Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1/*
  2 * Copyright (c) 2015 Linaro Ltd.
  3 * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License version 2 as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 */
 14
 15#include <linux/clk.h>
 16#include <linux/cpu.h>
 17#include <linux/cpu_cooling.h>
 18#include <linux/cpufreq.h>
 19#include <linux/cpumask.h>
 20#include <linux/module.h>
 21#include <linux/of.h>
 22#include <linux/platform_device.h>
 23#include <linux/pm_opp.h>
 24#include <linux/regulator/consumer.h>
 25#include <linux/slab.h>
 26#include <linux/thermal.h>
 27
 28#define MIN_VOLT_SHIFT		(100000)
 29#define MAX_VOLT_SHIFT		(200000)
 30#define MAX_VOLT_LIMIT		(1150000)
 31#define VOLT_TOL		(10000)
 32
 33/*
 34 * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
 35 * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
 36 * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
 37 * voltage inputs need to be controlled under a hardware limitation:
 38 * 100mV < Vsram - Vproc < 200mV
 39 *
 40 * When scaling the clock frequency of a CPU clock domain, the clock source
 41 * needs to be switched to another stable PLL clock temporarily until
 42 * the original PLL becomes stable at target frequency.
 43 */
 44struct mtk_cpu_dvfs_info {
 45	struct cpumask cpus;
 46	struct device *cpu_dev;
 47	struct regulator *proc_reg;
 48	struct regulator *sram_reg;
 49	struct clk *cpu_clk;
 50	struct clk *inter_clk;
 51	struct thermal_cooling_device *cdev;
 52	struct list_head list_head;
 53	int intermediate_voltage;
 54	bool need_voltage_tracking;
 55};
 56
 57static LIST_HEAD(dvfs_info_list);
 58
 59static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
 60{
 61	struct mtk_cpu_dvfs_info *info;
 62
 63	list_for_each_entry(info, &dvfs_info_list, list_head) {
 64		if (cpumask_test_cpu(cpu, &info->cpus))
 65			return info;
 66	}
 67
 68	return NULL;
 69}
 70
 71static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
 72					int new_vproc)
 73{
 74	struct regulator *proc_reg = info->proc_reg;
 75	struct regulator *sram_reg = info->sram_reg;
 76	int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
 77
 78	old_vproc = regulator_get_voltage(proc_reg);
 79	if (old_vproc < 0) {
 80		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
 81		return old_vproc;
 82	}
 83	/* Vsram should not exceed the maximum allowed voltage of SoC. */
 84	new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
 85
 86	if (old_vproc < new_vproc) {
 87		/*
 88		 * When scaling up voltages, Vsram and Vproc scale up step
 89		 * by step. At each step, set Vsram to (Vproc + 200mV) first,
 90		 * then set Vproc to (Vsram - 100mV).
 91		 * Keep doing it until Vsram and Vproc hit target voltages.
 92		 */
 93		do {
 94			old_vsram = regulator_get_voltage(sram_reg);
 95			if (old_vsram < 0) {
 96				pr_err("%s: invalid Vsram value: %d\n",
 97				       __func__, old_vsram);
 98				return old_vsram;
 99			}
100			old_vproc = regulator_get_voltage(proc_reg);
101			if (old_vproc < 0) {
102				pr_err("%s: invalid Vproc value: %d\n",
103				       __func__, old_vproc);
104				return old_vproc;
105			}
106
107			vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
108
109			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
110				vsram = MAX_VOLT_LIMIT;
111
112				/*
113				 * If the target Vsram hits the maximum voltage,
114				 * try to set the exact voltage value first.
115				 */
116				ret = regulator_set_voltage(sram_reg, vsram,
117							    vsram);
118				if (ret)
119					ret = regulator_set_voltage(sram_reg,
120							vsram - VOLT_TOL,
121							vsram);
122
123				vproc = new_vproc;
124			} else {
125				ret = regulator_set_voltage(sram_reg, vsram,
126							    vsram + VOLT_TOL);
127
128				vproc = vsram - MIN_VOLT_SHIFT;
129			}
130			if (ret)
131				return ret;
132
133			ret = regulator_set_voltage(proc_reg, vproc,
134						    vproc + VOLT_TOL);
135			if (ret) {
136				regulator_set_voltage(sram_reg, old_vsram,
137						      old_vsram);
138				return ret;
139			}
140		} while (vproc < new_vproc || vsram < new_vsram);
141	} else if (old_vproc > new_vproc) {
142		/*
143		 * When scaling down voltages, Vsram and Vproc scale down step
144		 * by step. At each step, set Vproc to (Vsram - 200mV) first,
145		 * then set Vproc to (Vproc + 100mV).
146		 * Keep doing it until Vsram and Vproc hit target voltages.
147		 */
148		do {
149			old_vproc = regulator_get_voltage(proc_reg);
150			if (old_vproc < 0) {
151				pr_err("%s: invalid Vproc value: %d\n",
152				       __func__, old_vproc);
153				return old_vproc;
154			}
155			old_vsram = regulator_get_voltage(sram_reg);
156			if (old_vsram < 0) {
157				pr_err("%s: invalid Vsram value: %d\n",
158				       __func__, old_vsram);
159				return old_vsram;
160			}
161
162			vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
163			ret = regulator_set_voltage(proc_reg, vproc,
164						    vproc + VOLT_TOL);
165			if (ret)
166				return ret;
167
168			if (vproc == new_vproc)
169				vsram = new_vsram;
170			else
171				vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
172
173			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
174				vsram = MAX_VOLT_LIMIT;
175
176				/*
177				 * If the target Vsram hits the maximum voltage,
178				 * try to set the exact voltage value first.
179				 */
180				ret = regulator_set_voltage(sram_reg, vsram,
181							    vsram);
182				if (ret)
183					ret = regulator_set_voltage(sram_reg,
184							vsram - VOLT_TOL,
185							vsram);
186			} else {
187				ret = regulator_set_voltage(sram_reg, vsram,
188							    vsram + VOLT_TOL);
189			}
190
191			if (ret) {
192				regulator_set_voltage(proc_reg, old_vproc,
193						      old_vproc);
194				return ret;
195			}
196		} while (vproc > new_vproc + VOLT_TOL ||
197			 vsram > new_vsram + VOLT_TOL);
198	}
199
200	return 0;
201}
202
203static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
204{
205	if (info->need_voltage_tracking)
206		return mtk_cpufreq_voltage_tracking(info, vproc);
207	else
208		return regulator_set_voltage(info->proc_reg, vproc,
209					     vproc + VOLT_TOL);
210}
211
212static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
213				  unsigned int index)
214{
215	struct cpufreq_frequency_table *freq_table = policy->freq_table;
216	struct clk *cpu_clk = policy->clk;
217	struct clk *armpll = clk_get_parent(cpu_clk);
218	struct mtk_cpu_dvfs_info *info = policy->driver_data;
219	struct device *cpu_dev = info->cpu_dev;
220	struct dev_pm_opp *opp;
221	long freq_hz, old_freq_hz;
222	int vproc, old_vproc, inter_vproc, target_vproc, ret;
223
224	inter_vproc = info->intermediate_voltage;
225
226	old_freq_hz = clk_get_rate(cpu_clk);
227	old_vproc = regulator_get_voltage(info->proc_reg);
228	if (old_vproc < 0) {
229		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
230		return old_vproc;
231	}
232
233	freq_hz = freq_table[index].frequency * 1000;
234
235	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
236	if (IS_ERR(opp)) {
237		pr_err("cpu%d: failed to find OPP for %ld\n",
238		       policy->cpu, freq_hz);
239		return PTR_ERR(opp);
240	}
241	vproc = dev_pm_opp_get_voltage(opp);
242	dev_pm_opp_put(opp);
243
244	/*
245	 * If the new voltage or the intermediate voltage is higher than the
246	 * current voltage, scale up voltage first.
247	 */
248	target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
249	if (old_vproc < target_vproc) {
250		ret = mtk_cpufreq_set_voltage(info, target_vproc);
251		if (ret) {
252			pr_err("cpu%d: failed to scale up voltage!\n",
253			       policy->cpu);
254			mtk_cpufreq_set_voltage(info, old_vproc);
255			return ret;
256		}
257	}
258
259	/* Reparent the CPU clock to intermediate clock. */
260	ret = clk_set_parent(cpu_clk, info->inter_clk);
261	if (ret) {
262		pr_err("cpu%d: failed to re-parent cpu clock!\n",
263		       policy->cpu);
264		mtk_cpufreq_set_voltage(info, old_vproc);
265		WARN_ON(1);
266		return ret;
267	}
268
269	/* Set the original PLL to target rate. */
270	ret = clk_set_rate(armpll, freq_hz);
271	if (ret) {
272		pr_err("cpu%d: failed to scale cpu clock rate!\n",
273		       policy->cpu);
274		clk_set_parent(cpu_clk, armpll);
275		mtk_cpufreq_set_voltage(info, old_vproc);
276		return ret;
277	}
278
279	/* Set parent of CPU clock back to the original PLL. */
280	ret = clk_set_parent(cpu_clk, armpll);
281	if (ret) {
282		pr_err("cpu%d: failed to re-parent cpu clock!\n",
283		       policy->cpu);
284		mtk_cpufreq_set_voltage(info, inter_vproc);
285		WARN_ON(1);
286		return ret;
287	}
288
289	/*
290	 * If the new voltage is lower than the intermediate voltage or the
291	 * original voltage, scale down to the new voltage.
292	 */
293	if (vproc < inter_vproc || vproc < old_vproc) {
294		ret = mtk_cpufreq_set_voltage(info, vproc);
295		if (ret) {
296			pr_err("cpu%d: failed to scale down voltage!\n",
297			       policy->cpu);
298			clk_set_parent(cpu_clk, info->inter_clk);
299			clk_set_rate(armpll, old_freq_hz);
300			clk_set_parent(cpu_clk, armpll);
301			return ret;
302		}
303	}
304
305	return 0;
306}
307
308#define DYNAMIC_POWER "dynamic-power-coefficient"
309
310static void mtk_cpufreq_ready(struct cpufreq_policy *policy)
311{
312	struct mtk_cpu_dvfs_info *info = policy->driver_data;
313
314	info->cdev = of_cpufreq_cooling_register(policy);
315}
316
317static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
318{
319	struct device *cpu_dev;
320	struct regulator *proc_reg = ERR_PTR(-ENODEV);
321	struct regulator *sram_reg = ERR_PTR(-ENODEV);
322	struct clk *cpu_clk = ERR_PTR(-ENODEV);
323	struct clk *inter_clk = ERR_PTR(-ENODEV);
324	struct dev_pm_opp *opp;
325	unsigned long rate;
326	int ret;
327
328	cpu_dev = get_cpu_device(cpu);
329	if (!cpu_dev) {
330		pr_err("failed to get cpu%d device\n", cpu);
331		return -ENODEV;
332	}
333
334	cpu_clk = clk_get(cpu_dev, "cpu");
335	if (IS_ERR(cpu_clk)) {
336		if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
337			pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
338		else
339			pr_err("failed to get cpu clk for cpu%d\n", cpu);
340
341		ret = PTR_ERR(cpu_clk);
342		return ret;
343	}
344
345	inter_clk = clk_get(cpu_dev, "intermediate");
346	if (IS_ERR(inter_clk)) {
347		if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
348			pr_warn("intermediate clk for cpu%d not ready, retry.\n",
349				cpu);
350		else
351			pr_err("failed to get intermediate clk for cpu%d\n",
352			       cpu);
353
354		ret = PTR_ERR(inter_clk);
355		goto out_free_resources;
356	}
357
358	proc_reg = regulator_get_exclusive(cpu_dev, "proc");
359	if (IS_ERR(proc_reg)) {
360		if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
361			pr_warn("proc regulator for cpu%d not ready, retry.\n",
362				cpu);
363		else
364			pr_err("failed to get proc regulator for cpu%d\n",
365			       cpu);
366
367		ret = PTR_ERR(proc_reg);
368		goto out_free_resources;
369	}
370
371	/* Both presence and absence of sram regulator are valid cases. */
372	sram_reg = regulator_get_exclusive(cpu_dev, "sram");
373
374	/* Get OPP-sharing information from "operating-points-v2" bindings */
375	ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
376	if (ret) {
377		pr_err("failed to get OPP-sharing information for cpu%d\n",
378		       cpu);
379		goto out_free_resources;
380	}
381
382	ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
383	if (ret) {
384		pr_warn("no OPP table for cpu%d\n", cpu);
385		goto out_free_resources;
386	}
387
388	/* Search a safe voltage for intermediate frequency. */
389	rate = clk_get_rate(inter_clk);
390	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
391	if (IS_ERR(opp)) {
392		pr_err("failed to get intermediate opp for cpu%d\n", cpu);
393		ret = PTR_ERR(opp);
394		goto out_free_opp_table;
395	}
396	info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
397	dev_pm_opp_put(opp);
398
399	info->cpu_dev = cpu_dev;
400	info->proc_reg = proc_reg;
401	info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
402	info->cpu_clk = cpu_clk;
403	info->inter_clk = inter_clk;
404
405	/*
406	 * If SRAM regulator is present, software "voltage tracking" is needed
407	 * for this CPU power domain.
408	 */
409	info->need_voltage_tracking = !IS_ERR(sram_reg);
410
411	return 0;
412
413out_free_opp_table:
414	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
415
416out_free_resources:
417	if (!IS_ERR(proc_reg))
418		regulator_put(proc_reg);
419	if (!IS_ERR(sram_reg))
420		regulator_put(sram_reg);
421	if (!IS_ERR(cpu_clk))
422		clk_put(cpu_clk);
423	if (!IS_ERR(inter_clk))
424		clk_put(inter_clk);
425
426	return ret;
427}
428
429static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
430{
431	if (!IS_ERR(info->proc_reg))
432		regulator_put(info->proc_reg);
433	if (!IS_ERR(info->sram_reg))
434		regulator_put(info->sram_reg);
435	if (!IS_ERR(info->cpu_clk))
436		clk_put(info->cpu_clk);
437	if (!IS_ERR(info->inter_clk))
438		clk_put(info->inter_clk);
439
440	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
441}
442
443static int mtk_cpufreq_init(struct cpufreq_policy *policy)
444{
445	struct mtk_cpu_dvfs_info *info;
446	struct cpufreq_frequency_table *freq_table;
447	int ret;
448
449	info = mtk_cpu_dvfs_info_lookup(policy->cpu);
450	if (!info) {
451		pr_err("dvfs info for cpu%d is not initialized.\n",
452		       policy->cpu);
453		return -EINVAL;
454	}
455
456	ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
457	if (ret) {
458		pr_err("failed to init cpufreq table for cpu%d: %d\n",
459		       policy->cpu, ret);
460		return ret;
461	}
462
463	cpumask_copy(policy->cpus, &info->cpus);
464	policy->freq_table = freq_table;
465	policy->driver_data = info;
466	policy->clk = info->cpu_clk;
467
468	return 0;
469}
470
471static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
472{
473	struct mtk_cpu_dvfs_info *info = policy->driver_data;
474
475	cpufreq_cooling_unregister(info->cdev);
476	dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
477
478	return 0;
479}
480
481static struct cpufreq_driver mtk_cpufreq_driver = {
482	.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
483		 CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
484	.verify = cpufreq_generic_frequency_table_verify,
485	.target_index = mtk_cpufreq_set_target,
486	.get = cpufreq_generic_get,
487	.init = mtk_cpufreq_init,
488	.exit = mtk_cpufreq_exit,
489	.ready = mtk_cpufreq_ready,
490	.name = "mtk-cpufreq",
491	.attr = cpufreq_generic_attr,
492};
493
494static int mtk_cpufreq_probe(struct platform_device *pdev)
495{
496	struct mtk_cpu_dvfs_info *info, *tmp;
497	int cpu, ret;
498
499	for_each_possible_cpu(cpu) {
500		info = mtk_cpu_dvfs_info_lookup(cpu);
501		if (info)
502			continue;
503
504		info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
505		if (!info) {
506			ret = -ENOMEM;
507			goto release_dvfs_info_list;
508		}
509
510		ret = mtk_cpu_dvfs_info_init(info, cpu);
511		if (ret) {
512			dev_err(&pdev->dev,
513				"failed to initialize dvfs info for cpu%d\n",
514				cpu);
515			goto release_dvfs_info_list;
516		}
517
518		list_add(&info->list_head, &dvfs_info_list);
519	}
520
521	ret = cpufreq_register_driver(&mtk_cpufreq_driver);
522	if (ret) {
523		dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
524		goto release_dvfs_info_list;
525	}
526
527	return 0;
528
529release_dvfs_info_list:
530	list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
531		mtk_cpu_dvfs_info_release(info);
532		list_del(&info->list_head);
533	}
534
535	return ret;
536}
537
538static struct platform_driver mtk_cpufreq_platdrv = {
539	.driver = {
540		.name	= "mtk-cpufreq",
541	},
542	.probe		= mtk_cpufreq_probe,
543};
544
545/* List of machines supported by this driver */
546static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
547	{ .compatible = "mediatek,mt2701", },
548	{ .compatible = "mediatek,mt2712", },
549	{ .compatible = "mediatek,mt7622", },
550	{ .compatible = "mediatek,mt7623", },
551	{ .compatible = "mediatek,mt817x", },
552	{ .compatible = "mediatek,mt8173", },
553	{ .compatible = "mediatek,mt8176", },
554
555	{ }
556};
557
558static int __init mtk_cpufreq_driver_init(void)
559{
560	struct device_node *np;
561	const struct of_device_id *match;
562	struct platform_device *pdev;
563	int err;
564
565	np = of_find_node_by_path("/");
566	if (!np)
567		return -ENODEV;
568
569	match = of_match_node(mtk_cpufreq_machines, np);
570	of_node_put(np);
571	if (!match) {
572		pr_debug("Machine is not compatible with mtk-cpufreq\n");
573		return -ENODEV;
574	}
575
576	err = platform_driver_register(&mtk_cpufreq_platdrv);
577	if (err)
578		return err;
579
580	/*
581	 * Since there's no place to hold device registration code and no
582	 * device tree based way to match cpufreq driver yet, both the driver
583	 * and the device registration codes are put here to handle defer
584	 * probing.
585	 */
586	pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0);
587	if (IS_ERR(pdev)) {
588		pr_err("failed to register mtk-cpufreq platform device\n");
589		return PTR_ERR(pdev);
590	}
591
592	return 0;
593}
594device_initcall(mtk_cpufreq_driver_init);
595
596MODULE_DESCRIPTION("MediaTek CPUFreq driver");
597MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
598MODULE_LICENSE("GPL v2");