Linux Audio

Check our new training course

Loading...
v3.15
 
 1#include <linux/err.h>
 2#include <linux/init.h>
 3#include <linux/kernel.h>
 4#include <linux/list.h>
 5#include <linux/tcp.h>
 6#include <linux/rcupdate.h>
 7#include <linux/rculist.h>
 8#include <net/inetpeer.h>
 9#include <net/tcp.h>
10
11int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
12
13struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
14
15static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
16
17void tcp_fastopen_init_key_once(bool publish)
18{
19	static u8 key[TCP_FASTOPEN_KEY_LENGTH];
20
21	/* tcp_fastopen_reset_cipher publishes the new context
22	 * atomically, so we allow this race happening here.
23	 *
24	 * All call sites of tcp_fastopen_cookie_gen also check
25	 * for a valid cookie, so this is an acceptable risk.
26	 */
27	if (net_get_random_once(key, sizeof(key)) && publish)
28		tcp_fastopen_reset_cipher(key, sizeof(key));
29}
30
31static void tcp_fastopen_ctx_free(struct rcu_head *head)
32{
33	struct tcp_fastopen_context *ctx =
34	    container_of(head, struct tcp_fastopen_context, rcu);
35	crypto_free_cipher(ctx->tfm);
36	kfree(ctx);
37}
38
39int tcp_fastopen_reset_cipher(void *key, unsigned int len)
40{
41	int err;
42	struct tcp_fastopen_context *ctx, *octx;
43
44	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
45	if (!ctx)
46		return -ENOMEM;
47	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
48
49	if (IS_ERR(ctx->tfm)) {
50		err = PTR_ERR(ctx->tfm);
51error:		kfree(ctx);
52		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
53		return err;
54	}
55	err = crypto_cipher_setkey(ctx->tfm, key, len);
56	if (err) {
57		pr_err("TCP: TFO cipher key error: %d\n", err);
58		crypto_free_cipher(ctx->tfm);
59		goto error;
60	}
61	memcpy(ctx->key, key, len);
62
63	spin_lock(&tcp_fastopen_ctx_lock);
64
65	octx = rcu_dereference_protected(tcp_fastopen_ctx,
66				lockdep_is_held(&tcp_fastopen_ctx_lock));
67	rcu_assign_pointer(tcp_fastopen_ctx, ctx);
68	spin_unlock(&tcp_fastopen_ctx_lock);
69
70	if (octx)
71		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
72	return err;
73}
74
75/* Computes the fastopen cookie for the IP path.
76 * The path is a 128 bits long (pad with zeros for IPv4).
77 *
78 * The caller must check foc->len to determine if a valid cookie
79 * has been generated successfully.
80*/
81void tcp_fastopen_cookie_gen(__be32 src, __be32 dst,
82			     struct tcp_fastopen_cookie *foc)
83{
84	__be32 path[4] = { src, dst, 0, 0 };
85	struct tcp_fastopen_context *ctx;
86
87	tcp_fastopen_init_key_once(true);
88
89	rcu_read_lock();
90	ctx = rcu_dereference(tcp_fastopen_ctx);
91	if (ctx) {
92		crypto_cipher_encrypt_one(ctx->tfm, foc->val, (__u8 *)path);
93		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
 
94	}
95	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96}
v4.10.11
  1#include <linux/crypto.h>
  2#include <linux/err.h>
  3#include <linux/init.h>
  4#include <linux/kernel.h>
  5#include <linux/list.h>
  6#include <linux/tcp.h>
  7#include <linux/rcupdate.h>
  8#include <linux/rculist.h>
  9#include <net/inetpeer.h>
 10#include <net/tcp.h>
 11
 12int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
 13
 14struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
 15
 16static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
 17
 18void tcp_fastopen_init_key_once(bool publish)
 19{
 20	static u8 key[TCP_FASTOPEN_KEY_LENGTH];
 21
 22	/* tcp_fastopen_reset_cipher publishes the new context
 23	 * atomically, so we allow this race happening here.
 24	 *
 25	 * All call sites of tcp_fastopen_cookie_gen also check
 26	 * for a valid cookie, so this is an acceptable risk.
 27	 */
 28	if (net_get_random_once(key, sizeof(key)) && publish)
 29		tcp_fastopen_reset_cipher(key, sizeof(key));
 30}
 31
 32static void tcp_fastopen_ctx_free(struct rcu_head *head)
 33{
 34	struct tcp_fastopen_context *ctx =
 35	    container_of(head, struct tcp_fastopen_context, rcu);
 36	crypto_free_cipher(ctx->tfm);
 37	kfree(ctx);
 38}
 39
 40int tcp_fastopen_reset_cipher(void *key, unsigned int len)
 41{
 42	int err;
 43	struct tcp_fastopen_context *ctx, *octx;
 44
 45	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 46	if (!ctx)
 47		return -ENOMEM;
 48	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
 49
 50	if (IS_ERR(ctx->tfm)) {
 51		err = PTR_ERR(ctx->tfm);
 52error:		kfree(ctx);
 53		pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
 54		return err;
 55	}
 56	err = crypto_cipher_setkey(ctx->tfm, key, len);
 57	if (err) {
 58		pr_err("TCP: TFO cipher key error: %d\n", err);
 59		crypto_free_cipher(ctx->tfm);
 60		goto error;
 61	}
 62	memcpy(ctx->key, key, len);
 63
 64	spin_lock(&tcp_fastopen_ctx_lock);
 65
 66	octx = rcu_dereference_protected(tcp_fastopen_ctx,
 67				lockdep_is_held(&tcp_fastopen_ctx_lock));
 68	rcu_assign_pointer(tcp_fastopen_ctx, ctx);
 69	spin_unlock(&tcp_fastopen_ctx_lock);
 70
 71	if (octx)
 72		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
 73	return err;
 74}
 75
 76static bool __tcp_fastopen_cookie_gen(const void *path,
 77				      struct tcp_fastopen_cookie *foc)
 
 
 
 
 
 
 78{
 
 79	struct tcp_fastopen_context *ctx;
 80	bool ok = false;
 
 81
 82	rcu_read_lock();
 83	ctx = rcu_dereference(tcp_fastopen_ctx);
 84	if (ctx) {
 85		crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
 86		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
 87		ok = true;
 88	}
 89	rcu_read_unlock();
 90	return ok;
 91}
 92
 93/* Generate the fastopen cookie by doing aes128 encryption on both
 94 * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
 95 * addresses. For the longer IPv6 addresses use CBC-MAC.
 96 *
 97 * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
 98 */
 99static bool tcp_fastopen_cookie_gen(struct request_sock *req,
100				    struct sk_buff *syn,
101				    struct tcp_fastopen_cookie *foc)
102{
103	if (req->rsk_ops->family == AF_INET) {
104		const struct iphdr *iph = ip_hdr(syn);
105
106		__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
107		return __tcp_fastopen_cookie_gen(path, foc);
108	}
109
110#if IS_ENABLED(CONFIG_IPV6)
111	if (req->rsk_ops->family == AF_INET6) {
112		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
113		struct tcp_fastopen_cookie tmp;
114
115		if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
116			struct in6_addr *buf = &tmp.addr;
117			int i;
118
119			for (i = 0; i < 4; i++)
120				buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
121			return __tcp_fastopen_cookie_gen(buf, foc);
122		}
123	}
124#endif
125	return false;
126}
127
128
129/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
130 * queue this additional data / FIN.
131 */
132void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
133{
134	struct tcp_sock *tp = tcp_sk(sk);
135
136	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
137		return;
138
139	skb = skb_clone(skb, GFP_ATOMIC);
140	if (!skb)
141		return;
142
143	skb_dst_drop(skb);
144	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
145	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
146	 * to avoid double counting.  Also, tcp_segs_in() expects
147	 * skb->len to include the tcp_hdrlen.  Hence, it should
148	 * be called before __skb_pull().
149	 */
150	tp->segs_in = 0;
151	tcp_segs_in(tp, skb);
152	__skb_pull(skb, tcp_hdrlen(skb));
153	sk_forced_mem_schedule(sk, skb->truesize);
154	skb_set_owner_r(skb, sk);
155
156	TCP_SKB_CB(skb)->seq++;
157	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
158
159	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
160	__skb_queue_tail(&sk->sk_receive_queue, skb);
161	tp->syn_data_acked = 1;
162
163	/* u64_stats_update_begin(&tp->syncp) not needed here,
164	 * as we certainly are not changing upper 32bit value (0)
165	 */
166	tp->bytes_received = skb->len;
167
168	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
169		tcp_fin(sk);
170}
171
172static struct sock *tcp_fastopen_create_child(struct sock *sk,
173					      struct sk_buff *skb,
174					      struct dst_entry *dst,
175					      struct request_sock *req)
176{
177	struct tcp_sock *tp;
178	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
179	struct sock *child;
180	bool own_req;
181
182	req->num_retrans = 0;
183	req->num_timeout = 0;
184	req->sk = NULL;
185
186	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
187							 NULL, &own_req);
188	if (!child)
189		return NULL;
190
191	spin_lock(&queue->fastopenq.lock);
192	queue->fastopenq.qlen++;
193	spin_unlock(&queue->fastopenq.lock);
194
195	/* Initialize the child socket. Have to fix some values to take
196	 * into account the child is a Fast Open socket and is created
197	 * only out of the bits carried in the SYN packet.
198	 */
199	tp = tcp_sk(child);
200
201	tp->fastopen_rsk = req;
202	tcp_rsk(req)->tfo_listener = true;
203
204	/* RFC1323: The window in SYN & SYN/ACK segments is never
205	 * scaled. So correct it appropriately.
206	 */
207	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
208	tp->max_window = tp->snd_wnd;
209
210	/* Activate the retrans timer so that SYNACK can be retransmitted.
211	 * The request socket is not added to the ehash
212	 * because it's been added to the accept queue directly.
213	 */
214	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
215				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
216
217	atomic_set(&req->rsk_refcnt, 2);
218
219	/* Now finish processing the fastopen child socket. */
220	inet_csk(child)->icsk_af_ops->rebuild_header(child);
221	tcp_init_congestion_control(child);
222	tcp_mtup_init(child);
223	tcp_init_metrics(child);
224	tcp_init_buffer_space(child);
225
226	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
227
228	tcp_fastopen_add_skb(child, skb);
229
230	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
231	tp->rcv_wup = tp->rcv_nxt;
232	/* tcp_conn_request() is sending the SYNACK,
233	 * and queues the child into listener accept queue.
234	 */
235	return child;
236}
237
238static bool tcp_fastopen_queue_check(struct sock *sk)
239{
240	struct fastopen_queue *fastopenq;
241
242	/* Make sure the listener has enabled fastopen, and we don't
243	 * exceed the max # of pending TFO requests allowed before trying
244	 * to validating the cookie in order to avoid burning CPU cycles
245	 * unnecessarily.
246	 *
247	 * XXX (TFO) - The implication of checking the max_qlen before
248	 * processing a cookie request is that clients can't differentiate
249	 * between qlen overflow causing Fast Open to be disabled
250	 * temporarily vs a server not supporting Fast Open at all.
251	 */
252	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
253	if (fastopenq->max_qlen == 0)
254		return false;
255
256	if (fastopenq->qlen >= fastopenq->max_qlen) {
257		struct request_sock *req1;
258		spin_lock(&fastopenq->lock);
259		req1 = fastopenq->rskq_rst_head;
260		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
261			__NET_INC_STATS(sock_net(sk),
262					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
263			spin_unlock(&fastopenq->lock);
264			return false;
265		}
266		fastopenq->rskq_rst_head = req1->dl_next;
267		fastopenq->qlen--;
268		spin_unlock(&fastopenq->lock);
269		reqsk_put(req1);
270	}
271	return true;
272}
273
274/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
275 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
276 * cookie request (foc->len == 0).
277 */
278struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
279			      struct request_sock *req,
280			      struct tcp_fastopen_cookie *foc,
281			      struct dst_entry *dst)
282{
283	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
284	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
285	struct sock *child;
286
287	if (foc->len == 0) /* Client requests a cookie */
288		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
289
290	if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
291	      (syn_data || foc->len >= 0) &&
292	      tcp_fastopen_queue_check(sk))) {
293		foc->len = -1;
294		return NULL;
295	}
296
297	if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
298		goto fastopen;
299
300	if (foc->len >= 0 &&  /* Client presents or requests a cookie */
301	    tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
302	    foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
303	    foc->len == valid_foc.len &&
304	    !memcmp(foc->val, valid_foc.val, foc->len)) {
305		/* Cookie is valid. Create a (full) child socket to accept
306		 * the data in SYN before returning a SYN-ACK to ack the
307		 * data. If we fail to create the socket, fall back and
308		 * ack the ISN only but includes the same cookie.
309		 *
310		 * Note: Data-less SYN with valid cookie is allowed to send
311		 * data in SYN_RECV state.
312		 */
313fastopen:
314		child = tcp_fastopen_create_child(sk, skb, dst, req);
315		if (child) {
316			foc->len = -1;
317			NET_INC_STATS(sock_net(sk),
318				      LINUX_MIB_TCPFASTOPENPASSIVE);
319			return child;
320		}
321		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
322	} else if (foc->len > 0) /* Client presents an invalid cookie */
323		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
324
325	valid_foc.exp = foc->exp;
326	*foc = valid_foc;
327	return NULL;
328}