Linux Audio

Check our new training course

Loading...
v3.15
   1/*------------------------------------------------------------------------
   2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
   3 .
   4 . Copyright (C) 1996 by Erik Stahlman
   5 . Copyright (C) 2001 Standard Microsystems Corporation
   6 .	Developed by Simple Network Magic Corporation
   7 . Copyright (C) 2003 Monta Vista Software, Inc.
   8 .	Unified SMC91x driver by Nicolas Pitre
   9 .
  10 . This program is free software; you can redistribute it and/or modify
  11 . it under the terms of the GNU General Public License as published by
  12 . the Free Software Foundation; either version 2 of the License, or
  13 . (at your option) any later version.
  14 .
  15 . This program is distributed in the hope that it will be useful,
  16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 . GNU General Public License for more details.
  19 .
  20 . You should have received a copy of the GNU General Public License
  21 . along with this program; if not, see <http://www.gnu.org/licenses/>.
  22 .
  23 . Information contained in this file was obtained from the LAN91C111
  24 . manual from SMC.  To get a copy, if you really want one, you can find
  25 . information under www.smsc.com.
  26 .
  27 . Authors
  28 .	Erik Stahlman		<erik@vt.edu>
  29 .	Daris A Nevil		<dnevil@snmc.com>
  30 .	Nicolas Pitre 		<nico@fluxnic.net>
  31 .
  32 ---------------------------------------------------------------------------*/
  33#ifndef _SMC91X_H_
  34#define _SMC91X_H_
  35
 
  36#include <linux/smc91x.h>
  37
  38/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39 * Define your architecture specific bus configuration parameters here.
  40 */
  41
  42#if defined(CONFIG_ARCH_LUBBOCK) ||\
  43    defined(CONFIG_MACH_MAINSTONE) ||\
  44    defined(CONFIG_MACH_ZYLONITE) ||\
  45    defined(CONFIG_MACH_LITTLETON) ||\
  46    defined(CONFIG_MACH_ZYLONITE2) ||\
  47    defined(CONFIG_ARCH_VIPER) ||\
  48    defined(CONFIG_MACH_STARGATE2) ||\
  49    defined(CONFIG_ARCH_VERSATILE)
  50
  51#include <asm/mach-types.h>
  52
  53/* Now the bus width is specified in the platform data
  54 * pretend here to support all I/O access types
  55 */
  56#define SMC_CAN_USE_8BIT	1
  57#define SMC_CAN_USE_16BIT	1
  58#define SMC_CAN_USE_32BIT	1
  59#define SMC_NOWAIT		1
  60
  61#define SMC_IO_SHIFT		(lp->io_shift)
  62
  63#define SMC_inb(a, r)		readb((a) + (r))
  64#define SMC_inw(a, r)		readw((a) + (r))
 
 
 
 
 
 
 
  65#define SMC_inl(a, r)		readl((a) + (r))
  66#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
 
 
 
 
 
 
 
 
 
 
 
  67#define SMC_outl(v, a, r)	writel(v, (a) + (r))
 
 
  68#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
  69#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
  70#define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
  71#define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
  72#define SMC_IRQ_FLAGS		(-1)	/* from resource */
  73
  74/* We actually can't write halfwords properly if not word aligned */
  75static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg)
 
  76{
  77	if ((machine_is_mainstone() || machine_is_stargate2()) && reg & 2) {
  78		unsigned int v = val << 16;
  79		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
  80		writel(v, ioaddr + (reg & ~2));
  81	} else {
  82		writew(val, ioaddr + reg);
  83	}
  84}
  85
  86#elif defined(CONFIG_SA1100_PLEB)
  87/* We can only do 16-bit reads and writes in the static memory space. */
  88#define SMC_CAN_USE_8BIT	1
  89#define SMC_CAN_USE_16BIT	1
  90#define SMC_CAN_USE_32BIT	0
  91#define SMC_IO_SHIFT		0
  92#define SMC_NOWAIT		1
  93
  94#define SMC_inb(a, r)		readb((a) + (r))
  95#define SMC_insb(a, r, p, l)	readsb((a) + (r), p, (l))
  96#define SMC_inw(a, r)		readw((a) + (r))
  97#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
  98#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
  99#define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, (l))
 100#define SMC_outw(v, a, r)	writew(v, (a) + (r))
 101#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
 102
 103#define SMC_IRQ_FLAGS		(-1)
 104
 105#elif defined(CONFIG_SA1100_ASSABET)
 106
 107#include <mach/neponset.h>
 108
 109/* We can only do 8-bit reads and writes in the static memory space. */
 110#define SMC_CAN_USE_8BIT	1
 111#define SMC_CAN_USE_16BIT	0
 112#define SMC_CAN_USE_32BIT	0
 113#define SMC_NOWAIT		1
 114
 115/* The first two address lines aren't connected... */
 116#define SMC_IO_SHIFT		2
 117
 118#define SMC_inb(a, r)		readb((a) + (r))
 119#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
 120#define SMC_insb(a, r, p, l)	readsb((a) + (r), p, (l))
 121#define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, (l))
 122#define SMC_IRQ_FLAGS		(-1)	/* from resource */
 123
 124#elif	defined(CONFIG_MACH_LOGICPD_PXA270) ||	\
 125	defined(CONFIG_MACH_NOMADIK_8815NHK)
 126
 127#define SMC_CAN_USE_8BIT	0
 128#define SMC_CAN_USE_16BIT	1
 129#define SMC_CAN_USE_32BIT	0
 130#define SMC_IO_SHIFT		0
 131#define SMC_NOWAIT		1
 132
 133#define SMC_inw(a, r)		readw((a) + (r))
 134#define SMC_outw(v, a, r)	writew(v, (a) + (r))
 135#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
 136#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
 137
 138#elif	defined(CONFIG_ARCH_INNOKOM) || \
 139	defined(CONFIG_ARCH_PXA_IDP) || \
 140	defined(CONFIG_ARCH_RAMSES) || \
 141	defined(CONFIG_ARCH_PCM027)
 142
 143#define SMC_CAN_USE_8BIT	1
 144#define SMC_CAN_USE_16BIT	1
 145#define SMC_CAN_USE_32BIT	1
 146#define SMC_IO_SHIFT		0
 147#define SMC_NOWAIT		1
 148#define SMC_USE_PXA_DMA		1
 149
 150#define SMC_inb(a, r)		readb((a) + (r))
 151#define SMC_inw(a, r)		readw((a) + (r))
 152#define SMC_inl(a, r)		readl((a) + (r))
 153#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
 154#define SMC_outl(v, a, r)	writel(v, (a) + (r))
 155#define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
 156#define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
 157#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
 158#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
 159#define SMC_IRQ_FLAGS		(-1)	/* from resource */
 160
 161/* We actually can't write halfwords properly if not word aligned */
 162static inline void
 163SMC_outw(u16 val, void __iomem *ioaddr, int reg)
 164{
 165	if (reg & 2) {
 166		unsigned int v = val << 16;
 167		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
 168		writel(v, ioaddr + (reg & ~2));
 169	} else {
 170		writew(val, ioaddr + reg);
 171	}
 172}
 173
 174#elif	defined(CONFIG_SH_SH4202_MICRODEV)
 175
 176#define SMC_CAN_USE_8BIT	0
 177#define SMC_CAN_USE_16BIT	1
 178#define SMC_CAN_USE_32BIT	0
 179
 180#define SMC_inb(a, r)		inb((a) + (r) - 0xa0000000)
 181#define SMC_inw(a, r)		inw((a) + (r) - 0xa0000000)
 182#define SMC_inl(a, r)		inl((a) + (r) - 0xa0000000)
 183#define SMC_outb(v, a, r)	outb(v, (a) + (r) - 0xa0000000)
 184#define SMC_outw(v, a, r)	outw(v, (a) + (r) - 0xa0000000)
 185#define SMC_outl(v, a, r)	outl(v, (a) + (r) - 0xa0000000)
 186#define SMC_insl(a, r, p, l)	insl((a) + (r) - 0xa0000000, p, l)
 187#define SMC_outsl(a, r, p, l)	outsl((a) + (r) - 0xa0000000, p, l)
 188#define SMC_insw(a, r, p, l)	insw((a) + (r) - 0xa0000000, p, l)
 189#define SMC_outsw(a, r, p, l)	outsw((a) + (r) - 0xa0000000, p, l)
 190
 191#define SMC_IRQ_FLAGS		(0)
 192
 193#elif   defined(CONFIG_M32R)
 194
 195#define SMC_CAN_USE_8BIT	0
 196#define SMC_CAN_USE_16BIT	1
 197#define SMC_CAN_USE_32BIT	0
 198
 199#define SMC_inb(a, r)		inb(((u32)a) + (r))
 200#define SMC_inw(a, r)		inw(((u32)a) + (r))
 201#define SMC_outb(v, a, r)	outb(v, ((u32)a) + (r))
 202#define SMC_outw(v, a, r)	outw(v, ((u32)a) + (r))
 203#define SMC_insw(a, r, p, l)	insw(((u32)a) + (r), p, l)
 204#define SMC_outsw(a, r, p, l)	outsw(((u32)a) + (r), p, l)
 205
 206#define SMC_IRQ_FLAGS		(0)
 207
 208#define RPC_LSA_DEFAULT		RPC_LED_TX_RX
 209#define RPC_LSB_DEFAULT		RPC_LED_100_10
 210
 211#elif defined(CONFIG_MN10300)
 212
 213/*
 214 * MN10300/AM33 configuration
 215 */
 216
 217#include <unit/smc91111.h>
 218
 219#elif defined(CONFIG_ARCH_MSM)
 220
 221#define SMC_CAN_USE_8BIT	0
 222#define SMC_CAN_USE_16BIT	1
 223#define SMC_CAN_USE_32BIT	0
 224#define SMC_NOWAIT		1
 225
 226#define SMC_inw(a, r)		readw((a) + (r))
 227#define SMC_outw(v, a, r)	writew(v, (a) + (r))
 228#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
 229#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
 
 
 
 
 
 
 230
 231#define SMC_IRQ_FLAGS		IRQF_TRIGGER_HIGH
 
 232
 233#elif defined(CONFIG_COLDFIRE)
 234
 235#define SMC_CAN_USE_8BIT	0
 236#define SMC_CAN_USE_16BIT	1
 237#define SMC_CAN_USE_32BIT	0
 238#define SMC_NOWAIT		1
 239
 240static inline void mcf_insw(void *a, unsigned char *p, int l)
 241{
 242	u16 *wp = (u16 *) p;
 243	while (l-- > 0)
 244		*wp++ = readw(a);
 245}
 246
 247static inline void mcf_outsw(void *a, unsigned char *p, int l)
 248{
 249	u16 *wp = (u16 *) p;
 250	while (l-- > 0)
 251		writew(*wp++, a);
 252}
 253
 254#define SMC_inw(a, r)		_swapw(readw((a) + (r)))
 255#define SMC_outw(v, a, r)	writew(_swapw(v), (a) + (r))
 256#define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
 257#define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
 258
 259#define SMC_IRQ_FLAGS		0
 260
 
 
 
 
 
 
 
 
 
 
 
 261#else
 262
 263/*
 264 * Default configuration
 265 */
 266
 267#define SMC_CAN_USE_8BIT	1
 268#define SMC_CAN_USE_16BIT	1
 269#define SMC_CAN_USE_32BIT	1
 270#define SMC_NOWAIT		1
 271
 272#define SMC_IO_SHIFT		(lp->io_shift)
 273
 274#define SMC_inb(a, r)		ioread8((a) + (r))
 275#define SMC_inw(a, r)		ioread16((a) + (r))
 276#define SMC_inl(a, r)		ioread32((a) + (r))
 277#define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
 278#define SMC_outw(v, a, r)	iowrite16(v, (a) + (r))
 279#define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
 280#define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
 281#define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
 282#define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
 283#define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
 284
 285#define RPC_LSA_DEFAULT		RPC_LED_100_10
 286#define RPC_LSB_DEFAULT		RPC_LED_TX_RX
 287
 288#endif
 289
 290
 291/* store this information for the driver.. */
 292struct smc_local {
 293	/*
 294	 * If I have to wait until memory is available to send a
 295	 * packet, I will store the skbuff here, until I get the
 296	 * desired memory.  Then, I'll send it out and free it.
 297	 */
 298	struct sk_buff *pending_tx_skb;
 299	struct tasklet_struct tx_task;
 300
 
 
 
 301	/* version/revision of the SMC91x chip */
 302	int	version;
 303
 304	/* Contains the current active transmission mode */
 305	int	tcr_cur_mode;
 306
 307	/* Contains the current active receive mode */
 308	int	rcr_cur_mode;
 309
 310	/* Contains the current active receive/phy mode */
 311	int	rpc_cur_mode;
 312	int	ctl_rfduplx;
 313	int	ctl_rspeed;
 314
 315	u32	msg_enable;
 316	u32	phy_type;
 317	struct mii_if_info mii;
 318
 319	/* work queue */
 320	struct work_struct phy_configure;
 321	struct net_device *dev;
 322	int	work_pending;
 323
 324	spinlock_t lock;
 325
 326#ifdef CONFIG_ARCH_PXA
 327	/* DMA needs the physical address of the chip */
 328	u_long physaddr;
 329	struct device *device;
 330#endif
 
 331	void __iomem *base;
 332	void __iomem *datacs;
 333
 334	/* the low address lines on some platforms aren't connected... */
 335	int	io_shift;
 
 
 336
 337	struct smc91x_platdata cfg;
 338};
 339
 340#define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
 341#define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
 342#define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
 343
 344#ifdef CONFIG_ARCH_PXA
 345/*
 346 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
 347 * always happening in irq context so no need to worry about races.  TX is
 348 * different and probably not worth it for that reason, and not as critical
 349 * as RX which can overrun memory and lose packets.
 350 */
 351#include <linux/dma-mapping.h>
 352#include <mach/dma.h>
 353
 354#ifdef SMC_insl
 355#undef SMC_insl
 356#define SMC_insl(a, r, p, l) \
 357	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
 358static inline void
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
 360		 u_char *buf, int len)
 361{
 362	u_long physaddr = lp->physaddr;
 363	dma_addr_t dmabuf;
 364
 365	/* fallback if no DMA available */
 366	if (dma == (unsigned char)-1) {
 367		readsl(ioaddr + reg, buf, len);
 368		return;
 369	}
 370
 371	/* 64 bit alignment is required for memory to memory DMA */
 372	if ((long)buf & 4) {
 373		*((u32 *)buf) = SMC_inl(ioaddr, reg);
 374		buf += 4;
 375		len--;
 376	}
 377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378	len *= 4;
 379	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
 380	DCSR(dma) = DCSR_NODESC;
 381	DTADR(dma) = dmabuf;
 382	DSADR(dma) = physaddr + reg;
 383	DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
 384		     DCMD_WIDTH4 | (DCMD_LENGTH & len));
 385	DCSR(dma) = DCSR_NODESC | DCSR_RUN;
 386	while (!(DCSR(dma) & DCSR_STOPSTATE))
 387		cpu_relax();
 388	DCSR(dma) = 0;
 389	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
 390}
 391#endif
 392
 393#ifdef SMC_insw
 394#undef SMC_insw
 395#define SMC_insw(a, r, p, l) \
 396	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
 397static inline void
 398smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
 399		 u_char *buf, int len)
 400{
 401	u_long physaddr = lp->physaddr;
 402	dma_addr_t dmabuf;
 403
 404	/* fallback if no DMA available */
 405	if (dma == (unsigned char)-1) {
 406		readsw(ioaddr + reg, buf, len);
 407		return;
 408	}
 409
 410	/* 64 bit alignment is required for memory to memory DMA */
 411	while ((long)buf & 6) {
 412		*((u16 *)buf) = SMC_inw(ioaddr, reg);
 413		buf += 2;
 414		len--;
 415	}
 416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417	len *= 2;
 418	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
 419	DCSR(dma) = DCSR_NODESC;
 420	DTADR(dma) = dmabuf;
 421	DSADR(dma) = physaddr + reg;
 422	DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
 423		     DCMD_WIDTH2 | (DCMD_LENGTH & len));
 424	DCSR(dma) = DCSR_NODESC | DCSR_RUN;
 425	while (!(DCSR(dma) & DCSR_STOPSTATE))
 426		cpu_relax();
 427	DCSR(dma) = 0;
 428	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
 429}
 430#endif
 431
 432static void
 433smc_pxa_dma_irq(int dma, void *dummy)
 434{
 435	DCSR(dma) = 0;
 436}
 437#endif  /* CONFIG_ARCH_PXA */
 438
 439
 440/*
 441 * Everything a particular hardware setup needs should have been defined
 442 * at this point.  Add stubs for the undefined cases, mainly to avoid
 443 * compilation warnings since they'll be optimized away, or to prevent buggy
 444 * use of them.
 445 */
 446
 447#if ! SMC_CAN_USE_32BIT
 448#define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
 449#define SMC_outl(x, ioaddr, reg)	BUG()
 450#define SMC_insl(a, r, p, l)		BUG()
 451#define SMC_outsl(a, r, p, l)		BUG()
 452#endif
 453
 454#if !defined(SMC_insl) || !defined(SMC_outsl)
 455#define SMC_insl(a, r, p, l)		BUG()
 456#define SMC_outsl(a, r, p, l)		BUG()
 457#endif
 458
 459#if ! SMC_CAN_USE_16BIT
 460
 461/*
 462 * Any 16-bit access is performed with two 8-bit accesses if the hardware
 463 * can't do it directly. Most registers are 16-bit so those are mandatory.
 464 */
 465#define SMC_outw(x, ioaddr, reg)					\
 466	do {								\
 467		unsigned int __val16 = (x);				\
 468		SMC_outb( __val16, ioaddr, reg );			\
 469		SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
 470	} while (0)
 471#define SMC_inw(ioaddr, reg)						\
 472	({								\
 473		unsigned int __val16;					\
 474		__val16 =  SMC_inb( ioaddr, reg );			\
 475		__val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
 476		__val16;						\
 477	})
 478
 479#define SMC_insw(a, r, p, l)		BUG()
 480#define SMC_outsw(a, r, p, l)		BUG()
 481
 482#endif
 483
 484#if !defined(SMC_insw) || !defined(SMC_outsw)
 485#define SMC_insw(a, r, p, l)		BUG()
 486#define SMC_outsw(a, r, p, l)		BUG()
 487#endif
 488
 489#if ! SMC_CAN_USE_8BIT
 
 490#define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
 
 491#define SMC_outb(x, ioaddr, reg)	BUG()
 492#define SMC_insb(a, r, p, l)		BUG()
 493#define SMC_outsb(a, r, p, l)		BUG()
 494#endif
 495
 496#if !defined(SMC_insb) || !defined(SMC_outsb)
 497#define SMC_insb(a, r, p, l)		BUG()
 498#define SMC_outsb(a, r, p, l)		BUG()
 499#endif
 500
 501#ifndef SMC_CAN_USE_DATACS
 502#define SMC_CAN_USE_DATACS	0
 503#endif
 504
 505#ifndef SMC_IO_SHIFT
 506#define SMC_IO_SHIFT	0
 507#endif
 508
 509#ifndef	SMC_IRQ_FLAGS
 510#define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
 511#endif
 512
 513#ifndef SMC_INTERRUPT_PREAMBLE
 514#define SMC_INTERRUPT_PREAMBLE
 515#endif
 516
 517
 518/* Because of bank switching, the LAN91x uses only 16 I/O ports */
 519#define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
 520#define SMC_DATA_EXTENT (4)
 521
 522/*
 523 . Bank Select Register:
 524 .
 525 .		yyyy yyyy 0000 00xx
 526 .		xx 		= bank number
 527 .		yyyy yyyy	= 0x33, for identification purposes.
 528*/
 529#define BANK_SELECT		(14 << SMC_IO_SHIFT)
 530
 531
 532// Transmit Control Register
 533/* BANK 0  */
 534#define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
 535#define TCR_ENABLE	0x0001	// When 1 we can transmit
 536#define TCR_LOOP	0x0002	// Controls output pin LBK
 537#define TCR_FORCOL	0x0004	// When 1 will force a collision
 538#define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
 539#define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
 540#define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
 541#define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
 542#define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
 543#define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
 544#define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
 545
 546#define TCR_CLEAR	0	/* do NOTHING */
 547/* the default settings for the TCR register : */
 548#define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
 549
 550
 551// EPH Status Register
 552/* BANK 0  */
 553#define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
 554#define ES_TX_SUC	0x0001	// Last TX was successful
 555#define ES_SNGL_COL	0x0002	// Single collision detected for last tx
 556#define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
 557#define ES_LTX_MULT	0x0008	// Last tx was a multicast
 558#define ES_16COL	0x0010	// 16 Collisions Reached
 559#define ES_SQET		0x0020	// Signal Quality Error Test
 560#define ES_LTXBRD	0x0040	// Last tx was a broadcast
 561#define ES_TXDEFR	0x0080	// Transmit Deferred
 562#define ES_LATCOL	0x0200	// Late collision detected on last tx
 563#define ES_LOSTCARR	0x0400	// Lost Carrier Sense
 564#define ES_EXC_DEF	0x0800	// Excessive Deferral
 565#define ES_CTR_ROL	0x1000	// Counter Roll Over indication
 566#define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
 567#define ES_TXUNRN	0x8000	// Tx Underrun
 568
 569
 570// Receive Control Register
 571/* BANK 0  */
 572#define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
 573#define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
 574#define RCR_PRMS	0x0002	// Enable promiscuous mode
 575#define RCR_ALMUL	0x0004	// When set accepts all multicast frames
 576#define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
 577#define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
 578#define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
 579#define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
 580#define RCR_SOFTRST	0x8000 	// resets the chip
 581
 582/* the normal settings for the RCR register : */
 583#define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
 584#define RCR_CLEAR	0x0	// set it to a base state
 585
 586
 587// Counter Register
 588/* BANK 0  */
 589#define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
 590
 591
 592// Memory Information Register
 593/* BANK 0  */
 594#define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
 595
 596
 597// Receive/Phy Control Register
 598/* BANK 0  */
 599#define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
 600#define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
 601#define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
 602#define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
 603#define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
 604#define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
 605
 606#ifndef RPC_LSA_DEFAULT
 607#define RPC_LSA_DEFAULT	RPC_LED_100
 608#endif
 609#ifndef RPC_LSB_DEFAULT
 610#define RPC_LSB_DEFAULT RPC_LED_FD
 611#endif
 612
 613#define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
 614
 615
 616/* Bank 0 0x0C is reserved */
 617
 618// Bank Select Register
 619/* All Banks */
 620#define BSR_REG		0x000E
 621
 622
 623// Configuration Reg
 624/* BANK 1 */
 625#define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
 626#define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
 627#define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
 628#define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
 629#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
 630
 631// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
 632#define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
 633
 634
 635// Base Address Register
 636/* BANK 1 */
 637#define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
 638
 639
 640// Individual Address Registers
 641/* BANK 1 */
 642#define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
 643#define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
 644#define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
 645
 646
 647// General Purpose Register
 648/* BANK 1 */
 649#define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
 650
 651
 652// Control Register
 653/* BANK 1 */
 654#define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
 655#define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
 656#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
 657#define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
 658#define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
 659#define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
 660#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
 661#define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
 662#define CTL_STORE	0x0001 // When set stores registers into EEPROM
 663
 664
 665// MMU Command Register
 666/* BANK 2 */
 667#define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
 668#define MC_BUSY		1	// When 1 the last release has not completed
 669#define MC_NOP		(0<<5)	// No Op
 670#define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
 671#define MC_RESET	(2<<5)	// Reset MMU to initial state
 672#define MC_REMOVE	(3<<5) 	// Remove the current rx packet
 673#define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
 674#define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
 675#define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
 676#define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
 677
 678
 679// Packet Number Register
 680/* BANK 2 */
 681#define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
 682
 683
 684// Allocation Result Register
 685/* BANK 2 */
 686#define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
 687#define AR_FAILED	0x80	// Alocation Failed
 688
 689
 690// TX FIFO Ports Register
 691/* BANK 2 */
 692#define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
 693#define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
 694
 695// RX FIFO Ports Register
 696/* BANK 2 */
 697#define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
 698#define RXFIFO_REMPTY	0x80	// RX FIFO Empty
 699
 700#define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
 701
 702// Pointer Register
 703/* BANK 2 */
 704#define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
 705#define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
 706#define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
 707#define PTR_READ	0x2000 // When 1 the operation is a read
 708
 709
 710// Data Register
 711/* BANK 2 */
 712#define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
 713
 714
 715// Interrupt Status/Acknowledge Register
 716/* BANK 2 */
 717#define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
 718
 719
 720// Interrupt Mask Register
 721/* BANK 2 */
 722#define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
 723#define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
 724#define IM_ERCV_INT	0x40 // Early Receive Interrupt
 725#define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
 726#define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
 727#define IM_ALLOC_INT	0x08 // Set when allocation request is completed
 728#define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
 729#define IM_TX_INT	0x02 // Transmit Interrupt
 730#define IM_RCV_INT	0x01 // Receive Interrupt
 731
 732
 733// Multicast Table Registers
 734/* BANK 3 */
 735#define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
 736#define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
 737#define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
 738#define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
 739
 740
 741// Management Interface Register (MII)
 742/* BANK 3 */
 743#define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
 744#define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
 745#define MII_MDOE	0x0008 // MII Output Enable
 746#define MII_MCLK	0x0004 // MII Clock, pin MDCLK
 747#define MII_MDI		0x0002 // MII Input, pin MDI
 748#define MII_MDO		0x0001 // MII Output, pin MDO
 749
 750
 751// Revision Register
 752/* BANK 3 */
 753/* ( hi: chip id   low: rev # ) */
 754#define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
 755
 756
 757// Early RCV Register
 758/* BANK 3 */
 759/* this is NOT on SMC9192 */
 760#define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
 761#define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
 762#define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
 763
 764
 765// External Register
 766/* BANK 7 */
 767#define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
 768
 769
 770#define CHIP_9192	3
 771#define CHIP_9194	4
 772#define CHIP_9195	5
 773#define CHIP_9196	6
 774#define CHIP_91100	7
 775#define CHIP_91100FD	8
 776#define CHIP_91111FD	9
 777
 778static const char * chip_ids[ 16 ] =  {
 779	NULL, NULL, NULL,
 780	/* 3 */ "SMC91C90/91C92",
 781	/* 4 */ "SMC91C94",
 782	/* 5 */ "SMC91C95",
 783	/* 6 */ "SMC91C96",
 784	/* 7 */ "SMC91C100",
 785	/* 8 */ "SMC91C100FD",
 786	/* 9 */ "SMC91C11xFD",
 787	NULL, NULL, NULL,
 788	NULL, NULL, NULL};
 789
 790
 791/*
 792 . Receive status bits
 793*/
 794#define RS_ALGNERR	0x8000
 795#define RS_BRODCAST	0x4000
 796#define RS_BADCRC	0x2000
 797#define RS_ODDFRAME	0x1000
 798#define RS_TOOLONG	0x0800
 799#define RS_TOOSHORT	0x0400
 800#define RS_MULTICAST	0x0001
 801#define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
 802
 803
 804/*
 805 * PHY IDs
 806 *  LAN83C183 == LAN91C111 Internal PHY
 807 */
 808#define PHY_LAN83C183	0x0016f840
 809#define PHY_LAN83C180	0x02821c50
 810
 811/*
 812 * PHY Register Addresses (LAN91C111 Internal PHY)
 813 *
 814 * Generic PHY registers can be found in <linux/mii.h>
 815 *
 816 * These phy registers are specific to our on-board phy.
 817 */
 818
 819// PHY Configuration Register 1
 820#define PHY_CFG1_REG		0x10
 821#define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
 822#define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
 823#define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
 824#define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
 825#define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
 826#define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
 827#define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
 828#define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
 829#define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
 830#define PHY_CFG1_TLVL_MASK	0x003C
 831#define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
 832
 833
 834// PHY Configuration Register 2
 835#define PHY_CFG2_REG		0x11
 836#define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
 837#define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
 838#define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
 839#define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
 840
 841// PHY Status Output (and Interrupt status) Register
 842#define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
 843#define PHY_INT_INT		0x8000	// 1=bits have changed since last read
 844#define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
 845#define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
 846#define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
 847#define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
 848#define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
 849#define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
 850#define PHY_INT_JAB		0x0100	// 1=Jabber detected
 851#define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
 852#define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
 853
 854// PHY Interrupt/Status Mask Register
 855#define PHY_MASK_REG		0x13	// Interrupt Mask
 856// Uses the same bit definitions as PHY_INT_REG
 857
 858
 859/*
 860 * SMC91C96 ethernet config and status registers.
 861 * These are in the "attribute" space.
 862 */
 863#define ECOR			0x8000
 864#define ECOR_RESET		0x80
 865#define ECOR_LEVEL_IRQ		0x40
 866#define ECOR_WR_ATTRIB		0x04
 867#define ECOR_ENABLE		0x01
 868
 869#define ECSR			0x8002
 870#define ECSR_IOIS8		0x20
 871#define ECSR_PWRDWN		0x04
 872#define ECSR_INT		0x02
 873
 874#define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
 875
 876
 877/*
 878 * Macros to abstract register access according to the data bus
 879 * capabilities.  Please use those and not the in/out primitives.
 880 * Note: the following macros do *not* select the bank -- this must
 881 * be done separately as needed in the main code.  The SMC_REG() macro
 882 * only uses the bank argument for debugging purposes (when enabled).
 883 *
 884 * Note: despite inline functions being safer, everything leading to this
 885 * should preferably be macros to let BUG() display the line number in
 886 * the core source code since we're interested in the top call site
 887 * not in any inline function location.
 888 */
 889
 890#if SMC_DEBUG > 0
 891#define SMC_REG(lp, reg, bank)					\
 892	({								\
 893		int __b = SMC_CURRENT_BANK(lp);			\
 894		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
 895			pr_err("%s: bank reg screwed (0x%04x)\n",	\
 896			       CARDNAME, __b);				\
 897			BUG();						\
 898		}							\
 899		reg<<SMC_IO_SHIFT;					\
 900	})
 901#else
 902#define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
 903#endif
 904
 905/*
 906 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
 907 * aligned to a 32 bit boundary.  I tell you that does exist!
 908 * Fortunately the affected register accesses can be easily worked around
 909 * since we can write zeroes to the preceding 16 bits without adverse
 910 * effects and use a 32-bit access.
 911 *
 912 * Enforce it on any 32-bit capable setup for now.
 913 */
 914#define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
 915
 916#define SMC_GET_PN(lp)						\
 917	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
 918				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
 919
 920#define SMC_SET_PN(lp, x)						\
 921	do {								\
 922		if (SMC_MUST_ALIGN_WRITE(lp))				\
 923			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
 924		else if (SMC_8BIT(lp))				\
 925			SMC_outb(x, ioaddr, PN_REG(lp));		\
 926		else							\
 927			SMC_outw(x, ioaddr, PN_REG(lp));		\
 928	} while (0)
 929
 930#define SMC_GET_AR(lp)						\
 931	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
 932				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
 933
 934#define SMC_GET_TXFIFO(lp)						\
 935	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
 936				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
 937
 938#define SMC_GET_RXFIFO(lp)						\
 939	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
 940				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
 941
 942#define SMC_GET_INT(lp)						\
 943	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
 944				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
 945
 946#define SMC_ACK_INT(lp, x)						\
 947	do {								\
 948		if (SMC_8BIT(lp))					\
 949			SMC_outb(x, ioaddr, INT_REG(lp));		\
 950		else {							\
 951			unsigned long __flags;				\
 952			int __mask;					\
 953			local_irq_save(__flags);			\
 954			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
 955			SMC_outw(__mask | (x), ioaddr, INT_REG(lp));	\
 956			local_irq_restore(__flags);			\
 957		}							\
 958	} while (0)
 959
 960#define SMC_GET_INT_MASK(lp)						\
 961	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
 962				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
 963
 964#define SMC_SET_INT_MASK(lp, x)					\
 965	do {								\
 966		if (SMC_8BIT(lp))					\
 967			SMC_outb(x, ioaddr, IM_REG(lp));		\
 968		else							\
 969			SMC_outw((x) << 8, ioaddr, INT_REG(lp));	\
 970	} while (0)
 971
 972#define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
 973
 974#define SMC_SELECT_BANK(lp, x)					\
 975	do {								\
 976		if (SMC_MUST_ALIGN_WRITE(lp))				\
 977			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
 978		else							\
 979			SMC_outw(x, ioaddr, BANK_SELECT);		\
 980	} while (0)
 981
 982#define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
 983
 984#define SMC_SET_BASE(lp, x)		SMC_outw(x, ioaddr, BASE_REG(lp))
 985
 986#define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
 987
 988#define SMC_SET_CONFIG(lp, x)	SMC_outw(x, ioaddr, CONFIG_REG(lp))
 989
 990#define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
 991
 992#define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
 993
 994#define SMC_SET_CTL(lp, x)		SMC_outw(x, ioaddr, CTL_REG(lp))
 995
 996#define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
 997
 998#define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
 999
1000#define SMC_SET_GP(lp, x)						\
1001	do {								\
1002		if (SMC_MUST_ALIGN_WRITE(lp))				\
1003			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
1004		else							\
1005			SMC_outw(x, ioaddr, GP_REG(lp));		\
1006	} while (0)
1007
1008#define SMC_SET_MII(lp, x)		SMC_outw(x, ioaddr, MII_REG(lp))
1009
1010#define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
1011
1012#define SMC_SET_MIR(lp, x)		SMC_outw(x, ioaddr, MIR_REG(lp))
1013
1014#define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
1015
1016#define SMC_SET_MMU_CMD(lp, x)	SMC_outw(x, ioaddr, MMU_CMD_REG(lp))
1017
1018#define SMC_GET_FIFO(lp)		SMC_inw(ioaddr, FIFO_REG(lp))
1019
1020#define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
1021
1022#define SMC_SET_PTR(lp, x)						\
1023	do {								\
1024		if (SMC_MUST_ALIGN_WRITE(lp))				\
1025			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
1026		else							\
1027			SMC_outw(x, ioaddr, PTR_REG(lp));		\
1028	} while (0)
1029
1030#define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
1031
1032#define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
1033
1034#define SMC_SET_RCR(lp, x)		SMC_outw(x, ioaddr, RCR_REG(lp))
1035
1036#define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
1037
1038#define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
1039
1040#define SMC_SET_RPC(lp, x)						\
1041	do {								\
1042		if (SMC_MUST_ALIGN_WRITE(lp))				\
1043			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
1044		else							\
1045			SMC_outw(x, ioaddr, RPC_REG(lp));		\
1046	} while (0)
1047
1048#define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
1049
1050#define SMC_SET_TCR(lp, x)		SMC_outw(x, ioaddr, TCR_REG(lp))
1051
1052#ifndef SMC_GET_MAC_ADDR
1053#define SMC_GET_MAC_ADDR(lp, addr)					\
1054	do {								\
1055		unsigned int __v;					\
1056		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
1057		addr[0] = __v; addr[1] = __v >> 8;			\
1058		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
1059		addr[2] = __v; addr[3] = __v >> 8;			\
1060		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
1061		addr[4] = __v; addr[5] = __v >> 8;			\
1062	} while (0)
1063#endif
1064
1065#define SMC_SET_MAC_ADDR(lp, addr)					\
1066	do {								\
1067		SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1068		SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1069		SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1070	} while (0)
1071
1072#define SMC_SET_MCAST(lp, x)						\
1073	do {								\
1074		const unsigned char *mt = (x);				\
1075		SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1076		SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1077		SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1078		SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1079	} while (0)
1080
1081#define SMC_PUT_PKT_HDR(lp, status, length)				\
1082	do {								\
1083		if (SMC_32BIT(lp))					\
1084			SMC_outl((status) | (length)<<16, ioaddr,	\
1085				 DATA_REG(lp));			\
1086		else {							\
1087			SMC_outw(status, ioaddr, DATA_REG(lp));	\
1088			SMC_outw(length, ioaddr, DATA_REG(lp));	\
1089		}							\
1090	} while (0)
1091
1092#define SMC_GET_PKT_HDR(lp, status, length)				\
1093	do {								\
1094		if (SMC_32BIT(lp)) {				\
1095			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1096			(status) = __val & 0xffff;			\
1097			(length) = __val >> 16;				\
1098		} else {						\
1099			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1100			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1101		}							\
1102	} while (0)
1103
1104#define SMC_PUSH_DATA(lp, p, l)					\
1105	do {								\
1106		if (SMC_32BIT(lp)) {				\
1107			void *__ptr = (p);				\
1108			int __len = (l);				\
1109			void __iomem *__ioaddr = ioaddr;		\
1110			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1111				__len -= 2;				\
1112				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1113				__ptr += 2;				\
1114			}						\
1115			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1116				__ioaddr = lp->datacs;			\
1117			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1118			if (__len & 2) {				\
1119				__ptr += (__len & ~3);			\
1120				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1121			}						\
1122		} else if (SMC_16BIT(lp))				\
1123			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1124		else if (SMC_8BIT(lp))				\
1125			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1126	} while (0)
1127
1128#define SMC_PULL_DATA(lp, p, l)					\
1129	do {								\
1130		if (SMC_32BIT(lp)) {				\
1131			void *__ptr = (p);				\
1132			int __len = (l);				\
1133			void __iomem *__ioaddr = ioaddr;		\
1134			if ((unsigned long)__ptr & 2) {			\
1135				/*					\
1136				 * We want 32bit alignment here.	\
1137				 * Since some buses perform a full	\
1138				 * 32bit fetch even for 16bit data	\
1139				 * we can't use SMC_inw() here.		\
1140				 * Back both source (on-chip) and	\
1141				 * destination pointers of 2 bytes.	\
1142				 * This is possible since the call to	\
1143				 * SMC_GET_PKT_HDR() already advanced	\
1144				 * the source pointer of 4 bytes, and	\
1145				 * the skb_reserve(skb, 2) advanced	\
1146				 * the destination pointer of 2 bytes.	\
1147				 */					\
1148				__ptr -= 2;				\
1149				__len += 2;				\
1150				SMC_SET_PTR(lp,			\
1151					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1152			}						\
1153			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1154				__ioaddr = lp->datacs;			\
1155			__len += 2;					\
1156			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1157		} else if (SMC_16BIT(lp))				\
1158			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1159		else if (SMC_8BIT(lp))				\
1160			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1161	} while (0)
1162
1163#endif  /* _SMC91X_H_ */
v4.17
   1/*------------------------------------------------------------------------
   2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
   3 .
   4 . Copyright (C) 1996 by Erik Stahlman
   5 . Copyright (C) 2001 Standard Microsystems Corporation
   6 .	Developed by Simple Network Magic Corporation
   7 . Copyright (C) 2003 Monta Vista Software, Inc.
   8 .	Unified SMC91x driver by Nicolas Pitre
   9 .
  10 . This program is free software; you can redistribute it and/or modify
  11 . it under the terms of the GNU General Public License as published by
  12 . the Free Software Foundation; either version 2 of the License, or
  13 . (at your option) any later version.
  14 .
  15 . This program is distributed in the hope that it will be useful,
  16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 . GNU General Public License for more details.
  19 .
  20 . You should have received a copy of the GNU General Public License
  21 . along with this program; if not, see <http://www.gnu.org/licenses/>.
  22 .
  23 . Information contained in this file was obtained from the LAN91C111
  24 . manual from SMC.  To get a copy, if you really want one, you can find
  25 . information under www.smsc.com.
  26 .
  27 . Authors
  28 .	Erik Stahlman		<erik@vt.edu>
  29 .	Daris A Nevil		<dnevil@snmc.com>
  30 .	Nicolas Pitre 		<nico@fluxnic.net>
  31 .
  32 ---------------------------------------------------------------------------*/
  33#ifndef _SMC91X_H_
  34#define _SMC91X_H_
  35
  36#include <linux/dmaengine.h>
  37#include <linux/smc91x.h>
  38
  39/*
  40 * Any 16-bit access is performed with two 8-bit accesses if the hardware
  41 * can't do it directly. Most registers are 16-bit so those are mandatory.
  42 */
  43#define SMC_outw_b(x, a, r)						\
  44	do {								\
  45		unsigned int __val16 = (x);				\
  46		unsigned int __reg = (r);				\
  47		SMC_outb(__val16, a, __reg);				\
  48		SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT));	\
  49	} while (0)
  50
  51#define SMC_inw_b(a, r)							\
  52	({								\
  53		unsigned int __val16;					\
  54		unsigned int __reg = r;					\
  55		__val16  = SMC_inb(a, __reg);				\
  56		__val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
  57		__val16;						\
  58	})
  59
  60/*
  61 * Define your architecture specific bus configuration parameters here.
  62 */
  63
  64#if defined(CONFIG_ARM)
 
 
 
 
 
 
 
  65
  66#include <asm/mach-types.h>
  67
  68/* Now the bus width is specified in the platform data
  69 * pretend here to support all I/O access types
  70 */
  71#define SMC_CAN_USE_8BIT	1
  72#define SMC_CAN_USE_16BIT	1
  73#define SMC_CAN_USE_32BIT	1
  74#define SMC_NOWAIT		1
  75
  76#define SMC_IO_SHIFT		(lp->io_shift)
  77
  78#define SMC_inb(a, r)		readb((a) + (r))
  79#define SMC_inw(a, r)							\
  80	({								\
  81		unsigned int __smc_r = r;				\
  82		SMC_16BIT(lp) ? readw((a) + __smc_r) :			\
  83		SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) :			\
  84		({ BUG(); 0; });					\
  85	})
  86
  87#define SMC_inl(a, r)		readl((a) + (r))
  88#define SMC_outb(v, a, r)	writeb(v, (a) + (r))
  89#define SMC_outw(lp, v, a, r)						\
  90	do {								\
  91		unsigned int __v = v, __smc_r = r;			\
  92		if (SMC_16BIT(lp))					\
  93			__SMC_outw(lp, __v, a, __smc_r);		\
  94		else if (SMC_8BIT(lp))					\
  95			SMC_outw_b(__v, a, __smc_r);			\
  96		else							\
  97			BUG();						\
  98	} while (0)
  99
 100#define SMC_outl(v, a, r)	writel(v, (a) + (r))
 101#define SMC_insb(a, r, p, l)	readsb((a) + (r), p, l)
 102#define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, l)
 103#define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
 104#define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
 105#define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
 106#define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
 107#define SMC_IRQ_FLAGS		(-1)	/* from resource */
 108
 109/* We actually can't write halfwords properly if not word aligned */
 110static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
 111				    bool use_align4_workaround)
 112{
 113	if (use_align4_workaround) {
 114		unsigned int v = val << 16;
 115		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
 116		writel(v, ioaddr + (reg & ~2));
 117	} else {
 118		writew(val, ioaddr + reg);
 119	}
 120}
 121
 122#define __SMC_outw(lp, v, a, r)						\
 123	_SMC_outw_align4((v), (a), (r),					\
 124			 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) &&	\
 125			 (lp)->cfg.pxa_u16_align4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127
 128#elif	defined(CONFIG_SH_SH4202_MICRODEV)
 129
 130#define SMC_CAN_USE_8BIT	0
 131#define SMC_CAN_USE_16BIT	1
 132#define SMC_CAN_USE_32BIT	0
 133
 134#define SMC_inb(a, r)		inb((a) + (r) - 0xa0000000)
 135#define SMC_inw(a, r)		inw((a) + (r) - 0xa0000000)
 136#define SMC_inl(a, r)		inl((a) + (r) - 0xa0000000)
 137#define SMC_outb(v, a, r)	outb(v, (a) + (r) - 0xa0000000)
 138#define SMC_outw(lp, v, a, r)	outw(v, (a) + (r) - 0xa0000000)
 139#define SMC_outl(v, a, r)	outl(v, (a) + (r) - 0xa0000000)
 140#define SMC_insl(a, r, p, l)	insl((a) + (r) - 0xa0000000, p, l)
 141#define SMC_outsl(a, r, p, l)	outsl((a) + (r) - 0xa0000000, p, l)
 142#define SMC_insw(a, r, p, l)	insw((a) + (r) - 0xa0000000, p, l)
 143#define SMC_outsw(a, r, p, l)	outsw((a) + (r) - 0xa0000000, p, l)
 144
 145#define SMC_IRQ_FLAGS		(0)
 146
 147#elif defined(CONFIG_ATARI)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148
 149#define SMC_CAN_USE_8BIT        1
 150#define SMC_CAN_USE_16BIT       1
 151#define SMC_CAN_USE_32BIT       1
 152#define SMC_NOWAIT              1
 153
 154#define SMC_inb(a, r)           readb((a) + (r))
 155#define SMC_inw(a, r)           readw((a) + (r))
 156#define SMC_inl(a, r)           readl((a) + (r))
 157#define SMC_outb(v, a, r)       writeb(v, (a) + (r))
 158#define SMC_outw(lp, v, a, r)   writew(v, (a) + (r))
 159#define SMC_outl(v, a, r)       writel(v, (a) + (r))
 160#define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
 161#define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
 162#define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
 163#define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
 164
 165#define RPC_LSA_DEFAULT         RPC_LED_100_10
 166#define RPC_LSB_DEFAULT         RPC_LED_TX_RX
 167
 168#elif defined(CONFIG_COLDFIRE)
 169
 170#define SMC_CAN_USE_8BIT	0
 171#define SMC_CAN_USE_16BIT	1
 172#define SMC_CAN_USE_32BIT	0
 173#define SMC_NOWAIT		1
 174
 175static inline void mcf_insw(void *a, unsigned char *p, int l)
 176{
 177	u16 *wp = (u16 *) p;
 178	while (l-- > 0)
 179		*wp++ = readw(a);
 180}
 181
 182static inline void mcf_outsw(void *a, unsigned char *p, int l)
 183{
 184	u16 *wp = (u16 *) p;
 185	while (l-- > 0)
 186		writew(*wp++, a);
 187}
 188
 189#define SMC_inw(a, r)		_swapw(readw((a) + (r)))
 190#define SMC_outw(lp, v, a, r)	writew(_swapw(v), (a) + (r))
 191#define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
 192#define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
 193
 194#define SMC_IRQ_FLAGS		0
 195
 196#elif defined(CONFIG_H8300)
 197#define SMC_CAN_USE_8BIT	1
 198#define SMC_CAN_USE_16BIT	0
 199#define SMC_CAN_USE_32BIT	0
 200#define SMC_NOWAIT		0
 201
 202#define SMC_inb(a, r)		ioread8((a) + (r))
 203#define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
 204#define SMC_insb(a, r, p, l)	ioread8_rep((a) + (r), p, l)
 205#define SMC_outsb(a, r, p, l)	iowrite8_rep((a) + (r), p, l)
 206
 207#else
 208
 209/*
 210 * Default configuration
 211 */
 212
 213#define SMC_CAN_USE_8BIT	1
 214#define SMC_CAN_USE_16BIT	1
 215#define SMC_CAN_USE_32BIT	1
 216#define SMC_NOWAIT		1
 217
 218#define SMC_IO_SHIFT		(lp->io_shift)
 219
 220#define SMC_inb(a, r)		ioread8((a) + (r))
 221#define SMC_inw(a, r)		ioread16((a) + (r))
 222#define SMC_inl(a, r)		ioread32((a) + (r))
 223#define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
 224#define SMC_outw(lp, v, a, r)	iowrite16(v, (a) + (r))
 225#define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
 226#define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
 227#define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
 228#define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
 229#define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
 230
 231#define RPC_LSA_DEFAULT		RPC_LED_100_10
 232#define RPC_LSB_DEFAULT		RPC_LED_TX_RX
 233
 234#endif
 235
 236
 237/* store this information for the driver.. */
 238struct smc_local {
 239	/*
 240	 * If I have to wait until memory is available to send a
 241	 * packet, I will store the skbuff here, until I get the
 242	 * desired memory.  Then, I'll send it out and free it.
 243	 */
 244	struct sk_buff *pending_tx_skb;
 245	struct tasklet_struct tx_task;
 246
 247	struct gpio_desc *power_gpio;
 248	struct gpio_desc *reset_gpio;
 249
 250	/* version/revision of the SMC91x chip */
 251	int	version;
 252
 253	/* Contains the current active transmission mode */
 254	int	tcr_cur_mode;
 255
 256	/* Contains the current active receive mode */
 257	int	rcr_cur_mode;
 258
 259	/* Contains the current active receive/phy mode */
 260	int	rpc_cur_mode;
 261	int	ctl_rfduplx;
 262	int	ctl_rspeed;
 263
 264	u32	msg_enable;
 265	u32	phy_type;
 266	struct mii_if_info mii;
 267
 268	/* work queue */
 269	struct work_struct phy_configure;
 270	struct net_device *dev;
 271	int	work_pending;
 272
 273	spinlock_t lock;
 274
 275#ifdef CONFIG_ARCH_PXA
 276	/* DMA needs the physical address of the chip */
 277	u_long physaddr;
 278	struct device *device;
 279#endif
 280	struct dma_chan *dma_chan;
 281	void __iomem *base;
 282	void __iomem *datacs;
 283
 284	/* the low address lines on some platforms aren't connected... */
 285	int	io_shift;
 286	/* on some platforms a u16 write must be 4-bytes aligned */
 287	bool	half_word_align4;
 288
 289	struct smc91x_platdata cfg;
 290};
 291
 292#define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
 293#define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
 294#define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
 295
 296#ifdef CONFIG_ARCH_PXA
 297/*
 298 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
 299 * always happening in irq context so no need to worry about races.  TX is
 300 * different and probably not worth it for that reason, and not as critical
 301 * as RX which can overrun memory and lose packets.
 302 */
 303#include <linux/dma-mapping.h>
 304#include <linux/dma/pxa-dma.h>
 305
 306#ifdef SMC_insl
 307#undef SMC_insl
 308#define SMC_insl(a, r, p, l) \
 309	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
 310static inline void
 311smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
 312{
 313	dma_addr_t dmabuf;
 314	struct dma_async_tx_descriptor *tx;
 315	dma_cookie_t cookie;
 316	enum dma_status status;
 317	struct dma_tx_state state;
 318
 319	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
 320	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
 321					 DMA_DEV_TO_MEM, 0);
 322	if (tx) {
 323		cookie = dmaengine_submit(tx);
 324		dma_async_issue_pending(lp->dma_chan);
 325		do {
 326			status = dmaengine_tx_status(lp->dma_chan, cookie,
 327						     &state);
 328			cpu_relax();
 329		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
 330			 state.residue);
 331		dmaengine_terminate_all(lp->dma_chan);
 332	}
 333	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
 334}
 335
 336static inline void
 337smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
 338		 u_char *buf, int len)
 339{
 340	struct dma_slave_config	config;
 341	int ret;
 342
 343	/* fallback if no DMA available */
 344	if (!lp->dma_chan) {
 345		readsl(ioaddr + reg, buf, len);
 346		return;
 347	}
 348
 349	/* 64 bit alignment is required for memory to memory DMA */
 350	if ((long)buf & 4) {
 351		*((u32 *)buf) = SMC_inl(ioaddr, reg);
 352		buf += 4;
 353		len--;
 354	}
 355
 356	memset(&config, 0, sizeof(config));
 357	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 358	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 359	config.src_addr = lp->physaddr + reg;
 360	config.dst_addr = lp->physaddr + reg;
 361	config.src_maxburst = 32;
 362	config.dst_maxburst = 32;
 363	ret = dmaengine_slave_config(lp->dma_chan, &config);
 364	if (ret) {
 365		dev_err(lp->device, "dma channel configuration failed: %d\n",
 366			ret);
 367		return;
 368	}
 369
 370	len *= 4;
 371	smc_pxa_dma_inpump(lp, buf, len);
 
 
 
 
 
 
 
 
 
 
 372}
 373#endif
 374
 375#ifdef SMC_insw
 376#undef SMC_insw
 377#define SMC_insw(a, r, p, l) \
 378	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
 379static inline void
 380smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
 381		 u_char *buf, int len)
 382{
 383	struct dma_slave_config	config;
 384	int ret;
 385
 386	/* fallback if no DMA available */
 387	if (!lp->dma_chan) {
 388		readsw(ioaddr + reg, buf, len);
 389		return;
 390	}
 391
 392	/* 64 bit alignment is required for memory to memory DMA */
 393	while ((long)buf & 6) {
 394		*((u16 *)buf) = SMC_inw(ioaddr, reg);
 395		buf += 2;
 396		len--;
 397	}
 398
 399	memset(&config, 0, sizeof(config));
 400	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 401	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 402	config.src_addr = lp->physaddr + reg;
 403	config.dst_addr = lp->physaddr + reg;
 404	config.src_maxburst = 32;
 405	config.dst_maxburst = 32;
 406	ret = dmaengine_slave_config(lp->dma_chan, &config);
 407	if (ret) {
 408		dev_err(lp->device, "dma channel configuration failed: %d\n",
 409			ret);
 410		return;
 411	}
 412
 413	len *= 2;
 414	smc_pxa_dma_inpump(lp, buf, len);
 
 
 
 
 
 
 
 
 
 
 415}
 416#endif
 417
 
 
 
 
 
 418#endif  /* CONFIG_ARCH_PXA */
 419
 420
 421/*
 422 * Everything a particular hardware setup needs should have been defined
 423 * at this point.  Add stubs for the undefined cases, mainly to avoid
 424 * compilation warnings since they'll be optimized away, or to prevent buggy
 425 * use of them.
 426 */
 427
 428#if ! SMC_CAN_USE_32BIT
 429#define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
 430#define SMC_outl(x, ioaddr, reg)	BUG()
 431#define SMC_insl(a, r, p, l)		BUG()
 432#define SMC_outsl(a, r, p, l)		BUG()
 433#endif
 434
 435#if !defined(SMC_insl) || !defined(SMC_outsl)
 436#define SMC_insl(a, r, p, l)		BUG()
 437#define SMC_outsl(a, r, p, l)		BUG()
 438#endif
 439
 440#if ! SMC_CAN_USE_16BIT
 441
 442#define SMC_outw(lp, x, ioaddr, reg)	SMC_outw_b(x, ioaddr, reg)
 443#define SMC_inw(ioaddr, reg)		SMC_inw_b(ioaddr, reg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444#define SMC_insw(a, r, p, l)		BUG()
 445#define SMC_outsw(a, r, p, l)		BUG()
 446
 447#endif
 448
 449#if !defined(SMC_insw) || !defined(SMC_outsw)
 450#define SMC_insw(a, r, p, l)		BUG()
 451#define SMC_outsw(a, r, p, l)		BUG()
 452#endif
 453
 454#if ! SMC_CAN_USE_8BIT
 455#undef SMC_inb
 456#define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
 457#undef SMC_outb
 458#define SMC_outb(x, ioaddr, reg)	BUG()
 459#define SMC_insb(a, r, p, l)		BUG()
 460#define SMC_outsb(a, r, p, l)		BUG()
 461#endif
 462
 463#if !defined(SMC_insb) || !defined(SMC_outsb)
 464#define SMC_insb(a, r, p, l)		BUG()
 465#define SMC_outsb(a, r, p, l)		BUG()
 466#endif
 467
 468#ifndef SMC_CAN_USE_DATACS
 469#define SMC_CAN_USE_DATACS	0
 470#endif
 471
 472#ifndef SMC_IO_SHIFT
 473#define SMC_IO_SHIFT	0
 474#endif
 475
 476#ifndef	SMC_IRQ_FLAGS
 477#define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
 478#endif
 479
 480#ifndef SMC_INTERRUPT_PREAMBLE
 481#define SMC_INTERRUPT_PREAMBLE
 482#endif
 483
 484
 485/* Because of bank switching, the LAN91x uses only 16 I/O ports */
 486#define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
 487#define SMC_DATA_EXTENT (4)
 488
 489/*
 490 . Bank Select Register:
 491 .
 492 .		yyyy yyyy 0000 00xx
 493 .		xx 		= bank number
 494 .		yyyy yyyy	= 0x33, for identification purposes.
 495*/
 496#define BANK_SELECT		(14 << SMC_IO_SHIFT)
 497
 498
 499// Transmit Control Register
 500/* BANK 0  */
 501#define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
 502#define TCR_ENABLE	0x0001	// When 1 we can transmit
 503#define TCR_LOOP	0x0002	// Controls output pin LBK
 504#define TCR_FORCOL	0x0004	// When 1 will force a collision
 505#define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
 506#define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
 507#define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
 508#define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
 509#define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
 510#define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
 511#define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
 512
 513#define TCR_CLEAR	0	/* do NOTHING */
 514/* the default settings for the TCR register : */
 515#define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
 516
 517
 518// EPH Status Register
 519/* BANK 0  */
 520#define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
 521#define ES_TX_SUC	0x0001	// Last TX was successful
 522#define ES_SNGL_COL	0x0002	// Single collision detected for last tx
 523#define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
 524#define ES_LTX_MULT	0x0008	// Last tx was a multicast
 525#define ES_16COL	0x0010	// 16 Collisions Reached
 526#define ES_SQET		0x0020	// Signal Quality Error Test
 527#define ES_LTXBRD	0x0040	// Last tx was a broadcast
 528#define ES_TXDEFR	0x0080	// Transmit Deferred
 529#define ES_LATCOL	0x0200	// Late collision detected on last tx
 530#define ES_LOSTCARR	0x0400	// Lost Carrier Sense
 531#define ES_EXC_DEF	0x0800	// Excessive Deferral
 532#define ES_CTR_ROL	0x1000	// Counter Roll Over indication
 533#define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
 534#define ES_TXUNRN	0x8000	// Tx Underrun
 535
 536
 537// Receive Control Register
 538/* BANK 0  */
 539#define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
 540#define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
 541#define RCR_PRMS	0x0002	// Enable promiscuous mode
 542#define RCR_ALMUL	0x0004	// When set accepts all multicast frames
 543#define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
 544#define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
 545#define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
 546#define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
 547#define RCR_SOFTRST	0x8000 	// resets the chip
 548
 549/* the normal settings for the RCR register : */
 550#define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
 551#define RCR_CLEAR	0x0	// set it to a base state
 552
 553
 554// Counter Register
 555/* BANK 0  */
 556#define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
 557
 558
 559// Memory Information Register
 560/* BANK 0  */
 561#define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
 562
 563
 564// Receive/Phy Control Register
 565/* BANK 0  */
 566#define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
 567#define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
 568#define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
 569#define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
 570#define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
 571#define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
 572
 573#ifndef RPC_LSA_DEFAULT
 574#define RPC_LSA_DEFAULT	RPC_LED_100
 575#endif
 576#ifndef RPC_LSB_DEFAULT
 577#define RPC_LSB_DEFAULT RPC_LED_FD
 578#endif
 579
 580#define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
 581
 582
 583/* Bank 0 0x0C is reserved */
 584
 585// Bank Select Register
 586/* All Banks */
 587#define BSR_REG		0x000E
 588
 589
 590// Configuration Reg
 591/* BANK 1 */
 592#define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
 593#define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
 594#define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
 595#define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
 596#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
 597
 598// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
 599#define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
 600
 601
 602// Base Address Register
 603/* BANK 1 */
 604#define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
 605
 606
 607// Individual Address Registers
 608/* BANK 1 */
 609#define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
 610#define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
 611#define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
 612
 613
 614// General Purpose Register
 615/* BANK 1 */
 616#define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
 617
 618
 619// Control Register
 620/* BANK 1 */
 621#define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
 622#define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
 623#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
 624#define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
 625#define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
 626#define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
 627#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
 628#define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
 629#define CTL_STORE	0x0001 // When set stores registers into EEPROM
 630
 631
 632// MMU Command Register
 633/* BANK 2 */
 634#define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
 635#define MC_BUSY		1	// When 1 the last release has not completed
 636#define MC_NOP		(0<<5)	// No Op
 637#define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
 638#define MC_RESET	(2<<5)	// Reset MMU to initial state
 639#define MC_REMOVE	(3<<5) 	// Remove the current rx packet
 640#define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
 641#define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
 642#define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
 643#define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
 644
 645
 646// Packet Number Register
 647/* BANK 2 */
 648#define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
 649
 650
 651// Allocation Result Register
 652/* BANK 2 */
 653#define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
 654#define AR_FAILED	0x80	// Alocation Failed
 655
 656
 657// TX FIFO Ports Register
 658/* BANK 2 */
 659#define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
 660#define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
 661
 662// RX FIFO Ports Register
 663/* BANK 2 */
 664#define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
 665#define RXFIFO_REMPTY	0x80	// RX FIFO Empty
 666
 667#define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
 668
 669// Pointer Register
 670/* BANK 2 */
 671#define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
 672#define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
 673#define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
 674#define PTR_READ	0x2000 // When 1 the operation is a read
 675
 676
 677// Data Register
 678/* BANK 2 */
 679#define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
 680
 681
 682// Interrupt Status/Acknowledge Register
 683/* BANK 2 */
 684#define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
 685
 686
 687// Interrupt Mask Register
 688/* BANK 2 */
 689#define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
 690#define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
 691#define IM_ERCV_INT	0x40 // Early Receive Interrupt
 692#define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
 693#define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
 694#define IM_ALLOC_INT	0x08 // Set when allocation request is completed
 695#define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
 696#define IM_TX_INT	0x02 // Transmit Interrupt
 697#define IM_RCV_INT	0x01 // Receive Interrupt
 698
 699
 700// Multicast Table Registers
 701/* BANK 3 */
 702#define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
 703#define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
 704#define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
 705#define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
 706
 707
 708// Management Interface Register (MII)
 709/* BANK 3 */
 710#define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
 711#define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
 712#define MII_MDOE	0x0008 // MII Output Enable
 713#define MII_MCLK	0x0004 // MII Clock, pin MDCLK
 714#define MII_MDI		0x0002 // MII Input, pin MDI
 715#define MII_MDO		0x0001 // MII Output, pin MDO
 716
 717
 718// Revision Register
 719/* BANK 3 */
 720/* ( hi: chip id   low: rev # ) */
 721#define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
 722
 723
 724// Early RCV Register
 725/* BANK 3 */
 726/* this is NOT on SMC9192 */
 727#define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
 728#define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
 729#define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
 730
 731
 732// External Register
 733/* BANK 7 */
 734#define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
 735
 736
 737#define CHIP_9192	3
 738#define CHIP_9194	4
 739#define CHIP_9195	5
 740#define CHIP_9196	6
 741#define CHIP_91100	7
 742#define CHIP_91100FD	8
 743#define CHIP_91111FD	9
 744
 745static const char * chip_ids[ 16 ] =  {
 746	NULL, NULL, NULL,
 747	/* 3 */ "SMC91C90/91C92",
 748	/* 4 */ "SMC91C94",
 749	/* 5 */ "SMC91C95",
 750	/* 6 */ "SMC91C96",
 751	/* 7 */ "SMC91C100",
 752	/* 8 */ "SMC91C100FD",
 753	/* 9 */ "SMC91C11xFD",
 754	NULL, NULL, NULL,
 755	NULL, NULL, NULL};
 756
 757
 758/*
 759 . Receive status bits
 760*/
 761#define RS_ALGNERR	0x8000
 762#define RS_BRODCAST	0x4000
 763#define RS_BADCRC	0x2000
 764#define RS_ODDFRAME	0x1000
 765#define RS_TOOLONG	0x0800
 766#define RS_TOOSHORT	0x0400
 767#define RS_MULTICAST	0x0001
 768#define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
 769
 770
 771/*
 772 * PHY IDs
 773 *  LAN83C183 == LAN91C111 Internal PHY
 774 */
 775#define PHY_LAN83C183	0x0016f840
 776#define PHY_LAN83C180	0x02821c50
 777
 778/*
 779 * PHY Register Addresses (LAN91C111 Internal PHY)
 780 *
 781 * Generic PHY registers can be found in <linux/mii.h>
 782 *
 783 * These phy registers are specific to our on-board phy.
 784 */
 785
 786// PHY Configuration Register 1
 787#define PHY_CFG1_REG		0x10
 788#define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
 789#define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
 790#define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
 791#define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
 792#define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
 793#define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
 794#define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
 795#define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
 796#define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
 797#define PHY_CFG1_TLVL_MASK	0x003C
 798#define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
 799
 800
 801// PHY Configuration Register 2
 802#define PHY_CFG2_REG		0x11
 803#define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
 804#define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
 805#define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
 806#define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
 807
 808// PHY Status Output (and Interrupt status) Register
 809#define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
 810#define PHY_INT_INT		0x8000	// 1=bits have changed since last read
 811#define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
 812#define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
 813#define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
 814#define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
 815#define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
 816#define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
 817#define PHY_INT_JAB		0x0100	// 1=Jabber detected
 818#define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
 819#define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
 820
 821// PHY Interrupt/Status Mask Register
 822#define PHY_MASK_REG		0x13	// Interrupt Mask
 823// Uses the same bit definitions as PHY_INT_REG
 824
 825
 826/*
 827 * SMC91C96 ethernet config and status registers.
 828 * These are in the "attribute" space.
 829 */
 830#define ECOR			0x8000
 831#define ECOR_RESET		0x80
 832#define ECOR_LEVEL_IRQ		0x40
 833#define ECOR_WR_ATTRIB		0x04
 834#define ECOR_ENABLE		0x01
 835
 836#define ECSR			0x8002
 837#define ECSR_IOIS8		0x20
 838#define ECSR_PWRDWN		0x04
 839#define ECSR_INT		0x02
 840
 841#define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
 842
 843
 844/*
 845 * Macros to abstract register access according to the data bus
 846 * capabilities.  Please use those and not the in/out primitives.
 847 * Note: the following macros do *not* select the bank -- this must
 848 * be done separately as needed in the main code.  The SMC_REG() macro
 849 * only uses the bank argument for debugging purposes (when enabled).
 850 *
 851 * Note: despite inline functions being safer, everything leading to this
 852 * should preferably be macros to let BUG() display the line number in
 853 * the core source code since we're interested in the top call site
 854 * not in any inline function location.
 855 */
 856
 857#if SMC_DEBUG > 0
 858#define SMC_REG(lp, reg, bank)					\
 859	({								\
 860		int __b = SMC_CURRENT_BANK(lp);			\
 861		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
 862			pr_err("%s: bank reg screwed (0x%04x)\n",	\
 863			       CARDNAME, __b);				\
 864			BUG();						\
 865		}							\
 866		reg<<SMC_IO_SHIFT;					\
 867	})
 868#else
 869#define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
 870#endif
 871
 872/*
 873 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
 874 * aligned to a 32 bit boundary.  I tell you that does exist!
 875 * Fortunately the affected register accesses can be easily worked around
 876 * since we can write zeroes to the preceding 16 bits without adverse
 877 * effects and use a 32-bit access.
 878 *
 879 * Enforce it on any 32-bit capable setup for now.
 880 */
 881#define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
 882
 883#define SMC_GET_PN(lp)						\
 884	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
 885				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
 886
 887#define SMC_SET_PN(lp, x)						\
 888	do {								\
 889		if (SMC_MUST_ALIGN_WRITE(lp))				\
 890			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
 891		else if (SMC_8BIT(lp))				\
 892			SMC_outb(x, ioaddr, PN_REG(lp));		\
 893		else							\
 894			SMC_outw(lp, x, ioaddr, PN_REG(lp));		\
 895	} while (0)
 896
 897#define SMC_GET_AR(lp)						\
 898	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
 899				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
 900
 901#define SMC_GET_TXFIFO(lp)						\
 902	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
 903				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
 904
 905#define SMC_GET_RXFIFO(lp)						\
 906	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
 907				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
 908
 909#define SMC_GET_INT(lp)						\
 910	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
 911				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
 912
 913#define SMC_ACK_INT(lp, x)						\
 914	do {								\
 915		if (SMC_8BIT(lp))					\
 916			SMC_outb(x, ioaddr, INT_REG(lp));		\
 917		else {							\
 918			unsigned long __flags;				\
 919			int __mask;					\
 920			local_irq_save(__flags);			\
 921			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
 922			SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
 923			local_irq_restore(__flags);			\
 924		}							\
 925	} while (0)
 926
 927#define SMC_GET_INT_MASK(lp)						\
 928	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
 929				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
 930
 931#define SMC_SET_INT_MASK(lp, x)					\
 932	do {								\
 933		if (SMC_8BIT(lp))					\
 934			SMC_outb(x, ioaddr, IM_REG(lp));		\
 935		else							\
 936			SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp));	\
 937	} while (0)
 938
 939#define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
 940
 941#define SMC_SELECT_BANK(lp, x)					\
 942	do {								\
 943		if (SMC_MUST_ALIGN_WRITE(lp))				\
 944			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
 945		else							\
 946			SMC_outw(lp, x, ioaddr, BANK_SELECT);		\
 947	} while (0)
 948
 949#define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
 950
 951#define SMC_SET_BASE(lp, x)	SMC_outw(lp, x, ioaddr, BASE_REG(lp))
 952
 953#define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
 954
 955#define SMC_SET_CONFIG(lp, x)	SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
 956
 957#define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
 958
 959#define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
 960
 961#define SMC_SET_CTL(lp, x)	SMC_outw(lp, x, ioaddr, CTL_REG(lp))
 962
 963#define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
 964
 965#define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
 966
 967#define SMC_SET_GP(lp, x)						\
 968	do {								\
 969		if (SMC_MUST_ALIGN_WRITE(lp))				\
 970			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
 971		else							\
 972			SMC_outw(lp, x, ioaddr, GP_REG(lp));		\
 973	} while (0)
 974
 975#define SMC_SET_MII(lp, x)	SMC_outw(lp, x, ioaddr, MII_REG(lp))
 976
 977#define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
 978
 979#define SMC_SET_MIR(lp, x)	SMC_outw(lp, x, ioaddr, MIR_REG(lp))
 980
 981#define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
 982
 983#define SMC_SET_MMU_CMD(lp, x)	SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
 984
 985#define SMC_GET_FIFO(lp)	SMC_inw(ioaddr, FIFO_REG(lp))
 986
 987#define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
 988
 989#define SMC_SET_PTR(lp, x)						\
 990	do {								\
 991		if (SMC_MUST_ALIGN_WRITE(lp))				\
 992			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
 993		else							\
 994			SMC_outw(lp, x, ioaddr, PTR_REG(lp));		\
 995	} while (0)
 996
 997#define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
 998
 999#define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
1000
1001#define SMC_SET_RCR(lp, x)		SMC_outw(lp, x, ioaddr, RCR_REG(lp))
1002
1003#define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
1004
1005#define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
1006
1007#define SMC_SET_RPC(lp, x)						\
1008	do {								\
1009		if (SMC_MUST_ALIGN_WRITE(lp))				\
1010			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
1011		else							\
1012			SMC_outw(lp, x, ioaddr, RPC_REG(lp));		\
1013	} while (0)
1014
1015#define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
1016
1017#define SMC_SET_TCR(lp, x)	SMC_outw(lp, x, ioaddr, TCR_REG(lp))
1018
1019#ifndef SMC_GET_MAC_ADDR
1020#define SMC_GET_MAC_ADDR(lp, addr)					\
1021	do {								\
1022		unsigned int __v;					\
1023		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
1024		addr[0] = __v; addr[1] = __v >> 8;			\
1025		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
1026		addr[2] = __v; addr[3] = __v >> 8;			\
1027		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
1028		addr[4] = __v; addr[5] = __v >> 8;			\
1029	} while (0)
1030#endif
1031
1032#define SMC_SET_MAC_ADDR(lp, addr)					\
1033	do {								\
1034		SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1035		SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1036		SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1037	} while (0)
1038
1039#define SMC_SET_MCAST(lp, x)						\
1040	do {								\
1041		const unsigned char *mt = (x);				\
1042		SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1043		SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1044		SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1045		SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1046	} while (0)
1047
1048#define SMC_PUT_PKT_HDR(lp, status, length)				\
1049	do {								\
1050		if (SMC_32BIT(lp))					\
1051			SMC_outl((status) | (length)<<16, ioaddr,	\
1052				 DATA_REG(lp));			\
1053		else {							\
1054			SMC_outw(lp, status, ioaddr, DATA_REG(lp));	\
1055			SMC_outw(lp, length, ioaddr, DATA_REG(lp));	\
1056		}							\
1057	} while (0)
1058
1059#define SMC_GET_PKT_HDR(lp, status, length)				\
1060	do {								\
1061		if (SMC_32BIT(lp)) {				\
1062			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1063			(status) = __val & 0xffff;			\
1064			(length) = __val >> 16;				\
1065		} else {						\
1066			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1067			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1068		}							\
1069	} while (0)
1070
1071#define SMC_PUSH_DATA(lp, p, l)					\
1072	do {								\
1073		if (SMC_32BIT(lp)) {				\
1074			void *__ptr = (p);				\
1075			int __len = (l);				\
1076			void __iomem *__ioaddr = ioaddr;		\
1077			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1078				__len -= 2;				\
1079				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1080				__ptr += 2;				\
1081			}						\
1082			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1083				__ioaddr = lp->datacs;			\
1084			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1085			if (__len & 2) {				\
1086				__ptr += (__len & ~3);			\
1087				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1088			}						\
1089		} else if (SMC_16BIT(lp))				\
1090			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1091		else if (SMC_8BIT(lp))				\
1092			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1093	} while (0)
1094
1095#define SMC_PULL_DATA(lp, p, l)					\
1096	do {								\
1097		if (SMC_32BIT(lp)) {				\
1098			void *__ptr = (p);				\
1099			int __len = (l);				\
1100			void __iomem *__ioaddr = ioaddr;		\
1101			if ((unsigned long)__ptr & 2) {			\
1102				/*					\
1103				 * We want 32bit alignment here.	\
1104				 * Since some buses perform a full	\
1105				 * 32bit fetch even for 16bit data	\
1106				 * we can't use SMC_inw() here.		\
1107				 * Back both source (on-chip) and	\
1108				 * destination pointers of 2 bytes.	\
1109				 * This is possible since the call to	\
1110				 * SMC_GET_PKT_HDR() already advanced	\
1111				 * the source pointer of 4 bytes, and	\
1112				 * the skb_reserve(skb, 2) advanced	\
1113				 * the destination pointer of 2 bytes.	\
1114				 */					\
1115				__ptr -= 2;				\
1116				__len += 2;				\
1117				SMC_SET_PTR(lp,			\
1118					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1119			}						\
1120			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1121				__ioaddr = lp->datacs;			\
1122			__len += 2;					\
1123			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1124		} else if (SMC_16BIT(lp))				\
1125			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1126		else if (SMC_8BIT(lp))				\
1127			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1128	} while (0)
1129
1130#endif  /* _SMC91X_H_ */