Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
 
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <linux/atomic.h>
  30#include <linux/compiler.h>
  31#include <linux/llist.h>
 
  32
  33#include <asm/uaccess.h>
  34#include <asm/tlbflush.h>
  35#include <asm/shmparam.h>
  36
 
 
  37struct vfree_deferred {
  38	struct llist_head list;
  39	struct work_struct wq;
  40};
  41static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  42
  43static void __vunmap(const void *, int);
  44
  45static void free_work(struct work_struct *w)
  46{
  47	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  48	struct llist_node *llnode = llist_del_all(&p->list);
  49	while (llnode) {
  50		void *p = llnode;
  51		llnode = llist_next(llnode);
  52		__vunmap(p, 1);
  53	}
  54}
  55
  56/*** Page table manipulation functions ***/
  57
  58static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  59{
  60	pte_t *pte;
  61
  62	pte = pte_offset_kernel(pmd, addr);
  63	do {
  64		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  65		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  66	} while (pte++, addr += PAGE_SIZE, addr != end);
  67}
  68
  69static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  70{
  71	pmd_t *pmd;
  72	unsigned long next;
  73
  74	pmd = pmd_offset(pud, addr);
  75	do {
  76		next = pmd_addr_end(addr, end);
 
 
  77		if (pmd_none_or_clear_bad(pmd))
  78			continue;
  79		vunmap_pte_range(pmd, addr, next);
  80	} while (pmd++, addr = next, addr != end);
  81}
  82
  83static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  84{
  85	pud_t *pud;
  86	unsigned long next;
  87
  88	pud = pud_offset(pgd, addr);
  89	do {
  90		next = pud_addr_end(addr, end);
 
 
  91		if (pud_none_or_clear_bad(pud))
  92			continue;
  93		vunmap_pmd_range(pud, addr, next);
  94	} while (pud++, addr = next, addr != end);
  95}
  96
  97static void vunmap_page_range(unsigned long addr, unsigned long end)
  98{
  99	pgd_t *pgd;
 100	unsigned long next;
 101
 102	BUG_ON(addr >= end);
 103	pgd = pgd_offset_k(addr);
 104	do {
 105		next = pgd_addr_end(addr, end);
 106		if (pgd_none_or_clear_bad(pgd))
 107			continue;
 108		vunmap_pud_range(pgd, addr, next);
 109	} while (pgd++, addr = next, addr != end);
 110}
 111
 112static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 113		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 114{
 115	pte_t *pte;
 116
 117	/*
 118	 * nr is a running index into the array which helps higher level
 119	 * callers keep track of where we're up to.
 120	 */
 121
 122	pte = pte_alloc_kernel(pmd, addr);
 123	if (!pte)
 124		return -ENOMEM;
 125	do {
 126		struct page *page = pages[*nr];
 127
 128		if (WARN_ON(!pte_none(*pte)))
 129			return -EBUSY;
 130		if (WARN_ON(!page))
 131			return -ENOMEM;
 132		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 133		(*nr)++;
 134	} while (pte++, addr += PAGE_SIZE, addr != end);
 135	return 0;
 136}
 137
 138static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 139		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 140{
 141	pmd_t *pmd;
 142	unsigned long next;
 143
 144	pmd = pmd_alloc(&init_mm, pud, addr);
 145	if (!pmd)
 146		return -ENOMEM;
 147	do {
 148		next = pmd_addr_end(addr, end);
 149		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 150			return -ENOMEM;
 151	} while (pmd++, addr = next, addr != end);
 152	return 0;
 153}
 154
 155static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 156		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 157{
 158	pud_t *pud;
 159	unsigned long next;
 160
 161	pud = pud_alloc(&init_mm, pgd, addr);
 162	if (!pud)
 163		return -ENOMEM;
 164	do {
 165		next = pud_addr_end(addr, end);
 166		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 167			return -ENOMEM;
 168	} while (pud++, addr = next, addr != end);
 169	return 0;
 170}
 171
 172/*
 173 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 174 * will have pfns corresponding to the "pages" array.
 175 *
 176 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 177 */
 178static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 179				   pgprot_t prot, struct page **pages)
 180{
 181	pgd_t *pgd;
 182	unsigned long next;
 183	unsigned long addr = start;
 184	int err = 0;
 185	int nr = 0;
 186
 187	BUG_ON(addr >= end);
 188	pgd = pgd_offset_k(addr);
 189	do {
 190		next = pgd_addr_end(addr, end);
 191		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 192		if (err)
 193			return err;
 194	} while (pgd++, addr = next, addr != end);
 195
 196	return nr;
 197}
 198
 199static int vmap_page_range(unsigned long start, unsigned long end,
 200			   pgprot_t prot, struct page **pages)
 201{
 202	int ret;
 203
 204	ret = vmap_page_range_noflush(start, end, prot, pages);
 205	flush_cache_vmap(start, end);
 206	return ret;
 207}
 208
 209int is_vmalloc_or_module_addr(const void *x)
 210{
 211	/*
 212	 * ARM, x86-64 and sparc64 put modules in a special place,
 213	 * and fall back on vmalloc() if that fails. Others
 214	 * just put it in the vmalloc space.
 215	 */
 216#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 217	unsigned long addr = (unsigned long)x;
 218	if (addr >= MODULES_VADDR && addr < MODULES_END)
 219		return 1;
 220#endif
 221	return is_vmalloc_addr(x);
 222}
 223
 224/*
 225 * Walk a vmap address to the struct page it maps.
 226 */
 227struct page *vmalloc_to_page(const void *vmalloc_addr)
 228{
 229	unsigned long addr = (unsigned long) vmalloc_addr;
 230	struct page *page = NULL;
 231	pgd_t *pgd = pgd_offset_k(addr);
 232
 233	/*
 234	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 235	 * architectures that do not vmalloc module space
 236	 */
 237	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 238
 239	if (!pgd_none(*pgd)) {
 240		pud_t *pud = pud_offset(pgd, addr);
 241		if (!pud_none(*pud)) {
 242			pmd_t *pmd = pmd_offset(pud, addr);
 243			if (!pmd_none(*pmd)) {
 244				pte_t *ptep, pte;
 245
 246				ptep = pte_offset_map(pmd, addr);
 247				pte = *ptep;
 248				if (pte_present(pte))
 249					page = pte_page(pte);
 250				pte_unmap(ptep);
 251			}
 252		}
 253	}
 254	return page;
 255}
 256EXPORT_SYMBOL(vmalloc_to_page);
 257
 258/*
 259 * Map a vmalloc()-space virtual address to the physical page frame number.
 260 */
 261unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 262{
 263	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 264}
 265EXPORT_SYMBOL(vmalloc_to_pfn);
 266
 267
 268/*** Global kva allocator ***/
 269
 270#define VM_LAZY_FREE	0x01
 271#define VM_LAZY_FREEING	0x02
 272#define VM_VM_AREA	0x04
 273
 274static DEFINE_SPINLOCK(vmap_area_lock);
 275/* Export for kexec only */
 276LIST_HEAD(vmap_area_list);
 
 277static struct rb_root vmap_area_root = RB_ROOT;
 278
 279/* The vmap cache globals are protected by vmap_area_lock */
 280static struct rb_node *free_vmap_cache;
 281static unsigned long cached_hole_size;
 282static unsigned long cached_vstart;
 283static unsigned long cached_align;
 284
 285static unsigned long vmap_area_pcpu_hole;
 286
 287static struct vmap_area *__find_vmap_area(unsigned long addr)
 288{
 289	struct rb_node *n = vmap_area_root.rb_node;
 290
 291	while (n) {
 292		struct vmap_area *va;
 293
 294		va = rb_entry(n, struct vmap_area, rb_node);
 295		if (addr < va->va_start)
 296			n = n->rb_left;
 297		else if (addr >= va->va_end)
 298			n = n->rb_right;
 299		else
 300			return va;
 301	}
 302
 303	return NULL;
 304}
 305
 306static void __insert_vmap_area(struct vmap_area *va)
 307{
 308	struct rb_node **p = &vmap_area_root.rb_node;
 309	struct rb_node *parent = NULL;
 310	struct rb_node *tmp;
 311
 312	while (*p) {
 313		struct vmap_area *tmp_va;
 314
 315		parent = *p;
 316		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 317		if (va->va_start < tmp_va->va_end)
 318			p = &(*p)->rb_left;
 319		else if (va->va_end > tmp_va->va_start)
 320			p = &(*p)->rb_right;
 321		else
 322			BUG();
 323	}
 324
 325	rb_link_node(&va->rb_node, parent, p);
 326	rb_insert_color(&va->rb_node, &vmap_area_root);
 327
 328	/* address-sort this list */
 329	tmp = rb_prev(&va->rb_node);
 330	if (tmp) {
 331		struct vmap_area *prev;
 332		prev = rb_entry(tmp, struct vmap_area, rb_node);
 333		list_add_rcu(&va->list, &prev->list);
 334	} else
 335		list_add_rcu(&va->list, &vmap_area_list);
 336}
 337
 338static void purge_vmap_area_lazy(void);
 339
 
 
 340/*
 341 * Allocate a region of KVA of the specified size and alignment, within the
 342 * vstart and vend.
 343 */
 344static struct vmap_area *alloc_vmap_area(unsigned long size,
 345				unsigned long align,
 346				unsigned long vstart, unsigned long vend,
 347				int node, gfp_t gfp_mask)
 348{
 349	struct vmap_area *va;
 350	struct rb_node *n;
 351	unsigned long addr;
 352	int purged = 0;
 353	struct vmap_area *first;
 354
 355	BUG_ON(!size);
 356	BUG_ON(size & ~PAGE_MASK);
 357	BUG_ON(!is_power_of_2(align));
 358
 
 
 359	va = kmalloc_node(sizeof(struct vmap_area),
 360			gfp_mask & GFP_RECLAIM_MASK, node);
 361	if (unlikely(!va))
 362		return ERR_PTR(-ENOMEM);
 363
 364	/*
 365	 * Only scan the relevant parts containing pointers to other objects
 366	 * to avoid false negatives.
 367	 */
 368	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 369
 370retry:
 371	spin_lock(&vmap_area_lock);
 372	/*
 373	 * Invalidate cache if we have more permissive parameters.
 374	 * cached_hole_size notes the largest hole noticed _below_
 375	 * the vmap_area cached in free_vmap_cache: if size fits
 376	 * into that hole, we want to scan from vstart to reuse
 377	 * the hole instead of allocating above free_vmap_cache.
 378	 * Note that __free_vmap_area may update free_vmap_cache
 379	 * without updating cached_hole_size or cached_align.
 380	 */
 381	if (!free_vmap_cache ||
 382			size < cached_hole_size ||
 383			vstart < cached_vstart ||
 384			align < cached_align) {
 385nocache:
 386		cached_hole_size = 0;
 387		free_vmap_cache = NULL;
 388	}
 389	/* record if we encounter less permissive parameters */
 390	cached_vstart = vstart;
 391	cached_align = align;
 392
 393	/* find starting point for our search */
 394	if (free_vmap_cache) {
 395		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 396		addr = ALIGN(first->va_end, align);
 397		if (addr < vstart)
 398			goto nocache;
 399		if (addr + size < addr)
 400			goto overflow;
 401
 402	} else {
 403		addr = ALIGN(vstart, align);
 404		if (addr + size < addr)
 405			goto overflow;
 406
 407		n = vmap_area_root.rb_node;
 408		first = NULL;
 409
 410		while (n) {
 411			struct vmap_area *tmp;
 412			tmp = rb_entry(n, struct vmap_area, rb_node);
 413			if (tmp->va_end >= addr) {
 414				first = tmp;
 415				if (tmp->va_start <= addr)
 416					break;
 417				n = n->rb_left;
 418			} else
 419				n = n->rb_right;
 420		}
 421
 422		if (!first)
 423			goto found;
 424	}
 425
 426	/* from the starting point, walk areas until a suitable hole is found */
 427	while (addr + size > first->va_start && addr + size <= vend) {
 428		if (addr + cached_hole_size < first->va_start)
 429			cached_hole_size = first->va_start - addr;
 430		addr = ALIGN(first->va_end, align);
 431		if (addr + size < addr)
 432			goto overflow;
 433
 434		if (list_is_last(&first->list, &vmap_area_list))
 435			goto found;
 436
 437		first = list_entry(first->list.next,
 438				struct vmap_area, list);
 439	}
 440
 441found:
 442	if (addr + size > vend)
 443		goto overflow;
 444
 445	va->va_start = addr;
 446	va->va_end = addr + size;
 447	va->flags = 0;
 448	__insert_vmap_area(va);
 449	free_vmap_cache = &va->rb_node;
 450	spin_unlock(&vmap_area_lock);
 451
 452	BUG_ON(va->va_start & (align-1));
 453	BUG_ON(va->va_start < vstart);
 454	BUG_ON(va->va_end > vend);
 455
 456	return va;
 457
 458overflow:
 459	spin_unlock(&vmap_area_lock);
 460	if (!purged) {
 461		purge_vmap_area_lazy();
 462		purged = 1;
 463		goto retry;
 464	}
 
 
 
 
 
 
 
 
 
 
 465	if (printk_ratelimit())
 466		printk(KERN_WARNING
 467			"vmap allocation for size %lu failed: "
 468			"use vmalloc=<size> to increase size.\n", size);
 469	kfree(va);
 470	return ERR_PTR(-EBUSY);
 471}
 472
 
 
 
 
 
 
 
 
 
 
 
 
 473static void __free_vmap_area(struct vmap_area *va)
 474{
 475	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 476
 477	if (free_vmap_cache) {
 478		if (va->va_end < cached_vstart) {
 479			free_vmap_cache = NULL;
 480		} else {
 481			struct vmap_area *cache;
 482			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 483			if (va->va_start <= cache->va_start) {
 484				free_vmap_cache = rb_prev(&va->rb_node);
 485				/*
 486				 * We don't try to update cached_hole_size or
 487				 * cached_align, but it won't go very wrong.
 488				 */
 489			}
 490		}
 491	}
 492	rb_erase(&va->rb_node, &vmap_area_root);
 493	RB_CLEAR_NODE(&va->rb_node);
 494	list_del_rcu(&va->list);
 495
 496	/*
 497	 * Track the highest possible candidate for pcpu area
 498	 * allocation.  Areas outside of vmalloc area can be returned
 499	 * here too, consider only end addresses which fall inside
 500	 * vmalloc area proper.
 501	 */
 502	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 503		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 504
 505	kfree_rcu(va, rcu_head);
 506}
 507
 508/*
 509 * Free a region of KVA allocated by alloc_vmap_area
 510 */
 511static void free_vmap_area(struct vmap_area *va)
 512{
 513	spin_lock(&vmap_area_lock);
 514	__free_vmap_area(va);
 515	spin_unlock(&vmap_area_lock);
 516}
 517
 518/*
 519 * Clear the pagetable entries of a given vmap_area
 520 */
 521static void unmap_vmap_area(struct vmap_area *va)
 522{
 523	vunmap_page_range(va->va_start, va->va_end);
 524}
 525
 526static void vmap_debug_free_range(unsigned long start, unsigned long end)
 527{
 528	/*
 529	 * Unmap page tables and force a TLB flush immediately if
 530	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 531	 * bugs similarly to those in linear kernel virtual address
 532	 * space after a page has been freed.
 533	 *
 534	 * All the lazy freeing logic is still retained, in order to
 535	 * minimise intrusiveness of this debugging feature.
 536	 *
 537	 * This is going to be *slow* (linear kernel virtual address
 538	 * debugging doesn't do a broadcast TLB flush so it is a lot
 539	 * faster).
 540	 */
 541#ifdef CONFIG_DEBUG_PAGEALLOC
 542	vunmap_page_range(start, end);
 543	flush_tlb_kernel_range(start, end);
 544#endif
 545}
 546
 547/*
 548 * lazy_max_pages is the maximum amount of virtual address space we gather up
 549 * before attempting to purge with a TLB flush.
 550 *
 551 * There is a tradeoff here: a larger number will cover more kernel page tables
 552 * and take slightly longer to purge, but it will linearly reduce the number of
 553 * global TLB flushes that must be performed. It would seem natural to scale
 554 * this number up linearly with the number of CPUs (because vmapping activity
 555 * could also scale linearly with the number of CPUs), however it is likely
 556 * that in practice, workloads might be constrained in other ways that mean
 557 * vmap activity will not scale linearly with CPUs. Also, I want to be
 558 * conservative and not introduce a big latency on huge systems, so go with
 559 * a less aggressive log scale. It will still be an improvement over the old
 560 * code, and it will be simple to change the scale factor if we find that it
 561 * becomes a problem on bigger systems.
 562 */
 563static unsigned long lazy_max_pages(void)
 564{
 565	unsigned int log;
 566
 567	log = fls(num_online_cpus());
 568
 569	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 570}
 571
 572static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 573
 
 
 
 
 
 
 
 574/* for per-CPU blocks */
 575static void purge_fragmented_blocks_allcpus(void);
 576
 577/*
 578 * called before a call to iounmap() if the caller wants vm_area_struct's
 579 * immediately freed.
 580 */
 581void set_iounmap_nonlazy(void)
 582{
 583	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 584}
 585
 586/*
 587 * Purges all lazily-freed vmap areas.
 588 *
 589 * If sync is 0 then don't purge if there is already a purge in progress.
 590 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 591 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 592 * their own TLB flushing).
 593 * Returns with *start = min(*start, lowest purged address)
 594 *              *end = max(*end, highest purged address)
 595 */
 596static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 597					int sync, int force_flush)
 598{
 599	static DEFINE_SPINLOCK(purge_lock);
 600	LIST_HEAD(valist);
 601	struct vmap_area *va;
 602	struct vmap_area *n_va;
 603	int nr = 0;
 604
 605	/*
 606	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 607	 * should not expect such behaviour. This just simplifies locking for
 608	 * the case that isn't actually used at the moment anyway.
 609	 */
 610	if (!sync && !force_flush) {
 611		if (!spin_trylock(&purge_lock))
 612			return;
 613	} else
 614		spin_lock(&purge_lock);
 615
 616	if (sync)
 617		purge_fragmented_blocks_allcpus();
 618
 619	rcu_read_lock();
 620	list_for_each_entry_rcu(va, &vmap_area_list, list) {
 621		if (va->flags & VM_LAZY_FREE) {
 622			if (va->va_start < *start)
 623				*start = va->va_start;
 624			if (va->va_end > *end)
 625				*end = va->va_end;
 626			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 627			list_add_tail(&va->purge_list, &valist);
 628			va->flags |= VM_LAZY_FREEING;
 629			va->flags &= ~VM_LAZY_FREE;
 630		}
 631	}
 632	rcu_read_unlock();
 633
 634	if (nr)
 635		atomic_sub(nr, &vmap_lazy_nr);
 636
 637	if (nr || force_flush)
 638		flush_tlb_kernel_range(*start, *end);
 639
 640	if (nr) {
 641		spin_lock(&vmap_area_lock);
 642		list_for_each_entry_safe(va, n_va, &valist, purge_list)
 643			__free_vmap_area(va);
 644		spin_unlock(&vmap_area_lock);
 
 
 645	}
 646	spin_unlock(&purge_lock);
 
 647}
 648
 649/*
 650 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 651 * is already purging.
 652 */
 653static void try_purge_vmap_area_lazy(void)
 654{
 655	unsigned long start = ULONG_MAX, end = 0;
 656
 657	__purge_vmap_area_lazy(&start, &end, 0, 0);
 
 658}
 659
 660/*
 661 * Kick off a purge of the outstanding lazy areas.
 662 */
 663static void purge_vmap_area_lazy(void)
 664{
 665	unsigned long start = ULONG_MAX, end = 0;
 666
 667	__purge_vmap_area_lazy(&start, &end, 1, 0);
 
 668}
 669
 670/*
 671 * Free a vmap area, caller ensuring that the area has been unmapped
 672 * and flush_cache_vunmap had been called for the correct range
 673 * previously.
 674 */
 675static void free_vmap_area_noflush(struct vmap_area *va)
 676{
 677	va->flags |= VM_LAZY_FREE;
 678	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 679	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 680		try_purge_vmap_area_lazy();
 681}
 682
 683/*
 684 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 685 * called for the correct range previously.
 686 */
 687static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 688{
 689	unmap_vmap_area(va);
 690	free_vmap_area_noflush(va);
 691}
 692
 693/*
 694 * Free and unmap a vmap area
 695 */
 696static void free_unmap_vmap_area(struct vmap_area *va)
 697{
 698	flush_cache_vunmap(va->va_start, va->va_end);
 699	free_unmap_vmap_area_noflush(va);
 
 700}
 701
 702static struct vmap_area *find_vmap_area(unsigned long addr)
 703{
 704	struct vmap_area *va;
 705
 706	spin_lock(&vmap_area_lock);
 707	va = __find_vmap_area(addr);
 708	spin_unlock(&vmap_area_lock);
 709
 710	return va;
 711}
 712
 713static void free_unmap_vmap_area_addr(unsigned long addr)
 714{
 715	struct vmap_area *va;
 716
 717	va = find_vmap_area(addr);
 718	BUG_ON(!va);
 719	free_unmap_vmap_area(va);
 720}
 721
 722
 723/*** Per cpu kva allocator ***/
 724
 725/*
 726 * vmap space is limited especially on 32 bit architectures. Ensure there is
 727 * room for at least 16 percpu vmap blocks per CPU.
 728 */
 729/*
 730 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 731 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 732 * instead (we just need a rough idea)
 733 */
 734#if BITS_PER_LONG == 32
 735#define VMALLOC_SPACE		(128UL*1024*1024)
 736#else
 737#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 738#endif
 739
 740#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 741#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 742#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 743#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 744#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 745#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 746#define VMAP_BBMAP_BITS		\
 747		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 748		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 749			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 750
 751#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 752
 753static bool vmap_initialized __read_mostly = false;
 754
 755struct vmap_block_queue {
 756	spinlock_t lock;
 757	struct list_head free;
 758};
 759
 760struct vmap_block {
 761	spinlock_t lock;
 762	struct vmap_area *va;
 763	unsigned long free, dirty;
 764	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 765	struct list_head free_list;
 766	struct rcu_head rcu_head;
 767	struct list_head purge;
 768};
 769
 770/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 771static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 772
 773/*
 774 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 775 * in the free path. Could get rid of this if we change the API to return a
 776 * "cookie" from alloc, to be passed to free. But no big deal yet.
 777 */
 778static DEFINE_SPINLOCK(vmap_block_tree_lock);
 779static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 780
 781/*
 782 * We should probably have a fallback mechanism to allocate virtual memory
 783 * out of partially filled vmap blocks. However vmap block sizing should be
 784 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 785 * big problem.
 786 */
 787
 788static unsigned long addr_to_vb_idx(unsigned long addr)
 789{
 790	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 791	addr /= VMAP_BLOCK_SIZE;
 792	return addr;
 793}
 794
 795static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796{
 797	struct vmap_block_queue *vbq;
 798	struct vmap_block *vb;
 799	struct vmap_area *va;
 800	unsigned long vb_idx;
 801	int node, err;
 
 802
 803	node = numa_node_id();
 804
 805	vb = kmalloc_node(sizeof(struct vmap_block),
 806			gfp_mask & GFP_RECLAIM_MASK, node);
 807	if (unlikely(!vb))
 808		return ERR_PTR(-ENOMEM);
 809
 810	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 811					VMALLOC_START, VMALLOC_END,
 812					node, gfp_mask);
 813	if (IS_ERR(va)) {
 814		kfree(vb);
 815		return ERR_CAST(va);
 816	}
 817
 818	err = radix_tree_preload(gfp_mask);
 819	if (unlikely(err)) {
 820		kfree(vb);
 821		free_vmap_area(va);
 822		return ERR_PTR(err);
 823	}
 824
 
 825	spin_lock_init(&vb->lock);
 826	vb->va = va;
 827	vb->free = VMAP_BBMAP_BITS;
 
 
 828	vb->dirty = 0;
 829	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 
 830	INIT_LIST_HEAD(&vb->free_list);
 831
 832	vb_idx = addr_to_vb_idx(va->va_start);
 833	spin_lock(&vmap_block_tree_lock);
 834	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 835	spin_unlock(&vmap_block_tree_lock);
 836	BUG_ON(err);
 837	radix_tree_preload_end();
 838
 839	vbq = &get_cpu_var(vmap_block_queue);
 840	spin_lock(&vbq->lock);
 841	list_add_rcu(&vb->free_list, &vbq->free);
 842	spin_unlock(&vbq->lock);
 843	put_cpu_var(vmap_block_queue);
 844
 845	return vb;
 846}
 847
 848static void free_vmap_block(struct vmap_block *vb)
 849{
 850	struct vmap_block *tmp;
 851	unsigned long vb_idx;
 852
 853	vb_idx = addr_to_vb_idx(vb->va->va_start);
 854	spin_lock(&vmap_block_tree_lock);
 855	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 856	spin_unlock(&vmap_block_tree_lock);
 857	BUG_ON(tmp != vb);
 858
 859	free_vmap_area_noflush(vb->va);
 860	kfree_rcu(vb, rcu_head);
 861}
 862
 863static void purge_fragmented_blocks(int cpu)
 864{
 865	LIST_HEAD(purge);
 866	struct vmap_block *vb;
 867	struct vmap_block *n_vb;
 868	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 869
 870	rcu_read_lock();
 871	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 872
 873		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 874			continue;
 875
 876		spin_lock(&vb->lock);
 877		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 878			vb->free = 0; /* prevent further allocs after releasing lock */
 879			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 880			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 
 881			spin_lock(&vbq->lock);
 882			list_del_rcu(&vb->free_list);
 883			spin_unlock(&vbq->lock);
 884			spin_unlock(&vb->lock);
 885			list_add_tail(&vb->purge, &purge);
 886		} else
 887			spin_unlock(&vb->lock);
 888	}
 889	rcu_read_unlock();
 890
 891	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 892		list_del(&vb->purge);
 893		free_vmap_block(vb);
 894	}
 895}
 896
 897static void purge_fragmented_blocks_allcpus(void)
 898{
 899	int cpu;
 900
 901	for_each_possible_cpu(cpu)
 902		purge_fragmented_blocks(cpu);
 903}
 904
 905static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 906{
 907	struct vmap_block_queue *vbq;
 908	struct vmap_block *vb;
 909	unsigned long addr = 0;
 910	unsigned int order;
 911
 912	BUG_ON(size & ~PAGE_MASK);
 913	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 914	if (WARN_ON(size == 0)) {
 915		/*
 916		 * Allocating 0 bytes isn't what caller wants since
 917		 * get_order(0) returns funny result. Just warn and terminate
 918		 * early.
 919		 */
 920		return NULL;
 921	}
 922	order = get_order(size);
 923
 924again:
 925	rcu_read_lock();
 926	vbq = &get_cpu_var(vmap_block_queue);
 927	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 928		int i;
 929
 930		spin_lock(&vb->lock);
 931		if (vb->free < 1UL << order)
 932			goto next;
 
 
 933
 934		i = VMAP_BBMAP_BITS - vb->free;
 935		addr = vb->va->va_start + (i << PAGE_SHIFT);
 936		BUG_ON(addr_to_vb_idx(addr) !=
 937				addr_to_vb_idx(vb->va->va_start));
 938		vb->free -= 1UL << order;
 939		if (vb->free == 0) {
 940			spin_lock(&vbq->lock);
 941			list_del_rcu(&vb->free_list);
 942			spin_unlock(&vbq->lock);
 943		}
 
 944		spin_unlock(&vb->lock);
 945		break;
 946next:
 947		spin_unlock(&vb->lock);
 948	}
 949
 950	put_cpu_var(vmap_block_queue);
 951	rcu_read_unlock();
 952
 953	if (!addr) {
 954		vb = new_vmap_block(gfp_mask);
 955		if (IS_ERR(vb))
 956			return vb;
 957		goto again;
 958	}
 959
 960	return (void *)addr;
 961}
 962
 963static void vb_free(const void *addr, unsigned long size)
 964{
 965	unsigned long offset;
 966	unsigned long vb_idx;
 967	unsigned int order;
 968	struct vmap_block *vb;
 969
 970	BUG_ON(size & ~PAGE_MASK);
 971	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 972
 973	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 974
 975	order = get_order(size);
 976
 977	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 
 978
 979	vb_idx = addr_to_vb_idx((unsigned long)addr);
 980	rcu_read_lock();
 981	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 982	rcu_read_unlock();
 983	BUG_ON(!vb);
 984
 985	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
 986
 987	spin_lock(&vb->lock);
 988	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
 
 
 
 989
 990	vb->dirty += 1UL << order;
 991	if (vb->dirty == VMAP_BBMAP_BITS) {
 992		BUG_ON(vb->free);
 993		spin_unlock(&vb->lock);
 994		free_vmap_block(vb);
 995	} else
 996		spin_unlock(&vb->lock);
 997}
 998
 999/**
1000 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1001 *
1002 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1003 * to amortize TLB flushing overheads. What this means is that any page you
1004 * have now, may, in a former life, have been mapped into kernel virtual
1005 * address by the vmap layer and so there might be some CPUs with TLB entries
1006 * still referencing that page (additional to the regular 1:1 kernel mapping).
1007 *
1008 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1009 * be sure that none of the pages we have control over will have any aliases
1010 * from the vmap layer.
1011 */
1012void vm_unmap_aliases(void)
1013{
1014	unsigned long start = ULONG_MAX, end = 0;
1015	int cpu;
1016	int flush = 0;
1017
1018	if (unlikely(!vmap_initialized))
1019		return;
1020
 
 
1021	for_each_possible_cpu(cpu) {
1022		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1023		struct vmap_block *vb;
1024
1025		rcu_read_lock();
1026		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1027			int i, j;
1028
1029			spin_lock(&vb->lock);
1030			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1031			if (i < VMAP_BBMAP_BITS) {
1032				unsigned long s, e;
1033
1034				j = find_last_bit(vb->dirty_map,
1035							VMAP_BBMAP_BITS);
1036				j = j + 1; /* need exclusive index */
1037
1038				s = vb->va->va_start + (i << PAGE_SHIFT);
1039				e = vb->va->va_start + (j << PAGE_SHIFT);
1040				flush = 1;
1041
1042				if (s < start)
1043					start = s;
1044				if (e > end)
1045					end = e;
1046			}
1047			spin_unlock(&vb->lock);
1048		}
1049		rcu_read_unlock();
1050	}
1051
1052	__purge_vmap_area_lazy(&start, &end, 1, flush);
 
 
 
 
1053}
1054EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1055
1056/**
1057 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1058 * @mem: the pointer returned by vm_map_ram
1059 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1060 */
1061void vm_unmap_ram(const void *mem, unsigned int count)
1062{
1063	unsigned long size = count << PAGE_SHIFT;
1064	unsigned long addr = (unsigned long)mem;
 
1065
 
1066	BUG_ON(!addr);
1067	BUG_ON(addr < VMALLOC_START);
1068	BUG_ON(addr > VMALLOC_END);
1069	BUG_ON(addr & (PAGE_SIZE-1));
1070
1071	debug_check_no_locks_freed(mem, size);
1072	vmap_debug_free_range(addr, addr+size);
1073
1074	if (likely(count <= VMAP_MAX_ALLOC))
1075		vb_free(mem, size);
1076	else
1077		free_unmap_vmap_area_addr(addr);
 
 
 
 
1078}
1079EXPORT_SYMBOL(vm_unmap_ram);
1080
1081/**
1082 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1083 * @pages: an array of pointers to the pages to be mapped
1084 * @count: number of pages
1085 * @node: prefer to allocate data structures on this node
1086 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1087 *
1088 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1089 * faster than vmap so it's good.  But if you mix long-life and short-life
1090 * objects with vm_map_ram(), it could consume lots of address space through
1091 * fragmentation (especially on a 32bit machine).  You could see failures in
1092 * the end.  Please use this function for short-lived objects.
1093 *
1094 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1095 */
1096void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1097{
1098	unsigned long size = count << PAGE_SHIFT;
1099	unsigned long addr;
1100	void *mem;
1101
1102	if (likely(count <= VMAP_MAX_ALLOC)) {
1103		mem = vb_alloc(size, GFP_KERNEL);
1104		if (IS_ERR(mem))
1105			return NULL;
1106		addr = (unsigned long)mem;
1107	} else {
1108		struct vmap_area *va;
1109		va = alloc_vmap_area(size, PAGE_SIZE,
1110				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1111		if (IS_ERR(va))
1112			return NULL;
1113
1114		addr = va->va_start;
1115		mem = (void *)addr;
1116	}
1117	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1118		vm_unmap_ram(mem, count);
1119		return NULL;
1120	}
1121	return mem;
1122}
1123EXPORT_SYMBOL(vm_map_ram);
1124
1125static struct vm_struct *vmlist __initdata;
1126/**
1127 * vm_area_add_early - add vmap area early during boot
1128 * @vm: vm_struct to add
1129 *
1130 * This function is used to add fixed kernel vm area to vmlist before
1131 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1132 * should contain proper values and the other fields should be zero.
1133 *
1134 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1135 */
1136void __init vm_area_add_early(struct vm_struct *vm)
1137{
1138	struct vm_struct *tmp, **p;
1139
1140	BUG_ON(vmap_initialized);
1141	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1142		if (tmp->addr >= vm->addr) {
1143			BUG_ON(tmp->addr < vm->addr + vm->size);
1144			break;
1145		} else
1146			BUG_ON(tmp->addr + tmp->size > vm->addr);
1147	}
1148	vm->next = *p;
1149	*p = vm;
1150}
1151
1152/**
1153 * vm_area_register_early - register vmap area early during boot
1154 * @vm: vm_struct to register
1155 * @align: requested alignment
1156 *
1157 * This function is used to register kernel vm area before
1158 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1159 * proper values on entry and other fields should be zero.  On return,
1160 * vm->addr contains the allocated address.
1161 *
1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163 */
1164void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1165{
1166	static size_t vm_init_off __initdata;
1167	unsigned long addr;
1168
1169	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1170	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1171
1172	vm->addr = (void *)addr;
1173
1174	vm_area_add_early(vm);
1175}
1176
1177void __init vmalloc_init(void)
1178{
1179	struct vmap_area *va;
1180	struct vm_struct *tmp;
1181	int i;
1182
1183	for_each_possible_cpu(i) {
1184		struct vmap_block_queue *vbq;
1185		struct vfree_deferred *p;
1186
1187		vbq = &per_cpu(vmap_block_queue, i);
1188		spin_lock_init(&vbq->lock);
1189		INIT_LIST_HEAD(&vbq->free);
1190		p = &per_cpu(vfree_deferred, i);
1191		init_llist_head(&p->list);
1192		INIT_WORK(&p->wq, free_work);
1193	}
1194
1195	/* Import existing vmlist entries. */
1196	for (tmp = vmlist; tmp; tmp = tmp->next) {
1197		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1198		va->flags = VM_VM_AREA;
1199		va->va_start = (unsigned long)tmp->addr;
1200		va->va_end = va->va_start + tmp->size;
1201		va->vm = tmp;
1202		__insert_vmap_area(va);
1203	}
1204
1205	vmap_area_pcpu_hole = VMALLOC_END;
1206
1207	vmap_initialized = true;
1208}
1209
1210/**
1211 * map_kernel_range_noflush - map kernel VM area with the specified pages
1212 * @addr: start of the VM area to map
1213 * @size: size of the VM area to map
1214 * @prot: page protection flags to use
1215 * @pages: pages to map
1216 *
1217 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1218 * specify should have been allocated using get_vm_area() and its
1219 * friends.
1220 *
1221 * NOTE:
1222 * This function does NOT do any cache flushing.  The caller is
1223 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1224 * before calling this function.
1225 *
1226 * RETURNS:
1227 * The number of pages mapped on success, -errno on failure.
1228 */
1229int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1230			     pgprot_t prot, struct page **pages)
1231{
1232	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1233}
1234
1235/**
1236 * unmap_kernel_range_noflush - unmap kernel VM area
1237 * @addr: start of the VM area to unmap
1238 * @size: size of the VM area to unmap
1239 *
1240 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1241 * specify should have been allocated using get_vm_area() and its
1242 * friends.
1243 *
1244 * NOTE:
1245 * This function does NOT do any cache flushing.  The caller is
1246 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1247 * before calling this function and flush_tlb_kernel_range() after.
1248 */
1249void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1250{
1251	vunmap_page_range(addr, addr + size);
1252}
1253EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1254
1255/**
1256 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1257 * @addr: start of the VM area to unmap
1258 * @size: size of the VM area to unmap
1259 *
1260 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1261 * the unmapping and tlb after.
1262 */
1263void unmap_kernel_range(unsigned long addr, unsigned long size)
1264{
1265	unsigned long end = addr + size;
1266
1267	flush_cache_vunmap(addr, end);
1268	vunmap_page_range(addr, end);
1269	flush_tlb_kernel_range(addr, end);
1270}
 
1271
1272int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1273{
1274	unsigned long addr = (unsigned long)area->addr;
1275	unsigned long end = addr + get_vm_area_size(area);
1276	int err;
1277
1278	err = vmap_page_range(addr, end, prot, *pages);
1279	if (err > 0) {
1280		*pages += err;
1281		err = 0;
1282	}
1283
1284	return err;
1285}
1286EXPORT_SYMBOL_GPL(map_vm_area);
1287
1288static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1289			      unsigned long flags, const void *caller)
1290{
1291	spin_lock(&vmap_area_lock);
1292	vm->flags = flags;
1293	vm->addr = (void *)va->va_start;
1294	vm->size = va->va_end - va->va_start;
1295	vm->caller = caller;
1296	va->vm = vm;
1297	va->flags |= VM_VM_AREA;
1298	spin_unlock(&vmap_area_lock);
1299}
1300
1301static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1302{
1303	/*
1304	 * Before removing VM_UNINITIALIZED,
1305	 * we should make sure that vm has proper values.
1306	 * Pair with smp_rmb() in show_numa_info().
1307	 */
1308	smp_wmb();
1309	vm->flags &= ~VM_UNINITIALIZED;
1310}
1311
1312static struct vm_struct *__get_vm_area_node(unsigned long size,
1313		unsigned long align, unsigned long flags, unsigned long start,
1314		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1315{
1316	struct vmap_area *va;
1317	struct vm_struct *area;
1318
1319	BUG_ON(in_interrupt());
1320	if (flags & VM_IOREMAP)
1321		align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1322
1323	size = PAGE_ALIGN(size);
1324	if (unlikely(!size))
1325		return NULL;
1326
 
 
 
 
1327	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1328	if (unlikely(!area))
1329		return NULL;
1330
1331	/*
1332	 * We always allocate a guard page.
1333	 */
1334	size += PAGE_SIZE;
1335
1336	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1337	if (IS_ERR(va)) {
1338		kfree(area);
1339		return NULL;
1340	}
1341
1342	setup_vmalloc_vm(area, va, flags, caller);
1343
1344	return area;
1345}
1346
1347struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1348				unsigned long start, unsigned long end)
1349{
1350	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1351				  GFP_KERNEL, __builtin_return_address(0));
1352}
1353EXPORT_SYMBOL_GPL(__get_vm_area);
1354
1355struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1356				       unsigned long start, unsigned long end,
1357				       const void *caller)
1358{
1359	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1360				  GFP_KERNEL, caller);
1361}
1362
1363/**
1364 *	get_vm_area  -  reserve a contiguous kernel virtual area
1365 *	@size:		size of the area
1366 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1367 *
1368 *	Search an area of @size in the kernel virtual mapping area,
1369 *	and reserved it for out purposes.  Returns the area descriptor
1370 *	on success or %NULL on failure.
1371 */
1372struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1373{
1374	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1375				  NUMA_NO_NODE, GFP_KERNEL,
1376				  __builtin_return_address(0));
1377}
1378
1379struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1380				const void *caller)
1381{
1382	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1383				  NUMA_NO_NODE, GFP_KERNEL, caller);
1384}
1385
1386/**
1387 *	find_vm_area  -  find a continuous kernel virtual area
1388 *	@addr:		base address
1389 *
1390 *	Search for the kernel VM area starting at @addr, and return it.
1391 *	It is up to the caller to do all required locking to keep the returned
1392 *	pointer valid.
1393 */
1394struct vm_struct *find_vm_area(const void *addr)
1395{
1396	struct vmap_area *va;
1397
1398	va = find_vmap_area((unsigned long)addr);
1399	if (va && va->flags & VM_VM_AREA)
1400		return va->vm;
1401
1402	return NULL;
1403}
1404
1405/**
1406 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1407 *	@addr:		base address
1408 *
1409 *	Search for the kernel VM area starting at @addr, and remove it.
1410 *	This function returns the found VM area, but using it is NOT safe
1411 *	on SMP machines, except for its size or flags.
1412 */
1413struct vm_struct *remove_vm_area(const void *addr)
1414{
1415	struct vmap_area *va;
1416
 
 
1417	va = find_vmap_area((unsigned long)addr);
1418	if (va && va->flags & VM_VM_AREA) {
1419		struct vm_struct *vm = va->vm;
1420
1421		spin_lock(&vmap_area_lock);
1422		va->vm = NULL;
1423		va->flags &= ~VM_VM_AREA;
1424		spin_unlock(&vmap_area_lock);
1425
1426		vmap_debug_free_range(va->va_start, va->va_end);
 
1427		free_unmap_vmap_area(va);
1428		vm->size -= PAGE_SIZE;
1429
1430		return vm;
1431	}
1432	return NULL;
1433}
1434
1435static void __vunmap(const void *addr, int deallocate_pages)
1436{
1437	struct vm_struct *area;
1438
1439	if (!addr)
1440		return;
1441
1442	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1443			addr))
1444		return;
1445
1446	area = remove_vm_area(addr);
1447	if (unlikely(!area)) {
1448		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1449				addr);
1450		return;
1451	}
1452
1453	debug_check_no_locks_freed(addr, area->size);
1454	debug_check_no_obj_freed(addr, area->size);
1455
1456	if (deallocate_pages) {
1457		int i;
1458
1459		for (i = 0; i < area->nr_pages; i++) {
1460			struct page *page = area->pages[i];
1461
1462			BUG_ON(!page);
1463			__free_page(page);
1464		}
1465
1466		if (area->flags & VM_VPAGES)
1467			vfree(area->pages);
1468		else
1469			kfree(area->pages);
1470	}
1471
1472	kfree(area);
1473	return;
1474}
1475 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1476/**
1477 *	vfree  -  release memory allocated by vmalloc()
1478 *	@addr:		memory base address
1479 *
1480 *	Free the virtually continuous memory area starting at @addr, as
1481 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1482 *	NULL, no operation is performed.
1483 *
1484 *	Must not be called in NMI context (strictly speaking, only if we don't
1485 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1486 *	conventions for vfree() arch-depenedent would be a really bad idea)
1487 *
1488 *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1489 */
1490void vfree(const void *addr)
1491{
1492	BUG_ON(in_nmi());
1493
1494	kmemleak_free(addr);
1495
1496	if (!addr)
1497		return;
1498	if (unlikely(in_interrupt())) {
1499		struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1500		if (llist_add((struct llist_node *)addr, &p->list))
1501			schedule_work(&p->wq);
1502	} else
1503		__vunmap(addr, 1);
1504}
1505EXPORT_SYMBOL(vfree);
1506
1507/**
1508 *	vunmap  -  release virtual mapping obtained by vmap()
1509 *	@addr:		memory base address
1510 *
1511 *	Free the virtually contiguous memory area starting at @addr,
1512 *	which was created from the page array passed to vmap().
1513 *
1514 *	Must not be called in interrupt context.
1515 */
1516void vunmap(const void *addr)
1517{
1518	BUG_ON(in_interrupt());
1519	might_sleep();
1520	if (addr)
1521		__vunmap(addr, 0);
1522}
1523EXPORT_SYMBOL(vunmap);
1524
1525/**
1526 *	vmap  -  map an array of pages into virtually contiguous space
1527 *	@pages:		array of page pointers
1528 *	@count:		number of pages to map
1529 *	@flags:		vm_area->flags
1530 *	@prot:		page protection for the mapping
1531 *
1532 *	Maps @count pages from @pages into contiguous kernel virtual
1533 *	space.
1534 */
1535void *vmap(struct page **pages, unsigned int count,
1536		unsigned long flags, pgprot_t prot)
1537{
1538	struct vm_struct *area;
 
1539
1540	might_sleep();
1541
1542	if (count > totalram_pages)
1543		return NULL;
1544
1545	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1546					__builtin_return_address(0));
1547	if (!area)
1548		return NULL;
1549
1550	if (map_vm_area(area, prot, &pages)) {
1551		vunmap(area->addr);
1552		return NULL;
1553	}
1554
1555	return area->addr;
1556}
1557EXPORT_SYMBOL(vmap);
1558
1559static void *__vmalloc_node(unsigned long size, unsigned long align,
1560			    gfp_t gfp_mask, pgprot_t prot,
1561			    int node, const void *caller);
1562static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1563				 pgprot_t prot, int node)
1564{
1565	const int order = 0;
1566	struct page **pages;
1567	unsigned int nr_pages, array_size, i;
1568	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
 
1569
1570	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1571	array_size = (nr_pages * sizeof(struct page *));
1572
1573	area->nr_pages = nr_pages;
1574	/* Please note that the recursion is strictly bounded. */
1575	if (array_size > PAGE_SIZE) {
1576		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1577				PAGE_KERNEL, node, area->caller);
1578		area->flags |= VM_VPAGES;
1579	} else {
1580		pages = kmalloc_node(array_size, nested_gfp, node);
1581	}
1582	area->pages = pages;
1583	if (!area->pages) {
1584		remove_vm_area(area->addr);
1585		kfree(area);
1586		return NULL;
1587	}
1588
1589	for (i = 0; i < area->nr_pages; i++) {
1590		struct page *page;
1591		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1592
1593		if (node == NUMA_NO_NODE)
1594			page = alloc_page(tmp_mask);
1595		else
1596			page = alloc_pages_node(node, tmp_mask, order);
1597
1598		if (unlikely(!page)) {
1599			/* Successfully allocated i pages, free them in __vunmap() */
1600			area->nr_pages = i;
1601			goto fail;
1602		}
1603		area->pages[i] = page;
 
 
1604	}
1605
1606	if (map_vm_area(area, prot, &pages))
1607		goto fail;
1608	return area->addr;
1609
1610fail:
1611	warn_alloc_failed(gfp_mask, order,
1612			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1613			  (area->nr_pages*PAGE_SIZE), area->size);
1614	vfree(area->addr);
1615	return NULL;
1616}
1617
1618/**
1619 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1620 *	@size:		allocation size
1621 *	@align:		desired alignment
1622 *	@start:		vm area range start
1623 *	@end:		vm area range end
1624 *	@gfp_mask:	flags for the page level allocator
1625 *	@prot:		protection mask for the allocated pages
 
1626 *	@node:		node to use for allocation or NUMA_NO_NODE
1627 *	@caller:	caller's return address
1628 *
1629 *	Allocate enough pages to cover @size from the page level
1630 *	allocator with @gfp_mask flags.  Map them into contiguous
1631 *	kernel virtual space, using a pagetable protection of @prot.
1632 */
1633void *__vmalloc_node_range(unsigned long size, unsigned long align,
1634			unsigned long start, unsigned long end, gfp_t gfp_mask,
1635			pgprot_t prot, int node, const void *caller)
 
1636{
1637	struct vm_struct *area;
1638	void *addr;
1639	unsigned long real_size = size;
1640
1641	size = PAGE_ALIGN(size);
1642	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1643		goto fail;
1644
1645	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1646				  start, end, node, gfp_mask, caller);
1647	if (!area)
1648		goto fail;
1649
1650	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1651	if (!addr)
1652		return NULL;
1653
1654	/*
1655	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1656	 * flag. It means that vm_struct is not fully initialized.
1657	 * Now, it is fully initialized, so remove this flag here.
1658	 */
1659	clear_vm_uninitialized_flag(area);
1660
1661	/*
1662	 * A ref_count = 2 is needed because vm_struct allocated in
1663	 * __get_vm_area_node() contains a reference to the virtual address of
1664	 * the vmalloc'ed block.
1665	 */
1666	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1667
1668	return addr;
1669
1670fail:
1671	warn_alloc_failed(gfp_mask, 0,
1672			  "vmalloc: allocation failure: %lu bytes\n",
1673			  real_size);
1674	return NULL;
1675}
1676
1677/**
1678 *	__vmalloc_node  -  allocate virtually contiguous memory
1679 *	@size:		allocation size
1680 *	@align:		desired alignment
1681 *	@gfp_mask:	flags for the page level allocator
1682 *	@prot:		protection mask for the allocated pages
1683 *	@node:		node to use for allocation or NUMA_NO_NODE
1684 *	@caller:	caller's return address
1685 *
1686 *	Allocate enough pages to cover @size from the page level
1687 *	allocator with @gfp_mask flags.  Map them into contiguous
1688 *	kernel virtual space, using a pagetable protection of @prot.
1689 */
1690static void *__vmalloc_node(unsigned long size, unsigned long align,
1691			    gfp_t gfp_mask, pgprot_t prot,
1692			    int node, const void *caller)
1693{
1694	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1695				gfp_mask, prot, node, caller);
1696}
1697
1698void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1699{
1700	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1701				__builtin_return_address(0));
1702}
1703EXPORT_SYMBOL(__vmalloc);
1704
1705static inline void *__vmalloc_node_flags(unsigned long size,
1706					int node, gfp_t flags)
1707{
1708	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1709					node, __builtin_return_address(0));
1710}
1711
1712/**
1713 *	vmalloc  -  allocate virtually contiguous memory
1714 *	@size:		allocation size
1715 *	Allocate enough pages to cover @size from the page level
1716 *	allocator and map them into contiguous kernel virtual space.
1717 *
1718 *	For tight control over page level allocator and protection flags
1719 *	use __vmalloc() instead.
1720 */
1721void *vmalloc(unsigned long size)
1722{
1723	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1724				    GFP_KERNEL | __GFP_HIGHMEM);
1725}
1726EXPORT_SYMBOL(vmalloc);
1727
1728/**
1729 *	vzalloc - allocate virtually contiguous memory with zero fill
1730 *	@size:	allocation size
1731 *	Allocate enough pages to cover @size from the page level
1732 *	allocator and map them into contiguous kernel virtual space.
1733 *	The memory allocated is set to zero.
1734 *
1735 *	For tight control over page level allocator and protection flags
1736 *	use __vmalloc() instead.
1737 */
1738void *vzalloc(unsigned long size)
1739{
1740	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1741				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1742}
1743EXPORT_SYMBOL(vzalloc);
1744
1745/**
1746 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1747 * @size: allocation size
1748 *
1749 * The resulting memory area is zeroed so it can be mapped to userspace
1750 * without leaking data.
1751 */
1752void *vmalloc_user(unsigned long size)
1753{
1754	struct vm_struct *area;
1755	void *ret;
1756
1757	ret = __vmalloc_node(size, SHMLBA,
1758			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1759			     PAGE_KERNEL, NUMA_NO_NODE,
1760			     __builtin_return_address(0));
1761	if (ret) {
1762		area = find_vm_area(ret);
1763		area->flags |= VM_USERMAP;
1764	}
1765	return ret;
1766}
1767EXPORT_SYMBOL(vmalloc_user);
1768
1769/**
1770 *	vmalloc_node  -  allocate memory on a specific node
1771 *	@size:		allocation size
1772 *	@node:		numa node
1773 *
1774 *	Allocate enough pages to cover @size from the page level
1775 *	allocator and map them into contiguous kernel virtual space.
1776 *
1777 *	For tight control over page level allocator and protection flags
1778 *	use __vmalloc() instead.
1779 */
1780void *vmalloc_node(unsigned long size, int node)
1781{
1782	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1783					node, __builtin_return_address(0));
1784}
1785EXPORT_SYMBOL(vmalloc_node);
1786
1787/**
1788 * vzalloc_node - allocate memory on a specific node with zero fill
1789 * @size:	allocation size
1790 * @node:	numa node
1791 *
1792 * Allocate enough pages to cover @size from the page level
1793 * allocator and map them into contiguous kernel virtual space.
1794 * The memory allocated is set to zero.
1795 *
1796 * For tight control over page level allocator and protection flags
1797 * use __vmalloc_node() instead.
1798 */
1799void *vzalloc_node(unsigned long size, int node)
1800{
1801	return __vmalloc_node_flags(size, node,
1802			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1803}
1804EXPORT_SYMBOL(vzalloc_node);
1805
1806#ifndef PAGE_KERNEL_EXEC
1807# define PAGE_KERNEL_EXEC PAGE_KERNEL
1808#endif
1809
1810/**
1811 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1812 *	@size:		allocation size
1813 *
1814 *	Kernel-internal function to allocate enough pages to cover @size
1815 *	the page level allocator and map them into contiguous and
1816 *	executable kernel virtual space.
1817 *
1818 *	For tight control over page level allocator and protection flags
1819 *	use __vmalloc() instead.
1820 */
1821
1822void *vmalloc_exec(unsigned long size)
1823{
1824	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1825			      NUMA_NO_NODE, __builtin_return_address(0));
1826}
1827
1828#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1829#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1830#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1831#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1832#else
1833#define GFP_VMALLOC32 GFP_KERNEL
1834#endif
1835
1836/**
1837 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1838 *	@size:		allocation size
1839 *
1840 *	Allocate enough 32bit PA addressable pages to cover @size from the
1841 *	page level allocator and map them into contiguous kernel virtual space.
1842 */
1843void *vmalloc_32(unsigned long size)
1844{
1845	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1846			      NUMA_NO_NODE, __builtin_return_address(0));
1847}
1848EXPORT_SYMBOL(vmalloc_32);
1849
1850/**
1851 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1852 *	@size:		allocation size
1853 *
1854 * The resulting memory area is 32bit addressable and zeroed so it can be
1855 * mapped to userspace without leaking data.
1856 */
1857void *vmalloc_32_user(unsigned long size)
1858{
1859	struct vm_struct *area;
1860	void *ret;
1861
1862	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1863			     NUMA_NO_NODE, __builtin_return_address(0));
1864	if (ret) {
1865		area = find_vm_area(ret);
1866		area->flags |= VM_USERMAP;
1867	}
1868	return ret;
1869}
1870EXPORT_SYMBOL(vmalloc_32_user);
1871
1872/*
1873 * small helper routine , copy contents to buf from addr.
1874 * If the page is not present, fill zero.
1875 */
1876
1877static int aligned_vread(char *buf, char *addr, unsigned long count)
1878{
1879	struct page *p;
1880	int copied = 0;
1881
1882	while (count) {
1883		unsigned long offset, length;
1884
1885		offset = (unsigned long)addr & ~PAGE_MASK;
1886		length = PAGE_SIZE - offset;
1887		if (length > count)
1888			length = count;
1889		p = vmalloc_to_page(addr);
1890		/*
1891		 * To do safe access to this _mapped_ area, we need
1892		 * lock. But adding lock here means that we need to add
1893		 * overhead of vmalloc()/vfree() calles for this _debug_
1894		 * interface, rarely used. Instead of that, we'll use
1895		 * kmap() and get small overhead in this access function.
1896		 */
1897		if (p) {
1898			/*
1899			 * we can expect USER0 is not used (see vread/vwrite's
1900			 * function description)
1901			 */
1902			void *map = kmap_atomic(p);
1903			memcpy(buf, map + offset, length);
1904			kunmap_atomic(map);
1905		} else
1906			memset(buf, 0, length);
1907
1908		addr += length;
1909		buf += length;
1910		copied += length;
1911		count -= length;
1912	}
1913	return copied;
1914}
1915
1916static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1917{
1918	struct page *p;
1919	int copied = 0;
1920
1921	while (count) {
1922		unsigned long offset, length;
1923
1924		offset = (unsigned long)addr & ~PAGE_MASK;
1925		length = PAGE_SIZE - offset;
1926		if (length > count)
1927			length = count;
1928		p = vmalloc_to_page(addr);
1929		/*
1930		 * To do safe access to this _mapped_ area, we need
1931		 * lock. But adding lock here means that we need to add
1932		 * overhead of vmalloc()/vfree() calles for this _debug_
1933		 * interface, rarely used. Instead of that, we'll use
1934		 * kmap() and get small overhead in this access function.
1935		 */
1936		if (p) {
1937			/*
1938			 * we can expect USER0 is not used (see vread/vwrite's
1939			 * function description)
1940			 */
1941			void *map = kmap_atomic(p);
1942			memcpy(map + offset, buf, length);
1943			kunmap_atomic(map);
1944		}
1945		addr += length;
1946		buf += length;
1947		copied += length;
1948		count -= length;
1949	}
1950	return copied;
1951}
1952
1953/**
1954 *	vread() -  read vmalloc area in a safe way.
1955 *	@buf:		buffer for reading data
1956 *	@addr:		vm address.
1957 *	@count:		number of bytes to be read.
1958 *
1959 *	Returns # of bytes which addr and buf should be increased.
1960 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1961 *	includes any intersect with alive vmalloc area.
1962 *
1963 *	This function checks that addr is a valid vmalloc'ed area, and
1964 *	copy data from that area to a given buffer. If the given memory range
1965 *	of [addr...addr+count) includes some valid address, data is copied to
1966 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1967 *	IOREMAP area is treated as memory hole and no copy is done.
1968 *
1969 *	If [addr...addr+count) doesn't includes any intersects with alive
1970 *	vm_struct area, returns 0. @buf should be kernel's buffer.
1971 *
1972 *	Note: In usual ops, vread() is never necessary because the caller
1973 *	should know vmalloc() area is valid and can use memcpy().
1974 *	This is for routines which have to access vmalloc area without
1975 *	any informaion, as /dev/kmem.
1976 *
1977 */
1978
1979long vread(char *buf, char *addr, unsigned long count)
1980{
1981	struct vmap_area *va;
1982	struct vm_struct *vm;
1983	char *vaddr, *buf_start = buf;
1984	unsigned long buflen = count;
1985	unsigned long n;
1986
1987	/* Don't allow overflow */
1988	if ((unsigned long) addr + count < count)
1989		count = -(unsigned long) addr;
1990
1991	spin_lock(&vmap_area_lock);
1992	list_for_each_entry(va, &vmap_area_list, list) {
1993		if (!count)
1994			break;
1995
1996		if (!(va->flags & VM_VM_AREA))
1997			continue;
1998
1999		vm = va->vm;
2000		vaddr = (char *) vm->addr;
2001		if (addr >= vaddr + get_vm_area_size(vm))
2002			continue;
2003		while (addr < vaddr) {
2004			if (count == 0)
2005				goto finished;
2006			*buf = '\0';
2007			buf++;
2008			addr++;
2009			count--;
2010		}
2011		n = vaddr + get_vm_area_size(vm) - addr;
2012		if (n > count)
2013			n = count;
2014		if (!(vm->flags & VM_IOREMAP))
2015			aligned_vread(buf, addr, n);
2016		else /* IOREMAP area is treated as memory hole */
2017			memset(buf, 0, n);
2018		buf += n;
2019		addr += n;
2020		count -= n;
2021	}
2022finished:
2023	spin_unlock(&vmap_area_lock);
2024
2025	if (buf == buf_start)
2026		return 0;
2027	/* zero-fill memory holes */
2028	if (buf != buf_start + buflen)
2029		memset(buf, 0, buflen - (buf - buf_start));
2030
2031	return buflen;
2032}
2033
2034/**
2035 *	vwrite() -  write vmalloc area in a safe way.
2036 *	@buf:		buffer for source data
2037 *	@addr:		vm address.
2038 *	@count:		number of bytes to be read.
2039 *
2040 *	Returns # of bytes which addr and buf should be incresed.
2041 *	(same number to @count).
2042 *	If [addr...addr+count) doesn't includes any intersect with valid
2043 *	vmalloc area, returns 0.
2044 *
2045 *	This function checks that addr is a valid vmalloc'ed area, and
2046 *	copy data from a buffer to the given addr. If specified range of
2047 *	[addr...addr+count) includes some valid address, data is copied from
2048 *	proper area of @buf. If there are memory holes, no copy to hole.
2049 *	IOREMAP area is treated as memory hole and no copy is done.
2050 *
2051 *	If [addr...addr+count) doesn't includes any intersects with alive
2052 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2053 *
2054 *	Note: In usual ops, vwrite() is never necessary because the caller
2055 *	should know vmalloc() area is valid and can use memcpy().
2056 *	This is for routines which have to access vmalloc area without
2057 *	any informaion, as /dev/kmem.
2058 */
2059
2060long vwrite(char *buf, char *addr, unsigned long count)
2061{
2062	struct vmap_area *va;
2063	struct vm_struct *vm;
2064	char *vaddr;
2065	unsigned long n, buflen;
2066	int copied = 0;
2067
2068	/* Don't allow overflow */
2069	if ((unsigned long) addr + count < count)
2070		count = -(unsigned long) addr;
2071	buflen = count;
2072
2073	spin_lock(&vmap_area_lock);
2074	list_for_each_entry(va, &vmap_area_list, list) {
2075		if (!count)
2076			break;
2077
2078		if (!(va->flags & VM_VM_AREA))
2079			continue;
2080
2081		vm = va->vm;
2082		vaddr = (char *) vm->addr;
2083		if (addr >= vaddr + get_vm_area_size(vm))
2084			continue;
2085		while (addr < vaddr) {
2086			if (count == 0)
2087				goto finished;
2088			buf++;
2089			addr++;
2090			count--;
2091		}
2092		n = vaddr + get_vm_area_size(vm) - addr;
2093		if (n > count)
2094			n = count;
2095		if (!(vm->flags & VM_IOREMAP)) {
2096			aligned_vwrite(buf, addr, n);
2097			copied++;
2098		}
2099		buf += n;
2100		addr += n;
2101		count -= n;
2102	}
2103finished:
2104	spin_unlock(&vmap_area_lock);
2105	if (!copied)
2106		return 0;
2107	return buflen;
2108}
2109
2110/**
2111 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2112 *	@vma:		vma to cover
2113 *	@uaddr:		target user address to start at
2114 *	@kaddr:		virtual address of vmalloc kernel memory
2115 *	@size:		size of map area
2116 *
2117 *	Returns:	0 for success, -Exxx on failure
2118 *
2119 *	This function checks that @kaddr is a valid vmalloc'ed area,
2120 *	and that it is big enough to cover the range starting at
2121 *	@uaddr in @vma. Will return failure if that criteria isn't
2122 *	met.
2123 *
2124 *	Similar to remap_pfn_range() (see mm/memory.c)
2125 */
2126int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2127				void *kaddr, unsigned long size)
2128{
2129	struct vm_struct *area;
2130
2131	size = PAGE_ALIGN(size);
2132
2133	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2134		return -EINVAL;
2135
2136	area = find_vm_area(kaddr);
2137	if (!area)
2138		return -EINVAL;
2139
2140	if (!(area->flags & VM_USERMAP))
2141		return -EINVAL;
2142
2143	if (kaddr + size > area->addr + area->size)
2144		return -EINVAL;
2145
2146	do {
2147		struct page *page = vmalloc_to_page(kaddr);
2148		int ret;
2149
2150		ret = vm_insert_page(vma, uaddr, page);
2151		if (ret)
2152			return ret;
2153
2154		uaddr += PAGE_SIZE;
2155		kaddr += PAGE_SIZE;
2156		size -= PAGE_SIZE;
2157	} while (size > 0);
2158
2159	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2160
2161	return 0;
2162}
2163EXPORT_SYMBOL(remap_vmalloc_range_partial);
2164
2165/**
2166 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2167 *	@vma:		vma to cover (map full range of vma)
2168 *	@addr:		vmalloc memory
2169 *	@pgoff:		number of pages into addr before first page to map
2170 *
2171 *	Returns:	0 for success, -Exxx on failure
2172 *
2173 *	This function checks that addr is a valid vmalloc'ed area, and
2174 *	that it is big enough to cover the vma. Will return failure if
2175 *	that criteria isn't met.
2176 *
2177 *	Similar to remap_pfn_range() (see mm/memory.c)
2178 */
2179int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2180						unsigned long pgoff)
2181{
2182	return remap_vmalloc_range_partial(vma, vma->vm_start,
2183					   addr + (pgoff << PAGE_SHIFT),
2184					   vma->vm_end - vma->vm_start);
2185}
2186EXPORT_SYMBOL(remap_vmalloc_range);
2187
2188/*
2189 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2190 * have one.
2191 */
2192void __weak vmalloc_sync_all(void)
2193{
2194}
2195
2196
2197static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2198{
2199	pte_t ***p = data;
2200
2201	if (p) {
2202		*(*p) = pte;
2203		(*p)++;
2204	}
2205	return 0;
2206}
2207
2208/**
2209 *	alloc_vm_area - allocate a range of kernel address space
2210 *	@size:		size of the area
2211 *	@ptes:		returns the PTEs for the address space
2212 *
2213 *	Returns:	NULL on failure, vm_struct on success
2214 *
2215 *	This function reserves a range of kernel address space, and
2216 *	allocates pagetables to map that range.  No actual mappings
2217 *	are created.
2218 *
2219 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2220 *	allocated for the VM area are returned.
2221 */
2222struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2223{
2224	struct vm_struct *area;
2225
2226	area = get_vm_area_caller(size, VM_IOREMAP,
2227				__builtin_return_address(0));
2228	if (area == NULL)
2229		return NULL;
2230
2231	/*
2232	 * This ensures that page tables are constructed for this region
2233	 * of kernel virtual address space and mapped into init_mm.
2234	 */
2235	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2236				size, f, ptes ? &ptes : NULL)) {
2237		free_vm_area(area);
2238		return NULL;
2239	}
2240
2241	return area;
2242}
2243EXPORT_SYMBOL_GPL(alloc_vm_area);
2244
2245void free_vm_area(struct vm_struct *area)
2246{
2247	struct vm_struct *ret;
2248	ret = remove_vm_area(area->addr);
2249	BUG_ON(ret != area);
2250	kfree(area);
2251}
2252EXPORT_SYMBOL_GPL(free_vm_area);
2253
2254#ifdef CONFIG_SMP
2255static struct vmap_area *node_to_va(struct rb_node *n)
2256{
2257	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2258}
2259
2260/**
2261 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2262 * @end: target address
2263 * @pnext: out arg for the next vmap_area
2264 * @pprev: out arg for the previous vmap_area
2265 *
2266 * Returns: %true if either or both of next and prev are found,
2267 *	    %false if no vmap_area exists
2268 *
2269 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2270 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2271 */
2272static bool pvm_find_next_prev(unsigned long end,
2273			       struct vmap_area **pnext,
2274			       struct vmap_area **pprev)
2275{
2276	struct rb_node *n = vmap_area_root.rb_node;
2277	struct vmap_area *va = NULL;
2278
2279	while (n) {
2280		va = rb_entry(n, struct vmap_area, rb_node);
2281		if (end < va->va_end)
2282			n = n->rb_left;
2283		else if (end > va->va_end)
2284			n = n->rb_right;
2285		else
2286			break;
2287	}
2288
2289	if (!va)
2290		return false;
2291
2292	if (va->va_end > end) {
2293		*pnext = va;
2294		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2295	} else {
2296		*pprev = va;
2297		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2298	}
2299	return true;
2300}
2301
2302/**
2303 * pvm_determine_end - find the highest aligned address between two vmap_areas
2304 * @pnext: in/out arg for the next vmap_area
2305 * @pprev: in/out arg for the previous vmap_area
2306 * @align: alignment
2307 *
2308 * Returns: determined end address
2309 *
2310 * Find the highest aligned address between *@pnext and *@pprev below
2311 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2312 * down address is between the end addresses of the two vmap_areas.
2313 *
2314 * Please note that the address returned by this function may fall
2315 * inside *@pnext vmap_area.  The caller is responsible for checking
2316 * that.
2317 */
2318static unsigned long pvm_determine_end(struct vmap_area **pnext,
2319				       struct vmap_area **pprev,
2320				       unsigned long align)
2321{
2322	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2323	unsigned long addr;
2324
2325	if (*pnext)
2326		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2327	else
2328		addr = vmalloc_end;
2329
2330	while (*pprev && (*pprev)->va_end > addr) {
2331		*pnext = *pprev;
2332		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2333	}
2334
2335	return addr;
2336}
2337
2338/**
2339 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2340 * @offsets: array containing offset of each area
2341 * @sizes: array containing size of each area
2342 * @nr_vms: the number of areas to allocate
2343 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2344 *
2345 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2346 *	    vm_structs on success, %NULL on failure
2347 *
2348 * Percpu allocator wants to use congruent vm areas so that it can
2349 * maintain the offsets among percpu areas.  This function allocates
2350 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2351 * be scattered pretty far, distance between two areas easily going up
2352 * to gigabytes.  To avoid interacting with regular vmallocs, these
2353 * areas are allocated from top.
2354 *
2355 * Despite its complicated look, this allocator is rather simple.  It
2356 * does everything top-down and scans areas from the end looking for
2357 * matching slot.  While scanning, if any of the areas overlaps with
2358 * existing vmap_area, the base address is pulled down to fit the
2359 * area.  Scanning is repeated till all the areas fit and then all
2360 * necessary data structres are inserted and the result is returned.
2361 */
2362struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2363				     const size_t *sizes, int nr_vms,
2364				     size_t align)
2365{
2366	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2367	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2368	struct vmap_area **vas, *prev, *next;
2369	struct vm_struct **vms;
2370	int area, area2, last_area, term_area;
2371	unsigned long base, start, end, last_end;
2372	bool purged = false;
2373
2374	/* verify parameters and allocate data structures */
2375	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2376	for (last_area = 0, area = 0; area < nr_vms; area++) {
2377		start = offsets[area];
2378		end = start + sizes[area];
2379
2380		/* is everything aligned properly? */
2381		BUG_ON(!IS_ALIGNED(offsets[area], align));
2382		BUG_ON(!IS_ALIGNED(sizes[area], align));
2383
2384		/* detect the area with the highest address */
2385		if (start > offsets[last_area])
2386			last_area = area;
2387
2388		for (area2 = 0; area2 < nr_vms; area2++) {
2389			unsigned long start2 = offsets[area2];
2390			unsigned long end2 = start2 + sizes[area2];
2391
2392			if (area2 == area)
2393				continue;
2394
2395			BUG_ON(start2 >= start && start2 < end);
2396			BUG_ON(end2 <= end && end2 > start);
2397		}
2398	}
2399	last_end = offsets[last_area] + sizes[last_area];
2400
2401	if (vmalloc_end - vmalloc_start < last_end) {
2402		WARN_ON(true);
2403		return NULL;
2404	}
2405
2406	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2407	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2408	if (!vas || !vms)
2409		goto err_free2;
2410
2411	for (area = 0; area < nr_vms; area++) {
2412		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2413		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2414		if (!vas[area] || !vms[area])
2415			goto err_free;
2416	}
2417retry:
2418	spin_lock(&vmap_area_lock);
2419
2420	/* start scanning - we scan from the top, begin with the last area */
2421	area = term_area = last_area;
2422	start = offsets[area];
2423	end = start + sizes[area];
2424
2425	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2426		base = vmalloc_end - last_end;
2427		goto found;
2428	}
2429	base = pvm_determine_end(&next, &prev, align) - end;
2430
2431	while (true) {
2432		BUG_ON(next && next->va_end <= base + end);
2433		BUG_ON(prev && prev->va_end > base + end);
2434
2435		/*
2436		 * base might have underflowed, add last_end before
2437		 * comparing.
2438		 */
2439		if (base + last_end < vmalloc_start + last_end) {
2440			spin_unlock(&vmap_area_lock);
2441			if (!purged) {
2442				purge_vmap_area_lazy();
2443				purged = true;
2444				goto retry;
2445			}
2446			goto err_free;
2447		}
2448
2449		/*
2450		 * If next overlaps, move base downwards so that it's
2451		 * right below next and then recheck.
2452		 */
2453		if (next && next->va_start < base + end) {
2454			base = pvm_determine_end(&next, &prev, align) - end;
2455			term_area = area;
2456			continue;
2457		}
2458
2459		/*
2460		 * If prev overlaps, shift down next and prev and move
2461		 * base so that it's right below new next and then
2462		 * recheck.
2463		 */
2464		if (prev && prev->va_end > base + start)  {
2465			next = prev;
2466			prev = node_to_va(rb_prev(&next->rb_node));
2467			base = pvm_determine_end(&next, &prev, align) - end;
2468			term_area = area;
2469			continue;
2470		}
2471
2472		/*
2473		 * This area fits, move on to the previous one.  If
2474		 * the previous one is the terminal one, we're done.
2475		 */
2476		area = (area + nr_vms - 1) % nr_vms;
2477		if (area == term_area)
2478			break;
2479		start = offsets[area];
2480		end = start + sizes[area];
2481		pvm_find_next_prev(base + end, &next, &prev);
2482	}
2483found:
2484	/* we've found a fitting base, insert all va's */
2485	for (area = 0; area < nr_vms; area++) {
2486		struct vmap_area *va = vas[area];
2487
2488		va->va_start = base + offsets[area];
2489		va->va_end = va->va_start + sizes[area];
2490		__insert_vmap_area(va);
2491	}
2492
2493	vmap_area_pcpu_hole = base + offsets[last_area];
2494
2495	spin_unlock(&vmap_area_lock);
2496
2497	/* insert all vm's */
2498	for (area = 0; area < nr_vms; area++)
2499		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2500				 pcpu_get_vm_areas);
2501
2502	kfree(vas);
2503	return vms;
2504
2505err_free:
2506	for (area = 0; area < nr_vms; area++) {
2507		kfree(vas[area]);
2508		kfree(vms[area]);
2509	}
2510err_free2:
2511	kfree(vas);
2512	kfree(vms);
2513	return NULL;
2514}
2515
2516/**
2517 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2518 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2519 * @nr_vms: the number of allocated areas
2520 *
2521 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2522 */
2523void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2524{
2525	int i;
2526
2527	for (i = 0; i < nr_vms; i++)
2528		free_vm_area(vms[i]);
2529	kfree(vms);
2530}
2531#endif	/* CONFIG_SMP */
2532
2533#ifdef CONFIG_PROC_FS
2534static void *s_start(struct seq_file *m, loff_t *pos)
2535	__acquires(&vmap_area_lock)
2536{
2537	loff_t n = *pos;
2538	struct vmap_area *va;
2539
2540	spin_lock(&vmap_area_lock);
2541	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2542	while (n > 0 && &va->list != &vmap_area_list) {
2543		n--;
2544		va = list_entry(va->list.next, typeof(*va), list);
2545	}
2546	if (!n && &va->list != &vmap_area_list)
2547		return va;
2548
2549	return NULL;
2550
2551}
2552
2553static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2554{
2555	struct vmap_area *va = p, *next;
2556
2557	++*pos;
2558	next = list_entry(va->list.next, typeof(*va), list);
2559	if (&next->list != &vmap_area_list)
2560		return next;
2561
2562	return NULL;
2563}
2564
2565static void s_stop(struct seq_file *m, void *p)
2566	__releases(&vmap_area_lock)
2567{
2568	spin_unlock(&vmap_area_lock);
2569}
2570
2571static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2572{
2573	if (IS_ENABLED(CONFIG_NUMA)) {
2574		unsigned int nr, *counters = m->private;
2575
2576		if (!counters)
2577			return;
2578
2579		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2580		smp_rmb();
2581		if (v->flags & VM_UNINITIALIZED)
2582			return;
 
 
2583
2584		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2585
2586		for (nr = 0; nr < v->nr_pages; nr++)
2587			counters[page_to_nid(v->pages[nr])]++;
2588
2589		for_each_node_state(nr, N_HIGH_MEMORY)
2590			if (counters[nr])
2591				seq_printf(m, " N%u=%u", nr, counters[nr]);
2592	}
2593}
2594
2595static int s_show(struct seq_file *m, void *p)
2596{
2597	struct vmap_area *va = p;
2598	struct vm_struct *v;
2599
 
 
2600	/*
2601	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2602	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2603	 */
2604	if (!(va->flags & VM_VM_AREA))
2605		return 0;
2606
2607	v = va->vm;
2608
2609	seq_printf(m, "0x%pK-0x%pK %7ld",
2610		v->addr, v->addr + v->size, v->size);
2611
2612	if (v->caller)
2613		seq_printf(m, " %pS", v->caller);
2614
2615	if (v->nr_pages)
2616		seq_printf(m, " pages=%d", v->nr_pages);
2617
2618	if (v->phys_addr)
2619		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2620
2621	if (v->flags & VM_IOREMAP)
2622		seq_printf(m, " ioremap");
2623
2624	if (v->flags & VM_ALLOC)
2625		seq_printf(m, " vmalloc");
2626
2627	if (v->flags & VM_MAP)
2628		seq_printf(m, " vmap");
2629
2630	if (v->flags & VM_USERMAP)
2631		seq_printf(m, " user");
2632
2633	if (v->flags & VM_VPAGES)
2634		seq_printf(m, " vpages");
2635
2636	show_numa_info(m, v);
2637	seq_putc(m, '\n');
2638	return 0;
2639}
2640
2641static const struct seq_operations vmalloc_op = {
2642	.start = s_start,
2643	.next = s_next,
2644	.stop = s_stop,
2645	.show = s_show,
2646};
2647
2648static int vmalloc_open(struct inode *inode, struct file *file)
2649{
2650	unsigned int *ptr = NULL;
2651	int ret;
2652
2653	if (IS_ENABLED(CONFIG_NUMA)) {
2654		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2655		if (ptr == NULL)
2656			return -ENOMEM;
2657	}
2658	ret = seq_open(file, &vmalloc_op);
2659	if (!ret) {
2660		struct seq_file *m = file->private_data;
2661		m->private = ptr;
2662	} else
2663		kfree(ptr);
2664	return ret;
2665}
2666
2667static const struct file_operations proc_vmalloc_operations = {
2668	.open		= vmalloc_open,
2669	.read		= seq_read,
2670	.llseek		= seq_lseek,
2671	.release	= seq_release_private,
2672};
2673
2674static int __init proc_vmalloc_init(void)
2675{
2676	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2677	return 0;
2678}
2679module_init(proc_vmalloc_init);
2680
2681void get_vmalloc_info(struct vmalloc_info *vmi)
2682{
2683	struct vmap_area *va;
2684	unsigned long free_area_size;
2685	unsigned long prev_end;
2686
2687	vmi->used = 0;
2688	vmi->largest_chunk = 0;
2689
2690	prev_end = VMALLOC_START;
2691
2692	spin_lock(&vmap_area_lock);
2693
2694	if (list_empty(&vmap_area_list)) {
2695		vmi->largest_chunk = VMALLOC_TOTAL;
2696		goto out;
2697	}
2698
2699	list_for_each_entry(va, &vmap_area_list, list) {
2700		unsigned long addr = va->va_start;
2701
2702		/*
2703		 * Some archs keep another range for modules in vmalloc space
2704		 */
2705		if (addr < VMALLOC_START)
2706			continue;
2707		if (addr >= VMALLOC_END)
2708			break;
2709
2710		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2711			continue;
2712
2713		vmi->used += (va->va_end - va->va_start);
2714
2715		free_area_size = addr - prev_end;
2716		if (vmi->largest_chunk < free_area_size)
2717			vmi->largest_chunk = free_area_size;
2718
2719		prev_end = va->va_end;
2720	}
2721
2722	if (VMALLOC_END - prev_end > vmi->largest_chunk)
2723		vmi->largest_chunk = VMALLOC_END - prev_end;
2724
2725out:
2726	spin_unlock(&vmap_area_lock);
2727}
2728#endif
2729
v4.10.11
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/notifier.h>
  25#include <linux/rbtree.h>
  26#include <linux/radix-tree.h>
  27#include <linux/rcupdate.h>
  28#include <linux/pfn.h>
  29#include <linux/kmemleak.h>
  30#include <linux/atomic.h>
  31#include <linux/compiler.h>
  32#include <linux/llist.h>
  33#include <linux/bitops.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/tlbflush.h>
  37#include <asm/shmparam.h>
  38
  39#include "internal.h"
  40
  41struct vfree_deferred {
  42	struct llist_head list;
  43	struct work_struct wq;
  44};
  45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  46
  47static void __vunmap(const void *, int);
  48
  49static void free_work(struct work_struct *w)
  50{
  51	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  52	struct llist_node *llnode = llist_del_all(&p->list);
  53	while (llnode) {
  54		void *p = llnode;
  55		llnode = llist_next(llnode);
  56		__vunmap(p, 1);
  57	}
  58}
  59
  60/*** Page table manipulation functions ***/
  61
  62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  63{
  64	pte_t *pte;
  65
  66	pte = pte_offset_kernel(pmd, addr);
  67	do {
  68		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  69		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  70	} while (pte++, addr += PAGE_SIZE, addr != end);
  71}
  72
  73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  74{
  75	pmd_t *pmd;
  76	unsigned long next;
  77
  78	pmd = pmd_offset(pud, addr);
  79	do {
  80		next = pmd_addr_end(addr, end);
  81		if (pmd_clear_huge(pmd))
  82			continue;
  83		if (pmd_none_or_clear_bad(pmd))
  84			continue;
  85		vunmap_pte_range(pmd, addr, next);
  86	} while (pmd++, addr = next, addr != end);
  87}
  88
  89static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  90{
  91	pud_t *pud;
  92	unsigned long next;
  93
  94	pud = pud_offset(pgd, addr);
  95	do {
  96		next = pud_addr_end(addr, end);
  97		if (pud_clear_huge(pud))
  98			continue;
  99		if (pud_none_or_clear_bad(pud))
 100			continue;
 101		vunmap_pmd_range(pud, addr, next);
 102	} while (pud++, addr = next, addr != end);
 103}
 104
 105static void vunmap_page_range(unsigned long addr, unsigned long end)
 106{
 107	pgd_t *pgd;
 108	unsigned long next;
 109
 110	BUG_ON(addr >= end);
 111	pgd = pgd_offset_k(addr);
 112	do {
 113		next = pgd_addr_end(addr, end);
 114		if (pgd_none_or_clear_bad(pgd))
 115			continue;
 116		vunmap_pud_range(pgd, addr, next);
 117	} while (pgd++, addr = next, addr != end);
 118}
 119
 120static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 121		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 122{
 123	pte_t *pte;
 124
 125	/*
 126	 * nr is a running index into the array which helps higher level
 127	 * callers keep track of where we're up to.
 128	 */
 129
 130	pte = pte_alloc_kernel(pmd, addr);
 131	if (!pte)
 132		return -ENOMEM;
 133	do {
 134		struct page *page = pages[*nr];
 135
 136		if (WARN_ON(!pte_none(*pte)))
 137			return -EBUSY;
 138		if (WARN_ON(!page))
 139			return -ENOMEM;
 140		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 141		(*nr)++;
 142	} while (pte++, addr += PAGE_SIZE, addr != end);
 143	return 0;
 144}
 145
 146static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 147		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 148{
 149	pmd_t *pmd;
 150	unsigned long next;
 151
 152	pmd = pmd_alloc(&init_mm, pud, addr);
 153	if (!pmd)
 154		return -ENOMEM;
 155	do {
 156		next = pmd_addr_end(addr, end);
 157		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 158			return -ENOMEM;
 159	} while (pmd++, addr = next, addr != end);
 160	return 0;
 161}
 162
 163static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 164		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 165{
 166	pud_t *pud;
 167	unsigned long next;
 168
 169	pud = pud_alloc(&init_mm, pgd, addr);
 170	if (!pud)
 171		return -ENOMEM;
 172	do {
 173		next = pud_addr_end(addr, end);
 174		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 175			return -ENOMEM;
 176	} while (pud++, addr = next, addr != end);
 177	return 0;
 178}
 179
 180/*
 181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 182 * will have pfns corresponding to the "pages" array.
 183 *
 184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 185 */
 186static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 187				   pgprot_t prot, struct page **pages)
 188{
 189	pgd_t *pgd;
 190	unsigned long next;
 191	unsigned long addr = start;
 192	int err = 0;
 193	int nr = 0;
 194
 195	BUG_ON(addr >= end);
 196	pgd = pgd_offset_k(addr);
 197	do {
 198		next = pgd_addr_end(addr, end);
 199		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 200		if (err)
 201			return err;
 202	} while (pgd++, addr = next, addr != end);
 203
 204	return nr;
 205}
 206
 207static int vmap_page_range(unsigned long start, unsigned long end,
 208			   pgprot_t prot, struct page **pages)
 209{
 210	int ret;
 211
 212	ret = vmap_page_range_noflush(start, end, prot, pages);
 213	flush_cache_vmap(start, end);
 214	return ret;
 215}
 216
 217int is_vmalloc_or_module_addr(const void *x)
 218{
 219	/*
 220	 * ARM, x86-64 and sparc64 put modules in a special place,
 221	 * and fall back on vmalloc() if that fails. Others
 222	 * just put it in the vmalloc space.
 223	 */
 224#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 225	unsigned long addr = (unsigned long)x;
 226	if (addr >= MODULES_VADDR && addr < MODULES_END)
 227		return 1;
 228#endif
 229	return is_vmalloc_addr(x);
 230}
 231
 232/*
 233 * Walk a vmap address to the struct page it maps.
 234 */
 235struct page *vmalloc_to_page(const void *vmalloc_addr)
 236{
 237	unsigned long addr = (unsigned long) vmalloc_addr;
 238	struct page *page = NULL;
 239	pgd_t *pgd = pgd_offset_k(addr);
 240
 241	/*
 242	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 243	 * architectures that do not vmalloc module space
 244	 */
 245	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 246
 247	if (!pgd_none(*pgd)) {
 248		pud_t *pud = pud_offset(pgd, addr);
 249		if (!pud_none(*pud)) {
 250			pmd_t *pmd = pmd_offset(pud, addr);
 251			if (!pmd_none(*pmd)) {
 252				pte_t *ptep, pte;
 253
 254				ptep = pte_offset_map(pmd, addr);
 255				pte = *ptep;
 256				if (pte_present(pte))
 257					page = pte_page(pte);
 258				pte_unmap(ptep);
 259			}
 260		}
 261	}
 262	return page;
 263}
 264EXPORT_SYMBOL(vmalloc_to_page);
 265
 266/*
 267 * Map a vmalloc()-space virtual address to the physical page frame number.
 268 */
 269unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 270{
 271	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 272}
 273EXPORT_SYMBOL(vmalloc_to_pfn);
 274
 275
 276/*** Global kva allocator ***/
 277
 
 
 278#define VM_VM_AREA	0x04
 279
 280static DEFINE_SPINLOCK(vmap_area_lock);
 281/* Export for kexec only */
 282LIST_HEAD(vmap_area_list);
 283static LLIST_HEAD(vmap_purge_list);
 284static struct rb_root vmap_area_root = RB_ROOT;
 285
 286/* The vmap cache globals are protected by vmap_area_lock */
 287static struct rb_node *free_vmap_cache;
 288static unsigned long cached_hole_size;
 289static unsigned long cached_vstart;
 290static unsigned long cached_align;
 291
 292static unsigned long vmap_area_pcpu_hole;
 293
 294static struct vmap_area *__find_vmap_area(unsigned long addr)
 295{
 296	struct rb_node *n = vmap_area_root.rb_node;
 297
 298	while (n) {
 299		struct vmap_area *va;
 300
 301		va = rb_entry(n, struct vmap_area, rb_node);
 302		if (addr < va->va_start)
 303			n = n->rb_left;
 304		else if (addr >= va->va_end)
 305			n = n->rb_right;
 306		else
 307			return va;
 308	}
 309
 310	return NULL;
 311}
 312
 313static void __insert_vmap_area(struct vmap_area *va)
 314{
 315	struct rb_node **p = &vmap_area_root.rb_node;
 316	struct rb_node *parent = NULL;
 317	struct rb_node *tmp;
 318
 319	while (*p) {
 320		struct vmap_area *tmp_va;
 321
 322		parent = *p;
 323		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 324		if (va->va_start < tmp_va->va_end)
 325			p = &(*p)->rb_left;
 326		else if (va->va_end > tmp_va->va_start)
 327			p = &(*p)->rb_right;
 328		else
 329			BUG();
 330	}
 331
 332	rb_link_node(&va->rb_node, parent, p);
 333	rb_insert_color(&va->rb_node, &vmap_area_root);
 334
 335	/* address-sort this list */
 336	tmp = rb_prev(&va->rb_node);
 337	if (tmp) {
 338		struct vmap_area *prev;
 339		prev = rb_entry(tmp, struct vmap_area, rb_node);
 340		list_add_rcu(&va->list, &prev->list);
 341	} else
 342		list_add_rcu(&va->list, &vmap_area_list);
 343}
 344
 345static void purge_vmap_area_lazy(void);
 346
 347static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 348
 349/*
 350 * Allocate a region of KVA of the specified size and alignment, within the
 351 * vstart and vend.
 352 */
 353static struct vmap_area *alloc_vmap_area(unsigned long size,
 354				unsigned long align,
 355				unsigned long vstart, unsigned long vend,
 356				int node, gfp_t gfp_mask)
 357{
 358	struct vmap_area *va;
 359	struct rb_node *n;
 360	unsigned long addr;
 361	int purged = 0;
 362	struct vmap_area *first;
 363
 364	BUG_ON(!size);
 365	BUG_ON(offset_in_page(size));
 366	BUG_ON(!is_power_of_2(align));
 367
 368	might_sleep();
 369
 370	va = kmalloc_node(sizeof(struct vmap_area),
 371			gfp_mask & GFP_RECLAIM_MASK, node);
 372	if (unlikely(!va))
 373		return ERR_PTR(-ENOMEM);
 374
 375	/*
 376	 * Only scan the relevant parts containing pointers to other objects
 377	 * to avoid false negatives.
 378	 */
 379	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 380
 381retry:
 382	spin_lock(&vmap_area_lock);
 383	/*
 384	 * Invalidate cache if we have more permissive parameters.
 385	 * cached_hole_size notes the largest hole noticed _below_
 386	 * the vmap_area cached in free_vmap_cache: if size fits
 387	 * into that hole, we want to scan from vstart to reuse
 388	 * the hole instead of allocating above free_vmap_cache.
 389	 * Note that __free_vmap_area may update free_vmap_cache
 390	 * without updating cached_hole_size or cached_align.
 391	 */
 392	if (!free_vmap_cache ||
 393			size < cached_hole_size ||
 394			vstart < cached_vstart ||
 395			align < cached_align) {
 396nocache:
 397		cached_hole_size = 0;
 398		free_vmap_cache = NULL;
 399	}
 400	/* record if we encounter less permissive parameters */
 401	cached_vstart = vstart;
 402	cached_align = align;
 403
 404	/* find starting point for our search */
 405	if (free_vmap_cache) {
 406		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 407		addr = ALIGN(first->va_end, align);
 408		if (addr < vstart)
 409			goto nocache;
 410		if (addr + size < addr)
 411			goto overflow;
 412
 413	} else {
 414		addr = ALIGN(vstart, align);
 415		if (addr + size < addr)
 416			goto overflow;
 417
 418		n = vmap_area_root.rb_node;
 419		first = NULL;
 420
 421		while (n) {
 422			struct vmap_area *tmp;
 423			tmp = rb_entry(n, struct vmap_area, rb_node);
 424			if (tmp->va_end >= addr) {
 425				first = tmp;
 426				if (tmp->va_start <= addr)
 427					break;
 428				n = n->rb_left;
 429			} else
 430				n = n->rb_right;
 431		}
 432
 433		if (!first)
 434			goto found;
 435	}
 436
 437	/* from the starting point, walk areas until a suitable hole is found */
 438	while (addr + size > first->va_start && addr + size <= vend) {
 439		if (addr + cached_hole_size < first->va_start)
 440			cached_hole_size = first->va_start - addr;
 441		addr = ALIGN(first->va_end, align);
 442		if (addr + size < addr)
 443			goto overflow;
 444
 445		if (list_is_last(&first->list, &vmap_area_list))
 446			goto found;
 447
 448		first = list_next_entry(first, list);
 
 449	}
 450
 451found:
 452	if (addr + size > vend)
 453		goto overflow;
 454
 455	va->va_start = addr;
 456	va->va_end = addr + size;
 457	va->flags = 0;
 458	__insert_vmap_area(va);
 459	free_vmap_cache = &va->rb_node;
 460	spin_unlock(&vmap_area_lock);
 461
 462	BUG_ON(!IS_ALIGNED(va->va_start, align));
 463	BUG_ON(va->va_start < vstart);
 464	BUG_ON(va->va_end > vend);
 465
 466	return va;
 467
 468overflow:
 469	spin_unlock(&vmap_area_lock);
 470	if (!purged) {
 471		purge_vmap_area_lazy();
 472		purged = 1;
 473		goto retry;
 474	}
 475
 476	if (gfpflags_allow_blocking(gfp_mask)) {
 477		unsigned long freed = 0;
 478		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 479		if (freed > 0) {
 480			purged = 0;
 481			goto retry;
 482		}
 483	}
 484
 485	if (printk_ratelimit())
 486		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 487			size);
 
 488	kfree(va);
 489	return ERR_PTR(-EBUSY);
 490}
 491
 492int register_vmap_purge_notifier(struct notifier_block *nb)
 493{
 494	return blocking_notifier_chain_register(&vmap_notify_list, nb);
 495}
 496EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 497
 498int unregister_vmap_purge_notifier(struct notifier_block *nb)
 499{
 500	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 501}
 502EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 503
 504static void __free_vmap_area(struct vmap_area *va)
 505{
 506	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 507
 508	if (free_vmap_cache) {
 509		if (va->va_end < cached_vstart) {
 510			free_vmap_cache = NULL;
 511		} else {
 512			struct vmap_area *cache;
 513			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 514			if (va->va_start <= cache->va_start) {
 515				free_vmap_cache = rb_prev(&va->rb_node);
 516				/*
 517				 * We don't try to update cached_hole_size or
 518				 * cached_align, but it won't go very wrong.
 519				 */
 520			}
 521		}
 522	}
 523	rb_erase(&va->rb_node, &vmap_area_root);
 524	RB_CLEAR_NODE(&va->rb_node);
 525	list_del_rcu(&va->list);
 526
 527	/*
 528	 * Track the highest possible candidate for pcpu area
 529	 * allocation.  Areas outside of vmalloc area can be returned
 530	 * here too, consider only end addresses which fall inside
 531	 * vmalloc area proper.
 532	 */
 533	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 534		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 535
 536	kfree_rcu(va, rcu_head);
 537}
 538
 539/*
 540 * Free a region of KVA allocated by alloc_vmap_area
 541 */
 542static void free_vmap_area(struct vmap_area *va)
 543{
 544	spin_lock(&vmap_area_lock);
 545	__free_vmap_area(va);
 546	spin_unlock(&vmap_area_lock);
 547}
 548
 549/*
 550 * Clear the pagetable entries of a given vmap_area
 551 */
 552static void unmap_vmap_area(struct vmap_area *va)
 553{
 554	vunmap_page_range(va->va_start, va->va_end);
 555}
 556
 557static void vmap_debug_free_range(unsigned long start, unsigned long end)
 558{
 559	/*
 560	 * Unmap page tables and force a TLB flush immediately if pagealloc
 561	 * debugging is enabled.  This catches use after free bugs similarly to
 562	 * those in linear kernel virtual address space after a page has been
 563	 * freed.
 564	 *
 565	 * All the lazy freeing logic is still retained, in order to minimise
 566	 * intrusiveness of this debugging feature.
 567	 *
 568	 * This is going to be *slow* (linear kernel virtual address debugging
 569	 * doesn't do a broadcast TLB flush so it is a lot faster).
 
 570	 */
 571	if (debug_pagealloc_enabled()) {
 572		vunmap_page_range(start, end);
 573		flush_tlb_kernel_range(start, end);
 574	}
 575}
 576
 577/*
 578 * lazy_max_pages is the maximum amount of virtual address space we gather up
 579 * before attempting to purge with a TLB flush.
 580 *
 581 * There is a tradeoff here: a larger number will cover more kernel page tables
 582 * and take slightly longer to purge, but it will linearly reduce the number of
 583 * global TLB flushes that must be performed. It would seem natural to scale
 584 * this number up linearly with the number of CPUs (because vmapping activity
 585 * could also scale linearly with the number of CPUs), however it is likely
 586 * that in practice, workloads might be constrained in other ways that mean
 587 * vmap activity will not scale linearly with CPUs. Also, I want to be
 588 * conservative and not introduce a big latency on huge systems, so go with
 589 * a less aggressive log scale. It will still be an improvement over the old
 590 * code, and it will be simple to change the scale factor if we find that it
 591 * becomes a problem on bigger systems.
 592 */
 593static unsigned long lazy_max_pages(void)
 594{
 595	unsigned int log;
 596
 597	log = fls(num_online_cpus());
 598
 599	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 600}
 601
 602static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 603
 604/*
 605 * Serialize vmap purging.  There is no actual criticial section protected
 606 * by this look, but we want to avoid concurrent calls for performance
 607 * reasons and to make the pcpu_get_vm_areas more deterministic.
 608 */
 609static DEFINE_MUTEX(vmap_purge_lock);
 610
 611/* for per-CPU blocks */
 612static void purge_fragmented_blocks_allcpus(void);
 613
 614/*
 615 * called before a call to iounmap() if the caller wants vm_area_struct's
 616 * immediately freed.
 617 */
 618void set_iounmap_nonlazy(void)
 619{
 620	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 621}
 622
 623/*
 624 * Purges all lazily-freed vmap areas.
 
 
 
 
 
 
 
 625 */
 626static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 
 627{
 628	struct llist_node *valist;
 
 629	struct vmap_area *va;
 630	struct vmap_area *n_va;
 631	bool do_free = false;
 
 
 
 
 
 
 
 
 
 
 
 632
 633	lockdep_assert_held(&vmap_purge_lock);
 
 634
 635	valist = llist_del_all(&vmap_purge_list);
 636	llist_for_each_entry(va, valist, purge_list) {
 637		if (va->va_start < start)
 638			start = va->va_start;
 639		if (va->va_end > end)
 640			end = va->va_end;
 641		do_free = true;
 
 
 
 
 
 642	}
 
 643
 644	if (!do_free)
 645		return false;
 646
 647	flush_tlb_kernel_range(start, end);
 
 648
 649	spin_lock(&vmap_area_lock);
 650	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
 651		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 652
 653		__free_vmap_area(va);
 654		atomic_sub(nr, &vmap_lazy_nr);
 655		cond_resched_lock(&vmap_area_lock);
 656	}
 657	spin_unlock(&vmap_area_lock);
 658	return true;
 659}
 660
 661/*
 662 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 663 * is already purging.
 664 */
 665static void try_purge_vmap_area_lazy(void)
 666{
 667	if (mutex_trylock(&vmap_purge_lock)) {
 668		__purge_vmap_area_lazy(ULONG_MAX, 0);
 669		mutex_unlock(&vmap_purge_lock);
 670	}
 671}
 672
 673/*
 674 * Kick off a purge of the outstanding lazy areas.
 675 */
 676static void purge_vmap_area_lazy(void)
 677{
 678	mutex_lock(&vmap_purge_lock);
 679	purge_fragmented_blocks_allcpus();
 680	__purge_vmap_area_lazy(ULONG_MAX, 0);
 681	mutex_unlock(&vmap_purge_lock);
 682}
 683
 684/*
 685 * Free a vmap area, caller ensuring that the area has been unmapped
 686 * and flush_cache_vunmap had been called for the correct range
 687 * previously.
 688 */
 689static void free_vmap_area_noflush(struct vmap_area *va)
 690{
 691	int nr_lazy;
 
 
 
 
 692
 693	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
 694				    &vmap_lazy_nr);
 695
 696	/* After this point, we may free va at any time */
 697	llist_add(&va->purge_list, &vmap_purge_list);
 698
 699	if (unlikely(nr_lazy > lazy_max_pages()))
 700		try_purge_vmap_area_lazy();
 701}
 702
 703/*
 704 * Free and unmap a vmap area
 705 */
 706static void free_unmap_vmap_area(struct vmap_area *va)
 707{
 708	flush_cache_vunmap(va->va_start, va->va_end);
 709	unmap_vmap_area(va);
 710	free_vmap_area_noflush(va);
 711}
 712
 713static struct vmap_area *find_vmap_area(unsigned long addr)
 714{
 715	struct vmap_area *va;
 716
 717	spin_lock(&vmap_area_lock);
 718	va = __find_vmap_area(addr);
 719	spin_unlock(&vmap_area_lock);
 720
 721	return va;
 722}
 723
 
 
 
 
 
 
 
 
 
 
 724/*** Per cpu kva allocator ***/
 725
 726/*
 727 * vmap space is limited especially on 32 bit architectures. Ensure there is
 728 * room for at least 16 percpu vmap blocks per CPU.
 729 */
 730/*
 731 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 732 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 733 * instead (we just need a rough idea)
 734 */
 735#if BITS_PER_LONG == 32
 736#define VMALLOC_SPACE		(128UL*1024*1024)
 737#else
 738#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 739#endif
 740
 741#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 742#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 743#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 744#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 745#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 746#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 747#define VMAP_BBMAP_BITS		\
 748		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 749		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 750			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 751
 752#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 753
 754static bool vmap_initialized __read_mostly = false;
 755
 756struct vmap_block_queue {
 757	spinlock_t lock;
 758	struct list_head free;
 759};
 760
 761struct vmap_block {
 762	spinlock_t lock;
 763	struct vmap_area *va;
 764	unsigned long free, dirty;
 765	unsigned long dirty_min, dirty_max; /*< dirty range */
 766	struct list_head free_list;
 767	struct rcu_head rcu_head;
 768	struct list_head purge;
 769};
 770
 771/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 772static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 773
 774/*
 775 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 776 * in the free path. Could get rid of this if we change the API to return a
 777 * "cookie" from alloc, to be passed to free. But no big deal yet.
 778 */
 779static DEFINE_SPINLOCK(vmap_block_tree_lock);
 780static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 781
 782/*
 783 * We should probably have a fallback mechanism to allocate virtual memory
 784 * out of partially filled vmap blocks. However vmap block sizing should be
 785 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 786 * big problem.
 787 */
 788
 789static unsigned long addr_to_vb_idx(unsigned long addr)
 790{
 791	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 792	addr /= VMAP_BLOCK_SIZE;
 793	return addr;
 794}
 795
 796static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 797{
 798	unsigned long addr;
 799
 800	addr = va_start + (pages_off << PAGE_SHIFT);
 801	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 802	return (void *)addr;
 803}
 804
 805/**
 806 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 807 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 808 * @order:    how many 2^order pages should be occupied in newly allocated block
 809 * @gfp_mask: flags for the page level allocator
 810 *
 811 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 812 */
 813static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 814{
 815	struct vmap_block_queue *vbq;
 816	struct vmap_block *vb;
 817	struct vmap_area *va;
 818	unsigned long vb_idx;
 819	int node, err;
 820	void *vaddr;
 821
 822	node = numa_node_id();
 823
 824	vb = kmalloc_node(sizeof(struct vmap_block),
 825			gfp_mask & GFP_RECLAIM_MASK, node);
 826	if (unlikely(!vb))
 827		return ERR_PTR(-ENOMEM);
 828
 829	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 830					VMALLOC_START, VMALLOC_END,
 831					node, gfp_mask);
 832	if (IS_ERR(va)) {
 833		kfree(vb);
 834		return ERR_CAST(va);
 835	}
 836
 837	err = radix_tree_preload(gfp_mask);
 838	if (unlikely(err)) {
 839		kfree(vb);
 840		free_vmap_area(va);
 841		return ERR_PTR(err);
 842	}
 843
 844	vaddr = vmap_block_vaddr(va->va_start, 0);
 845	spin_lock_init(&vb->lock);
 846	vb->va = va;
 847	/* At least something should be left free */
 848	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 849	vb->free = VMAP_BBMAP_BITS - (1UL << order);
 850	vb->dirty = 0;
 851	vb->dirty_min = VMAP_BBMAP_BITS;
 852	vb->dirty_max = 0;
 853	INIT_LIST_HEAD(&vb->free_list);
 854
 855	vb_idx = addr_to_vb_idx(va->va_start);
 856	spin_lock(&vmap_block_tree_lock);
 857	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 858	spin_unlock(&vmap_block_tree_lock);
 859	BUG_ON(err);
 860	radix_tree_preload_end();
 861
 862	vbq = &get_cpu_var(vmap_block_queue);
 863	spin_lock(&vbq->lock);
 864	list_add_tail_rcu(&vb->free_list, &vbq->free);
 865	spin_unlock(&vbq->lock);
 866	put_cpu_var(vmap_block_queue);
 867
 868	return vaddr;
 869}
 870
 871static void free_vmap_block(struct vmap_block *vb)
 872{
 873	struct vmap_block *tmp;
 874	unsigned long vb_idx;
 875
 876	vb_idx = addr_to_vb_idx(vb->va->va_start);
 877	spin_lock(&vmap_block_tree_lock);
 878	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 879	spin_unlock(&vmap_block_tree_lock);
 880	BUG_ON(tmp != vb);
 881
 882	free_vmap_area_noflush(vb->va);
 883	kfree_rcu(vb, rcu_head);
 884}
 885
 886static void purge_fragmented_blocks(int cpu)
 887{
 888	LIST_HEAD(purge);
 889	struct vmap_block *vb;
 890	struct vmap_block *n_vb;
 891	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 892
 893	rcu_read_lock();
 894	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 895
 896		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 897			continue;
 898
 899		spin_lock(&vb->lock);
 900		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 901			vb->free = 0; /* prevent further allocs after releasing lock */
 902			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 903			vb->dirty_min = 0;
 904			vb->dirty_max = VMAP_BBMAP_BITS;
 905			spin_lock(&vbq->lock);
 906			list_del_rcu(&vb->free_list);
 907			spin_unlock(&vbq->lock);
 908			spin_unlock(&vb->lock);
 909			list_add_tail(&vb->purge, &purge);
 910		} else
 911			spin_unlock(&vb->lock);
 912	}
 913	rcu_read_unlock();
 914
 915	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 916		list_del(&vb->purge);
 917		free_vmap_block(vb);
 918	}
 919}
 920
 921static void purge_fragmented_blocks_allcpus(void)
 922{
 923	int cpu;
 924
 925	for_each_possible_cpu(cpu)
 926		purge_fragmented_blocks(cpu);
 927}
 928
 929static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 930{
 931	struct vmap_block_queue *vbq;
 932	struct vmap_block *vb;
 933	void *vaddr = NULL;
 934	unsigned int order;
 935
 936	BUG_ON(offset_in_page(size));
 937	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 938	if (WARN_ON(size == 0)) {
 939		/*
 940		 * Allocating 0 bytes isn't what caller wants since
 941		 * get_order(0) returns funny result. Just warn and terminate
 942		 * early.
 943		 */
 944		return NULL;
 945	}
 946	order = get_order(size);
 947
 
 948	rcu_read_lock();
 949	vbq = &get_cpu_var(vmap_block_queue);
 950	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 951		unsigned long pages_off;
 952
 953		spin_lock(&vb->lock);
 954		if (vb->free < (1UL << order)) {
 955			spin_unlock(&vb->lock);
 956			continue;
 957		}
 958
 959		pages_off = VMAP_BBMAP_BITS - vb->free;
 960		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 
 
 961		vb->free -= 1UL << order;
 962		if (vb->free == 0) {
 963			spin_lock(&vbq->lock);
 964			list_del_rcu(&vb->free_list);
 965			spin_unlock(&vbq->lock);
 966		}
 967
 968		spin_unlock(&vb->lock);
 969		break;
 
 
 970	}
 971
 972	put_cpu_var(vmap_block_queue);
 973	rcu_read_unlock();
 974
 975	/* Allocate new block if nothing was found */
 976	if (!vaddr)
 977		vaddr = new_vmap_block(order, gfp_mask);
 
 
 
 978
 979	return vaddr;
 980}
 981
 982static void vb_free(const void *addr, unsigned long size)
 983{
 984	unsigned long offset;
 985	unsigned long vb_idx;
 986	unsigned int order;
 987	struct vmap_block *vb;
 988
 989	BUG_ON(offset_in_page(size));
 990	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 991
 992	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 993
 994	order = get_order(size);
 995
 996	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 997	offset >>= PAGE_SHIFT;
 998
 999	vb_idx = addr_to_vb_idx((unsigned long)addr);
1000	rcu_read_lock();
1001	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1002	rcu_read_unlock();
1003	BUG_ON(!vb);
1004
1005	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1006
1007	spin_lock(&vb->lock);
1008
1009	/* Expand dirty range */
1010	vb->dirty_min = min(vb->dirty_min, offset);
1011	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1012
1013	vb->dirty += 1UL << order;
1014	if (vb->dirty == VMAP_BBMAP_BITS) {
1015		BUG_ON(vb->free);
1016		spin_unlock(&vb->lock);
1017		free_vmap_block(vb);
1018	} else
1019		spin_unlock(&vb->lock);
1020}
1021
1022/**
1023 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1024 *
1025 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1026 * to amortize TLB flushing overheads. What this means is that any page you
1027 * have now, may, in a former life, have been mapped into kernel virtual
1028 * address by the vmap layer and so there might be some CPUs with TLB entries
1029 * still referencing that page (additional to the regular 1:1 kernel mapping).
1030 *
1031 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1032 * be sure that none of the pages we have control over will have any aliases
1033 * from the vmap layer.
1034 */
1035void vm_unmap_aliases(void)
1036{
1037	unsigned long start = ULONG_MAX, end = 0;
1038	int cpu;
1039	int flush = 0;
1040
1041	if (unlikely(!vmap_initialized))
1042		return;
1043
1044	might_sleep();
1045
1046	for_each_possible_cpu(cpu) {
1047		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1048		struct vmap_block *vb;
1049
1050		rcu_read_lock();
1051		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 
 
1052			spin_lock(&vb->lock);
1053			if (vb->dirty) {
1054				unsigned long va_start = vb->va->va_start;
1055				unsigned long s, e;
1056
1057				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1058				e = va_start + (vb->dirty_max << PAGE_SHIFT);
 
1059
1060				start = min(s, start);
1061				end   = max(e, end);
 
1062
1063				flush = 1;
 
 
 
1064			}
1065			spin_unlock(&vb->lock);
1066		}
1067		rcu_read_unlock();
1068	}
1069
1070	mutex_lock(&vmap_purge_lock);
1071	purge_fragmented_blocks_allcpus();
1072	if (!__purge_vmap_area_lazy(start, end) && flush)
1073		flush_tlb_kernel_range(start, end);
1074	mutex_unlock(&vmap_purge_lock);
1075}
1076EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1077
1078/**
1079 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1080 * @mem: the pointer returned by vm_map_ram
1081 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1082 */
1083void vm_unmap_ram(const void *mem, unsigned int count)
1084{
1085	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1086	unsigned long addr = (unsigned long)mem;
1087	struct vmap_area *va;
1088
1089	might_sleep();
1090	BUG_ON(!addr);
1091	BUG_ON(addr < VMALLOC_START);
1092	BUG_ON(addr > VMALLOC_END);
1093	BUG_ON(!PAGE_ALIGNED(addr));
1094
1095	debug_check_no_locks_freed(mem, size);
1096	vmap_debug_free_range(addr, addr+size);
1097
1098	if (likely(count <= VMAP_MAX_ALLOC)) {
1099		vb_free(mem, size);
1100		return;
1101	}
1102
1103	va = find_vmap_area(addr);
1104	BUG_ON(!va);
1105	free_unmap_vmap_area(va);
1106}
1107EXPORT_SYMBOL(vm_unmap_ram);
1108
1109/**
1110 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1111 * @pages: an array of pointers to the pages to be mapped
1112 * @count: number of pages
1113 * @node: prefer to allocate data structures on this node
1114 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1115 *
1116 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1117 * faster than vmap so it's good.  But if you mix long-life and short-life
1118 * objects with vm_map_ram(), it could consume lots of address space through
1119 * fragmentation (especially on a 32bit machine).  You could see failures in
1120 * the end.  Please use this function for short-lived objects.
1121 *
1122 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1123 */
1124void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1125{
1126	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1127	unsigned long addr;
1128	void *mem;
1129
1130	if (likely(count <= VMAP_MAX_ALLOC)) {
1131		mem = vb_alloc(size, GFP_KERNEL);
1132		if (IS_ERR(mem))
1133			return NULL;
1134		addr = (unsigned long)mem;
1135	} else {
1136		struct vmap_area *va;
1137		va = alloc_vmap_area(size, PAGE_SIZE,
1138				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1139		if (IS_ERR(va))
1140			return NULL;
1141
1142		addr = va->va_start;
1143		mem = (void *)addr;
1144	}
1145	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1146		vm_unmap_ram(mem, count);
1147		return NULL;
1148	}
1149	return mem;
1150}
1151EXPORT_SYMBOL(vm_map_ram);
1152
1153static struct vm_struct *vmlist __initdata;
1154/**
1155 * vm_area_add_early - add vmap area early during boot
1156 * @vm: vm_struct to add
1157 *
1158 * This function is used to add fixed kernel vm area to vmlist before
1159 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1160 * should contain proper values and the other fields should be zero.
1161 *
1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163 */
1164void __init vm_area_add_early(struct vm_struct *vm)
1165{
1166	struct vm_struct *tmp, **p;
1167
1168	BUG_ON(vmap_initialized);
1169	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1170		if (tmp->addr >= vm->addr) {
1171			BUG_ON(tmp->addr < vm->addr + vm->size);
1172			break;
1173		} else
1174			BUG_ON(tmp->addr + tmp->size > vm->addr);
1175	}
1176	vm->next = *p;
1177	*p = vm;
1178}
1179
1180/**
1181 * vm_area_register_early - register vmap area early during boot
1182 * @vm: vm_struct to register
1183 * @align: requested alignment
1184 *
1185 * This function is used to register kernel vm area before
1186 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1187 * proper values on entry and other fields should be zero.  On return,
1188 * vm->addr contains the allocated address.
1189 *
1190 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1191 */
1192void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1193{
1194	static size_t vm_init_off __initdata;
1195	unsigned long addr;
1196
1197	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1198	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1199
1200	vm->addr = (void *)addr;
1201
1202	vm_area_add_early(vm);
1203}
1204
1205void __init vmalloc_init(void)
1206{
1207	struct vmap_area *va;
1208	struct vm_struct *tmp;
1209	int i;
1210
1211	for_each_possible_cpu(i) {
1212		struct vmap_block_queue *vbq;
1213		struct vfree_deferred *p;
1214
1215		vbq = &per_cpu(vmap_block_queue, i);
1216		spin_lock_init(&vbq->lock);
1217		INIT_LIST_HEAD(&vbq->free);
1218		p = &per_cpu(vfree_deferred, i);
1219		init_llist_head(&p->list);
1220		INIT_WORK(&p->wq, free_work);
1221	}
1222
1223	/* Import existing vmlist entries. */
1224	for (tmp = vmlist; tmp; tmp = tmp->next) {
1225		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1226		va->flags = VM_VM_AREA;
1227		va->va_start = (unsigned long)tmp->addr;
1228		va->va_end = va->va_start + tmp->size;
1229		va->vm = tmp;
1230		__insert_vmap_area(va);
1231	}
1232
1233	vmap_area_pcpu_hole = VMALLOC_END;
1234
1235	vmap_initialized = true;
1236}
1237
1238/**
1239 * map_kernel_range_noflush - map kernel VM area with the specified pages
1240 * @addr: start of the VM area to map
1241 * @size: size of the VM area to map
1242 * @prot: page protection flags to use
1243 * @pages: pages to map
1244 *
1245 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1246 * specify should have been allocated using get_vm_area() and its
1247 * friends.
1248 *
1249 * NOTE:
1250 * This function does NOT do any cache flushing.  The caller is
1251 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1252 * before calling this function.
1253 *
1254 * RETURNS:
1255 * The number of pages mapped on success, -errno on failure.
1256 */
1257int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1258			     pgprot_t prot, struct page **pages)
1259{
1260	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1261}
1262
1263/**
1264 * unmap_kernel_range_noflush - unmap kernel VM area
1265 * @addr: start of the VM area to unmap
1266 * @size: size of the VM area to unmap
1267 *
1268 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1269 * specify should have been allocated using get_vm_area() and its
1270 * friends.
1271 *
1272 * NOTE:
1273 * This function does NOT do any cache flushing.  The caller is
1274 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1275 * before calling this function and flush_tlb_kernel_range() after.
1276 */
1277void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1278{
1279	vunmap_page_range(addr, addr + size);
1280}
1281EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1282
1283/**
1284 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1285 * @addr: start of the VM area to unmap
1286 * @size: size of the VM area to unmap
1287 *
1288 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1289 * the unmapping and tlb after.
1290 */
1291void unmap_kernel_range(unsigned long addr, unsigned long size)
1292{
1293	unsigned long end = addr + size;
1294
1295	flush_cache_vunmap(addr, end);
1296	vunmap_page_range(addr, end);
1297	flush_tlb_kernel_range(addr, end);
1298}
1299EXPORT_SYMBOL_GPL(unmap_kernel_range);
1300
1301int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1302{
1303	unsigned long addr = (unsigned long)area->addr;
1304	unsigned long end = addr + get_vm_area_size(area);
1305	int err;
1306
1307	err = vmap_page_range(addr, end, prot, pages);
 
 
 
 
1308
1309	return err > 0 ? 0 : err;
1310}
1311EXPORT_SYMBOL_GPL(map_vm_area);
1312
1313static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1314			      unsigned long flags, const void *caller)
1315{
1316	spin_lock(&vmap_area_lock);
1317	vm->flags = flags;
1318	vm->addr = (void *)va->va_start;
1319	vm->size = va->va_end - va->va_start;
1320	vm->caller = caller;
1321	va->vm = vm;
1322	va->flags |= VM_VM_AREA;
1323	spin_unlock(&vmap_area_lock);
1324}
1325
1326static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1327{
1328	/*
1329	 * Before removing VM_UNINITIALIZED,
1330	 * we should make sure that vm has proper values.
1331	 * Pair with smp_rmb() in show_numa_info().
1332	 */
1333	smp_wmb();
1334	vm->flags &= ~VM_UNINITIALIZED;
1335}
1336
1337static struct vm_struct *__get_vm_area_node(unsigned long size,
1338		unsigned long align, unsigned long flags, unsigned long start,
1339		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1340{
1341	struct vmap_area *va;
1342	struct vm_struct *area;
1343
1344	BUG_ON(in_interrupt());
 
 
 
1345	size = PAGE_ALIGN(size);
1346	if (unlikely(!size))
1347		return NULL;
1348
1349	if (flags & VM_IOREMAP)
1350		align = 1ul << clamp_t(int, get_count_order_long(size),
1351				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1352
1353	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1354	if (unlikely(!area))
1355		return NULL;
1356
1357	if (!(flags & VM_NO_GUARD))
1358		size += PAGE_SIZE;
 
 
1359
1360	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1361	if (IS_ERR(va)) {
1362		kfree(area);
1363		return NULL;
1364	}
1365
1366	setup_vmalloc_vm(area, va, flags, caller);
1367
1368	return area;
1369}
1370
1371struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1372				unsigned long start, unsigned long end)
1373{
1374	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1375				  GFP_KERNEL, __builtin_return_address(0));
1376}
1377EXPORT_SYMBOL_GPL(__get_vm_area);
1378
1379struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1380				       unsigned long start, unsigned long end,
1381				       const void *caller)
1382{
1383	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1384				  GFP_KERNEL, caller);
1385}
1386
1387/**
1388 *	get_vm_area  -  reserve a contiguous kernel virtual area
1389 *	@size:		size of the area
1390 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1391 *
1392 *	Search an area of @size in the kernel virtual mapping area,
1393 *	and reserved it for out purposes.  Returns the area descriptor
1394 *	on success or %NULL on failure.
1395 */
1396struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1397{
1398	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1399				  NUMA_NO_NODE, GFP_KERNEL,
1400				  __builtin_return_address(0));
1401}
1402
1403struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1404				const void *caller)
1405{
1406	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1407				  NUMA_NO_NODE, GFP_KERNEL, caller);
1408}
1409
1410/**
1411 *	find_vm_area  -  find a continuous kernel virtual area
1412 *	@addr:		base address
1413 *
1414 *	Search for the kernel VM area starting at @addr, and return it.
1415 *	It is up to the caller to do all required locking to keep the returned
1416 *	pointer valid.
1417 */
1418struct vm_struct *find_vm_area(const void *addr)
1419{
1420	struct vmap_area *va;
1421
1422	va = find_vmap_area((unsigned long)addr);
1423	if (va && va->flags & VM_VM_AREA)
1424		return va->vm;
1425
1426	return NULL;
1427}
1428
1429/**
1430 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1431 *	@addr:		base address
1432 *
1433 *	Search for the kernel VM area starting at @addr, and remove it.
1434 *	This function returns the found VM area, but using it is NOT safe
1435 *	on SMP machines, except for its size or flags.
1436 */
1437struct vm_struct *remove_vm_area(const void *addr)
1438{
1439	struct vmap_area *va;
1440
1441	might_sleep();
1442
1443	va = find_vmap_area((unsigned long)addr);
1444	if (va && va->flags & VM_VM_AREA) {
1445		struct vm_struct *vm = va->vm;
1446
1447		spin_lock(&vmap_area_lock);
1448		va->vm = NULL;
1449		va->flags &= ~VM_VM_AREA;
1450		spin_unlock(&vmap_area_lock);
1451
1452		vmap_debug_free_range(va->va_start, va->va_end);
1453		kasan_free_shadow(vm);
1454		free_unmap_vmap_area(va);
 
1455
1456		return vm;
1457	}
1458	return NULL;
1459}
1460
1461static void __vunmap(const void *addr, int deallocate_pages)
1462{
1463	struct vm_struct *area;
1464
1465	if (!addr)
1466		return;
1467
1468	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1469			addr))
1470		return;
1471
1472	area = remove_vm_area(addr);
1473	if (unlikely(!area)) {
1474		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1475				addr);
1476		return;
1477	}
1478
1479	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1480	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1481
1482	if (deallocate_pages) {
1483		int i;
1484
1485		for (i = 0; i < area->nr_pages; i++) {
1486			struct page *page = area->pages[i];
1487
1488			BUG_ON(!page);
1489			__free_pages(page, 0);
1490		}
1491
1492		kvfree(area->pages);
 
 
 
1493	}
1494
1495	kfree(area);
1496	return;
1497}
1498
1499static inline void __vfree_deferred(const void *addr)
1500{
1501	/*
1502	 * Use raw_cpu_ptr() because this can be called from preemptible
1503	 * context. Preemption is absolutely fine here, because the llist_add()
1504	 * implementation is lockless, so it works even if we are adding to
1505	 * nother cpu's list.  schedule_work() should be fine with this too.
1506	 */
1507	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1508
1509	if (llist_add((struct llist_node *)addr, &p->list))
1510		schedule_work(&p->wq);
1511}
1512
1513/**
1514 *	vfree_atomic  -  release memory allocated by vmalloc()
1515 *	@addr:		memory base address
1516 *
1517 *	This one is just like vfree() but can be called in any atomic context
1518 *	except NMIs.
1519 */
1520void vfree_atomic(const void *addr)
1521{
1522	BUG_ON(in_nmi());
1523
1524	kmemleak_free(addr);
1525
1526	if (!addr)
1527		return;
1528	__vfree_deferred(addr);
1529}
1530
1531/**
1532 *	vfree  -  release memory allocated by vmalloc()
1533 *	@addr:		memory base address
1534 *
1535 *	Free the virtually continuous memory area starting at @addr, as
1536 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1537 *	NULL, no operation is performed.
1538 *
1539 *	Must not be called in NMI context (strictly speaking, only if we don't
1540 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1541 *	conventions for vfree() arch-depenedent would be a really bad idea)
1542 *
1543 *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1544 */
1545void vfree(const void *addr)
1546{
1547	BUG_ON(in_nmi());
1548
1549	kmemleak_free(addr);
1550
1551	if (!addr)
1552		return;
1553	if (unlikely(in_interrupt()))
1554		__vfree_deferred(addr);
1555	else
 
 
1556		__vunmap(addr, 1);
1557}
1558EXPORT_SYMBOL(vfree);
1559
1560/**
1561 *	vunmap  -  release virtual mapping obtained by vmap()
1562 *	@addr:		memory base address
1563 *
1564 *	Free the virtually contiguous memory area starting at @addr,
1565 *	which was created from the page array passed to vmap().
1566 *
1567 *	Must not be called in interrupt context.
1568 */
1569void vunmap(const void *addr)
1570{
1571	BUG_ON(in_interrupt());
1572	might_sleep();
1573	if (addr)
1574		__vunmap(addr, 0);
1575}
1576EXPORT_SYMBOL(vunmap);
1577
1578/**
1579 *	vmap  -  map an array of pages into virtually contiguous space
1580 *	@pages:		array of page pointers
1581 *	@count:		number of pages to map
1582 *	@flags:		vm_area->flags
1583 *	@prot:		page protection for the mapping
1584 *
1585 *	Maps @count pages from @pages into contiguous kernel virtual
1586 *	space.
1587 */
1588void *vmap(struct page **pages, unsigned int count,
1589		unsigned long flags, pgprot_t prot)
1590{
1591	struct vm_struct *area;
1592	unsigned long size;		/* In bytes */
1593
1594	might_sleep();
1595
1596	if (count > totalram_pages)
1597		return NULL;
1598
1599	size = (unsigned long)count << PAGE_SHIFT;
1600	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1601	if (!area)
1602		return NULL;
1603
1604	if (map_vm_area(area, prot, pages)) {
1605		vunmap(area->addr);
1606		return NULL;
1607	}
1608
1609	return area->addr;
1610}
1611EXPORT_SYMBOL(vmap);
1612
1613static void *__vmalloc_node(unsigned long size, unsigned long align,
1614			    gfp_t gfp_mask, pgprot_t prot,
1615			    int node, const void *caller);
1616static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1617				 pgprot_t prot, int node)
1618{
 
1619	struct page **pages;
1620	unsigned int nr_pages, array_size, i;
1621	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1622	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1623
1624	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1625	array_size = (nr_pages * sizeof(struct page *));
1626
1627	area->nr_pages = nr_pages;
1628	/* Please note that the recursion is strictly bounded. */
1629	if (array_size > PAGE_SIZE) {
1630		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1631				PAGE_KERNEL, node, area->caller);
 
1632	} else {
1633		pages = kmalloc_node(array_size, nested_gfp, node);
1634	}
1635	area->pages = pages;
1636	if (!area->pages) {
1637		remove_vm_area(area->addr);
1638		kfree(area);
1639		return NULL;
1640	}
1641
1642	for (i = 0; i < area->nr_pages; i++) {
1643		struct page *page;
 
1644
1645		if (node == NUMA_NO_NODE)
1646			page = alloc_page(alloc_mask);
1647		else
1648			page = alloc_pages_node(node, alloc_mask, 0);
1649
1650		if (unlikely(!page)) {
1651			/* Successfully allocated i pages, free them in __vunmap() */
1652			area->nr_pages = i;
1653			goto fail;
1654		}
1655		area->pages[i] = page;
1656		if (gfpflags_allow_blocking(gfp_mask))
1657			cond_resched();
1658	}
1659
1660	if (map_vm_area(area, prot, pages))
1661		goto fail;
1662	return area->addr;
1663
1664fail:
1665	warn_alloc(gfp_mask,
1666			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1667			  (area->nr_pages*PAGE_SIZE), area->size);
1668	vfree(area->addr);
1669	return NULL;
1670}
1671
1672/**
1673 *	__vmalloc_node_range  -  allocate virtually contiguous memory
1674 *	@size:		allocation size
1675 *	@align:		desired alignment
1676 *	@start:		vm area range start
1677 *	@end:		vm area range end
1678 *	@gfp_mask:	flags for the page level allocator
1679 *	@prot:		protection mask for the allocated pages
1680 *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1681 *	@node:		node to use for allocation or NUMA_NO_NODE
1682 *	@caller:	caller's return address
1683 *
1684 *	Allocate enough pages to cover @size from the page level
1685 *	allocator with @gfp_mask flags.  Map them into contiguous
1686 *	kernel virtual space, using a pagetable protection of @prot.
1687 */
1688void *__vmalloc_node_range(unsigned long size, unsigned long align,
1689			unsigned long start, unsigned long end, gfp_t gfp_mask,
1690			pgprot_t prot, unsigned long vm_flags, int node,
1691			const void *caller)
1692{
1693	struct vm_struct *area;
1694	void *addr;
1695	unsigned long real_size = size;
1696
1697	size = PAGE_ALIGN(size);
1698	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1699		goto fail;
1700
1701	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1702				vm_flags, start, end, node, gfp_mask, caller);
1703	if (!area)
1704		goto fail;
1705
1706	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1707	if (!addr)
1708		return NULL;
1709
1710	/*
1711	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1712	 * flag. It means that vm_struct is not fully initialized.
1713	 * Now, it is fully initialized, so remove this flag here.
1714	 */
1715	clear_vm_uninitialized_flag(area);
1716
1717	/*
1718	 * A ref_count = 2 is needed because vm_struct allocated in
1719	 * __get_vm_area_node() contains a reference to the virtual address of
1720	 * the vmalloc'ed block.
1721	 */
1722	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1723
1724	return addr;
1725
1726fail:
1727	warn_alloc(gfp_mask,
1728			  "vmalloc: allocation failure: %lu bytes", real_size);
 
1729	return NULL;
1730}
1731
1732/**
1733 *	__vmalloc_node  -  allocate virtually contiguous memory
1734 *	@size:		allocation size
1735 *	@align:		desired alignment
1736 *	@gfp_mask:	flags for the page level allocator
1737 *	@prot:		protection mask for the allocated pages
1738 *	@node:		node to use for allocation or NUMA_NO_NODE
1739 *	@caller:	caller's return address
1740 *
1741 *	Allocate enough pages to cover @size from the page level
1742 *	allocator with @gfp_mask flags.  Map them into contiguous
1743 *	kernel virtual space, using a pagetable protection of @prot.
1744 */
1745static void *__vmalloc_node(unsigned long size, unsigned long align,
1746			    gfp_t gfp_mask, pgprot_t prot,
1747			    int node, const void *caller)
1748{
1749	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1750				gfp_mask, prot, 0, node, caller);
1751}
1752
1753void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1754{
1755	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1756				__builtin_return_address(0));
1757}
1758EXPORT_SYMBOL(__vmalloc);
1759
1760static inline void *__vmalloc_node_flags(unsigned long size,
1761					int node, gfp_t flags)
1762{
1763	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1764					node, __builtin_return_address(0));
1765}
1766
1767/**
1768 *	vmalloc  -  allocate virtually contiguous memory
1769 *	@size:		allocation size
1770 *	Allocate enough pages to cover @size from the page level
1771 *	allocator and map them into contiguous kernel virtual space.
1772 *
1773 *	For tight control over page level allocator and protection flags
1774 *	use __vmalloc() instead.
1775 */
1776void *vmalloc(unsigned long size)
1777{
1778	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1779				    GFP_KERNEL | __GFP_HIGHMEM);
1780}
1781EXPORT_SYMBOL(vmalloc);
1782
1783/**
1784 *	vzalloc - allocate virtually contiguous memory with zero fill
1785 *	@size:	allocation size
1786 *	Allocate enough pages to cover @size from the page level
1787 *	allocator and map them into contiguous kernel virtual space.
1788 *	The memory allocated is set to zero.
1789 *
1790 *	For tight control over page level allocator and protection flags
1791 *	use __vmalloc() instead.
1792 */
1793void *vzalloc(unsigned long size)
1794{
1795	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1796				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1797}
1798EXPORT_SYMBOL(vzalloc);
1799
1800/**
1801 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1802 * @size: allocation size
1803 *
1804 * The resulting memory area is zeroed so it can be mapped to userspace
1805 * without leaking data.
1806 */
1807void *vmalloc_user(unsigned long size)
1808{
1809	struct vm_struct *area;
1810	void *ret;
1811
1812	ret = __vmalloc_node(size, SHMLBA,
1813			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1814			     PAGE_KERNEL, NUMA_NO_NODE,
1815			     __builtin_return_address(0));
1816	if (ret) {
1817		area = find_vm_area(ret);
1818		area->flags |= VM_USERMAP;
1819	}
1820	return ret;
1821}
1822EXPORT_SYMBOL(vmalloc_user);
1823
1824/**
1825 *	vmalloc_node  -  allocate memory on a specific node
1826 *	@size:		allocation size
1827 *	@node:		numa node
1828 *
1829 *	Allocate enough pages to cover @size from the page level
1830 *	allocator and map them into contiguous kernel virtual space.
1831 *
1832 *	For tight control over page level allocator and protection flags
1833 *	use __vmalloc() instead.
1834 */
1835void *vmalloc_node(unsigned long size, int node)
1836{
1837	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1838					node, __builtin_return_address(0));
1839}
1840EXPORT_SYMBOL(vmalloc_node);
1841
1842/**
1843 * vzalloc_node - allocate memory on a specific node with zero fill
1844 * @size:	allocation size
1845 * @node:	numa node
1846 *
1847 * Allocate enough pages to cover @size from the page level
1848 * allocator and map them into contiguous kernel virtual space.
1849 * The memory allocated is set to zero.
1850 *
1851 * For tight control over page level allocator and protection flags
1852 * use __vmalloc_node() instead.
1853 */
1854void *vzalloc_node(unsigned long size, int node)
1855{
1856	return __vmalloc_node_flags(size, node,
1857			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1858}
1859EXPORT_SYMBOL(vzalloc_node);
1860
1861#ifndef PAGE_KERNEL_EXEC
1862# define PAGE_KERNEL_EXEC PAGE_KERNEL
1863#endif
1864
1865/**
1866 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1867 *	@size:		allocation size
1868 *
1869 *	Kernel-internal function to allocate enough pages to cover @size
1870 *	the page level allocator and map them into contiguous and
1871 *	executable kernel virtual space.
1872 *
1873 *	For tight control over page level allocator and protection flags
1874 *	use __vmalloc() instead.
1875 */
1876
1877void *vmalloc_exec(unsigned long size)
1878{
1879	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1880			      NUMA_NO_NODE, __builtin_return_address(0));
1881}
1882
1883#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1884#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1885#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1886#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1887#else
1888#define GFP_VMALLOC32 GFP_KERNEL
1889#endif
1890
1891/**
1892 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1893 *	@size:		allocation size
1894 *
1895 *	Allocate enough 32bit PA addressable pages to cover @size from the
1896 *	page level allocator and map them into contiguous kernel virtual space.
1897 */
1898void *vmalloc_32(unsigned long size)
1899{
1900	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1901			      NUMA_NO_NODE, __builtin_return_address(0));
1902}
1903EXPORT_SYMBOL(vmalloc_32);
1904
1905/**
1906 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1907 *	@size:		allocation size
1908 *
1909 * The resulting memory area is 32bit addressable and zeroed so it can be
1910 * mapped to userspace without leaking data.
1911 */
1912void *vmalloc_32_user(unsigned long size)
1913{
1914	struct vm_struct *area;
1915	void *ret;
1916
1917	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1918			     NUMA_NO_NODE, __builtin_return_address(0));
1919	if (ret) {
1920		area = find_vm_area(ret);
1921		area->flags |= VM_USERMAP;
1922	}
1923	return ret;
1924}
1925EXPORT_SYMBOL(vmalloc_32_user);
1926
1927/*
1928 * small helper routine , copy contents to buf from addr.
1929 * If the page is not present, fill zero.
1930 */
1931
1932static int aligned_vread(char *buf, char *addr, unsigned long count)
1933{
1934	struct page *p;
1935	int copied = 0;
1936
1937	while (count) {
1938		unsigned long offset, length;
1939
1940		offset = offset_in_page(addr);
1941		length = PAGE_SIZE - offset;
1942		if (length > count)
1943			length = count;
1944		p = vmalloc_to_page(addr);
1945		/*
1946		 * To do safe access to this _mapped_ area, we need
1947		 * lock. But adding lock here means that we need to add
1948		 * overhead of vmalloc()/vfree() calles for this _debug_
1949		 * interface, rarely used. Instead of that, we'll use
1950		 * kmap() and get small overhead in this access function.
1951		 */
1952		if (p) {
1953			/*
1954			 * we can expect USER0 is not used (see vread/vwrite's
1955			 * function description)
1956			 */
1957			void *map = kmap_atomic(p);
1958			memcpy(buf, map + offset, length);
1959			kunmap_atomic(map);
1960		} else
1961			memset(buf, 0, length);
1962
1963		addr += length;
1964		buf += length;
1965		copied += length;
1966		count -= length;
1967	}
1968	return copied;
1969}
1970
1971static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1972{
1973	struct page *p;
1974	int copied = 0;
1975
1976	while (count) {
1977		unsigned long offset, length;
1978
1979		offset = offset_in_page(addr);
1980		length = PAGE_SIZE - offset;
1981		if (length > count)
1982			length = count;
1983		p = vmalloc_to_page(addr);
1984		/*
1985		 * To do safe access to this _mapped_ area, we need
1986		 * lock. But adding lock here means that we need to add
1987		 * overhead of vmalloc()/vfree() calles for this _debug_
1988		 * interface, rarely used. Instead of that, we'll use
1989		 * kmap() and get small overhead in this access function.
1990		 */
1991		if (p) {
1992			/*
1993			 * we can expect USER0 is not used (see vread/vwrite's
1994			 * function description)
1995			 */
1996			void *map = kmap_atomic(p);
1997			memcpy(map + offset, buf, length);
1998			kunmap_atomic(map);
1999		}
2000		addr += length;
2001		buf += length;
2002		copied += length;
2003		count -= length;
2004	}
2005	return copied;
2006}
2007
2008/**
2009 *	vread() -  read vmalloc area in a safe way.
2010 *	@buf:		buffer for reading data
2011 *	@addr:		vm address.
2012 *	@count:		number of bytes to be read.
2013 *
2014 *	Returns # of bytes which addr and buf should be increased.
2015 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2016 *	includes any intersect with alive vmalloc area.
2017 *
2018 *	This function checks that addr is a valid vmalloc'ed area, and
2019 *	copy data from that area to a given buffer. If the given memory range
2020 *	of [addr...addr+count) includes some valid address, data is copied to
2021 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2022 *	IOREMAP area is treated as memory hole and no copy is done.
2023 *
2024 *	If [addr...addr+count) doesn't includes any intersects with alive
2025 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2026 *
2027 *	Note: In usual ops, vread() is never necessary because the caller
2028 *	should know vmalloc() area is valid and can use memcpy().
2029 *	This is for routines which have to access vmalloc area without
2030 *	any informaion, as /dev/kmem.
2031 *
2032 */
2033
2034long vread(char *buf, char *addr, unsigned long count)
2035{
2036	struct vmap_area *va;
2037	struct vm_struct *vm;
2038	char *vaddr, *buf_start = buf;
2039	unsigned long buflen = count;
2040	unsigned long n;
2041
2042	/* Don't allow overflow */
2043	if ((unsigned long) addr + count < count)
2044		count = -(unsigned long) addr;
2045
2046	spin_lock(&vmap_area_lock);
2047	list_for_each_entry(va, &vmap_area_list, list) {
2048		if (!count)
2049			break;
2050
2051		if (!(va->flags & VM_VM_AREA))
2052			continue;
2053
2054		vm = va->vm;
2055		vaddr = (char *) vm->addr;
2056		if (addr >= vaddr + get_vm_area_size(vm))
2057			continue;
2058		while (addr < vaddr) {
2059			if (count == 0)
2060				goto finished;
2061			*buf = '\0';
2062			buf++;
2063			addr++;
2064			count--;
2065		}
2066		n = vaddr + get_vm_area_size(vm) - addr;
2067		if (n > count)
2068			n = count;
2069		if (!(vm->flags & VM_IOREMAP))
2070			aligned_vread(buf, addr, n);
2071		else /* IOREMAP area is treated as memory hole */
2072			memset(buf, 0, n);
2073		buf += n;
2074		addr += n;
2075		count -= n;
2076	}
2077finished:
2078	spin_unlock(&vmap_area_lock);
2079
2080	if (buf == buf_start)
2081		return 0;
2082	/* zero-fill memory holes */
2083	if (buf != buf_start + buflen)
2084		memset(buf, 0, buflen - (buf - buf_start));
2085
2086	return buflen;
2087}
2088
2089/**
2090 *	vwrite() -  write vmalloc area in a safe way.
2091 *	@buf:		buffer for source data
2092 *	@addr:		vm address.
2093 *	@count:		number of bytes to be read.
2094 *
2095 *	Returns # of bytes which addr and buf should be incresed.
2096 *	(same number to @count).
2097 *	If [addr...addr+count) doesn't includes any intersect with valid
2098 *	vmalloc area, returns 0.
2099 *
2100 *	This function checks that addr is a valid vmalloc'ed area, and
2101 *	copy data from a buffer to the given addr. If specified range of
2102 *	[addr...addr+count) includes some valid address, data is copied from
2103 *	proper area of @buf. If there are memory holes, no copy to hole.
2104 *	IOREMAP area is treated as memory hole and no copy is done.
2105 *
2106 *	If [addr...addr+count) doesn't includes any intersects with alive
2107 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2108 *
2109 *	Note: In usual ops, vwrite() is never necessary because the caller
2110 *	should know vmalloc() area is valid and can use memcpy().
2111 *	This is for routines which have to access vmalloc area without
2112 *	any informaion, as /dev/kmem.
2113 */
2114
2115long vwrite(char *buf, char *addr, unsigned long count)
2116{
2117	struct vmap_area *va;
2118	struct vm_struct *vm;
2119	char *vaddr;
2120	unsigned long n, buflen;
2121	int copied = 0;
2122
2123	/* Don't allow overflow */
2124	if ((unsigned long) addr + count < count)
2125		count = -(unsigned long) addr;
2126	buflen = count;
2127
2128	spin_lock(&vmap_area_lock);
2129	list_for_each_entry(va, &vmap_area_list, list) {
2130		if (!count)
2131			break;
2132
2133		if (!(va->flags & VM_VM_AREA))
2134			continue;
2135
2136		vm = va->vm;
2137		vaddr = (char *) vm->addr;
2138		if (addr >= vaddr + get_vm_area_size(vm))
2139			continue;
2140		while (addr < vaddr) {
2141			if (count == 0)
2142				goto finished;
2143			buf++;
2144			addr++;
2145			count--;
2146		}
2147		n = vaddr + get_vm_area_size(vm) - addr;
2148		if (n > count)
2149			n = count;
2150		if (!(vm->flags & VM_IOREMAP)) {
2151			aligned_vwrite(buf, addr, n);
2152			copied++;
2153		}
2154		buf += n;
2155		addr += n;
2156		count -= n;
2157	}
2158finished:
2159	spin_unlock(&vmap_area_lock);
2160	if (!copied)
2161		return 0;
2162	return buflen;
2163}
2164
2165/**
2166 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2167 *	@vma:		vma to cover
2168 *	@uaddr:		target user address to start at
2169 *	@kaddr:		virtual address of vmalloc kernel memory
2170 *	@size:		size of map area
2171 *
2172 *	Returns:	0 for success, -Exxx on failure
2173 *
2174 *	This function checks that @kaddr is a valid vmalloc'ed area,
2175 *	and that it is big enough to cover the range starting at
2176 *	@uaddr in @vma. Will return failure if that criteria isn't
2177 *	met.
2178 *
2179 *	Similar to remap_pfn_range() (see mm/memory.c)
2180 */
2181int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2182				void *kaddr, unsigned long size)
2183{
2184	struct vm_struct *area;
2185
2186	size = PAGE_ALIGN(size);
2187
2188	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2189		return -EINVAL;
2190
2191	area = find_vm_area(kaddr);
2192	if (!area)
2193		return -EINVAL;
2194
2195	if (!(area->flags & VM_USERMAP))
2196		return -EINVAL;
2197
2198	if (kaddr + size > area->addr + area->size)
2199		return -EINVAL;
2200
2201	do {
2202		struct page *page = vmalloc_to_page(kaddr);
2203		int ret;
2204
2205		ret = vm_insert_page(vma, uaddr, page);
2206		if (ret)
2207			return ret;
2208
2209		uaddr += PAGE_SIZE;
2210		kaddr += PAGE_SIZE;
2211		size -= PAGE_SIZE;
2212	} while (size > 0);
2213
2214	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2215
2216	return 0;
2217}
2218EXPORT_SYMBOL(remap_vmalloc_range_partial);
2219
2220/**
2221 *	remap_vmalloc_range  -  map vmalloc pages to userspace
2222 *	@vma:		vma to cover (map full range of vma)
2223 *	@addr:		vmalloc memory
2224 *	@pgoff:		number of pages into addr before first page to map
2225 *
2226 *	Returns:	0 for success, -Exxx on failure
2227 *
2228 *	This function checks that addr is a valid vmalloc'ed area, and
2229 *	that it is big enough to cover the vma. Will return failure if
2230 *	that criteria isn't met.
2231 *
2232 *	Similar to remap_pfn_range() (see mm/memory.c)
2233 */
2234int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2235						unsigned long pgoff)
2236{
2237	return remap_vmalloc_range_partial(vma, vma->vm_start,
2238					   addr + (pgoff << PAGE_SHIFT),
2239					   vma->vm_end - vma->vm_start);
2240}
2241EXPORT_SYMBOL(remap_vmalloc_range);
2242
2243/*
2244 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2245 * have one.
2246 */
2247void __weak vmalloc_sync_all(void)
2248{
2249}
2250
2251
2252static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2253{
2254	pte_t ***p = data;
2255
2256	if (p) {
2257		*(*p) = pte;
2258		(*p)++;
2259	}
2260	return 0;
2261}
2262
2263/**
2264 *	alloc_vm_area - allocate a range of kernel address space
2265 *	@size:		size of the area
2266 *	@ptes:		returns the PTEs for the address space
2267 *
2268 *	Returns:	NULL on failure, vm_struct on success
2269 *
2270 *	This function reserves a range of kernel address space, and
2271 *	allocates pagetables to map that range.  No actual mappings
2272 *	are created.
2273 *
2274 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2275 *	allocated for the VM area are returned.
2276 */
2277struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2278{
2279	struct vm_struct *area;
2280
2281	area = get_vm_area_caller(size, VM_IOREMAP,
2282				__builtin_return_address(0));
2283	if (area == NULL)
2284		return NULL;
2285
2286	/*
2287	 * This ensures that page tables are constructed for this region
2288	 * of kernel virtual address space and mapped into init_mm.
2289	 */
2290	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2291				size, f, ptes ? &ptes : NULL)) {
2292		free_vm_area(area);
2293		return NULL;
2294	}
2295
2296	return area;
2297}
2298EXPORT_SYMBOL_GPL(alloc_vm_area);
2299
2300void free_vm_area(struct vm_struct *area)
2301{
2302	struct vm_struct *ret;
2303	ret = remove_vm_area(area->addr);
2304	BUG_ON(ret != area);
2305	kfree(area);
2306}
2307EXPORT_SYMBOL_GPL(free_vm_area);
2308
2309#ifdef CONFIG_SMP
2310static struct vmap_area *node_to_va(struct rb_node *n)
2311{
2312	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2313}
2314
2315/**
2316 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2317 * @end: target address
2318 * @pnext: out arg for the next vmap_area
2319 * @pprev: out arg for the previous vmap_area
2320 *
2321 * Returns: %true if either or both of next and prev are found,
2322 *	    %false if no vmap_area exists
2323 *
2324 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2325 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2326 */
2327static bool pvm_find_next_prev(unsigned long end,
2328			       struct vmap_area **pnext,
2329			       struct vmap_area **pprev)
2330{
2331	struct rb_node *n = vmap_area_root.rb_node;
2332	struct vmap_area *va = NULL;
2333
2334	while (n) {
2335		va = rb_entry(n, struct vmap_area, rb_node);
2336		if (end < va->va_end)
2337			n = n->rb_left;
2338		else if (end > va->va_end)
2339			n = n->rb_right;
2340		else
2341			break;
2342	}
2343
2344	if (!va)
2345		return false;
2346
2347	if (va->va_end > end) {
2348		*pnext = va;
2349		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2350	} else {
2351		*pprev = va;
2352		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2353	}
2354	return true;
2355}
2356
2357/**
2358 * pvm_determine_end - find the highest aligned address between two vmap_areas
2359 * @pnext: in/out arg for the next vmap_area
2360 * @pprev: in/out arg for the previous vmap_area
2361 * @align: alignment
2362 *
2363 * Returns: determined end address
2364 *
2365 * Find the highest aligned address between *@pnext and *@pprev below
2366 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2367 * down address is between the end addresses of the two vmap_areas.
2368 *
2369 * Please note that the address returned by this function may fall
2370 * inside *@pnext vmap_area.  The caller is responsible for checking
2371 * that.
2372 */
2373static unsigned long pvm_determine_end(struct vmap_area **pnext,
2374				       struct vmap_area **pprev,
2375				       unsigned long align)
2376{
2377	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2378	unsigned long addr;
2379
2380	if (*pnext)
2381		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2382	else
2383		addr = vmalloc_end;
2384
2385	while (*pprev && (*pprev)->va_end > addr) {
2386		*pnext = *pprev;
2387		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2388	}
2389
2390	return addr;
2391}
2392
2393/**
2394 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2395 * @offsets: array containing offset of each area
2396 * @sizes: array containing size of each area
2397 * @nr_vms: the number of areas to allocate
2398 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2399 *
2400 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2401 *	    vm_structs on success, %NULL on failure
2402 *
2403 * Percpu allocator wants to use congruent vm areas so that it can
2404 * maintain the offsets among percpu areas.  This function allocates
2405 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2406 * be scattered pretty far, distance between two areas easily going up
2407 * to gigabytes.  To avoid interacting with regular vmallocs, these
2408 * areas are allocated from top.
2409 *
2410 * Despite its complicated look, this allocator is rather simple.  It
2411 * does everything top-down and scans areas from the end looking for
2412 * matching slot.  While scanning, if any of the areas overlaps with
2413 * existing vmap_area, the base address is pulled down to fit the
2414 * area.  Scanning is repeated till all the areas fit and then all
2415 * necessary data structres are inserted and the result is returned.
2416 */
2417struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2418				     const size_t *sizes, int nr_vms,
2419				     size_t align)
2420{
2421	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2422	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2423	struct vmap_area **vas, *prev, *next;
2424	struct vm_struct **vms;
2425	int area, area2, last_area, term_area;
2426	unsigned long base, start, end, last_end;
2427	bool purged = false;
2428
2429	/* verify parameters and allocate data structures */
2430	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2431	for (last_area = 0, area = 0; area < nr_vms; area++) {
2432		start = offsets[area];
2433		end = start + sizes[area];
2434
2435		/* is everything aligned properly? */
2436		BUG_ON(!IS_ALIGNED(offsets[area], align));
2437		BUG_ON(!IS_ALIGNED(sizes[area], align));
2438
2439		/* detect the area with the highest address */
2440		if (start > offsets[last_area])
2441			last_area = area;
2442
2443		for (area2 = 0; area2 < nr_vms; area2++) {
2444			unsigned long start2 = offsets[area2];
2445			unsigned long end2 = start2 + sizes[area2];
2446
2447			if (area2 == area)
2448				continue;
2449
2450			BUG_ON(start2 >= start && start2 < end);
2451			BUG_ON(end2 <= end && end2 > start);
2452		}
2453	}
2454	last_end = offsets[last_area] + sizes[last_area];
2455
2456	if (vmalloc_end - vmalloc_start < last_end) {
2457		WARN_ON(true);
2458		return NULL;
2459	}
2460
2461	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2462	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2463	if (!vas || !vms)
2464		goto err_free2;
2465
2466	for (area = 0; area < nr_vms; area++) {
2467		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2468		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2469		if (!vas[area] || !vms[area])
2470			goto err_free;
2471	}
2472retry:
2473	spin_lock(&vmap_area_lock);
2474
2475	/* start scanning - we scan from the top, begin with the last area */
2476	area = term_area = last_area;
2477	start = offsets[area];
2478	end = start + sizes[area];
2479
2480	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2481		base = vmalloc_end - last_end;
2482		goto found;
2483	}
2484	base = pvm_determine_end(&next, &prev, align) - end;
2485
2486	while (true) {
2487		BUG_ON(next && next->va_end <= base + end);
2488		BUG_ON(prev && prev->va_end > base + end);
2489
2490		/*
2491		 * base might have underflowed, add last_end before
2492		 * comparing.
2493		 */
2494		if (base + last_end < vmalloc_start + last_end) {
2495			spin_unlock(&vmap_area_lock);
2496			if (!purged) {
2497				purge_vmap_area_lazy();
2498				purged = true;
2499				goto retry;
2500			}
2501			goto err_free;
2502		}
2503
2504		/*
2505		 * If next overlaps, move base downwards so that it's
2506		 * right below next and then recheck.
2507		 */
2508		if (next && next->va_start < base + end) {
2509			base = pvm_determine_end(&next, &prev, align) - end;
2510			term_area = area;
2511			continue;
2512		}
2513
2514		/*
2515		 * If prev overlaps, shift down next and prev and move
2516		 * base so that it's right below new next and then
2517		 * recheck.
2518		 */
2519		if (prev && prev->va_end > base + start)  {
2520			next = prev;
2521			prev = node_to_va(rb_prev(&next->rb_node));
2522			base = pvm_determine_end(&next, &prev, align) - end;
2523			term_area = area;
2524			continue;
2525		}
2526
2527		/*
2528		 * This area fits, move on to the previous one.  If
2529		 * the previous one is the terminal one, we're done.
2530		 */
2531		area = (area + nr_vms - 1) % nr_vms;
2532		if (area == term_area)
2533			break;
2534		start = offsets[area];
2535		end = start + sizes[area];
2536		pvm_find_next_prev(base + end, &next, &prev);
2537	}
2538found:
2539	/* we've found a fitting base, insert all va's */
2540	for (area = 0; area < nr_vms; area++) {
2541		struct vmap_area *va = vas[area];
2542
2543		va->va_start = base + offsets[area];
2544		va->va_end = va->va_start + sizes[area];
2545		__insert_vmap_area(va);
2546	}
2547
2548	vmap_area_pcpu_hole = base + offsets[last_area];
2549
2550	spin_unlock(&vmap_area_lock);
2551
2552	/* insert all vm's */
2553	for (area = 0; area < nr_vms; area++)
2554		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2555				 pcpu_get_vm_areas);
2556
2557	kfree(vas);
2558	return vms;
2559
2560err_free:
2561	for (area = 0; area < nr_vms; area++) {
2562		kfree(vas[area]);
2563		kfree(vms[area]);
2564	}
2565err_free2:
2566	kfree(vas);
2567	kfree(vms);
2568	return NULL;
2569}
2570
2571/**
2572 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2573 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2574 * @nr_vms: the number of allocated areas
2575 *
2576 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2577 */
2578void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2579{
2580	int i;
2581
2582	for (i = 0; i < nr_vms; i++)
2583		free_vm_area(vms[i]);
2584	kfree(vms);
2585}
2586#endif	/* CONFIG_SMP */
2587
2588#ifdef CONFIG_PROC_FS
2589static void *s_start(struct seq_file *m, loff_t *pos)
2590	__acquires(&vmap_area_lock)
2591{
 
 
 
2592	spin_lock(&vmap_area_lock);
2593	return seq_list_start(&vmap_area_list, *pos);
 
 
 
 
 
 
 
 
 
2594}
2595
2596static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2597{
2598	return seq_list_next(p, &vmap_area_list, pos);
 
 
 
 
 
 
 
2599}
2600
2601static void s_stop(struct seq_file *m, void *p)
2602	__releases(&vmap_area_lock)
2603{
2604	spin_unlock(&vmap_area_lock);
2605}
2606
2607static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2608{
2609	if (IS_ENABLED(CONFIG_NUMA)) {
2610		unsigned int nr, *counters = m->private;
2611
2612		if (!counters)
2613			return;
2614
 
 
2615		if (v->flags & VM_UNINITIALIZED)
2616			return;
2617		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2618		smp_rmb();
2619
2620		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2621
2622		for (nr = 0; nr < v->nr_pages; nr++)
2623			counters[page_to_nid(v->pages[nr])]++;
2624
2625		for_each_node_state(nr, N_HIGH_MEMORY)
2626			if (counters[nr])
2627				seq_printf(m, " N%u=%u", nr, counters[nr]);
2628	}
2629}
2630
2631static int s_show(struct seq_file *m, void *p)
2632{
2633	struct vmap_area *va;
2634	struct vm_struct *v;
2635
2636	va = list_entry(p, struct vmap_area, list);
2637
2638	/*
2639	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2640	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2641	 */
2642	if (!(va->flags & VM_VM_AREA))
2643		return 0;
2644
2645	v = va->vm;
2646
2647	seq_printf(m, "0x%pK-0x%pK %7ld",
2648		v->addr, v->addr + v->size, v->size);
2649
2650	if (v->caller)
2651		seq_printf(m, " %pS", v->caller);
2652
2653	if (v->nr_pages)
2654		seq_printf(m, " pages=%d", v->nr_pages);
2655
2656	if (v->phys_addr)
2657		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2658
2659	if (v->flags & VM_IOREMAP)
2660		seq_puts(m, " ioremap");
2661
2662	if (v->flags & VM_ALLOC)
2663		seq_puts(m, " vmalloc");
2664
2665	if (v->flags & VM_MAP)
2666		seq_puts(m, " vmap");
2667
2668	if (v->flags & VM_USERMAP)
2669		seq_puts(m, " user");
2670
2671	if (is_vmalloc_addr(v->pages))
2672		seq_puts(m, " vpages");
2673
2674	show_numa_info(m, v);
2675	seq_putc(m, '\n');
2676	return 0;
2677}
2678
2679static const struct seq_operations vmalloc_op = {
2680	.start = s_start,
2681	.next = s_next,
2682	.stop = s_stop,
2683	.show = s_show,
2684};
2685
2686static int vmalloc_open(struct inode *inode, struct file *file)
2687{
2688	if (IS_ENABLED(CONFIG_NUMA))
2689		return seq_open_private(file, &vmalloc_op,
2690					nr_node_ids * sizeof(unsigned int));
2691	else
2692		return seq_open(file, &vmalloc_op);
 
 
 
 
 
 
 
 
 
 
2693}
2694
2695static const struct file_operations proc_vmalloc_operations = {
2696	.open		= vmalloc_open,
2697	.read		= seq_read,
2698	.llseek		= seq_lseek,
2699	.release	= seq_release_private,
2700};
2701
2702static int __init proc_vmalloc_init(void)
2703{
2704	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2705	return 0;
2706}
2707module_init(proc_vmalloc_init);
2708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709#endif
2710