Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * An SPI driver for the Philips PCF2123 RTC
  3 * Copyright 2009 Cyber Switching, Inc.
  4 *
  5 * Author: Chris Verges <chrisv@cyberswitching.com>
  6 * Maintainers: http://www.cyberswitching.com
  7 *
  8 * based on the RS5C348 driver in this same directory.
  9 *
 10 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
 11 * the sysfs contributions to this driver.
 12 *
 13 * This program is free software; you can redistribute it and/or modify
 14 * it under the terms of the GNU General Public License version 2 as
 15 * published by the Free Software Foundation.
 16 *
 17 * Please note that the CS is active high, so platform data
 18 * should look something like:
 19 *
 20 * static struct spi_board_info ek_spi_devices[] = {
 21 *	...
 22 *	{
 23 *		.modalias		= "rtc-pcf2123",
 24 *		.chip_select		= 1,
 25 *		.controller_data	= (void *)AT91_PIN_PA10,
 26 *		.max_speed_hz		= 1000 * 1000,
 27 *		.mode			= SPI_CS_HIGH,
 28 *		.bus_num		= 0,
 29 *	},
 30 *	...
 31 *};
 32 *
 33 */
 34
 35#include <linux/bcd.h>
 36#include <linux/delay.h>
 37#include <linux/device.h>
 38#include <linux/errno.h>
 39#include <linux/init.h>
 40#include <linux/kernel.h>
 
 41#include <linux/string.h>
 42#include <linux/slab.h>
 43#include <linux/rtc.h>
 44#include <linux/spi/spi.h>
 45#include <linux/module.h>
 46#include <linux/sysfs.h>
 47
 48#define DRV_VERSION "0.6"
 49
 50#define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
 51#define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
 52#define PCF2123_REG_SC		(0x02)	/* datetime */
 53#define PCF2123_REG_MN		(0x03)
 54#define PCF2123_REG_HR		(0x04)
 55#define PCF2123_REG_DM		(0x05)
 56#define PCF2123_REG_DW		(0x06)
 57#define PCF2123_REG_MO		(0x07)
 58#define PCF2123_REG_YR		(0x08)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59
 60#define PCF2123_SUBADDR		(1 << 4)
 61#define PCF2123_WRITE		((0 << 7) | PCF2123_SUBADDR)
 62#define PCF2123_READ		((1 << 7) | PCF2123_SUBADDR)
 63
 64static struct spi_driver pcf2123_driver;
 65
 66struct pcf2123_sysfs_reg {
 67	struct device_attribute attr;
 68	char name[2];
 69};
 70
 71struct pcf2123_plat_data {
 72	struct rtc_device *rtc;
 73	struct pcf2123_sysfs_reg regs[16];
 74};
 75
 76/*
 77 * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
 78 * is released properly after an SPI write.  This function should be
 79 * called after EVERY read/write call over SPI.
 80 */
 81static inline void pcf2123_delay_trec(void)
 82{
 83	ndelay(30);
 84}
 85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
 87			    char *buffer)
 88{
 89	struct spi_device *spi = to_spi_device(dev);
 90	struct pcf2123_sysfs_reg *r;
 91	u8 txbuf[1], rxbuf[1];
 92	unsigned long reg;
 93	int ret;
 94
 95	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
 96
 97	ret = kstrtoul(r->name, 16, &reg);
 98	if (ret)
 99		return ret;
100
101	txbuf[0] = PCF2123_READ | reg;
102	ret = spi_write_then_read(spi, txbuf, 1, rxbuf, 1);
103	if (ret < 0)
104		return -EIO;
105	pcf2123_delay_trec();
106	return sprintf(buffer, "0x%x\n", rxbuf[0]);
107}
108
109static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
110			     const char *buffer, size_t count) {
111	struct spi_device *spi = to_spi_device(dev);
112	struct pcf2123_sysfs_reg *r;
113	u8 txbuf[2];
114	unsigned long reg;
115	unsigned long val;
116
117	int ret;
118
119	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
120
121	ret = kstrtoul(r->name, 16, &reg);
122	if (ret)
123		return ret;
124
125	ret = kstrtoul(buffer, 10, &val);
126	if (ret)
127		return ret;
128
129	txbuf[0] = PCF2123_WRITE | reg;
130	txbuf[1] = val;
131	ret = spi_write(spi, txbuf, sizeof(txbuf));
132	if (ret < 0)
133		return -EIO;
134	pcf2123_delay_trec();
135	return count;
136}
137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
139{
140	struct spi_device *spi = to_spi_device(dev);
141	u8 txbuf[1], rxbuf[7];
142	int ret;
143
144	txbuf[0] = PCF2123_READ | PCF2123_REG_SC;
145	ret = spi_write_then_read(spi, txbuf, sizeof(txbuf),
146			rxbuf, sizeof(rxbuf));
147	if (ret < 0)
148		return ret;
149	pcf2123_delay_trec();
 
 
 
 
150
151	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
152	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
153	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
154	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
155	tm->tm_wday = rxbuf[4] & 0x07;
156	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
157	tm->tm_year = bcd2bin(rxbuf[6]);
158	if (tm->tm_year < 70)
159		tm->tm_year += 100;	/* assume we are in 1970...2069 */
160
161	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
162			"mday=%d, mon=%d, year=%d, wday=%d\n",
163			__func__,
164			tm->tm_sec, tm->tm_min, tm->tm_hour,
165			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
166
167	/* the clock can give out invalid datetime, but we cannot return
168	 * -EINVAL otherwise hwclock will refuse to set the time on bootup.
169	 */
170	if (rtc_valid_tm(tm) < 0)
171		dev_err(dev, "retrieved date/time is not valid.\n");
172
173	return 0;
174}
175
176static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
177{
178	struct spi_device *spi = to_spi_device(dev);
179	u8 txbuf[8];
180	int ret;
181
182	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
183			"mday=%d, mon=%d, year=%d, wday=%d\n",
184			__func__,
185			tm->tm_sec, tm->tm_min, tm->tm_hour,
186			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
187
188	/* Stop the counter first */
189	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
190	txbuf[1] = 0x20;
191	ret = spi_write(spi, txbuf, 2);
192	if (ret < 0)
193		return ret;
194	pcf2123_delay_trec();
195
196	/* Set the new time */
197	txbuf[0] = PCF2123_WRITE | PCF2123_REG_SC;
198	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
199	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
200	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
201	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
202	txbuf[5] = tm->tm_wday & 0x07;
203	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
204	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
205
206	ret = spi_write(spi, txbuf, sizeof(txbuf));
207	if (ret < 0)
208		return ret;
209	pcf2123_delay_trec();
210
211	/* Start the counter */
212	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
213	txbuf[1] = 0x00;
214	ret = spi_write(spi, txbuf, 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215	if (ret < 0)
216		return ret;
217	pcf2123_delay_trec();
218
219	return 0;
220}
221
222static const struct rtc_class_ops pcf2123_rtc_ops = {
223	.read_time	= pcf2123_rtc_read_time,
224	.set_time	= pcf2123_rtc_set_time,
 
 
 
225};
226
227static int pcf2123_probe(struct spi_device *spi)
228{
229	struct rtc_device *rtc;
 
230	struct pcf2123_plat_data *pdata;
231	u8 txbuf[2], rxbuf[2];
232	int ret, i;
233
234	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
235				GFP_KERNEL);
236	if (!pdata)
237		return -ENOMEM;
238	spi->dev.platform_data = pdata;
239
240	/* Send a software reset command */
241	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
242	txbuf[1] = 0x58;
243	dev_dbg(&spi->dev, "resetting RTC (0x%02X 0x%02X)\n",
244			txbuf[0], txbuf[1]);
245	ret = spi_write(spi, txbuf, 2 * sizeof(u8));
246	if (ret < 0)
247		goto kfree_exit;
248	pcf2123_delay_trec();
249
250	/* Stop the counter */
251	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
252	txbuf[1] = 0x20;
253	dev_dbg(&spi->dev, "stopping RTC (0x%02X 0x%02X)\n",
254			txbuf[0], txbuf[1]);
255	ret = spi_write(spi, txbuf, 2 * sizeof(u8));
256	if (ret < 0)
257		goto kfree_exit;
258	pcf2123_delay_trec();
259
260	/* See if the counter was actually stopped */
261	txbuf[0] = PCF2123_READ | PCF2123_REG_CTRL1;
262	dev_dbg(&spi->dev, "checking for presence of RTC (0x%02X)\n",
263			txbuf[0]);
264	ret = spi_write_then_read(spi, txbuf, 1 * sizeof(u8),
265					rxbuf, 2 * sizeof(u8));
266	dev_dbg(&spi->dev, "received data from RTC (0x%02X 0x%02X)\n",
267			rxbuf[0], rxbuf[1]);
268	if (ret < 0)
269		goto kfree_exit;
270	pcf2123_delay_trec();
271
272	if (!(rxbuf[0] & 0x20)) {
273		dev_err(&spi->dev, "chip not found\n");
274		ret = -ENODEV;
275		goto kfree_exit;
276	}
277
278	dev_info(&spi->dev, "chip found, driver version " DRV_VERSION "\n");
279	dev_info(&spi->dev, "spiclk %u KHz.\n",
280			(spi->max_speed_hz + 500) / 1000);
281
282	/* Start the counter */
283	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
284	txbuf[1] = 0x00;
285	ret = spi_write(spi, txbuf, sizeof(txbuf));
286	if (ret < 0)
287		goto kfree_exit;
288	pcf2123_delay_trec();
289
290	/* Finalize the initialization */
291	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
292			&pcf2123_rtc_ops, THIS_MODULE);
293
294	if (IS_ERR(rtc)) {
295		dev_err(&spi->dev, "failed to register.\n");
296		ret = PTR_ERR(rtc);
297		goto kfree_exit;
298	}
299
300	pdata->rtc = rtc;
301
302	for (i = 0; i < 16; i++) {
303		sysfs_attr_init(&pdata->regs[i].attr.attr);
304		sprintf(pdata->regs[i].name, "%1x", i);
305		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
306		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
307		pdata->regs[i].attr.show = pcf2123_show;
308		pdata->regs[i].attr.store = pcf2123_store;
309		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
310		if (ret) {
311			dev_err(&spi->dev, "Unable to create sysfs %s\n",
312				pdata->regs[i].name);
313			goto sysfs_exit;
314		}
315	}
316
317	return 0;
318
319sysfs_exit:
320	for (i--; i >= 0; i--)
321		device_remove_file(&spi->dev, &pdata->regs[i].attr);
322
323kfree_exit:
324	spi->dev.platform_data = NULL;
325	return ret;
326}
327
328static int pcf2123_remove(struct spi_device *spi)
329{
330	struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
331	int i;
332
333	if (pdata) {
334		for (i = 0; i < 16; i++)
335			if (pdata->regs[i].name[0])
336				device_remove_file(&spi->dev,
337						   &pdata->regs[i].attr);
338	}
339
340	return 0;
341}
342
 
 
 
 
 
 
 
 
343static struct spi_driver pcf2123_driver = {
344	.driver	= {
345			.name	= "rtc-pcf2123",
346			.owner	= THIS_MODULE,
347	},
348	.probe	= pcf2123_probe,
349	.remove	= pcf2123_remove,
350};
351
352module_spi_driver(pcf2123_driver);
353
354MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
355MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
356MODULE_LICENSE("GPL");
357MODULE_VERSION(DRV_VERSION);
v4.17
  1/*
  2 * An SPI driver for the Philips PCF2123 RTC
  3 * Copyright 2009 Cyber Switching, Inc.
  4 *
  5 * Author: Chris Verges <chrisv@cyberswitching.com>
  6 * Maintainers: http://www.cyberswitching.com
  7 *
  8 * based on the RS5C348 driver in this same directory.
  9 *
 10 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
 11 * the sysfs contributions to this driver.
 12 *
 13 * This program is free software; you can redistribute it and/or modify
 14 * it under the terms of the GNU General Public License version 2 as
 15 * published by the Free Software Foundation.
 16 *
 17 * Please note that the CS is active high, so platform data
 18 * should look something like:
 19 *
 20 * static struct spi_board_info ek_spi_devices[] = {
 21 *	...
 22 *	{
 23 *		.modalias		= "rtc-pcf2123",
 24 *		.chip_select		= 1,
 25 *		.controller_data	= (void *)AT91_PIN_PA10,
 26 *		.max_speed_hz		= 1000 * 1000,
 27 *		.mode			= SPI_CS_HIGH,
 28 *		.bus_num		= 0,
 29 *	},
 30 *	...
 31 *};
 32 *
 33 */
 34
 35#include <linux/bcd.h>
 36#include <linux/delay.h>
 37#include <linux/device.h>
 38#include <linux/errno.h>
 39#include <linux/init.h>
 40#include <linux/kernel.h>
 41#include <linux/of.h>
 42#include <linux/string.h>
 43#include <linux/slab.h>
 44#include <linux/rtc.h>
 45#include <linux/spi/spi.h>
 46#include <linux/module.h>
 47#include <linux/sysfs.h>
 48
 49/* REGISTERS */
 
 50#define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
 51#define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
 52#define PCF2123_REG_SC		(0x02)	/* datetime */
 53#define PCF2123_REG_MN		(0x03)
 54#define PCF2123_REG_HR		(0x04)
 55#define PCF2123_REG_DM		(0x05)
 56#define PCF2123_REG_DW		(0x06)
 57#define PCF2123_REG_MO		(0x07)
 58#define PCF2123_REG_YR		(0x08)
 59#define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
 60#define PCF2123_REG_ALRM_HR	(0x0a)
 61#define PCF2123_REG_ALRM_DM	(0x0b)
 62#define PCF2123_REG_ALRM_DW	(0x0c)
 63#define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
 64#define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
 65#define PCF2123_REG_CTDWN_TMR	(0x0f)
 66
 67/* PCF2123_REG_CTRL1 BITS */
 68#define CTRL1_CLEAR		(0)	/* Clear */
 69#define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
 70#define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
 71#define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
 72#define CTRL1_STOP		BIT(5)	/* Stop the clock */
 73#define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
 74
 75/* PCF2123_REG_CTRL2 BITS */
 76#define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
 77#define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
 78#define CTRL2_TF		BIT(2)	/* Countdown timer flag */
 79#define CTRL2_AF		BIT(3)	/* Alarm flag */
 80#define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
 81#define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
 82#define CTRL2_SI		BIT(6)	/* Second irq enable */
 83#define CTRL2_MI		BIT(7)	/* Minute irq enable */
 84
 85/* PCF2123_REG_SC BITS */
 86#define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
 87
 88/* PCF2123_REG_ALRM_XX BITS */
 89#define ALRM_ENABLE		BIT(7)	/* MN, HR, DM, or DW alarm enable */
 90
 91/* PCF2123_REG_TMR_CLKOUT BITS */
 92#define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
 93#define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
 94#define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
 95#define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
 96#define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
 97
 98/* PCF2123_REG_OFFSET BITS */
 99#define OFFSET_SIGN_BIT		6	/* 2's complement sign bit */
100#define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
101#define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
102
103/* READ/WRITE ADDRESS BITS */
104#define PCF2123_WRITE		BIT(4)
105#define PCF2123_READ		(BIT(4) | BIT(7))
106
 
 
 
107
108static struct spi_driver pcf2123_driver;
109
110struct pcf2123_sysfs_reg {
111	struct device_attribute attr;
112	char name[2];
113};
114
115struct pcf2123_plat_data {
116	struct rtc_device *rtc;
117	struct pcf2123_sysfs_reg regs[16];
118};
119
120/*
121 * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
122 * is released properly after an SPI write.  This function should be
123 * called after EVERY read/write call over SPI.
124 */
125static inline void pcf2123_delay_trec(void)
126{
127	ndelay(30);
128}
129
130static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
131{
132	struct spi_device *spi = to_spi_device(dev);
133	int ret;
134
135	reg |= PCF2123_READ;
136	ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
137	pcf2123_delay_trec();
138
139	return ret;
140}
141
142static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
143{
144	struct spi_device *spi = to_spi_device(dev);
145	int ret;
146
147	txbuf[0] |= PCF2123_WRITE;
148	ret = spi_write(spi, txbuf, size);
149	pcf2123_delay_trec();
150
151	return ret;
152}
153
154static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
155{
156	u8 txbuf[2];
157
158	txbuf[0] = reg;
159	txbuf[1] = val;
160	return pcf2123_write(dev, txbuf, sizeof(txbuf));
161}
162
163static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
164			    char *buffer)
165{
 
166	struct pcf2123_sysfs_reg *r;
167	u8 rxbuf[1];
168	unsigned long reg;
169	int ret;
170
171	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
172
173	ret = kstrtoul(r->name, 16, &reg);
174	if (ret)
175		return ret;
176
177	ret = pcf2123_read(dev, reg, rxbuf, 1);
 
178	if (ret < 0)
179		return -EIO;
180
181	return sprintf(buffer, "0x%x\n", rxbuf[0]);
182}
183
184static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
185			     const char *buffer, size_t count)
186{
187	struct pcf2123_sysfs_reg *r;
 
188	unsigned long reg;
189	unsigned long val;
190
191	int ret;
192
193	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
194
195	ret = kstrtoul(r->name, 16, &reg);
196	if (ret)
197		return ret;
198
199	ret = kstrtoul(buffer, 10, &val);
200	if (ret)
201		return ret;
202
203	ret = pcf2123_write_reg(dev, reg, val);
 
 
204	if (ret < 0)
205		return -EIO;
 
206	return count;
207}
208
209static int pcf2123_read_offset(struct device *dev, long *offset)
210{
211	int ret;
212	s8 reg;
213
214	ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
215	if (ret < 0)
216		return ret;
217
218	if (reg & OFFSET_COARSE)
219		reg <<= 1; /* multiply by 2 and sign extend */
220	else
221		reg = sign_extend32(reg, OFFSET_SIGN_BIT);
222
223	*offset = ((long)reg) * OFFSET_STEP;
224
225	return 0;
226}
227
228/*
229 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
230 * The main difference between the two is normal offset adjusts the first
231 * second of n minutes every other hour, with 61, 62 and 63 being shoved
232 * into the 60th minute.
233 * The coarse adjustment does the same, but every hour.
234 * the two overlap, with every even normal offset value corresponding
235 * to a coarse offset. Based on this algorithm, it seems that despite the
236 * name, coarse offset is a better fit for overlapping values.
237 */
238static int pcf2123_set_offset(struct device *dev, long offset)
239{
240	s8 reg;
241
242	if (offset > OFFSET_STEP * 127)
243		reg = 127;
244	else if (offset < OFFSET_STEP * -128)
245		reg = -128;
246	else
247		reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);
248
249	/* choose fine offset only for odd values in the normal range */
250	if (reg & 1 && reg <= 63 && reg >= -64) {
251		/* Normal offset. Clear the coarse bit */
252		reg &= ~OFFSET_COARSE;
253	} else {
254		/* Coarse offset. Divide by 2 and set the coarse bit */
255		reg >>= 1;
256		reg |= OFFSET_COARSE;
257	}
258
259	return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
260}
261
262static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
263{
264	u8 rxbuf[7];
 
265	int ret;
266
267	ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
 
 
268	if (ret < 0)
269		return ret;
270
271	if (rxbuf[0] & OSC_HAS_STOPPED) {
272		dev_info(dev, "clock was stopped. Time is not valid\n");
273		return -EINVAL;
274	}
275
276	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
277	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
278	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
279	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
280	tm->tm_wday = rxbuf[4] & 0x07;
281	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
282	tm->tm_year = bcd2bin(rxbuf[6]);
283	if (tm->tm_year < 70)
284		tm->tm_year += 100;	/* assume we are in 1970...2069 */
285
286	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
287			"mday=%d, mon=%d, year=%d, wday=%d\n",
288			__func__,
289			tm->tm_sec, tm->tm_min, tm->tm_hour,
290			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
291
 
 
 
 
 
 
292	return 0;
293}
294
295static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
296{
 
297	u8 txbuf[8];
298	int ret;
299
300	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
301			"mday=%d, mon=%d, year=%d, wday=%d\n",
302			__func__,
303			tm->tm_sec, tm->tm_min, tm->tm_hour,
304			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
305
306	/* Stop the counter first */
307	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
 
 
308	if (ret < 0)
309		return ret;
 
310
311	/* Set the new time */
312	txbuf[0] = PCF2123_REG_SC;
313	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
314	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
315	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
316	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
317	txbuf[5] = tm->tm_wday & 0x07;
318	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
319	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
320
321	ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
322	if (ret < 0)
323		return ret;
 
324
325	/* Start the counter */
326	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
327	if (ret < 0)
328		return ret;
329
330	return 0;
331}
332
333static int pcf2123_reset(struct device *dev)
334{
335	int ret;
336	u8  rxbuf[2];
337
338	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
339	if (ret < 0)
340		return ret;
341
342	/* Stop the counter */
343	dev_dbg(dev, "stopping RTC\n");
344	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
345	if (ret < 0)
346		return ret;
347
348	/* See if the counter was actually stopped */
349	dev_dbg(dev, "checking for presence of RTC\n");
350	ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
351	if (ret < 0)
352		return ret;
353
354	dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
355		rxbuf[0], rxbuf[1]);
356	if (!(rxbuf[0] & CTRL1_STOP))
357		return -ENODEV;
358
359	/* Start the counter */
360	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
361	if (ret < 0)
362		return ret;
 
363
364	return 0;
365}
366
367static const struct rtc_class_ops pcf2123_rtc_ops = {
368	.read_time	= pcf2123_rtc_read_time,
369	.set_time	= pcf2123_rtc_set_time,
370	.read_offset	= pcf2123_read_offset,
371	.set_offset	= pcf2123_set_offset,
372
373};
374
375static int pcf2123_probe(struct spi_device *spi)
376{
377	struct rtc_device *rtc;
378	struct rtc_time tm;
379	struct pcf2123_plat_data *pdata;
 
380	int ret, i;
381
382	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
383				GFP_KERNEL);
384	if (!pdata)
385		return -ENOMEM;
386	spi->dev.platform_data = pdata;
387
388	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
389	if (ret < 0) {
390		ret = pcf2123_reset(&spi->dev);
391		if (ret < 0) {
392			dev_err(&spi->dev, "chip not found\n");
393			goto kfree_exit;
394		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395	}
396
 
397	dev_info(&spi->dev, "spiclk %u KHz.\n",
398			(spi->max_speed_hz + 500) / 1000);
399
 
 
 
 
 
 
 
 
400	/* Finalize the initialization */
401	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
402			&pcf2123_rtc_ops, THIS_MODULE);
403
404	if (IS_ERR(rtc)) {
405		dev_err(&spi->dev, "failed to register.\n");
406		ret = PTR_ERR(rtc);
407		goto kfree_exit;
408	}
409
410	pdata->rtc = rtc;
411
412	for (i = 0; i < 16; i++) {
413		sysfs_attr_init(&pdata->regs[i].attr.attr);
414		sprintf(pdata->regs[i].name, "%1x", i);
415		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
416		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
417		pdata->regs[i].attr.show = pcf2123_show;
418		pdata->regs[i].attr.store = pcf2123_store;
419		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
420		if (ret) {
421			dev_err(&spi->dev, "Unable to create sysfs %s\n",
422				pdata->regs[i].name);
423			goto sysfs_exit;
424		}
425	}
426
427	return 0;
428
429sysfs_exit:
430	for (i--; i >= 0; i--)
431		device_remove_file(&spi->dev, &pdata->regs[i].attr);
432
433kfree_exit:
434	spi->dev.platform_data = NULL;
435	return ret;
436}
437
438static int pcf2123_remove(struct spi_device *spi)
439{
440	struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
441	int i;
442
443	if (pdata) {
444		for (i = 0; i < 16; i++)
445			if (pdata->regs[i].name[0])
446				device_remove_file(&spi->dev,
447						   &pdata->regs[i].attr);
448	}
449
450	return 0;
451}
452
453#ifdef CONFIG_OF
454static const struct of_device_id pcf2123_dt_ids[] = {
455	{ .compatible = "nxp,rtc-pcf2123", },
456	{ /* sentinel */ }
457};
458MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
459#endif
460
461static struct spi_driver pcf2123_driver = {
462	.driver	= {
463			.name	= "rtc-pcf2123",
464			.of_match_table = of_match_ptr(pcf2123_dt_ids),
465	},
466	.probe	= pcf2123_probe,
467	.remove	= pcf2123_remove,
468};
469
470module_spi_driver(pcf2123_driver);
471
472MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
473MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
474MODULE_LICENSE("GPL");