Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * numa.c
   3 *
   4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   5 */
   6
 
 
 
   7#include "../perf.h"
   8#include "../builtin.h"
   9#include "../util/util.h"
  10#include "../util/parse-options.h"
 
  11
  12#include "bench.h"
  13
  14#include <errno.h>
  15#include <sched.h>
  16#include <stdio.h>
  17#include <assert.h>
  18#include <malloc.h>
  19#include <signal.h>
  20#include <stdlib.h>
  21#include <string.h>
  22#include <unistd.h>
  23#include <pthread.h>
  24#include <sys/mman.h>
  25#include <sys/time.h>
 
  26#include <sys/wait.h>
  27#include <sys/prctl.h>
  28#include <sys/types.h>
 
  29
  30#include <numa.h>
  31#include <numaif.h>
  32
  33/*
  34 * Regular printout to the terminal, supressed if -q is specified:
  35 */
  36#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  37
  38/*
  39 * Debug printf:
  40 */
  41#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  42
  43struct thread_data {
  44	int			curr_cpu;
  45	cpu_set_t		bind_cpumask;
  46	int			bind_node;
  47	u8			*process_data;
  48	int			process_nr;
  49	int			thread_nr;
  50	int			task_nr;
  51	unsigned int		loops_done;
  52	u64			val;
  53	u64			runtime_ns;
 
 
 
  54	pthread_mutex_t		*process_lock;
  55};
  56
  57/* Parameters set by options: */
  58
  59struct params {
  60	/* Startup synchronization: */
  61	bool			serialize_startup;
  62
  63	/* Task hierarchy: */
  64	int			nr_proc;
  65	int			nr_threads;
  66
  67	/* Working set sizes: */
  68	const char		*mb_global_str;
  69	const char		*mb_proc_str;
  70	const char		*mb_proc_locked_str;
  71	const char		*mb_thread_str;
  72
  73	double			mb_global;
  74	double			mb_proc;
  75	double			mb_proc_locked;
  76	double			mb_thread;
  77
  78	/* Access patterns to the working set: */
  79	bool			data_reads;
  80	bool			data_writes;
  81	bool			data_backwards;
  82	bool			data_zero_memset;
  83	bool			data_rand_walk;
  84	u32			nr_loops;
  85	u32			nr_secs;
  86	u32			sleep_usecs;
  87
  88	/* Working set initialization: */
  89	bool			init_zero;
  90	bool			init_random;
  91	bool			init_cpu0;
  92
  93	/* Misc options: */
  94	int			show_details;
  95	int			run_all;
  96	int			thp;
  97
  98	long			bytes_global;
  99	long			bytes_process;
 100	long			bytes_process_locked;
 101	long			bytes_thread;
 102
 103	int			nr_tasks;
 104	bool			show_quiet;
 105
 106	bool			show_convergence;
 107	bool			measure_convergence;
 108
 109	int			perturb_secs;
 110	int			nr_cpus;
 111	int			nr_nodes;
 112
 113	/* Affinity options -C and -N: */
 114	char			*cpu_list_str;
 115	char			*node_list_str;
 116};
 117
 118
 119/* Global, read-writable area, accessible to all processes and threads: */
 120
 121struct global_info {
 122	u8			*data;
 123
 124	pthread_mutex_t		startup_mutex;
 125	int			nr_tasks_started;
 126
 127	pthread_mutex_t		startup_done_mutex;
 128
 129	pthread_mutex_t		start_work_mutex;
 130	int			nr_tasks_working;
 131
 132	pthread_mutex_t		stop_work_mutex;
 133	u64			bytes_done;
 134
 135	struct thread_data	*threads;
 136
 137	/* Convergence latency measurement: */
 138	bool			all_converged;
 139	bool			stop_work;
 140
 141	int			print_once;
 142
 143	struct params		p;
 144};
 145
 146static struct global_info	*g = NULL;
 147
 148static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 149static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 150
 151struct params p0;
 152
 153static const struct option options[] = {
 154	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 155	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 156
 157	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 158	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 159	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 160	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 161
 162	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"),
 163	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"),
 164	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 165
 166	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
 167	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 168	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 169	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 170	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 171
 172
 173	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 174	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 175	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 176	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 177
 178	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 179	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 180	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 181	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
 182	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 183	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"bzero the initial allocations"),
 184	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 185
 186	/* Special option string parsing callbacks: */
 187        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 188			"bind the first N tasks to these specific cpus (the rest is unbound)",
 189			parse_cpus_opt),
 190        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 191			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 192			parse_nodes_opt),
 193	OPT_END()
 194};
 195
 196static const char * const bench_numa_usage[] = {
 197	"perf bench numa <options>",
 198	NULL
 199};
 200
 201static const char * const numa_usage[] = {
 202	"perf bench numa mem [<options>]",
 203	NULL
 204};
 205
 206static cpu_set_t bind_to_cpu(int target_cpu)
 207{
 208	cpu_set_t orig_mask, mask;
 209	int ret;
 210
 211	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 212	BUG_ON(ret);
 213
 214	CPU_ZERO(&mask);
 215
 216	if (target_cpu == -1) {
 217		int cpu;
 218
 219		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 220			CPU_SET(cpu, &mask);
 221	} else {
 222		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 223		CPU_SET(target_cpu, &mask);
 224	}
 225
 226	ret = sched_setaffinity(0, sizeof(mask), &mask);
 227	BUG_ON(ret);
 228
 229	return orig_mask;
 230}
 231
 232static cpu_set_t bind_to_node(int target_node)
 233{
 234	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
 235	cpu_set_t orig_mask, mask;
 236	int cpu;
 237	int ret;
 238
 239	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
 240	BUG_ON(!cpus_per_node);
 241
 242	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 243	BUG_ON(ret);
 244
 245	CPU_ZERO(&mask);
 246
 247	if (target_node == -1) {
 248		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 249			CPU_SET(cpu, &mask);
 250	} else {
 251		int cpu_start = (target_node + 0) * cpus_per_node;
 252		int cpu_stop  = (target_node + 1) * cpus_per_node;
 253
 254		BUG_ON(cpu_stop > g->p.nr_cpus);
 255
 256		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 257			CPU_SET(cpu, &mask);
 258	}
 259
 260	ret = sched_setaffinity(0, sizeof(mask), &mask);
 261	BUG_ON(ret);
 262
 263	return orig_mask;
 264}
 265
 266static void bind_to_cpumask(cpu_set_t mask)
 267{
 268	int ret;
 269
 270	ret = sched_setaffinity(0, sizeof(mask), &mask);
 271	BUG_ON(ret);
 272}
 273
 274static void mempol_restore(void)
 275{
 276	int ret;
 277
 278	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 279
 280	BUG_ON(ret);
 281}
 282
 283static void bind_to_memnode(int node)
 284{
 285	unsigned long nodemask;
 286	int ret;
 287
 288	if (node == -1)
 289		return;
 290
 291	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
 292	nodemask = 1L << node;
 293
 294	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 295	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 296
 297	BUG_ON(ret);
 298}
 299
 300#define HPSIZE (2*1024*1024)
 301
 302#define set_taskname(fmt...)				\
 303do {							\
 304	char name[20];					\
 305							\
 306	snprintf(name, 20, fmt);			\
 307	prctl(PR_SET_NAME, name);			\
 308} while (0)
 309
 310static u8 *alloc_data(ssize_t bytes0, int map_flags,
 311		      int init_zero, int init_cpu0, int thp, int init_random)
 312{
 313	cpu_set_t orig_mask;
 314	ssize_t bytes;
 315	u8 *buf;
 316	int ret;
 317
 318	if (!bytes0)
 319		return NULL;
 320
 321	/* Allocate and initialize all memory on CPU#0: */
 322	if (init_cpu0) {
 323		orig_mask = bind_to_node(0);
 324		bind_to_memnode(0);
 325	}
 326
 327	bytes = bytes0 + HPSIZE;
 328
 329	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 330	BUG_ON(buf == (void *)-1);
 331
 332	if (map_flags == MAP_PRIVATE) {
 333		if (thp > 0) {
 334			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 335			if (ret && !g->print_once) {
 336				g->print_once = 1;
 337				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 338			}
 339		}
 340		if (thp < 0) {
 341			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 342			if (ret && !g->print_once) {
 343				g->print_once = 1;
 344				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 345			}
 346		}
 347	}
 348
 349	if (init_zero) {
 350		bzero(buf, bytes);
 351	} else {
 352		/* Initialize random contents, different in each word: */
 353		if (init_random) {
 354			u64 *wbuf = (void *)buf;
 355			long off = rand();
 356			long i;
 357
 358			for (i = 0; i < bytes/8; i++)
 359				wbuf[i] = i + off;
 360		}
 361	}
 362
 363	/* Align to 2MB boundary: */
 364	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 365
 366	/* Restore affinity: */
 367	if (init_cpu0) {
 368		bind_to_cpumask(orig_mask);
 369		mempol_restore();
 370	}
 371
 372	return buf;
 373}
 374
 375static void free_data(void *data, ssize_t bytes)
 376{
 377	int ret;
 378
 379	if (!data)
 380		return;
 381
 382	ret = munmap(data, bytes);
 383	BUG_ON(ret);
 384}
 385
 386/*
 387 * Create a shared memory buffer that can be shared between processes, zeroed:
 388 */
 389static void * zalloc_shared_data(ssize_t bytes)
 390{
 391	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 392}
 393
 394/*
 395 * Create a shared memory buffer that can be shared between processes:
 396 */
 397static void * setup_shared_data(ssize_t bytes)
 398{
 399	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 400}
 401
 402/*
 403 * Allocate process-local memory - this will either be shared between
 404 * threads of this process, or only be accessed by this thread:
 405 */
 406static void * setup_private_data(ssize_t bytes)
 407{
 408	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 409}
 410
 411/*
 412 * Return a process-shared (global) mutex:
 413 */
 414static void init_global_mutex(pthread_mutex_t *mutex)
 415{
 416	pthread_mutexattr_t attr;
 417
 418	pthread_mutexattr_init(&attr);
 419	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 420	pthread_mutex_init(mutex, &attr);
 421}
 422
 423static int parse_cpu_list(const char *arg)
 424{
 425	p0.cpu_list_str = strdup(arg);
 426
 427	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 428
 429	return 0;
 430}
 431
 432static int parse_setup_cpu_list(void)
 433{
 434	struct thread_data *td;
 435	char *str0, *str;
 436	int t;
 437
 438	if (!g->p.cpu_list_str)
 439		return 0;
 440
 441	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 442
 443	str0 = str = strdup(g->p.cpu_list_str);
 444	t = 0;
 445
 446	BUG_ON(!str);
 447
 448	tprintf("# binding tasks to CPUs:\n");
 449	tprintf("#  ");
 450
 451	while (true) {
 452		int bind_cpu, bind_cpu_0, bind_cpu_1;
 453		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 454		int bind_len;
 455		int step;
 456		int mul;
 457
 458		tok = strsep(&str, ",");
 459		if (!tok)
 460			break;
 461
 462		tok_end = strstr(tok, "-");
 463
 464		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 465		if (!tok_end) {
 466			/* Single CPU specified: */
 467			bind_cpu_0 = bind_cpu_1 = atol(tok);
 468		} else {
 469			/* CPU range specified (for example: "5-11"): */
 470			bind_cpu_0 = atol(tok);
 471			bind_cpu_1 = atol(tok_end + 1);
 472		}
 473
 474		step = 1;
 475		tok_step = strstr(tok, "#");
 476		if (tok_step) {
 477			step = atol(tok_step + 1);
 478			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 479		}
 480
 481		/*
 482		 * Mask length.
 483		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 484		 * where the _4 means the next 4 CPUs are allowed.
 485		 */
 486		bind_len = 1;
 487		tok_len = strstr(tok, "_");
 488		if (tok_len) {
 489			bind_len = atol(tok_len + 1);
 490			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 491		}
 492
 493		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 494		mul = 1;
 495		tok_mul = strstr(tok, "x");
 496		if (tok_mul) {
 497			mul = atol(tok_mul + 1);
 498			BUG_ON(mul <= 0);
 499		}
 500
 501		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 502
 503		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 504			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 505			return -1;
 506		}
 507
 508		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 509		BUG_ON(bind_cpu_0 > bind_cpu_1);
 510
 511		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 512			int i;
 513
 514			for (i = 0; i < mul; i++) {
 515				int cpu;
 516
 517				if (t >= g->p.nr_tasks) {
 518					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 519					goto out;
 520				}
 521				td = g->threads + t;
 522
 523				if (t)
 524					tprintf(",");
 525				if (bind_len > 1) {
 526					tprintf("%2d/%d", bind_cpu, bind_len);
 527				} else {
 528					tprintf("%2d", bind_cpu);
 529				}
 530
 531				CPU_ZERO(&td->bind_cpumask);
 532				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 533					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 534					CPU_SET(cpu, &td->bind_cpumask);
 535				}
 536				t++;
 537			}
 538		}
 539	}
 540out:
 541
 542	tprintf("\n");
 543
 544	if (t < g->p.nr_tasks)
 545		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 546
 547	free(str0);
 548	return 0;
 549}
 550
 551static int parse_cpus_opt(const struct option *opt __maybe_unused,
 552			  const char *arg, int unset __maybe_unused)
 553{
 554	if (!arg)
 555		return -1;
 556
 557	return parse_cpu_list(arg);
 558}
 559
 560static int parse_node_list(const char *arg)
 561{
 562	p0.node_list_str = strdup(arg);
 563
 564	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 565
 566	return 0;
 567}
 568
 569static int parse_setup_node_list(void)
 570{
 571	struct thread_data *td;
 572	char *str0, *str;
 573	int t;
 574
 575	if (!g->p.node_list_str)
 576		return 0;
 577
 578	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 579
 580	str0 = str = strdup(g->p.node_list_str);
 581	t = 0;
 582
 583	BUG_ON(!str);
 584
 585	tprintf("# binding tasks to NODEs:\n");
 586	tprintf("# ");
 587
 588	while (true) {
 589		int bind_node, bind_node_0, bind_node_1;
 590		char *tok, *tok_end, *tok_step, *tok_mul;
 591		int step;
 592		int mul;
 593
 594		tok = strsep(&str, ",");
 595		if (!tok)
 596			break;
 597
 598		tok_end = strstr(tok, "-");
 599
 600		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 601		if (!tok_end) {
 602			/* Single NODE specified: */
 603			bind_node_0 = bind_node_1 = atol(tok);
 604		} else {
 605			/* NODE range specified (for example: "5-11"): */
 606			bind_node_0 = atol(tok);
 607			bind_node_1 = atol(tok_end + 1);
 608		}
 609
 610		step = 1;
 611		tok_step = strstr(tok, "#");
 612		if (tok_step) {
 613			step = atol(tok_step + 1);
 614			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 615		}
 616
 617		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 618		mul = 1;
 619		tok_mul = strstr(tok, "x");
 620		if (tok_mul) {
 621			mul = atol(tok_mul + 1);
 622			BUG_ON(mul <= 0);
 623		}
 624
 625		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 626
 627		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 628			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 629			return -1;
 630		}
 631
 632		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 633		BUG_ON(bind_node_0 > bind_node_1);
 634
 635		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 636			int i;
 637
 638			for (i = 0; i < mul; i++) {
 639				if (t >= g->p.nr_tasks) {
 640					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 641					goto out;
 642				}
 643				td = g->threads + t;
 644
 645				if (!t)
 646					tprintf(" %2d", bind_node);
 647				else
 648					tprintf(",%2d", bind_node);
 649
 650				td->bind_node = bind_node;
 651				t++;
 652			}
 653		}
 654	}
 655out:
 656
 657	tprintf("\n");
 658
 659	if (t < g->p.nr_tasks)
 660		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 661
 662	free(str0);
 663	return 0;
 664}
 665
 666static int parse_nodes_opt(const struct option *opt __maybe_unused,
 667			  const char *arg, int unset __maybe_unused)
 668{
 669	if (!arg)
 670		return -1;
 671
 672	return parse_node_list(arg);
 673
 674	return 0;
 675}
 676
 677#define BIT(x) (1ul << x)
 678
 679static inline uint32_t lfsr_32(uint32_t lfsr)
 680{
 681	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 682	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 683}
 684
 685/*
 686 * Make sure there's real data dependency to RAM (when read
 687 * accesses are enabled), so the compiler, the CPU and the
 688 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 689 * accesses:
 690 */
 691static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
 692{
 693	if (g->p.data_reads)
 694		val += *data;
 695	if (g->p.data_writes)
 696		*data = val + 1;
 697	return val;
 698}
 699
 700/*
 701 * The worker process does two types of work, a forwards going
 702 * loop and a backwards going loop.
 703 *
 704 * We do this so that on multiprocessor systems we do not create
 705 * a 'train' of processing, with highly synchronized processes,
 706 * skewing the whole benchmark.
 707 */
 708static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 709{
 710	long words = bytes/sizeof(u64);
 711	u64 *data = (void *)__data;
 712	long chunk_0, chunk_1;
 713	u64 *d0, *d, *d1;
 714	long off;
 715	long i;
 716
 717	BUG_ON(!data && words);
 718	BUG_ON(data && !words);
 719
 720	if (!data)
 721		return val;
 722
 723	/* Very simple memset() work variant: */
 724	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 725		bzero(data, bytes);
 726		return val;
 727	}
 728
 729	/* Spread out by PID/TID nr and by loop nr: */
 730	chunk_0 = words/nr_max;
 731	chunk_1 = words/g->p.nr_loops;
 732	off = nr*chunk_0 + loop*chunk_1;
 733
 734	while (off >= words)
 735		off -= words;
 736
 737	if (g->p.data_rand_walk) {
 738		u32 lfsr = nr + loop + val;
 739		int j;
 740
 741		for (i = 0; i < words/1024; i++) {
 742			long start, end;
 743
 744			lfsr = lfsr_32(lfsr);
 745
 746			start = lfsr % words;
 747			end = min(start + 1024, words-1);
 748
 749			if (g->p.data_zero_memset) {
 750				bzero(data + start, (end-start) * sizeof(u64));
 751			} else {
 752				for (j = start; j < end; j++)
 753					val = access_data(data + j, val);
 754			}
 755		}
 756	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 757
 758		d0 = data + off;
 759		d  = data + off + 1;
 760		d1 = data + words;
 761
 762		/* Process data forwards: */
 763		for (;;) {
 764			if (unlikely(d >= d1))
 765				d = data;
 766			if (unlikely(d == d0))
 767				break;
 768
 769			val = access_data(d, val);
 770
 771			d++;
 772		}
 773	} else {
 774		/* Process data backwards: */
 775
 776		d0 = data + off;
 777		d  = data + off - 1;
 778		d1 = data + words;
 779
 780		/* Process data forwards: */
 781		for (;;) {
 782			if (unlikely(d < data))
 783				d = data + words-1;
 784			if (unlikely(d == d0))
 785				break;
 786
 787			val = access_data(d, val);
 788
 789			d--;
 790		}
 791	}
 792
 793	return val;
 794}
 795
 796static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 797{
 798	unsigned int cpu;
 799
 800	cpu = sched_getcpu();
 801
 802	g->threads[task_nr].curr_cpu = cpu;
 803	prctl(0, bytes_worked);
 804}
 805
 806#define MAX_NR_NODES	64
 807
 808/*
 809 * Count the number of nodes a process's threads
 810 * are spread out on.
 811 *
 812 * A count of 1 means that the process is compressed
 813 * to a single node. A count of g->p.nr_nodes means it's
 814 * spread out on the whole system.
 815 */
 816static int count_process_nodes(int process_nr)
 817{
 818	char node_present[MAX_NR_NODES] = { 0, };
 819	int nodes;
 820	int n, t;
 821
 822	for (t = 0; t < g->p.nr_threads; t++) {
 823		struct thread_data *td;
 824		int task_nr;
 825		int node;
 826
 827		task_nr = process_nr*g->p.nr_threads + t;
 828		td = g->threads + task_nr;
 829
 830		node = numa_node_of_cpu(td->curr_cpu);
 
 
 
 831		node_present[node] = 1;
 832	}
 833
 834	nodes = 0;
 835
 836	for (n = 0; n < MAX_NR_NODES; n++)
 837		nodes += node_present[n];
 838
 839	return nodes;
 840}
 841
 842/*
 843 * Count the number of distinct process-threads a node contains.
 844 *
 845 * A count of 1 means that the node contains only a single
 846 * process. If all nodes on the system contain at most one
 847 * process then we are well-converged.
 848 */
 849static int count_node_processes(int node)
 850{
 851	int processes = 0;
 852	int t, p;
 853
 854	for (p = 0; p < g->p.nr_proc; p++) {
 855		for (t = 0; t < g->p.nr_threads; t++) {
 856			struct thread_data *td;
 857			int task_nr;
 858			int n;
 859
 860			task_nr = p*g->p.nr_threads + t;
 861			td = g->threads + task_nr;
 862
 863			n = numa_node_of_cpu(td->curr_cpu);
 864			if (n == node) {
 865				processes++;
 866				break;
 867			}
 868		}
 869	}
 870
 871	return processes;
 872}
 873
 874static void calc_convergence_compression(int *strong)
 875{
 876	unsigned int nodes_min, nodes_max;
 877	int p;
 878
 879	nodes_min = -1;
 880	nodes_max =  0;
 881
 882	for (p = 0; p < g->p.nr_proc; p++) {
 883		unsigned int nodes = count_process_nodes(p);
 884
 
 
 
 
 
 885		nodes_min = min(nodes, nodes_min);
 886		nodes_max = max(nodes, nodes_max);
 887	}
 888
 889	/* Strong convergence: all threads compress on a single node: */
 890	if (nodes_min == 1 && nodes_max == 1) {
 891		*strong = 1;
 892	} else {
 893		*strong = 0;
 894		tprintf(" {%d-%d}", nodes_min, nodes_max);
 895	}
 896}
 897
 898static void calc_convergence(double runtime_ns_max, double *convergence)
 899{
 900	unsigned int loops_done_min, loops_done_max;
 901	int process_groups;
 902	int nodes[MAX_NR_NODES];
 903	int distance;
 904	int nr_min;
 905	int nr_max;
 906	int strong;
 907	int sum;
 908	int nr;
 909	int node;
 910	int cpu;
 911	int t;
 912
 913	if (!g->p.show_convergence && !g->p.measure_convergence)
 914		return;
 915
 916	for (node = 0; node < g->p.nr_nodes; node++)
 917		nodes[node] = 0;
 918
 919	loops_done_min = -1;
 920	loops_done_max = 0;
 921
 922	for (t = 0; t < g->p.nr_tasks; t++) {
 923		struct thread_data *td = g->threads + t;
 924		unsigned int loops_done;
 925
 926		cpu = td->curr_cpu;
 927
 928		/* Not all threads have written it yet: */
 929		if (cpu < 0)
 930			continue;
 931
 932		node = numa_node_of_cpu(cpu);
 933
 934		nodes[node]++;
 935
 936		loops_done = td->loops_done;
 937		loops_done_min = min(loops_done, loops_done_min);
 938		loops_done_max = max(loops_done, loops_done_max);
 939	}
 940
 941	nr_max = 0;
 942	nr_min = g->p.nr_tasks;
 943	sum = 0;
 944
 945	for (node = 0; node < g->p.nr_nodes; node++) {
 946		nr = nodes[node];
 947		nr_min = min(nr, nr_min);
 948		nr_max = max(nr, nr_max);
 949		sum += nr;
 950	}
 951	BUG_ON(nr_min > nr_max);
 952
 953	BUG_ON(sum > g->p.nr_tasks);
 954
 955	if (0 && (sum < g->p.nr_tasks))
 956		return;
 957
 958	/*
 959	 * Count the number of distinct process groups present
 960	 * on nodes - when we are converged this will decrease
 961	 * to g->p.nr_proc:
 962	 */
 963	process_groups = 0;
 964
 965	for (node = 0; node < g->p.nr_nodes; node++) {
 966		int processes = count_node_processes(node);
 967
 968		nr = nodes[node];
 969		tprintf(" %2d/%-2d", nr, processes);
 970
 971		process_groups += processes;
 972	}
 973
 974	distance = nr_max - nr_min;
 975
 976	tprintf(" [%2d/%-2d]", distance, process_groups);
 977
 978	tprintf(" l:%3d-%-3d (%3d)",
 979		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
 980
 981	if (loops_done_min && loops_done_max) {
 982		double skew = 1.0 - (double)loops_done_min/loops_done_max;
 983
 984		tprintf(" [%4.1f%%]", skew * 100.0);
 985	}
 986
 987	calc_convergence_compression(&strong);
 988
 989	if (strong && process_groups == g->p.nr_proc) {
 990		if (!*convergence) {
 991			*convergence = runtime_ns_max;
 992			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
 993			if (g->p.measure_convergence) {
 994				g->all_converged = true;
 995				g->stop_work = true;
 996			}
 997		}
 998	} else {
 999		if (*convergence) {
1000			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1001			*convergence = 0;
1002		}
1003		tprintf("\n");
1004	}
1005}
1006
1007static void show_summary(double runtime_ns_max, int l, double *convergence)
1008{
1009	tprintf("\r #  %5.1f%%  [%.1f mins]",
1010		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1011
1012	calc_convergence(runtime_ns_max, convergence);
1013
1014	if (g->p.show_details >= 0)
1015		fflush(stdout);
1016}
1017
1018static void *worker_thread(void *__tdata)
1019{
1020	struct thread_data *td = __tdata;
1021	struct timeval start0, start, stop, diff;
1022	int process_nr = td->process_nr;
1023	int thread_nr = td->thread_nr;
1024	unsigned long last_perturbance;
1025	int task_nr = td->task_nr;
1026	int details = g->p.show_details;
1027	int first_task, last_task;
1028	double convergence = 0;
1029	u64 val = td->val;
1030	double runtime_ns_max;
1031	u8 *global_data;
1032	u8 *process_data;
1033	u8 *thread_data;
1034	u64 bytes_done;
1035	long work_done;
1036	u32 l;
 
1037
1038	bind_to_cpumask(td->bind_cpumask);
1039	bind_to_memnode(td->bind_node);
1040
1041	set_taskname("thread %d/%d", process_nr, thread_nr);
1042
1043	global_data = g->data;
1044	process_data = td->process_data;
1045	thread_data = setup_private_data(g->p.bytes_thread);
1046
1047	bytes_done = 0;
1048
1049	last_task = 0;
1050	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1051		last_task = 1;
1052
1053	first_task = 0;
1054	if (process_nr == 0 && thread_nr == 0)
1055		first_task = 1;
1056
1057	if (details >= 2) {
1058		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1059			process_nr, thread_nr, global_data, process_data, thread_data);
1060	}
1061
1062	if (g->p.serialize_startup) {
1063		pthread_mutex_lock(&g->startup_mutex);
1064		g->nr_tasks_started++;
1065		pthread_mutex_unlock(&g->startup_mutex);
1066
1067		/* Here we will wait for the main process to start us all at once: */
1068		pthread_mutex_lock(&g->start_work_mutex);
1069		g->nr_tasks_working++;
1070
1071		/* Last one wake the main process: */
1072		if (g->nr_tasks_working == g->p.nr_tasks)
1073			pthread_mutex_unlock(&g->startup_done_mutex);
1074
1075		pthread_mutex_unlock(&g->start_work_mutex);
1076	}
1077
1078	gettimeofday(&start0, NULL);
1079
1080	start = stop = start0;
1081	last_perturbance = start.tv_sec;
1082
1083	for (l = 0; l < g->p.nr_loops; l++) {
1084		start = stop;
1085
1086		if (g->stop_work)
1087			break;
1088
1089		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1090		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1091		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1092
1093		if (g->p.sleep_usecs) {
1094			pthread_mutex_lock(td->process_lock);
1095			usleep(g->p.sleep_usecs);
1096			pthread_mutex_unlock(td->process_lock);
1097		}
1098		/*
1099		 * Amount of work to be done under a process-global lock:
1100		 */
1101		if (g->p.bytes_process_locked) {
1102			pthread_mutex_lock(td->process_lock);
1103			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1104			pthread_mutex_unlock(td->process_lock);
1105		}
1106
1107		work_done = g->p.bytes_global + g->p.bytes_process +
1108			    g->p.bytes_process_locked + g->p.bytes_thread;
1109
1110		update_curr_cpu(task_nr, work_done);
1111		bytes_done += work_done;
1112
1113		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1114			continue;
1115
1116		td->loops_done = l;
1117
1118		gettimeofday(&stop, NULL);
1119
1120		/* Check whether our max runtime timed out: */
1121		if (g->p.nr_secs) {
1122			timersub(&stop, &start0, &diff);
1123			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1124				g->stop_work = true;
1125				break;
1126			}
1127		}
1128
1129		/* Update the summary at most once per second: */
1130		if (start.tv_sec == stop.tv_sec)
1131			continue;
1132
1133		/*
1134		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1135		 * by migrating to CPU#0:
1136		 */
1137		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1138			cpu_set_t orig_mask;
1139			int target_cpu;
1140			int this_cpu;
1141
1142			last_perturbance = stop.tv_sec;
1143
1144			/*
1145			 * Depending on where we are running, move into
1146			 * the other half of the system, to create some
1147			 * real disturbance:
1148			 */
1149			this_cpu = g->threads[task_nr].curr_cpu;
1150			if (this_cpu < g->p.nr_cpus/2)
1151				target_cpu = g->p.nr_cpus-1;
1152			else
1153				target_cpu = 0;
1154
1155			orig_mask = bind_to_cpu(target_cpu);
1156
1157			/* Here we are running on the target CPU already */
1158			if (details >= 1)
1159				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1160
1161			bind_to_cpumask(orig_mask);
1162		}
1163
1164		if (details >= 3) {
1165			timersub(&stop, &start, &diff);
1166			runtime_ns_max = diff.tv_sec * 1000000000;
1167			runtime_ns_max += diff.tv_usec * 1000;
1168
1169			if (details >= 0) {
1170				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1171					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1172			}
1173			fflush(stdout);
1174		}
1175		if (!last_task)
1176			continue;
1177
1178		timersub(&stop, &start0, &diff);
1179		runtime_ns_max = diff.tv_sec * 1000000000ULL;
1180		runtime_ns_max += diff.tv_usec * 1000ULL;
1181
1182		show_summary(runtime_ns_max, l, &convergence);
1183	}
1184
1185	gettimeofday(&stop, NULL);
1186	timersub(&stop, &start0, &diff);
1187	td->runtime_ns = diff.tv_sec * 1000000000ULL;
1188	td->runtime_ns += diff.tv_usec * 1000ULL;
 
 
 
 
 
 
 
1189
1190	free_data(thread_data, g->p.bytes_thread);
1191
1192	pthread_mutex_lock(&g->stop_work_mutex);
1193	g->bytes_done += bytes_done;
1194	pthread_mutex_unlock(&g->stop_work_mutex);
1195
1196	return NULL;
1197}
1198
1199/*
1200 * A worker process starts a couple of threads:
1201 */
1202static void worker_process(int process_nr)
1203{
1204	pthread_mutex_t process_lock;
1205	struct thread_data *td;
1206	pthread_t *pthreads;
1207	u8 *process_data;
1208	int task_nr;
1209	int ret;
1210	int t;
1211
1212	pthread_mutex_init(&process_lock, NULL);
1213	set_taskname("process %d", process_nr);
1214
1215	/*
1216	 * Pick up the memory policy and the CPU binding of our first thread,
1217	 * so that we initialize memory accordingly:
1218	 */
1219	task_nr = process_nr*g->p.nr_threads;
1220	td = g->threads + task_nr;
1221
1222	bind_to_memnode(td->bind_node);
1223	bind_to_cpumask(td->bind_cpumask);
1224
1225	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1226	process_data = setup_private_data(g->p.bytes_process);
1227
1228	if (g->p.show_details >= 3) {
1229		printf(" # process %2d global mem: %p, process mem: %p\n",
1230			process_nr, g->data, process_data);
1231	}
1232
1233	for (t = 0; t < g->p.nr_threads; t++) {
1234		task_nr = process_nr*g->p.nr_threads + t;
1235		td = g->threads + task_nr;
1236
1237		td->process_data = process_data;
1238		td->process_nr   = process_nr;
1239		td->thread_nr    = t;
1240		td->task_nr	 = task_nr;
1241		td->val          = rand();
1242		td->curr_cpu	 = -1;
1243		td->process_lock = &process_lock;
1244
1245		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1246		BUG_ON(ret);
1247	}
1248
1249	for (t = 0; t < g->p.nr_threads; t++) {
1250                ret = pthread_join(pthreads[t], NULL);
1251		BUG_ON(ret);
1252	}
1253
1254	free_data(process_data, g->p.bytes_process);
1255	free(pthreads);
1256}
1257
1258static void print_summary(void)
1259{
1260	if (g->p.show_details < 0)
1261		return;
1262
1263	printf("\n ###\n");
1264	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1265		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1266	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1267			g->p.nr_loops, g->p.bytes_global/1024/1024);
1268	printf(" #      %5dx %5ldMB process shared mem operations\n",
1269			g->p.nr_loops, g->p.bytes_process/1024/1024);
1270	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1271			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1272
1273	printf(" ###\n");
1274
1275	printf("\n ###\n"); fflush(stdout);
1276}
1277
1278static void init_thread_data(void)
1279{
1280	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1281	int t;
1282
1283	g->threads = zalloc_shared_data(size);
1284
1285	for (t = 0; t < g->p.nr_tasks; t++) {
1286		struct thread_data *td = g->threads + t;
1287		int cpu;
1288
1289		/* Allow all nodes by default: */
1290		td->bind_node = -1;
1291
1292		/* Allow all CPUs by default: */
1293		CPU_ZERO(&td->bind_cpumask);
1294		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1295			CPU_SET(cpu, &td->bind_cpumask);
1296	}
1297}
1298
1299static void deinit_thread_data(void)
1300{
1301	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1302
1303	free_data(g->threads, size);
1304}
1305
1306static int init(void)
1307{
1308	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1309
1310	/* Copy over options: */
1311	g->p = p0;
1312
1313	g->p.nr_cpus = numa_num_configured_cpus();
1314
1315	g->p.nr_nodes = numa_max_node() + 1;
1316
1317	/* char array in count_process_nodes(): */
1318	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1319
1320	if (g->p.show_quiet && !g->p.show_details)
1321		g->p.show_details = -1;
1322
1323	/* Some memory should be specified: */
1324	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1325		return -1;
1326
1327	if (g->p.mb_global_str) {
1328		g->p.mb_global = atof(g->p.mb_global_str);
1329		BUG_ON(g->p.mb_global < 0);
1330	}
1331
1332	if (g->p.mb_proc_str) {
1333		g->p.mb_proc = atof(g->p.mb_proc_str);
1334		BUG_ON(g->p.mb_proc < 0);
1335	}
1336
1337	if (g->p.mb_proc_locked_str) {
1338		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1339		BUG_ON(g->p.mb_proc_locked < 0);
1340		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1341	}
1342
1343	if (g->p.mb_thread_str) {
1344		g->p.mb_thread = atof(g->p.mb_thread_str);
1345		BUG_ON(g->p.mb_thread < 0);
1346	}
1347
1348	BUG_ON(g->p.nr_threads <= 0);
1349	BUG_ON(g->p.nr_proc <= 0);
1350
1351	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1352
1353	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1354	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1355	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1356	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1357
1358	g->data = setup_shared_data(g->p.bytes_global);
1359
1360	/* Startup serialization: */
1361	init_global_mutex(&g->start_work_mutex);
1362	init_global_mutex(&g->startup_mutex);
1363	init_global_mutex(&g->startup_done_mutex);
1364	init_global_mutex(&g->stop_work_mutex);
1365
1366	init_thread_data();
1367
1368	tprintf("#\n");
1369	if (parse_setup_cpu_list() || parse_setup_node_list())
1370		return -1;
1371	tprintf("#\n");
1372
1373	print_summary();
1374
1375	return 0;
1376}
1377
1378static void deinit(void)
1379{
1380	free_data(g->data, g->p.bytes_global);
1381	g->data = NULL;
1382
1383	deinit_thread_data();
1384
1385	free_data(g, sizeof(*g));
1386	g = NULL;
1387}
1388
1389/*
1390 * Print a short or long result, depending on the verbosity setting:
1391 */
1392static void print_res(const char *name, double val,
1393		      const char *txt_unit, const char *txt_short, const char *txt_long)
1394{
1395	if (!name)
1396		name = "main,";
1397
1398	if (g->p.show_quiet)
1399		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1400	else
1401		printf(" %14.3f %s\n", val, txt_long);
1402}
1403
1404static int __bench_numa(const char *name)
1405{
1406	struct timeval start, stop, diff;
1407	u64 runtime_ns_min, runtime_ns_sum;
1408	pid_t *pids, pid, wpid;
1409	double delta_runtime;
1410	double runtime_avg;
1411	double runtime_sec_max;
1412	double runtime_sec_min;
1413	int wait_stat;
1414	double bytes;
1415	int i, t;
1416
1417	if (init())
1418		return -1;
1419
1420	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1421	pid = -1;
1422
1423	/* All threads try to acquire it, this way we can wait for them to start up: */
1424	pthread_mutex_lock(&g->start_work_mutex);
1425
1426	if (g->p.serialize_startup) {
1427		tprintf(" #\n");
1428		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1429	}
1430
1431	gettimeofday(&start, NULL);
1432
1433	for (i = 0; i < g->p.nr_proc; i++) {
1434		pid = fork();
1435		dprintf(" # process %2d: PID %d\n", i, pid);
1436
1437		BUG_ON(pid < 0);
1438		if (!pid) {
1439			/* Child process: */
1440			worker_process(i);
1441
1442			exit(0);
1443		}
1444		pids[i] = pid;
1445
1446	}
1447	/* Wait for all the threads to start up: */
1448	while (g->nr_tasks_started != g->p.nr_tasks)
1449		usleep(1000);
1450
1451	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1452
1453	if (g->p.serialize_startup) {
1454		double startup_sec;
1455
1456		pthread_mutex_lock(&g->startup_done_mutex);
1457
1458		/* This will start all threads: */
1459		pthread_mutex_unlock(&g->start_work_mutex);
1460
1461		/* This mutex is locked - the last started thread will wake us: */
1462		pthread_mutex_lock(&g->startup_done_mutex);
1463
1464		gettimeofday(&stop, NULL);
1465
1466		timersub(&stop, &start, &diff);
1467
1468		startup_sec = diff.tv_sec * 1000000000.0;
1469		startup_sec += diff.tv_usec * 1000.0;
1470		startup_sec /= 1e9;
1471
1472		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1473		tprintf(" #\n");
1474
1475		start = stop;
1476		pthread_mutex_unlock(&g->startup_done_mutex);
1477	} else {
1478		gettimeofday(&start, NULL);
1479	}
1480
1481	/* Parent process: */
1482
1483
1484	for (i = 0; i < g->p.nr_proc; i++) {
1485		wpid = waitpid(pids[i], &wait_stat, 0);
1486		BUG_ON(wpid < 0);
1487		BUG_ON(!WIFEXITED(wait_stat));
1488
1489	}
1490
1491	runtime_ns_sum = 0;
1492	runtime_ns_min = -1LL;
1493
1494	for (t = 0; t < g->p.nr_tasks; t++) {
1495		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1496
1497		runtime_ns_sum += thread_runtime_ns;
1498		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1499	}
1500
1501	gettimeofday(&stop, NULL);
1502	timersub(&stop, &start, &diff);
1503
1504	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1505
1506	tprintf("\n ###\n");
1507	tprintf("\n");
1508
1509	runtime_sec_max = diff.tv_sec * 1000000000.0;
1510	runtime_sec_max += diff.tv_usec * 1000.0;
1511	runtime_sec_max /= 1e9;
1512
1513	runtime_sec_min = runtime_ns_min/1e9;
1514
1515	bytes = g->bytes_done;
1516	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1517
1518	if (g->p.measure_convergence) {
1519		print_res(name, runtime_sec_max,
1520			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1521	}
1522
1523	print_res(name, runtime_sec_max,
1524		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1525
1526	print_res(name, runtime_sec_min,
1527		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1528
1529	print_res(name, runtime_avg,
1530		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1531
1532	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1533	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1534		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1535
1536	print_res(name, bytes / g->p.nr_tasks / 1e9,
1537		"GB,", "data/thread",		"GB data processed, per thread");
1538
1539	print_res(name, bytes / 1e9,
1540		"GB,", "data-total",		"GB data processed, total");
1541
1542	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1543		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1544
1545	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1546		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1547
1548	print_res(name, bytes / runtime_sec_max / 1e9,
1549		"GB/sec,", "total-speed",	"GB/sec total speed");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550
1551	free(pids);
1552
1553	deinit();
1554
1555	return 0;
1556}
1557
1558#define MAX_ARGS 50
1559
1560static int command_size(const char **argv)
1561{
1562	int size = 0;
1563
1564	while (*argv) {
1565		size++;
1566		argv++;
1567	}
1568
1569	BUG_ON(size >= MAX_ARGS);
1570
1571	return size;
1572}
1573
1574static void init_params(struct params *p, const char *name, int argc, const char **argv)
1575{
1576	int i;
1577
1578	printf("\n # Running %s \"perf bench numa", name);
1579
1580	for (i = 0; i < argc; i++)
1581		printf(" %s", argv[i]);
1582
1583	printf("\"\n");
1584
1585	memset(p, 0, sizeof(*p));
1586
1587	/* Initialize nonzero defaults: */
1588
1589	p->serialize_startup		= 1;
1590	p->data_reads			= true;
1591	p->data_writes			= true;
1592	p->data_backwards		= true;
1593	p->data_rand_walk		= true;
1594	p->nr_loops			= -1;
1595	p->init_random			= true;
1596	p->mb_global_str		= "1";
1597	p->nr_proc			= 1;
1598	p->nr_threads			= 1;
1599	p->nr_secs			= 5;
1600	p->run_all			= argc == 1;
1601}
1602
1603static int run_bench_numa(const char *name, const char **argv)
1604{
1605	int argc = command_size(argv);
1606
1607	init_params(&p0, name, argc, argv);
1608	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1609	if (argc)
1610		goto err;
1611
1612	if (__bench_numa(name))
1613		goto err;
1614
1615	return 0;
1616
1617err:
1618	return -1;
1619}
1620
1621#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1622#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1623
1624#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1625#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1626
1627#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1628#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1629
1630/*
1631 * The built-in test-suite executed by "perf bench numa -a".
1632 *
1633 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1634 */
1635static const char *tests[][MAX_ARGS] = {
1636   /* Basic single-stream NUMA bandwidth measurements: */
1637   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1638			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1639   { "RAM-bw-local-NOTHP,",
1640			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1641			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1642   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1643			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1644
1645   /* 2-stream NUMA bandwidth measurements: */
1646   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1647			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1648   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1649		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1650
1651   /* Cross-stream NUMA bandwidth measurement: */
1652   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1653		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1654
1655   /* Convergence latency measurements: */
1656   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1657   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1658   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1659   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1660   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1661   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1662   { " 4x4-convergence-NOTHP,",
1663			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1664   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1665   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1666   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1667   { " 8x4-convergence-NOTHP,",
1668			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1669   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1670   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1671   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1672   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1673   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1674
1675   /* Various NUMA process/thread layout bandwidth measurements: */
1676   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1677   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1678   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1679   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1680   { " 8x1-bw-process-NOTHP,",
1681			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1682   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1683
1684   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1685   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1686   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1687   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1688
1689   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1690   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1691   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1692   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1693   { " 4x8-bw-thread-NOTHP,",
1694			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1695   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1696   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1697
1698   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1699   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1700
1701   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1702   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1703   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1704   { "numa01-bw-thread-NOTHP,",
1705			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1706};
1707
1708static int bench_all(void)
1709{
1710	int nr = ARRAY_SIZE(tests);
1711	int ret;
1712	int i;
1713
1714	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1715	BUG_ON(ret < 0);
1716
1717	for (i = 0; i < nr; i++) {
1718		run_bench_numa(tests[i][0], tests[i] + 1);
1719	}
1720
1721	printf("\n");
1722
1723	return 0;
1724}
1725
1726int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1727{
1728	init_params(&p0, "main,", argc, argv);
1729	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1730	if (argc)
1731		goto err;
1732
1733	if (p0.run_all)
1734		return bench_all();
1735
1736	if (__bench_numa(NULL))
1737		goto err;
1738
1739	return 0;
1740
1741err:
1742	usage_with_options(numa_usage, options);
1743	return -1;
1744}
v4.10.11
   1/*
   2 * numa.c
   3 *
   4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   5 */
   6
   7/* For the CLR_() macros */
   8#include <pthread.h>
   9
  10#include "../perf.h"
  11#include "../builtin.h"
  12#include "../util/util.h"
  13#include <subcmd/parse-options.h>
  14#include "../util/cloexec.h"
  15
  16#include "bench.h"
  17
  18#include <errno.h>
  19#include <sched.h>
  20#include <stdio.h>
  21#include <assert.h>
  22#include <malloc.h>
  23#include <signal.h>
  24#include <stdlib.h>
  25#include <string.h>
  26#include <unistd.h>
 
  27#include <sys/mman.h>
  28#include <sys/time.h>
  29#include <sys/resource.h>
  30#include <sys/wait.h>
  31#include <sys/prctl.h>
  32#include <sys/types.h>
  33#include <linux/time64.h>
  34
  35#include <numa.h>
  36#include <numaif.h>
  37
  38/*
  39 * Regular printout to the terminal, supressed if -q is specified:
  40 */
  41#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  42
  43/*
  44 * Debug printf:
  45 */
  46#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  47
  48struct thread_data {
  49	int			curr_cpu;
  50	cpu_set_t		bind_cpumask;
  51	int			bind_node;
  52	u8			*process_data;
  53	int			process_nr;
  54	int			thread_nr;
  55	int			task_nr;
  56	unsigned int		loops_done;
  57	u64			val;
  58	u64			runtime_ns;
  59	u64			system_time_ns;
  60	u64			user_time_ns;
  61	double			speed_gbs;
  62	pthread_mutex_t		*process_lock;
  63};
  64
  65/* Parameters set by options: */
  66
  67struct params {
  68	/* Startup synchronization: */
  69	bool			serialize_startup;
  70
  71	/* Task hierarchy: */
  72	int			nr_proc;
  73	int			nr_threads;
  74
  75	/* Working set sizes: */
  76	const char		*mb_global_str;
  77	const char		*mb_proc_str;
  78	const char		*mb_proc_locked_str;
  79	const char		*mb_thread_str;
  80
  81	double			mb_global;
  82	double			mb_proc;
  83	double			mb_proc_locked;
  84	double			mb_thread;
  85
  86	/* Access patterns to the working set: */
  87	bool			data_reads;
  88	bool			data_writes;
  89	bool			data_backwards;
  90	bool			data_zero_memset;
  91	bool			data_rand_walk;
  92	u32			nr_loops;
  93	u32			nr_secs;
  94	u32			sleep_usecs;
  95
  96	/* Working set initialization: */
  97	bool			init_zero;
  98	bool			init_random;
  99	bool			init_cpu0;
 100
 101	/* Misc options: */
 102	int			show_details;
 103	int			run_all;
 104	int			thp;
 105
 106	long			bytes_global;
 107	long			bytes_process;
 108	long			bytes_process_locked;
 109	long			bytes_thread;
 110
 111	int			nr_tasks;
 112	bool			show_quiet;
 113
 114	bool			show_convergence;
 115	bool			measure_convergence;
 116
 117	int			perturb_secs;
 118	int			nr_cpus;
 119	int			nr_nodes;
 120
 121	/* Affinity options -C and -N: */
 122	char			*cpu_list_str;
 123	char			*node_list_str;
 124};
 125
 126
 127/* Global, read-writable area, accessible to all processes and threads: */
 128
 129struct global_info {
 130	u8			*data;
 131
 132	pthread_mutex_t		startup_mutex;
 133	int			nr_tasks_started;
 134
 135	pthread_mutex_t		startup_done_mutex;
 136
 137	pthread_mutex_t		start_work_mutex;
 138	int			nr_tasks_working;
 139
 140	pthread_mutex_t		stop_work_mutex;
 141	u64			bytes_done;
 142
 143	struct thread_data	*threads;
 144
 145	/* Convergence latency measurement: */
 146	bool			all_converged;
 147	bool			stop_work;
 148
 149	int			print_once;
 150
 151	struct params		p;
 152};
 153
 154static struct global_info	*g = NULL;
 155
 156static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 157static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 158
 159struct params p0;
 160
 161static const struct option options[] = {
 162	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 163	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 164
 165	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 166	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 167	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 168	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 169
 170	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 171	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 172	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 173
 174	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
 175	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 176	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 177	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 178	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 179
 180
 181	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 182	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 183	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 184	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 185
 186	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 187	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 188	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 189	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
 190	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 191	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
 192	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 193
 194	/* Special option string parsing callbacks: */
 195        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 196			"bind the first N tasks to these specific cpus (the rest is unbound)",
 197			parse_cpus_opt),
 198        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 199			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 200			parse_nodes_opt),
 201	OPT_END()
 202};
 203
 204static const char * const bench_numa_usage[] = {
 205	"perf bench numa <options>",
 206	NULL
 207};
 208
 209static const char * const numa_usage[] = {
 210	"perf bench numa mem [<options>]",
 211	NULL
 212};
 213
 214static cpu_set_t bind_to_cpu(int target_cpu)
 215{
 216	cpu_set_t orig_mask, mask;
 217	int ret;
 218
 219	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 220	BUG_ON(ret);
 221
 222	CPU_ZERO(&mask);
 223
 224	if (target_cpu == -1) {
 225		int cpu;
 226
 227		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 228			CPU_SET(cpu, &mask);
 229	} else {
 230		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 231		CPU_SET(target_cpu, &mask);
 232	}
 233
 234	ret = sched_setaffinity(0, sizeof(mask), &mask);
 235	BUG_ON(ret);
 236
 237	return orig_mask;
 238}
 239
 240static cpu_set_t bind_to_node(int target_node)
 241{
 242	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
 243	cpu_set_t orig_mask, mask;
 244	int cpu;
 245	int ret;
 246
 247	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
 248	BUG_ON(!cpus_per_node);
 249
 250	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 251	BUG_ON(ret);
 252
 253	CPU_ZERO(&mask);
 254
 255	if (target_node == -1) {
 256		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 257			CPU_SET(cpu, &mask);
 258	} else {
 259		int cpu_start = (target_node + 0) * cpus_per_node;
 260		int cpu_stop  = (target_node + 1) * cpus_per_node;
 261
 262		BUG_ON(cpu_stop > g->p.nr_cpus);
 263
 264		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 265			CPU_SET(cpu, &mask);
 266	}
 267
 268	ret = sched_setaffinity(0, sizeof(mask), &mask);
 269	BUG_ON(ret);
 270
 271	return orig_mask;
 272}
 273
 274static void bind_to_cpumask(cpu_set_t mask)
 275{
 276	int ret;
 277
 278	ret = sched_setaffinity(0, sizeof(mask), &mask);
 279	BUG_ON(ret);
 280}
 281
 282static void mempol_restore(void)
 283{
 284	int ret;
 285
 286	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 287
 288	BUG_ON(ret);
 289}
 290
 291static void bind_to_memnode(int node)
 292{
 293	unsigned long nodemask;
 294	int ret;
 295
 296	if (node == -1)
 297		return;
 298
 299	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 300	nodemask = 1L << node;
 301
 302	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 303	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 304
 305	BUG_ON(ret);
 306}
 307
 308#define HPSIZE (2*1024*1024)
 309
 310#define set_taskname(fmt...)				\
 311do {							\
 312	char name[20];					\
 313							\
 314	snprintf(name, 20, fmt);			\
 315	prctl(PR_SET_NAME, name);			\
 316} while (0)
 317
 318static u8 *alloc_data(ssize_t bytes0, int map_flags,
 319		      int init_zero, int init_cpu0, int thp, int init_random)
 320{
 321	cpu_set_t orig_mask;
 322	ssize_t bytes;
 323	u8 *buf;
 324	int ret;
 325
 326	if (!bytes0)
 327		return NULL;
 328
 329	/* Allocate and initialize all memory on CPU#0: */
 330	if (init_cpu0) {
 331		orig_mask = bind_to_node(0);
 332		bind_to_memnode(0);
 333	}
 334
 335	bytes = bytes0 + HPSIZE;
 336
 337	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 338	BUG_ON(buf == (void *)-1);
 339
 340	if (map_flags == MAP_PRIVATE) {
 341		if (thp > 0) {
 342			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 343			if (ret && !g->print_once) {
 344				g->print_once = 1;
 345				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 346			}
 347		}
 348		if (thp < 0) {
 349			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 350			if (ret && !g->print_once) {
 351				g->print_once = 1;
 352				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 353			}
 354		}
 355	}
 356
 357	if (init_zero) {
 358		bzero(buf, bytes);
 359	} else {
 360		/* Initialize random contents, different in each word: */
 361		if (init_random) {
 362			u64 *wbuf = (void *)buf;
 363			long off = rand();
 364			long i;
 365
 366			for (i = 0; i < bytes/8; i++)
 367				wbuf[i] = i + off;
 368		}
 369	}
 370
 371	/* Align to 2MB boundary: */
 372	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 373
 374	/* Restore affinity: */
 375	if (init_cpu0) {
 376		bind_to_cpumask(orig_mask);
 377		mempol_restore();
 378	}
 379
 380	return buf;
 381}
 382
 383static void free_data(void *data, ssize_t bytes)
 384{
 385	int ret;
 386
 387	if (!data)
 388		return;
 389
 390	ret = munmap(data, bytes);
 391	BUG_ON(ret);
 392}
 393
 394/*
 395 * Create a shared memory buffer that can be shared between processes, zeroed:
 396 */
 397static void * zalloc_shared_data(ssize_t bytes)
 398{
 399	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 400}
 401
 402/*
 403 * Create a shared memory buffer that can be shared between processes:
 404 */
 405static void * setup_shared_data(ssize_t bytes)
 406{
 407	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 408}
 409
 410/*
 411 * Allocate process-local memory - this will either be shared between
 412 * threads of this process, or only be accessed by this thread:
 413 */
 414static void * setup_private_data(ssize_t bytes)
 415{
 416	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 417}
 418
 419/*
 420 * Return a process-shared (global) mutex:
 421 */
 422static void init_global_mutex(pthread_mutex_t *mutex)
 423{
 424	pthread_mutexattr_t attr;
 425
 426	pthread_mutexattr_init(&attr);
 427	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 428	pthread_mutex_init(mutex, &attr);
 429}
 430
 431static int parse_cpu_list(const char *arg)
 432{
 433	p0.cpu_list_str = strdup(arg);
 434
 435	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 436
 437	return 0;
 438}
 439
 440static int parse_setup_cpu_list(void)
 441{
 442	struct thread_data *td;
 443	char *str0, *str;
 444	int t;
 445
 446	if (!g->p.cpu_list_str)
 447		return 0;
 448
 449	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 450
 451	str0 = str = strdup(g->p.cpu_list_str);
 452	t = 0;
 453
 454	BUG_ON(!str);
 455
 456	tprintf("# binding tasks to CPUs:\n");
 457	tprintf("#  ");
 458
 459	while (true) {
 460		int bind_cpu, bind_cpu_0, bind_cpu_1;
 461		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 462		int bind_len;
 463		int step;
 464		int mul;
 465
 466		tok = strsep(&str, ",");
 467		if (!tok)
 468			break;
 469
 470		tok_end = strstr(tok, "-");
 471
 472		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 473		if (!tok_end) {
 474			/* Single CPU specified: */
 475			bind_cpu_0 = bind_cpu_1 = atol(tok);
 476		} else {
 477			/* CPU range specified (for example: "5-11"): */
 478			bind_cpu_0 = atol(tok);
 479			bind_cpu_1 = atol(tok_end + 1);
 480		}
 481
 482		step = 1;
 483		tok_step = strstr(tok, "#");
 484		if (tok_step) {
 485			step = atol(tok_step + 1);
 486			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 487		}
 488
 489		/*
 490		 * Mask length.
 491		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 492		 * where the _4 means the next 4 CPUs are allowed.
 493		 */
 494		bind_len = 1;
 495		tok_len = strstr(tok, "_");
 496		if (tok_len) {
 497			bind_len = atol(tok_len + 1);
 498			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 499		}
 500
 501		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 502		mul = 1;
 503		tok_mul = strstr(tok, "x");
 504		if (tok_mul) {
 505			mul = atol(tok_mul + 1);
 506			BUG_ON(mul <= 0);
 507		}
 508
 509		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 510
 511		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 512			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 513			return -1;
 514		}
 515
 516		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 517		BUG_ON(bind_cpu_0 > bind_cpu_1);
 518
 519		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 520			int i;
 521
 522			for (i = 0; i < mul; i++) {
 523				int cpu;
 524
 525				if (t >= g->p.nr_tasks) {
 526					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 527					goto out;
 528				}
 529				td = g->threads + t;
 530
 531				if (t)
 532					tprintf(",");
 533				if (bind_len > 1) {
 534					tprintf("%2d/%d", bind_cpu, bind_len);
 535				} else {
 536					tprintf("%2d", bind_cpu);
 537				}
 538
 539				CPU_ZERO(&td->bind_cpumask);
 540				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 541					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 542					CPU_SET(cpu, &td->bind_cpumask);
 543				}
 544				t++;
 545			}
 546		}
 547	}
 548out:
 549
 550	tprintf("\n");
 551
 552	if (t < g->p.nr_tasks)
 553		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 554
 555	free(str0);
 556	return 0;
 557}
 558
 559static int parse_cpus_opt(const struct option *opt __maybe_unused,
 560			  const char *arg, int unset __maybe_unused)
 561{
 562	if (!arg)
 563		return -1;
 564
 565	return parse_cpu_list(arg);
 566}
 567
 568static int parse_node_list(const char *arg)
 569{
 570	p0.node_list_str = strdup(arg);
 571
 572	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 573
 574	return 0;
 575}
 576
 577static int parse_setup_node_list(void)
 578{
 579	struct thread_data *td;
 580	char *str0, *str;
 581	int t;
 582
 583	if (!g->p.node_list_str)
 584		return 0;
 585
 586	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 587
 588	str0 = str = strdup(g->p.node_list_str);
 589	t = 0;
 590
 591	BUG_ON(!str);
 592
 593	tprintf("# binding tasks to NODEs:\n");
 594	tprintf("# ");
 595
 596	while (true) {
 597		int bind_node, bind_node_0, bind_node_1;
 598		char *tok, *tok_end, *tok_step, *tok_mul;
 599		int step;
 600		int mul;
 601
 602		tok = strsep(&str, ",");
 603		if (!tok)
 604			break;
 605
 606		tok_end = strstr(tok, "-");
 607
 608		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 609		if (!tok_end) {
 610			/* Single NODE specified: */
 611			bind_node_0 = bind_node_1 = atol(tok);
 612		} else {
 613			/* NODE range specified (for example: "5-11"): */
 614			bind_node_0 = atol(tok);
 615			bind_node_1 = atol(tok_end + 1);
 616		}
 617
 618		step = 1;
 619		tok_step = strstr(tok, "#");
 620		if (tok_step) {
 621			step = atol(tok_step + 1);
 622			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 623		}
 624
 625		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 626		mul = 1;
 627		tok_mul = strstr(tok, "x");
 628		if (tok_mul) {
 629			mul = atol(tok_mul + 1);
 630			BUG_ON(mul <= 0);
 631		}
 632
 633		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 634
 635		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 636			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 637			return -1;
 638		}
 639
 640		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 641		BUG_ON(bind_node_0 > bind_node_1);
 642
 643		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 644			int i;
 645
 646			for (i = 0; i < mul; i++) {
 647				if (t >= g->p.nr_tasks) {
 648					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 649					goto out;
 650				}
 651				td = g->threads + t;
 652
 653				if (!t)
 654					tprintf(" %2d", bind_node);
 655				else
 656					tprintf(",%2d", bind_node);
 657
 658				td->bind_node = bind_node;
 659				t++;
 660			}
 661		}
 662	}
 663out:
 664
 665	tprintf("\n");
 666
 667	if (t < g->p.nr_tasks)
 668		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 669
 670	free(str0);
 671	return 0;
 672}
 673
 674static int parse_nodes_opt(const struct option *opt __maybe_unused,
 675			  const char *arg, int unset __maybe_unused)
 676{
 677	if (!arg)
 678		return -1;
 679
 680	return parse_node_list(arg);
 681
 682	return 0;
 683}
 684
 685#define BIT(x) (1ul << x)
 686
 687static inline uint32_t lfsr_32(uint32_t lfsr)
 688{
 689	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 690	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 691}
 692
 693/*
 694 * Make sure there's real data dependency to RAM (when read
 695 * accesses are enabled), so the compiler, the CPU and the
 696 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 697 * accesses:
 698 */
 699static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
 700{
 701	if (g->p.data_reads)
 702		val += *data;
 703	if (g->p.data_writes)
 704		*data = val + 1;
 705	return val;
 706}
 707
 708/*
 709 * The worker process does two types of work, a forwards going
 710 * loop and a backwards going loop.
 711 *
 712 * We do this so that on multiprocessor systems we do not create
 713 * a 'train' of processing, with highly synchronized processes,
 714 * skewing the whole benchmark.
 715 */
 716static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 717{
 718	long words = bytes/sizeof(u64);
 719	u64 *data = (void *)__data;
 720	long chunk_0, chunk_1;
 721	u64 *d0, *d, *d1;
 722	long off;
 723	long i;
 724
 725	BUG_ON(!data && words);
 726	BUG_ON(data && !words);
 727
 728	if (!data)
 729		return val;
 730
 731	/* Very simple memset() work variant: */
 732	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 733		bzero(data, bytes);
 734		return val;
 735	}
 736
 737	/* Spread out by PID/TID nr and by loop nr: */
 738	chunk_0 = words/nr_max;
 739	chunk_1 = words/g->p.nr_loops;
 740	off = nr*chunk_0 + loop*chunk_1;
 741
 742	while (off >= words)
 743		off -= words;
 744
 745	if (g->p.data_rand_walk) {
 746		u32 lfsr = nr + loop + val;
 747		int j;
 748
 749		for (i = 0; i < words/1024; i++) {
 750			long start, end;
 751
 752			lfsr = lfsr_32(lfsr);
 753
 754			start = lfsr % words;
 755			end = min(start + 1024, words-1);
 756
 757			if (g->p.data_zero_memset) {
 758				bzero(data + start, (end-start) * sizeof(u64));
 759			} else {
 760				for (j = start; j < end; j++)
 761					val = access_data(data + j, val);
 762			}
 763		}
 764	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 765
 766		d0 = data + off;
 767		d  = data + off + 1;
 768		d1 = data + words;
 769
 770		/* Process data forwards: */
 771		for (;;) {
 772			if (unlikely(d >= d1))
 773				d = data;
 774			if (unlikely(d == d0))
 775				break;
 776
 777			val = access_data(d, val);
 778
 779			d++;
 780		}
 781	} else {
 782		/* Process data backwards: */
 783
 784		d0 = data + off;
 785		d  = data + off - 1;
 786		d1 = data + words;
 787
 788		/* Process data forwards: */
 789		for (;;) {
 790			if (unlikely(d < data))
 791				d = data + words-1;
 792			if (unlikely(d == d0))
 793				break;
 794
 795			val = access_data(d, val);
 796
 797			d--;
 798		}
 799	}
 800
 801	return val;
 802}
 803
 804static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 805{
 806	unsigned int cpu;
 807
 808	cpu = sched_getcpu();
 809
 810	g->threads[task_nr].curr_cpu = cpu;
 811	prctl(0, bytes_worked);
 812}
 813
 814#define MAX_NR_NODES	64
 815
 816/*
 817 * Count the number of nodes a process's threads
 818 * are spread out on.
 819 *
 820 * A count of 1 means that the process is compressed
 821 * to a single node. A count of g->p.nr_nodes means it's
 822 * spread out on the whole system.
 823 */
 824static int count_process_nodes(int process_nr)
 825{
 826	char node_present[MAX_NR_NODES] = { 0, };
 827	int nodes;
 828	int n, t;
 829
 830	for (t = 0; t < g->p.nr_threads; t++) {
 831		struct thread_data *td;
 832		int task_nr;
 833		int node;
 834
 835		task_nr = process_nr*g->p.nr_threads + t;
 836		td = g->threads + task_nr;
 837
 838		node = numa_node_of_cpu(td->curr_cpu);
 839		if (node < 0) /* curr_cpu was likely still -1 */
 840			return 0;
 841
 842		node_present[node] = 1;
 843	}
 844
 845	nodes = 0;
 846
 847	for (n = 0; n < MAX_NR_NODES; n++)
 848		nodes += node_present[n];
 849
 850	return nodes;
 851}
 852
 853/*
 854 * Count the number of distinct process-threads a node contains.
 855 *
 856 * A count of 1 means that the node contains only a single
 857 * process. If all nodes on the system contain at most one
 858 * process then we are well-converged.
 859 */
 860static int count_node_processes(int node)
 861{
 862	int processes = 0;
 863	int t, p;
 864
 865	for (p = 0; p < g->p.nr_proc; p++) {
 866		for (t = 0; t < g->p.nr_threads; t++) {
 867			struct thread_data *td;
 868			int task_nr;
 869			int n;
 870
 871			task_nr = p*g->p.nr_threads + t;
 872			td = g->threads + task_nr;
 873
 874			n = numa_node_of_cpu(td->curr_cpu);
 875			if (n == node) {
 876				processes++;
 877				break;
 878			}
 879		}
 880	}
 881
 882	return processes;
 883}
 884
 885static void calc_convergence_compression(int *strong)
 886{
 887	unsigned int nodes_min, nodes_max;
 888	int p;
 889
 890	nodes_min = -1;
 891	nodes_max =  0;
 892
 893	for (p = 0; p < g->p.nr_proc; p++) {
 894		unsigned int nodes = count_process_nodes(p);
 895
 896		if (!nodes) {
 897			*strong = 0;
 898			return;
 899		}
 900
 901		nodes_min = min(nodes, nodes_min);
 902		nodes_max = max(nodes, nodes_max);
 903	}
 904
 905	/* Strong convergence: all threads compress on a single node: */
 906	if (nodes_min == 1 && nodes_max == 1) {
 907		*strong = 1;
 908	} else {
 909		*strong = 0;
 910		tprintf(" {%d-%d}", nodes_min, nodes_max);
 911	}
 912}
 913
 914static void calc_convergence(double runtime_ns_max, double *convergence)
 915{
 916	unsigned int loops_done_min, loops_done_max;
 917	int process_groups;
 918	int nodes[MAX_NR_NODES];
 919	int distance;
 920	int nr_min;
 921	int nr_max;
 922	int strong;
 923	int sum;
 924	int nr;
 925	int node;
 926	int cpu;
 927	int t;
 928
 929	if (!g->p.show_convergence && !g->p.measure_convergence)
 930		return;
 931
 932	for (node = 0; node < g->p.nr_nodes; node++)
 933		nodes[node] = 0;
 934
 935	loops_done_min = -1;
 936	loops_done_max = 0;
 937
 938	for (t = 0; t < g->p.nr_tasks; t++) {
 939		struct thread_data *td = g->threads + t;
 940		unsigned int loops_done;
 941
 942		cpu = td->curr_cpu;
 943
 944		/* Not all threads have written it yet: */
 945		if (cpu < 0)
 946			continue;
 947
 948		node = numa_node_of_cpu(cpu);
 949
 950		nodes[node]++;
 951
 952		loops_done = td->loops_done;
 953		loops_done_min = min(loops_done, loops_done_min);
 954		loops_done_max = max(loops_done, loops_done_max);
 955	}
 956
 957	nr_max = 0;
 958	nr_min = g->p.nr_tasks;
 959	sum = 0;
 960
 961	for (node = 0; node < g->p.nr_nodes; node++) {
 962		nr = nodes[node];
 963		nr_min = min(nr, nr_min);
 964		nr_max = max(nr, nr_max);
 965		sum += nr;
 966	}
 967	BUG_ON(nr_min > nr_max);
 968
 969	BUG_ON(sum > g->p.nr_tasks);
 970
 971	if (0 && (sum < g->p.nr_tasks))
 972		return;
 973
 974	/*
 975	 * Count the number of distinct process groups present
 976	 * on nodes - when we are converged this will decrease
 977	 * to g->p.nr_proc:
 978	 */
 979	process_groups = 0;
 980
 981	for (node = 0; node < g->p.nr_nodes; node++) {
 982		int processes = count_node_processes(node);
 983
 984		nr = nodes[node];
 985		tprintf(" %2d/%-2d", nr, processes);
 986
 987		process_groups += processes;
 988	}
 989
 990	distance = nr_max - nr_min;
 991
 992	tprintf(" [%2d/%-2d]", distance, process_groups);
 993
 994	tprintf(" l:%3d-%-3d (%3d)",
 995		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
 996
 997	if (loops_done_min && loops_done_max) {
 998		double skew = 1.0 - (double)loops_done_min/loops_done_max;
 999
1000		tprintf(" [%4.1f%%]", skew * 100.0);
1001	}
1002
1003	calc_convergence_compression(&strong);
1004
1005	if (strong && process_groups == g->p.nr_proc) {
1006		if (!*convergence) {
1007			*convergence = runtime_ns_max;
1008			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1009			if (g->p.measure_convergence) {
1010				g->all_converged = true;
1011				g->stop_work = true;
1012			}
1013		}
1014	} else {
1015		if (*convergence) {
1016			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1017			*convergence = 0;
1018		}
1019		tprintf("\n");
1020	}
1021}
1022
1023static void show_summary(double runtime_ns_max, int l, double *convergence)
1024{
1025	tprintf("\r #  %5.1f%%  [%.1f mins]",
1026		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1027
1028	calc_convergence(runtime_ns_max, convergence);
1029
1030	if (g->p.show_details >= 0)
1031		fflush(stdout);
1032}
1033
1034static void *worker_thread(void *__tdata)
1035{
1036	struct thread_data *td = __tdata;
1037	struct timeval start0, start, stop, diff;
1038	int process_nr = td->process_nr;
1039	int thread_nr = td->thread_nr;
1040	unsigned long last_perturbance;
1041	int task_nr = td->task_nr;
1042	int details = g->p.show_details;
1043	int first_task, last_task;
1044	double convergence = 0;
1045	u64 val = td->val;
1046	double runtime_ns_max;
1047	u8 *global_data;
1048	u8 *process_data;
1049	u8 *thread_data;
1050	u64 bytes_done;
1051	long work_done;
1052	u32 l;
1053	struct rusage rusage;
1054
1055	bind_to_cpumask(td->bind_cpumask);
1056	bind_to_memnode(td->bind_node);
1057
1058	set_taskname("thread %d/%d", process_nr, thread_nr);
1059
1060	global_data = g->data;
1061	process_data = td->process_data;
1062	thread_data = setup_private_data(g->p.bytes_thread);
1063
1064	bytes_done = 0;
1065
1066	last_task = 0;
1067	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1068		last_task = 1;
1069
1070	first_task = 0;
1071	if (process_nr == 0 && thread_nr == 0)
1072		first_task = 1;
1073
1074	if (details >= 2) {
1075		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1076			process_nr, thread_nr, global_data, process_data, thread_data);
1077	}
1078
1079	if (g->p.serialize_startup) {
1080		pthread_mutex_lock(&g->startup_mutex);
1081		g->nr_tasks_started++;
1082		pthread_mutex_unlock(&g->startup_mutex);
1083
1084		/* Here we will wait for the main process to start us all at once: */
1085		pthread_mutex_lock(&g->start_work_mutex);
1086		g->nr_tasks_working++;
1087
1088		/* Last one wake the main process: */
1089		if (g->nr_tasks_working == g->p.nr_tasks)
1090			pthread_mutex_unlock(&g->startup_done_mutex);
1091
1092		pthread_mutex_unlock(&g->start_work_mutex);
1093	}
1094
1095	gettimeofday(&start0, NULL);
1096
1097	start = stop = start0;
1098	last_perturbance = start.tv_sec;
1099
1100	for (l = 0; l < g->p.nr_loops; l++) {
1101		start = stop;
1102
1103		if (g->stop_work)
1104			break;
1105
1106		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1107		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1108		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1109
1110		if (g->p.sleep_usecs) {
1111			pthread_mutex_lock(td->process_lock);
1112			usleep(g->p.sleep_usecs);
1113			pthread_mutex_unlock(td->process_lock);
1114		}
1115		/*
1116		 * Amount of work to be done under a process-global lock:
1117		 */
1118		if (g->p.bytes_process_locked) {
1119			pthread_mutex_lock(td->process_lock);
1120			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1121			pthread_mutex_unlock(td->process_lock);
1122		}
1123
1124		work_done = g->p.bytes_global + g->p.bytes_process +
1125			    g->p.bytes_process_locked + g->p.bytes_thread;
1126
1127		update_curr_cpu(task_nr, work_done);
1128		bytes_done += work_done;
1129
1130		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1131			continue;
1132
1133		td->loops_done = l;
1134
1135		gettimeofday(&stop, NULL);
1136
1137		/* Check whether our max runtime timed out: */
1138		if (g->p.nr_secs) {
1139			timersub(&stop, &start0, &diff);
1140			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1141				g->stop_work = true;
1142				break;
1143			}
1144		}
1145
1146		/* Update the summary at most once per second: */
1147		if (start.tv_sec == stop.tv_sec)
1148			continue;
1149
1150		/*
1151		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1152		 * by migrating to CPU#0:
1153		 */
1154		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1155			cpu_set_t orig_mask;
1156			int target_cpu;
1157			int this_cpu;
1158
1159			last_perturbance = stop.tv_sec;
1160
1161			/*
1162			 * Depending on where we are running, move into
1163			 * the other half of the system, to create some
1164			 * real disturbance:
1165			 */
1166			this_cpu = g->threads[task_nr].curr_cpu;
1167			if (this_cpu < g->p.nr_cpus/2)
1168				target_cpu = g->p.nr_cpus-1;
1169			else
1170				target_cpu = 0;
1171
1172			orig_mask = bind_to_cpu(target_cpu);
1173
1174			/* Here we are running on the target CPU already */
1175			if (details >= 1)
1176				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1177
1178			bind_to_cpumask(orig_mask);
1179		}
1180
1181		if (details >= 3) {
1182			timersub(&stop, &start, &diff);
1183			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1184			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1185
1186			if (details >= 0) {
1187				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1188					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1189			}
1190			fflush(stdout);
1191		}
1192		if (!last_task)
1193			continue;
1194
1195		timersub(&stop, &start0, &diff);
1196		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1197		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1198
1199		show_summary(runtime_ns_max, l, &convergence);
1200	}
1201
1202	gettimeofday(&stop, NULL);
1203	timersub(&stop, &start0, &diff);
1204	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1205	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1206	td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1207
1208	getrusage(RUSAGE_THREAD, &rusage);
1209	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1210	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1211	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1212	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1213
1214	free_data(thread_data, g->p.bytes_thread);
1215
1216	pthread_mutex_lock(&g->stop_work_mutex);
1217	g->bytes_done += bytes_done;
1218	pthread_mutex_unlock(&g->stop_work_mutex);
1219
1220	return NULL;
1221}
1222
1223/*
1224 * A worker process starts a couple of threads:
1225 */
1226static void worker_process(int process_nr)
1227{
1228	pthread_mutex_t process_lock;
1229	struct thread_data *td;
1230	pthread_t *pthreads;
1231	u8 *process_data;
1232	int task_nr;
1233	int ret;
1234	int t;
1235
1236	pthread_mutex_init(&process_lock, NULL);
1237	set_taskname("process %d", process_nr);
1238
1239	/*
1240	 * Pick up the memory policy and the CPU binding of our first thread,
1241	 * so that we initialize memory accordingly:
1242	 */
1243	task_nr = process_nr*g->p.nr_threads;
1244	td = g->threads + task_nr;
1245
1246	bind_to_memnode(td->bind_node);
1247	bind_to_cpumask(td->bind_cpumask);
1248
1249	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1250	process_data = setup_private_data(g->p.bytes_process);
1251
1252	if (g->p.show_details >= 3) {
1253		printf(" # process %2d global mem: %p, process mem: %p\n",
1254			process_nr, g->data, process_data);
1255	}
1256
1257	for (t = 0; t < g->p.nr_threads; t++) {
1258		task_nr = process_nr*g->p.nr_threads + t;
1259		td = g->threads + task_nr;
1260
1261		td->process_data = process_data;
1262		td->process_nr   = process_nr;
1263		td->thread_nr    = t;
1264		td->task_nr	 = task_nr;
1265		td->val          = rand();
1266		td->curr_cpu	 = -1;
1267		td->process_lock = &process_lock;
1268
1269		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1270		BUG_ON(ret);
1271	}
1272
1273	for (t = 0; t < g->p.nr_threads; t++) {
1274                ret = pthread_join(pthreads[t], NULL);
1275		BUG_ON(ret);
1276	}
1277
1278	free_data(process_data, g->p.bytes_process);
1279	free(pthreads);
1280}
1281
1282static void print_summary(void)
1283{
1284	if (g->p.show_details < 0)
1285		return;
1286
1287	printf("\n ###\n");
1288	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1289		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1290	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1291			g->p.nr_loops, g->p.bytes_global/1024/1024);
1292	printf(" #      %5dx %5ldMB process shared mem operations\n",
1293			g->p.nr_loops, g->p.bytes_process/1024/1024);
1294	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1295			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1296
1297	printf(" ###\n");
1298
1299	printf("\n ###\n"); fflush(stdout);
1300}
1301
1302static void init_thread_data(void)
1303{
1304	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1305	int t;
1306
1307	g->threads = zalloc_shared_data(size);
1308
1309	for (t = 0; t < g->p.nr_tasks; t++) {
1310		struct thread_data *td = g->threads + t;
1311		int cpu;
1312
1313		/* Allow all nodes by default: */
1314		td->bind_node = -1;
1315
1316		/* Allow all CPUs by default: */
1317		CPU_ZERO(&td->bind_cpumask);
1318		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1319			CPU_SET(cpu, &td->bind_cpumask);
1320	}
1321}
1322
1323static void deinit_thread_data(void)
1324{
1325	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1326
1327	free_data(g->threads, size);
1328}
1329
1330static int init(void)
1331{
1332	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1333
1334	/* Copy over options: */
1335	g->p = p0;
1336
1337	g->p.nr_cpus = numa_num_configured_cpus();
1338
1339	g->p.nr_nodes = numa_max_node() + 1;
1340
1341	/* char array in count_process_nodes(): */
1342	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1343
1344	if (g->p.show_quiet && !g->p.show_details)
1345		g->p.show_details = -1;
1346
1347	/* Some memory should be specified: */
1348	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1349		return -1;
1350
1351	if (g->p.mb_global_str) {
1352		g->p.mb_global = atof(g->p.mb_global_str);
1353		BUG_ON(g->p.mb_global < 0);
1354	}
1355
1356	if (g->p.mb_proc_str) {
1357		g->p.mb_proc = atof(g->p.mb_proc_str);
1358		BUG_ON(g->p.mb_proc < 0);
1359	}
1360
1361	if (g->p.mb_proc_locked_str) {
1362		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1363		BUG_ON(g->p.mb_proc_locked < 0);
1364		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1365	}
1366
1367	if (g->p.mb_thread_str) {
1368		g->p.mb_thread = atof(g->p.mb_thread_str);
1369		BUG_ON(g->p.mb_thread < 0);
1370	}
1371
1372	BUG_ON(g->p.nr_threads <= 0);
1373	BUG_ON(g->p.nr_proc <= 0);
1374
1375	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1376
1377	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1378	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1379	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1380	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1381
1382	g->data = setup_shared_data(g->p.bytes_global);
1383
1384	/* Startup serialization: */
1385	init_global_mutex(&g->start_work_mutex);
1386	init_global_mutex(&g->startup_mutex);
1387	init_global_mutex(&g->startup_done_mutex);
1388	init_global_mutex(&g->stop_work_mutex);
1389
1390	init_thread_data();
1391
1392	tprintf("#\n");
1393	if (parse_setup_cpu_list() || parse_setup_node_list())
1394		return -1;
1395	tprintf("#\n");
1396
1397	print_summary();
1398
1399	return 0;
1400}
1401
1402static void deinit(void)
1403{
1404	free_data(g->data, g->p.bytes_global);
1405	g->data = NULL;
1406
1407	deinit_thread_data();
1408
1409	free_data(g, sizeof(*g));
1410	g = NULL;
1411}
1412
1413/*
1414 * Print a short or long result, depending on the verbosity setting:
1415 */
1416static void print_res(const char *name, double val,
1417		      const char *txt_unit, const char *txt_short, const char *txt_long)
1418{
1419	if (!name)
1420		name = "main,";
1421
1422	if (!g->p.show_quiet)
1423		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1424	else
1425		printf(" %14.3f %s\n", val, txt_long);
1426}
1427
1428static int __bench_numa(const char *name)
1429{
1430	struct timeval start, stop, diff;
1431	u64 runtime_ns_min, runtime_ns_sum;
1432	pid_t *pids, pid, wpid;
1433	double delta_runtime;
1434	double runtime_avg;
1435	double runtime_sec_max;
1436	double runtime_sec_min;
1437	int wait_stat;
1438	double bytes;
1439	int i, t, p;
1440
1441	if (init())
1442		return -1;
1443
1444	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1445	pid = -1;
1446
1447	/* All threads try to acquire it, this way we can wait for them to start up: */
1448	pthread_mutex_lock(&g->start_work_mutex);
1449
1450	if (g->p.serialize_startup) {
1451		tprintf(" #\n");
1452		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1453	}
1454
1455	gettimeofday(&start, NULL);
1456
1457	for (i = 0; i < g->p.nr_proc; i++) {
1458		pid = fork();
1459		dprintf(" # process %2d: PID %d\n", i, pid);
1460
1461		BUG_ON(pid < 0);
1462		if (!pid) {
1463			/* Child process: */
1464			worker_process(i);
1465
1466			exit(0);
1467		}
1468		pids[i] = pid;
1469
1470	}
1471	/* Wait for all the threads to start up: */
1472	while (g->nr_tasks_started != g->p.nr_tasks)
1473		usleep(USEC_PER_MSEC);
1474
1475	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1476
1477	if (g->p.serialize_startup) {
1478		double startup_sec;
1479
1480		pthread_mutex_lock(&g->startup_done_mutex);
1481
1482		/* This will start all threads: */
1483		pthread_mutex_unlock(&g->start_work_mutex);
1484
1485		/* This mutex is locked - the last started thread will wake us: */
1486		pthread_mutex_lock(&g->startup_done_mutex);
1487
1488		gettimeofday(&stop, NULL);
1489
1490		timersub(&stop, &start, &diff);
1491
1492		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1493		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1494		startup_sec /= NSEC_PER_SEC;
1495
1496		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1497		tprintf(" #\n");
1498
1499		start = stop;
1500		pthread_mutex_unlock(&g->startup_done_mutex);
1501	} else {
1502		gettimeofday(&start, NULL);
1503	}
1504
1505	/* Parent process: */
1506
1507
1508	for (i = 0; i < g->p.nr_proc; i++) {
1509		wpid = waitpid(pids[i], &wait_stat, 0);
1510		BUG_ON(wpid < 0);
1511		BUG_ON(!WIFEXITED(wait_stat));
1512
1513	}
1514
1515	runtime_ns_sum = 0;
1516	runtime_ns_min = -1LL;
1517
1518	for (t = 0; t < g->p.nr_tasks; t++) {
1519		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1520
1521		runtime_ns_sum += thread_runtime_ns;
1522		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1523	}
1524
1525	gettimeofday(&stop, NULL);
1526	timersub(&stop, &start, &diff);
1527
1528	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1529
1530	tprintf("\n ###\n");
1531	tprintf("\n");
1532
1533	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1534	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1535	runtime_sec_max /= NSEC_PER_SEC;
1536
1537	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1538
1539	bytes = g->bytes_done;
1540	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1541
1542	if (g->p.measure_convergence) {
1543		print_res(name, runtime_sec_max,
1544			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1545	}
1546
1547	print_res(name, runtime_sec_max,
1548		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1549
1550	print_res(name, runtime_sec_min,
1551		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1552
1553	print_res(name, runtime_avg,
1554		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1555
1556	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1557	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1558		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1559
1560	print_res(name, bytes / g->p.nr_tasks / 1e9,
1561		"GB,", "data/thread",		"GB data processed, per thread");
1562
1563	print_res(name, bytes / 1e9,
1564		"GB,", "data-total",		"GB data processed, total");
1565
1566	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1567		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1568
1569	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1570		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1571
1572	print_res(name, bytes / runtime_sec_max / 1e9,
1573		"GB/sec,", "total-speed",	"GB/sec total speed");
1574
1575	if (g->p.show_details >= 2) {
1576		char tname[32];
1577		struct thread_data *td;
1578		for (p = 0; p < g->p.nr_proc; p++) {
1579			for (t = 0; t < g->p.nr_threads; t++) {
1580				memset(tname, 0, 32);
1581				td = g->threads + p*g->p.nr_threads + t;
1582				snprintf(tname, 32, "process%d:thread%d", p, t);
1583				print_res(tname, td->speed_gbs,
1584					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1585				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1586					"secs",	"thread-system-time", "system CPU time/thread");
1587				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1588					"secs",	"thread-user-time", "user CPU time/thread");
1589			}
1590		}
1591	}
1592
1593	free(pids);
1594
1595	deinit();
1596
1597	return 0;
1598}
1599
1600#define MAX_ARGS 50
1601
1602static int command_size(const char **argv)
1603{
1604	int size = 0;
1605
1606	while (*argv) {
1607		size++;
1608		argv++;
1609	}
1610
1611	BUG_ON(size >= MAX_ARGS);
1612
1613	return size;
1614}
1615
1616static void init_params(struct params *p, const char *name, int argc, const char **argv)
1617{
1618	int i;
1619
1620	printf("\n # Running %s \"perf bench numa", name);
1621
1622	for (i = 0; i < argc; i++)
1623		printf(" %s", argv[i]);
1624
1625	printf("\"\n");
1626
1627	memset(p, 0, sizeof(*p));
1628
1629	/* Initialize nonzero defaults: */
1630
1631	p->serialize_startup		= 1;
1632	p->data_reads			= true;
1633	p->data_writes			= true;
1634	p->data_backwards		= true;
1635	p->data_rand_walk		= true;
1636	p->nr_loops			= -1;
1637	p->init_random			= true;
1638	p->mb_global_str		= "1";
1639	p->nr_proc			= 1;
1640	p->nr_threads			= 1;
1641	p->nr_secs			= 5;
1642	p->run_all			= argc == 1;
1643}
1644
1645static int run_bench_numa(const char *name, const char **argv)
1646{
1647	int argc = command_size(argv);
1648
1649	init_params(&p0, name, argc, argv);
1650	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1651	if (argc)
1652		goto err;
1653
1654	if (__bench_numa(name))
1655		goto err;
1656
1657	return 0;
1658
1659err:
1660	return -1;
1661}
1662
1663#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1664#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1665
1666#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1667#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1668
1669#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1670#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1671
1672/*
1673 * The built-in test-suite executed by "perf bench numa -a".
1674 *
1675 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1676 */
1677static const char *tests[][MAX_ARGS] = {
1678   /* Basic single-stream NUMA bandwidth measurements: */
1679   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1680			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1681   { "RAM-bw-local-NOTHP,",
1682			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1683			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1684   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1685			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1686
1687   /* 2-stream NUMA bandwidth measurements: */
1688   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1689			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1690   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1691		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1692
1693   /* Cross-stream NUMA bandwidth measurement: */
1694   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1695		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1696
1697   /* Convergence latency measurements: */
1698   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1699   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1700   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1701   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1702   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1703   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1704   { " 4x4-convergence-NOTHP,",
1705			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1706   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1707   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1708   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1709   { " 8x4-convergence-NOTHP,",
1710			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1711   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1712   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1713   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1714   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1715   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1716
1717   /* Various NUMA process/thread layout bandwidth measurements: */
1718   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1719   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1720   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1721   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1722   { " 8x1-bw-process-NOTHP,",
1723			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1724   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1725
1726   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1727   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1728   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1729   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1730
1731   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1732   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1733   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1734   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1735   { " 4x8-bw-thread-NOTHP,",
1736			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1737   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1738   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1739
1740   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1741   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1742
1743   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1744   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1745   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1746   { "numa01-bw-thread-NOTHP,",
1747			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1748};
1749
1750static int bench_all(void)
1751{
1752	int nr = ARRAY_SIZE(tests);
1753	int ret;
1754	int i;
1755
1756	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1757	BUG_ON(ret < 0);
1758
1759	for (i = 0; i < nr; i++) {
1760		run_bench_numa(tests[i][0], tests[i] + 1);
1761	}
1762
1763	printf("\n");
1764
1765	return 0;
1766}
1767
1768int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1769{
1770	init_params(&p0, "main,", argc, argv);
1771	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1772	if (argc)
1773		goto err;
1774
1775	if (p0.run_all)
1776		return bench_all();
1777
1778	if (__bench_numa(NULL))
1779		goto err;
1780
1781	return 0;
1782
1783err:
1784	usage_with_options(numa_usage, options);
1785	return -1;
1786}