Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 *  linux/arch/arm/mm/alignment.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2001 Russell King
  6 *  Thumb alignment fault fixups (c) 2004 MontaVista Software, Inc.
  7 *  - Adapted from gdb/sim/arm/thumbemu.c -- Thumb instruction emulation.
  8 *    Copyright (C) 1996, Cygnus Software Technologies Ltd.
  9 *
 10 * This program is free software; you can redistribute it and/or modify
 11 * it under the terms of the GNU General Public License version 2 as
 12 * published by the Free Software Foundation.
 13 */
 14#include <linux/moduleparam.h>
 15#include <linux/compiler.h>
 16#include <linux/kernel.h>
 
 17#include <linux/errno.h>
 18#include <linux/string.h>
 19#include <linux/proc_fs.h>
 20#include <linux/seq_file.h>
 21#include <linux/init.h>
 22#include <linux/sched.h>
 23#include <linux/uaccess.h>
 24
 25#include <asm/cp15.h>
 26#include <asm/system_info.h>
 27#include <asm/unaligned.h>
 28#include <asm/opcodes.h>
 29
 30#include "fault.h"
 
 31
 32/*
 33 * 32-bit misaligned trap handler (c) 1998 San Mehat (CCC) -July 1998
 34 * /proc/sys/debug/alignment, modified and integrated into
 35 * Linux 2.1 by Russell King
 36 *
 37 * Speed optimisations and better fault handling by Russell King.
 38 *
 39 * *** NOTE ***
 40 * This code is not portable to processors with late data abort handling.
 41 */
 42#define CODING_BITS(i)	(i & 0x0e000000)
 
 43
 44#define LDST_I_BIT(i)	(i & (1 << 26))		/* Immediate constant	*/
 45#define LDST_P_BIT(i)	(i & (1 << 24))		/* Preindex		*/
 46#define LDST_U_BIT(i)	(i & (1 << 23))		/* Add offset		*/
 47#define LDST_W_BIT(i)	(i & (1 << 21))		/* Writeback		*/
 48#define LDST_L_BIT(i)	(i & (1 << 20))		/* Load			*/
 49
 50#define LDST_P_EQ_U(i)	((((i) ^ ((i) >> 1)) & (1 << 23)) == 0)
 51
 52#define LDSTHD_I_BIT(i)	(i & (1 << 22))		/* double/half-word immed */
 53#define LDM_S_BIT(i)	(i & (1 << 22))		/* write CPSR from SPSR	*/
 54
 55#define RN_BITS(i)	((i >> 16) & 15)	/* Rn			*/
 56#define RD_BITS(i)	((i >> 12) & 15)	/* Rd			*/
 57#define RM_BITS(i)	(i & 15)		/* Rm			*/
 58
 59#define REGMASK_BITS(i)	(i & 0xffff)
 60#define OFFSET_BITS(i)	(i & 0x0fff)
 61
 62#define IS_SHIFT(i)	(i & 0x0ff0)
 63#define SHIFT_BITS(i)	((i >> 7) & 0x1f)
 64#define SHIFT_TYPE(i)	(i & 0x60)
 65#define SHIFT_LSL	0x00
 66#define SHIFT_LSR	0x20
 67#define SHIFT_ASR	0x40
 68#define SHIFT_RORRRX	0x60
 69
 70#define BAD_INSTR 	0xdeadc0de
 71
 72/* Thumb-2 32 bit format per ARMv7 DDI0406A A6.3, either f800h,e800h,f800h */
 73#define IS_T32(hi16) \
 74	(((hi16) & 0xe000) == 0xe000 && ((hi16) & 0x1800))
 75
 76static unsigned long ai_user;
 77static unsigned long ai_sys;
 
 78static unsigned long ai_skipped;
 79static unsigned long ai_half;
 80static unsigned long ai_word;
 81static unsigned long ai_dword;
 82static unsigned long ai_multi;
 83static int ai_usermode;
 
 84
 85core_param(alignment, ai_usermode, int, 0600);
 86
 87#define UM_WARN		(1 << 0)
 88#define UM_FIXUP	(1 << 1)
 89#define UM_SIGNAL	(1 << 2)
 90
 91/* Return true if and only if the ARMv6 unaligned access model is in use. */
 92static bool cpu_is_v6_unaligned(void)
 93{
 94	return cpu_architecture() >= CPU_ARCH_ARMv6 && (cr_alignment & CR_U);
 95}
 96
 97static int safe_usermode(int new_usermode, bool warn)
 98{
 99	/*
100	 * ARMv6 and later CPUs can perform unaligned accesses for
101	 * most single load and store instructions up to word size.
102	 * LDM, STM, LDRD and STRD still need to be handled.
103	 *
104	 * Ignoring the alignment fault is not an option on these
105	 * CPUs since we spin re-faulting the instruction without
106	 * making any progress.
107	 */
108	if (cpu_is_v6_unaligned() && !(new_usermode & (UM_FIXUP | UM_SIGNAL))) {
109		new_usermode |= UM_FIXUP;
110
111		if (warn)
112			printk(KERN_WARNING "alignment: ignoring faults is unsafe on this CPU.  Defaulting to fixup mode.\n");
113	}
114
115	return new_usermode;
116}
117
118#ifdef CONFIG_PROC_FS
119static const char *usermode_action[] = {
120	"ignored",
121	"warn",
122	"fixup",
123	"fixup+warn",
124	"signal",
125	"signal+warn"
126};
127
128static int alignment_proc_show(struct seq_file *m, void *v)
129{
130	seq_printf(m, "User:\t\t%lu\n", ai_user);
131	seq_printf(m, "System:\t\t%lu\n", ai_sys);
132	seq_printf(m, "Skipped:\t%lu\n", ai_skipped);
133	seq_printf(m, "Half:\t\t%lu\n", ai_half);
134	seq_printf(m, "Word:\t\t%lu\n", ai_word);
135	if (cpu_architecture() >= CPU_ARCH_ARMv5TE)
136		seq_printf(m, "DWord:\t\t%lu\n", ai_dword);
137	seq_printf(m, "Multi:\t\t%lu\n", ai_multi);
138	seq_printf(m, "User faults:\t%i (%s)\n", ai_usermode,
139			usermode_action[ai_usermode]);
140
141	return 0;
142}
143
144static int alignment_proc_open(struct inode *inode, struct file *file)
145{
146	return single_open(file, alignment_proc_show, NULL);
147}
148
149static ssize_t alignment_proc_write(struct file *file, const char __user *buffer,
150				    size_t count, loff_t *pos)
151{
152	char mode;
153
154	if (count > 0) {
155		if (get_user(mode, buffer))
156			return -EFAULT;
157		if (mode >= '0' && mode <= '5')
158			ai_usermode = safe_usermode(mode - '0', true);
159	}
160	return count;
161}
162
163static const struct file_operations alignment_proc_fops = {
164	.open		= alignment_proc_open,
165	.read		= seq_read,
166	.llseek		= seq_lseek,
167	.release	= single_release,
168	.write		= alignment_proc_write,
169};
170#endif /* CONFIG_PROC_FS */
171
172union offset_union {
173	unsigned long un;
174	  signed long sn;
175};
176
177#define TYPE_ERROR	0
178#define TYPE_FAULT	1
179#define TYPE_LDST	2
180#define TYPE_DONE	3
181
182#ifdef __ARMEB__
183#define BE		1
184#define FIRST_BYTE_16	"mov	%1, %1, ror #8\n"
185#define FIRST_BYTE_32	"mov	%1, %1, ror #24\n"
186#define NEXT_BYTE	"ror #24"
187#else
188#define BE		0
189#define FIRST_BYTE_16
190#define FIRST_BYTE_32
191#define NEXT_BYTE	"lsr #8"
192#endif
193
194#define __get8_unaligned_check(ins,val,addr,err)	\
195	__asm__(					\
196 ARM(	"1:	"ins"	%1, [%2], #1\n"	)		\
197 THUMB(	"1:	"ins"	%1, [%2]\n"	)		\
198 THUMB(	"	add	%2, %2, #1\n"	)		\
199	"2:\n"						\
200	"	.pushsection .fixup,\"ax\"\n"		\
201	"	.align	2\n"				\
202	"3:	mov	%0, #1\n"			\
203	"	b	2b\n"				\
204	"	.popsection\n"				\
205	"	.pushsection __ex_table,\"a\"\n"	\
206	"	.align	3\n"				\
207	"	.long	1b, 3b\n"			\
208	"	.popsection\n"				\
209	: "=r" (err), "=&r" (val), "=r" (addr)		\
210	: "0" (err), "2" (addr))
211
212#define __get16_unaligned_check(ins,val,addr)			\
213	do {							\
214		unsigned int err = 0, v, a = addr;		\
215		__get8_unaligned_check(ins,v,a,err);		\
216		val =  v << ((BE) ? 8 : 0);			\
217		__get8_unaligned_check(ins,v,a,err);		\
218		val |= v << ((BE) ? 0 : 8);			\
219		if (err)					\
220			goto fault;				\
221	} while (0)
222
223#define get16_unaligned_check(val,addr) \
224	__get16_unaligned_check("ldrb",val,addr)
225
226#define get16t_unaligned_check(val,addr) \
227	__get16_unaligned_check("ldrbt",val,addr)
228
229#define __get32_unaligned_check(ins,val,addr)			\
230	do {							\
231		unsigned int err = 0, v, a = addr;		\
232		__get8_unaligned_check(ins,v,a,err);		\
233		val =  v << ((BE) ? 24 :  0);			\
234		__get8_unaligned_check(ins,v,a,err);		\
235		val |= v << ((BE) ? 16 :  8);			\
236		__get8_unaligned_check(ins,v,a,err);		\
237		val |= v << ((BE) ?  8 : 16);			\
238		__get8_unaligned_check(ins,v,a,err);		\
239		val |= v << ((BE) ?  0 : 24);			\
240		if (err)					\
241			goto fault;				\
242	} while (0)
243
244#define get32_unaligned_check(val,addr) \
245	__get32_unaligned_check("ldrb",val,addr)
246
247#define get32t_unaligned_check(val,addr) \
248	__get32_unaligned_check("ldrbt",val,addr)
249
250#define __put16_unaligned_check(ins,val,addr)			\
251	do {							\
252		unsigned int err = 0, v = val, a = addr;	\
253		__asm__( FIRST_BYTE_16				\
254	 ARM(	"1:	"ins"	%1, [%2], #1\n"	)		\
255	 THUMB(	"1:	"ins"	%1, [%2]\n"	)		\
256	 THUMB(	"	add	%2, %2, #1\n"	)		\
257		"	mov	%1, %1, "NEXT_BYTE"\n"		\
258		"2:	"ins"	%1, [%2]\n"			\
259		"3:\n"						\
260		"	.pushsection .fixup,\"ax\"\n"		\
261		"	.align	2\n"				\
262		"4:	mov	%0, #1\n"			\
263		"	b	3b\n"				\
264		"	.popsection\n"				\
265		"	.pushsection __ex_table,\"a\"\n"	\
266		"	.align	3\n"				\
267		"	.long	1b, 4b\n"			\
268		"	.long	2b, 4b\n"			\
269		"	.popsection\n"				\
270		: "=r" (err), "=&r" (v), "=&r" (a)		\
271		: "0" (err), "1" (v), "2" (a));			\
272		if (err)					\
273			goto fault;				\
274	} while (0)
275
276#define put16_unaligned_check(val,addr)  \
277	__put16_unaligned_check("strb",val,addr)
278
279#define put16t_unaligned_check(val,addr) \
280	__put16_unaligned_check("strbt",val,addr)
281
282#define __put32_unaligned_check(ins,val,addr)			\
283	do {							\
284		unsigned int err = 0, v = val, a = addr;	\
285		__asm__( FIRST_BYTE_32				\
286	 ARM(	"1:	"ins"	%1, [%2], #1\n"	)		\
287	 THUMB(	"1:	"ins"	%1, [%2]\n"	)		\
288	 THUMB(	"	add	%2, %2, #1\n"	)		\
289		"	mov	%1, %1, "NEXT_BYTE"\n"		\
290	 ARM(	"2:	"ins"	%1, [%2], #1\n"	)		\
291	 THUMB(	"2:	"ins"	%1, [%2]\n"	)		\
292	 THUMB(	"	add	%2, %2, #1\n"	)		\
293		"	mov	%1, %1, "NEXT_BYTE"\n"		\
294	 ARM(	"3:	"ins"	%1, [%2], #1\n"	)		\
295	 THUMB(	"3:	"ins"	%1, [%2]\n"	)		\
296	 THUMB(	"	add	%2, %2, #1\n"	)		\
297		"	mov	%1, %1, "NEXT_BYTE"\n"		\
298		"4:	"ins"	%1, [%2]\n"			\
299		"5:\n"						\
300		"	.pushsection .fixup,\"ax\"\n"		\
301		"	.align	2\n"				\
302		"6:	mov	%0, #1\n"			\
303		"	b	5b\n"				\
304		"	.popsection\n"				\
305		"	.pushsection __ex_table,\"a\"\n"	\
306		"	.align	3\n"				\
307		"	.long	1b, 6b\n"			\
308		"	.long	2b, 6b\n"			\
309		"	.long	3b, 6b\n"			\
310		"	.long	4b, 6b\n"			\
311		"	.popsection\n"				\
312		: "=r" (err), "=&r" (v), "=&r" (a)		\
313		: "0" (err), "1" (v), "2" (a));			\
314		if (err)					\
315			goto fault;				\
316	} while (0)
317
318#define put32_unaligned_check(val,addr) \
319	__put32_unaligned_check("strb", val, addr)
320
321#define put32t_unaligned_check(val,addr) \
322	__put32_unaligned_check("strbt", val, addr)
323
324static void
325do_alignment_finish_ldst(unsigned long addr, unsigned long instr, struct pt_regs *regs, union offset_union offset)
326{
327	if (!LDST_U_BIT(instr))
328		offset.un = -offset.un;
329
330	if (!LDST_P_BIT(instr))
331		addr += offset.un;
332
333	if (!LDST_P_BIT(instr) || LDST_W_BIT(instr))
334		regs->uregs[RN_BITS(instr)] = addr;
335}
336
337static int
338do_alignment_ldrhstrh(unsigned long addr, unsigned long instr, struct pt_regs *regs)
339{
340	unsigned int rd = RD_BITS(instr);
341
342	ai_half += 1;
343
344	if (user_mode(regs))
345		goto user;
346
347	if (LDST_L_BIT(instr)) {
348		unsigned long val;
349		get16_unaligned_check(val, addr);
350
351		/* signed half-word? */
352		if (instr & 0x40)
353			val = (signed long)((signed short) val);
354
355		regs->uregs[rd] = val;
356	} else
357		put16_unaligned_check(regs->uregs[rd], addr);
358
359	return TYPE_LDST;
360
361 user:
362	if (LDST_L_BIT(instr)) {
363		unsigned long val;
 
 
364		get16t_unaligned_check(val, addr);
 
365
366		/* signed half-word? */
367		if (instr & 0x40)
368			val = (signed long)((signed short) val);
369
370		regs->uregs[rd] = val;
371	} else
 
372		put16t_unaligned_check(regs->uregs[rd], addr);
 
 
373
374	return TYPE_LDST;
375
376 fault:
377	return TYPE_FAULT;
378}
379
380static int
381do_alignment_ldrdstrd(unsigned long addr, unsigned long instr,
382		      struct pt_regs *regs)
383{
384	unsigned int rd = RD_BITS(instr);
385	unsigned int rd2;
386	int load;
387
388	if ((instr & 0xfe000000) == 0xe8000000) {
389		/* ARMv7 Thumb-2 32-bit LDRD/STRD */
390		rd2 = (instr >> 8) & 0xf;
391		load = !!(LDST_L_BIT(instr));
392	} else if (((rd & 1) == 1) || (rd == 14))
393		goto bad;
394	else {
395		load = ((instr & 0xf0) == 0xd0);
396		rd2 = rd + 1;
397	}
398
399	ai_dword += 1;
400
401	if (user_mode(regs))
402		goto user;
403
404	if (load) {
405		unsigned long val;
406		get32_unaligned_check(val, addr);
407		regs->uregs[rd] = val;
408		get32_unaligned_check(val, addr + 4);
409		regs->uregs[rd2] = val;
410	} else {
411		put32_unaligned_check(regs->uregs[rd], addr);
412		put32_unaligned_check(regs->uregs[rd2], addr + 4);
413	}
414
415	return TYPE_LDST;
416
417 user:
418	if (load) {
419		unsigned long val;
 
 
420		get32t_unaligned_check(val, addr);
 
 
 
 
421		regs->uregs[rd] = val;
422		get32t_unaligned_check(val, addr + 4);
423		regs->uregs[rd2] = val;
424	} else {
 
425		put32t_unaligned_check(regs->uregs[rd], addr);
426		put32t_unaligned_check(regs->uregs[rd2], addr + 4);
 
427	}
428
429	return TYPE_LDST;
430 bad:
431	return TYPE_ERROR;
432 fault:
433	return TYPE_FAULT;
434}
435
436static int
437do_alignment_ldrstr(unsigned long addr, unsigned long instr, struct pt_regs *regs)
438{
439	unsigned int rd = RD_BITS(instr);
440
441	ai_word += 1;
442
443	if ((!LDST_P_BIT(instr) && LDST_W_BIT(instr)) || user_mode(regs))
444		goto trans;
445
446	if (LDST_L_BIT(instr)) {
447		unsigned int val;
448		get32_unaligned_check(val, addr);
449		regs->uregs[rd] = val;
450	} else
451		put32_unaligned_check(regs->uregs[rd], addr);
452	return TYPE_LDST;
453
454 trans:
455	if (LDST_L_BIT(instr)) {
456		unsigned int val;
 
457		get32t_unaligned_check(val, addr);
 
458		regs->uregs[rd] = val;
459	} else
 
460		put32t_unaligned_check(regs->uregs[rd], addr);
 
 
461	return TYPE_LDST;
462
463 fault:
464	return TYPE_FAULT;
465}
466
467/*
468 * LDM/STM alignment handler.
469 *
470 * There are 4 variants of this instruction:
471 *
472 * B = rn pointer before instruction, A = rn pointer after instruction
473 *              ------ increasing address ----->
474 *	        |    | r0 | r1 | ... | rx |    |
475 * PU = 01             B                    A
476 * PU = 11        B                    A
477 * PU = 00        A                    B
478 * PU = 10             A                    B
479 */
480static int
481do_alignment_ldmstm(unsigned long addr, unsigned long instr, struct pt_regs *regs)
482{
483	unsigned int rd, rn, correction, nr_regs, regbits;
484	unsigned long eaddr, newaddr;
485
486	if (LDM_S_BIT(instr))
487		goto bad;
488
489	correction = 4; /* processor implementation defined */
490	regs->ARM_pc += correction;
491
492	ai_multi += 1;
493
494	/* count the number of registers in the mask to be transferred */
495	nr_regs = hweight16(REGMASK_BITS(instr)) * 4;
496
497	rn = RN_BITS(instr);
498	newaddr = eaddr = regs->uregs[rn];
499
500	if (!LDST_U_BIT(instr))
501		nr_regs = -nr_regs;
502	newaddr += nr_regs;
503	if (!LDST_U_BIT(instr))
504		eaddr = newaddr;
505
506	if (LDST_P_EQ_U(instr))	/* U = P */
507		eaddr += 4;
508
509	/*
510	 * For alignment faults on the ARM922T/ARM920T the MMU  makes
511	 * the FSR (and hence addr) equal to the updated base address
512	 * of the multiple access rather than the restored value.
513	 * Switch this message off if we've got a ARM92[02], otherwise
514	 * [ls]dm alignment faults are noisy!
515	 */
516#if !(defined CONFIG_CPU_ARM922T)  && !(defined CONFIG_CPU_ARM920T)
517	/*
518	 * This is a "hint" - we already have eaddr worked out by the
519	 * processor for us.
520	 */
521	if (addr != eaddr) {
522		printk(KERN_ERR "LDMSTM: PC = %08lx, instr = %08lx, "
523			"addr = %08lx, eaddr = %08lx\n",
524			 instruction_pointer(regs), instr, addr, eaddr);
525		show_regs(regs);
526	}
527#endif
528
529	if (user_mode(regs)) {
 
530		for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
531		     regbits >>= 1, rd += 1)
532			if (regbits & 1) {
533				if (LDST_L_BIT(instr)) {
534					unsigned int val;
535					get32t_unaligned_check(val, eaddr);
536					regs->uregs[rd] = val;
537				} else
538					put32t_unaligned_check(regs->uregs[rd], eaddr);
539				eaddr += 4;
540			}
 
541	} else {
542		for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
543		     regbits >>= 1, rd += 1)
544			if (regbits & 1) {
545				if (LDST_L_BIT(instr)) {
546					unsigned int val;
547					get32_unaligned_check(val, eaddr);
548					regs->uregs[rd] = val;
549				} else
550					put32_unaligned_check(regs->uregs[rd], eaddr);
551				eaddr += 4;
552			}
553	}
554
555	if (LDST_W_BIT(instr))
556		regs->uregs[rn] = newaddr;
557	if (!LDST_L_BIT(instr) || !(REGMASK_BITS(instr) & (1 << 15)))
558		regs->ARM_pc -= correction;
559	return TYPE_DONE;
560
561fault:
562	regs->ARM_pc -= correction;
563	return TYPE_FAULT;
564
565bad:
566	printk(KERN_ERR "Alignment trap: not handling ldm with s-bit set\n");
567	return TYPE_ERROR;
568}
569
570/*
571 * Convert Thumb ld/st instruction forms to equivalent ARM instructions so
572 * we can reuse ARM userland alignment fault fixups for Thumb.
573 *
574 * This implementation was initially based on the algorithm found in
575 * gdb/sim/arm/thumbemu.c. It is basically just a code reduction of same
576 * to convert only Thumb ld/st instruction forms to equivalent ARM forms.
577 *
578 * NOTES:
579 * 1. Comments below refer to ARM ARM DDI0100E Thumb Instruction sections.
580 * 2. If for some reason we're passed an non-ld/st Thumb instruction to
581 *    decode, we return 0xdeadc0de. This should never happen under normal
582 *    circumstances but if it does, we've got other problems to deal with
583 *    elsewhere and we obviously can't fix those problems here.
584 */
585
586static unsigned long
587thumb2arm(u16 tinstr)
588{
589	u32 L = (tinstr & (1<<11)) >> 11;
590
591	switch ((tinstr & 0xf800) >> 11) {
592	/* 6.5.1 Format 1: */
593	case 0x6000 >> 11:				/* 7.1.52 STR(1) */
594	case 0x6800 >> 11:				/* 7.1.26 LDR(1) */
595	case 0x7000 >> 11:				/* 7.1.55 STRB(1) */
596	case 0x7800 >> 11:				/* 7.1.30 LDRB(1) */
597		return 0xe5800000 |
598			((tinstr & (1<<12)) << (22-12)) |	/* fixup */
599			(L<<20) |				/* L==1? */
600			((tinstr & (7<<0)) << (12-0)) |		/* Rd */
601			((tinstr & (7<<3)) << (16-3)) |		/* Rn */
602			((tinstr & (31<<6)) >>			/* immed_5 */
603				(6 - ((tinstr & (1<<12)) ? 0 : 2)));
604	case 0x8000 >> 11:				/* 7.1.57 STRH(1) */
605	case 0x8800 >> 11:				/* 7.1.32 LDRH(1) */
606		return 0xe1c000b0 |
607			(L<<20) |				/* L==1? */
608			((tinstr & (7<<0)) << (12-0)) |		/* Rd */
609			((tinstr & (7<<3)) << (16-3)) |		/* Rn */
610			((tinstr & (7<<6)) >> (6-1)) |	 /* immed_5[2:0] */
611			((tinstr & (3<<9)) >> (9-8));	 /* immed_5[4:3] */
612
613	/* 6.5.1 Format 2: */
614	case 0x5000 >> 11:
615	case 0x5800 >> 11:
616		{
617			static const u32 subset[8] = {
618				0xe7800000,		/* 7.1.53 STR(2) */
619				0xe18000b0,		/* 7.1.58 STRH(2) */
620				0xe7c00000,		/* 7.1.56 STRB(2) */
621				0xe19000d0,		/* 7.1.34 LDRSB */
622				0xe7900000,		/* 7.1.27 LDR(2) */
623				0xe19000b0,		/* 7.1.33 LDRH(2) */
624				0xe7d00000,		/* 7.1.31 LDRB(2) */
625				0xe19000f0		/* 7.1.35 LDRSH */
626			};
627			return subset[(tinstr & (7<<9)) >> 9] |
628			    ((tinstr & (7<<0)) << (12-0)) |	/* Rd */
629			    ((tinstr & (7<<3)) << (16-3)) |	/* Rn */
630			    ((tinstr & (7<<6)) >> (6-0));	/* Rm */
631		}
632
633	/* 6.5.1 Format 3: */
634	case 0x4800 >> 11:				/* 7.1.28 LDR(3) */
635		/* NOTE: This case is not technically possible. We're
636		 *	 loading 32-bit memory data via PC relative
637		 *	 addressing mode. So we can and should eliminate
638		 *	 this case. But I'll leave it here for now.
639		 */
640		return 0xe59f0000 |
641		    ((tinstr & (7<<8)) << (12-8)) |		/* Rd */
642		    ((tinstr & 255) << (2-0));			/* immed_8 */
643
644	/* 6.5.1 Format 4: */
645	case 0x9000 >> 11:				/* 7.1.54 STR(3) */
646	case 0x9800 >> 11:				/* 7.1.29 LDR(4) */
647		return 0xe58d0000 |
648			(L<<20) |				/* L==1? */
649			((tinstr & (7<<8)) << (12-8)) |		/* Rd */
650			((tinstr & 255) << 2);			/* immed_8 */
651
652	/* 6.6.1 Format 1: */
653	case 0xc000 >> 11:				/* 7.1.51 STMIA */
654	case 0xc800 >> 11:				/* 7.1.25 LDMIA */
655		{
656			u32 Rn = (tinstr & (7<<8)) >> 8;
657			u32 W = ((L<<Rn) & (tinstr&255)) ? 0 : 1<<21;
658
659			return 0xe8800000 | W | (L<<20) | (Rn<<16) |
660				(tinstr&255);
661		}
662
663	/* 6.6.1 Format 2: */
664	case 0xb000 >> 11:				/* 7.1.48 PUSH */
665	case 0xb800 >> 11:				/* 7.1.47 POP */
666		if ((tinstr & (3 << 9)) == 0x0400) {
667			static const u32 subset[4] = {
668				0xe92d0000,	/* STMDB sp!,{registers} */
669				0xe92d4000,	/* STMDB sp!,{registers,lr} */
670				0xe8bd0000,	/* LDMIA sp!,{registers} */
671				0xe8bd8000	/* LDMIA sp!,{registers,pc} */
672			};
673			return subset[(L<<1) | ((tinstr & (1<<8)) >> 8)] |
674			    (tinstr & 255);		/* register_list */
675		}
676		/* Else fall through for illegal instruction case */
677
678	default:
679		return BAD_INSTR;
680	}
681}
682
683/*
684 * Convert Thumb-2 32 bit LDM, STM, LDRD, STRD to equivalent instruction
685 * handlable by ARM alignment handler, also find the corresponding handler,
686 * so that we can reuse ARM userland alignment fault fixups for Thumb.
687 *
688 * @pinstr: original Thumb-2 instruction; returns new handlable instruction
689 * @regs: register context.
690 * @poffset: return offset from faulted addr for later writeback
691 *
692 * NOTES:
693 * 1. Comments below refer to ARMv7 DDI0406A Thumb Instruction sections.
694 * 2. Register name Rt from ARMv7 is same as Rd from ARMv6 (Rd is Rt)
695 */
696static void *
697do_alignment_t32_to_handler(unsigned long *pinstr, struct pt_regs *regs,
698			    union offset_union *poffset)
699{
700	unsigned long instr = *pinstr;
701	u16 tinst1 = (instr >> 16) & 0xffff;
702	u16 tinst2 = instr & 0xffff;
703
704	switch (tinst1 & 0xffe0) {
705	/* A6.3.5 Load/Store multiple */
706	case 0xe880:		/* STM/STMIA/STMEA,LDM/LDMIA, PUSH/POP T2 */
707	case 0xe8a0:		/* ...above writeback version */
708	case 0xe900:		/* STMDB/STMFD, LDMDB/LDMEA */
709	case 0xe920:		/* ...above writeback version */
710		/* no need offset decision since handler calculates it */
711		return do_alignment_ldmstm;
712
713	case 0xf840:		/* POP/PUSH T3 (single register) */
714		if (RN_BITS(instr) == 13 && (tinst2 & 0x09ff) == 0x0904) {
715			u32 L = !!(LDST_L_BIT(instr));
716			const u32 subset[2] = {
717				0xe92d0000,	/* STMDB sp!,{registers} */
718				0xe8bd0000,	/* LDMIA sp!,{registers} */
719			};
720			*pinstr = subset[L] | (1<<RD_BITS(instr));
721			return do_alignment_ldmstm;
722		}
723		/* Else fall through for illegal instruction case */
724		break;
725
726	/* A6.3.6 Load/store double, STRD/LDRD(immed, lit, reg) */
727	case 0xe860:
728	case 0xe960:
729	case 0xe8e0:
730	case 0xe9e0:
731		poffset->un = (tinst2 & 0xff) << 2;
732	case 0xe940:
733	case 0xe9c0:
734		return do_alignment_ldrdstrd;
735
736	/*
737	 * No need to handle load/store instructions up to word size
738	 * since ARMv6 and later CPUs can perform unaligned accesses.
739	 */
740	default:
741		break;
742	}
743	return NULL;
744}
745
746static int
747do_alignment(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
748{
749	union offset_union uninitialized_var(offset);
750	unsigned long instr = 0, instrptr;
751	int (*handler)(unsigned long addr, unsigned long instr, struct pt_regs *regs);
752	unsigned int type;
753	unsigned int fault;
754	u16 tinstr = 0;
755	int isize = 4;
756	int thumb2_32b = 0;
757
758	if (interrupts_enabled(regs))
759		local_irq_enable();
760
761	instrptr = instruction_pointer(regs);
762
763	if (thumb_mode(regs)) {
764		u16 *ptr = (u16 *)(instrptr & ~1);
765		fault = probe_kernel_address(ptr, tinstr);
766		tinstr = __mem_to_opcode_thumb16(tinstr);
767		if (!fault) {
768			if (cpu_architecture() >= CPU_ARCH_ARMv7 &&
769			    IS_T32(tinstr)) {
770				/* Thumb-2 32-bit */
771				u16 tinst2 = 0;
772				fault = probe_kernel_address(ptr + 1, tinst2);
773				tinst2 = __mem_to_opcode_thumb16(tinst2);
774				instr = __opcode_thumb32_compose(tinstr, tinst2);
775				thumb2_32b = 1;
776			} else {
777				isize = 2;
778				instr = thumb2arm(tinstr);
779			}
780		}
781	} else {
782		fault = probe_kernel_address(instrptr, instr);
783		instr = __mem_to_opcode_arm(instr);
784	}
785
786	if (fault) {
787		type = TYPE_FAULT;
788		goto bad_or_fault;
789	}
790
791	if (user_mode(regs))
792		goto user;
793
794	ai_sys += 1;
 
795
796 fixup:
797
798	regs->ARM_pc += isize;
799
800	switch (CODING_BITS(instr)) {
801	case 0x00000000:	/* 3.13.4 load/store instruction extensions */
802		if (LDSTHD_I_BIT(instr))
803			offset.un = (instr & 0xf00) >> 4 | (instr & 15);
804		else
805			offset.un = regs->uregs[RM_BITS(instr)];
806
807		if ((instr & 0x000000f0) == 0x000000b0 || /* LDRH, STRH */
808		    (instr & 0x001000f0) == 0x001000f0)   /* LDRSH */
809			handler = do_alignment_ldrhstrh;
810		else if ((instr & 0x001000f0) == 0x000000d0 || /* LDRD */
811			 (instr & 0x001000f0) == 0x000000f0)   /* STRD */
812			handler = do_alignment_ldrdstrd;
813		else if ((instr & 0x01f00ff0) == 0x01000090) /* SWP */
814			goto swp;
815		else
816			goto bad;
817		break;
818
819	case 0x04000000:	/* ldr or str immediate */
 
 
820		offset.un = OFFSET_BITS(instr);
821		handler = do_alignment_ldrstr;
822		break;
823
824	case 0x06000000:	/* ldr or str register */
825		offset.un = regs->uregs[RM_BITS(instr)];
826
827		if (IS_SHIFT(instr)) {
828			unsigned int shiftval = SHIFT_BITS(instr);
829
830			switch(SHIFT_TYPE(instr)) {
831			case SHIFT_LSL:
832				offset.un <<= shiftval;
833				break;
834
835			case SHIFT_LSR:
836				offset.un >>= shiftval;
837				break;
838
839			case SHIFT_ASR:
840				offset.sn >>= shiftval;
841				break;
842
843			case SHIFT_RORRRX:
844				if (shiftval == 0) {
845					offset.un >>= 1;
846					if (regs->ARM_cpsr & PSR_C_BIT)
847						offset.un |= 1 << 31;
848				} else
849					offset.un = offset.un >> shiftval |
850							  offset.un << (32 - shiftval);
851				break;
852			}
853		}
854		handler = do_alignment_ldrstr;
855		break;
856
857	case 0x08000000:	/* ldm or stm, or thumb-2 32bit instruction */
858		if (thumb2_32b) {
859			offset.un = 0;
860			handler = do_alignment_t32_to_handler(&instr, regs, &offset);
861		} else {
862			offset.un = 0;
863			handler = do_alignment_ldmstm;
864		}
865		break;
866
867	default:
868		goto bad;
869	}
870
871	if (!handler)
872		goto bad;
873	type = handler(addr, instr, regs);
874
875	if (type == TYPE_ERROR || type == TYPE_FAULT) {
876		regs->ARM_pc -= isize;
877		goto bad_or_fault;
878	}
879
880	if (type == TYPE_LDST)
881		do_alignment_finish_ldst(addr, instr, regs, offset);
882
883	return 0;
884
885 bad_or_fault:
886	if (type == TYPE_ERROR)
887		goto bad;
888	/*
889	 * We got a fault - fix it up, or die.
890	 */
891	do_bad_area(addr, fsr, regs);
892	return 0;
893
894 swp:
895	printk(KERN_ERR "Alignment trap: not handling swp instruction\n");
896
897 bad:
898	/*
899	 * Oops, we didn't handle the instruction.
900	 */
901	printk(KERN_ERR "Alignment trap: not handling instruction "
902		"%0*lx at [<%08lx>]\n",
903		isize << 1,
904		isize == 2 ? tinstr : instr, instrptr);
905	ai_skipped += 1;
906	return 1;
907
908 user:
909	ai_user += 1;
910
911	if (ai_usermode & UM_WARN)
912		printk("Alignment trap: %s (%d) PC=0x%08lx Instr=0x%0*lx "
913		       "Address=0x%08lx FSR 0x%03x\n", current->comm,
914			task_pid_nr(current), instrptr,
915			isize << 1,
916			isize == 2 ? tinstr : instr,
917		        addr, fsr);
918
919	if (ai_usermode & UM_FIXUP)
920		goto fixup;
921
922	if (ai_usermode & UM_SIGNAL) {
923		siginfo_t si;
924
925		si.si_signo = SIGBUS;
926		si.si_errno = 0;
927		si.si_code = BUS_ADRALN;
928		si.si_addr = (void __user *)addr;
929
930		force_sig_info(si.si_signo, &si, current);
931	} else {
932		/*
933		 * We're about to disable the alignment trap and return to
934		 * user space.  But if an interrupt occurs before actually
935		 * reaching user space, then the IRQ vector entry code will
936		 * notice that we were still in kernel space and therefore
937		 * the alignment trap won't be re-enabled in that case as it
938		 * is presumed to be always on from kernel space.
939		 * Let's prevent that race by disabling interrupts here (they
940		 * are disabled on the way back to user space anyway in
941		 * entry-common.S) and disable the alignment trap only if
942		 * there is no work pending for this thread.
943		 */
944		raw_local_irq_disable();
945		if (!(current_thread_info()->flags & _TIF_WORK_MASK))
946			set_cr(cr_no_alignment);
947	}
948
949	return 0;
950}
951
 
 
 
 
 
 
 
952/*
953 * This needs to be done after sysctl_init, otherwise sys/ will be
954 * overwritten.  Actually, this shouldn't be in sys/ at all since
955 * it isn't a sysctl, and it doesn't contain sysctl information.
956 * We now locate it in /proc/cpu/alignment instead.
957 */
958static int __init alignment_init(void)
959{
960#ifdef CONFIG_PROC_FS
961	struct proc_dir_entry *res;
962
963	res = proc_create("cpu/alignment", S_IWUSR | S_IRUGO, NULL,
964			  &alignment_proc_fops);
965	if (!res)
966		return -ENOMEM;
967#endif
968
969#ifdef CONFIG_CPU_CP15
970	if (cpu_is_v6_unaligned()) {
971		cr_alignment &= ~CR_A;
972		cr_no_alignment &= ~CR_A;
973		set_cr(cr_alignment);
974		ai_usermode = safe_usermode(ai_usermode, false);
975	}
976#endif
 
977
978	hook_fault_code(FAULT_CODE_ALIGNMENT, do_alignment, SIGBUS, BUS_ADRALN,
979			"alignment exception");
980
981	/*
982	 * ARMv6K and ARMv7 use fault status 3 (0b00011) as Access Flag section
983	 * fault, not as alignment error.
984	 *
985	 * TODO: handle ARMv6K properly. Runtime check for 'K' extension is
986	 * needed.
987	 */
988	if (cpu_architecture() <= CPU_ARCH_ARMv6) {
989		hook_fault_code(3, do_alignment, SIGBUS, BUS_ADRALN,
990				"alignment exception");
991	}
992
993	return 0;
994}
995
996fs_initcall(alignment_init);
v4.17
   1/*
   2 *  linux/arch/arm/mm/alignment.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Modifications for ARM processor (c) 1995-2001 Russell King
   6 *  Thumb alignment fault fixups (c) 2004 MontaVista Software, Inc.
   7 *  - Adapted from gdb/sim/arm/thumbemu.c -- Thumb instruction emulation.
   8 *    Copyright (C) 1996, Cygnus Software Technologies Ltd.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License version 2 as
  12 * published by the Free Software Foundation.
  13 */
  14#include <linux/moduleparam.h>
  15#include <linux/compiler.h>
  16#include <linux/kernel.h>
  17#include <linux/sched/debug.h>
  18#include <linux/errno.h>
  19#include <linux/string.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/init.h>
  23#include <linux/sched/signal.h>
  24#include <linux/uaccess.h>
  25
  26#include <asm/cp15.h>
  27#include <asm/system_info.h>
  28#include <asm/unaligned.h>
  29#include <asm/opcodes.h>
  30
  31#include "fault.h"
  32#include "mm.h"
  33
  34/*
  35 * 32-bit misaligned trap handler (c) 1998 San Mehat (CCC) -July 1998
  36 * /proc/sys/debug/alignment, modified and integrated into
  37 * Linux 2.1 by Russell King
  38 *
  39 * Speed optimisations and better fault handling by Russell King.
  40 *
  41 * *** NOTE ***
  42 * This code is not portable to processors with late data abort handling.
  43 */
  44#define CODING_BITS(i)	(i & 0x0e000000)
  45#define COND_BITS(i)	(i & 0xf0000000)
  46
  47#define LDST_I_BIT(i)	(i & (1 << 26))		/* Immediate constant	*/
  48#define LDST_P_BIT(i)	(i & (1 << 24))		/* Preindex		*/
  49#define LDST_U_BIT(i)	(i & (1 << 23))		/* Add offset		*/
  50#define LDST_W_BIT(i)	(i & (1 << 21))		/* Writeback		*/
  51#define LDST_L_BIT(i)	(i & (1 << 20))		/* Load			*/
  52
  53#define LDST_P_EQ_U(i)	((((i) ^ ((i) >> 1)) & (1 << 23)) == 0)
  54
  55#define LDSTHD_I_BIT(i)	(i & (1 << 22))		/* double/half-word immed */
  56#define LDM_S_BIT(i)	(i & (1 << 22))		/* write CPSR from SPSR	*/
  57
  58#define RN_BITS(i)	((i >> 16) & 15)	/* Rn			*/
  59#define RD_BITS(i)	((i >> 12) & 15)	/* Rd			*/
  60#define RM_BITS(i)	(i & 15)		/* Rm			*/
  61
  62#define REGMASK_BITS(i)	(i & 0xffff)
  63#define OFFSET_BITS(i)	(i & 0x0fff)
  64
  65#define IS_SHIFT(i)	(i & 0x0ff0)
  66#define SHIFT_BITS(i)	((i >> 7) & 0x1f)
  67#define SHIFT_TYPE(i)	(i & 0x60)
  68#define SHIFT_LSL	0x00
  69#define SHIFT_LSR	0x20
  70#define SHIFT_ASR	0x40
  71#define SHIFT_RORRRX	0x60
  72
  73#define BAD_INSTR 	0xdeadc0de
  74
  75/* Thumb-2 32 bit format per ARMv7 DDI0406A A6.3, either f800h,e800h,f800h */
  76#define IS_T32(hi16) \
  77	(((hi16) & 0xe000) == 0xe000 && ((hi16) & 0x1800))
  78
  79static unsigned long ai_user;
  80static unsigned long ai_sys;
  81static void *ai_sys_last_pc;
  82static unsigned long ai_skipped;
  83static unsigned long ai_half;
  84static unsigned long ai_word;
  85static unsigned long ai_dword;
  86static unsigned long ai_multi;
  87static int ai_usermode;
  88static unsigned long cr_no_alignment;
  89
  90core_param(alignment, ai_usermode, int, 0600);
  91
  92#define UM_WARN		(1 << 0)
  93#define UM_FIXUP	(1 << 1)
  94#define UM_SIGNAL	(1 << 2)
  95
  96/* Return true if and only if the ARMv6 unaligned access model is in use. */
  97static bool cpu_is_v6_unaligned(void)
  98{
  99	return cpu_architecture() >= CPU_ARCH_ARMv6 && get_cr() & CR_U;
 100}
 101
 102static int safe_usermode(int new_usermode, bool warn)
 103{
 104	/*
 105	 * ARMv6 and later CPUs can perform unaligned accesses for
 106	 * most single load and store instructions up to word size.
 107	 * LDM, STM, LDRD and STRD still need to be handled.
 108	 *
 109	 * Ignoring the alignment fault is not an option on these
 110	 * CPUs since we spin re-faulting the instruction without
 111	 * making any progress.
 112	 */
 113	if (cpu_is_v6_unaligned() && !(new_usermode & (UM_FIXUP | UM_SIGNAL))) {
 114		new_usermode |= UM_FIXUP;
 115
 116		if (warn)
 117			pr_warn("alignment: ignoring faults is unsafe on this CPU.  Defaulting to fixup mode.\n");
 118	}
 119
 120	return new_usermode;
 121}
 122
 123#ifdef CONFIG_PROC_FS
 124static const char *usermode_action[] = {
 125	"ignored",
 126	"warn",
 127	"fixup",
 128	"fixup+warn",
 129	"signal",
 130	"signal+warn"
 131};
 132
 133static int alignment_proc_show(struct seq_file *m, void *v)
 134{
 135	seq_printf(m, "User:\t\t%lu\n", ai_user);
 136	seq_printf(m, "System:\t\t%lu (%pF)\n", ai_sys, ai_sys_last_pc);
 137	seq_printf(m, "Skipped:\t%lu\n", ai_skipped);
 138	seq_printf(m, "Half:\t\t%lu\n", ai_half);
 139	seq_printf(m, "Word:\t\t%lu\n", ai_word);
 140	if (cpu_architecture() >= CPU_ARCH_ARMv5TE)
 141		seq_printf(m, "DWord:\t\t%lu\n", ai_dword);
 142	seq_printf(m, "Multi:\t\t%lu\n", ai_multi);
 143	seq_printf(m, "User faults:\t%i (%s)\n", ai_usermode,
 144			usermode_action[ai_usermode]);
 145
 146	return 0;
 147}
 148
 149static int alignment_proc_open(struct inode *inode, struct file *file)
 150{
 151	return single_open(file, alignment_proc_show, NULL);
 152}
 153
 154static ssize_t alignment_proc_write(struct file *file, const char __user *buffer,
 155				    size_t count, loff_t *pos)
 156{
 157	char mode;
 158
 159	if (count > 0) {
 160		if (get_user(mode, buffer))
 161			return -EFAULT;
 162		if (mode >= '0' && mode <= '5')
 163			ai_usermode = safe_usermode(mode - '0', true);
 164	}
 165	return count;
 166}
 167
 168static const struct file_operations alignment_proc_fops = {
 169	.open		= alignment_proc_open,
 170	.read		= seq_read,
 171	.llseek		= seq_lseek,
 172	.release	= single_release,
 173	.write		= alignment_proc_write,
 174};
 175#endif /* CONFIG_PROC_FS */
 176
 177union offset_union {
 178	unsigned long un;
 179	  signed long sn;
 180};
 181
 182#define TYPE_ERROR	0
 183#define TYPE_FAULT	1
 184#define TYPE_LDST	2
 185#define TYPE_DONE	3
 186
 187#ifdef __ARMEB__
 188#define BE		1
 189#define FIRST_BYTE_16	"mov	%1, %1, ror #8\n"
 190#define FIRST_BYTE_32	"mov	%1, %1, ror #24\n"
 191#define NEXT_BYTE	"ror #24"
 192#else
 193#define BE		0
 194#define FIRST_BYTE_16
 195#define FIRST_BYTE_32
 196#define NEXT_BYTE	"lsr #8"
 197#endif
 198
 199#define __get8_unaligned_check(ins,val,addr,err)	\
 200	__asm__(					\
 201 ARM(	"1:	"ins"	%1, [%2], #1\n"	)		\
 202 THUMB(	"1:	"ins"	%1, [%2]\n"	)		\
 203 THUMB(	"	add	%2, %2, #1\n"	)		\
 204	"2:\n"						\
 205	"	.pushsection .text.fixup,\"ax\"\n"	\
 206	"	.align	2\n"				\
 207	"3:	mov	%0, #1\n"			\
 208	"	b	2b\n"				\
 209	"	.popsection\n"				\
 210	"	.pushsection __ex_table,\"a\"\n"	\
 211	"	.align	3\n"				\
 212	"	.long	1b, 3b\n"			\
 213	"	.popsection\n"				\
 214	: "=r" (err), "=&r" (val), "=r" (addr)		\
 215	: "0" (err), "2" (addr))
 216
 217#define __get16_unaligned_check(ins,val,addr)			\
 218	do {							\
 219		unsigned int err = 0, v, a = addr;		\
 220		__get8_unaligned_check(ins,v,a,err);		\
 221		val =  v << ((BE) ? 8 : 0);			\
 222		__get8_unaligned_check(ins,v,a,err);		\
 223		val |= v << ((BE) ? 0 : 8);			\
 224		if (err)					\
 225			goto fault;				\
 226	} while (0)
 227
 228#define get16_unaligned_check(val,addr) \
 229	__get16_unaligned_check("ldrb",val,addr)
 230
 231#define get16t_unaligned_check(val,addr) \
 232	__get16_unaligned_check("ldrbt",val,addr)
 233
 234#define __get32_unaligned_check(ins,val,addr)			\
 235	do {							\
 236		unsigned int err = 0, v, a = addr;		\
 237		__get8_unaligned_check(ins,v,a,err);		\
 238		val =  v << ((BE) ? 24 :  0);			\
 239		__get8_unaligned_check(ins,v,a,err);		\
 240		val |= v << ((BE) ? 16 :  8);			\
 241		__get8_unaligned_check(ins,v,a,err);		\
 242		val |= v << ((BE) ?  8 : 16);			\
 243		__get8_unaligned_check(ins,v,a,err);		\
 244		val |= v << ((BE) ?  0 : 24);			\
 245		if (err)					\
 246			goto fault;				\
 247	} while (0)
 248
 249#define get32_unaligned_check(val,addr) \
 250	__get32_unaligned_check("ldrb",val,addr)
 251
 252#define get32t_unaligned_check(val,addr) \
 253	__get32_unaligned_check("ldrbt",val,addr)
 254
 255#define __put16_unaligned_check(ins,val,addr)			\
 256	do {							\
 257		unsigned int err = 0, v = val, a = addr;	\
 258		__asm__( FIRST_BYTE_16				\
 259	 ARM(	"1:	"ins"	%1, [%2], #1\n"	)		\
 260	 THUMB(	"1:	"ins"	%1, [%2]\n"	)		\
 261	 THUMB(	"	add	%2, %2, #1\n"	)		\
 262		"	mov	%1, %1, "NEXT_BYTE"\n"		\
 263		"2:	"ins"	%1, [%2]\n"			\
 264		"3:\n"						\
 265		"	.pushsection .text.fixup,\"ax\"\n"	\
 266		"	.align	2\n"				\
 267		"4:	mov	%0, #1\n"			\
 268		"	b	3b\n"				\
 269		"	.popsection\n"				\
 270		"	.pushsection __ex_table,\"a\"\n"	\
 271		"	.align	3\n"				\
 272		"	.long	1b, 4b\n"			\
 273		"	.long	2b, 4b\n"			\
 274		"	.popsection\n"				\
 275		: "=r" (err), "=&r" (v), "=&r" (a)		\
 276		: "0" (err), "1" (v), "2" (a));			\
 277		if (err)					\
 278			goto fault;				\
 279	} while (0)
 280
 281#define put16_unaligned_check(val,addr)  \
 282	__put16_unaligned_check("strb",val,addr)
 283
 284#define put16t_unaligned_check(val,addr) \
 285	__put16_unaligned_check("strbt",val,addr)
 286
 287#define __put32_unaligned_check(ins,val,addr)			\
 288	do {							\
 289		unsigned int err = 0, v = val, a = addr;	\
 290		__asm__( FIRST_BYTE_32				\
 291	 ARM(	"1:	"ins"	%1, [%2], #1\n"	)		\
 292	 THUMB(	"1:	"ins"	%1, [%2]\n"	)		\
 293	 THUMB(	"	add	%2, %2, #1\n"	)		\
 294		"	mov	%1, %1, "NEXT_BYTE"\n"		\
 295	 ARM(	"2:	"ins"	%1, [%2], #1\n"	)		\
 296	 THUMB(	"2:	"ins"	%1, [%2]\n"	)		\
 297	 THUMB(	"	add	%2, %2, #1\n"	)		\
 298		"	mov	%1, %1, "NEXT_BYTE"\n"		\
 299	 ARM(	"3:	"ins"	%1, [%2], #1\n"	)		\
 300	 THUMB(	"3:	"ins"	%1, [%2]\n"	)		\
 301	 THUMB(	"	add	%2, %2, #1\n"	)		\
 302		"	mov	%1, %1, "NEXT_BYTE"\n"		\
 303		"4:	"ins"	%1, [%2]\n"			\
 304		"5:\n"						\
 305		"	.pushsection .text.fixup,\"ax\"\n"	\
 306		"	.align	2\n"				\
 307		"6:	mov	%0, #1\n"			\
 308		"	b	5b\n"				\
 309		"	.popsection\n"				\
 310		"	.pushsection __ex_table,\"a\"\n"	\
 311		"	.align	3\n"				\
 312		"	.long	1b, 6b\n"			\
 313		"	.long	2b, 6b\n"			\
 314		"	.long	3b, 6b\n"			\
 315		"	.long	4b, 6b\n"			\
 316		"	.popsection\n"				\
 317		: "=r" (err), "=&r" (v), "=&r" (a)		\
 318		: "0" (err), "1" (v), "2" (a));			\
 319		if (err)					\
 320			goto fault;				\
 321	} while (0)
 322
 323#define put32_unaligned_check(val,addr) \
 324	__put32_unaligned_check("strb", val, addr)
 325
 326#define put32t_unaligned_check(val,addr) \
 327	__put32_unaligned_check("strbt", val, addr)
 328
 329static void
 330do_alignment_finish_ldst(unsigned long addr, unsigned long instr, struct pt_regs *regs, union offset_union offset)
 331{
 332	if (!LDST_U_BIT(instr))
 333		offset.un = -offset.un;
 334
 335	if (!LDST_P_BIT(instr))
 336		addr += offset.un;
 337
 338	if (!LDST_P_BIT(instr) || LDST_W_BIT(instr))
 339		regs->uregs[RN_BITS(instr)] = addr;
 340}
 341
 342static int
 343do_alignment_ldrhstrh(unsigned long addr, unsigned long instr, struct pt_regs *regs)
 344{
 345	unsigned int rd = RD_BITS(instr);
 346
 347	ai_half += 1;
 348
 349	if (user_mode(regs))
 350		goto user;
 351
 352	if (LDST_L_BIT(instr)) {
 353		unsigned long val;
 354		get16_unaligned_check(val, addr);
 355
 356		/* signed half-word? */
 357		if (instr & 0x40)
 358			val = (signed long)((signed short) val);
 359
 360		regs->uregs[rd] = val;
 361	} else
 362		put16_unaligned_check(regs->uregs[rd], addr);
 363
 364	return TYPE_LDST;
 365
 366 user:
 367	if (LDST_L_BIT(instr)) {
 368		unsigned long val;
 369		unsigned int __ua_flags = uaccess_save_and_enable();
 370
 371		get16t_unaligned_check(val, addr);
 372		uaccess_restore(__ua_flags);
 373
 374		/* signed half-word? */
 375		if (instr & 0x40)
 376			val = (signed long)((signed short) val);
 377
 378		regs->uregs[rd] = val;
 379	} else {
 380		unsigned int __ua_flags = uaccess_save_and_enable();
 381		put16t_unaligned_check(regs->uregs[rd], addr);
 382		uaccess_restore(__ua_flags);
 383	}
 384
 385	return TYPE_LDST;
 386
 387 fault:
 388	return TYPE_FAULT;
 389}
 390
 391static int
 392do_alignment_ldrdstrd(unsigned long addr, unsigned long instr,
 393		      struct pt_regs *regs)
 394{
 395	unsigned int rd = RD_BITS(instr);
 396	unsigned int rd2;
 397	int load;
 398
 399	if ((instr & 0xfe000000) == 0xe8000000) {
 400		/* ARMv7 Thumb-2 32-bit LDRD/STRD */
 401		rd2 = (instr >> 8) & 0xf;
 402		load = !!(LDST_L_BIT(instr));
 403	} else if (((rd & 1) == 1) || (rd == 14))
 404		goto bad;
 405	else {
 406		load = ((instr & 0xf0) == 0xd0);
 407		rd2 = rd + 1;
 408	}
 409
 410	ai_dword += 1;
 411
 412	if (user_mode(regs))
 413		goto user;
 414
 415	if (load) {
 416		unsigned long val;
 417		get32_unaligned_check(val, addr);
 418		regs->uregs[rd] = val;
 419		get32_unaligned_check(val, addr + 4);
 420		regs->uregs[rd2] = val;
 421	} else {
 422		put32_unaligned_check(regs->uregs[rd], addr);
 423		put32_unaligned_check(regs->uregs[rd2], addr + 4);
 424	}
 425
 426	return TYPE_LDST;
 427
 428 user:
 429	if (load) {
 430		unsigned long val, val2;
 431		unsigned int __ua_flags = uaccess_save_and_enable();
 432
 433		get32t_unaligned_check(val, addr);
 434		get32t_unaligned_check(val2, addr + 4);
 435
 436		uaccess_restore(__ua_flags);
 437
 438		regs->uregs[rd] = val;
 439		regs->uregs[rd2] = val2;
 
 440	} else {
 441		unsigned int __ua_flags = uaccess_save_and_enable();
 442		put32t_unaligned_check(regs->uregs[rd], addr);
 443		put32t_unaligned_check(regs->uregs[rd2], addr + 4);
 444		uaccess_restore(__ua_flags);
 445	}
 446
 447	return TYPE_LDST;
 448 bad:
 449	return TYPE_ERROR;
 450 fault:
 451	return TYPE_FAULT;
 452}
 453
 454static int
 455do_alignment_ldrstr(unsigned long addr, unsigned long instr, struct pt_regs *regs)
 456{
 457	unsigned int rd = RD_BITS(instr);
 458
 459	ai_word += 1;
 460
 461	if ((!LDST_P_BIT(instr) && LDST_W_BIT(instr)) || user_mode(regs))
 462		goto trans;
 463
 464	if (LDST_L_BIT(instr)) {
 465		unsigned int val;
 466		get32_unaligned_check(val, addr);
 467		regs->uregs[rd] = val;
 468	} else
 469		put32_unaligned_check(regs->uregs[rd], addr);
 470	return TYPE_LDST;
 471
 472 trans:
 473	if (LDST_L_BIT(instr)) {
 474		unsigned int val;
 475		unsigned int __ua_flags = uaccess_save_and_enable();
 476		get32t_unaligned_check(val, addr);
 477		uaccess_restore(__ua_flags);
 478		regs->uregs[rd] = val;
 479	} else {
 480		unsigned int __ua_flags = uaccess_save_and_enable();
 481		put32t_unaligned_check(regs->uregs[rd], addr);
 482		uaccess_restore(__ua_flags);
 483	}
 484	return TYPE_LDST;
 485
 486 fault:
 487	return TYPE_FAULT;
 488}
 489
 490/*
 491 * LDM/STM alignment handler.
 492 *
 493 * There are 4 variants of this instruction:
 494 *
 495 * B = rn pointer before instruction, A = rn pointer after instruction
 496 *              ------ increasing address ----->
 497 *	        |    | r0 | r1 | ... | rx |    |
 498 * PU = 01             B                    A
 499 * PU = 11        B                    A
 500 * PU = 00        A                    B
 501 * PU = 10             A                    B
 502 */
 503static int
 504do_alignment_ldmstm(unsigned long addr, unsigned long instr, struct pt_regs *regs)
 505{
 506	unsigned int rd, rn, correction, nr_regs, regbits;
 507	unsigned long eaddr, newaddr;
 508
 509	if (LDM_S_BIT(instr))
 510		goto bad;
 511
 512	correction = 4; /* processor implementation defined */
 513	regs->ARM_pc += correction;
 514
 515	ai_multi += 1;
 516
 517	/* count the number of registers in the mask to be transferred */
 518	nr_regs = hweight16(REGMASK_BITS(instr)) * 4;
 519
 520	rn = RN_BITS(instr);
 521	newaddr = eaddr = regs->uregs[rn];
 522
 523	if (!LDST_U_BIT(instr))
 524		nr_regs = -nr_regs;
 525	newaddr += nr_regs;
 526	if (!LDST_U_BIT(instr))
 527		eaddr = newaddr;
 528
 529	if (LDST_P_EQ_U(instr))	/* U = P */
 530		eaddr += 4;
 531
 532	/*
 533	 * For alignment faults on the ARM922T/ARM920T the MMU  makes
 534	 * the FSR (and hence addr) equal to the updated base address
 535	 * of the multiple access rather than the restored value.
 536	 * Switch this message off if we've got a ARM92[02], otherwise
 537	 * [ls]dm alignment faults are noisy!
 538	 */
 539#if !(defined CONFIG_CPU_ARM922T)  && !(defined CONFIG_CPU_ARM920T)
 540	/*
 541	 * This is a "hint" - we already have eaddr worked out by the
 542	 * processor for us.
 543	 */
 544	if (addr != eaddr) {
 545		pr_err("LDMSTM: PC = %08lx, instr = %08lx, "
 546			"addr = %08lx, eaddr = %08lx\n",
 547			 instruction_pointer(regs), instr, addr, eaddr);
 548		show_regs(regs);
 549	}
 550#endif
 551
 552	if (user_mode(regs)) {
 553		unsigned int __ua_flags = uaccess_save_and_enable();
 554		for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
 555		     regbits >>= 1, rd += 1)
 556			if (regbits & 1) {
 557				if (LDST_L_BIT(instr)) {
 558					unsigned int val;
 559					get32t_unaligned_check(val, eaddr);
 560					regs->uregs[rd] = val;
 561				} else
 562					put32t_unaligned_check(regs->uregs[rd], eaddr);
 563				eaddr += 4;
 564			}
 565		uaccess_restore(__ua_flags);
 566	} else {
 567		for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
 568		     regbits >>= 1, rd += 1)
 569			if (regbits & 1) {
 570				if (LDST_L_BIT(instr)) {
 571					unsigned int val;
 572					get32_unaligned_check(val, eaddr);
 573					regs->uregs[rd] = val;
 574				} else
 575					put32_unaligned_check(regs->uregs[rd], eaddr);
 576				eaddr += 4;
 577			}
 578	}
 579
 580	if (LDST_W_BIT(instr))
 581		regs->uregs[rn] = newaddr;
 582	if (!LDST_L_BIT(instr) || !(REGMASK_BITS(instr) & (1 << 15)))
 583		regs->ARM_pc -= correction;
 584	return TYPE_DONE;
 585
 586fault:
 587	regs->ARM_pc -= correction;
 588	return TYPE_FAULT;
 589
 590bad:
 591	pr_err("Alignment trap: not handling ldm with s-bit set\n");
 592	return TYPE_ERROR;
 593}
 594
 595/*
 596 * Convert Thumb ld/st instruction forms to equivalent ARM instructions so
 597 * we can reuse ARM userland alignment fault fixups for Thumb.
 598 *
 599 * This implementation was initially based on the algorithm found in
 600 * gdb/sim/arm/thumbemu.c. It is basically just a code reduction of same
 601 * to convert only Thumb ld/st instruction forms to equivalent ARM forms.
 602 *
 603 * NOTES:
 604 * 1. Comments below refer to ARM ARM DDI0100E Thumb Instruction sections.
 605 * 2. If for some reason we're passed an non-ld/st Thumb instruction to
 606 *    decode, we return 0xdeadc0de. This should never happen under normal
 607 *    circumstances but if it does, we've got other problems to deal with
 608 *    elsewhere and we obviously can't fix those problems here.
 609 */
 610
 611static unsigned long
 612thumb2arm(u16 tinstr)
 613{
 614	u32 L = (tinstr & (1<<11)) >> 11;
 615
 616	switch ((tinstr & 0xf800) >> 11) {
 617	/* 6.5.1 Format 1: */
 618	case 0x6000 >> 11:				/* 7.1.52 STR(1) */
 619	case 0x6800 >> 11:				/* 7.1.26 LDR(1) */
 620	case 0x7000 >> 11:				/* 7.1.55 STRB(1) */
 621	case 0x7800 >> 11:				/* 7.1.30 LDRB(1) */
 622		return 0xe5800000 |
 623			((tinstr & (1<<12)) << (22-12)) |	/* fixup */
 624			(L<<20) |				/* L==1? */
 625			((tinstr & (7<<0)) << (12-0)) |		/* Rd */
 626			((tinstr & (7<<3)) << (16-3)) |		/* Rn */
 627			((tinstr & (31<<6)) >>			/* immed_5 */
 628				(6 - ((tinstr & (1<<12)) ? 0 : 2)));
 629	case 0x8000 >> 11:				/* 7.1.57 STRH(1) */
 630	case 0x8800 >> 11:				/* 7.1.32 LDRH(1) */
 631		return 0xe1c000b0 |
 632			(L<<20) |				/* L==1? */
 633			((tinstr & (7<<0)) << (12-0)) |		/* Rd */
 634			((tinstr & (7<<3)) << (16-3)) |		/* Rn */
 635			((tinstr & (7<<6)) >> (6-1)) |	 /* immed_5[2:0] */
 636			((tinstr & (3<<9)) >> (9-8));	 /* immed_5[4:3] */
 637
 638	/* 6.5.1 Format 2: */
 639	case 0x5000 >> 11:
 640	case 0x5800 >> 11:
 641		{
 642			static const u32 subset[8] = {
 643				0xe7800000,		/* 7.1.53 STR(2) */
 644				0xe18000b0,		/* 7.1.58 STRH(2) */
 645				0xe7c00000,		/* 7.1.56 STRB(2) */
 646				0xe19000d0,		/* 7.1.34 LDRSB */
 647				0xe7900000,		/* 7.1.27 LDR(2) */
 648				0xe19000b0,		/* 7.1.33 LDRH(2) */
 649				0xe7d00000,		/* 7.1.31 LDRB(2) */
 650				0xe19000f0		/* 7.1.35 LDRSH */
 651			};
 652			return subset[(tinstr & (7<<9)) >> 9] |
 653			    ((tinstr & (7<<0)) << (12-0)) |	/* Rd */
 654			    ((tinstr & (7<<3)) << (16-3)) |	/* Rn */
 655			    ((tinstr & (7<<6)) >> (6-0));	/* Rm */
 656		}
 657
 658	/* 6.5.1 Format 3: */
 659	case 0x4800 >> 11:				/* 7.1.28 LDR(3) */
 660		/* NOTE: This case is not technically possible. We're
 661		 *	 loading 32-bit memory data via PC relative
 662		 *	 addressing mode. So we can and should eliminate
 663		 *	 this case. But I'll leave it here for now.
 664		 */
 665		return 0xe59f0000 |
 666		    ((tinstr & (7<<8)) << (12-8)) |		/* Rd */
 667		    ((tinstr & 255) << (2-0));			/* immed_8 */
 668
 669	/* 6.5.1 Format 4: */
 670	case 0x9000 >> 11:				/* 7.1.54 STR(3) */
 671	case 0x9800 >> 11:				/* 7.1.29 LDR(4) */
 672		return 0xe58d0000 |
 673			(L<<20) |				/* L==1? */
 674			((tinstr & (7<<8)) << (12-8)) |		/* Rd */
 675			((tinstr & 255) << 2);			/* immed_8 */
 676
 677	/* 6.6.1 Format 1: */
 678	case 0xc000 >> 11:				/* 7.1.51 STMIA */
 679	case 0xc800 >> 11:				/* 7.1.25 LDMIA */
 680		{
 681			u32 Rn = (tinstr & (7<<8)) >> 8;
 682			u32 W = ((L<<Rn) & (tinstr&255)) ? 0 : 1<<21;
 683
 684			return 0xe8800000 | W | (L<<20) | (Rn<<16) |
 685				(tinstr&255);
 686		}
 687
 688	/* 6.6.1 Format 2: */
 689	case 0xb000 >> 11:				/* 7.1.48 PUSH */
 690	case 0xb800 >> 11:				/* 7.1.47 POP */
 691		if ((tinstr & (3 << 9)) == 0x0400) {
 692			static const u32 subset[4] = {
 693				0xe92d0000,	/* STMDB sp!,{registers} */
 694				0xe92d4000,	/* STMDB sp!,{registers,lr} */
 695				0xe8bd0000,	/* LDMIA sp!,{registers} */
 696				0xe8bd8000	/* LDMIA sp!,{registers,pc} */
 697			};
 698			return subset[(L<<1) | ((tinstr & (1<<8)) >> 8)] |
 699			    (tinstr & 255);		/* register_list */
 700		}
 701		/* Else fall through for illegal instruction case */
 702
 703	default:
 704		return BAD_INSTR;
 705	}
 706}
 707
 708/*
 709 * Convert Thumb-2 32 bit LDM, STM, LDRD, STRD to equivalent instruction
 710 * handlable by ARM alignment handler, also find the corresponding handler,
 711 * so that we can reuse ARM userland alignment fault fixups for Thumb.
 712 *
 713 * @pinstr: original Thumb-2 instruction; returns new handlable instruction
 714 * @regs: register context.
 715 * @poffset: return offset from faulted addr for later writeback
 716 *
 717 * NOTES:
 718 * 1. Comments below refer to ARMv7 DDI0406A Thumb Instruction sections.
 719 * 2. Register name Rt from ARMv7 is same as Rd from ARMv6 (Rd is Rt)
 720 */
 721static void *
 722do_alignment_t32_to_handler(unsigned long *pinstr, struct pt_regs *regs,
 723			    union offset_union *poffset)
 724{
 725	unsigned long instr = *pinstr;
 726	u16 tinst1 = (instr >> 16) & 0xffff;
 727	u16 tinst2 = instr & 0xffff;
 728
 729	switch (tinst1 & 0xffe0) {
 730	/* A6.3.5 Load/Store multiple */
 731	case 0xe880:		/* STM/STMIA/STMEA,LDM/LDMIA, PUSH/POP T2 */
 732	case 0xe8a0:		/* ...above writeback version */
 733	case 0xe900:		/* STMDB/STMFD, LDMDB/LDMEA */
 734	case 0xe920:		/* ...above writeback version */
 735		/* no need offset decision since handler calculates it */
 736		return do_alignment_ldmstm;
 737
 738	case 0xf840:		/* POP/PUSH T3 (single register) */
 739		if (RN_BITS(instr) == 13 && (tinst2 & 0x09ff) == 0x0904) {
 740			u32 L = !!(LDST_L_BIT(instr));
 741			const u32 subset[2] = {
 742				0xe92d0000,	/* STMDB sp!,{registers} */
 743				0xe8bd0000,	/* LDMIA sp!,{registers} */
 744			};
 745			*pinstr = subset[L] | (1<<RD_BITS(instr));
 746			return do_alignment_ldmstm;
 747		}
 748		/* Else fall through for illegal instruction case */
 749		break;
 750
 751	/* A6.3.6 Load/store double, STRD/LDRD(immed, lit, reg) */
 752	case 0xe860:
 753	case 0xe960:
 754	case 0xe8e0:
 755	case 0xe9e0:
 756		poffset->un = (tinst2 & 0xff) << 2;
 757	case 0xe940:
 758	case 0xe9c0:
 759		return do_alignment_ldrdstrd;
 760
 761	/*
 762	 * No need to handle load/store instructions up to word size
 763	 * since ARMv6 and later CPUs can perform unaligned accesses.
 764	 */
 765	default:
 766		break;
 767	}
 768	return NULL;
 769}
 770
 771static int
 772do_alignment(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 773{
 774	union offset_union uninitialized_var(offset);
 775	unsigned long instr = 0, instrptr;
 776	int (*handler)(unsigned long addr, unsigned long instr, struct pt_regs *regs);
 777	unsigned int type;
 778	unsigned int fault;
 779	u16 tinstr = 0;
 780	int isize = 4;
 781	int thumb2_32b = 0;
 782
 783	if (interrupts_enabled(regs))
 784		local_irq_enable();
 785
 786	instrptr = instruction_pointer(regs);
 787
 788	if (thumb_mode(regs)) {
 789		u16 *ptr = (u16 *)(instrptr & ~1);
 790		fault = probe_kernel_address(ptr, tinstr);
 791		tinstr = __mem_to_opcode_thumb16(tinstr);
 792		if (!fault) {
 793			if (cpu_architecture() >= CPU_ARCH_ARMv7 &&
 794			    IS_T32(tinstr)) {
 795				/* Thumb-2 32-bit */
 796				u16 tinst2 = 0;
 797				fault = probe_kernel_address(ptr + 1, tinst2);
 798				tinst2 = __mem_to_opcode_thumb16(tinst2);
 799				instr = __opcode_thumb32_compose(tinstr, tinst2);
 800				thumb2_32b = 1;
 801			} else {
 802				isize = 2;
 803				instr = thumb2arm(tinstr);
 804			}
 805		}
 806	} else {
 807		fault = probe_kernel_address((void *)instrptr, instr);
 808		instr = __mem_to_opcode_arm(instr);
 809	}
 810
 811	if (fault) {
 812		type = TYPE_FAULT;
 813		goto bad_or_fault;
 814	}
 815
 816	if (user_mode(regs))
 817		goto user;
 818
 819	ai_sys += 1;
 820	ai_sys_last_pc = (void *)instruction_pointer(regs);
 821
 822 fixup:
 823
 824	regs->ARM_pc += isize;
 825
 826	switch (CODING_BITS(instr)) {
 827	case 0x00000000:	/* 3.13.4 load/store instruction extensions */
 828		if (LDSTHD_I_BIT(instr))
 829			offset.un = (instr & 0xf00) >> 4 | (instr & 15);
 830		else
 831			offset.un = regs->uregs[RM_BITS(instr)];
 832
 833		if ((instr & 0x000000f0) == 0x000000b0 || /* LDRH, STRH */
 834		    (instr & 0x001000f0) == 0x001000f0)   /* LDRSH */
 835			handler = do_alignment_ldrhstrh;
 836		else if ((instr & 0x001000f0) == 0x000000d0 || /* LDRD */
 837			 (instr & 0x001000f0) == 0x000000f0)   /* STRD */
 838			handler = do_alignment_ldrdstrd;
 839		else if ((instr & 0x01f00ff0) == 0x01000090) /* SWP */
 840			goto swp;
 841		else
 842			goto bad;
 843		break;
 844
 845	case 0x04000000:	/* ldr or str immediate */
 846		if (COND_BITS(instr) == 0xf0000000) /* NEON VLDn, VSTn */
 847			goto bad;
 848		offset.un = OFFSET_BITS(instr);
 849		handler = do_alignment_ldrstr;
 850		break;
 851
 852	case 0x06000000:	/* ldr or str register */
 853		offset.un = regs->uregs[RM_BITS(instr)];
 854
 855		if (IS_SHIFT(instr)) {
 856			unsigned int shiftval = SHIFT_BITS(instr);
 857
 858			switch(SHIFT_TYPE(instr)) {
 859			case SHIFT_LSL:
 860				offset.un <<= shiftval;
 861				break;
 862
 863			case SHIFT_LSR:
 864				offset.un >>= shiftval;
 865				break;
 866
 867			case SHIFT_ASR:
 868				offset.sn >>= shiftval;
 869				break;
 870
 871			case SHIFT_RORRRX:
 872				if (shiftval == 0) {
 873					offset.un >>= 1;
 874					if (regs->ARM_cpsr & PSR_C_BIT)
 875						offset.un |= 1 << 31;
 876				} else
 877					offset.un = offset.un >> shiftval |
 878							  offset.un << (32 - shiftval);
 879				break;
 880			}
 881		}
 882		handler = do_alignment_ldrstr;
 883		break;
 884
 885	case 0x08000000:	/* ldm or stm, or thumb-2 32bit instruction */
 886		if (thumb2_32b) {
 887			offset.un = 0;
 888			handler = do_alignment_t32_to_handler(&instr, regs, &offset);
 889		} else {
 890			offset.un = 0;
 891			handler = do_alignment_ldmstm;
 892		}
 893		break;
 894
 895	default:
 896		goto bad;
 897	}
 898
 899	if (!handler)
 900		goto bad;
 901	type = handler(addr, instr, regs);
 902
 903	if (type == TYPE_ERROR || type == TYPE_FAULT) {
 904		regs->ARM_pc -= isize;
 905		goto bad_or_fault;
 906	}
 907
 908	if (type == TYPE_LDST)
 909		do_alignment_finish_ldst(addr, instr, regs, offset);
 910
 911	return 0;
 912
 913 bad_or_fault:
 914	if (type == TYPE_ERROR)
 915		goto bad;
 916	/*
 917	 * We got a fault - fix it up, or die.
 918	 */
 919	do_bad_area(addr, fsr, regs);
 920	return 0;
 921
 922 swp:
 923	pr_err("Alignment trap: not handling swp instruction\n");
 924
 925 bad:
 926	/*
 927	 * Oops, we didn't handle the instruction.
 928	 */
 929	pr_err("Alignment trap: not handling instruction "
 930		"%0*lx at [<%08lx>]\n",
 931		isize << 1,
 932		isize == 2 ? tinstr : instr, instrptr);
 933	ai_skipped += 1;
 934	return 1;
 935
 936 user:
 937	ai_user += 1;
 938
 939	if (ai_usermode & UM_WARN)
 940		printk("Alignment trap: %s (%d) PC=0x%08lx Instr=0x%0*lx "
 941		       "Address=0x%08lx FSR 0x%03x\n", current->comm,
 942			task_pid_nr(current), instrptr,
 943			isize << 1,
 944			isize == 2 ? tinstr : instr,
 945		        addr, fsr);
 946
 947	if (ai_usermode & UM_FIXUP)
 948		goto fixup;
 949
 950	if (ai_usermode & UM_SIGNAL) {
 951		siginfo_t si;
 952
 953		si.si_signo = SIGBUS;
 954		si.si_errno = 0;
 955		si.si_code = BUS_ADRALN;
 956		si.si_addr = (void __user *)addr;
 957
 958		force_sig_info(si.si_signo, &si, current);
 959	} else {
 960		/*
 961		 * We're about to disable the alignment trap and return to
 962		 * user space.  But if an interrupt occurs before actually
 963		 * reaching user space, then the IRQ vector entry code will
 964		 * notice that we were still in kernel space and therefore
 965		 * the alignment trap won't be re-enabled in that case as it
 966		 * is presumed to be always on from kernel space.
 967		 * Let's prevent that race by disabling interrupts here (they
 968		 * are disabled on the way back to user space anyway in
 969		 * entry-common.S) and disable the alignment trap only if
 970		 * there is no work pending for this thread.
 971		 */
 972		raw_local_irq_disable();
 973		if (!(current_thread_info()->flags & _TIF_WORK_MASK))
 974			set_cr(cr_no_alignment);
 975	}
 976
 977	return 0;
 978}
 979
 980static int __init noalign_setup(char *__unused)
 981{
 982	set_cr(__clear_cr(CR_A));
 983	return 1;
 984}
 985__setup("noalign", noalign_setup);
 986
 987/*
 988 * This needs to be done after sysctl_init, otherwise sys/ will be
 989 * overwritten.  Actually, this shouldn't be in sys/ at all since
 990 * it isn't a sysctl, and it doesn't contain sysctl information.
 991 * We now locate it in /proc/cpu/alignment instead.
 992 */
 993static int __init alignment_init(void)
 994{
 995#ifdef CONFIG_PROC_FS
 996	struct proc_dir_entry *res;
 997
 998	res = proc_create("cpu/alignment", S_IWUSR | S_IRUGO, NULL,
 999			  &alignment_proc_fops);
1000	if (!res)
1001		return -ENOMEM;
1002#endif
1003
 
1004	if (cpu_is_v6_unaligned()) {
1005		set_cr(__clear_cr(CR_A));
 
 
1006		ai_usermode = safe_usermode(ai_usermode, false);
1007	}
1008
1009	cr_no_alignment = get_cr() & ~CR_A;
1010
1011	hook_fault_code(FAULT_CODE_ALIGNMENT, do_alignment, SIGBUS, BUS_ADRALN,
1012			"alignment exception");
1013
1014	/*
1015	 * ARMv6K and ARMv7 use fault status 3 (0b00011) as Access Flag section
1016	 * fault, not as alignment error.
1017	 *
1018	 * TODO: handle ARMv6K properly. Runtime check for 'K' extension is
1019	 * needed.
1020	 */
1021	if (cpu_architecture() <= CPU_ARCH_ARMv6) {
1022		hook_fault_code(3, do_alignment, SIGBUS, BUS_ADRALN,
1023				"alignment exception");
1024	}
1025
1026	return 0;
1027}
1028
1029fs_initcall(alignment_init);