Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 *  linux/arch/arm/kernel/process.c
  3 *
  4 *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5 *  Original Copyright (C) 1995  Linus Torvalds
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <stdarg.h>
 12
 13#include <linux/export.h>
 14#include <linux/sched.h>
 
 
 
 15#include <linux/kernel.h>
 16#include <linux/mm.h>
 17#include <linux/stddef.h>
 18#include <linux/unistd.h>
 19#include <linux/user.h>
 20#include <linux/delay.h>
 21#include <linux/reboot.h>
 22#include <linux/interrupt.h>
 23#include <linux/kallsyms.h>
 24#include <linux/init.h>
 25#include <linux/cpu.h>
 26#include <linux/elfcore.h>
 27#include <linux/pm.h>
 28#include <linux/tick.h>
 29#include <linux/utsname.h>
 30#include <linux/uaccess.h>
 31#include <linux/random.h>
 32#include <linux/hw_breakpoint.h>
 33#include <linux/leds.h>
 34#include <linux/reboot.h>
 35
 36#include <asm/cacheflush.h>
 37#include <asm/idmap.h>
 38#include <asm/processor.h>
 39#include <asm/thread_notify.h>
 40#include <asm/stacktrace.h>
 41#include <asm/system_misc.h>
 42#include <asm/mach/time.h>
 43#include <asm/tls.h>
 
 44
 45#ifdef CONFIG_CC_STACKPROTECTOR
 46#include <linux/stackprotector.h>
 47unsigned long __stack_chk_guard __read_mostly;
 48EXPORT_SYMBOL(__stack_chk_guard);
 49#endif
 50
 51static const char *processor_modes[] __maybe_unused = {
 52  "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
 53  "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
 54  "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
 55  "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
 56};
 57
 58static const char *isa_modes[] __maybe_unused = {
 59  "ARM" , "Thumb" , "Jazelle", "ThumbEE"
 60};
 61
 62extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
 63typedef void (*phys_reset_t)(unsigned long);
 64
 65/*
 66 * A temporary stack to use for CPU reset. This is static so that we
 67 * don't clobber it with the identity mapping. When running with this
 68 * stack, any references to the current task *will not work* so you
 69 * should really do as little as possible before jumping to your reset
 70 * code.
 71 */
 72static u64 soft_restart_stack[16];
 73
 74static void __soft_restart(void *addr)
 75{
 76	phys_reset_t phys_reset;
 77
 78	/* Take out a flat memory mapping. */
 79	setup_mm_for_reboot();
 80
 81	/* Clean and invalidate caches */
 82	flush_cache_all();
 83
 84	/* Turn off caching */
 85	cpu_proc_fin();
 86
 87	/* Push out any further dirty data, and ensure cache is empty */
 88	flush_cache_all();
 89
 90	/* Switch to the identity mapping. */
 91	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
 92	phys_reset((unsigned long)addr);
 93
 94	/* Should never get here. */
 95	BUG();
 96}
 97
 98void soft_restart(unsigned long addr)
 99{
100	u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
101
102	/* Disable interrupts first */
103	raw_local_irq_disable();
104	local_fiq_disable();
105
106	/* Disable the L2 if we're the last man standing. */
107	if (num_online_cpus() == 1)
108		outer_disable();
109
110	/* Change to the new stack and continue with the reset. */
111	call_with_stack(__soft_restart, (void *)addr, (void *)stack);
112
113	/* Should never get here. */
114	BUG();
115}
116
117static void null_restart(enum reboot_mode reboot_mode, const char *cmd)
118{
119}
120
121/*
122 * Function pointers to optional machine specific functions
123 */
124void (*pm_power_off)(void);
125EXPORT_SYMBOL(pm_power_off);
126
127void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd) = null_restart;
128EXPORT_SYMBOL_GPL(arm_pm_restart);
129
130/*
131 * This is our default idle handler.
132 */
133
134void (*arm_pm_idle)(void);
135
136/*
137 * Called from the core idle loop.
138 */
139
140void arch_cpu_idle(void)
141{
142	if (arm_pm_idle)
143		arm_pm_idle();
144	else
145		cpu_do_idle();
146	local_irq_enable();
147}
148
149void arch_cpu_idle_prepare(void)
150{
151	local_fiq_enable();
152}
153
154void arch_cpu_idle_enter(void)
155{
156	ledtrig_cpu(CPU_LED_IDLE_START);
157#ifdef CONFIG_PL310_ERRATA_769419
158	wmb();
159#endif
160}
161
162void arch_cpu_idle_exit(void)
163{
164	ledtrig_cpu(CPU_LED_IDLE_END);
165}
166
167#ifdef CONFIG_HOTPLUG_CPU
168void arch_cpu_idle_dead(void)
169{
170	cpu_die();
171}
172#endif
173
174/*
175 * Called by kexec, immediately prior to machine_kexec().
176 *
177 * This must completely disable all secondary CPUs; simply causing those CPUs
178 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
179 * kexec'd kernel to use any and all RAM as it sees fit, without having to
180 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
181 * functionality embodied in disable_nonboot_cpus() to achieve this.
182 */
183void machine_shutdown(void)
184{
185	disable_nonboot_cpus();
186}
187
188/*
189 * Halting simply requires that the secondary CPUs stop performing any
190 * activity (executing tasks, handling interrupts). smp_send_stop()
191 * achieves this.
192 */
193void machine_halt(void)
194{
195	local_irq_disable();
196	smp_send_stop();
197
198	local_irq_disable();
199	while (1);
200}
201
202/*
203 * Power-off simply requires that the secondary CPUs stop performing any
204 * activity (executing tasks, handling interrupts). smp_send_stop()
205 * achieves this. When the system power is turned off, it will take all CPUs
206 * with it.
207 */
208void machine_power_off(void)
209{
210	local_irq_disable();
211	smp_send_stop();
212
213	if (pm_power_off)
214		pm_power_off();
215}
216
217/*
218 * Restart requires that the secondary CPUs stop performing any activity
219 * while the primary CPU resets the system. Systems with a single CPU can
220 * use soft_restart() as their machine descriptor's .restart hook, since that
221 * will cause the only available CPU to reset. Systems with multiple CPUs must
222 * provide a HW restart implementation, to ensure that all CPUs reset at once.
223 * This is required so that any code running after reset on the primary CPU
224 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
225 * executing pre-reset code, and using RAM that the primary CPU's code wishes
226 * to use. Implementing such co-ordination would be essentially impossible.
227 */
228void machine_restart(char *cmd)
229{
230	local_irq_disable();
231	smp_send_stop();
232
233	arm_pm_restart(reboot_mode, cmd);
234
235	/* Give a grace period for failure to restart of 1s */
236	mdelay(1000);
237
238	/* Whoops - the platform was unable to reboot. Tell the user! */
239	printk("Reboot failed -- System halted\n");
240	local_irq_disable();
241	while (1);
242}
243
244void __show_regs(struct pt_regs *regs)
245{
246	unsigned long flags;
247	char buf[64];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248
249	show_regs_print_info(KERN_DEFAULT);
250
251	print_symbol("PC is at %s\n", instruction_pointer(regs));
252	print_symbol("LR is at %s\n", regs->ARM_lr);
253	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
254	       "sp : %08lx  ip : %08lx  fp : %08lx\n",
255		regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
256		regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
257	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
258		regs->ARM_r10, regs->ARM_r9,
259		regs->ARM_r8);
260	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
261		regs->ARM_r7, regs->ARM_r6,
262		regs->ARM_r5, regs->ARM_r4);
263	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
264		regs->ARM_r3, regs->ARM_r2,
265		regs->ARM_r1, regs->ARM_r0);
266
267	flags = regs->ARM_cpsr;
268	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
269	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
270	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
271	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
272	buf[4] = '\0';
273
274#ifndef CONFIG_CPU_V7M
275	printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
276		buf, interrupts_enabled(regs) ? "n" : "ff",
277		fast_interrupts_enabled(regs) ? "n" : "ff",
278		processor_modes[processor_mode(regs)],
279		isa_modes[isa_mode(regs)],
280		get_fs() == get_ds() ? "kernel" : "user");
 
 
 
 
 
 
 
 
 
 
 
281#else
282	printk("xPSR: %08lx\n", regs->ARM_cpsr);
283#endif
284
285#ifdef CONFIG_CPU_CP15
286	{
287		unsigned int ctrl;
288
289		buf[0] = '\0';
290#ifdef CONFIG_CPU_CP15_MMU
291		{
292			unsigned int transbase, dac;
293			asm("mrc p15, 0, %0, c2, c0\n\t"
294			    "mrc p15, 0, %1, c3, c0\n"
295			    : "=r" (transbase), "=r" (dac));
296			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
297			  	transbase, dac);
298		}
299#endif
300		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
301
302		printk("Control: %08x%s\n", ctrl, buf);
303	}
304#endif
305}
306
307void show_regs(struct pt_regs * regs)
308{
309	printk("\n");
310	__show_regs(regs);
311	dump_stack();
312}
313
314ATOMIC_NOTIFIER_HEAD(thread_notify_head);
315
316EXPORT_SYMBOL_GPL(thread_notify_head);
317
318/*
319 * Free current thread data structures etc..
320 */
321void exit_thread(void)
322{
323	thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
324}
325
326void flush_thread(void)
327{
328	struct thread_info *thread = current_thread_info();
329	struct task_struct *tsk = current;
330
331	flush_ptrace_hw_breakpoint(tsk);
332
333	memset(thread->used_cp, 0, sizeof(thread->used_cp));
334	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
335	memset(&thread->fpstate, 0, sizeof(union fp_state));
336
 
 
337	thread_notify(THREAD_NOTIFY_FLUSH, thread);
338}
339
340void release_thread(struct task_struct *dead_task)
341{
342}
343
344asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
345
346int
347copy_thread(unsigned long clone_flags, unsigned long stack_start,
348	    unsigned long stk_sz, struct task_struct *p)
349{
350	struct thread_info *thread = task_thread_info(p);
351	struct pt_regs *childregs = task_pt_regs(p);
352
353	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
354
 
 
 
 
 
 
 
 
 
 
355	if (likely(!(p->flags & PF_KTHREAD))) {
356		*childregs = *current_pt_regs();
357		childregs->ARM_r0 = 0;
358		if (stack_start)
359			childregs->ARM_sp = stack_start;
360	} else {
361		memset(childregs, 0, sizeof(struct pt_regs));
362		thread->cpu_context.r4 = stk_sz;
363		thread->cpu_context.r5 = stack_start;
364		childregs->ARM_cpsr = SVC_MODE;
365	}
366	thread->cpu_context.pc = (unsigned long)ret_from_fork;
367	thread->cpu_context.sp = (unsigned long)childregs;
368
369	clear_ptrace_hw_breakpoint(p);
370
371	if (clone_flags & CLONE_SETTLS)
372		thread->tp_value[0] = childregs->ARM_r3;
373	thread->tp_value[1] = get_tpuser();
374
375	thread_notify(THREAD_NOTIFY_COPY, thread);
376
377	return 0;
378}
379
380/*
381 * Fill in the task's elfregs structure for a core dump.
382 */
383int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
384{
385	elf_core_copy_regs(elfregs, task_pt_regs(t));
386	return 1;
387}
388
389/*
390 * fill in the fpe structure for a core dump...
391 */
392int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
393{
394	struct thread_info *thread = current_thread_info();
395	int used_math = thread->used_cp[1] | thread->used_cp[2];
396
397	if (used_math)
398		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
399
400	return used_math != 0;
401}
402EXPORT_SYMBOL(dump_fpu);
403
404unsigned long get_wchan(struct task_struct *p)
405{
406	struct stackframe frame;
407	unsigned long stack_page;
408	int count = 0;
409	if (!p || p == current || p->state == TASK_RUNNING)
410		return 0;
411
412	frame.fp = thread_saved_fp(p);
413	frame.sp = thread_saved_sp(p);
414	frame.lr = 0;			/* recovered from the stack */
415	frame.pc = thread_saved_pc(p);
416	stack_page = (unsigned long)task_stack_page(p);
417	do {
418		if (frame.sp < stack_page ||
419		    frame.sp >= stack_page + THREAD_SIZE ||
420		    unwind_frame(&frame) < 0)
421			return 0;
422		if (!in_sched_functions(frame.pc))
423			return frame.pc;
424	} while (count ++ < 16);
425	return 0;
426}
427
428unsigned long arch_randomize_brk(struct mm_struct *mm)
429{
430	unsigned long range_end = mm->brk + 0x02000000;
431	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
432}
433
434#ifdef CONFIG_MMU
435#ifdef CONFIG_KUSER_HELPERS
436/*
437 * The vectors page is always readable from user space for the
438 * atomic helpers. Insert it into the gate_vma so that it is visible
439 * through ptrace and /proc/<pid>/mem.
440 */
441static struct vm_area_struct gate_vma = {
442	.vm_start	= 0xffff0000,
443	.vm_end		= 0xffff0000 + PAGE_SIZE,
444	.vm_flags	= VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
445};
446
447static int __init gate_vma_init(void)
448{
449	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
450	return 0;
451}
452arch_initcall(gate_vma_init);
453
454struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
455{
456	return &gate_vma;
457}
458
459int in_gate_area(struct mm_struct *mm, unsigned long addr)
460{
461	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
462}
463
464int in_gate_area_no_mm(unsigned long addr)
465{
466	return in_gate_area(NULL, addr);
467}
468#define is_gate_vma(vma)	((vma) == &gate_vma)
469#else
470#define is_gate_vma(vma)	0
471#endif
472
473const char *arch_vma_name(struct vm_area_struct *vma)
474{
475	return is_gate_vma(vma) ? "[vectors]" :
476		(vma->vm_mm && vma->vm_start == vma->vm_mm->context.sigpage) ?
477		 "[sigpage]" : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478}
479
480static struct page *signal_page;
481extern struct page *get_signal_page(void);
482
 
 
 
 
 
 
 
 
 
 
 
 
 
483int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
484{
485	struct mm_struct *mm = current->mm;
 
 
486	unsigned long addr;
487	int ret;
 
488
489	if (!signal_page)
490		signal_page = get_signal_page();
491	if (!signal_page)
492		return -ENOMEM;
493
494	down_write(&mm->mmap_sem);
495	addr = get_unmapped_area(NULL, 0, PAGE_SIZE, 0, 0);
 
 
 
 
 
496	if (IS_ERR_VALUE(addr)) {
497		ret = addr;
498		goto up_fail;
499	}
500
501	ret = install_special_mapping(mm, addr, PAGE_SIZE,
502		VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
503		&signal_page);
 
 
 
 
 
 
 
504
505	if (ret == 0)
506		mm->context.sigpage = addr;
 
 
 
507
508 up_fail:
509	up_write(&mm->mmap_sem);
510	return ret;
511}
512#endif
v4.17
  1/*
  2 *  linux/arch/arm/kernel/process.c
  3 *
  4 *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5 *  Original Copyright (C) 1995  Linus Torvalds
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <stdarg.h>
 12
 13#include <linux/export.h>
 14#include <linux/sched.h>
 15#include <linux/sched/debug.h>
 16#include <linux/sched/task.h>
 17#include <linux/sched/task_stack.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/stddef.h>
 21#include <linux/unistd.h>
 22#include <linux/user.h>
 
 
 23#include <linux/interrupt.h>
 
 24#include <linux/init.h>
 
 25#include <linux/elfcore.h>
 26#include <linux/pm.h>
 27#include <linux/tick.h>
 28#include <linux/utsname.h>
 29#include <linux/uaccess.h>
 30#include <linux/random.h>
 31#include <linux/hw_breakpoint.h>
 32#include <linux/leds.h>
 
 33
 
 
 34#include <asm/processor.h>
 35#include <asm/thread_notify.h>
 36#include <asm/stacktrace.h>
 37#include <asm/system_misc.h>
 38#include <asm/mach/time.h>
 39#include <asm/tls.h>
 40#include <asm/vdso.h>
 41
 42#ifdef CONFIG_CC_STACKPROTECTOR
 43#include <linux/stackprotector.h>
 44unsigned long __stack_chk_guard __read_mostly;
 45EXPORT_SYMBOL(__stack_chk_guard);
 46#endif
 47
 48static const char *processor_modes[] __maybe_unused = {
 49  "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
 50  "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
 51  "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
 52  "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
 53};
 54
 55static const char *isa_modes[] __maybe_unused = {
 56  "ARM" , "Thumb" , "Jazelle", "ThumbEE"
 57};
 58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59/*
 60 * This is our default idle handler.
 61 */
 62
 63void (*arm_pm_idle)(void);
 64
 65/*
 66 * Called from the core idle loop.
 67 */
 68
 69void arch_cpu_idle(void)
 70{
 71	if (arm_pm_idle)
 72		arm_pm_idle();
 73	else
 74		cpu_do_idle();
 75	local_irq_enable();
 76}
 77
 78void arch_cpu_idle_prepare(void)
 79{
 80	local_fiq_enable();
 81}
 82
 83void arch_cpu_idle_enter(void)
 84{
 85	ledtrig_cpu(CPU_LED_IDLE_START);
 86#ifdef CONFIG_PL310_ERRATA_769419
 87	wmb();
 88#endif
 89}
 90
 91void arch_cpu_idle_exit(void)
 92{
 93	ledtrig_cpu(CPU_LED_IDLE_END);
 94}
 95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96void __show_regs(struct pt_regs *regs)
 97{
 98	unsigned long flags;
 99	char buf[64];
100#ifndef CONFIG_CPU_V7M
101	unsigned int domain, fs;
102#ifdef CONFIG_CPU_SW_DOMAIN_PAN
103	/*
104	 * Get the domain register for the parent context. In user
105	 * mode, we don't save the DACR, so lets use what it should
106	 * be. For other modes, we place it after the pt_regs struct.
107	 */
108	if (user_mode(regs)) {
109		domain = DACR_UACCESS_ENABLE;
110		fs = get_fs();
111	} else {
112		domain = to_svc_pt_regs(regs)->dacr;
113		fs = to_svc_pt_regs(regs)->addr_limit;
114	}
115#else
116	domain = get_domain();
117	fs = get_fs();
118#endif
119#endif
120
121	show_regs_print_info(KERN_DEFAULT);
122
123	printk("PC is at %pS\n", (void *)instruction_pointer(regs));
124	printk("LR is at %pS\n", (void *)regs->ARM_lr);
125	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n",
126	       regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr);
127	printk("sp : %08lx  ip : %08lx  fp : %08lx\n",
128	       regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
129	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
130		regs->ARM_r10, regs->ARM_r9,
131		regs->ARM_r8);
132	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
133		regs->ARM_r7, regs->ARM_r6,
134		regs->ARM_r5, regs->ARM_r4);
135	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
136		regs->ARM_r3, regs->ARM_r2,
137		regs->ARM_r1, regs->ARM_r0);
138
139	flags = regs->ARM_cpsr;
140	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
141	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
142	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
143	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
144	buf[4] = '\0';
145
146#ifndef CONFIG_CPU_V7M
147	{
148		const char *segment;
149
150		if ((domain & domain_mask(DOMAIN_USER)) ==
151		    domain_val(DOMAIN_USER, DOMAIN_NOACCESS))
152			segment = "none";
153		else if (fs == get_ds())
154			segment = "kernel";
155		else
156			segment = "user";
157
158		printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
159			buf, interrupts_enabled(regs) ? "n" : "ff",
160			fast_interrupts_enabled(regs) ? "n" : "ff",
161			processor_modes[processor_mode(regs)],
162			isa_modes[isa_mode(regs)], segment);
163	}
164#else
165	printk("xPSR: %08lx\n", regs->ARM_cpsr);
166#endif
167
168#ifdef CONFIG_CPU_CP15
169	{
170		unsigned int ctrl;
171
172		buf[0] = '\0';
173#ifdef CONFIG_CPU_CP15_MMU
174		{
175			unsigned int transbase;
176			asm("mrc p15, 0, %0, c2, c0\n\t"
177			    : "=r" (transbase));
 
178			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
179				transbase, domain);
180		}
181#endif
182		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
183
184		printk("Control: %08x%s\n", ctrl, buf);
185	}
186#endif
187}
188
189void show_regs(struct pt_regs * regs)
190{
 
191	__show_regs(regs);
192	dump_stack();
193}
194
195ATOMIC_NOTIFIER_HEAD(thread_notify_head);
196
197EXPORT_SYMBOL_GPL(thread_notify_head);
198
199/*
200 * Free current thread data structures etc..
201 */
202void exit_thread(struct task_struct *tsk)
203{
204	thread_notify(THREAD_NOTIFY_EXIT, task_thread_info(tsk));
205}
206
207void flush_thread(void)
208{
209	struct thread_info *thread = current_thread_info();
210	struct task_struct *tsk = current;
211
212	flush_ptrace_hw_breakpoint(tsk);
213
214	memset(thread->used_cp, 0, sizeof(thread->used_cp));
215	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
216	memset(&thread->fpstate, 0, sizeof(union fp_state));
217
218	flush_tls();
219
220	thread_notify(THREAD_NOTIFY_FLUSH, thread);
221}
222
223void release_thread(struct task_struct *dead_task)
224{
225}
226
227asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
228
229int
230copy_thread(unsigned long clone_flags, unsigned long stack_start,
231	    unsigned long stk_sz, struct task_struct *p)
232{
233	struct thread_info *thread = task_thread_info(p);
234	struct pt_regs *childregs = task_pt_regs(p);
235
236	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
237
238#ifdef CONFIG_CPU_USE_DOMAINS
239	/*
240	 * Copy the initial value of the domain access control register
241	 * from the current thread: thread->addr_limit will have been
242	 * copied from the current thread via setup_thread_stack() in
243	 * kernel/fork.c
244	 */
245	thread->cpu_domain = get_domain();
246#endif
247
248	if (likely(!(p->flags & PF_KTHREAD))) {
249		*childregs = *current_pt_regs();
250		childregs->ARM_r0 = 0;
251		if (stack_start)
252			childregs->ARM_sp = stack_start;
253	} else {
254		memset(childregs, 0, sizeof(struct pt_regs));
255		thread->cpu_context.r4 = stk_sz;
256		thread->cpu_context.r5 = stack_start;
257		childregs->ARM_cpsr = SVC_MODE;
258	}
259	thread->cpu_context.pc = (unsigned long)ret_from_fork;
260	thread->cpu_context.sp = (unsigned long)childregs;
261
262	clear_ptrace_hw_breakpoint(p);
263
264	if (clone_flags & CLONE_SETTLS)
265		thread->tp_value[0] = childregs->ARM_r3;
266	thread->tp_value[1] = get_tpuser();
267
268	thread_notify(THREAD_NOTIFY_COPY, thread);
269
270	return 0;
271}
272
273/*
274 * Fill in the task's elfregs structure for a core dump.
275 */
276int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
277{
278	elf_core_copy_regs(elfregs, task_pt_regs(t));
279	return 1;
280}
281
282/*
283 * fill in the fpe structure for a core dump...
284 */
285int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
286{
287	struct thread_info *thread = current_thread_info();
288	int used_math = thread->used_cp[1] | thread->used_cp[2];
289
290	if (used_math)
291		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
292
293	return used_math != 0;
294}
295EXPORT_SYMBOL(dump_fpu);
296
297unsigned long get_wchan(struct task_struct *p)
298{
299	struct stackframe frame;
300	unsigned long stack_page;
301	int count = 0;
302	if (!p || p == current || p->state == TASK_RUNNING)
303		return 0;
304
305	frame.fp = thread_saved_fp(p);
306	frame.sp = thread_saved_sp(p);
307	frame.lr = 0;			/* recovered from the stack */
308	frame.pc = thread_saved_pc(p);
309	stack_page = (unsigned long)task_stack_page(p);
310	do {
311		if (frame.sp < stack_page ||
312		    frame.sp >= stack_page + THREAD_SIZE ||
313		    unwind_frame(&frame) < 0)
314			return 0;
315		if (!in_sched_functions(frame.pc))
316			return frame.pc;
317	} while (count ++ < 16);
318	return 0;
319}
320
321unsigned long arch_randomize_brk(struct mm_struct *mm)
322{
323	return randomize_page(mm->brk, 0x02000000);
 
324}
325
326#ifdef CONFIG_MMU
327#ifdef CONFIG_KUSER_HELPERS
328/*
329 * The vectors page is always readable from user space for the
330 * atomic helpers. Insert it into the gate_vma so that it is visible
331 * through ptrace and /proc/<pid>/mem.
332 */
333static struct vm_area_struct gate_vma = {
334	.vm_start	= 0xffff0000,
335	.vm_end		= 0xffff0000 + PAGE_SIZE,
336	.vm_flags	= VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
337};
338
339static int __init gate_vma_init(void)
340{
341	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
342	return 0;
343}
344arch_initcall(gate_vma_init);
345
346struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
347{
348	return &gate_vma;
349}
350
351int in_gate_area(struct mm_struct *mm, unsigned long addr)
352{
353	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
354}
355
356int in_gate_area_no_mm(unsigned long addr)
357{
358	return in_gate_area(NULL, addr);
359}
360#define is_gate_vma(vma)	((vma) == &gate_vma)
361#else
362#define is_gate_vma(vma)	0
363#endif
364
365const char *arch_vma_name(struct vm_area_struct *vma)
366{
367	return is_gate_vma(vma) ? "[vectors]" : NULL;
368}
369
370/* If possible, provide a placement hint at a random offset from the
371 * stack for the sigpage and vdso pages.
372 */
373static unsigned long sigpage_addr(const struct mm_struct *mm,
374				  unsigned int npages)
375{
376	unsigned long offset;
377	unsigned long first;
378	unsigned long last;
379	unsigned long addr;
380	unsigned int slots;
381
382	first = PAGE_ALIGN(mm->start_stack);
383
384	last = TASK_SIZE - (npages << PAGE_SHIFT);
385
386	/* No room after stack? */
387	if (first > last)
388		return 0;
389
390	/* Just enough room? */
391	if (first == last)
392		return first;
393
394	slots = ((last - first) >> PAGE_SHIFT) + 1;
395
396	offset = get_random_int() % slots;
397
398	addr = first + (offset << PAGE_SHIFT);
399
400	return addr;
401}
402
403static struct page *signal_page;
404extern struct page *get_signal_page(void);
405
406static int sigpage_mremap(const struct vm_special_mapping *sm,
407		struct vm_area_struct *new_vma)
408{
409	current->mm->context.sigpage = new_vma->vm_start;
410	return 0;
411}
412
413static const struct vm_special_mapping sigpage_mapping = {
414	.name = "[sigpage]",
415	.pages = &signal_page,
416	.mremap = sigpage_mremap,
417};
418
419int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
420{
421	struct mm_struct *mm = current->mm;
422	struct vm_area_struct *vma;
423	unsigned long npages;
424	unsigned long addr;
425	unsigned long hint;
426	int ret = 0;
427
428	if (!signal_page)
429		signal_page = get_signal_page();
430	if (!signal_page)
431		return -ENOMEM;
432
433	npages = 1; /* for sigpage */
434	npages += vdso_total_pages;
435
436	if (down_write_killable(&mm->mmap_sem))
437		return -EINTR;
438	hint = sigpage_addr(mm, npages);
439	addr = get_unmapped_area(NULL, hint, npages << PAGE_SHIFT, 0, 0);
440	if (IS_ERR_VALUE(addr)) {
441		ret = addr;
442		goto up_fail;
443	}
444
445	vma = _install_special_mapping(mm, addr, PAGE_SIZE,
446		VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
447		&sigpage_mapping);
448
449	if (IS_ERR(vma)) {
450		ret = PTR_ERR(vma);
451		goto up_fail;
452	}
453
454	mm->context.sigpage = addr;
455
456	/* Unlike the sigpage, failure to install the vdso is unlikely
457	 * to be fatal to the process, so no error check needed
458	 * here.
459	 */
460	arm_install_vdso(mm, addr + PAGE_SIZE);
461
462 up_fail:
463	up_write(&mm->mmap_sem);
464	return ret;
465}
466#endif