223
5224		if (ss->early_init)
5225			cgroup_init_subsys(ss, true);
5226	}
5227	return 0;
5228}
5229
5230static u16 cgroup_disable_mask __initdata;
5231
5232/**
5233 * cgroup_init - cgroup initialization
5234 *
5235 * Register cgroup filesystem and /proc file, and initialize
5236 * any subsystems that didn't request early init.
5237 */
5238int __init cgroup_init(void)
5239{
5240	struct cgroup_subsys *ss;
5241	int ssid;
5242
5243	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5244	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5245	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5246	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5247
5248	cgroup_stat_boot();
5249
5250	/*
5251	 * The latency of the synchronize_sched() is too high for cgroups,
5252	 * avoid it at the cost of forcing all readers into the slow path.
5253	 */
5254	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5255
5256	get_user_ns(init_cgroup_ns.user_ns);
5257
5258	mutex_lock(&cgroup_mutex);
5259
5260	/*
5261	 * Add init_css_set to the hash table so that dfl_root can link to
5262	 * it during init.
5263	 */
5264	hash_add(css_set_table, &init_css_set.hlist,
5265		 css_set_hash(init_css_set.subsys));
5266
5267	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5268
5269	mutex_unlock(&cgroup_mutex);
5270
5271	for_each_subsys(ss, ssid) {
5272		if (ss->early_init) {
5273			struct cgroup_subsys_state *css =
5274				init_css_set.subsys[ss->id];
5275
5276			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5277						   GFP_KERNEL);
5278			BUG_ON(css->id < 0);
5279		} else {
5280			cgroup_init_subsys(ss, false);
5281		}
5282
5283		list_add_tail(&init_css_set.e_cset_node[ssid],
5284			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5285
5286		/*
5287		 * Setting dfl_root subsys_mask needs to consider the
5288		 * disabled flag and cftype registration needs kmalloc,
5289		 * both of which aren't available during early_init.
5290		 */
5291		if (cgroup_disable_mask & (1 << ssid)) {
5292			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5293			printk(KERN_INFO "Disabling %s control group subsystem\n",
5294			       ss->name);
5295			continue;
5296		}
5297
5298		if (cgroup1_ssid_disabled(ssid))
5299			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5300			       ss->name);
5301
5302		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5303
5304		/* implicit controllers must be threaded too */
5305		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5306
5307		if (ss->implicit_on_dfl)
5308			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5309		else if (!ss->dfl_cftypes)
5310			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5311
5312		if (ss->threaded)
5313			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5314
5315		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5316			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5317		} else {
5318			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5319			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5320		}
5321
5322		if (ss->bind)
5323			ss->bind(init_css_set.subsys[ssid]);
5324
5325		mutex_lock(&cgroup_mutex);
5326		css_populate_dir(init_css_set.subsys[ssid]);
5327		mutex_unlock(&cgroup_mutex);
5328	}
5329
5330	/* init_css_set.subsys[] has been updated, re-hash */
5331	hash_del(&init_css_set.hlist);
5332	hash_add(css_set_table, &init_css_set.hlist,
5333		 css_set_hash(init_css_set.subsys));
5334
5335	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5336	WARN_ON(register_filesystem(&cgroup_fs_type));
5337	WARN_ON(register_filesystem(&cgroup2_fs_type));
5338	WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5339
5340	return 0;
5341}
5342
5343static int __init cgroup_wq_init(void)
5344{
5345	/*
5346	 * There isn't much point in executing destruction path in
5347	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5348	 * Use 1 for @max_active.
5349	 *
5350	 * We would prefer to do this in cgroup_init() above, but that
5351	 * is called before init_workqueues(): so leave this until after.
5352	 */
5353	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5354	BUG_ON(!cgroup_destroy_wq);
5355	return 0;
5356}
5357core_initcall(cgroup_wq_init);
5358
5359void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5360					char *buf, size_t buflen)
5361{
5362	struct kernfs_node *kn;
5363
5364	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5365	if (!kn)
5366		return;
5367	kernfs_path(kn, buf, buflen);
5368	kernfs_put(kn);
5369}
5370
5371/*
5372 * proc_cgroup_show()
5373 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5374 *  - Used for /proc/<pid>/cgroup.
5375 */
5376int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5377		     struct pid *pid, struct task_struct *tsk)
5378{
5379	char *buf;
5380	int retval;
5381	struct cgroup_root *root;
5382
5383	retval = -ENOMEM;
5384	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5385	if (!buf)
5386		goto out;
5387
5388	mutex_lock(&cgroup_mutex);
5389	spin_lock_irq(&css_set_lock);
5390
5391	for_each_root(root) {
5392		struct cgroup_subsys *ss;
5393		struct cgroup *cgrp;
5394		int ssid, count = 0;
5395
5396		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5397			continue;
5398
5399		seq_printf(m, "%d:", root->hierarchy_id);
5400		if (root != &cgrp_dfl_root)
5401			for_each_subsys(ss, ssid)
5402				if (root->subsys_mask & (1 << ssid))
5403					seq_printf(m, "%s%s", count++ ? "," : "",
5404						   ss->legacy_name);
5405		if (strlen(root->name))
5406			seq_printf(m, "%sname=%s", count ? "," : "",
5407				   root->name);
5408		seq_putc(m, ':');
5409
5410		cgrp = task_cgroup_from_root(tsk, root);
5411
5412		/*
5413		 * On traditional hierarchies, all zombie tasks show up as
5414		 * belonging to the root cgroup.  On the default hierarchy,
5415		 * while a zombie doesn't show up in "cgroup.procs" and
5416		 * thus can't be migrated, its /proc/PID/cgroup keeps
5417		 * reporting the cgroup it belonged to before exiting.  If
5418		 * the cgroup is removed before the zombie is reaped,
5419		 * " (deleted)" is appended to the cgroup path.
5420		 */
5421		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5422			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5423						current->nsproxy->cgroup_ns);
5424			if (retval >= PATH_MAX)
5425				retval = -ENAMETOOLONG;
5426			if (retval < 0)
5427				goto out_unlock;
5428
5429			seq_puts(m, buf);
5430		} else {
5431			seq_puts(m, "/");
5432		}
5433
5434		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5435			seq_puts(m, " (deleted)\n");
5436		else
5437			seq_putc(m, '\n');
5438	}
5439
5440	retval = 0;
5441out_unlock:
5442	spin_unlock_irq(&css_set_lock);
5443	mutex_unlock(&cgroup_mutex);
5444	kfree(buf);
5445out:
5446	return retval;
5447}
5448
5449/**
5450 * cgroup_fork - initialize cgroup related fields during copy_process()
5451 * @child: pointer to task_struct of forking parent process.
5452 *
5453 * A task is associated with the init_css_set until cgroup_post_fork()
5454 * attaches it to the parent's css_set.  Empty cg_list indicates that
5455 * @child isn't holding reference to its css_set.
5456 */
5457void cgroup_fork(struct task_struct *child)
5458{
5459	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5460	INIT_LIST_HEAD(&child->cg_list);
5461}
5462
5463/**
5464 * cgroup_can_fork - called on a new task before the process is exposed
5465 * @child: the task in question.
5466 *
5467 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5468 * returns an error, the fork aborts with that error code. This allows for
5469 * a cgroup subsystem to conditionally allow or deny new forks.
5470 */
5471int cgroup_can_fork(struct task_struct *child)
5472{
5473	struct cgroup_subsys *ss;
5474	int i, j, ret;
5475
5476	do_each_subsys_mask(ss, i, have_canfork_callback) {
5477		ret = ss->can_fork(child);
5478		if (ret)
5479			goto out_revert;
5480	} while_each_subsys_mask();
5481
5482	return 0;
5483
5484out_revert:
5485	for_each_subsys(ss, j) {
5486		if (j >= i)
5487			break;
5488		if (ss->cancel_fork)
5489			ss->cancel_fork(child);
5490	}
5491
5492	return ret;
5493}
5494
5495/**
5496 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5497 * @child: the task in question
5498 *
5499 * This calls the cancel_fork() callbacks if a fork failed *after*
5500 * cgroup_can_fork() succeded.
5501 */
5502void cgroup_cancel_fork(struct task_struct *child)
5503{
5504	struct cgroup_subsys *ss;
5505	int i;
5506
5507	for_each_subsys(ss, i)
5508		if (ss->cancel_fork)
5509			ss->cancel_fork(child);
5510}
5511
5512/**
5513 * cgroup_post_fork - called on a new task after adding it to the task list
5514 * @child: the task in question
5515 *
5516 * Adds the task to the list running through its css_set if necessary and
5517 * call the subsystem fork() callbacks.  Has to be after the task is
5518 * visible on the task list in case we race with the first call to
5519 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5520 * list.
5521 */
5522void cgroup_post_fork(struct task_struct *child)
5523{
5524	struct cgroup_subsys *ss;
5525	int i;
5526
5527	/*
5528	 * This may race against cgroup_enable_task_cg_lists().  As that
5529	 * function sets use_task_css_set_links before grabbing
5530	 * tasklist_lock and we just went through tasklist_lock to add
5531	 * @child, it's guaranteed that either we see the set
5532	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5533	 * @child during its iteration.
5534	 *
5535	 * If we won the race, @child is associated with %current's
5536	 * css_set.  Grabbing css_set_lock guarantees both that the
5537	 * association is stable, and, on completion of the parent's
5538	 * migration, @child is visible in the source of migration or
5539	 * already in the destination cgroup.  This guarantee is necessary
5540	 * when implementing operations which need to migrate all tasks of
5541	 * a cgroup to another.
5542	 *
5543	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5544	 * will remain in init_css_set.  This is safe because all tasks are
5545	 * in the init_css_set before cg_links is enabled and there's no
5546	 * operation which transfers all tasks out of init_css_set.
5547	 */
5548	if (use_task_css_set_links) {
5549		struct css_set *cset;
5550
5551		spin_lock_irq(&css_set_lock);
5552		cset = task_css_set(current);
5553		if (list_empty(&child->cg_list)) {
5554			get_css_set(cset);
5555			cset->nr_tasks++;
5556			css_set_move_task(child, NULL, cset, false);
5557		}
5558		spin_unlock_irq(&css_set_lock);
5559	}
5560
5561	/*
5562	 * Call ss->fork().  This must happen after @child is linked on
5563	 * css_set; otherwise, @child might change state between ->fork()
5564	 * and addition to css_set.
5565	 */
5566	do_each_subsys_mask(ss, i, have_fork_callback) {
5567		ss->fork(child);
5568	} while_each_subsys_mask();
5569}
5570
5571/**
5572 * cgroup_exit - detach cgroup from exiting task
5573 * @tsk: pointer to task_struct of exiting process
5574 *
5575 * Description: Detach cgroup from @tsk and release it.
5576 *
5577 * Note that cgroups marked notify_on_release force every task in
5578 * them to take the global cgroup_mutex mutex when exiting.
5579 * This could impact scaling on very large systems.  Be reluctant to
5580 * use notify_on_release cgroups where very high task exit scaling
5581 * is required on large systems.
5582 *
5583 * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5584 * call cgroup_exit() while the task is still competent to handle
5585 * notify_on_release(), then leave the task attached to the root cgroup in
5586 * each hierarchy for the remainder of its exit.  No need to bother with
5587 * init_css_set refcnting.  init_css_set never goes away and we can't race
5588 * with migration path - PF_EXITING is visible to migration path.
5589 */
5590void cgroup_exit(struct task_struct *tsk)
5591{
5592	struct cgroup_subsys *ss;
5593	struct css_set *cset;
5594	int i;
5595
5596	/*
5597	 * Unlink from @tsk from its css_set.  As migration path can't race
5598	 * with us, we can check css_set and cg_list without synchronization.
5599	 */
5600	cset = task_css_set(tsk);
5601
5602	if (!list_empty(&tsk->cg_list)) {
5603		spin_lock_irq(&css_set_lock);
5604		css_set_move_task(tsk, cset, NULL, false);
5605		cset->nr_tasks--;
5606		spin_unlock_irq(&css_set_lock);
5607	} else {
5608		get_css_set(cset);
5609	}
5610
5611	/* see cgroup_post_fork() for details */
5612	do_each_subsys_mask(ss, i, have_exit_callback) {
5613		ss->exit(tsk);
5614	} while_each_subsys_mask();
5615}
5616
5617void cgroup_free(struct task_struct *task)
5618{
5619	struct css_set *cset = task_css_set(task);
5620	struct cgroup_subsys *ss;
5621	int ssid;
5622
5623	do_each_subsys_mask(ss, ssid, have_free_callback) {
5624		ss->free(task);
5625	} while_each_subsys_mask();
5626
5627	put_css_set(cset);
5628}
5629
5630static int __init cgroup_disable(char *str)
5631{
5632	struct cgroup_subsys *ss;
5633	char *token;
5634	int i;
5635
5636	while ((token = strsep(&str, ",")) != NULL) {
5637		if (!*token)
5638			continue;
5639
5640		for_each_subsys(ss, i) {
5641			if (strcmp(token, ss->name) &&
5642			    strcmp(token, ss->legacy_name))
5643				continue;
5644			cgroup_disable_mask |= 1 << i;
5645		}
5646	}
5647	return 1;
5648}
5649__setup("cgroup_disable=", cgroup_disable);
5650
5651/**
5652 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5653 * @dentry: directory dentry of interest
5654 * @ss: subsystem of interest
5655 *
5656 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5657 * to get the corresponding css and return it.  If such css doesn't exist
5658 * or can't be pinned, an ERR_PTR value is returned.
5659 */
5660struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5661						       struct cgroup_subsys *ss)
5662{
5663	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5664	struct file_system_type *s_type = dentry->d_sb->s_type;
5665	struct cgroup_subsys_state *css = NULL;
5666	struct cgroup *cgrp;
5667
5668	/* is @dentry a cgroup dir? */
5669	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5670	    !kn || kernfs_type(kn) != KERNFS_DIR)
5671		return ERR_PTR(-EBADF);
5672
5673	rcu_read_lock();
5674
5675	/*
5676	 * This path doesn't originate from kernfs and @kn could already
5677	 * have been or be removed at any point.  @kn->priv is RCU
5678	 * protected for this access.  See css_release_work_fn() for details.
5679	 */
5680	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5681	if (cgrp)
5682		css = cgroup_css(cgrp, ss);
5683
5684	if (!css || !css_tryget_online(css))
5685		css = ERR_PTR(-ENOENT);
5686
5687	rcu_read_unlock();
5688	return css;
5689}
5690
5691/**
5692 * css_from_id - lookup css by id
5693 * @id: the cgroup id
5694 * @ss: cgroup subsys to be looked into
5695 *
5696 * Returns the css if there's valid one with @id, otherwise returns NULL.
5697 * Should be called under rcu_read_lock().
5698 */
5699struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5700{
5701	WARN_ON_ONCE(!rcu_read_lock_held());
5702	return idr_find(&ss->css_idr, id);
5703}
5704
5705/**
5706 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5707 * @path: path on the default hierarchy
5708 *
5709 * Find the cgroup at @path on the default hierarchy, increment its
5710 * reference count and return it.  Returns pointer to the found cgroup on
5711 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5712 * if @path points to a non-directory.
5713 */
5714struct cgroup *cgroup_get_from_path(const char *path)
5715{
5716	struct kernfs_node *kn;
5717	struct cgroup *cgrp;
5718
5719	mutex_lock(&cgroup_mutex);
5720
5721	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5722	if (kn) {
5723		if (kernfs_type(kn) == KERNFS_DIR) {
5724			cgrp = kn->priv;
5725			cgroup_get_live(cgrp);
5726		} else {
5727			cgrp = ERR_PTR(-ENOTDIR);
5728		}
5729		kernfs_put(kn);
5730	} else {
5731		cgrp = ERR_PTR(-ENOENT);
5732	}
5733
5734	mutex_unlock(&cgroup_mutex);
5735	return cgrp;
5736}
5737EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5738
5739/**
5740 * cgroup_get_from_fd - get a cgroup pointer from a fd
5741 * @fd: fd obtained by open(cgroup2_dir)
5742 *
5743 * Find the cgroup from a fd which should be obtained
5744 * by opening a cgroup directory.  Returns a pointer to the
5745 * cgroup on success. ERR_PTR is returned if the cgroup
5746 * cannot be found.
5747 */
5748struct cgroup *cgroup_get_from_fd(int fd)
5749{
5750	struct cgroup_subsys_state *css;
5751	struct cgroup *cgrp;
5752	struct file *f;
5753
5754	f = fget_raw(fd);
5755	if (!f)
5756		return ERR_PTR(-EBADF);
5757
5758	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5759	fput(f);
5760	if (IS_ERR(css))
5761		return ERR_CAST(css);
5762
5763	cgrp = css->cgroup;
5764	if (!cgroup_on_dfl(cgrp)) {
5765		cgroup_put(cgrp);
5766		return ERR_PTR(-EBADF);
5767	}
5768
5769	return cgrp;
5770}
5771EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5772
5773/*
5774 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5775 * definition in cgroup-defs.h.
5776 */
5777#ifdef CONFIG_SOCK_CGROUP_DATA
5778
5779#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5780
5781DEFINE_SPINLOCK(cgroup_sk_update_lock);
5782static bool cgroup_sk_alloc_disabled __read_mostly;
5783
5784void cgroup_sk_alloc_disable(void)
5785{
5786	if (cgroup_sk_alloc_disabled)
5787		return;
5788	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5789	cgroup_sk_alloc_disabled = true;
5790}
5791
5792#else
5793
5794#define cgroup_sk_alloc_disabled	false
5795
5796#endif
5797
5798void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5799{
5800	if (cgroup_sk_alloc_disabled)
5801		return;
5802
5803	/* Socket clone path */
5804	if (skcd->val) {
5805		/*
5806		 * We might be cloning a socket which is left in an empty
5807		 * cgroup and the cgroup might have already been rmdir'd.
5808		 * Don't use cgroup_get_live().
5809		 */
5810		cgroup_get(sock_cgroup_ptr(skcd));
5811		return;
5812	}
5813
5814	rcu_read_lock();
5815
5816	while (true) {
5817		struct css_set *cset;
5818
5819		cset = task_css_set(current);
5820		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5821			skcd->val = (unsigned long)cset->dfl_cgrp;
5822			break;
5823		}
5824		cpu_relax();
5825	}
5826
5827	rcu_read_unlock();
5828}
5829
5830void cgroup_sk_free(struct sock_cgroup_data *skcd)
5831{
5832	cgroup_put(sock_cgroup_ptr(skcd));
5833}
5834
5835#endif	/* CONFIG_SOCK_CGROUP_DATA */
5836
5837#ifdef CONFIG_CGROUP_BPF
5838int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5839		      enum bpf_attach_type type, u32 flags)
5840{
5841	int ret;
5842
5843	mutex_lock(&cgroup_mutex);
5844	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5845	mutex_unlock(&cgroup_mutex);
5846	return ret;
5847}
5848int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5849		      enum bpf_attach_type type, u32 flags)
5850{
5851	int ret;
5852
5853	mutex_lock(&cgroup_mutex);
5854	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5855	mutex_unlock(&cgroup_mutex);
5856	return ret;
5857}
5858int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5859		     union bpf_attr __user *uattr)
5860{
5861	int ret;
5862
5863	mutex_lock(&cgroup_mutex);
5864	ret = __cgroup_bpf_query(cgrp, attr, uattr);
5865	mutex_unlock(&cgroup_mutex);
5866	return ret;
5867}
5868#endif /* CONFIG_CGROUP_BPF */
5869
5870#ifdef CONFIG_SYSFS
5871static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5872				      ssize_t size, const char *prefix)
5873{
5874	struct cftype *cft;
5875	ssize_t ret = 0;
5876
5877	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5878		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5879			continue;
5880
5881		if (prefix)
5882			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5883
5884		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5885
5886		if (unlikely(ret >= size)) {
5887			WARN_ON(1);
5888			break;
5889		}
5890	}
5891
5892	return ret;
5893}
5894
5895static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5896			      char *buf)
5897{
5898	struct cgroup_subsys *ss;
5899	int ssid;
5900	ssize_t ret = 0;
5901
5902	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5903				     NULL);
5904
5905	for_each_subsys(ss, ssid)
5906		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5907					      PAGE_SIZE - ret,
5908					      cgroup_subsys_name[ssid]);
5909
5910	return ret;
5911}
5912static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5913
5914static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5915			     char *buf)
5916{
5917	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5918}
5919static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5920
5921static struct attribute *cgroup_sysfs_attrs[] = {
5922	&cgroup_delegate_attr.attr,
5923	&cgroup_features_attr.attr,
5924	NULL,
5925};
5926
5927static const struct attribute_group cgroup_sysfs_attr_group = {
5928	.attrs = cgroup_sysfs_attrs,
5929	.name = "cgroup",
5930};
5931
5932static int __init cgroup_sysfs_init(void)
5933{
5934	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5935}
5936subsys_initcall(cgroup_sysfs_init);
5937#endif /* CONFIG_SYSFS */