Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1/*
  2 * devfreq_cooling: Thermal cooling device implementation for devices using
  3 *                  devfreq
  4 *
  5 * Copyright (C) 2014-2015 ARM Limited
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 12 * kind, whether express or implied; without even the implied warranty
 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * TODO:
 17 *    - If OPPs are added or removed after devfreq cooling has
 18 *      registered, the devfreq cooling won't react to it.
 19 */
 20
 21#include <linux/devfreq.h>
 22#include <linux/devfreq_cooling.h>
 23#include <linux/export.h>
 24#include <linux/idr.h>
 25#include <linux/slab.h>
 26#include <linux/pm_opp.h>
 27#include <linux/thermal.h>
 28
 29#include <trace/events/thermal.h>
 30
 31#define SCALE_ERROR_MITIGATION 100
 32
 33static DEFINE_IDA(devfreq_ida);
 34
 35/**
 36 * struct devfreq_cooling_device - Devfreq cooling device
 37 * @id:		unique integer value corresponding to each
 38 *		devfreq_cooling_device registered.
 39 * @cdev:	Pointer to associated thermal cooling device.
 40 * @devfreq:	Pointer to associated devfreq device.
 41 * @cooling_state:	Current cooling state.
 42 * @power_table:	Pointer to table with maximum power draw for each
 43 *			cooling state. State is the index into the table, and
 44 *			the power is in mW.
 45 * @freq_table:	Pointer to a table with the frequencies sorted in descending
 46 *		order.  You can index the table by cooling device state
 47 * @freq_table_size:	Size of the @freq_table and @power_table
 48 * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
 49 *		@power_table.
 50 * @res_util:	Resource utilization scaling factor for the power.
 51 *		It is multiplied by 100 to minimize the error. It is used
 52 *		for estimation of the power budget instead of using
 53 *		'utilization' (which is	'busy_time / 'total_time').
 54 *		The 'res_util' range is from 100 to (power_table[state] * 100)
 55 *		for the corresponding 'state'.
 56 */
 57struct devfreq_cooling_device {
 58	int id;
 59	struct thermal_cooling_device *cdev;
 60	struct devfreq *devfreq;
 61	unsigned long cooling_state;
 62	u32 *power_table;
 63	u32 *freq_table;
 64	size_t freq_table_size;
 65	struct devfreq_cooling_power *power_ops;
 66	u32 res_util;
 67	int capped_state;
 68};
 69
 70/**
 71 * partition_enable_opps() - disable all opps above a given state
 72 * @dfc:	Pointer to devfreq we are operating on
 73 * @cdev_state:	cooling device state we're setting
 74 *
 75 * Go through the OPPs of the device, enabling all OPPs until
 76 * @cdev_state and disabling those frequencies above it.
 77 */
 78static int partition_enable_opps(struct devfreq_cooling_device *dfc,
 79				 unsigned long cdev_state)
 80{
 81	int i;
 82	struct device *dev = dfc->devfreq->dev.parent;
 83
 84	for (i = 0; i < dfc->freq_table_size; i++) {
 85		struct dev_pm_opp *opp;
 86		int ret = 0;
 87		unsigned int freq = dfc->freq_table[i];
 88		bool want_enable = i >= cdev_state ? true : false;
 89
 90		opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
 91
 92		if (PTR_ERR(opp) == -ERANGE)
 93			continue;
 94		else if (IS_ERR(opp))
 95			return PTR_ERR(opp);
 96
 97		dev_pm_opp_put(opp);
 98
 99		if (want_enable)
100			ret = dev_pm_opp_enable(dev, freq);
101		else
102			ret = dev_pm_opp_disable(dev, freq);
103
104		if (ret)
105			return ret;
106	}
107
108	return 0;
109}
110
111static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
112					 unsigned long *state)
113{
114	struct devfreq_cooling_device *dfc = cdev->devdata;
115
116	*state = dfc->freq_table_size - 1;
117
118	return 0;
119}
120
121static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
122					 unsigned long *state)
123{
124	struct devfreq_cooling_device *dfc = cdev->devdata;
125
126	*state = dfc->cooling_state;
127
128	return 0;
129}
130
131static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
132					 unsigned long state)
133{
134	struct devfreq_cooling_device *dfc = cdev->devdata;
135	struct devfreq *df = dfc->devfreq;
136	struct device *dev = df->dev.parent;
137	int ret;
138
139	if (state == dfc->cooling_state)
140		return 0;
141
142	dev_dbg(dev, "Setting cooling state %lu\n", state);
143
144	if (state >= dfc->freq_table_size)
145		return -EINVAL;
146
147	ret = partition_enable_opps(dfc, state);
148	if (ret)
149		return ret;
150
151	dfc->cooling_state = state;
152
153	return 0;
154}
155
156/**
157 * freq_get_state() - get the cooling state corresponding to a frequency
158 * @dfc:	Pointer to devfreq cooling device
159 * @freq:	frequency in Hz
160 *
161 * Return: the cooling state associated with the @freq, or
162 * THERMAL_CSTATE_INVALID if it wasn't found.
163 */
164static unsigned long
165freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
166{
167	int i;
168
169	for (i = 0; i < dfc->freq_table_size; i++) {
170		if (dfc->freq_table[i] == freq)
171			return i;
172	}
173
174	return THERMAL_CSTATE_INVALID;
175}
176
177static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
178{
179	struct device *dev = df->dev.parent;
180	unsigned long voltage;
181	struct dev_pm_opp *opp;
182
183	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
184	if (PTR_ERR(opp) == -ERANGE)
185		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
186
187	if (IS_ERR(opp)) {
188		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
189				    freq, PTR_ERR(opp));
190		return 0;
191	}
192
193	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
194	dev_pm_opp_put(opp);
195
196	if (voltage == 0) {
197		dev_err_ratelimited(dev,
198				    "Failed to get voltage for frequency %lu\n",
199				    freq);
200	}
201
202	return voltage;
203}
204
205/**
206 * get_static_power() - calculate the static power
207 * @dfc:	Pointer to devfreq cooling device
208 * @freq:	Frequency in Hz
209 *
210 * Calculate the static power in milliwatts using the supplied
211 * get_static_power().  The current voltage is calculated using the
212 * OPP library.  If no get_static_power() was supplied, assume the
213 * static power is negligible.
214 */
215static unsigned long
216get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
217{
218	struct devfreq *df = dfc->devfreq;
219	unsigned long voltage;
220
221	if (!dfc->power_ops->get_static_power)
222		return 0;
223
224	voltage = get_voltage(df, freq);
225
226	if (voltage == 0)
227		return 0;
228
229	return dfc->power_ops->get_static_power(df, voltage);
230}
231
232/**
233 * get_dynamic_power - calculate the dynamic power
234 * @dfc:	Pointer to devfreq cooling device
235 * @freq:	Frequency in Hz
236 * @voltage:	Voltage in millivolts
237 *
238 * Calculate the dynamic power in milliwatts consumed by the device at
239 * frequency @freq and voltage @voltage.  If the get_dynamic_power()
240 * was supplied as part of the devfreq_cooling_power struct, then that
241 * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
242 * Voltage^2 * Frequency) is used.
243 */
244static unsigned long
245get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
246		  unsigned long voltage)
247{
248	u64 power;
249	u32 freq_mhz;
250	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
251
252	if (dfc_power->get_dynamic_power)
253		return dfc_power->get_dynamic_power(dfc->devfreq, freq,
254						    voltage);
255
256	freq_mhz = freq / 1000000;
257	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
258	do_div(power, 1000000000);
259
260	return power;
261}
262
263
264static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
265					    unsigned long freq,
266					    unsigned long voltage)
267{
268	return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
269							       voltage);
270}
271
272
273static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
274					       struct thermal_zone_device *tz,
275					       u32 *power)
276{
277	struct devfreq_cooling_device *dfc = cdev->devdata;
278	struct devfreq *df = dfc->devfreq;
279	struct devfreq_dev_status *status = &df->last_status;
280	unsigned long state;
281	unsigned long freq = status->current_frequency;
282	unsigned long voltage;
283	u32 dyn_power = 0;
284	u32 static_power = 0;
285	int res;
286
287	state = freq_get_state(dfc, freq);
288	if (state == THERMAL_CSTATE_INVALID) {
289		res = -EAGAIN;
290		goto fail;
291	}
292
293	if (dfc->power_ops->get_real_power) {
294		voltage = get_voltage(df, freq);
295		if (voltage == 0) {
296			res = -EINVAL;
297			goto fail;
298		}
299
300		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
301		if (!res) {
302			state = dfc->capped_state;
303			dfc->res_util = dfc->power_table[state];
304			dfc->res_util *= SCALE_ERROR_MITIGATION;
305
306			if (*power > 1)
307				dfc->res_util /= *power;
308		} else {
309			goto fail;
310		}
311	} else {
312		dyn_power = dfc->power_table[state];
313
314		/* Scale dynamic power for utilization */
315		dyn_power *= status->busy_time;
316		dyn_power /= status->total_time;
317		/* Get static power */
318		static_power = get_static_power(dfc, freq);
319
320		*power = dyn_power + static_power;
321	}
322
323	trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
324					      static_power, *power);
325
326	return 0;
327fail:
328	/* It is safe to set max in this case */
329	dfc->res_util = SCALE_ERROR_MITIGATION;
330	return res;
331}
332
333static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
334				       struct thermal_zone_device *tz,
335				       unsigned long state,
336				       u32 *power)
337{
338	struct devfreq_cooling_device *dfc = cdev->devdata;
339	unsigned long freq;
340	u32 static_power;
341
342	if (state >= dfc->freq_table_size)
343		return -EINVAL;
344
345	freq = dfc->freq_table[state];
346	static_power = get_static_power(dfc, freq);
347
348	*power = dfc->power_table[state] + static_power;
349	return 0;
350}
351
352static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
353				       struct thermal_zone_device *tz,
354				       u32 power, unsigned long *state)
355{
356	struct devfreq_cooling_device *dfc = cdev->devdata;
357	struct devfreq *df = dfc->devfreq;
358	struct devfreq_dev_status *status = &df->last_status;
359	unsigned long freq = status->current_frequency;
360	unsigned long busy_time;
361	s32 dyn_power;
362	u32 static_power;
363	s32 est_power;
364	int i;
365
366	if (dfc->power_ops->get_real_power) {
367		/* Scale for resource utilization */
368		est_power = power * dfc->res_util;
369		est_power /= SCALE_ERROR_MITIGATION;
370	} else {
371		static_power = get_static_power(dfc, freq);
372
373		dyn_power = power - static_power;
374		dyn_power = dyn_power > 0 ? dyn_power : 0;
375
376		/* Scale dynamic power for utilization */
377		busy_time = status->busy_time ?: 1;
378		est_power = (dyn_power * status->total_time) / busy_time;
379	}
380
381	/*
382	 * Find the first cooling state that is within the power
383	 * budget for dynamic power.
384	 */
385	for (i = 0; i < dfc->freq_table_size - 1; i++)
386		if (est_power >= dfc->power_table[i])
387			break;
388
389	*state = i;
390	dfc->capped_state = i;
391	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
392	return 0;
393}
394
395static struct thermal_cooling_device_ops devfreq_cooling_ops = {
396	.get_max_state = devfreq_cooling_get_max_state,
397	.get_cur_state = devfreq_cooling_get_cur_state,
398	.set_cur_state = devfreq_cooling_set_cur_state,
399};
400
401/**
402 * devfreq_cooling_gen_tables() - Generate power and freq tables.
403 * @dfc: Pointer to devfreq cooling device.
404 *
405 * Generate power and frequency tables: the power table hold the
406 * device's maximum power usage at each cooling state (OPP).  The
407 * static and dynamic power using the appropriate voltage and
408 * frequency for the state, is acquired from the struct
409 * devfreq_cooling_power, and summed to make the maximum power draw.
410 *
411 * The frequency table holds the frequencies in descending order.
412 * That way its indexed by cooling device state.
413 *
414 * The tables are malloced, and pointers put in dfc.  They must be
415 * freed when unregistering the devfreq cooling device.
416 *
417 * Return: 0 on success, negative error code on failure.
418 */
419static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
420{
421	struct devfreq *df = dfc->devfreq;
422	struct device *dev = df->dev.parent;
423	int ret, num_opps;
424	unsigned long freq;
425	u32 *power_table = NULL;
426	u32 *freq_table;
427	int i;
428
429	num_opps = dev_pm_opp_get_opp_count(dev);
430
431	if (dfc->power_ops) {
432		power_table = kcalloc(num_opps, sizeof(*power_table),
433				      GFP_KERNEL);
434		if (!power_table)
435			return -ENOMEM;
436	}
437
438	freq_table = kcalloc(num_opps, sizeof(*freq_table),
439			     GFP_KERNEL);
440	if (!freq_table) {
441		ret = -ENOMEM;
442		goto free_power_table;
443	}
444
445	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
446		unsigned long power, voltage;
447		struct dev_pm_opp *opp;
448
449		opp = dev_pm_opp_find_freq_floor(dev, &freq);
450		if (IS_ERR(opp)) {
451			ret = PTR_ERR(opp);
452			goto free_tables;
453		}
454
455		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
456		dev_pm_opp_put(opp);
457
458		if (dfc->power_ops) {
459			if (dfc->power_ops->get_real_power)
460				power = get_total_power(dfc, freq, voltage);
461			else
462				power = get_dynamic_power(dfc, freq, voltage);
463
464			dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
465				freq / 1000000, voltage, power, power);
466
467			power_table[i] = power;
468		}
469
470		freq_table[i] = freq;
471	}
472
473	if (dfc->power_ops)
474		dfc->power_table = power_table;
475
476	dfc->freq_table = freq_table;
477	dfc->freq_table_size = num_opps;
478
479	return 0;
480
481free_tables:
482	kfree(freq_table);
483free_power_table:
484	kfree(power_table);
485
486	return ret;
487}
488
489/**
490 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
491 *                                      with OF and power information.
492 * @np:	Pointer to OF device_node.
493 * @df:	Pointer to devfreq device.
494 * @dfc_power:	Pointer to devfreq_cooling_power.
495 *
496 * Register a devfreq cooling device.  The available OPPs must be
497 * registered on the device.
498 *
499 * If @dfc_power is provided, the cooling device is registered with the
500 * power extensions.  For the power extensions to work correctly,
501 * devfreq should use the simple_ondemand governor, other governors
502 * are not currently supported.
503 */
504struct thermal_cooling_device *
505of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
506				  struct devfreq_cooling_power *dfc_power)
507{
508	struct thermal_cooling_device *cdev;
509	struct devfreq_cooling_device *dfc;
510	char dev_name[THERMAL_NAME_LENGTH];
511	int err;
512
513	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
514	if (!dfc)
515		return ERR_PTR(-ENOMEM);
516
517	dfc->devfreq = df;
518
519	if (dfc_power) {
520		dfc->power_ops = dfc_power;
521
522		devfreq_cooling_ops.get_requested_power =
523			devfreq_cooling_get_requested_power;
524		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
525		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
526	}
527
528	err = devfreq_cooling_gen_tables(dfc);
529	if (err)
530		goto free_dfc;
531
532	err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
533	if (err < 0)
534		goto free_tables;
535	dfc->id = err;
536
537	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
538
539	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
540						  &devfreq_cooling_ops);
541	if (IS_ERR(cdev)) {
542		err = PTR_ERR(cdev);
543		dev_err(df->dev.parent,
544			"Failed to register devfreq cooling device (%d)\n",
545			err);
546		goto release_ida;
547	}
548
549	dfc->cdev = cdev;
550
551	return cdev;
552
553release_ida:
554	ida_simple_remove(&devfreq_ida, dfc->id);
555free_tables:
556	kfree(dfc->power_table);
557	kfree(dfc->freq_table);
558free_dfc:
559	kfree(dfc);
560
561	return ERR_PTR(err);
562}
563EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
564
565/**
566 * of_devfreq_cooling_register() - Register devfreq cooling device,
567 *                                with OF information.
568 * @np: Pointer to OF device_node.
569 * @df: Pointer to devfreq device.
570 */
571struct thermal_cooling_device *
572of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
573{
574	return of_devfreq_cooling_register_power(np, df, NULL);
575}
576EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
577
578/**
579 * devfreq_cooling_register() - Register devfreq cooling device.
580 * @df: Pointer to devfreq device.
581 */
582struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
583{
584	return of_devfreq_cooling_register(NULL, df);
585}
586EXPORT_SYMBOL_GPL(devfreq_cooling_register);
587
588/**
589 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
590 * @dfc: Pointer to devfreq cooling device to unregister.
591 */
592void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
593{
594	struct devfreq_cooling_device *dfc;
595
596	if (!cdev)
597		return;
598
599	dfc = cdev->devdata;
600
601	thermal_cooling_device_unregister(dfc->cdev);
602	ida_simple_remove(&devfreq_ida, dfc->id);
603	kfree(dfc->power_table);
604	kfree(dfc->freq_table);
605
606	kfree(dfc);
607}
608EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);