Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
  1/*
  2 * fs/f2fs/checkpoint.c
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/fs.h>
 12#include <linux/bio.h>
 13#include <linux/mpage.h>
 14#include <linux/writeback.h>
 15#include <linux/blkdev.h>
 16#include <linux/f2fs_fs.h>
 17#include <linux/pagevec.h>
 18#include <linux/swap.h>
 19
 20#include "f2fs.h"
 21#include "node.h"
 22#include "segment.h"
 
 23#include <trace/events/f2fs.h>
 24
 25static struct kmem_cache *orphan_entry_slab;
 26static struct kmem_cache *inode_entry_slab;
 
 
 
 
 
 
 
 27
 28/*
 29 * We guarantee no failure on the returned page.
 30 */
 31struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 32{
 33	struct address_space *mapping = META_MAPPING(sbi);
 34	struct page *page = NULL;
 35repeat:
 36	page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
 37	if (!page) {
 38		cond_resched();
 39		goto repeat;
 40	}
 41
 42	SetPageUptodate(page);
 
 43	return page;
 44}
 45
 46/*
 47 * We guarantee no failure on the returned page.
 48 */
 49struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 
 50{
 51	struct address_space *mapping = META_MAPPING(sbi);
 52	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 53repeat:
 54	page = grab_cache_page(mapping, index);
 55	if (!page) {
 56		cond_resched();
 57		goto repeat;
 58	}
 59	if (PageUptodate(page))
 60		goto out;
 61
 62	if (f2fs_submit_page_bio(sbi, page, index,
 63				READ_SYNC | REQ_META | REQ_PRIO))
 
 
 64		goto repeat;
 
 65
 66	lock_page(page);
 67	if (unlikely(page->mapping != mapping)) {
 68		f2fs_put_page(page, 1);
 69		goto repeat;
 70	}
 
 
 
 
 
 
 
 
 71out:
 72	mark_page_accessed(page);
 73	return page;
 74}
 75
 76inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
 
 
 
 
 
 
 77{
 78	switch (type) {
 79	case META_NAT:
 80		return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
 81	case META_SIT:
 82		return SIT_BLK_CNT(sbi);
 
 
 83	case META_SSA:
 
 
 
 
 84	case META_CP:
 85		return 0;
 
 
 
 
 
 
 
 
 86	default:
 87		BUG();
 88	}
 
 
 89}
 90
 91/*
 92 * Readahead CP/NAT/SIT/SSA pages
 93 */
 94int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
 
 95{
 96	block_t prev_blk_addr = 0;
 97	struct page *page;
 98	int blkno = start;
 99	int max_blks = get_max_meta_blks(sbi, type);
100
101	struct f2fs_io_info fio = {
 
102		.type = META,
103		.rw = READ_SYNC | REQ_META | REQ_PRIO
 
 
 
 
104	};
 
105
 
 
 
 
106	for (; nrpages-- > 0; blkno++) {
107		block_t blk_addr;
 
 
108
109		switch (type) {
110		case META_NAT:
111			/* get nat block addr */
112			if (unlikely(blkno >= max_blks))
113				blkno = 0;
114			blk_addr = current_nat_addr(sbi,
 
115					blkno * NAT_ENTRY_PER_BLOCK);
116			break;
117		case META_SIT:
118			/* get sit block addr */
119			if (unlikely(blkno >= max_blks))
120				goto out;
121			blk_addr = current_sit_addr(sbi,
122					blkno * SIT_ENTRY_PER_BLOCK);
123			if (blkno != start && prev_blk_addr + 1 != blk_addr)
124				goto out;
125			prev_blk_addr = blk_addr;
126			break;
127		case META_SSA:
128		case META_CP:
129			/* get ssa/cp block addr */
130			blk_addr = blkno;
131			break;
132		default:
133			BUG();
134		}
135
136		page = grab_cache_page(META_MAPPING(sbi), blk_addr);
 
137		if (!page)
138			continue;
139		if (PageUptodate(page)) {
140			mark_page_accessed(page);
141			f2fs_put_page(page, 1);
142			continue;
143		}
144
145		f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146		mark_page_accessed(page);
147		f2fs_put_page(page, 0);
148	}
149out:
150	f2fs_submit_merged_bio(sbi, META, READ);
151	return blkno - start;
152}
153
154static int f2fs_write_meta_page(struct page *page,
155				struct writeback_control *wbc)
156{
157	struct inode *inode = page->mapping->host;
158	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 
 
 
 
 
 
 
 
 
159
160	if (unlikely(sbi->por_doing))
 
 
 
 
 
 
 
 
 
 
 
 
 
161		goto redirty_out;
162	if (wbc->for_reclaim)
163		goto redirty_out;
164
165	/* Should not write any meta pages, if any IO error was occurred */
166	if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167		goto no_write;
168
169	f2fs_wait_on_page_writeback(page, META);
170	write_meta_page(sbi, page);
171no_write:
172	dec_page_count(sbi, F2FS_DIRTY_META);
 
 
 
 
 
173	unlock_page(page);
 
 
 
 
174	return 0;
175
176redirty_out:
177	dec_page_count(sbi, F2FS_DIRTY_META);
178	wbc->pages_skipped++;
179	account_page_redirty(page);
180	set_page_dirty(page);
181	return AOP_WRITEPAGE_ACTIVATE;
182}
183
 
 
 
 
 
 
184static int f2fs_write_meta_pages(struct address_space *mapping,
185				struct writeback_control *wbc)
186{
187	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
188	long diff, written;
189
 
 
 
190	/* collect a number of dirty meta pages and write together */
191	if (wbc->for_kupdate ||
192		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
193		goto skip_write;
194
195	/* if mounting is failed, skip writing node pages */
196	mutex_lock(&sbi->cp_mutex);
 
 
 
197	diff = nr_pages_to_write(sbi, META, wbc);
198	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
199	mutex_unlock(&sbi->cp_mutex);
200	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
201	return 0;
202
203skip_write:
204	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 
205	return 0;
206}
207
208long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
209						long nr_to_write)
210{
211	struct address_space *mapping = META_MAPPING(sbi);
212	pgoff_t index = 0, end = LONG_MAX;
213	struct pagevec pvec;
214	long nwritten = 0;
 
215	struct writeback_control wbc = {
216		.for_reclaim = 0,
217	};
 
218
219	pagevec_init(&pvec, 0);
220
221	while (index <= end) {
222		int i, nr_pages;
223		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
224				PAGECACHE_TAG_DIRTY,
225				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
226		if (unlikely(nr_pages == 0))
227			break;
228
229		for (i = 0; i < nr_pages; i++) {
230			struct page *page = pvec.pages[i];
231
 
 
 
 
 
 
 
232			lock_page(page);
233
234			if (unlikely(page->mapping != mapping)) {
235continue_unlock:
236				unlock_page(page);
237				continue;
238			}
239			if (!PageDirty(page)) {
240				/* someone wrote it for us */
241				goto continue_unlock;
242			}
243
 
 
 
244			if (!clear_page_dirty_for_io(page))
245				goto continue_unlock;
246
247			if (f2fs_write_meta_page(page, &wbc)) {
248				unlock_page(page);
249				break;
250			}
251			nwritten++;
 
252			if (unlikely(nwritten >= nr_to_write))
253				break;
254		}
255		pagevec_release(&pvec);
256		cond_resched();
257	}
258
259	if (nwritten)
260		f2fs_submit_merged_bio(sbi, type, WRITE);
 
 
261
262	return nwritten;
263}
264
265static int f2fs_set_meta_page_dirty(struct page *page)
266{
267	struct address_space *mapping = page->mapping;
268	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
269
270	trace_f2fs_set_page_dirty(page, META);
271
272	SetPageUptodate(page);
 
273	if (!PageDirty(page)) {
274		__set_page_dirty_nobuffers(page);
275		inc_page_count(sbi, F2FS_DIRTY_META);
 
 
276		return 1;
277	}
278	return 0;
279}
280
281const struct address_space_operations f2fs_meta_aops = {
282	.writepage	= f2fs_write_meta_page,
283	.writepages	= f2fs_write_meta_pages,
284	.set_page_dirty	= f2fs_set_meta_page_dirty,
 
 
 
 
 
285};
286
287int acquire_orphan_inode(struct f2fs_sb_info *sbi)
 
288{
289	int err = 0;
 
290
291	spin_lock(&sbi->orphan_inode_lock);
292	if (unlikely(sbi->n_orphans >= sbi->max_orphans))
293		err = -ENOSPC;
294	else
295		sbi->n_orphans++;
296	spin_unlock(&sbi->orphan_inode_lock);
297
298	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299}
300
301void release_orphan_inode(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302{
303	spin_lock(&sbi->orphan_inode_lock);
304	f2fs_bug_on(sbi->n_orphans == 0);
305	sbi->n_orphans--;
306	spin_unlock(&sbi->orphan_inode_lock);
307}
308
309void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
310{
311	struct list_head *head;
312	struct orphan_inode_entry *new, *orphan;
 
313
314	new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
315	new->ino = ino;
 
 
 
316
317	spin_lock(&sbi->orphan_inode_lock);
318	head = &sbi->orphan_inode_list;
319	list_for_each_entry(orphan, head, list) {
320		if (orphan->ino == ino) {
321			spin_unlock(&sbi->orphan_inode_lock);
322			kmem_cache_free(orphan_entry_slab, new);
323			return;
324		}
325
326		if (orphan->ino > ino)
327			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328	}
 
329
330	/* add new orphan entry into list which is sorted by inode number */
331	list_add_tail(&new->list, &orphan->list);
332	spin_unlock(&sbi->orphan_inode_lock);
 
333}
334
335void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 
336{
337	struct list_head *head;
338	struct orphan_inode_entry *orphan;
 
339
340	spin_lock(&sbi->orphan_inode_lock);
341	head = &sbi->orphan_inode_list;
342	list_for_each_entry(orphan, head, list) {
343		if (orphan->ino == ino) {
344			list_del(&orphan->list);
345			f2fs_bug_on(sbi->n_orphans == 0);
346			sbi->n_orphans--;
347			spin_unlock(&sbi->orphan_inode_lock);
348			kmem_cache_free(orphan_entry_slab, orphan);
349			return;
350		}
 
 
 
 
 
 
 
 
 
351	}
352	spin_unlock(&sbi->orphan_inode_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353}
354
355static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
356{
357	struct inode *inode = f2fs_iget(sbi->sb, ino);
358	f2fs_bug_on(IS_ERR(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359	clear_nlink(inode);
360
361	/* truncate all the data during iput */
362	iput(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363}
364
365void recover_orphan_inodes(struct f2fs_sb_info *sbi)
366{
367	block_t start_blk, orphan_blkaddr, i, j;
 
 
 
 
 
368
369	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
370		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
371
372	sbi->por_doing = true;
373	start_blk = __start_cp_addr(sbi) + 1;
374	orphan_blkaddr = __start_sum_addr(sbi) - 1;
375
376	ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
377
378	for (i = 0; i < orphan_blkaddr; i++) {
379		struct page *page = get_meta_page(sbi, start_blk + i);
380		struct f2fs_orphan_block *orphan_blk;
381
382		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
383		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
384			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
385			recover_orphan_inode(sbi, ino);
 
 
 
 
386		}
387		f2fs_put_page(page, 1);
388	}
389	/* clear Orphan Flag */
390	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
391	sbi->por_doing = false;
392	return;
 
 
 
 
 
 
 
393}
394
395static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
396{
397	struct list_head *head;
398	struct f2fs_orphan_block *orphan_blk = NULL;
399	unsigned int nentries = 0;
400	unsigned short index;
401	unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
402		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
403	struct page *page = NULL;
404	struct orphan_inode_entry *orphan = NULL;
 
405
406	for (index = 0; index < orphan_blocks; index++)
407		grab_meta_page(sbi, start_blk + index);
408
409	index = 1;
410	spin_lock(&sbi->orphan_inode_lock);
411	head = &sbi->orphan_inode_list;
 
 
 
412
413	/* loop for each orphan inode entry and write them in Jornal block */
414	list_for_each_entry(orphan, head, list) {
415		if (!page) {
416			page = find_get_page(META_MAPPING(sbi), start_blk++);
417			f2fs_bug_on(!page);
418			orphan_blk =
419				(struct f2fs_orphan_block *)page_address(page);
420			memset(orphan_blk, 0, sizeof(*orphan_blk));
421			f2fs_put_page(page, 0);
422		}
423
424		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
425
426		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
427			/*
428			 * an orphan block is full of 1020 entries,
429			 * then we need to flush current orphan blocks
430			 * and bring another one in memory
431			 */
432			orphan_blk->blk_addr = cpu_to_le16(index);
433			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
434			orphan_blk->entry_count = cpu_to_le32(nentries);
435			set_page_dirty(page);
436			f2fs_put_page(page, 1);
437			index++;
438			nentries = 0;
439			page = NULL;
440		}
441	}
442
443	if (page) {
444		orphan_blk->blk_addr = cpu_to_le16(index);
445		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
446		orphan_blk->entry_count = cpu_to_le32(nentries);
447		set_page_dirty(page);
448		f2fs_put_page(page, 1);
449	}
450
451	spin_unlock(&sbi->orphan_inode_lock);
452}
453
454static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
455				block_t cp_addr, unsigned long long *version)
 
456{
457	struct page *cp_page_1, *cp_page_2 = NULL;
458	unsigned long blk_size = sbi->blocksize;
459	struct f2fs_checkpoint *cp_block;
460	unsigned long long cur_version = 0, pre_version = 0;
461	size_t crc_offset;
462	__u32 crc = 0;
463
464	/* Read the 1st cp block in this CP pack */
465	cp_page_1 = get_meta_page(sbi, cp_addr);
466
467	/* get the version number */
468	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
469	crc_offset = le32_to_cpu(cp_block->checksum_offset);
470	if (crc_offset >= blk_size)
471		goto invalid_cp1;
 
472
473	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
474	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
475		goto invalid_cp1;
 
 
476
477	pre_version = cur_cp_version(cp_block);
 
 
478
479	/* Read the 2nd cp block in this CP pack */
480	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
481	cp_page_2 = get_meta_page(sbi, cp_addr);
 
 
 
 
482
483	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
484	crc_offset = le32_to_cpu(cp_block->checksum_offset);
485	if (crc_offset >= blk_size)
486		goto invalid_cp2;
 
487
488	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
489	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
 
 
490		goto invalid_cp2;
491
492	cur_version = cur_cp_version(cp_block);
493
494	if (cur_version == pre_version) {
495		*version = cur_version;
496		f2fs_put_page(cp_page_2, 1);
497		return cp_page_1;
498	}
499invalid_cp2:
500	f2fs_put_page(cp_page_2, 1);
501invalid_cp1:
502	f2fs_put_page(cp_page_1, 1);
503	return NULL;
504}
505
506int get_valid_checkpoint(struct f2fs_sb_info *sbi)
507{
508	struct f2fs_checkpoint *cp_block;
509	struct f2fs_super_block *fsb = sbi->raw_super;
510	struct page *cp1, *cp2, *cur_page;
511	unsigned long blk_size = sbi->blocksize;
512	unsigned long long cp1_version = 0, cp2_version = 0;
513	unsigned long long cp_start_blk_no;
 
 
 
514
515	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
516	if (!sbi->ckpt)
517		return -ENOMEM;
518	/*
519	 * Finding out valid cp block involves read both
520	 * sets( cp pack1 and cp pack 2)
521	 */
522	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
523	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
524
525	/* The second checkpoint pack should start at the next segment */
526	cp_start_blk_no += ((unsigned long long)1) <<
527				le32_to_cpu(fsb->log_blocks_per_seg);
528	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
529
530	if (cp1 && cp2) {
531		if (ver_after(cp2_version, cp1_version))
532			cur_page = cp2;
533		else
534			cur_page = cp1;
535	} else if (cp1) {
536		cur_page = cp1;
537	} else if (cp2) {
538		cur_page = cp2;
539	} else {
540		goto fail_no_cp;
541	}
542
543	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
544	memcpy(sbi->ckpt, cp_block, blk_size);
545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546	f2fs_put_page(cp1, 1);
547	f2fs_put_page(cp2, 1);
548	return 0;
549
 
 
 
550fail_no_cp:
551	kfree(sbi->ckpt);
552	return -EINVAL;
553}
554
555static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
556{
557	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
558	struct list_head *head = &sbi->dir_inode_list;
559	struct dir_inode_entry *entry;
560
561	list_for_each_entry(entry, head, list)
562		if (unlikely(entry->inode == inode))
563			return -EEXIST;
564
565	list_add_tail(&new->list, head);
566	stat_inc_dirty_dir(sbi);
567	return 0;
568}
569
570void set_dirty_dir_page(struct inode *inode, struct page *page)
571{
572	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
573	struct dir_inode_entry *new;
574	int ret = 0;
575
576	if (!S_ISDIR(inode->i_mode))
577		return;
578
579	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
580	new->inode = inode;
581	INIT_LIST_HEAD(&new->list);
582
583	spin_lock(&sbi->dir_inode_lock);
584	ret = __add_dirty_inode(inode, new);
585	inode_inc_dirty_dents(inode);
586	SetPagePrivate(page);
587	spin_unlock(&sbi->dir_inode_lock);
588
589	if (ret)
590		kmem_cache_free(inode_entry_slab, new);
591}
592
593void add_dirty_dir_inode(struct inode *inode)
594{
595	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
596	struct dir_inode_entry *new =
597			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
598	int ret = 0;
599
600	new->inode = inode;
601	INIT_LIST_HEAD(&new->list);
602
603	spin_lock(&sbi->dir_inode_lock);
604	ret = __add_dirty_inode(inode, new);
605	spin_unlock(&sbi->dir_inode_lock);
606
607	if (ret)
608		kmem_cache_free(inode_entry_slab, new);
 
609}
610
611void remove_dirty_dir_inode(struct inode *inode)
612{
613	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
614	struct list_head *head;
615	struct dir_inode_entry *entry;
616
617	if (!S_ISDIR(inode->i_mode))
618		return;
619
620	spin_lock(&sbi->dir_inode_lock);
621	if (get_dirty_dents(inode)) {
622		spin_unlock(&sbi->dir_inode_lock);
623		return;
624	}
625
626	head = &sbi->dir_inode_list;
627	list_for_each_entry(entry, head, list) {
628		if (entry->inode == inode) {
629			list_del(&entry->list);
630			stat_dec_dirty_dir(sbi);
631			spin_unlock(&sbi->dir_inode_lock);
632			kmem_cache_free(inode_entry_slab, entry);
633			goto done;
634		}
635	}
636	spin_unlock(&sbi->dir_inode_lock);
637
638done:
639	/* Only from the recovery routine */
640	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
641		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
642		iput(inode);
643	}
644}
645
646struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
647{
 
 
648
649	struct list_head *head;
650	struct inode *inode = NULL;
651	struct dir_inode_entry *entry;
652
653	spin_lock(&sbi->dir_inode_lock);
 
654
655	head = &sbi->dir_inode_list;
656	list_for_each_entry(entry, head, list) {
657		if (entry->inode->i_ino == ino) {
658			inode = entry->inode;
659			break;
660		}
661	}
662	spin_unlock(&sbi->dir_inode_lock);
663	return inode;
664}
665
666void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
667{
668	struct list_head *head;
669	struct dir_inode_entry *entry;
670	struct inode *inode;
 
 
 
 
 
 
 
671retry:
672	spin_lock(&sbi->dir_inode_lock);
 
 
 
673
674	head = &sbi->dir_inode_list;
675	if (list_empty(head)) {
676		spin_unlock(&sbi->dir_inode_lock);
677		return;
 
 
 
678	}
679	entry = list_entry(head->next, struct dir_inode_entry, list);
680	inode = igrab(entry->inode);
681	spin_unlock(&sbi->dir_inode_lock);
682	if (inode) {
 
 
 
 
 
683		filemap_fdatawrite(inode->i_mapping);
 
 
 
 
684		iput(inode);
 
 
 
 
 
 
 
685	} else {
686		/*
687		 * We should submit bio, since it exists several
688		 * wribacking dentry pages in the freeing inode.
689		 */
690		f2fs_submit_merged_bio(sbi, DATA, WRITE);
 
691	}
692	goto retry;
693}
694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695/*
696 * Freeze all the FS-operations for checkpoint.
697 */
698static void block_operations(struct f2fs_sb_info *sbi)
699{
700	struct writeback_control wbc = {
701		.sync_mode = WB_SYNC_ALL,
702		.nr_to_write = LONG_MAX,
703		.for_reclaim = 0,
704	};
705	struct blk_plug plug;
 
706
707	blk_start_plug(&plug);
708
709retry_flush_dents:
710	f2fs_lock_all(sbi);
711	/* write all the dirty dentry pages */
712	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
713		f2fs_unlock_all(sbi);
714		sync_dirty_dir_inodes(sbi);
 
 
 
715		goto retry_flush_dents;
716	}
717
718	/*
719	 * POR: we should ensure that there is no dirty node pages
720	 * until finishing nat/sit flush.
721	 */
 
 
 
 
 
 
 
 
 
 
 
 
722retry_flush_nodes:
723	mutex_lock(&sbi->node_write);
724
725	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
726		mutex_unlock(&sbi->node_write);
727		sync_node_pages(sbi, 0, &wbc);
 
 
 
 
 
 
728		goto retry_flush_nodes;
729	}
 
 
 
 
 
 
 
 
730	blk_finish_plug(&plug);
 
731}
732
733static void unblock_operations(struct f2fs_sb_info *sbi)
734{
735	mutex_unlock(&sbi->node_write);
736	f2fs_unlock_all(sbi);
737}
738
739static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
740{
741	DEFINE_WAIT(wait);
742
743	for (;;) {
744		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
745
746		if (!get_pages(sbi, F2FS_WRITEBACK))
747			break;
748
749		io_schedule();
750	}
751	finish_wait(&sbi->cp_wait, &wait);
752}
753
754static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755{
756	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
757	nid_t last_nid = 0;
 
758	block_t start_blk;
759	struct page *cp_page;
760	unsigned int data_sum_blocks, orphan_blocks;
761	__u32 crc32 = 0;
762	void *kaddr;
763	int i;
 
 
 
 
 
764
765	/* Flush all the NAT/SIT pages */
766	while (get_pages(sbi, F2FS_DIRTY_META))
767		sync_meta_pages(sbi, META, LONG_MAX);
768
769	next_free_nid(sbi, &last_nid);
 
770
771	/*
772	 * modify checkpoint
773	 * version number is already updated
774	 */
775	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
776	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
777	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
778	for (i = 0; i < 3; i++) {
779		ckpt->cur_node_segno[i] =
780			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
781		ckpt->cur_node_blkoff[i] =
782			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
783		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
784				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
785	}
786	for (i = 0; i < 3; i++) {
787		ckpt->cur_data_segno[i] =
788			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
789		ckpt->cur_data_blkoff[i] =
790			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
791		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
792				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
793	}
794
795	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
796	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
797	ckpt->next_free_nid = cpu_to_le32(last_nid);
798
799	/* 2 cp  + n data seg summary + orphan inode blocks */
800	data_sum_blocks = npages_for_summary_flush(sbi);
801	if (data_sum_blocks < 3)
802		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 
803	else
804		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
805
806	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
807					/ F2FS_ORPHANS_PER_BLOCK;
808	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
809
810	if (is_umount) {
811		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
812		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
813			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
814	} else {
815		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
816		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
817			data_sum_blocks + orphan_blocks);
818	}
819
820	if (sbi->n_orphans)
821		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 
 
 
 
 
 
822	else
823		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
 
 
 
 
 
824
825	/* update SIT/NAT bitmap */
826	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
827	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
828
829	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
830	*((__le32 *)((unsigned char *)ckpt +
831				le32_to_cpu(ckpt->checksum_offset)))
832				= cpu_to_le32(crc32);
833
834	start_blk = __start_cp_addr(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835
836	/* write out checkpoint buffer at block 0 */
837	cp_page = grab_meta_page(sbi, start_blk++);
838	kaddr = page_address(cp_page);
839	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
840	set_page_dirty(cp_page);
841	f2fs_put_page(cp_page, 1);
842
843	if (sbi->n_orphans) {
 
 
 
 
844		write_orphan_inodes(sbi, start_blk);
845		start_blk += orphan_blocks;
846	}
847
848	write_data_summaries(sbi, start_blk);
849	start_blk += data_sum_blocks;
850	if (is_umount) {
 
 
 
 
 
 
 
 
851		write_node_summaries(sbi, start_blk);
852		start_blk += NR_CURSEG_NODE_TYPE;
853	}
854
855	/* writeout checkpoint block */
856	cp_page = grab_meta_page(sbi, start_blk);
857	kaddr = page_address(cp_page);
858	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
859	set_page_dirty(cp_page);
860	f2fs_put_page(cp_page, 1);
861
862	/* wait for previous submitted node/meta pages writeback */
863	wait_on_all_pages_writeback(sbi);
864
865	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
866	filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
867
868	/* update user_block_counts */
869	sbi->last_valid_block_count = sbi->total_valid_block_count;
870	sbi->alloc_valid_block_count = 0;
 
871
872	/* Here, we only have one bio having CP pack */
873	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
 
874
875	if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
876		clear_prefree_segments(sbi);
877		F2FS_RESET_SB_DIRT(sbi);
878	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879}
880
881/*
882 * We guarantee that this checkpoint procedure should not fail.
883 */
884void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
885{
886	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
887	unsigned long long ckpt_ver;
888
889	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
890
891	mutex_lock(&sbi->cp_mutex);
892	block_operations(sbi);
893
894	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
 
 
 
 
 
 
 
 
 
 
 
 
 
895
896	f2fs_submit_merged_bio(sbi, DATA, WRITE);
897	f2fs_submit_merged_bio(sbi, NODE, WRITE);
898	f2fs_submit_merged_bio(sbi, META, WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
899
900	/*
901	 * update checkpoint pack index
902	 * Increase the version number so that
903	 * SIT entries and seg summaries are written at correct place
904	 */
905	ckpt_ver = cur_cp_version(ckpt);
906	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
907
908	/* write cached NAT/SIT entries to NAT/SIT area */
909	flush_nat_entries(sbi);
910	flush_sit_entries(sbi);
911
912	/* unlock all the fs_lock[] in do_checkpoint() */
913	do_checkpoint(sbi, is_umount);
 
 
 
 
914
915	unblock_operations(sbi);
916	mutex_unlock(&sbi->cp_mutex);
917
918	stat_inc_cp_count(sbi->stat_info);
919	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
 
 
 
 
 
 
 
 
 
 
920}
921
922void init_orphan_info(struct f2fs_sb_info *sbi)
923{
924	spin_lock_init(&sbi->orphan_inode_lock);
925	INIT_LIST_HEAD(&sbi->orphan_inode_list);
926	sbi->n_orphans = 0;
927	/*
928	 * considering 512 blocks in a segment 8 blocks are needed for cp
929	 * and log segment summaries. Remaining blocks are used to keep
930	 * orphan entries with the limitation one reserved segment
931	 * for cp pack we can have max 1020*504 orphan entries
932	 */
933	sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
934				* F2FS_ORPHANS_PER_BLOCK;
 
 
 
935}
936
937int __init create_checkpoint_caches(void)
938{
939	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
940			sizeof(struct orphan_inode_entry));
941	if (!orphan_entry_slab)
942		return -ENOMEM;
943	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
944			sizeof(struct dir_inode_entry));
945	if (!inode_entry_slab) {
946		kmem_cache_destroy(orphan_entry_slab);
947		return -ENOMEM;
948	}
949	return 0;
950}
951
952void destroy_checkpoint_caches(void)
953{
954	kmem_cache_destroy(orphan_entry_slab);
955	kmem_cache_destroy(inode_entry_slab);
956}
   1/*
   2 * fs/f2fs/checkpoint.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/bio.h>
  13#include <linux/mpage.h>
  14#include <linux/writeback.h>
  15#include <linux/blkdev.h>
  16#include <linux/f2fs_fs.h>
  17#include <linux/pagevec.h>
  18#include <linux/swap.h>
  19
  20#include "f2fs.h"
  21#include "node.h"
  22#include "segment.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26static struct kmem_cache *ino_entry_slab;
  27struct kmem_cache *inode_entry_slab;
  28
  29void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  30{
  31	set_ckpt_flags(sbi, CP_ERROR_FLAG);
  32	if (!end_io)
  33		f2fs_flush_merged_writes(sbi);
  34}
  35
  36/*
  37 * We guarantee no failure on the returned page.
  38 */
  39struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  40{
  41	struct address_space *mapping = META_MAPPING(sbi);
  42	struct page *page = NULL;
  43repeat:
  44	page = f2fs_grab_cache_page(mapping, index, false);
  45	if (!page) {
  46		cond_resched();
  47		goto repeat;
  48	}
  49	f2fs_wait_on_page_writeback(page, META, true);
  50	if (!PageUptodate(page))
  51		SetPageUptodate(page);
  52	return page;
  53}
  54
  55/*
  56 * We guarantee no failure on the returned page.
  57 */
  58static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  59							bool is_meta)
  60{
  61	struct address_space *mapping = META_MAPPING(sbi);
  62	struct page *page;
  63	struct f2fs_io_info fio = {
  64		.sbi = sbi,
  65		.type = META,
  66		.op = REQ_OP_READ,
  67		.op_flags = REQ_META | REQ_PRIO,
  68		.old_blkaddr = index,
  69		.new_blkaddr = index,
  70		.encrypted_page = NULL,
  71		.is_meta = is_meta,
  72	};
  73
  74	if (unlikely(!is_meta))
  75		fio.op_flags &= ~REQ_META;
  76repeat:
  77	page = f2fs_grab_cache_page(mapping, index, false);
  78	if (!page) {
  79		cond_resched();
  80		goto repeat;
  81	}
  82	if (PageUptodate(page))
  83		goto out;
  84
  85	fio.page = page;
  86
  87	if (f2fs_submit_page_bio(&fio)) {
  88		f2fs_put_page(page, 1);
  89		goto repeat;
  90	}
  91
  92	lock_page(page);
  93	if (unlikely(page->mapping != mapping)) {
  94		f2fs_put_page(page, 1);
  95		goto repeat;
  96	}
  97
  98	/*
  99	 * if there is any IO error when accessing device, make our filesystem
 100	 * readonly and make sure do not write checkpoint with non-uptodate
 101	 * meta page.
 102	 */
 103	if (unlikely(!PageUptodate(page)))
 104		f2fs_stop_checkpoint(sbi, false);
 105out:
 
 106	return page;
 107}
 108
 109struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 110{
 111	return __get_meta_page(sbi, index, true);
 112}
 113
 114/* for POR only */
 115struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 116{
 117	return __get_meta_page(sbi, index, false);
 118}
 119
 120bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
 121{
 122	switch (type) {
 123	case META_NAT:
 124		break;
 125	case META_SIT:
 126		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 127			return false;
 128		break;
 129	case META_SSA:
 130		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 131			blkaddr < SM_I(sbi)->ssa_blkaddr))
 132			return false;
 133		break;
 134	case META_CP:
 135		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 136			blkaddr < __start_cp_addr(sbi)))
 137			return false;
 138		break;
 139	case META_POR:
 140		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 141			blkaddr < MAIN_BLKADDR(sbi)))
 142			return false;
 143		break;
 144	default:
 145		BUG();
 146	}
 147
 148	return true;
 149}
 150
 151/*
 152 * Readahead CP/NAT/SIT/SSA pages
 153 */
 154int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 155							int type, bool sync)
 156{
 
 157	struct page *page;
 158	block_t blkno = start;
 
 
 159	struct f2fs_io_info fio = {
 160		.sbi = sbi,
 161		.type = META,
 162		.op = REQ_OP_READ,
 163		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
 164		.encrypted_page = NULL,
 165		.in_list = false,
 166		.is_meta = (type != META_POR),
 167	};
 168	struct blk_plug plug;
 169
 170	if (unlikely(type == META_POR))
 171		fio.op_flags &= ~REQ_META;
 172
 173	blk_start_plug(&plug);
 174	for (; nrpages-- > 0; blkno++) {
 175
 176		if (!is_valid_blkaddr(sbi, blkno, type))
 177			goto out;
 178
 179		switch (type) {
 180		case META_NAT:
 181			if (unlikely(blkno >=
 182					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 183				blkno = 0;
 184			/* get nat block addr */
 185			fio.new_blkaddr = current_nat_addr(sbi,
 186					blkno * NAT_ENTRY_PER_BLOCK);
 187			break;
 188		case META_SIT:
 189			/* get sit block addr */
 190			fio.new_blkaddr = current_sit_addr(sbi,
 
 
 191					blkno * SIT_ENTRY_PER_BLOCK);
 
 
 
 192			break;
 193		case META_SSA:
 194		case META_CP:
 195		case META_POR:
 196			fio.new_blkaddr = blkno;
 197			break;
 198		default:
 199			BUG();
 200		}
 201
 202		page = f2fs_grab_cache_page(META_MAPPING(sbi),
 203						fio.new_blkaddr, false);
 204		if (!page)
 205			continue;
 206		if (PageUptodate(page)) {
 
 207			f2fs_put_page(page, 1);
 208			continue;
 209		}
 210
 211		fio.page = page;
 212		f2fs_submit_page_bio(&fio);
 213		f2fs_put_page(page, 0);
 214	}
 215out:
 216	blk_finish_plug(&plug);
 217	return blkno - start;
 218}
 219
 220void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
 
 221{
 222	struct page *page;
 223	bool readahead = false;
 224
 225	page = find_get_page(META_MAPPING(sbi), index);
 226	if (!page || !PageUptodate(page))
 227		readahead = true;
 228	f2fs_put_page(page, 0);
 229
 230	if (readahead)
 231		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
 232}
 233
 234static int __f2fs_write_meta_page(struct page *page,
 235				struct writeback_control *wbc,
 236				enum iostat_type io_type)
 237{
 238	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 239
 240	trace_f2fs_writepage(page, META);
 241
 242	if (unlikely(f2fs_cp_error(sbi))) {
 243		dec_page_count(sbi, F2FS_DIRTY_META);
 244		unlock_page(page);
 245		return 0;
 246	}
 247	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 248		goto redirty_out;
 249	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
 250		goto redirty_out;
 251
 252	write_meta_page(sbi, page, io_type);
 
 
 
 
 
 
 253	dec_page_count(sbi, F2FS_DIRTY_META);
 254
 255	if (wbc->for_reclaim)
 256		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
 257						0, page->index, META);
 258
 259	unlock_page(page);
 260
 261	if (unlikely(f2fs_cp_error(sbi)))
 262		f2fs_submit_merged_write(sbi, META);
 263
 264	return 0;
 265
 266redirty_out:
 267	redirty_page_for_writepage(wbc, page);
 
 
 
 268	return AOP_WRITEPAGE_ACTIVATE;
 269}
 270
 271static int f2fs_write_meta_page(struct page *page,
 272				struct writeback_control *wbc)
 273{
 274	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
 275}
 276
 277static int f2fs_write_meta_pages(struct address_space *mapping,
 278				struct writeback_control *wbc)
 279{
 280	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 281	long diff, written;
 282
 283	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 284		goto skip_write;
 285
 286	/* collect a number of dirty meta pages and write together */
 287	if (wbc->for_kupdate ||
 288		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
 289		goto skip_write;
 290
 291	/* if locked failed, cp will flush dirty pages instead */
 292	if (!mutex_trylock(&sbi->cp_mutex))
 293		goto skip_write;
 294
 295	trace_f2fs_writepages(mapping->host, wbc, META);
 296	diff = nr_pages_to_write(sbi, META, wbc);
 297	written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
 298	mutex_unlock(&sbi->cp_mutex);
 299	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 300	return 0;
 301
 302skip_write:
 303	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 304	trace_f2fs_writepages(mapping->host, wbc, META);
 305	return 0;
 306}
 307
 308long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 309				long nr_to_write, enum iostat_type io_type)
 310{
 311	struct address_space *mapping = META_MAPPING(sbi);
 312	pgoff_t index = 0, prev = ULONG_MAX;
 313	struct pagevec pvec;
 314	long nwritten = 0;
 315	int nr_pages;
 316	struct writeback_control wbc = {
 317		.for_reclaim = 0,
 318	};
 319	struct blk_plug plug;
 320
 321	pagevec_init(&pvec);
 322
 323	blk_start_plug(&plug);
 324
 325	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 326				PAGECACHE_TAG_DIRTY))) {
 327		int i;
 
 
 328
 329		for (i = 0; i < nr_pages; i++) {
 330			struct page *page = pvec.pages[i];
 331
 332			if (prev == ULONG_MAX)
 333				prev = page->index - 1;
 334			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
 335				pagevec_release(&pvec);
 336				goto stop;
 337			}
 338
 339			lock_page(page);
 340
 341			if (unlikely(page->mapping != mapping)) {
 342continue_unlock:
 343				unlock_page(page);
 344				continue;
 345			}
 346			if (!PageDirty(page)) {
 347				/* someone wrote it for us */
 348				goto continue_unlock;
 349			}
 350
 351			f2fs_wait_on_page_writeback(page, META, true);
 352
 353			BUG_ON(PageWriteback(page));
 354			if (!clear_page_dirty_for_io(page))
 355				goto continue_unlock;
 356
 357			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
 358				unlock_page(page);
 359				break;
 360			}
 361			nwritten++;
 362			prev = page->index;
 363			if (unlikely(nwritten >= nr_to_write))
 364				break;
 365		}
 366		pagevec_release(&pvec);
 367		cond_resched();
 368	}
 369stop:
 370	if (nwritten)
 371		f2fs_submit_merged_write(sbi, type);
 372
 373	blk_finish_plug(&plug);
 374
 375	return nwritten;
 376}
 377
 378static int f2fs_set_meta_page_dirty(struct page *page)
 379{
 
 
 
 380	trace_f2fs_set_page_dirty(page, META);
 381
 382	if (!PageUptodate(page))
 383		SetPageUptodate(page);
 384	if (!PageDirty(page)) {
 385		f2fs_set_page_dirty_nobuffers(page);
 386		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
 387		SetPagePrivate(page);
 388		f2fs_trace_pid(page);
 389		return 1;
 390	}
 391	return 0;
 392}
 393
 394const struct address_space_operations f2fs_meta_aops = {
 395	.writepage	= f2fs_write_meta_page,
 396	.writepages	= f2fs_write_meta_pages,
 397	.set_page_dirty	= f2fs_set_meta_page_dirty,
 398	.invalidatepage = f2fs_invalidate_page,
 399	.releasepage	= f2fs_release_page,
 400#ifdef CONFIG_MIGRATION
 401	.migratepage    = f2fs_migrate_page,
 402#endif
 403};
 404
 405static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
 406						unsigned int devidx, int type)
 407{
 408	struct inode_management *im = &sbi->im[type];
 409	struct ino_entry *e, *tmp;
 410
 411	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
 
 
 
 
 
 412
 413	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 414
 415	spin_lock(&im->ino_lock);
 416	e = radix_tree_lookup(&im->ino_root, ino);
 417	if (!e) {
 418		e = tmp;
 419		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
 420			f2fs_bug_on(sbi, 1);
 421
 422		memset(e, 0, sizeof(struct ino_entry));
 423		e->ino = ino;
 424
 425		list_add_tail(&e->list, &im->ino_list);
 426		if (type != ORPHAN_INO)
 427			im->ino_num++;
 428	}
 429
 430	if (type == FLUSH_INO)
 431		f2fs_set_bit(devidx, (char *)&e->dirty_device);
 432
 433	spin_unlock(&im->ino_lock);
 434	radix_tree_preload_end();
 435
 436	if (e != tmp)
 437		kmem_cache_free(ino_entry_slab, tmp);
 438}
 439
 440static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 441{
 442	struct inode_management *im = &sbi->im[type];
 443	struct ino_entry *e;
 444
 445	spin_lock(&im->ino_lock);
 446	e = radix_tree_lookup(&im->ino_root, ino);
 447	if (e) {
 448		list_del(&e->list);
 449		radix_tree_delete(&im->ino_root, ino);
 450		im->ino_num--;
 451		spin_unlock(&im->ino_lock);
 452		kmem_cache_free(ino_entry_slab, e);
 453		return;
 454	}
 455	spin_unlock(&im->ino_lock);
 456}
 457
 458void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 459{
 460	/* add new dirty ino entry into list */
 461	__add_ino_entry(sbi, ino, 0, type);
 
 
 462}
 463
 464void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 465{
 466	/* remove dirty ino entry from list */
 467	__remove_ino_entry(sbi, ino, type);
 468}
 469
 470/* mode should be APPEND_INO or UPDATE_INO */
 471bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 472{
 473	struct inode_management *im = &sbi->im[mode];
 474	struct ino_entry *e;
 475
 476	spin_lock(&im->ino_lock);
 477	e = radix_tree_lookup(&im->ino_root, ino);
 478	spin_unlock(&im->ino_lock);
 479	return e ? true : false;
 480}
 
 
 
 481
 482void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
 483{
 484	struct ino_entry *e, *tmp;
 485	int i;
 486
 487	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
 488		struct inode_management *im = &sbi->im[i];
 489
 490		spin_lock(&im->ino_lock);
 491		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 492			list_del(&e->list);
 493			radix_tree_delete(&im->ino_root, e->ino);
 494			kmem_cache_free(ino_entry_slab, e);
 495			im->ino_num--;
 496		}
 497		spin_unlock(&im->ino_lock);
 498	}
 499}
 500
 501void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 502					unsigned int devidx, int type)
 503{
 504	__add_ino_entry(sbi, ino, devidx, type);
 505}
 506
 507bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 508					unsigned int devidx, int type)
 509{
 510	struct inode_management *im = &sbi->im[type];
 511	struct ino_entry *e;
 512	bool is_dirty = false;
 513
 514	spin_lock(&im->ino_lock);
 515	e = radix_tree_lookup(&im->ino_root, ino);
 516	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
 517		is_dirty = true;
 518	spin_unlock(&im->ino_lock);
 519	return is_dirty;
 520}
 521
 522int acquire_orphan_inode(struct f2fs_sb_info *sbi)
 523{
 524	struct inode_management *im = &sbi->im[ORPHAN_INO];
 525	int err = 0;
 526
 527	spin_lock(&im->ino_lock);
 528
 529#ifdef CONFIG_F2FS_FAULT_INJECTION
 530	if (time_to_inject(sbi, FAULT_ORPHAN)) {
 531		spin_unlock(&im->ino_lock);
 532		f2fs_show_injection_info(FAULT_ORPHAN);
 533		return -ENOSPC;
 534	}
 535#endif
 536	if (unlikely(im->ino_num >= sbi->max_orphans))
 537		err = -ENOSPC;
 538	else
 539		im->ino_num++;
 540	spin_unlock(&im->ino_lock);
 541
 542	return err;
 543}
 544
 545void release_orphan_inode(struct f2fs_sb_info *sbi)
 546{
 547	struct inode_management *im = &sbi->im[ORPHAN_INO];
 548
 549	spin_lock(&im->ino_lock);
 550	f2fs_bug_on(sbi, im->ino_num == 0);
 551	im->ino_num--;
 552	spin_unlock(&im->ino_lock);
 553}
 554
 555void add_orphan_inode(struct inode *inode)
 556{
 557	/* add new orphan ino entry into list */
 558	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
 559	update_inode_page(inode);
 560}
 561
 562void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 563{
 564	/* remove orphan entry from orphan list */
 565	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 566}
 567
 568static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 569{
 570	struct inode *inode;
 571	struct node_info ni;
 572	int err = acquire_orphan_inode(sbi);
 573
 574	if (err)
 575		goto err_out;
 576
 577	__add_ino_entry(sbi, ino, 0, ORPHAN_INO);
 578
 579	inode = f2fs_iget_retry(sbi->sb, ino);
 580	if (IS_ERR(inode)) {
 581		/*
 582		 * there should be a bug that we can't find the entry
 583		 * to orphan inode.
 584		 */
 585		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 586		return PTR_ERR(inode);
 587	}
 588
 589	err = dquot_initialize(inode);
 590	if (err)
 591		goto err_out;
 592
 593	dquot_initialize(inode);
 594	clear_nlink(inode);
 595
 596	/* truncate all the data during iput */
 597	iput(inode);
 598
 599	get_node_info(sbi, ino, &ni);
 600
 601	/* ENOMEM was fully retried in f2fs_evict_inode. */
 602	if (ni.blk_addr != NULL_ADDR) {
 603		err = -EIO;
 604		goto err_out;
 605	}
 606	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 607	return 0;
 608
 609err_out:
 610	set_sbi_flag(sbi, SBI_NEED_FSCK);
 611	f2fs_msg(sbi->sb, KERN_WARNING,
 612			"%s: orphan failed (ino=%x), run fsck to fix.",
 613			__func__, ino);
 614	return err;
 615}
 616
 617int recover_orphan_inodes(struct f2fs_sb_info *sbi)
 618{
 619	block_t start_blk, orphan_blocks, i, j;
 620	unsigned int s_flags = sbi->sb->s_flags;
 621	int err = 0;
 622#ifdef CONFIG_QUOTA
 623	int quota_enabled;
 624#endif
 625
 626	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
 627		return 0;
 628
 629	if (s_flags & SB_RDONLY) {
 630		f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
 631		sbi->sb->s_flags &= ~SB_RDONLY;
 632	}
 633
 634#ifdef CONFIG_QUOTA
 635	/* Needed for iput() to work correctly and not trash data */
 636	sbi->sb->s_flags |= SB_ACTIVE;
 637
 638	/* Turn on quotas so that they are updated correctly */
 639	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
 640#endif
 641
 642	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 643	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 
 644
 645	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 646
 647	for (i = 0; i < orphan_blocks; i++) {
 648		struct page *page = get_meta_page(sbi, start_blk + i);
 649		struct f2fs_orphan_block *orphan_blk;
 650
 651		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 652		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 653			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 654			err = recover_orphan_inode(sbi, ino);
 655			if (err) {
 656				f2fs_put_page(page, 1);
 657				goto out;
 658			}
 659		}
 660		f2fs_put_page(page, 1);
 661	}
 662	/* clear Orphan Flag */
 663	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
 664out:
 665#ifdef CONFIG_QUOTA
 666	/* Turn quotas off */
 667	if (quota_enabled)
 668		f2fs_quota_off_umount(sbi->sb);
 669#endif
 670	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
 671
 672	return err;
 673}
 674
 675static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 676{
 677	struct list_head *head;
 678	struct f2fs_orphan_block *orphan_blk = NULL;
 679	unsigned int nentries = 0;
 680	unsigned short index = 1;
 681	unsigned short orphan_blocks;
 
 682	struct page *page = NULL;
 683	struct ino_entry *orphan = NULL;
 684	struct inode_management *im = &sbi->im[ORPHAN_INO];
 685
 686	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 
 687
 688	/*
 689	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
 690	 * orphan inode operations are covered under f2fs_lock_op().
 691	 * And, spin_lock should be avoided due to page operations below.
 692	 */
 693	head = &im->ino_list;
 694
 695	/* loop for each orphan inode entry and write them in Jornal block */
 696	list_for_each_entry(orphan, head, list) {
 697		if (!page) {
 698			page = grab_meta_page(sbi, start_blk++);
 
 699			orphan_blk =
 700				(struct f2fs_orphan_block *)page_address(page);
 701			memset(orphan_blk, 0, sizeof(*orphan_blk));
 
 702		}
 703
 704		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 705
 706		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 707			/*
 708			 * an orphan block is full of 1020 entries,
 709			 * then we need to flush current orphan blocks
 710			 * and bring another one in memory
 711			 */
 712			orphan_blk->blk_addr = cpu_to_le16(index);
 713			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 714			orphan_blk->entry_count = cpu_to_le32(nentries);
 715			set_page_dirty(page);
 716			f2fs_put_page(page, 1);
 717			index++;
 718			nentries = 0;
 719			page = NULL;
 720		}
 721	}
 722
 723	if (page) {
 724		orphan_blk->blk_addr = cpu_to_le16(index);
 725		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 726		orphan_blk->entry_count = cpu_to_le32(nentries);
 727		set_page_dirty(page);
 728		f2fs_put_page(page, 1);
 729	}
 
 
 730}
 731
 732static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
 733		struct f2fs_checkpoint **cp_block, struct page **cp_page,
 734		unsigned long long *version)
 735{
 
 736	unsigned long blk_size = sbi->blocksize;
 737	size_t crc_offset = 0;
 
 
 738	__u32 crc = 0;
 739
 740	*cp_page = get_meta_page(sbi, cp_addr);
 741	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
 742
 743	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
 744	if (crc_offset > (blk_size - sizeof(__le32))) {
 745		f2fs_msg(sbi->sb, KERN_WARNING,
 746			"invalid crc_offset: %zu", crc_offset);
 747		return -EINVAL;
 748	}
 749
 750	crc = cur_cp_crc(*cp_block);
 751	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
 752		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
 753		return -EINVAL;
 754	}
 755
 756	*version = cur_cp_version(*cp_block);
 757	return 0;
 758}
 759
 760static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 761				block_t cp_addr, unsigned long long *version)
 762{
 763	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
 764	struct f2fs_checkpoint *cp_block = NULL;
 765	unsigned long long cur_version = 0, pre_version = 0;
 766	int err;
 767
 768	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 769					&cp_page_1, version);
 770	if (err)
 771		goto invalid_cp1;
 772	pre_version = *version;
 773
 774	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 775	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 776					&cp_page_2, version);
 777	if (err)
 778		goto invalid_cp2;
 779	cur_version = *version;
 
 780
 781	if (cur_version == pre_version) {
 782		*version = cur_version;
 783		f2fs_put_page(cp_page_2, 1);
 784		return cp_page_1;
 785	}
 786invalid_cp2:
 787	f2fs_put_page(cp_page_2, 1);
 788invalid_cp1:
 789	f2fs_put_page(cp_page_1, 1);
 790	return NULL;
 791}
 792
 793int get_valid_checkpoint(struct f2fs_sb_info *sbi)
 794{
 795	struct f2fs_checkpoint *cp_block;
 796	struct f2fs_super_block *fsb = sbi->raw_super;
 797	struct page *cp1, *cp2, *cur_page;
 798	unsigned long blk_size = sbi->blocksize;
 799	unsigned long long cp1_version = 0, cp2_version = 0;
 800	unsigned long long cp_start_blk_no;
 801	unsigned int cp_blks = 1 + __cp_payload(sbi);
 802	block_t cp_blk_no;
 803	int i;
 804
 805	sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL);
 806	if (!sbi->ckpt)
 807		return -ENOMEM;
 808	/*
 809	 * Finding out valid cp block involves read both
 810	 * sets( cp pack1 and cp pack 2)
 811	 */
 812	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 813	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 814
 815	/* The second checkpoint pack should start at the next segment */
 816	cp_start_blk_no += ((unsigned long long)1) <<
 817				le32_to_cpu(fsb->log_blocks_per_seg);
 818	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 819
 820	if (cp1 && cp2) {
 821		if (ver_after(cp2_version, cp1_version))
 822			cur_page = cp2;
 823		else
 824			cur_page = cp1;
 825	} else if (cp1) {
 826		cur_page = cp1;
 827	} else if (cp2) {
 828		cur_page = cp2;
 829	} else {
 830		goto fail_no_cp;
 831	}
 832
 833	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 834	memcpy(sbi->ckpt, cp_block, blk_size);
 835
 836	/* Sanity checking of checkpoint */
 837	if (sanity_check_ckpt(sbi))
 838		goto free_fail_no_cp;
 839
 840	if (cur_page == cp1)
 841		sbi->cur_cp_pack = 1;
 842	else
 843		sbi->cur_cp_pack = 2;
 844
 845	if (cp_blks <= 1)
 846		goto done;
 847
 848	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 849	if (cur_page == cp2)
 850		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 851
 852	for (i = 1; i < cp_blks; i++) {
 853		void *sit_bitmap_ptr;
 854		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 855
 856		cur_page = get_meta_page(sbi, cp_blk_no + i);
 857		sit_bitmap_ptr = page_address(cur_page);
 858		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 859		f2fs_put_page(cur_page, 1);
 860	}
 861done:
 862	f2fs_put_page(cp1, 1);
 863	f2fs_put_page(cp2, 1);
 864	return 0;
 865
 866free_fail_no_cp:
 867	f2fs_put_page(cp1, 1);
 868	f2fs_put_page(cp2, 1);
 869fail_no_cp:
 870	kfree(sbi->ckpt);
 871	return -EINVAL;
 872}
 873
 874static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 875{
 876	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 877	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 
 
 
 
 
 
 
 
 
 
 878
 879	if (is_inode_flag_set(inode, flag))
 
 
 
 
 
 
 880		return;
 881
 882	set_inode_flag(inode, flag);
 883	if (!f2fs_is_volatile_file(inode))
 884		list_add_tail(&F2FS_I(inode)->dirty_list,
 885						&sbi->inode_list[type]);
 886	stat_inc_dirty_inode(sbi, type);
 
 
 
 
 
 
 
 887}
 888
 889static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 890{
 891	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 
 
 
 892
 893	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
 894		return;
 
 
 
 
 895
 896	list_del_init(&F2FS_I(inode)->dirty_list);
 897	clear_inode_flag(inode, flag);
 898	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
 899}
 900
 901void update_dirty_page(struct inode *inode, struct page *page)
 902{
 903	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 904	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 
 
 
 
 905
 906	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 907			!S_ISLNK(inode->i_mode))
 
 908		return;
 
 909
 910	spin_lock(&sbi->inode_lock[type]);
 911	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
 912		__add_dirty_inode(inode, type);
 913	inode_inc_dirty_pages(inode);
 914	spin_unlock(&sbi->inode_lock[type]);
 
 
 
 
 
 
 915
 916	SetPagePrivate(page);
 917	f2fs_trace_pid(page);
 
 
 
 
 918}
 919
 920void remove_dirty_inode(struct inode *inode)
 921{
 922	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 923	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 924
 925	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 926			!S_ISLNK(inode->i_mode))
 927		return;
 928
 929	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
 930		return;
 931
 932	spin_lock(&sbi->inode_lock[type]);
 933	__remove_dirty_inode(inode, type);
 934	spin_unlock(&sbi->inode_lock[type]);
 
 
 
 
 
 
 935}
 936
 937int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
 938{
 939	struct list_head *head;
 
 940	struct inode *inode;
 941	struct f2fs_inode_info *fi;
 942	bool is_dir = (type == DIR_INODE);
 943	unsigned long ino = 0;
 944
 945	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
 946				get_pages(sbi, is_dir ?
 947				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 948retry:
 949	if (unlikely(f2fs_cp_error(sbi)))
 950		return -EIO;
 951
 952	spin_lock(&sbi->inode_lock[type]);
 953
 954	head = &sbi->inode_list[type];
 955	if (list_empty(head)) {
 956		spin_unlock(&sbi->inode_lock[type]);
 957		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
 958				get_pages(sbi, is_dir ?
 959				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 960		return 0;
 961	}
 962	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
 963	inode = igrab(&fi->vfs_inode);
 964	spin_unlock(&sbi->inode_lock[type]);
 965	if (inode) {
 966		unsigned long cur_ino = inode->i_ino;
 967
 968		if (is_dir)
 969			F2FS_I(inode)->cp_task = current;
 970
 971		filemap_fdatawrite(inode->i_mapping);
 972
 973		if (is_dir)
 974			F2FS_I(inode)->cp_task = NULL;
 975
 976		iput(inode);
 977		/* We need to give cpu to another writers. */
 978		if (ino == cur_ino) {
 979			congestion_wait(BLK_RW_ASYNC, HZ/50);
 980			cond_resched();
 981		} else {
 982			ino = cur_ino;
 983		}
 984	} else {
 985		/*
 986		 * We should submit bio, since it exists several
 987		 * wribacking dentry pages in the freeing inode.
 988		 */
 989		f2fs_submit_merged_write(sbi, DATA);
 990		cond_resched();
 991	}
 992	goto retry;
 993}
 994
 995int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
 996{
 997	struct list_head *head = &sbi->inode_list[DIRTY_META];
 998	struct inode *inode;
 999	struct f2fs_inode_info *fi;
1000	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1001
1002	while (total--) {
1003		if (unlikely(f2fs_cp_error(sbi)))
1004			return -EIO;
1005
1006		spin_lock(&sbi->inode_lock[DIRTY_META]);
1007		if (list_empty(head)) {
1008			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1009			return 0;
1010		}
1011		fi = list_first_entry(head, struct f2fs_inode_info,
1012							gdirty_list);
1013		inode = igrab(&fi->vfs_inode);
1014		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1015		if (inode) {
1016			sync_inode_metadata(inode, 0);
1017
1018			/* it's on eviction */
1019			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1020				update_inode_page(inode);
1021			iput(inode);
1022		}
1023	}
1024	return 0;
1025}
1026
1027static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1028{
1029	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1030	struct f2fs_nm_info *nm_i = NM_I(sbi);
1031	nid_t last_nid = nm_i->next_scan_nid;
1032
1033	next_free_nid(sbi, &last_nid);
1034	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1035	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1036	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1037	ckpt->next_free_nid = cpu_to_le32(last_nid);
1038}
1039
1040/*
1041 * Freeze all the FS-operations for checkpoint.
1042 */
1043static int block_operations(struct f2fs_sb_info *sbi)
1044{
1045	struct writeback_control wbc = {
1046		.sync_mode = WB_SYNC_ALL,
1047		.nr_to_write = LONG_MAX,
1048		.for_reclaim = 0,
1049	};
1050	struct blk_plug plug;
1051	int err = 0;
1052
1053	blk_start_plug(&plug);
1054
1055retry_flush_dents:
1056	f2fs_lock_all(sbi);
1057	/* write all the dirty dentry pages */
1058	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1059		f2fs_unlock_all(sbi);
1060		err = sync_dirty_inodes(sbi, DIR_INODE);
1061		if (err)
1062			goto out;
1063		cond_resched();
1064		goto retry_flush_dents;
1065	}
1066
1067	/*
1068	 * POR: we should ensure that there are no dirty node pages
1069	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1070	 */
1071	down_write(&sbi->node_change);
1072
1073	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1074		up_write(&sbi->node_change);
1075		f2fs_unlock_all(sbi);
1076		err = f2fs_sync_inode_meta(sbi);
1077		if (err)
1078			goto out;
1079		cond_resched();
1080		goto retry_flush_dents;
1081	}
1082
1083retry_flush_nodes:
1084	down_write(&sbi->node_write);
1085
1086	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1087		up_write(&sbi->node_write);
1088		err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1089		if (err) {
1090			up_write(&sbi->node_change);
1091			f2fs_unlock_all(sbi);
1092			goto out;
1093		}
1094		cond_resched();
1095		goto retry_flush_nodes;
1096	}
1097
1098	/*
1099	 * sbi->node_change is used only for AIO write_begin path which produces
1100	 * dirty node blocks and some checkpoint values by block allocation.
1101	 */
1102	__prepare_cp_block(sbi);
1103	up_write(&sbi->node_change);
1104out:
1105	blk_finish_plug(&plug);
1106	return err;
1107}
1108
1109static void unblock_operations(struct f2fs_sb_info *sbi)
1110{
1111	up_write(&sbi->node_write);
1112	f2fs_unlock_all(sbi);
1113}
1114
1115static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1116{
1117	DEFINE_WAIT(wait);
1118
1119	for (;;) {
1120		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1121
1122		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1123			break;
1124
1125		io_schedule_timeout(5*HZ);
1126	}
1127	finish_wait(&sbi->cp_wait, &wait);
1128}
1129
1130static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1131{
1132	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1133	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1134	unsigned long flags;
1135
1136	spin_lock_irqsave(&sbi->cp_lock, flags);
1137
1138	if ((cpc->reason & CP_UMOUNT) &&
1139			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1140			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1141		disable_nat_bits(sbi, false);
1142
1143	if (cpc->reason & CP_TRIMMED)
1144		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1145	else
1146		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1147
1148	if (cpc->reason & CP_UMOUNT)
1149		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1150	else
1151		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1152
1153	if (cpc->reason & CP_FASTBOOT)
1154		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1155	else
1156		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1157
1158	if (orphan_num)
1159		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1160	else
1161		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1162
1163	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1164		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1165
1166	/* set this flag to activate crc|cp_ver for recovery */
1167	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1168	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1169
1170	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1171}
1172
1173static void commit_checkpoint(struct f2fs_sb_info *sbi,
1174	void *src, block_t blk_addr)
1175{
1176	struct writeback_control wbc = {
1177		.for_reclaim = 0,
1178	};
1179
1180	/*
1181	 * pagevec_lookup_tag and lock_page again will take
1182	 * some extra time. Therefore, update_meta_pages and
1183	 * sync_meta_pages are combined in this function.
1184	 */
1185	struct page *page = grab_meta_page(sbi, blk_addr);
1186	int err;
1187
1188	memcpy(page_address(page), src, PAGE_SIZE);
1189	set_page_dirty(page);
1190
1191	f2fs_wait_on_page_writeback(page, META, true);
1192	f2fs_bug_on(sbi, PageWriteback(page));
1193	if (unlikely(!clear_page_dirty_for_io(page)))
1194		f2fs_bug_on(sbi, 1);
1195
1196	/* writeout cp pack 2 page */
1197	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1198	f2fs_bug_on(sbi, err);
1199
1200	f2fs_put_page(page, 0);
1201
1202	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1203	f2fs_submit_merged_write(sbi, META_FLUSH);
1204}
1205
1206static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1207{
1208	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1209	struct f2fs_nm_info *nm_i = NM_I(sbi);
1210	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1211	block_t start_blk;
 
1212	unsigned int data_sum_blocks, orphan_blocks;
1213	__u32 crc32 = 0;
 
1214	int i;
1215	int cp_payload_blks = __cp_payload(sbi);
1216	struct super_block *sb = sbi->sb;
1217	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1218	u64 kbytes_written;
1219	int err;
1220
1221	/* Flush all the NAT/SIT pages */
1222	while (get_pages(sbi, F2FS_DIRTY_META)) {
1223		sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1224		if (unlikely(f2fs_cp_error(sbi)))
1225			return -EIO;
1226	}
1227
1228	/*
1229	 * modify checkpoint
1230	 * version number is already updated
1231	 */
1232	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
 
1233	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1234	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1235		ckpt->cur_node_segno[i] =
1236			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1237		ckpt->cur_node_blkoff[i] =
1238			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1239		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1240				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1241	}
1242	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1243		ckpt->cur_data_segno[i] =
1244			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1245		ckpt->cur_data_blkoff[i] =
1246			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1247		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1248				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1249	}
1250
 
 
 
 
1251	/* 2 cp  + n data seg summary + orphan inode blocks */
1252	data_sum_blocks = npages_for_summary_flush(sbi, false);
1253	spin_lock_irqsave(&sbi->cp_lock, flags);
1254	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1255		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1256	else
1257		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1258	spin_unlock_irqrestore(&sbi->cp_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1259
1260	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1261	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1262			orphan_blocks);
1263
1264	if (__remain_node_summaries(cpc->reason))
1265		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1266				cp_payload_blks + data_sum_blocks +
1267				orphan_blocks + NR_CURSEG_NODE_TYPE);
1268	else
1269		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1270				cp_payload_blks + data_sum_blocks +
1271				orphan_blocks);
1272
1273	/* update ckpt flag for checkpoint */
1274	update_ckpt_flags(sbi, cpc);
1275
1276	/* update SIT/NAT bitmap */
1277	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1278	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1279
1280	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1281	*((__le32 *)((unsigned char *)ckpt +
1282				le32_to_cpu(ckpt->checksum_offset)))
1283				= cpu_to_le32(crc32);
1284
1285	start_blk = __start_cp_next_addr(sbi);
1286
1287	/* write nat bits */
1288	if (enabled_nat_bits(sbi, cpc)) {
1289		__u64 cp_ver = cur_cp_version(ckpt);
1290		block_t blk;
1291
1292		cp_ver |= ((__u64)crc32 << 32);
1293		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1294
1295		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1296		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1297			update_meta_page(sbi, nm_i->nat_bits +
1298					(i << F2FS_BLKSIZE_BITS), blk + i);
1299
1300		/* Flush all the NAT BITS pages */
1301		while (get_pages(sbi, F2FS_DIRTY_META)) {
1302			sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1303			if (unlikely(f2fs_cp_error(sbi)))
1304				return -EIO;
1305		}
1306	}
1307
1308	/* write out checkpoint buffer at block 0 */
1309	update_meta_page(sbi, ckpt, start_blk++);
 
 
 
 
1310
1311	for (i = 1; i < 1 + cp_payload_blks; i++)
1312		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1313							start_blk++);
1314
1315	if (orphan_num) {
1316		write_orphan_inodes(sbi, start_blk);
1317		start_blk += orphan_blocks;
1318	}
1319
1320	write_data_summaries(sbi, start_blk);
1321	start_blk += data_sum_blocks;
1322
1323	/* Record write statistics in the hot node summary */
1324	kbytes_written = sbi->kbytes_written;
1325	if (sb->s_bdev->bd_part)
1326		kbytes_written += BD_PART_WRITTEN(sbi);
1327
1328	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1329
1330	if (__remain_node_summaries(cpc->reason)) {
1331		write_node_summaries(sbi, start_blk);
1332		start_blk += NR_CURSEG_NODE_TYPE;
1333	}
1334
1335	/* update user_block_counts */
1336	sbi->last_valid_block_count = sbi->total_valid_block_count;
1337	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1338
1339	/* Here, we have one bio having CP pack except cp pack 2 page */
1340	sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1341
1342	/* wait for previous submitted meta pages writeback */
1343	wait_on_all_pages_writeback(sbi);
1344
1345	if (unlikely(f2fs_cp_error(sbi)))
1346		return -EIO;
1347
1348	/* flush all device cache */
1349	err = f2fs_flush_device_cache(sbi);
1350	if (err)
1351		return err;
1352
1353	/* barrier and flush checkpoint cp pack 2 page if it can */
1354	commit_checkpoint(sbi, ckpt, start_blk);
1355	wait_on_all_pages_writeback(sbi);
1356
1357	release_ino_entry(sbi, false);
1358
1359	if (unlikely(f2fs_cp_error(sbi)))
1360		return -EIO;
1361
1362	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1363	clear_sbi_flag(sbi, SBI_NEED_CP);
1364	__set_cp_next_pack(sbi);
1365
1366	/*
1367	 * redirty superblock if metadata like node page or inode cache is
1368	 * updated during writing checkpoint.
1369	 */
1370	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1371			get_pages(sbi, F2FS_DIRTY_IMETA))
1372		set_sbi_flag(sbi, SBI_IS_DIRTY);
1373
1374	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1375
1376	return 0;
1377}
1378
1379/*
1380 * We guarantee that this checkpoint procedure will not fail.
1381 */
1382int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1383{
1384	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1385	unsigned long long ckpt_ver;
1386	int err = 0;
 
1387
1388	mutex_lock(&sbi->cp_mutex);
 
1389
1390	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1391		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1392		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1393		goto out;
1394	if (unlikely(f2fs_cp_error(sbi))) {
1395		err = -EIO;
1396		goto out;
1397	}
1398	if (f2fs_readonly(sbi->sb)) {
1399		err = -EROFS;
1400		goto out;
1401	}
1402
1403	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1404
1405	err = block_operations(sbi);
1406	if (err)
1407		goto out;
1408
1409	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1410
1411	f2fs_flush_merged_writes(sbi);
1412
1413	/* this is the case of multiple fstrims without any changes */
1414	if (cpc->reason & CP_DISCARD) {
1415		if (!exist_trim_candidates(sbi, cpc)) {
1416			unblock_operations(sbi);
1417			goto out;
1418		}
1419
1420		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1421				SIT_I(sbi)->dirty_sentries == 0 &&
1422				prefree_segments(sbi) == 0) {
1423			flush_sit_entries(sbi, cpc);
1424			clear_prefree_segments(sbi, cpc);
1425			unblock_operations(sbi);
1426			goto out;
1427		}
1428	}
1429
1430	/*
1431	 * update checkpoint pack index
1432	 * Increase the version number so that
1433	 * SIT entries and seg summaries are written at correct place
1434	 */
1435	ckpt_ver = cur_cp_version(ckpt);
1436	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1437
1438	/* write cached NAT/SIT entries to NAT/SIT area */
1439	flush_nat_entries(sbi, cpc);
1440	flush_sit_entries(sbi, cpc);
1441
1442	/* unlock all the fs_lock[] in do_checkpoint() */
1443	err = do_checkpoint(sbi, cpc);
1444	if (err)
1445		release_discard_addrs(sbi);
1446	else
1447		clear_prefree_segments(sbi, cpc);
1448
1449	unblock_operations(sbi);
 
 
1450	stat_inc_cp_count(sbi->stat_info);
1451
1452	if (cpc->reason & CP_RECOVERY)
1453		f2fs_msg(sbi->sb, KERN_NOTICE,
1454			"checkpoint: version = %llx", ckpt_ver);
1455
1456	/* do checkpoint periodically */
1457	f2fs_update_time(sbi, CP_TIME);
1458	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1459out:
1460	mutex_unlock(&sbi->cp_mutex);
1461	return err;
1462}
1463
1464void init_ino_entry_info(struct f2fs_sb_info *sbi)
1465{
1466	int i;
1467
1468	for (i = 0; i < MAX_INO_ENTRY; i++) {
1469		struct inode_management *im = &sbi->im[i];
1470
1471		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1472		spin_lock_init(&im->ino_lock);
1473		INIT_LIST_HEAD(&im->ino_list);
1474		im->ino_num = 0;
1475	}
1476
1477	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1478			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1479				F2FS_ORPHANS_PER_BLOCK;
1480}
1481
1482int __init create_checkpoint_caches(void)
1483{
1484	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1485			sizeof(struct ino_entry));
1486	if (!ino_entry_slab)
1487		return -ENOMEM;
1488	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1489			sizeof(struct inode_entry));
1490	if (!inode_entry_slab) {
1491		kmem_cache_destroy(ino_entry_slab);
1492		return -ENOMEM;
1493	}
1494	return 0;
1495}
1496
1497void destroy_checkpoint_caches(void)
1498{
1499	kmem_cache_destroy(ino_entry_slab);
1500	kmem_cache_destroy(inode_entry_slab);
1501}