Loading...
1/*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/bio.h>
13#include <linux/mpage.h>
14#include <linux/writeback.h>
15#include <linux/blkdev.h>
16#include <linux/f2fs_fs.h>
17#include <linux/pagevec.h>
18#include <linux/swap.h>
19
20#include "f2fs.h"
21#include "node.h"
22#include "segment.h"
23#include <trace/events/f2fs.h>
24
25static struct kmem_cache *orphan_entry_slab;
26static struct kmem_cache *inode_entry_slab;
27
28/*
29 * We guarantee no failure on the returned page.
30 */
31struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32{
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35repeat:
36 page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41
42 SetPageUptodate(page);
43 return page;
44}
45
46/*
47 * We guarantee no failure on the returned page.
48 */
49struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50{
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53repeat:
54 page = grab_cache_page(mapping, index);
55 if (!page) {
56 cond_resched();
57 goto repeat;
58 }
59 if (PageUptodate(page))
60 goto out;
61
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
64 goto repeat;
65
66 lock_page(page);
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
69 goto repeat;
70 }
71out:
72 mark_page_accessed(page);
73 return page;
74}
75
76inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
77{
78 switch (type) {
79 case META_NAT:
80 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
81 case META_SIT:
82 return SIT_BLK_CNT(sbi);
83 case META_SSA:
84 case META_CP:
85 return 0;
86 default:
87 BUG();
88 }
89}
90
91/*
92 * Readahead CP/NAT/SIT/SSA pages
93 */
94int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
95{
96 block_t prev_blk_addr = 0;
97 struct page *page;
98 int blkno = start;
99 int max_blks = get_max_meta_blks(sbi, type);
100
101 struct f2fs_io_info fio = {
102 .type = META,
103 .rw = READ_SYNC | REQ_META | REQ_PRIO
104 };
105
106 for (; nrpages-- > 0; blkno++) {
107 block_t blk_addr;
108
109 switch (type) {
110 case META_NAT:
111 /* get nat block addr */
112 if (unlikely(blkno >= max_blks))
113 blkno = 0;
114 blk_addr = current_nat_addr(sbi,
115 blkno * NAT_ENTRY_PER_BLOCK);
116 break;
117 case META_SIT:
118 /* get sit block addr */
119 if (unlikely(blkno >= max_blks))
120 goto out;
121 blk_addr = current_sit_addr(sbi,
122 blkno * SIT_ENTRY_PER_BLOCK);
123 if (blkno != start && prev_blk_addr + 1 != blk_addr)
124 goto out;
125 prev_blk_addr = blk_addr;
126 break;
127 case META_SSA:
128 case META_CP:
129 /* get ssa/cp block addr */
130 blk_addr = blkno;
131 break;
132 default:
133 BUG();
134 }
135
136 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137 if (!page)
138 continue;
139 if (PageUptodate(page)) {
140 mark_page_accessed(page);
141 f2fs_put_page(page, 1);
142 continue;
143 }
144
145 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146 mark_page_accessed(page);
147 f2fs_put_page(page, 0);
148 }
149out:
150 f2fs_submit_merged_bio(sbi, META, READ);
151 return blkno - start;
152}
153
154static int f2fs_write_meta_page(struct page *page,
155 struct writeback_control *wbc)
156{
157 struct inode *inode = page->mapping->host;
158 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
159
160 if (unlikely(sbi->por_doing))
161 goto redirty_out;
162 if (wbc->for_reclaim)
163 goto redirty_out;
164
165 /* Should not write any meta pages, if any IO error was occurred */
166 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167 goto no_write;
168
169 f2fs_wait_on_page_writeback(page, META);
170 write_meta_page(sbi, page);
171no_write:
172 dec_page_count(sbi, F2FS_DIRTY_META);
173 unlock_page(page);
174 return 0;
175
176redirty_out:
177 dec_page_count(sbi, F2FS_DIRTY_META);
178 wbc->pages_skipped++;
179 account_page_redirty(page);
180 set_page_dirty(page);
181 return AOP_WRITEPAGE_ACTIVATE;
182}
183
184static int f2fs_write_meta_pages(struct address_space *mapping,
185 struct writeback_control *wbc)
186{
187 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
188 long diff, written;
189
190 /* collect a number of dirty meta pages and write together */
191 if (wbc->for_kupdate ||
192 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
193 goto skip_write;
194
195 /* if mounting is failed, skip writing node pages */
196 mutex_lock(&sbi->cp_mutex);
197 diff = nr_pages_to_write(sbi, META, wbc);
198 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
199 mutex_unlock(&sbi->cp_mutex);
200 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
201 return 0;
202
203skip_write:
204 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
205 return 0;
206}
207
208long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
209 long nr_to_write)
210{
211 struct address_space *mapping = META_MAPPING(sbi);
212 pgoff_t index = 0, end = LONG_MAX;
213 struct pagevec pvec;
214 long nwritten = 0;
215 struct writeback_control wbc = {
216 .for_reclaim = 0,
217 };
218
219 pagevec_init(&pvec, 0);
220
221 while (index <= end) {
222 int i, nr_pages;
223 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
224 PAGECACHE_TAG_DIRTY,
225 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
226 if (unlikely(nr_pages == 0))
227 break;
228
229 for (i = 0; i < nr_pages; i++) {
230 struct page *page = pvec.pages[i];
231
232 lock_page(page);
233
234 if (unlikely(page->mapping != mapping)) {
235continue_unlock:
236 unlock_page(page);
237 continue;
238 }
239 if (!PageDirty(page)) {
240 /* someone wrote it for us */
241 goto continue_unlock;
242 }
243
244 if (!clear_page_dirty_for_io(page))
245 goto continue_unlock;
246
247 if (f2fs_write_meta_page(page, &wbc)) {
248 unlock_page(page);
249 break;
250 }
251 nwritten++;
252 if (unlikely(nwritten >= nr_to_write))
253 break;
254 }
255 pagevec_release(&pvec);
256 cond_resched();
257 }
258
259 if (nwritten)
260 f2fs_submit_merged_bio(sbi, type, WRITE);
261
262 return nwritten;
263}
264
265static int f2fs_set_meta_page_dirty(struct page *page)
266{
267 struct address_space *mapping = page->mapping;
268 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
269
270 trace_f2fs_set_page_dirty(page, META);
271
272 SetPageUptodate(page);
273 if (!PageDirty(page)) {
274 __set_page_dirty_nobuffers(page);
275 inc_page_count(sbi, F2FS_DIRTY_META);
276 return 1;
277 }
278 return 0;
279}
280
281const struct address_space_operations f2fs_meta_aops = {
282 .writepage = f2fs_write_meta_page,
283 .writepages = f2fs_write_meta_pages,
284 .set_page_dirty = f2fs_set_meta_page_dirty,
285};
286
287int acquire_orphan_inode(struct f2fs_sb_info *sbi)
288{
289 int err = 0;
290
291 spin_lock(&sbi->orphan_inode_lock);
292 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
293 err = -ENOSPC;
294 else
295 sbi->n_orphans++;
296 spin_unlock(&sbi->orphan_inode_lock);
297
298 return err;
299}
300
301void release_orphan_inode(struct f2fs_sb_info *sbi)
302{
303 spin_lock(&sbi->orphan_inode_lock);
304 f2fs_bug_on(sbi->n_orphans == 0);
305 sbi->n_orphans--;
306 spin_unlock(&sbi->orphan_inode_lock);
307}
308
309void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
310{
311 struct list_head *head;
312 struct orphan_inode_entry *new, *orphan;
313
314 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
315 new->ino = ino;
316
317 spin_lock(&sbi->orphan_inode_lock);
318 head = &sbi->orphan_inode_list;
319 list_for_each_entry(orphan, head, list) {
320 if (orphan->ino == ino) {
321 spin_unlock(&sbi->orphan_inode_lock);
322 kmem_cache_free(orphan_entry_slab, new);
323 return;
324 }
325
326 if (orphan->ino > ino)
327 break;
328 }
329
330 /* add new orphan entry into list which is sorted by inode number */
331 list_add_tail(&new->list, &orphan->list);
332 spin_unlock(&sbi->orphan_inode_lock);
333}
334
335void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
336{
337 struct list_head *head;
338 struct orphan_inode_entry *orphan;
339
340 spin_lock(&sbi->orphan_inode_lock);
341 head = &sbi->orphan_inode_list;
342 list_for_each_entry(orphan, head, list) {
343 if (orphan->ino == ino) {
344 list_del(&orphan->list);
345 f2fs_bug_on(sbi->n_orphans == 0);
346 sbi->n_orphans--;
347 spin_unlock(&sbi->orphan_inode_lock);
348 kmem_cache_free(orphan_entry_slab, orphan);
349 return;
350 }
351 }
352 spin_unlock(&sbi->orphan_inode_lock);
353}
354
355static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
356{
357 struct inode *inode = f2fs_iget(sbi->sb, ino);
358 f2fs_bug_on(IS_ERR(inode));
359 clear_nlink(inode);
360
361 /* truncate all the data during iput */
362 iput(inode);
363}
364
365void recover_orphan_inodes(struct f2fs_sb_info *sbi)
366{
367 block_t start_blk, orphan_blkaddr, i, j;
368
369 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
370 return;
371
372 sbi->por_doing = true;
373 start_blk = __start_cp_addr(sbi) + 1;
374 orphan_blkaddr = __start_sum_addr(sbi) - 1;
375
376 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
377
378 for (i = 0; i < orphan_blkaddr; i++) {
379 struct page *page = get_meta_page(sbi, start_blk + i);
380 struct f2fs_orphan_block *orphan_blk;
381
382 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
383 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
384 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
385 recover_orphan_inode(sbi, ino);
386 }
387 f2fs_put_page(page, 1);
388 }
389 /* clear Orphan Flag */
390 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
391 sbi->por_doing = false;
392 return;
393}
394
395static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
396{
397 struct list_head *head;
398 struct f2fs_orphan_block *orphan_blk = NULL;
399 unsigned int nentries = 0;
400 unsigned short index;
401 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
402 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
403 struct page *page = NULL;
404 struct orphan_inode_entry *orphan = NULL;
405
406 for (index = 0; index < orphan_blocks; index++)
407 grab_meta_page(sbi, start_blk + index);
408
409 index = 1;
410 spin_lock(&sbi->orphan_inode_lock);
411 head = &sbi->orphan_inode_list;
412
413 /* loop for each orphan inode entry and write them in Jornal block */
414 list_for_each_entry(orphan, head, list) {
415 if (!page) {
416 page = find_get_page(META_MAPPING(sbi), start_blk++);
417 f2fs_bug_on(!page);
418 orphan_blk =
419 (struct f2fs_orphan_block *)page_address(page);
420 memset(orphan_blk, 0, sizeof(*orphan_blk));
421 f2fs_put_page(page, 0);
422 }
423
424 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
425
426 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
427 /*
428 * an orphan block is full of 1020 entries,
429 * then we need to flush current orphan blocks
430 * and bring another one in memory
431 */
432 orphan_blk->blk_addr = cpu_to_le16(index);
433 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
434 orphan_blk->entry_count = cpu_to_le32(nentries);
435 set_page_dirty(page);
436 f2fs_put_page(page, 1);
437 index++;
438 nentries = 0;
439 page = NULL;
440 }
441 }
442
443 if (page) {
444 orphan_blk->blk_addr = cpu_to_le16(index);
445 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
446 orphan_blk->entry_count = cpu_to_le32(nentries);
447 set_page_dirty(page);
448 f2fs_put_page(page, 1);
449 }
450
451 spin_unlock(&sbi->orphan_inode_lock);
452}
453
454static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
455 block_t cp_addr, unsigned long long *version)
456{
457 struct page *cp_page_1, *cp_page_2 = NULL;
458 unsigned long blk_size = sbi->blocksize;
459 struct f2fs_checkpoint *cp_block;
460 unsigned long long cur_version = 0, pre_version = 0;
461 size_t crc_offset;
462 __u32 crc = 0;
463
464 /* Read the 1st cp block in this CP pack */
465 cp_page_1 = get_meta_page(sbi, cp_addr);
466
467 /* get the version number */
468 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
469 crc_offset = le32_to_cpu(cp_block->checksum_offset);
470 if (crc_offset >= blk_size)
471 goto invalid_cp1;
472
473 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
474 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
475 goto invalid_cp1;
476
477 pre_version = cur_cp_version(cp_block);
478
479 /* Read the 2nd cp block in this CP pack */
480 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
481 cp_page_2 = get_meta_page(sbi, cp_addr);
482
483 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
484 crc_offset = le32_to_cpu(cp_block->checksum_offset);
485 if (crc_offset >= blk_size)
486 goto invalid_cp2;
487
488 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
489 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
490 goto invalid_cp2;
491
492 cur_version = cur_cp_version(cp_block);
493
494 if (cur_version == pre_version) {
495 *version = cur_version;
496 f2fs_put_page(cp_page_2, 1);
497 return cp_page_1;
498 }
499invalid_cp2:
500 f2fs_put_page(cp_page_2, 1);
501invalid_cp1:
502 f2fs_put_page(cp_page_1, 1);
503 return NULL;
504}
505
506int get_valid_checkpoint(struct f2fs_sb_info *sbi)
507{
508 struct f2fs_checkpoint *cp_block;
509 struct f2fs_super_block *fsb = sbi->raw_super;
510 struct page *cp1, *cp2, *cur_page;
511 unsigned long blk_size = sbi->blocksize;
512 unsigned long long cp1_version = 0, cp2_version = 0;
513 unsigned long long cp_start_blk_no;
514
515 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
516 if (!sbi->ckpt)
517 return -ENOMEM;
518 /*
519 * Finding out valid cp block involves read both
520 * sets( cp pack1 and cp pack 2)
521 */
522 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
523 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
524
525 /* The second checkpoint pack should start at the next segment */
526 cp_start_blk_no += ((unsigned long long)1) <<
527 le32_to_cpu(fsb->log_blocks_per_seg);
528 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
529
530 if (cp1 && cp2) {
531 if (ver_after(cp2_version, cp1_version))
532 cur_page = cp2;
533 else
534 cur_page = cp1;
535 } else if (cp1) {
536 cur_page = cp1;
537 } else if (cp2) {
538 cur_page = cp2;
539 } else {
540 goto fail_no_cp;
541 }
542
543 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
544 memcpy(sbi->ckpt, cp_block, blk_size);
545
546 f2fs_put_page(cp1, 1);
547 f2fs_put_page(cp2, 1);
548 return 0;
549
550fail_no_cp:
551 kfree(sbi->ckpt);
552 return -EINVAL;
553}
554
555static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
556{
557 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
558 struct list_head *head = &sbi->dir_inode_list;
559 struct dir_inode_entry *entry;
560
561 list_for_each_entry(entry, head, list)
562 if (unlikely(entry->inode == inode))
563 return -EEXIST;
564
565 list_add_tail(&new->list, head);
566 stat_inc_dirty_dir(sbi);
567 return 0;
568}
569
570void set_dirty_dir_page(struct inode *inode, struct page *page)
571{
572 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
573 struct dir_inode_entry *new;
574 int ret = 0;
575
576 if (!S_ISDIR(inode->i_mode))
577 return;
578
579 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
580 new->inode = inode;
581 INIT_LIST_HEAD(&new->list);
582
583 spin_lock(&sbi->dir_inode_lock);
584 ret = __add_dirty_inode(inode, new);
585 inode_inc_dirty_dents(inode);
586 SetPagePrivate(page);
587 spin_unlock(&sbi->dir_inode_lock);
588
589 if (ret)
590 kmem_cache_free(inode_entry_slab, new);
591}
592
593void add_dirty_dir_inode(struct inode *inode)
594{
595 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
596 struct dir_inode_entry *new =
597 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
598 int ret = 0;
599
600 new->inode = inode;
601 INIT_LIST_HEAD(&new->list);
602
603 spin_lock(&sbi->dir_inode_lock);
604 ret = __add_dirty_inode(inode, new);
605 spin_unlock(&sbi->dir_inode_lock);
606
607 if (ret)
608 kmem_cache_free(inode_entry_slab, new);
609}
610
611void remove_dirty_dir_inode(struct inode *inode)
612{
613 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
614 struct list_head *head;
615 struct dir_inode_entry *entry;
616
617 if (!S_ISDIR(inode->i_mode))
618 return;
619
620 spin_lock(&sbi->dir_inode_lock);
621 if (get_dirty_dents(inode)) {
622 spin_unlock(&sbi->dir_inode_lock);
623 return;
624 }
625
626 head = &sbi->dir_inode_list;
627 list_for_each_entry(entry, head, list) {
628 if (entry->inode == inode) {
629 list_del(&entry->list);
630 stat_dec_dirty_dir(sbi);
631 spin_unlock(&sbi->dir_inode_lock);
632 kmem_cache_free(inode_entry_slab, entry);
633 goto done;
634 }
635 }
636 spin_unlock(&sbi->dir_inode_lock);
637
638done:
639 /* Only from the recovery routine */
640 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
641 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
642 iput(inode);
643 }
644}
645
646struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
647{
648
649 struct list_head *head;
650 struct inode *inode = NULL;
651 struct dir_inode_entry *entry;
652
653 spin_lock(&sbi->dir_inode_lock);
654
655 head = &sbi->dir_inode_list;
656 list_for_each_entry(entry, head, list) {
657 if (entry->inode->i_ino == ino) {
658 inode = entry->inode;
659 break;
660 }
661 }
662 spin_unlock(&sbi->dir_inode_lock);
663 return inode;
664}
665
666void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
667{
668 struct list_head *head;
669 struct dir_inode_entry *entry;
670 struct inode *inode;
671retry:
672 spin_lock(&sbi->dir_inode_lock);
673
674 head = &sbi->dir_inode_list;
675 if (list_empty(head)) {
676 spin_unlock(&sbi->dir_inode_lock);
677 return;
678 }
679 entry = list_entry(head->next, struct dir_inode_entry, list);
680 inode = igrab(entry->inode);
681 spin_unlock(&sbi->dir_inode_lock);
682 if (inode) {
683 filemap_fdatawrite(inode->i_mapping);
684 iput(inode);
685 } else {
686 /*
687 * We should submit bio, since it exists several
688 * wribacking dentry pages in the freeing inode.
689 */
690 f2fs_submit_merged_bio(sbi, DATA, WRITE);
691 }
692 goto retry;
693}
694
695/*
696 * Freeze all the FS-operations for checkpoint.
697 */
698static void block_operations(struct f2fs_sb_info *sbi)
699{
700 struct writeback_control wbc = {
701 .sync_mode = WB_SYNC_ALL,
702 .nr_to_write = LONG_MAX,
703 .for_reclaim = 0,
704 };
705 struct blk_plug plug;
706
707 blk_start_plug(&plug);
708
709retry_flush_dents:
710 f2fs_lock_all(sbi);
711 /* write all the dirty dentry pages */
712 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
713 f2fs_unlock_all(sbi);
714 sync_dirty_dir_inodes(sbi);
715 goto retry_flush_dents;
716 }
717
718 /*
719 * POR: we should ensure that there is no dirty node pages
720 * until finishing nat/sit flush.
721 */
722retry_flush_nodes:
723 mutex_lock(&sbi->node_write);
724
725 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
726 mutex_unlock(&sbi->node_write);
727 sync_node_pages(sbi, 0, &wbc);
728 goto retry_flush_nodes;
729 }
730 blk_finish_plug(&plug);
731}
732
733static void unblock_operations(struct f2fs_sb_info *sbi)
734{
735 mutex_unlock(&sbi->node_write);
736 f2fs_unlock_all(sbi);
737}
738
739static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
740{
741 DEFINE_WAIT(wait);
742
743 for (;;) {
744 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
745
746 if (!get_pages(sbi, F2FS_WRITEBACK))
747 break;
748
749 io_schedule();
750 }
751 finish_wait(&sbi->cp_wait, &wait);
752}
753
754static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
755{
756 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
757 nid_t last_nid = 0;
758 block_t start_blk;
759 struct page *cp_page;
760 unsigned int data_sum_blocks, orphan_blocks;
761 __u32 crc32 = 0;
762 void *kaddr;
763 int i;
764
765 /* Flush all the NAT/SIT pages */
766 while (get_pages(sbi, F2FS_DIRTY_META))
767 sync_meta_pages(sbi, META, LONG_MAX);
768
769 next_free_nid(sbi, &last_nid);
770
771 /*
772 * modify checkpoint
773 * version number is already updated
774 */
775 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
776 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
777 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
778 for (i = 0; i < 3; i++) {
779 ckpt->cur_node_segno[i] =
780 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
781 ckpt->cur_node_blkoff[i] =
782 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
783 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
784 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
785 }
786 for (i = 0; i < 3; i++) {
787 ckpt->cur_data_segno[i] =
788 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
789 ckpt->cur_data_blkoff[i] =
790 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
791 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
792 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
793 }
794
795 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
796 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
797 ckpt->next_free_nid = cpu_to_le32(last_nid);
798
799 /* 2 cp + n data seg summary + orphan inode blocks */
800 data_sum_blocks = npages_for_summary_flush(sbi);
801 if (data_sum_blocks < 3)
802 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
803 else
804 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
805
806 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
807 / F2FS_ORPHANS_PER_BLOCK;
808 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
809
810 if (is_umount) {
811 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
812 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
813 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
814 } else {
815 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
816 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
817 data_sum_blocks + orphan_blocks);
818 }
819
820 if (sbi->n_orphans)
821 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
822 else
823 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
824
825 /* update SIT/NAT bitmap */
826 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
827 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
828
829 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
830 *((__le32 *)((unsigned char *)ckpt +
831 le32_to_cpu(ckpt->checksum_offset)))
832 = cpu_to_le32(crc32);
833
834 start_blk = __start_cp_addr(sbi);
835
836 /* write out checkpoint buffer at block 0 */
837 cp_page = grab_meta_page(sbi, start_blk++);
838 kaddr = page_address(cp_page);
839 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
840 set_page_dirty(cp_page);
841 f2fs_put_page(cp_page, 1);
842
843 if (sbi->n_orphans) {
844 write_orphan_inodes(sbi, start_blk);
845 start_blk += orphan_blocks;
846 }
847
848 write_data_summaries(sbi, start_blk);
849 start_blk += data_sum_blocks;
850 if (is_umount) {
851 write_node_summaries(sbi, start_blk);
852 start_blk += NR_CURSEG_NODE_TYPE;
853 }
854
855 /* writeout checkpoint block */
856 cp_page = grab_meta_page(sbi, start_blk);
857 kaddr = page_address(cp_page);
858 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
859 set_page_dirty(cp_page);
860 f2fs_put_page(cp_page, 1);
861
862 /* wait for previous submitted node/meta pages writeback */
863 wait_on_all_pages_writeback(sbi);
864
865 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
866 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
867
868 /* update user_block_counts */
869 sbi->last_valid_block_count = sbi->total_valid_block_count;
870 sbi->alloc_valid_block_count = 0;
871
872 /* Here, we only have one bio having CP pack */
873 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
874
875 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
876 clear_prefree_segments(sbi);
877 F2FS_RESET_SB_DIRT(sbi);
878 }
879}
880
881/*
882 * We guarantee that this checkpoint procedure should not fail.
883 */
884void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
885{
886 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
887 unsigned long long ckpt_ver;
888
889 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
890
891 mutex_lock(&sbi->cp_mutex);
892 block_operations(sbi);
893
894 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
895
896 f2fs_submit_merged_bio(sbi, DATA, WRITE);
897 f2fs_submit_merged_bio(sbi, NODE, WRITE);
898 f2fs_submit_merged_bio(sbi, META, WRITE);
899
900 /*
901 * update checkpoint pack index
902 * Increase the version number so that
903 * SIT entries and seg summaries are written at correct place
904 */
905 ckpt_ver = cur_cp_version(ckpt);
906 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
907
908 /* write cached NAT/SIT entries to NAT/SIT area */
909 flush_nat_entries(sbi);
910 flush_sit_entries(sbi);
911
912 /* unlock all the fs_lock[] in do_checkpoint() */
913 do_checkpoint(sbi, is_umount);
914
915 unblock_operations(sbi);
916 mutex_unlock(&sbi->cp_mutex);
917
918 stat_inc_cp_count(sbi->stat_info);
919 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
920}
921
922void init_orphan_info(struct f2fs_sb_info *sbi)
923{
924 spin_lock_init(&sbi->orphan_inode_lock);
925 INIT_LIST_HEAD(&sbi->orphan_inode_list);
926 sbi->n_orphans = 0;
927 /*
928 * considering 512 blocks in a segment 8 blocks are needed for cp
929 * and log segment summaries. Remaining blocks are used to keep
930 * orphan entries with the limitation one reserved segment
931 * for cp pack we can have max 1020*504 orphan entries
932 */
933 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
934 * F2FS_ORPHANS_PER_BLOCK;
935}
936
937int __init create_checkpoint_caches(void)
938{
939 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
940 sizeof(struct orphan_inode_entry));
941 if (!orphan_entry_slab)
942 return -ENOMEM;
943 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
944 sizeof(struct dir_inode_entry));
945 if (!inode_entry_slab) {
946 kmem_cache_destroy(orphan_entry_slab);
947 return -ENOMEM;
948 }
949 return 0;
950}
951
952void destroy_checkpoint_caches(void)
953{
954 kmem_cache_destroy(orphan_entry_slab);
955 kmem_cache_destroy(inode_entry_slab);
956}
1/*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/bio.h>
13#include <linux/mpage.h>
14#include <linux/writeback.h>
15#include <linux/blkdev.h>
16#include <linux/f2fs_fs.h>
17#include <linux/pagevec.h>
18#include <linux/swap.h>
19
20#include "f2fs.h"
21#include "node.h"
22#include "segment.h"
23#include "trace.h"
24#include <trace/events/f2fs.h>
25
26static struct kmem_cache *ino_entry_slab;
27struct kmem_cache *inode_entry_slab;
28
29void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30{
31 set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 if (!end_io)
33 f2fs_flush_merged_writes(sbi);
34}
35
36/*
37 * We guarantee no failure on the returned page.
38 */
39struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40{
41 struct address_space *mapping = META_MAPPING(sbi);
42 struct page *page = NULL;
43repeat:
44 page = f2fs_grab_cache_page(mapping, index, false);
45 if (!page) {
46 cond_resched();
47 goto repeat;
48 }
49 f2fs_wait_on_page_writeback(page, META, true);
50 if (!PageUptodate(page))
51 SetPageUptodate(page);
52 return page;
53}
54
55/*
56 * We guarantee no failure on the returned page.
57 */
58static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 bool is_meta)
60{
61 struct address_space *mapping = META_MAPPING(sbi);
62 struct page *page;
63 struct f2fs_io_info fio = {
64 .sbi = sbi,
65 .type = META,
66 .op = REQ_OP_READ,
67 .op_flags = REQ_META | REQ_PRIO,
68 .old_blkaddr = index,
69 .new_blkaddr = index,
70 .encrypted_page = NULL,
71 .is_meta = is_meta,
72 };
73
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76repeat:
77 page = f2fs_grab_cache_page(mapping, index, false);
78 if (!page) {
79 cond_resched();
80 goto repeat;
81 }
82 if (PageUptodate(page))
83 goto out;
84
85 fio.page = page;
86
87 if (f2fs_submit_page_bio(&fio)) {
88 f2fs_put_page(page, 1);
89 goto repeat;
90 }
91
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
96 }
97
98 /*
99 * if there is any IO error when accessing device, make our filesystem
100 * readonly and make sure do not write checkpoint with non-uptodate
101 * meta page.
102 */
103 if (unlikely(!PageUptodate(page)))
104 f2fs_stop_checkpoint(sbi, false);
105out:
106 return page;
107}
108
109struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110{
111 return __get_meta_page(sbi, index, true);
112}
113
114/* for POR only */
115struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116{
117 return __get_meta_page(sbi, index, false);
118}
119
120bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121{
122 switch (type) {
123 case META_NAT:
124 break;
125 case META_SIT:
126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 return false;
128 break;
129 case META_SSA:
130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 blkaddr < SM_I(sbi)->ssa_blkaddr))
132 return false;
133 break;
134 case META_CP:
135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 blkaddr < __start_cp_addr(sbi)))
137 return false;
138 break;
139 case META_POR:
140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 blkaddr < MAIN_BLKADDR(sbi)))
142 return false;
143 break;
144 default:
145 BUG();
146 }
147
148 return true;
149}
150
151/*
152 * Readahead CP/NAT/SIT/SSA pages
153 */
154int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 int type, bool sync)
156{
157 struct page *page;
158 block_t blkno = start;
159 struct f2fs_io_info fio = {
160 .sbi = sbi,
161 .type = META,
162 .op = REQ_OP_READ,
163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 .encrypted_page = NULL,
165 .in_list = false,
166 .is_meta = (type != META_POR),
167 };
168 struct blk_plug plug;
169
170 if (unlikely(type == META_POR))
171 fio.op_flags &= ~REQ_META;
172
173 blk_start_plug(&plug);
174 for (; nrpages-- > 0; blkno++) {
175
176 if (!is_valid_blkaddr(sbi, blkno, type))
177 goto out;
178
179 switch (type) {
180 case META_NAT:
181 if (unlikely(blkno >=
182 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
183 blkno = 0;
184 /* get nat block addr */
185 fio.new_blkaddr = current_nat_addr(sbi,
186 blkno * NAT_ENTRY_PER_BLOCK);
187 break;
188 case META_SIT:
189 /* get sit block addr */
190 fio.new_blkaddr = current_sit_addr(sbi,
191 blkno * SIT_ENTRY_PER_BLOCK);
192 break;
193 case META_SSA:
194 case META_CP:
195 case META_POR:
196 fio.new_blkaddr = blkno;
197 break;
198 default:
199 BUG();
200 }
201
202 page = f2fs_grab_cache_page(META_MAPPING(sbi),
203 fio.new_blkaddr, false);
204 if (!page)
205 continue;
206 if (PageUptodate(page)) {
207 f2fs_put_page(page, 1);
208 continue;
209 }
210
211 fio.page = page;
212 f2fs_submit_page_bio(&fio);
213 f2fs_put_page(page, 0);
214 }
215out:
216 blk_finish_plug(&plug);
217 return blkno - start;
218}
219
220void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221{
222 struct page *page;
223 bool readahead = false;
224
225 page = find_get_page(META_MAPPING(sbi), index);
226 if (!page || !PageUptodate(page))
227 readahead = true;
228 f2fs_put_page(page, 0);
229
230 if (readahead)
231 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232}
233
234static int __f2fs_write_meta_page(struct page *page,
235 struct writeback_control *wbc,
236 enum iostat_type io_type)
237{
238 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
239
240 trace_f2fs_writepage(page, META);
241
242 if (unlikely(f2fs_cp_error(sbi))) {
243 dec_page_count(sbi, F2FS_DIRTY_META);
244 unlock_page(page);
245 return 0;
246 }
247 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
248 goto redirty_out;
249 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
250 goto redirty_out;
251
252 write_meta_page(sbi, page, io_type);
253 dec_page_count(sbi, F2FS_DIRTY_META);
254
255 if (wbc->for_reclaim)
256 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
257 0, page->index, META);
258
259 unlock_page(page);
260
261 if (unlikely(f2fs_cp_error(sbi)))
262 f2fs_submit_merged_write(sbi, META);
263
264 return 0;
265
266redirty_out:
267 redirty_page_for_writepage(wbc, page);
268 return AOP_WRITEPAGE_ACTIVATE;
269}
270
271static int f2fs_write_meta_page(struct page *page,
272 struct writeback_control *wbc)
273{
274 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
275}
276
277static int f2fs_write_meta_pages(struct address_space *mapping,
278 struct writeback_control *wbc)
279{
280 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
281 long diff, written;
282
283 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
284 goto skip_write;
285
286 /* collect a number of dirty meta pages and write together */
287 if (wbc->for_kupdate ||
288 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
289 goto skip_write;
290
291 /* if locked failed, cp will flush dirty pages instead */
292 if (!mutex_trylock(&sbi->cp_mutex))
293 goto skip_write;
294
295 trace_f2fs_writepages(mapping->host, wbc, META);
296 diff = nr_pages_to_write(sbi, META, wbc);
297 written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
298 mutex_unlock(&sbi->cp_mutex);
299 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
300 return 0;
301
302skip_write:
303 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
304 trace_f2fs_writepages(mapping->host, wbc, META);
305 return 0;
306}
307
308long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
309 long nr_to_write, enum iostat_type io_type)
310{
311 struct address_space *mapping = META_MAPPING(sbi);
312 pgoff_t index = 0, prev = ULONG_MAX;
313 struct pagevec pvec;
314 long nwritten = 0;
315 int nr_pages;
316 struct writeback_control wbc = {
317 .for_reclaim = 0,
318 };
319 struct blk_plug plug;
320
321 pagevec_init(&pvec);
322
323 blk_start_plug(&plug);
324
325 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
326 PAGECACHE_TAG_DIRTY))) {
327 int i;
328
329 for (i = 0; i < nr_pages; i++) {
330 struct page *page = pvec.pages[i];
331
332 if (prev == ULONG_MAX)
333 prev = page->index - 1;
334 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
335 pagevec_release(&pvec);
336 goto stop;
337 }
338
339 lock_page(page);
340
341 if (unlikely(page->mapping != mapping)) {
342continue_unlock:
343 unlock_page(page);
344 continue;
345 }
346 if (!PageDirty(page)) {
347 /* someone wrote it for us */
348 goto continue_unlock;
349 }
350
351 f2fs_wait_on_page_writeback(page, META, true);
352
353 BUG_ON(PageWriteback(page));
354 if (!clear_page_dirty_for_io(page))
355 goto continue_unlock;
356
357 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
358 unlock_page(page);
359 break;
360 }
361 nwritten++;
362 prev = page->index;
363 if (unlikely(nwritten >= nr_to_write))
364 break;
365 }
366 pagevec_release(&pvec);
367 cond_resched();
368 }
369stop:
370 if (nwritten)
371 f2fs_submit_merged_write(sbi, type);
372
373 blk_finish_plug(&plug);
374
375 return nwritten;
376}
377
378static int f2fs_set_meta_page_dirty(struct page *page)
379{
380 trace_f2fs_set_page_dirty(page, META);
381
382 if (!PageUptodate(page))
383 SetPageUptodate(page);
384 if (!PageDirty(page)) {
385 f2fs_set_page_dirty_nobuffers(page);
386 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
387 SetPagePrivate(page);
388 f2fs_trace_pid(page);
389 return 1;
390 }
391 return 0;
392}
393
394const struct address_space_operations f2fs_meta_aops = {
395 .writepage = f2fs_write_meta_page,
396 .writepages = f2fs_write_meta_pages,
397 .set_page_dirty = f2fs_set_meta_page_dirty,
398 .invalidatepage = f2fs_invalidate_page,
399 .releasepage = f2fs_release_page,
400#ifdef CONFIG_MIGRATION
401 .migratepage = f2fs_migrate_page,
402#endif
403};
404
405static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
406 unsigned int devidx, int type)
407{
408 struct inode_management *im = &sbi->im[type];
409 struct ino_entry *e, *tmp;
410
411 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
412
413 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
414
415 spin_lock(&im->ino_lock);
416 e = radix_tree_lookup(&im->ino_root, ino);
417 if (!e) {
418 e = tmp;
419 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
420 f2fs_bug_on(sbi, 1);
421
422 memset(e, 0, sizeof(struct ino_entry));
423 e->ino = ino;
424
425 list_add_tail(&e->list, &im->ino_list);
426 if (type != ORPHAN_INO)
427 im->ino_num++;
428 }
429
430 if (type == FLUSH_INO)
431 f2fs_set_bit(devidx, (char *)&e->dirty_device);
432
433 spin_unlock(&im->ino_lock);
434 radix_tree_preload_end();
435
436 if (e != tmp)
437 kmem_cache_free(ino_entry_slab, tmp);
438}
439
440static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
441{
442 struct inode_management *im = &sbi->im[type];
443 struct ino_entry *e;
444
445 spin_lock(&im->ino_lock);
446 e = radix_tree_lookup(&im->ino_root, ino);
447 if (e) {
448 list_del(&e->list);
449 radix_tree_delete(&im->ino_root, ino);
450 im->ino_num--;
451 spin_unlock(&im->ino_lock);
452 kmem_cache_free(ino_entry_slab, e);
453 return;
454 }
455 spin_unlock(&im->ino_lock);
456}
457
458void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
459{
460 /* add new dirty ino entry into list */
461 __add_ino_entry(sbi, ino, 0, type);
462}
463
464void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
465{
466 /* remove dirty ino entry from list */
467 __remove_ino_entry(sbi, ino, type);
468}
469
470/* mode should be APPEND_INO or UPDATE_INO */
471bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
472{
473 struct inode_management *im = &sbi->im[mode];
474 struct ino_entry *e;
475
476 spin_lock(&im->ino_lock);
477 e = radix_tree_lookup(&im->ino_root, ino);
478 spin_unlock(&im->ino_lock);
479 return e ? true : false;
480}
481
482void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
483{
484 struct ino_entry *e, *tmp;
485 int i;
486
487 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
488 struct inode_management *im = &sbi->im[i];
489
490 spin_lock(&im->ino_lock);
491 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
492 list_del(&e->list);
493 radix_tree_delete(&im->ino_root, e->ino);
494 kmem_cache_free(ino_entry_slab, e);
495 im->ino_num--;
496 }
497 spin_unlock(&im->ino_lock);
498 }
499}
500
501void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
502 unsigned int devidx, int type)
503{
504 __add_ino_entry(sbi, ino, devidx, type);
505}
506
507bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
508 unsigned int devidx, int type)
509{
510 struct inode_management *im = &sbi->im[type];
511 struct ino_entry *e;
512 bool is_dirty = false;
513
514 spin_lock(&im->ino_lock);
515 e = radix_tree_lookup(&im->ino_root, ino);
516 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
517 is_dirty = true;
518 spin_unlock(&im->ino_lock);
519 return is_dirty;
520}
521
522int acquire_orphan_inode(struct f2fs_sb_info *sbi)
523{
524 struct inode_management *im = &sbi->im[ORPHAN_INO];
525 int err = 0;
526
527 spin_lock(&im->ino_lock);
528
529#ifdef CONFIG_F2FS_FAULT_INJECTION
530 if (time_to_inject(sbi, FAULT_ORPHAN)) {
531 spin_unlock(&im->ino_lock);
532 f2fs_show_injection_info(FAULT_ORPHAN);
533 return -ENOSPC;
534 }
535#endif
536 if (unlikely(im->ino_num >= sbi->max_orphans))
537 err = -ENOSPC;
538 else
539 im->ino_num++;
540 spin_unlock(&im->ino_lock);
541
542 return err;
543}
544
545void release_orphan_inode(struct f2fs_sb_info *sbi)
546{
547 struct inode_management *im = &sbi->im[ORPHAN_INO];
548
549 spin_lock(&im->ino_lock);
550 f2fs_bug_on(sbi, im->ino_num == 0);
551 im->ino_num--;
552 spin_unlock(&im->ino_lock);
553}
554
555void add_orphan_inode(struct inode *inode)
556{
557 /* add new orphan ino entry into list */
558 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
559 update_inode_page(inode);
560}
561
562void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
563{
564 /* remove orphan entry from orphan list */
565 __remove_ino_entry(sbi, ino, ORPHAN_INO);
566}
567
568static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
569{
570 struct inode *inode;
571 struct node_info ni;
572 int err = acquire_orphan_inode(sbi);
573
574 if (err)
575 goto err_out;
576
577 __add_ino_entry(sbi, ino, 0, ORPHAN_INO);
578
579 inode = f2fs_iget_retry(sbi->sb, ino);
580 if (IS_ERR(inode)) {
581 /*
582 * there should be a bug that we can't find the entry
583 * to orphan inode.
584 */
585 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
586 return PTR_ERR(inode);
587 }
588
589 err = dquot_initialize(inode);
590 if (err)
591 goto err_out;
592
593 dquot_initialize(inode);
594 clear_nlink(inode);
595
596 /* truncate all the data during iput */
597 iput(inode);
598
599 get_node_info(sbi, ino, &ni);
600
601 /* ENOMEM was fully retried in f2fs_evict_inode. */
602 if (ni.blk_addr != NULL_ADDR) {
603 err = -EIO;
604 goto err_out;
605 }
606 __remove_ino_entry(sbi, ino, ORPHAN_INO);
607 return 0;
608
609err_out:
610 set_sbi_flag(sbi, SBI_NEED_FSCK);
611 f2fs_msg(sbi->sb, KERN_WARNING,
612 "%s: orphan failed (ino=%x), run fsck to fix.",
613 __func__, ino);
614 return err;
615}
616
617int recover_orphan_inodes(struct f2fs_sb_info *sbi)
618{
619 block_t start_blk, orphan_blocks, i, j;
620 unsigned int s_flags = sbi->sb->s_flags;
621 int err = 0;
622#ifdef CONFIG_QUOTA
623 int quota_enabled;
624#endif
625
626 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
627 return 0;
628
629 if (s_flags & SB_RDONLY) {
630 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
631 sbi->sb->s_flags &= ~SB_RDONLY;
632 }
633
634#ifdef CONFIG_QUOTA
635 /* Needed for iput() to work correctly and not trash data */
636 sbi->sb->s_flags |= SB_ACTIVE;
637
638 /* Turn on quotas so that they are updated correctly */
639 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
640#endif
641
642 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
643 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
644
645 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
646
647 for (i = 0; i < orphan_blocks; i++) {
648 struct page *page = get_meta_page(sbi, start_blk + i);
649 struct f2fs_orphan_block *orphan_blk;
650
651 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
652 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
653 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
654 err = recover_orphan_inode(sbi, ino);
655 if (err) {
656 f2fs_put_page(page, 1);
657 goto out;
658 }
659 }
660 f2fs_put_page(page, 1);
661 }
662 /* clear Orphan Flag */
663 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
664out:
665#ifdef CONFIG_QUOTA
666 /* Turn quotas off */
667 if (quota_enabled)
668 f2fs_quota_off_umount(sbi->sb);
669#endif
670 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
671
672 return err;
673}
674
675static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
676{
677 struct list_head *head;
678 struct f2fs_orphan_block *orphan_blk = NULL;
679 unsigned int nentries = 0;
680 unsigned short index = 1;
681 unsigned short orphan_blocks;
682 struct page *page = NULL;
683 struct ino_entry *orphan = NULL;
684 struct inode_management *im = &sbi->im[ORPHAN_INO];
685
686 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
687
688 /*
689 * we don't need to do spin_lock(&im->ino_lock) here, since all the
690 * orphan inode operations are covered under f2fs_lock_op().
691 * And, spin_lock should be avoided due to page operations below.
692 */
693 head = &im->ino_list;
694
695 /* loop for each orphan inode entry and write them in Jornal block */
696 list_for_each_entry(orphan, head, list) {
697 if (!page) {
698 page = grab_meta_page(sbi, start_blk++);
699 orphan_blk =
700 (struct f2fs_orphan_block *)page_address(page);
701 memset(orphan_blk, 0, sizeof(*orphan_blk));
702 }
703
704 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
705
706 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
707 /*
708 * an orphan block is full of 1020 entries,
709 * then we need to flush current orphan blocks
710 * and bring another one in memory
711 */
712 orphan_blk->blk_addr = cpu_to_le16(index);
713 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
714 orphan_blk->entry_count = cpu_to_le32(nentries);
715 set_page_dirty(page);
716 f2fs_put_page(page, 1);
717 index++;
718 nentries = 0;
719 page = NULL;
720 }
721 }
722
723 if (page) {
724 orphan_blk->blk_addr = cpu_to_le16(index);
725 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
726 orphan_blk->entry_count = cpu_to_le32(nentries);
727 set_page_dirty(page);
728 f2fs_put_page(page, 1);
729 }
730}
731
732static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
733 struct f2fs_checkpoint **cp_block, struct page **cp_page,
734 unsigned long long *version)
735{
736 unsigned long blk_size = sbi->blocksize;
737 size_t crc_offset = 0;
738 __u32 crc = 0;
739
740 *cp_page = get_meta_page(sbi, cp_addr);
741 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
742
743 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
744 if (crc_offset > (blk_size - sizeof(__le32))) {
745 f2fs_msg(sbi->sb, KERN_WARNING,
746 "invalid crc_offset: %zu", crc_offset);
747 return -EINVAL;
748 }
749
750 crc = cur_cp_crc(*cp_block);
751 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
752 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
753 return -EINVAL;
754 }
755
756 *version = cur_cp_version(*cp_block);
757 return 0;
758}
759
760static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
761 block_t cp_addr, unsigned long long *version)
762{
763 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
764 struct f2fs_checkpoint *cp_block = NULL;
765 unsigned long long cur_version = 0, pre_version = 0;
766 int err;
767
768 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
769 &cp_page_1, version);
770 if (err)
771 goto invalid_cp1;
772 pre_version = *version;
773
774 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
775 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
776 &cp_page_2, version);
777 if (err)
778 goto invalid_cp2;
779 cur_version = *version;
780
781 if (cur_version == pre_version) {
782 *version = cur_version;
783 f2fs_put_page(cp_page_2, 1);
784 return cp_page_1;
785 }
786invalid_cp2:
787 f2fs_put_page(cp_page_2, 1);
788invalid_cp1:
789 f2fs_put_page(cp_page_1, 1);
790 return NULL;
791}
792
793int get_valid_checkpoint(struct f2fs_sb_info *sbi)
794{
795 struct f2fs_checkpoint *cp_block;
796 struct f2fs_super_block *fsb = sbi->raw_super;
797 struct page *cp1, *cp2, *cur_page;
798 unsigned long blk_size = sbi->blocksize;
799 unsigned long long cp1_version = 0, cp2_version = 0;
800 unsigned long long cp_start_blk_no;
801 unsigned int cp_blks = 1 + __cp_payload(sbi);
802 block_t cp_blk_no;
803 int i;
804
805 sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL);
806 if (!sbi->ckpt)
807 return -ENOMEM;
808 /*
809 * Finding out valid cp block involves read both
810 * sets( cp pack1 and cp pack 2)
811 */
812 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
813 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
814
815 /* The second checkpoint pack should start at the next segment */
816 cp_start_blk_no += ((unsigned long long)1) <<
817 le32_to_cpu(fsb->log_blocks_per_seg);
818 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
819
820 if (cp1 && cp2) {
821 if (ver_after(cp2_version, cp1_version))
822 cur_page = cp2;
823 else
824 cur_page = cp1;
825 } else if (cp1) {
826 cur_page = cp1;
827 } else if (cp2) {
828 cur_page = cp2;
829 } else {
830 goto fail_no_cp;
831 }
832
833 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
834 memcpy(sbi->ckpt, cp_block, blk_size);
835
836 /* Sanity checking of checkpoint */
837 if (sanity_check_ckpt(sbi))
838 goto free_fail_no_cp;
839
840 if (cur_page == cp1)
841 sbi->cur_cp_pack = 1;
842 else
843 sbi->cur_cp_pack = 2;
844
845 if (cp_blks <= 1)
846 goto done;
847
848 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
849 if (cur_page == cp2)
850 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
851
852 for (i = 1; i < cp_blks; i++) {
853 void *sit_bitmap_ptr;
854 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
855
856 cur_page = get_meta_page(sbi, cp_blk_no + i);
857 sit_bitmap_ptr = page_address(cur_page);
858 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
859 f2fs_put_page(cur_page, 1);
860 }
861done:
862 f2fs_put_page(cp1, 1);
863 f2fs_put_page(cp2, 1);
864 return 0;
865
866free_fail_no_cp:
867 f2fs_put_page(cp1, 1);
868 f2fs_put_page(cp2, 1);
869fail_no_cp:
870 kfree(sbi->ckpt);
871 return -EINVAL;
872}
873
874static void __add_dirty_inode(struct inode *inode, enum inode_type type)
875{
876 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
877 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
878
879 if (is_inode_flag_set(inode, flag))
880 return;
881
882 set_inode_flag(inode, flag);
883 if (!f2fs_is_volatile_file(inode))
884 list_add_tail(&F2FS_I(inode)->dirty_list,
885 &sbi->inode_list[type]);
886 stat_inc_dirty_inode(sbi, type);
887}
888
889static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
890{
891 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
892
893 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
894 return;
895
896 list_del_init(&F2FS_I(inode)->dirty_list);
897 clear_inode_flag(inode, flag);
898 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
899}
900
901void update_dirty_page(struct inode *inode, struct page *page)
902{
903 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
904 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
905
906 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
907 !S_ISLNK(inode->i_mode))
908 return;
909
910 spin_lock(&sbi->inode_lock[type]);
911 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
912 __add_dirty_inode(inode, type);
913 inode_inc_dirty_pages(inode);
914 spin_unlock(&sbi->inode_lock[type]);
915
916 SetPagePrivate(page);
917 f2fs_trace_pid(page);
918}
919
920void remove_dirty_inode(struct inode *inode)
921{
922 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
923 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
924
925 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
926 !S_ISLNK(inode->i_mode))
927 return;
928
929 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
930 return;
931
932 spin_lock(&sbi->inode_lock[type]);
933 __remove_dirty_inode(inode, type);
934 spin_unlock(&sbi->inode_lock[type]);
935}
936
937int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
938{
939 struct list_head *head;
940 struct inode *inode;
941 struct f2fs_inode_info *fi;
942 bool is_dir = (type == DIR_INODE);
943 unsigned long ino = 0;
944
945 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
946 get_pages(sbi, is_dir ?
947 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
948retry:
949 if (unlikely(f2fs_cp_error(sbi)))
950 return -EIO;
951
952 spin_lock(&sbi->inode_lock[type]);
953
954 head = &sbi->inode_list[type];
955 if (list_empty(head)) {
956 spin_unlock(&sbi->inode_lock[type]);
957 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
958 get_pages(sbi, is_dir ?
959 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
960 return 0;
961 }
962 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
963 inode = igrab(&fi->vfs_inode);
964 spin_unlock(&sbi->inode_lock[type]);
965 if (inode) {
966 unsigned long cur_ino = inode->i_ino;
967
968 if (is_dir)
969 F2FS_I(inode)->cp_task = current;
970
971 filemap_fdatawrite(inode->i_mapping);
972
973 if (is_dir)
974 F2FS_I(inode)->cp_task = NULL;
975
976 iput(inode);
977 /* We need to give cpu to another writers. */
978 if (ino == cur_ino) {
979 congestion_wait(BLK_RW_ASYNC, HZ/50);
980 cond_resched();
981 } else {
982 ino = cur_ino;
983 }
984 } else {
985 /*
986 * We should submit bio, since it exists several
987 * wribacking dentry pages in the freeing inode.
988 */
989 f2fs_submit_merged_write(sbi, DATA);
990 cond_resched();
991 }
992 goto retry;
993}
994
995int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
996{
997 struct list_head *head = &sbi->inode_list[DIRTY_META];
998 struct inode *inode;
999 struct f2fs_inode_info *fi;
1000 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1001
1002 while (total--) {
1003 if (unlikely(f2fs_cp_error(sbi)))
1004 return -EIO;
1005
1006 spin_lock(&sbi->inode_lock[DIRTY_META]);
1007 if (list_empty(head)) {
1008 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1009 return 0;
1010 }
1011 fi = list_first_entry(head, struct f2fs_inode_info,
1012 gdirty_list);
1013 inode = igrab(&fi->vfs_inode);
1014 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1015 if (inode) {
1016 sync_inode_metadata(inode, 0);
1017
1018 /* it's on eviction */
1019 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1020 update_inode_page(inode);
1021 iput(inode);
1022 }
1023 }
1024 return 0;
1025}
1026
1027static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1028{
1029 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1030 struct f2fs_nm_info *nm_i = NM_I(sbi);
1031 nid_t last_nid = nm_i->next_scan_nid;
1032
1033 next_free_nid(sbi, &last_nid);
1034 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1035 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1036 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1037 ckpt->next_free_nid = cpu_to_le32(last_nid);
1038}
1039
1040/*
1041 * Freeze all the FS-operations for checkpoint.
1042 */
1043static int block_operations(struct f2fs_sb_info *sbi)
1044{
1045 struct writeback_control wbc = {
1046 .sync_mode = WB_SYNC_ALL,
1047 .nr_to_write = LONG_MAX,
1048 .for_reclaim = 0,
1049 };
1050 struct blk_plug plug;
1051 int err = 0;
1052
1053 blk_start_plug(&plug);
1054
1055retry_flush_dents:
1056 f2fs_lock_all(sbi);
1057 /* write all the dirty dentry pages */
1058 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1059 f2fs_unlock_all(sbi);
1060 err = sync_dirty_inodes(sbi, DIR_INODE);
1061 if (err)
1062 goto out;
1063 cond_resched();
1064 goto retry_flush_dents;
1065 }
1066
1067 /*
1068 * POR: we should ensure that there are no dirty node pages
1069 * until finishing nat/sit flush. inode->i_blocks can be updated.
1070 */
1071 down_write(&sbi->node_change);
1072
1073 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1074 up_write(&sbi->node_change);
1075 f2fs_unlock_all(sbi);
1076 err = f2fs_sync_inode_meta(sbi);
1077 if (err)
1078 goto out;
1079 cond_resched();
1080 goto retry_flush_dents;
1081 }
1082
1083retry_flush_nodes:
1084 down_write(&sbi->node_write);
1085
1086 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1087 up_write(&sbi->node_write);
1088 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1089 if (err) {
1090 up_write(&sbi->node_change);
1091 f2fs_unlock_all(sbi);
1092 goto out;
1093 }
1094 cond_resched();
1095 goto retry_flush_nodes;
1096 }
1097
1098 /*
1099 * sbi->node_change is used only for AIO write_begin path which produces
1100 * dirty node blocks and some checkpoint values by block allocation.
1101 */
1102 __prepare_cp_block(sbi);
1103 up_write(&sbi->node_change);
1104out:
1105 blk_finish_plug(&plug);
1106 return err;
1107}
1108
1109static void unblock_operations(struct f2fs_sb_info *sbi)
1110{
1111 up_write(&sbi->node_write);
1112 f2fs_unlock_all(sbi);
1113}
1114
1115static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1116{
1117 DEFINE_WAIT(wait);
1118
1119 for (;;) {
1120 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1121
1122 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1123 break;
1124
1125 io_schedule_timeout(5*HZ);
1126 }
1127 finish_wait(&sbi->cp_wait, &wait);
1128}
1129
1130static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1131{
1132 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1133 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1134 unsigned long flags;
1135
1136 spin_lock_irqsave(&sbi->cp_lock, flags);
1137
1138 if ((cpc->reason & CP_UMOUNT) &&
1139 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1140 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1141 disable_nat_bits(sbi, false);
1142
1143 if (cpc->reason & CP_TRIMMED)
1144 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1145 else
1146 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1147
1148 if (cpc->reason & CP_UMOUNT)
1149 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1150 else
1151 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1152
1153 if (cpc->reason & CP_FASTBOOT)
1154 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1155 else
1156 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1157
1158 if (orphan_num)
1159 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1160 else
1161 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1162
1163 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1164 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1165
1166 /* set this flag to activate crc|cp_ver for recovery */
1167 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1168 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1169
1170 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1171}
1172
1173static void commit_checkpoint(struct f2fs_sb_info *sbi,
1174 void *src, block_t blk_addr)
1175{
1176 struct writeback_control wbc = {
1177 .for_reclaim = 0,
1178 };
1179
1180 /*
1181 * pagevec_lookup_tag and lock_page again will take
1182 * some extra time. Therefore, update_meta_pages and
1183 * sync_meta_pages are combined in this function.
1184 */
1185 struct page *page = grab_meta_page(sbi, blk_addr);
1186 int err;
1187
1188 memcpy(page_address(page), src, PAGE_SIZE);
1189 set_page_dirty(page);
1190
1191 f2fs_wait_on_page_writeback(page, META, true);
1192 f2fs_bug_on(sbi, PageWriteback(page));
1193 if (unlikely(!clear_page_dirty_for_io(page)))
1194 f2fs_bug_on(sbi, 1);
1195
1196 /* writeout cp pack 2 page */
1197 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1198 f2fs_bug_on(sbi, err);
1199
1200 f2fs_put_page(page, 0);
1201
1202 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1203 f2fs_submit_merged_write(sbi, META_FLUSH);
1204}
1205
1206static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1207{
1208 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1209 struct f2fs_nm_info *nm_i = NM_I(sbi);
1210 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1211 block_t start_blk;
1212 unsigned int data_sum_blocks, orphan_blocks;
1213 __u32 crc32 = 0;
1214 int i;
1215 int cp_payload_blks = __cp_payload(sbi);
1216 struct super_block *sb = sbi->sb;
1217 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1218 u64 kbytes_written;
1219 int err;
1220
1221 /* Flush all the NAT/SIT pages */
1222 while (get_pages(sbi, F2FS_DIRTY_META)) {
1223 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1224 if (unlikely(f2fs_cp_error(sbi)))
1225 return -EIO;
1226 }
1227
1228 /*
1229 * modify checkpoint
1230 * version number is already updated
1231 */
1232 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1233 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1234 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1235 ckpt->cur_node_segno[i] =
1236 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1237 ckpt->cur_node_blkoff[i] =
1238 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1239 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1240 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1241 }
1242 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1243 ckpt->cur_data_segno[i] =
1244 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1245 ckpt->cur_data_blkoff[i] =
1246 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1247 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1248 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1249 }
1250
1251 /* 2 cp + n data seg summary + orphan inode blocks */
1252 data_sum_blocks = npages_for_summary_flush(sbi, false);
1253 spin_lock_irqsave(&sbi->cp_lock, flags);
1254 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1255 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1256 else
1257 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1258 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1259
1260 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1261 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1262 orphan_blocks);
1263
1264 if (__remain_node_summaries(cpc->reason))
1265 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1266 cp_payload_blks + data_sum_blocks +
1267 orphan_blocks + NR_CURSEG_NODE_TYPE);
1268 else
1269 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1270 cp_payload_blks + data_sum_blocks +
1271 orphan_blocks);
1272
1273 /* update ckpt flag for checkpoint */
1274 update_ckpt_flags(sbi, cpc);
1275
1276 /* update SIT/NAT bitmap */
1277 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1278 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1279
1280 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1281 *((__le32 *)((unsigned char *)ckpt +
1282 le32_to_cpu(ckpt->checksum_offset)))
1283 = cpu_to_le32(crc32);
1284
1285 start_blk = __start_cp_next_addr(sbi);
1286
1287 /* write nat bits */
1288 if (enabled_nat_bits(sbi, cpc)) {
1289 __u64 cp_ver = cur_cp_version(ckpt);
1290 block_t blk;
1291
1292 cp_ver |= ((__u64)crc32 << 32);
1293 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1294
1295 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1296 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1297 update_meta_page(sbi, nm_i->nat_bits +
1298 (i << F2FS_BLKSIZE_BITS), blk + i);
1299
1300 /* Flush all the NAT BITS pages */
1301 while (get_pages(sbi, F2FS_DIRTY_META)) {
1302 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1303 if (unlikely(f2fs_cp_error(sbi)))
1304 return -EIO;
1305 }
1306 }
1307
1308 /* write out checkpoint buffer at block 0 */
1309 update_meta_page(sbi, ckpt, start_blk++);
1310
1311 for (i = 1; i < 1 + cp_payload_blks; i++)
1312 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1313 start_blk++);
1314
1315 if (orphan_num) {
1316 write_orphan_inodes(sbi, start_blk);
1317 start_blk += orphan_blocks;
1318 }
1319
1320 write_data_summaries(sbi, start_blk);
1321 start_blk += data_sum_blocks;
1322
1323 /* Record write statistics in the hot node summary */
1324 kbytes_written = sbi->kbytes_written;
1325 if (sb->s_bdev->bd_part)
1326 kbytes_written += BD_PART_WRITTEN(sbi);
1327
1328 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1329
1330 if (__remain_node_summaries(cpc->reason)) {
1331 write_node_summaries(sbi, start_blk);
1332 start_blk += NR_CURSEG_NODE_TYPE;
1333 }
1334
1335 /* update user_block_counts */
1336 sbi->last_valid_block_count = sbi->total_valid_block_count;
1337 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1338
1339 /* Here, we have one bio having CP pack except cp pack 2 page */
1340 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1341
1342 /* wait for previous submitted meta pages writeback */
1343 wait_on_all_pages_writeback(sbi);
1344
1345 if (unlikely(f2fs_cp_error(sbi)))
1346 return -EIO;
1347
1348 /* flush all device cache */
1349 err = f2fs_flush_device_cache(sbi);
1350 if (err)
1351 return err;
1352
1353 /* barrier and flush checkpoint cp pack 2 page if it can */
1354 commit_checkpoint(sbi, ckpt, start_blk);
1355 wait_on_all_pages_writeback(sbi);
1356
1357 release_ino_entry(sbi, false);
1358
1359 if (unlikely(f2fs_cp_error(sbi)))
1360 return -EIO;
1361
1362 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1363 clear_sbi_flag(sbi, SBI_NEED_CP);
1364 __set_cp_next_pack(sbi);
1365
1366 /*
1367 * redirty superblock if metadata like node page or inode cache is
1368 * updated during writing checkpoint.
1369 */
1370 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1371 get_pages(sbi, F2FS_DIRTY_IMETA))
1372 set_sbi_flag(sbi, SBI_IS_DIRTY);
1373
1374 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1375
1376 return 0;
1377}
1378
1379/*
1380 * We guarantee that this checkpoint procedure will not fail.
1381 */
1382int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1383{
1384 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1385 unsigned long long ckpt_ver;
1386 int err = 0;
1387
1388 mutex_lock(&sbi->cp_mutex);
1389
1390 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1391 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1392 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1393 goto out;
1394 if (unlikely(f2fs_cp_error(sbi))) {
1395 err = -EIO;
1396 goto out;
1397 }
1398 if (f2fs_readonly(sbi->sb)) {
1399 err = -EROFS;
1400 goto out;
1401 }
1402
1403 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1404
1405 err = block_operations(sbi);
1406 if (err)
1407 goto out;
1408
1409 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1410
1411 f2fs_flush_merged_writes(sbi);
1412
1413 /* this is the case of multiple fstrims without any changes */
1414 if (cpc->reason & CP_DISCARD) {
1415 if (!exist_trim_candidates(sbi, cpc)) {
1416 unblock_operations(sbi);
1417 goto out;
1418 }
1419
1420 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1421 SIT_I(sbi)->dirty_sentries == 0 &&
1422 prefree_segments(sbi) == 0) {
1423 flush_sit_entries(sbi, cpc);
1424 clear_prefree_segments(sbi, cpc);
1425 unblock_operations(sbi);
1426 goto out;
1427 }
1428 }
1429
1430 /*
1431 * update checkpoint pack index
1432 * Increase the version number so that
1433 * SIT entries and seg summaries are written at correct place
1434 */
1435 ckpt_ver = cur_cp_version(ckpt);
1436 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1437
1438 /* write cached NAT/SIT entries to NAT/SIT area */
1439 flush_nat_entries(sbi, cpc);
1440 flush_sit_entries(sbi, cpc);
1441
1442 /* unlock all the fs_lock[] in do_checkpoint() */
1443 err = do_checkpoint(sbi, cpc);
1444 if (err)
1445 release_discard_addrs(sbi);
1446 else
1447 clear_prefree_segments(sbi, cpc);
1448
1449 unblock_operations(sbi);
1450 stat_inc_cp_count(sbi->stat_info);
1451
1452 if (cpc->reason & CP_RECOVERY)
1453 f2fs_msg(sbi->sb, KERN_NOTICE,
1454 "checkpoint: version = %llx", ckpt_ver);
1455
1456 /* do checkpoint periodically */
1457 f2fs_update_time(sbi, CP_TIME);
1458 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1459out:
1460 mutex_unlock(&sbi->cp_mutex);
1461 return err;
1462}
1463
1464void init_ino_entry_info(struct f2fs_sb_info *sbi)
1465{
1466 int i;
1467
1468 for (i = 0; i < MAX_INO_ENTRY; i++) {
1469 struct inode_management *im = &sbi->im[i];
1470
1471 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1472 spin_lock_init(&im->ino_lock);
1473 INIT_LIST_HEAD(&im->ino_list);
1474 im->ino_num = 0;
1475 }
1476
1477 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1478 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1479 F2FS_ORPHANS_PER_BLOCK;
1480}
1481
1482int __init create_checkpoint_caches(void)
1483{
1484 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1485 sizeof(struct ino_entry));
1486 if (!ino_entry_slab)
1487 return -ENOMEM;
1488 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1489 sizeof(struct inode_entry));
1490 if (!inode_entry_slab) {
1491 kmem_cache_destroy(ino_entry_slab);
1492 return -ENOMEM;
1493 }
1494 return 0;
1495}
1496
1497void destroy_checkpoint_caches(void)
1498{
1499 kmem_cache_destroy(ino_entry_slab);
1500 kmem_cache_destroy(inode_entry_slab);
1501}