Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * mm/percpu.c - percpu memory allocator
   3 *
   4 * Copyright (C) 2009		SUSE Linux Products GmbH
   5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
   6 *
   7 * This file is released under the GPLv2.
   8 *
   9 * This is percpu allocator which can handle both static and dynamic
  10 * areas.  Percpu areas are allocated in chunks.  Each chunk is
  11 * consisted of boot-time determined number of units and the first
  12 * chunk is used for static percpu variables in the kernel image
  13 * (special boot time alloc/init handling necessary as these areas
  14 * need to be brought up before allocation services are running).
  15 * Unit grows as necessary and all units grow or shrink in unison.
  16 * When a chunk is filled up, another chunk is allocated.
  17 *
  18 *  c0                           c1                         c2
  19 *  -------------------          -------------------        ------------
  20 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  21 *  -------------------  ......  -------------------  ....  ------------
  22 *
  23 * Allocation is done in offset-size areas of single unit space.  Ie,
  24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  25 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
  26 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
  27 * Percpu access can be done by configuring percpu base registers
  28 * according to cpu to unit mapping and pcpu_unit_size.
  29 *
  30 * There are usually many small percpu allocations many of them being
  31 * as small as 4 bytes.  The allocator organizes chunks into lists
  32 * according to free size and tries to allocate from the fullest one.
  33 * Each chunk keeps the maximum contiguous area size hint which is
  34 * guaranteed to be equal to or larger than the maximum contiguous
  35 * area in the chunk.  This helps the allocator not to iterate the
  36 * chunk maps unnecessarily.
  37 *
  38 * Allocation state in each chunk is kept using an array of integers
  39 * on chunk->map.  A positive value in the map represents a free
  40 * region and negative allocated.  Allocation inside a chunk is done
  41 * by scanning this map sequentially and serving the first matching
  42 * entry.  This is mostly copied from the percpu_modalloc() allocator.
  43 * Chunks can be determined from the address using the index field
  44 * in the page struct. The index field contains a pointer to the chunk.
  45 *
  46 * To use this allocator, arch code should do the followings.
  47 *
  48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  49 *   regular address to percpu pointer and back if they need to be
  50 *   different from the default
  51 *
  52 * - use pcpu_setup_first_chunk() during percpu area initialization to
  53 *   setup the first chunk containing the kernel static percpu area
  54 */
  55
 
 
  56#include <linux/bitmap.h>
  57#include <linux/bootmem.h>
  58#include <linux/err.h>
  59#include <linux/list.h>
  60#include <linux/log2.h>
  61#include <linux/mm.h>
  62#include <linux/module.h>
  63#include <linux/mutex.h>
  64#include <linux/percpu.h>
  65#include <linux/pfn.h>
  66#include <linux/slab.h>
  67#include <linux/spinlock.h>
  68#include <linux/vmalloc.h>
  69#include <linux/workqueue.h>
  70#include <linux/kmemleak.h>
  71
  72#include <asm/cacheflush.h>
  73#include <asm/sections.h>
  74#include <asm/tlbflush.h>
  75#include <asm/io.h>
  76
  77#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
  78#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
 
 
 
 
  79
  80#ifdef CONFIG_SMP
  81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  82#ifndef __addr_to_pcpu_ptr
  83#define __addr_to_pcpu_ptr(addr)					\
  84	(void __percpu *)((unsigned long)(addr) -			\
  85			  (unsigned long)pcpu_base_addr	+		\
  86			  (unsigned long)__per_cpu_start)
  87#endif
  88#ifndef __pcpu_ptr_to_addr
  89#define __pcpu_ptr_to_addr(ptr)						\
  90	(void __force *)((unsigned long)(ptr) +				\
  91			 (unsigned long)pcpu_base_addr -		\
  92			 (unsigned long)__per_cpu_start)
  93#endif
  94#else	/* CONFIG_SMP */
  95/* on UP, it's always identity mapped */
  96#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
  97#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
  98#endif	/* CONFIG_SMP */
  99
 100struct pcpu_chunk {
 101	struct list_head	list;		/* linked to pcpu_slot lists */
 102	int			free_size;	/* free bytes in the chunk */
 103	int			contig_hint;	/* max contiguous size hint */
 104	void			*base_addr;	/* base address of this chunk */
 
 105	int			map_used;	/* # of map entries used before the sentry */
 106	int			map_alloc;	/* # of map entries allocated */
 107	int			*map;		/* allocation map */
 
 
 108	void			*data;		/* chunk data */
 109	int			first_free;	/* no free below this */
 110	bool			immutable;	/* no [de]population allowed */
 
 111	unsigned long		populated[];	/* populated bitmap */
 112};
 113
 114static int pcpu_unit_pages __read_mostly;
 115static int pcpu_unit_size __read_mostly;
 116static int pcpu_nr_units __read_mostly;
 117static int pcpu_atom_size __read_mostly;
 118static int pcpu_nr_slots __read_mostly;
 119static size_t pcpu_chunk_struct_size __read_mostly;
 120
 121/* cpus with the lowest and highest unit addresses */
 122static unsigned int pcpu_low_unit_cpu __read_mostly;
 123static unsigned int pcpu_high_unit_cpu __read_mostly;
 124
 125/* the address of the first chunk which starts with the kernel static area */
 126void *pcpu_base_addr __read_mostly;
 127EXPORT_SYMBOL_GPL(pcpu_base_addr);
 128
 129static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
 130const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
 131
 132/* group information, used for vm allocation */
 133static int pcpu_nr_groups __read_mostly;
 134static const unsigned long *pcpu_group_offsets __read_mostly;
 135static const size_t *pcpu_group_sizes __read_mostly;
 136
 137/*
 138 * The first chunk which always exists.  Note that unlike other
 139 * chunks, this one can be allocated and mapped in several different
 140 * ways and thus often doesn't live in the vmalloc area.
 141 */
 142static struct pcpu_chunk *pcpu_first_chunk;
 143
 144/*
 145 * Optional reserved chunk.  This chunk reserves part of the first
 146 * chunk and serves it for reserved allocations.  The amount of
 147 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 148 * area doesn't exist, the following variables contain NULL and 0
 149 * respectively.
 150 */
 151static struct pcpu_chunk *pcpu_reserved_chunk;
 152static int pcpu_reserved_chunk_limit;
 153
 
 
 
 
 
 
 
 
 154/*
 155 * Synchronization rules.
 156 *
 157 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
 158 * protects allocation/reclaim paths, chunks, populated bitmap and
 159 * vmalloc mapping.  The latter is a spinlock and protects the index
 160 * data structures - chunk slots, chunks and area maps in chunks.
 161 *
 162 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 163 * pcpu_lock is grabbed and released as necessary.  All actual memory
 164 * allocations are done using GFP_KERNEL with pcpu_lock released.  In
 165 * general, percpu memory can't be allocated with irq off but
 166 * irqsave/restore are still used in alloc path so that it can be used
 167 * from early init path - sched_init() specifically.
 168 *
 169 * Free path accesses and alters only the index data structures, so it
 170 * can be safely called from atomic context.  When memory needs to be
 171 * returned to the system, free path schedules reclaim_work which
 172 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 173 * reclaimed, release both locks and frees the chunks.  Note that it's
 174 * necessary to grab both locks to remove a chunk from circulation as
 175 * allocation path might be referencing the chunk with only
 176 * pcpu_alloc_mutex locked.
 177 */
 178static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
 179static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
 180
 181static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
 
 
 
 
 
 
 
 
 
 182
 183/* reclaim work to release fully free chunks, scheduled from free path */
 184static void pcpu_reclaim(struct work_struct *work);
 185static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
 
 
 186
 187static bool pcpu_addr_in_first_chunk(void *addr)
 188{
 189	void *first_start = pcpu_first_chunk->base_addr;
 190
 191	return addr >= first_start && addr < first_start + pcpu_unit_size;
 192}
 193
 194static bool pcpu_addr_in_reserved_chunk(void *addr)
 195{
 196	void *first_start = pcpu_first_chunk->base_addr;
 197
 198	return addr >= first_start &&
 199		addr < first_start + pcpu_reserved_chunk_limit;
 200}
 201
 202static int __pcpu_size_to_slot(int size)
 203{
 204	int highbit = fls(size);	/* size is in bytes */
 205	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 206}
 207
 208static int pcpu_size_to_slot(int size)
 209{
 210	if (size == pcpu_unit_size)
 211		return pcpu_nr_slots - 1;
 212	return __pcpu_size_to_slot(size);
 213}
 214
 215static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 216{
 217	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
 218		return 0;
 219
 220	return pcpu_size_to_slot(chunk->free_size);
 221}
 222
 223/* set the pointer to a chunk in a page struct */
 224static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 225{
 226	page->index = (unsigned long)pcpu;
 227}
 228
 229/* obtain pointer to a chunk from a page struct */
 230static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 231{
 232	return (struct pcpu_chunk *)page->index;
 233}
 234
 235static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 236{
 237	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 238}
 239
 240static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 241				     unsigned int cpu, int page_idx)
 242{
 243	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
 244		(page_idx << PAGE_SHIFT);
 245}
 246
 247static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
 248					   int *rs, int *re, int end)
 249{
 250	*rs = find_next_zero_bit(chunk->populated, end, *rs);
 251	*re = find_next_bit(chunk->populated, end, *rs + 1);
 252}
 253
 254static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
 255					 int *rs, int *re, int end)
 256{
 257	*rs = find_next_bit(chunk->populated, end, *rs);
 258	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
 259}
 260
 261/*
 262 * (Un)populated page region iterators.  Iterate over (un)populated
 263 * page regions between @start and @end in @chunk.  @rs and @re should
 264 * be integer variables and will be set to start and end page index of
 265 * the current region.
 266 */
 267#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
 268	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
 269	     (rs) < (re);						    \
 270	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
 271
 272#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
 273	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
 274	     (rs) < (re);						    \
 275	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
 276
 277/**
 278 * pcpu_mem_zalloc - allocate memory
 279 * @size: bytes to allocate
 280 *
 281 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 282 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
 283 * memory is always zeroed.
 284 *
 285 * CONTEXT:
 286 * Does GFP_KERNEL allocation.
 287 *
 288 * RETURNS:
 289 * Pointer to the allocated area on success, NULL on failure.
 290 */
 291static void *pcpu_mem_zalloc(size_t size)
 292{
 293	if (WARN_ON_ONCE(!slab_is_available()))
 294		return NULL;
 295
 296	if (size <= PAGE_SIZE)
 297		return kzalloc(size, GFP_KERNEL);
 298	else
 299		return vzalloc(size);
 300}
 301
 302/**
 303 * pcpu_mem_free - free memory
 304 * @ptr: memory to free
 305 * @size: size of the area
 306 *
 307 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 308 */
 309static void pcpu_mem_free(void *ptr, size_t size)
 310{
 311	if (size <= PAGE_SIZE)
 312		kfree(ptr);
 313	else
 314		vfree(ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315}
 316
 317/**
 318 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 319 * @chunk: chunk of interest
 320 * @oslot: the previous slot it was on
 321 *
 322 * This function is called after an allocation or free changed @chunk.
 323 * New slot according to the changed state is determined and @chunk is
 324 * moved to the slot.  Note that the reserved chunk is never put on
 325 * chunk slots.
 326 *
 327 * CONTEXT:
 328 * pcpu_lock.
 329 */
 330static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 331{
 332	int nslot = pcpu_chunk_slot(chunk);
 333
 334	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 335		if (oslot < nslot)
 336			list_move(&chunk->list, &pcpu_slot[nslot]);
 337		else
 338			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 339	}
 340}
 341
 342/**
 343 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 344 * @chunk: chunk of interest
 
 345 *
 346 * Determine whether area map of @chunk needs to be extended to
 347 * accommodate a new allocation.
 
 
 
 
 348 *
 349 * CONTEXT:
 350 * pcpu_lock.
 351 *
 352 * RETURNS:
 353 * New target map allocation length if extension is necessary, 0
 354 * otherwise.
 355 */
 356static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
 357{
 358	int new_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359
 360	if (chunk->map_alloc >= chunk->map_used + 3)
 361		return 0;
 362
 363	new_alloc = PCPU_DFL_MAP_ALLOC;
 364	while (new_alloc < chunk->map_used + 3)
 365		new_alloc *= 2;
 366
 367	return new_alloc;
 368}
 369
 370/**
 371 * pcpu_extend_area_map - extend area map of a chunk
 372 * @chunk: chunk of interest
 373 * @new_alloc: new target allocation length of the area map
 374 *
 375 * Extend area map of @chunk to have @new_alloc entries.
 376 *
 377 * CONTEXT:
 378 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 379 *
 380 * RETURNS:
 381 * 0 on success, -errno on failure.
 382 */
 383static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
 384{
 385	int *old = NULL, *new = NULL;
 386	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
 387	unsigned long flags;
 388
 
 
 389	new = pcpu_mem_zalloc(new_size);
 390	if (!new)
 391		return -ENOMEM;
 392
 393	/* acquire pcpu_lock and switch to new area map */
 394	spin_lock_irqsave(&pcpu_lock, flags);
 395
 396	if (new_alloc <= chunk->map_alloc)
 397		goto out_unlock;
 398
 399	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
 400	old = chunk->map;
 401
 402	memcpy(new, old, old_size);
 403
 404	chunk->map_alloc = new_alloc;
 405	chunk->map = new;
 406	new = NULL;
 407
 408out_unlock:
 409	spin_unlock_irqrestore(&pcpu_lock, flags);
 410
 411	/*
 412	 * pcpu_mem_free() might end up calling vfree() which uses
 413	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
 414	 */
 415	pcpu_mem_free(old, old_size);
 416	pcpu_mem_free(new, new_size);
 417
 418	return 0;
 419}
 420
 421/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422 * pcpu_alloc_area - allocate area from a pcpu_chunk
 423 * @chunk: chunk of interest
 424 * @size: wanted size in bytes
 425 * @align: wanted align
 
 
 426 *
 427 * Try to allocate @size bytes area aligned at @align from @chunk.
 428 * Note that this function only allocates the offset.  It doesn't
 429 * populate or map the area.
 430 *
 431 * @chunk->map must have at least two free slots.
 432 *
 433 * CONTEXT:
 434 * pcpu_lock.
 435 *
 436 * RETURNS:
 437 * Allocated offset in @chunk on success, -1 if no matching area is
 438 * found.
 439 */
 440static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
 
 441{
 442	int oslot = pcpu_chunk_slot(chunk);
 443	int max_contig = 0;
 444	int i, off;
 445	bool seen_free = false;
 446	int *p;
 447
 448	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
 449		int head, tail;
 450		int this_size;
 451
 452		off = *p;
 453		if (off & 1)
 454			continue;
 455
 456		/* extra for alignment requirement */
 457		head = ALIGN(off, align) - off;
 458
 459		this_size = (p[1] & ~1) - off;
 460		if (this_size < head + size) {
 
 
 
 461			if (!seen_free) {
 462				chunk->first_free = i;
 463				seen_free = true;
 464			}
 465			max_contig = max(this_size, max_contig);
 466			continue;
 467		}
 468
 469		/*
 470		 * If head is small or the previous block is free,
 471		 * merge'em.  Note that 'small' is defined as smaller
 472		 * than sizeof(int), which is very small but isn't too
 473		 * uncommon for percpu allocations.
 474		 */
 475		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
 476			*p = off += head;
 477			if (p[-1] & 1)
 478				chunk->free_size -= head;
 479			else
 480				max_contig = max(*p - p[-1], max_contig);
 481			this_size -= head;
 482			head = 0;
 483		}
 484
 485		/* if tail is small, just keep it around */
 486		tail = this_size - head - size;
 487		if (tail < sizeof(int)) {
 488			tail = 0;
 489			size = this_size - head;
 490		}
 491
 492		/* split if warranted */
 493		if (head || tail) {
 494			int nr_extra = !!head + !!tail;
 495
 496			/* insert new subblocks */
 497			memmove(p + nr_extra + 1, p + 1,
 498				sizeof(chunk->map[0]) * (chunk->map_used - i));
 499			chunk->map_used += nr_extra;
 500
 501			if (head) {
 502				if (!seen_free) {
 503					chunk->first_free = i;
 504					seen_free = true;
 505				}
 506				*++p = off += head;
 507				++i;
 508				max_contig = max(head, max_contig);
 509			}
 510			if (tail) {
 511				p[1] = off + size;
 512				max_contig = max(tail, max_contig);
 513			}
 514		}
 515
 516		if (!seen_free)
 517			chunk->first_free = i + 1;
 518
 519		/* update hint and mark allocated */
 520		if (i + 1 == chunk->map_used)
 521			chunk->contig_hint = max_contig; /* fully scanned */
 522		else
 523			chunk->contig_hint = max(chunk->contig_hint,
 524						 max_contig);
 525
 526		chunk->free_size -= size;
 527		*p |= 1;
 528
 
 529		pcpu_chunk_relocate(chunk, oslot);
 530		return off;
 531	}
 532
 533	chunk->contig_hint = max_contig;	/* fully scanned */
 534	pcpu_chunk_relocate(chunk, oslot);
 535
 536	/* tell the upper layer that this chunk has no matching area */
 537	return -1;
 538}
 539
 540/**
 541 * pcpu_free_area - free area to a pcpu_chunk
 542 * @chunk: chunk of interest
 543 * @freeme: offset of area to free
 
 544 *
 545 * Free area starting from @freeme to @chunk.  Note that this function
 546 * only modifies the allocation map.  It doesn't depopulate or unmap
 547 * the area.
 548 *
 549 * CONTEXT:
 550 * pcpu_lock.
 551 */
 552static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
 
 553{
 554	int oslot = pcpu_chunk_slot(chunk);
 555	int off = 0;
 556	unsigned i, j;
 557	int to_free = 0;
 558	int *p;
 559
 560	freeme |= 1;	/* we are searching for <given offset, in use> pair */
 561
 562	i = 0;
 563	j = chunk->map_used;
 564	while (i != j) {
 565		unsigned k = (i + j) / 2;
 566		off = chunk->map[k];
 567		if (off < freeme)
 568			i = k + 1;
 569		else if (off > freeme)
 570			j = k;
 571		else
 572			i = j = k;
 573	}
 574	BUG_ON(off != freeme);
 575
 576	if (i < chunk->first_free)
 577		chunk->first_free = i;
 578
 579	p = chunk->map + i;
 580	*p = off &= ~1;
 581	chunk->free_size += (p[1] & ~1) - off;
 582
 
 
 583	/* merge with next? */
 584	if (!(p[1] & 1))
 585		to_free++;
 586	/* merge with previous? */
 587	if (i > 0 && !(p[-1] & 1)) {
 588		to_free++;
 589		i--;
 590		p--;
 591	}
 592	if (to_free) {
 593		chunk->map_used -= to_free;
 594		memmove(p + 1, p + 1 + to_free,
 595			(chunk->map_used - i) * sizeof(chunk->map[0]));
 596	}
 597
 598	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
 599	pcpu_chunk_relocate(chunk, oslot);
 600}
 601
 602static struct pcpu_chunk *pcpu_alloc_chunk(void)
 603{
 604	struct pcpu_chunk *chunk;
 605
 606	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
 607	if (!chunk)
 608		return NULL;
 609
 610	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
 611						sizeof(chunk->map[0]));
 612	if (!chunk->map) {
 613		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
 614		return NULL;
 615	}
 616
 617	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
 618	chunk->map[0] = 0;
 619	chunk->map[1] = pcpu_unit_size | 1;
 620	chunk->map_used = 1;
 621
 622	INIT_LIST_HEAD(&chunk->list);
 
 623	chunk->free_size = pcpu_unit_size;
 624	chunk->contig_hint = pcpu_unit_size;
 625
 626	return chunk;
 627}
 628
 629static void pcpu_free_chunk(struct pcpu_chunk *chunk)
 630{
 631	if (!chunk)
 632		return;
 633	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
 634	pcpu_mem_free(chunk, pcpu_chunk_struct_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635}
 636
 637/*
 638 * Chunk management implementation.
 639 *
 640 * To allow different implementations, chunk alloc/free and
 641 * [de]population are implemented in a separate file which is pulled
 642 * into this file and compiled together.  The following functions
 643 * should be implemented.
 644 *
 645 * pcpu_populate_chunk		- populate the specified range of a chunk
 646 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 647 * pcpu_create_chunk		- create a new chunk
 648 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 649 * pcpu_addr_to_page		- translate address to physical address
 650 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
 651 */
 652static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
 653static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
 654static struct pcpu_chunk *pcpu_create_chunk(void);
 655static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
 656static struct page *pcpu_addr_to_page(void *addr);
 657static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
 658
 659#ifdef CONFIG_NEED_PER_CPU_KM
 660#include "percpu-km.c"
 661#else
 662#include "percpu-vm.c"
 663#endif
 664
 665/**
 666 * pcpu_chunk_addr_search - determine chunk containing specified address
 667 * @addr: address for which the chunk needs to be determined.
 668 *
 669 * RETURNS:
 670 * The address of the found chunk.
 671 */
 672static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
 673{
 674	/* is it in the first chunk? */
 675	if (pcpu_addr_in_first_chunk(addr)) {
 676		/* is it in the reserved area? */
 677		if (pcpu_addr_in_reserved_chunk(addr))
 678			return pcpu_reserved_chunk;
 679		return pcpu_first_chunk;
 680	}
 681
 682	/*
 683	 * The address is relative to unit0 which might be unused and
 684	 * thus unmapped.  Offset the address to the unit space of the
 685	 * current processor before looking it up in the vmalloc
 686	 * space.  Note that any possible cpu id can be used here, so
 687	 * there's no need to worry about preemption or cpu hotplug.
 688	 */
 689	addr += pcpu_unit_offsets[raw_smp_processor_id()];
 690	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
 691}
 692
 693/**
 694 * pcpu_alloc - the percpu allocator
 695 * @size: size of area to allocate in bytes
 696 * @align: alignment of area (max PAGE_SIZE)
 697 * @reserved: allocate from the reserved chunk if available
 
 698 *
 699 * Allocate percpu area of @size bytes aligned at @align.
 700 *
 701 * CONTEXT:
 702 * Does GFP_KERNEL allocation.
 703 *
 704 * RETURNS:
 705 * Percpu pointer to the allocated area on success, NULL on failure.
 706 */
 707static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
 
 708{
 709	static int warn_limit = 10;
 710	struct pcpu_chunk *chunk;
 711	const char *err;
 712	int slot, off, new_alloc;
 
 
 713	unsigned long flags;
 714	void __percpu *ptr;
 715
 716	/*
 717	 * We want the lowest bit of offset available for in-use/free
 718	 * indicator, so force >= 16bit alignment and make size even.
 719	 */
 720	if (unlikely(align < 2))
 721		align = 2;
 722
 723	if (unlikely(size & 1))
 724		size++;
 725
 726	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
 727		WARN(true, "illegal size (%zu) or align (%zu) for "
 728		     "percpu allocation\n", size, align);
 
 729		return NULL;
 730	}
 731
 732	mutex_lock(&pcpu_alloc_mutex);
 
 
 733	spin_lock_irqsave(&pcpu_lock, flags);
 734
 735	/* serve reserved allocations from the reserved chunk if available */
 736	if (reserved && pcpu_reserved_chunk) {
 737		chunk = pcpu_reserved_chunk;
 738
 739		if (size > chunk->contig_hint) {
 740			err = "alloc from reserved chunk failed";
 741			goto fail_unlock;
 742		}
 743
 744		while ((new_alloc = pcpu_need_to_extend(chunk))) {
 745			spin_unlock_irqrestore(&pcpu_lock, flags);
 746			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
 
 747				err = "failed to extend area map of reserved chunk";
 748				goto fail_unlock_mutex;
 749			}
 750			spin_lock_irqsave(&pcpu_lock, flags);
 751		}
 752
 753		off = pcpu_alloc_area(chunk, size, align);
 
 754		if (off >= 0)
 755			goto area_found;
 756
 757		err = "alloc from reserved chunk failed";
 758		goto fail_unlock;
 759	}
 760
 761restart:
 762	/* search through normal chunks */
 763	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
 764		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
 765			if (size > chunk->contig_hint)
 766				continue;
 767
 768			new_alloc = pcpu_need_to_extend(chunk);
 769			if (new_alloc) {
 
 
 770				spin_unlock_irqrestore(&pcpu_lock, flags);
 771				if (pcpu_extend_area_map(chunk,
 772							 new_alloc) < 0) {
 773					err = "failed to extend area map";
 774					goto fail_unlock_mutex;
 775				}
 776				spin_lock_irqsave(&pcpu_lock, flags);
 777				/*
 778				 * pcpu_lock has been dropped, need to
 779				 * restart cpu_slot list walking.
 780				 */
 781				goto restart;
 782			}
 783
 784			off = pcpu_alloc_area(chunk, size, align);
 
 785			if (off >= 0)
 786				goto area_found;
 787		}
 788	}
 789
 790	/* hmmm... no space left, create a new chunk */
 791	spin_unlock_irqrestore(&pcpu_lock, flags);
 792
 793	chunk = pcpu_create_chunk();
 794	if (!chunk) {
 795		err = "failed to allocate new chunk";
 796		goto fail_unlock_mutex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797	}
 798
 799	spin_lock_irqsave(&pcpu_lock, flags);
 800	pcpu_chunk_relocate(chunk, -1);
 801	goto restart;
 802
 803area_found:
 804	spin_unlock_irqrestore(&pcpu_lock, flags);
 805
 806	/* populate, map and clear the area */
 807	if (pcpu_populate_chunk(chunk, off, size)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808		spin_lock_irqsave(&pcpu_lock, flags);
 809		pcpu_free_area(chunk, off);
 810		err = "failed to populate";
 811		goto fail_unlock;
 812	}
 813
 814	mutex_unlock(&pcpu_alloc_mutex);
 
 
 
 
 
 815
 816	/* return address relative to base address */
 817	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
 818	kmemleak_alloc_percpu(ptr, size);
 819	return ptr;
 820
 821fail_unlock:
 822	spin_unlock_irqrestore(&pcpu_lock, flags);
 823fail_unlock_mutex:
 824	mutex_unlock(&pcpu_alloc_mutex);
 825	if (warn_limit) {
 826		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
 827			   "%s\n", size, align, err);
 828		dump_stack();
 829		if (!--warn_limit)
 830			pr_info("PERCPU: limit reached, disable warning\n");
 
 
 
 
 
 
 
 831	}
 832	return NULL;
 833}
 834
 835/**
 836 * __alloc_percpu - allocate dynamic percpu area
 837 * @size: size of area to allocate in bytes
 838 * @align: alignment of area (max PAGE_SIZE)
 
 839 *
 840 * Allocate zero-filled percpu area of @size bytes aligned at @align.
 841 * Might sleep.  Might trigger writeouts.
 842 *
 843 * CONTEXT:
 844 * Does GFP_KERNEL allocation.
 845 *
 846 * RETURNS:
 847 * Percpu pointer to the allocated area on success, NULL on failure.
 848 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 849void __percpu *__alloc_percpu(size_t size, size_t align)
 850{
 851	return pcpu_alloc(size, align, false);
 852}
 853EXPORT_SYMBOL_GPL(__alloc_percpu);
 854
 855/**
 856 * __alloc_reserved_percpu - allocate reserved percpu area
 857 * @size: size of area to allocate in bytes
 858 * @align: alignment of area (max PAGE_SIZE)
 859 *
 860 * Allocate zero-filled percpu area of @size bytes aligned at @align
 861 * from reserved percpu area if arch has set it up; otherwise,
 862 * allocation is served from the same dynamic area.  Might sleep.
 863 * Might trigger writeouts.
 864 *
 865 * CONTEXT:
 866 * Does GFP_KERNEL allocation.
 867 *
 868 * RETURNS:
 869 * Percpu pointer to the allocated area on success, NULL on failure.
 870 */
 871void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
 872{
 873	return pcpu_alloc(size, align, true);
 874}
 875
 876/**
 877 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 878 * @work: unused
 879 *
 880 * Reclaim all fully free chunks except for the first one.
 881 *
 882 * CONTEXT:
 883 * workqueue context.
 884 */
 885static void pcpu_reclaim(struct work_struct *work)
 886{
 887	LIST_HEAD(todo);
 888	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
 889	struct pcpu_chunk *chunk, *next;
 
 890
 
 
 
 
 891	mutex_lock(&pcpu_alloc_mutex);
 892	spin_lock_irq(&pcpu_lock);
 893
 894	list_for_each_entry_safe(chunk, next, head, list) {
 895		WARN_ON(chunk->immutable);
 896
 897		/* spare the first one */
 898		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
 899			continue;
 900
 901		list_move(&chunk->list, &todo);
 
 902	}
 903
 904	spin_unlock_irq(&pcpu_lock);
 905
 906	list_for_each_entry_safe(chunk, next, &todo, list) {
 907		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
 
 
 
 
 
 
 
 908		pcpu_destroy_chunk(chunk);
 909	}
 910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911	mutex_unlock(&pcpu_alloc_mutex);
 912}
 913
 914/**
 915 * free_percpu - free percpu area
 916 * @ptr: pointer to area to free
 917 *
 918 * Free percpu area @ptr.
 919 *
 920 * CONTEXT:
 921 * Can be called from atomic context.
 922 */
 923void free_percpu(void __percpu *ptr)
 924{
 925	void *addr;
 926	struct pcpu_chunk *chunk;
 927	unsigned long flags;
 928	int off;
 929
 930	if (!ptr)
 931		return;
 932
 933	kmemleak_free_percpu(ptr);
 934
 935	addr = __pcpu_ptr_to_addr(ptr);
 936
 937	spin_lock_irqsave(&pcpu_lock, flags);
 938
 939	chunk = pcpu_chunk_addr_search(addr);
 940	off = addr - chunk->base_addr;
 941
 942	pcpu_free_area(chunk, off);
 
 
 
 943
 944	/* if there are more than one fully free chunks, wake up grim reaper */
 945	if (chunk->free_size == pcpu_unit_size) {
 946		struct pcpu_chunk *pos;
 947
 948		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
 949			if (pos != chunk) {
 950				schedule_work(&pcpu_reclaim_work);
 951				break;
 952			}
 953	}
 954
 955	spin_unlock_irqrestore(&pcpu_lock, flags);
 956}
 957EXPORT_SYMBOL_GPL(free_percpu);
 958
 959/**
 960 * is_kernel_percpu_address - test whether address is from static percpu area
 961 * @addr: address to test
 962 *
 963 * Test whether @addr belongs to in-kernel static percpu area.  Module
 964 * static percpu areas are not considered.  For those, use
 965 * is_module_percpu_address().
 966 *
 967 * RETURNS:
 968 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 969 */
 970bool is_kernel_percpu_address(unsigned long addr)
 971{
 972#ifdef CONFIG_SMP
 973	const size_t static_size = __per_cpu_end - __per_cpu_start;
 974	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
 975	unsigned int cpu;
 976
 977	for_each_possible_cpu(cpu) {
 978		void *start = per_cpu_ptr(base, cpu);
 979
 980		if ((void *)addr >= start && (void *)addr < start + static_size)
 981			return true;
 982        }
 983#endif
 984	/* on UP, can't distinguish from other static vars, always false */
 985	return false;
 986}
 987
 988/**
 989 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 990 * @addr: the address to be converted to physical address
 991 *
 992 * Given @addr which is dereferenceable address obtained via one of
 993 * percpu access macros, this function translates it into its physical
 994 * address.  The caller is responsible for ensuring @addr stays valid
 995 * until this function finishes.
 996 *
 997 * percpu allocator has special setup for the first chunk, which currently
 998 * supports either embedding in linear address space or vmalloc mapping,
 999 * and, from the second one, the backing allocator (currently either vm or
1000 * km) provides translation.
1001 *
1002 * The addr can be tranlated simply without checking if it falls into the
1003 * first chunk. But the current code reflects better how percpu allocator
1004 * actually works, and the verification can discover both bugs in percpu
1005 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1006 * code.
1007 *
1008 * RETURNS:
1009 * The physical address for @addr.
1010 */
1011phys_addr_t per_cpu_ptr_to_phys(void *addr)
1012{
1013	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1014	bool in_first_chunk = false;
1015	unsigned long first_low, first_high;
1016	unsigned int cpu;
1017
1018	/*
1019	 * The following test on unit_low/high isn't strictly
1020	 * necessary but will speed up lookups of addresses which
1021	 * aren't in the first chunk.
1022	 */
1023	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1024	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1025				     pcpu_unit_pages);
1026	if ((unsigned long)addr >= first_low &&
1027	    (unsigned long)addr < first_high) {
1028		for_each_possible_cpu(cpu) {
1029			void *start = per_cpu_ptr(base, cpu);
1030
1031			if (addr >= start && addr < start + pcpu_unit_size) {
1032				in_first_chunk = true;
1033				break;
1034			}
1035		}
1036	}
1037
1038	if (in_first_chunk) {
1039		if (!is_vmalloc_addr(addr))
1040			return __pa(addr);
1041		else
1042			return page_to_phys(vmalloc_to_page(addr)) +
1043			       offset_in_page(addr);
1044	} else
1045		return page_to_phys(pcpu_addr_to_page(addr)) +
1046		       offset_in_page(addr);
1047}
1048
1049/**
1050 * pcpu_alloc_alloc_info - allocate percpu allocation info
1051 * @nr_groups: the number of groups
1052 * @nr_units: the number of units
1053 *
1054 * Allocate ai which is large enough for @nr_groups groups containing
1055 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1056 * cpu_map array which is long enough for @nr_units and filled with
1057 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1058 * pointer of other groups.
1059 *
1060 * RETURNS:
1061 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1062 * failure.
1063 */
1064struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1065						      int nr_units)
1066{
1067	struct pcpu_alloc_info *ai;
1068	size_t base_size, ai_size;
1069	void *ptr;
1070	int unit;
1071
1072	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1073			  __alignof__(ai->groups[0].cpu_map[0]));
1074	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1075
1076	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1077	if (!ptr)
1078		return NULL;
1079	ai = ptr;
1080	ptr += base_size;
1081
1082	ai->groups[0].cpu_map = ptr;
1083
1084	for (unit = 0; unit < nr_units; unit++)
1085		ai->groups[0].cpu_map[unit] = NR_CPUS;
1086
1087	ai->nr_groups = nr_groups;
1088	ai->__ai_size = PFN_ALIGN(ai_size);
1089
1090	return ai;
1091}
1092
1093/**
1094 * pcpu_free_alloc_info - free percpu allocation info
1095 * @ai: pcpu_alloc_info to free
1096 *
1097 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1098 */
1099void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1100{
1101	memblock_free_early(__pa(ai), ai->__ai_size);
1102}
1103
1104/**
1105 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1106 * @lvl: loglevel
1107 * @ai: allocation info to dump
1108 *
1109 * Print out information about @ai using loglevel @lvl.
1110 */
1111static void pcpu_dump_alloc_info(const char *lvl,
1112				 const struct pcpu_alloc_info *ai)
1113{
1114	int group_width = 1, cpu_width = 1, width;
1115	char empty_str[] = "--------";
1116	int alloc = 0, alloc_end = 0;
1117	int group, v;
1118	int upa, apl;	/* units per alloc, allocs per line */
1119
1120	v = ai->nr_groups;
1121	while (v /= 10)
1122		group_width++;
1123
1124	v = num_possible_cpus();
1125	while (v /= 10)
1126		cpu_width++;
1127	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1128
1129	upa = ai->alloc_size / ai->unit_size;
1130	width = upa * (cpu_width + 1) + group_width + 3;
1131	apl = rounddown_pow_of_two(max(60 / width, 1));
1132
1133	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1134	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1135	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1136
1137	for (group = 0; group < ai->nr_groups; group++) {
1138		const struct pcpu_group_info *gi = &ai->groups[group];
1139		int unit = 0, unit_end = 0;
1140
1141		BUG_ON(gi->nr_units % upa);
1142		for (alloc_end += gi->nr_units / upa;
1143		     alloc < alloc_end; alloc++) {
1144			if (!(alloc % apl)) {
1145				printk(KERN_CONT "\n");
1146				printk("%spcpu-alloc: ", lvl);
1147			}
1148			printk(KERN_CONT "[%0*d] ", group_width, group);
1149
1150			for (unit_end += upa; unit < unit_end; unit++)
1151				if (gi->cpu_map[unit] != NR_CPUS)
1152					printk(KERN_CONT "%0*d ", cpu_width,
1153					       gi->cpu_map[unit]);
1154				else
1155					printk(KERN_CONT "%s ", empty_str);
1156		}
1157	}
1158	printk(KERN_CONT "\n");
1159}
1160
1161/**
1162 * pcpu_setup_first_chunk - initialize the first percpu chunk
1163 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1164 * @base_addr: mapped address
1165 *
1166 * Initialize the first percpu chunk which contains the kernel static
1167 * perpcu area.  This function is to be called from arch percpu area
1168 * setup path.
1169 *
1170 * @ai contains all information necessary to initialize the first
1171 * chunk and prime the dynamic percpu allocator.
1172 *
1173 * @ai->static_size is the size of static percpu area.
1174 *
1175 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1176 * reserve after the static area in the first chunk.  This reserves
1177 * the first chunk such that it's available only through reserved
1178 * percpu allocation.  This is primarily used to serve module percpu
1179 * static areas on architectures where the addressing model has
1180 * limited offset range for symbol relocations to guarantee module
1181 * percpu symbols fall inside the relocatable range.
1182 *
1183 * @ai->dyn_size determines the number of bytes available for dynamic
1184 * allocation in the first chunk.  The area between @ai->static_size +
1185 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1186 *
1187 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1188 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1189 * @ai->dyn_size.
1190 *
1191 * @ai->atom_size is the allocation atom size and used as alignment
1192 * for vm areas.
1193 *
1194 * @ai->alloc_size is the allocation size and always multiple of
1195 * @ai->atom_size.  This is larger than @ai->atom_size if
1196 * @ai->unit_size is larger than @ai->atom_size.
1197 *
1198 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1199 * percpu areas.  Units which should be colocated are put into the
1200 * same group.  Dynamic VM areas will be allocated according to these
1201 * groupings.  If @ai->nr_groups is zero, a single group containing
1202 * all units is assumed.
1203 *
1204 * The caller should have mapped the first chunk at @base_addr and
1205 * copied static data to each unit.
1206 *
1207 * If the first chunk ends up with both reserved and dynamic areas, it
1208 * is served by two chunks - one to serve the core static and reserved
1209 * areas and the other for the dynamic area.  They share the same vm
1210 * and page map but uses different area allocation map to stay away
1211 * from each other.  The latter chunk is circulated in the chunk slots
1212 * and available for dynamic allocation like any other chunks.
1213 *
1214 * RETURNS:
1215 * 0 on success, -errno on failure.
1216 */
1217int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1218				  void *base_addr)
1219{
1220	static char cpus_buf[4096] __initdata;
1221	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1222	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1223	size_t dyn_size = ai->dyn_size;
1224	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1225	struct pcpu_chunk *schunk, *dchunk = NULL;
1226	unsigned long *group_offsets;
1227	size_t *group_sizes;
1228	unsigned long *unit_off;
1229	unsigned int cpu;
1230	int *unit_map;
1231	int group, unit, i;
1232
1233	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1234
1235#define PCPU_SETUP_BUG_ON(cond)	do {					\
1236	if (unlikely(cond)) {						\
1237		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1238		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
 
1239		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1240		BUG();							\
1241	}								\
1242} while (0)
1243
1244	/* sanity checks */
1245	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1246#ifdef CONFIG_SMP
1247	PCPU_SETUP_BUG_ON(!ai->static_size);
1248	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1249#endif
1250	PCPU_SETUP_BUG_ON(!base_addr);
1251	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1252	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1253	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1254	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1255	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1256	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1257
1258	/* process group information and build config tables accordingly */
1259	group_offsets = memblock_virt_alloc(ai->nr_groups *
1260					     sizeof(group_offsets[0]), 0);
1261	group_sizes = memblock_virt_alloc(ai->nr_groups *
1262					   sizeof(group_sizes[0]), 0);
1263	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1264	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1265
1266	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1267		unit_map[cpu] = UINT_MAX;
1268
1269	pcpu_low_unit_cpu = NR_CPUS;
1270	pcpu_high_unit_cpu = NR_CPUS;
1271
1272	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1273		const struct pcpu_group_info *gi = &ai->groups[group];
1274
1275		group_offsets[group] = gi->base_offset;
1276		group_sizes[group] = gi->nr_units * ai->unit_size;
1277
1278		for (i = 0; i < gi->nr_units; i++) {
1279			cpu = gi->cpu_map[i];
1280			if (cpu == NR_CPUS)
1281				continue;
1282
1283			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1284			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1285			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1286
1287			unit_map[cpu] = unit + i;
1288			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1289
1290			/* determine low/high unit_cpu */
1291			if (pcpu_low_unit_cpu == NR_CPUS ||
1292			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1293				pcpu_low_unit_cpu = cpu;
1294			if (pcpu_high_unit_cpu == NR_CPUS ||
1295			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1296				pcpu_high_unit_cpu = cpu;
1297		}
1298	}
1299	pcpu_nr_units = unit;
1300
1301	for_each_possible_cpu(cpu)
1302		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1303
1304	/* we're done parsing the input, undefine BUG macro and dump config */
1305#undef PCPU_SETUP_BUG_ON
1306	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1307
1308	pcpu_nr_groups = ai->nr_groups;
1309	pcpu_group_offsets = group_offsets;
1310	pcpu_group_sizes = group_sizes;
1311	pcpu_unit_map = unit_map;
1312	pcpu_unit_offsets = unit_off;
1313
1314	/* determine basic parameters */
1315	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1316	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1317	pcpu_atom_size = ai->atom_size;
1318	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1319		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1320
1321	/*
1322	 * Allocate chunk slots.  The additional last slot is for
1323	 * empty chunks.
1324	 */
1325	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1326	pcpu_slot = memblock_virt_alloc(
1327			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1328	for (i = 0; i < pcpu_nr_slots; i++)
1329		INIT_LIST_HEAD(&pcpu_slot[i]);
1330
1331	/*
1332	 * Initialize static chunk.  If reserved_size is zero, the
1333	 * static chunk covers static area + dynamic allocation area
1334	 * in the first chunk.  If reserved_size is not zero, it
1335	 * covers static area + reserved area (mostly used for module
1336	 * static percpu allocation).
1337	 */
1338	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1339	INIT_LIST_HEAD(&schunk->list);
 
1340	schunk->base_addr = base_addr;
1341	schunk->map = smap;
1342	schunk->map_alloc = ARRAY_SIZE(smap);
1343	schunk->immutable = true;
1344	bitmap_fill(schunk->populated, pcpu_unit_pages);
 
1345
1346	if (ai->reserved_size) {
1347		schunk->free_size = ai->reserved_size;
1348		pcpu_reserved_chunk = schunk;
1349		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1350	} else {
1351		schunk->free_size = dyn_size;
1352		dyn_size = 0;			/* dynamic area covered */
1353	}
1354	schunk->contig_hint = schunk->free_size;
1355
1356	schunk->map[0] = 1;
1357	schunk->map[1] = ai->static_size;
1358	schunk->map_used = 1;
1359	if (schunk->free_size)
1360		schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1361	else
1362		schunk->map[1] |= 1;
1363
1364	/* init dynamic chunk if necessary */
1365	if (dyn_size) {
1366		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1367		INIT_LIST_HEAD(&dchunk->list);
 
1368		dchunk->base_addr = base_addr;
1369		dchunk->map = dmap;
1370		dchunk->map_alloc = ARRAY_SIZE(dmap);
1371		dchunk->immutable = true;
1372		bitmap_fill(dchunk->populated, pcpu_unit_pages);
 
1373
1374		dchunk->contig_hint = dchunk->free_size = dyn_size;
1375		dchunk->map[0] = 1;
1376		dchunk->map[1] = pcpu_reserved_chunk_limit;
1377		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1378		dchunk->map_used = 2;
1379	}
1380
1381	/* link the first chunk in */
1382	pcpu_first_chunk = dchunk ?: schunk;
 
 
1383	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1384
1385	/* we're done */
1386	pcpu_base_addr = base_addr;
1387	return 0;
1388}
1389
1390#ifdef CONFIG_SMP
1391
1392const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1393	[PCPU_FC_AUTO]	= "auto",
1394	[PCPU_FC_EMBED]	= "embed",
1395	[PCPU_FC_PAGE]	= "page",
1396};
1397
1398enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1399
1400static int __init percpu_alloc_setup(char *str)
1401{
1402	if (!str)
1403		return -EINVAL;
1404
1405	if (0)
1406		/* nada */;
1407#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1408	else if (!strcmp(str, "embed"))
1409		pcpu_chosen_fc = PCPU_FC_EMBED;
1410#endif
1411#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1412	else if (!strcmp(str, "page"))
1413		pcpu_chosen_fc = PCPU_FC_PAGE;
1414#endif
1415	else
1416		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1417
1418	return 0;
1419}
1420early_param("percpu_alloc", percpu_alloc_setup);
1421
1422/*
1423 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1424 * Build it if needed by the arch config or the generic setup is going
1425 * to be used.
1426 */
1427#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1428	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1429#define BUILD_EMBED_FIRST_CHUNK
1430#endif
1431
1432/* build pcpu_page_first_chunk() iff needed by the arch config */
1433#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1434#define BUILD_PAGE_FIRST_CHUNK
1435#endif
1436
1437/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1438#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1439/**
1440 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1441 * @reserved_size: the size of reserved percpu area in bytes
1442 * @dyn_size: minimum free size for dynamic allocation in bytes
1443 * @atom_size: allocation atom size
1444 * @cpu_distance_fn: callback to determine distance between cpus, optional
1445 *
1446 * This function determines grouping of units, their mappings to cpus
1447 * and other parameters considering needed percpu size, allocation
1448 * atom size and distances between CPUs.
1449 *
1450 * Groups are always mutliples of atom size and CPUs which are of
1451 * LOCAL_DISTANCE both ways are grouped together and share space for
1452 * units in the same group.  The returned configuration is guaranteed
1453 * to have CPUs on different nodes on different groups and >=75% usage
1454 * of allocated virtual address space.
1455 *
1456 * RETURNS:
1457 * On success, pointer to the new allocation_info is returned.  On
1458 * failure, ERR_PTR value is returned.
1459 */
1460static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1461				size_t reserved_size, size_t dyn_size,
1462				size_t atom_size,
1463				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1464{
1465	static int group_map[NR_CPUS] __initdata;
1466	static int group_cnt[NR_CPUS] __initdata;
1467	const size_t static_size = __per_cpu_end - __per_cpu_start;
1468	int nr_groups = 1, nr_units = 0;
1469	size_t size_sum, min_unit_size, alloc_size;
1470	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1471	int last_allocs, group, unit;
1472	unsigned int cpu, tcpu;
1473	struct pcpu_alloc_info *ai;
1474	unsigned int *cpu_map;
1475
1476	/* this function may be called multiple times */
1477	memset(group_map, 0, sizeof(group_map));
1478	memset(group_cnt, 0, sizeof(group_cnt));
1479
1480	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1481	size_sum = PFN_ALIGN(static_size + reserved_size +
1482			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1483	dyn_size = size_sum - static_size - reserved_size;
1484
1485	/*
1486	 * Determine min_unit_size, alloc_size and max_upa such that
1487	 * alloc_size is multiple of atom_size and is the smallest
1488	 * which can accommodate 4k aligned segments which are equal to
1489	 * or larger than min_unit_size.
1490	 */
1491	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1492
1493	alloc_size = roundup(min_unit_size, atom_size);
1494	upa = alloc_size / min_unit_size;
1495	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1496		upa--;
1497	max_upa = upa;
1498
1499	/* group cpus according to their proximity */
1500	for_each_possible_cpu(cpu) {
1501		group = 0;
1502	next_group:
1503		for_each_possible_cpu(tcpu) {
1504			if (cpu == tcpu)
1505				break;
1506			if (group_map[tcpu] == group && cpu_distance_fn &&
1507			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1508			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1509				group++;
1510				nr_groups = max(nr_groups, group + 1);
1511				goto next_group;
1512			}
1513		}
1514		group_map[cpu] = group;
1515		group_cnt[group]++;
1516	}
1517
1518	/*
1519	 * Expand unit size until address space usage goes over 75%
1520	 * and then as much as possible without using more address
1521	 * space.
1522	 */
1523	last_allocs = INT_MAX;
1524	for (upa = max_upa; upa; upa--) {
1525		int allocs = 0, wasted = 0;
1526
1527		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1528			continue;
1529
1530		for (group = 0; group < nr_groups; group++) {
1531			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1532			allocs += this_allocs;
1533			wasted += this_allocs * upa - group_cnt[group];
1534		}
1535
1536		/*
1537		 * Don't accept if wastage is over 1/3.  The
1538		 * greater-than comparison ensures upa==1 always
1539		 * passes the following check.
1540		 */
1541		if (wasted > num_possible_cpus() / 3)
1542			continue;
1543
1544		/* and then don't consume more memory */
1545		if (allocs > last_allocs)
1546			break;
1547		last_allocs = allocs;
1548		best_upa = upa;
1549	}
1550	upa = best_upa;
1551
1552	/* allocate and fill alloc_info */
1553	for (group = 0; group < nr_groups; group++)
1554		nr_units += roundup(group_cnt[group], upa);
1555
1556	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1557	if (!ai)
1558		return ERR_PTR(-ENOMEM);
1559	cpu_map = ai->groups[0].cpu_map;
1560
1561	for (group = 0; group < nr_groups; group++) {
1562		ai->groups[group].cpu_map = cpu_map;
1563		cpu_map += roundup(group_cnt[group], upa);
1564	}
1565
1566	ai->static_size = static_size;
1567	ai->reserved_size = reserved_size;
1568	ai->dyn_size = dyn_size;
1569	ai->unit_size = alloc_size / upa;
1570	ai->atom_size = atom_size;
1571	ai->alloc_size = alloc_size;
1572
1573	for (group = 0, unit = 0; group_cnt[group]; group++) {
1574		struct pcpu_group_info *gi = &ai->groups[group];
1575
1576		/*
1577		 * Initialize base_offset as if all groups are located
1578		 * back-to-back.  The caller should update this to
1579		 * reflect actual allocation.
1580		 */
1581		gi->base_offset = unit * ai->unit_size;
1582
1583		for_each_possible_cpu(cpu)
1584			if (group_map[cpu] == group)
1585				gi->cpu_map[gi->nr_units++] = cpu;
1586		gi->nr_units = roundup(gi->nr_units, upa);
1587		unit += gi->nr_units;
1588	}
1589	BUG_ON(unit != nr_units);
1590
1591	return ai;
1592}
1593#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1594
1595#if defined(BUILD_EMBED_FIRST_CHUNK)
1596/**
1597 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1598 * @reserved_size: the size of reserved percpu area in bytes
1599 * @dyn_size: minimum free size for dynamic allocation in bytes
1600 * @atom_size: allocation atom size
1601 * @cpu_distance_fn: callback to determine distance between cpus, optional
1602 * @alloc_fn: function to allocate percpu page
1603 * @free_fn: function to free percpu page
1604 *
1605 * This is a helper to ease setting up embedded first percpu chunk and
1606 * can be called where pcpu_setup_first_chunk() is expected.
1607 *
1608 * If this function is used to setup the first chunk, it is allocated
1609 * by calling @alloc_fn and used as-is without being mapped into
1610 * vmalloc area.  Allocations are always whole multiples of @atom_size
1611 * aligned to @atom_size.
1612 *
1613 * This enables the first chunk to piggy back on the linear physical
1614 * mapping which often uses larger page size.  Please note that this
1615 * can result in very sparse cpu->unit mapping on NUMA machines thus
1616 * requiring large vmalloc address space.  Don't use this allocator if
1617 * vmalloc space is not orders of magnitude larger than distances
1618 * between node memory addresses (ie. 32bit NUMA machines).
1619 *
1620 * @dyn_size specifies the minimum dynamic area size.
1621 *
1622 * If the needed size is smaller than the minimum or specified unit
1623 * size, the leftover is returned using @free_fn.
1624 *
1625 * RETURNS:
1626 * 0 on success, -errno on failure.
1627 */
1628int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1629				  size_t atom_size,
1630				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1631				  pcpu_fc_alloc_fn_t alloc_fn,
1632				  pcpu_fc_free_fn_t free_fn)
1633{
1634	void *base = (void *)ULONG_MAX;
1635	void **areas = NULL;
1636	struct pcpu_alloc_info *ai;
1637	size_t size_sum, areas_size, max_distance;
1638	int group, i, rc;
 
1639
1640	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1641				   cpu_distance_fn);
1642	if (IS_ERR(ai))
1643		return PTR_ERR(ai);
1644
1645	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1646	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1647
1648	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1649	if (!areas) {
1650		rc = -ENOMEM;
1651		goto out_free;
1652	}
1653
1654	/* allocate, copy and determine base address */
 
1655	for (group = 0; group < ai->nr_groups; group++) {
1656		struct pcpu_group_info *gi = &ai->groups[group];
1657		unsigned int cpu = NR_CPUS;
1658		void *ptr;
1659
1660		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1661			cpu = gi->cpu_map[i];
1662		BUG_ON(cpu == NR_CPUS);
1663
1664		/* allocate space for the whole group */
1665		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1666		if (!ptr) {
1667			rc = -ENOMEM;
1668			goto out_free_areas;
1669		}
1670		/* kmemleak tracks the percpu allocations separately */
1671		kmemleak_free(ptr);
1672		areas[group] = ptr;
1673
1674		base = min(ptr, base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675	}
1676
1677	/*
1678	 * Copy data and free unused parts.  This should happen after all
1679	 * allocations are complete; otherwise, we may end up with
1680	 * overlapping groups.
1681	 */
1682	for (group = 0; group < ai->nr_groups; group++) {
1683		struct pcpu_group_info *gi = &ai->groups[group];
1684		void *ptr = areas[group];
1685
1686		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1687			if (gi->cpu_map[i] == NR_CPUS) {
1688				/* unused unit, free whole */
1689				free_fn(ptr, ai->unit_size);
1690				continue;
1691			}
1692			/* copy and return the unused part */
1693			memcpy(ptr, __per_cpu_load, ai->static_size);
1694			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1695		}
1696	}
1697
1698	/* base address is now known, determine group base offsets */
1699	max_distance = 0;
1700	for (group = 0; group < ai->nr_groups; group++) {
1701		ai->groups[group].base_offset = areas[group] - base;
1702		max_distance = max_t(size_t, max_distance,
1703				     ai->groups[group].base_offset);
1704	}
1705	max_distance += ai->unit_size;
1706
1707	/* warn if maximum distance is further than 75% of vmalloc space */
1708	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1709		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1710			   "space 0x%lx\n", max_distance,
1711			   VMALLOC_TOTAL);
1712#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1713		/* and fail if we have fallback */
1714		rc = -EINVAL;
1715		goto out_free;
1716#endif
1717	}
1718
1719	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1720		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1721		ai->dyn_size, ai->unit_size);
1722
1723	rc = pcpu_setup_first_chunk(ai, base);
1724	goto out_free;
1725
1726out_free_areas:
1727	for (group = 0; group < ai->nr_groups; group++)
1728		if (areas[group])
1729			free_fn(areas[group],
1730				ai->groups[group].nr_units * ai->unit_size);
1731out_free:
1732	pcpu_free_alloc_info(ai);
1733	if (areas)
1734		memblock_free_early(__pa(areas), areas_size);
1735	return rc;
1736}
1737#endif /* BUILD_EMBED_FIRST_CHUNK */
1738
1739#ifdef BUILD_PAGE_FIRST_CHUNK
1740/**
1741 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1742 * @reserved_size: the size of reserved percpu area in bytes
1743 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1744 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1745 * @populate_pte_fn: function to populate pte
1746 *
1747 * This is a helper to ease setting up page-remapped first percpu
1748 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1749 *
1750 * This is the basic allocator.  Static percpu area is allocated
1751 * page-by-page into vmalloc area.
1752 *
1753 * RETURNS:
1754 * 0 on success, -errno on failure.
1755 */
1756int __init pcpu_page_first_chunk(size_t reserved_size,
1757				 pcpu_fc_alloc_fn_t alloc_fn,
1758				 pcpu_fc_free_fn_t free_fn,
1759				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1760{
1761	static struct vm_struct vm;
1762	struct pcpu_alloc_info *ai;
1763	char psize_str[16];
1764	int unit_pages;
1765	size_t pages_size;
1766	struct page **pages;
1767	int unit, i, j, rc;
 
 
1768
1769	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1770
1771	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1772	if (IS_ERR(ai))
1773		return PTR_ERR(ai);
1774	BUG_ON(ai->nr_groups != 1);
1775	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
 
 
 
 
 
1776
1777	unit_pages = ai->unit_size >> PAGE_SHIFT;
1778
1779	/* unaligned allocations can't be freed, round up to page size */
1780	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1781			       sizeof(pages[0]));
1782	pages = memblock_virt_alloc(pages_size, 0);
1783
1784	/* allocate pages */
1785	j = 0;
1786	for (unit = 0; unit < num_possible_cpus(); unit++)
 
1787		for (i = 0; i < unit_pages; i++) {
1788			unsigned int cpu = ai->groups[0].cpu_map[unit];
1789			void *ptr;
1790
1791			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1792			if (!ptr) {
1793				pr_warning("PERCPU: failed to allocate %s page "
1794					   "for cpu%u\n", psize_str, cpu);
1795				goto enomem;
1796			}
1797			/* kmemleak tracks the percpu allocations separately */
1798			kmemleak_free(ptr);
1799			pages[j++] = virt_to_page(ptr);
1800		}
 
1801
1802	/* allocate vm area, map the pages and copy static data */
1803	vm.flags = VM_ALLOC;
1804	vm.size = num_possible_cpus() * ai->unit_size;
1805	vm_area_register_early(&vm, PAGE_SIZE);
1806
1807	for (unit = 0; unit < num_possible_cpus(); unit++) {
1808		unsigned long unit_addr =
1809			(unsigned long)vm.addr + unit * ai->unit_size;
1810
1811		for (i = 0; i < unit_pages; i++)
1812			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1813
1814		/* pte already populated, the following shouldn't fail */
1815		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1816				      unit_pages);
1817		if (rc < 0)
1818			panic("failed to map percpu area, err=%d\n", rc);
1819
1820		/*
1821		 * FIXME: Archs with virtual cache should flush local
1822		 * cache for the linear mapping here - something
1823		 * equivalent to flush_cache_vmap() on the local cpu.
1824		 * flush_cache_vmap() can't be used as most supporting
1825		 * data structures are not set up yet.
1826		 */
1827
1828		/* copy static data */
1829		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1830	}
1831
1832	/* we're ready, commit */
1833	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1834		unit_pages, psize_str, vm.addr, ai->static_size,
1835		ai->reserved_size, ai->dyn_size);
1836
1837	rc = pcpu_setup_first_chunk(ai, vm.addr);
1838	goto out_free_ar;
1839
1840enomem:
1841	while (--j >= 0)
1842		free_fn(page_address(pages[j]), PAGE_SIZE);
1843	rc = -ENOMEM;
1844out_free_ar:
1845	memblock_free_early(__pa(pages), pages_size);
1846	pcpu_free_alloc_info(ai);
1847	return rc;
1848}
1849#endif /* BUILD_PAGE_FIRST_CHUNK */
1850
1851#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
1852/*
1853 * Generic SMP percpu area setup.
1854 *
1855 * The embedding helper is used because its behavior closely resembles
1856 * the original non-dynamic generic percpu area setup.  This is
1857 * important because many archs have addressing restrictions and might
1858 * fail if the percpu area is located far away from the previous
1859 * location.  As an added bonus, in non-NUMA cases, embedding is
1860 * generally a good idea TLB-wise because percpu area can piggy back
1861 * on the physical linear memory mapping which uses large page
1862 * mappings on applicable archs.
1863 */
1864unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1865EXPORT_SYMBOL(__per_cpu_offset);
1866
1867static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1868				       size_t align)
1869{
1870	return  memblock_virt_alloc_from_nopanic(
1871			size, align, __pa(MAX_DMA_ADDRESS));
1872}
1873
1874static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1875{
1876	memblock_free_early(__pa(ptr), size);
1877}
1878
1879void __init setup_per_cpu_areas(void)
1880{
1881	unsigned long delta;
1882	unsigned int cpu;
1883	int rc;
1884
1885	/*
1886	 * Always reserve area for module percpu variables.  That's
1887	 * what the legacy allocator did.
1888	 */
1889	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1890				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1891				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1892	if (rc < 0)
1893		panic("Failed to initialize percpu areas.");
1894
1895	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1896	for_each_possible_cpu(cpu)
1897		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1898}
1899#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1900
1901#else	/* CONFIG_SMP */
1902
1903/*
1904 * UP percpu area setup.
1905 *
1906 * UP always uses km-based percpu allocator with identity mapping.
1907 * Static percpu variables are indistinguishable from the usual static
1908 * variables and don't require any special preparation.
1909 */
1910void __init setup_per_cpu_areas(void)
1911{
1912	const size_t unit_size =
1913		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1914					 PERCPU_DYNAMIC_RESERVE));
1915	struct pcpu_alloc_info *ai;
1916	void *fc;
1917
1918	ai = pcpu_alloc_alloc_info(1, 1);
1919	fc = memblock_virt_alloc_from_nopanic(unit_size,
1920					      PAGE_SIZE,
1921					      __pa(MAX_DMA_ADDRESS));
1922	if (!ai || !fc)
1923		panic("Failed to allocate memory for percpu areas.");
1924	/* kmemleak tracks the percpu allocations separately */
1925	kmemleak_free(fc);
1926
1927	ai->dyn_size = unit_size;
1928	ai->unit_size = unit_size;
1929	ai->atom_size = unit_size;
1930	ai->alloc_size = unit_size;
1931	ai->groups[0].nr_units = 1;
1932	ai->groups[0].cpu_map[0] = 0;
1933
1934	if (pcpu_setup_first_chunk(ai, fc) < 0)
1935		panic("Failed to initialize percpu areas.");
1936}
1937
1938#endif	/* CONFIG_SMP */
1939
1940/*
1941 * First and reserved chunks are initialized with temporary allocation
1942 * map in initdata so that they can be used before slab is online.
1943 * This function is called after slab is brought up and replaces those
1944 * with properly allocated maps.
1945 */
1946void __init percpu_init_late(void)
1947{
1948	struct pcpu_chunk *target_chunks[] =
1949		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1950	struct pcpu_chunk *chunk;
1951	unsigned long flags;
1952	int i;
1953
1954	for (i = 0; (chunk = target_chunks[i]); i++) {
1955		int *map;
1956		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1957
1958		BUILD_BUG_ON(size > PAGE_SIZE);
1959
1960		map = pcpu_mem_zalloc(size);
1961		BUG_ON(!map);
1962
1963		spin_lock_irqsave(&pcpu_lock, flags);
1964		memcpy(map, chunk->map, size);
1965		chunk->map = map;
1966		spin_unlock_irqrestore(&pcpu_lock, flags);
1967	}
1968}
v4.10.11
   1/*
   2 * mm/percpu.c - percpu memory allocator
   3 *
   4 * Copyright (C) 2009		SUSE Linux Products GmbH
   5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
   6 *
   7 * This file is released under the GPLv2.
   8 *
   9 * This is percpu allocator which can handle both static and dynamic
  10 * areas.  Percpu areas are allocated in chunks.  Each chunk is
  11 * consisted of boot-time determined number of units and the first
  12 * chunk is used for static percpu variables in the kernel image
  13 * (special boot time alloc/init handling necessary as these areas
  14 * need to be brought up before allocation services are running).
  15 * Unit grows as necessary and all units grow or shrink in unison.
  16 * When a chunk is filled up, another chunk is allocated.
  17 *
  18 *  c0                           c1                         c2
  19 *  -------------------          -------------------        ------------
  20 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  21 *  -------------------  ......  -------------------  ....  ------------
  22 *
  23 * Allocation is done in offset-size areas of single unit space.  Ie,
  24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  25 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
  26 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
  27 * Percpu access can be done by configuring percpu base registers
  28 * according to cpu to unit mapping and pcpu_unit_size.
  29 *
  30 * There are usually many small percpu allocations many of them being
  31 * as small as 4 bytes.  The allocator organizes chunks into lists
  32 * according to free size and tries to allocate from the fullest one.
  33 * Each chunk keeps the maximum contiguous area size hint which is
  34 * guaranteed to be equal to or larger than the maximum contiguous
  35 * area in the chunk.  This helps the allocator not to iterate the
  36 * chunk maps unnecessarily.
  37 *
  38 * Allocation state in each chunk is kept using an array of integers
  39 * on chunk->map.  A positive value in the map represents a free
  40 * region and negative allocated.  Allocation inside a chunk is done
  41 * by scanning this map sequentially and serving the first matching
  42 * entry.  This is mostly copied from the percpu_modalloc() allocator.
  43 * Chunks can be determined from the address using the index field
  44 * in the page struct. The index field contains a pointer to the chunk.
  45 *
  46 * To use this allocator, arch code should do the followings.
  47 *
  48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  49 *   regular address to percpu pointer and back if they need to be
  50 *   different from the default
  51 *
  52 * - use pcpu_setup_first_chunk() during percpu area initialization to
  53 *   setup the first chunk containing the kernel static percpu area
  54 */
  55
  56#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  57
  58#include <linux/bitmap.h>
  59#include <linux/bootmem.h>
  60#include <linux/err.h>
  61#include <linux/list.h>
  62#include <linux/log2.h>
  63#include <linux/mm.h>
  64#include <linux/module.h>
  65#include <linux/mutex.h>
  66#include <linux/percpu.h>
  67#include <linux/pfn.h>
  68#include <linux/slab.h>
  69#include <linux/spinlock.h>
  70#include <linux/vmalloc.h>
  71#include <linux/workqueue.h>
  72#include <linux/kmemleak.h>
  73
  74#include <asm/cacheflush.h>
  75#include <asm/sections.h>
  76#include <asm/tlbflush.h>
  77#include <asm/io.h>
  78
  79#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
  80#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
  81#define PCPU_ATOMIC_MAP_MARGIN_LOW	32
  82#define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
  83#define PCPU_EMPTY_POP_PAGES_LOW	2
  84#define PCPU_EMPTY_POP_PAGES_HIGH	4
  85
  86#ifdef CONFIG_SMP
  87/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  88#ifndef __addr_to_pcpu_ptr
  89#define __addr_to_pcpu_ptr(addr)					\
  90	(void __percpu *)((unsigned long)(addr) -			\
  91			  (unsigned long)pcpu_base_addr	+		\
  92			  (unsigned long)__per_cpu_start)
  93#endif
  94#ifndef __pcpu_ptr_to_addr
  95#define __pcpu_ptr_to_addr(ptr)						\
  96	(void __force *)((unsigned long)(ptr) +				\
  97			 (unsigned long)pcpu_base_addr -		\
  98			 (unsigned long)__per_cpu_start)
  99#endif
 100#else	/* CONFIG_SMP */
 101/* on UP, it's always identity mapped */
 102#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
 103#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
 104#endif	/* CONFIG_SMP */
 105
 106struct pcpu_chunk {
 107	struct list_head	list;		/* linked to pcpu_slot lists */
 108	int			free_size;	/* free bytes in the chunk */
 109	int			contig_hint;	/* max contiguous size hint */
 110	void			*base_addr;	/* base address of this chunk */
 111
 112	int			map_used;	/* # of map entries used before the sentry */
 113	int			map_alloc;	/* # of map entries allocated */
 114	int			*map;		/* allocation map */
 115	struct list_head	map_extend_list;/* on pcpu_map_extend_chunks */
 116
 117	void			*data;		/* chunk data */
 118	int			first_free;	/* no free below this */
 119	bool			immutable;	/* no [de]population allowed */
 120	int			nr_populated;	/* # of populated pages */
 121	unsigned long		populated[];	/* populated bitmap */
 122};
 123
 124static int pcpu_unit_pages __read_mostly;
 125static int pcpu_unit_size __read_mostly;
 126static int pcpu_nr_units __read_mostly;
 127static int pcpu_atom_size __read_mostly;
 128static int pcpu_nr_slots __read_mostly;
 129static size_t pcpu_chunk_struct_size __read_mostly;
 130
 131/* cpus with the lowest and highest unit addresses */
 132static unsigned int pcpu_low_unit_cpu __read_mostly;
 133static unsigned int pcpu_high_unit_cpu __read_mostly;
 134
 135/* the address of the first chunk which starts with the kernel static area */
 136void *pcpu_base_addr __read_mostly;
 137EXPORT_SYMBOL_GPL(pcpu_base_addr);
 138
 139static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
 140const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
 141
 142/* group information, used for vm allocation */
 143static int pcpu_nr_groups __read_mostly;
 144static const unsigned long *pcpu_group_offsets __read_mostly;
 145static const size_t *pcpu_group_sizes __read_mostly;
 146
 147/*
 148 * The first chunk which always exists.  Note that unlike other
 149 * chunks, this one can be allocated and mapped in several different
 150 * ways and thus often doesn't live in the vmalloc area.
 151 */
 152static struct pcpu_chunk *pcpu_first_chunk;
 153
 154/*
 155 * Optional reserved chunk.  This chunk reserves part of the first
 156 * chunk and serves it for reserved allocations.  The amount of
 157 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 158 * area doesn't exist, the following variables contain NULL and 0
 159 * respectively.
 160 */
 161static struct pcpu_chunk *pcpu_reserved_chunk;
 162static int pcpu_reserved_chunk_limit;
 163
 164static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
 165static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
 166
 167static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
 168
 169/* chunks which need their map areas extended, protected by pcpu_lock */
 170static LIST_HEAD(pcpu_map_extend_chunks);
 171
 172/*
 173 * The number of empty populated pages, protected by pcpu_lock.  The
 174 * reserved chunk doesn't contribute to the count.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175 */
 176static int pcpu_nr_empty_pop_pages;
 
 177
 178/*
 179 * Balance work is used to populate or destroy chunks asynchronously.  We
 180 * try to keep the number of populated free pages between
 181 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 182 * empty chunk.
 183 */
 184static void pcpu_balance_workfn(struct work_struct *work);
 185static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 186static bool pcpu_async_enabled __read_mostly;
 187static bool pcpu_atomic_alloc_failed;
 188
 189static void pcpu_schedule_balance_work(void)
 190{
 191	if (pcpu_async_enabled)
 192		schedule_work(&pcpu_balance_work);
 193}
 194
 195static bool pcpu_addr_in_first_chunk(void *addr)
 196{
 197	void *first_start = pcpu_first_chunk->base_addr;
 198
 199	return addr >= first_start && addr < first_start + pcpu_unit_size;
 200}
 201
 202static bool pcpu_addr_in_reserved_chunk(void *addr)
 203{
 204	void *first_start = pcpu_first_chunk->base_addr;
 205
 206	return addr >= first_start &&
 207		addr < first_start + pcpu_reserved_chunk_limit;
 208}
 209
 210static int __pcpu_size_to_slot(int size)
 211{
 212	int highbit = fls(size);	/* size is in bytes */
 213	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 214}
 215
 216static int pcpu_size_to_slot(int size)
 217{
 218	if (size == pcpu_unit_size)
 219		return pcpu_nr_slots - 1;
 220	return __pcpu_size_to_slot(size);
 221}
 222
 223static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 224{
 225	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
 226		return 0;
 227
 228	return pcpu_size_to_slot(chunk->free_size);
 229}
 230
 231/* set the pointer to a chunk in a page struct */
 232static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 233{
 234	page->index = (unsigned long)pcpu;
 235}
 236
 237/* obtain pointer to a chunk from a page struct */
 238static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 239{
 240	return (struct pcpu_chunk *)page->index;
 241}
 242
 243static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 244{
 245	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 246}
 247
 248static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 249				     unsigned int cpu, int page_idx)
 250{
 251	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
 252		(page_idx << PAGE_SHIFT);
 253}
 254
 255static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
 256					   int *rs, int *re, int end)
 257{
 258	*rs = find_next_zero_bit(chunk->populated, end, *rs);
 259	*re = find_next_bit(chunk->populated, end, *rs + 1);
 260}
 261
 262static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
 263					 int *rs, int *re, int end)
 264{
 265	*rs = find_next_bit(chunk->populated, end, *rs);
 266	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
 267}
 268
 269/*
 270 * (Un)populated page region iterators.  Iterate over (un)populated
 271 * page regions between @start and @end in @chunk.  @rs and @re should
 272 * be integer variables and will be set to start and end page index of
 273 * the current region.
 274 */
 275#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
 276	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
 277	     (rs) < (re);						    \
 278	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
 279
 280#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
 281	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
 282	     (rs) < (re);						    \
 283	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
 284
 285/**
 286 * pcpu_mem_zalloc - allocate memory
 287 * @size: bytes to allocate
 288 *
 289 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 290 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
 291 * memory is always zeroed.
 292 *
 293 * CONTEXT:
 294 * Does GFP_KERNEL allocation.
 295 *
 296 * RETURNS:
 297 * Pointer to the allocated area on success, NULL on failure.
 298 */
 299static void *pcpu_mem_zalloc(size_t size)
 300{
 301	if (WARN_ON_ONCE(!slab_is_available()))
 302		return NULL;
 303
 304	if (size <= PAGE_SIZE)
 305		return kzalloc(size, GFP_KERNEL);
 306	else
 307		return vzalloc(size);
 308}
 309
 310/**
 311 * pcpu_mem_free - free memory
 312 * @ptr: memory to free
 
 313 *
 314 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 315 */
 316static void pcpu_mem_free(void *ptr)
 317{
 318	kvfree(ptr);
 319}
 320
 321/**
 322 * pcpu_count_occupied_pages - count the number of pages an area occupies
 323 * @chunk: chunk of interest
 324 * @i: index of the area in question
 325 *
 326 * Count the number of pages chunk's @i'th area occupies.  When the area's
 327 * start and/or end address isn't aligned to page boundary, the straddled
 328 * page is included in the count iff the rest of the page is free.
 329 */
 330static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
 331{
 332	int off = chunk->map[i] & ~1;
 333	int end = chunk->map[i + 1] & ~1;
 334
 335	if (!PAGE_ALIGNED(off) && i > 0) {
 336		int prev = chunk->map[i - 1];
 337
 338		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
 339			off = round_down(off, PAGE_SIZE);
 340	}
 341
 342	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
 343		int next = chunk->map[i + 1];
 344		int nend = chunk->map[i + 2] & ~1;
 345
 346		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
 347			end = round_up(end, PAGE_SIZE);
 348	}
 349
 350	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
 351}
 352
 353/**
 354 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 355 * @chunk: chunk of interest
 356 * @oslot: the previous slot it was on
 357 *
 358 * This function is called after an allocation or free changed @chunk.
 359 * New slot according to the changed state is determined and @chunk is
 360 * moved to the slot.  Note that the reserved chunk is never put on
 361 * chunk slots.
 362 *
 363 * CONTEXT:
 364 * pcpu_lock.
 365 */
 366static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 367{
 368	int nslot = pcpu_chunk_slot(chunk);
 369
 370	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 371		if (oslot < nslot)
 372			list_move(&chunk->list, &pcpu_slot[nslot]);
 373		else
 374			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 375	}
 376}
 377
 378/**
 379 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 380 * @chunk: chunk of interest
 381 * @is_atomic: the allocation context
 382 *
 383 * Determine whether area map of @chunk needs to be extended.  If
 384 * @is_atomic, only the amount necessary for a new allocation is
 385 * considered; however, async extension is scheduled if the left amount is
 386 * low.  If !@is_atomic, it aims for more empty space.  Combined, this
 387 * ensures that the map is likely to have enough available space to
 388 * accomodate atomic allocations which can't extend maps directly.
 389 *
 390 * CONTEXT:
 391 * pcpu_lock.
 392 *
 393 * RETURNS:
 394 * New target map allocation length if extension is necessary, 0
 395 * otherwise.
 396 */
 397static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
 398{
 399	int margin, new_alloc;
 400
 401	lockdep_assert_held(&pcpu_lock);
 402
 403	if (is_atomic) {
 404		margin = 3;
 405
 406		if (chunk->map_alloc <
 407		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
 408			if (list_empty(&chunk->map_extend_list)) {
 409				list_add_tail(&chunk->map_extend_list,
 410					      &pcpu_map_extend_chunks);
 411				pcpu_schedule_balance_work();
 412			}
 413		}
 414	} else {
 415		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
 416	}
 417
 418	if (chunk->map_alloc >= chunk->map_used + margin)
 419		return 0;
 420
 421	new_alloc = PCPU_DFL_MAP_ALLOC;
 422	while (new_alloc < chunk->map_used + margin)
 423		new_alloc *= 2;
 424
 425	return new_alloc;
 426}
 427
 428/**
 429 * pcpu_extend_area_map - extend area map of a chunk
 430 * @chunk: chunk of interest
 431 * @new_alloc: new target allocation length of the area map
 432 *
 433 * Extend area map of @chunk to have @new_alloc entries.
 434 *
 435 * CONTEXT:
 436 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 437 *
 438 * RETURNS:
 439 * 0 on success, -errno on failure.
 440 */
 441static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
 442{
 443	int *old = NULL, *new = NULL;
 444	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
 445	unsigned long flags;
 446
 447	lockdep_assert_held(&pcpu_alloc_mutex);
 448
 449	new = pcpu_mem_zalloc(new_size);
 450	if (!new)
 451		return -ENOMEM;
 452
 453	/* acquire pcpu_lock and switch to new area map */
 454	spin_lock_irqsave(&pcpu_lock, flags);
 455
 456	if (new_alloc <= chunk->map_alloc)
 457		goto out_unlock;
 458
 459	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
 460	old = chunk->map;
 461
 462	memcpy(new, old, old_size);
 463
 464	chunk->map_alloc = new_alloc;
 465	chunk->map = new;
 466	new = NULL;
 467
 468out_unlock:
 469	spin_unlock_irqrestore(&pcpu_lock, flags);
 470
 471	/*
 472	 * pcpu_mem_free() might end up calling vfree() which uses
 473	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
 474	 */
 475	pcpu_mem_free(old);
 476	pcpu_mem_free(new);
 477
 478	return 0;
 479}
 480
 481/**
 482 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
 483 * @chunk: chunk the candidate area belongs to
 484 * @off: the offset to the start of the candidate area
 485 * @this_size: the size of the candidate area
 486 * @size: the size of the target allocation
 487 * @align: the alignment of the target allocation
 488 * @pop_only: only allocate from already populated region
 489 *
 490 * We're trying to allocate @size bytes aligned at @align.  @chunk's area
 491 * at @off sized @this_size is a candidate.  This function determines
 492 * whether the target allocation fits in the candidate area and returns the
 493 * number of bytes to pad after @off.  If the target area doesn't fit, -1
 494 * is returned.
 495 *
 496 * If @pop_only is %true, this function only considers the already
 497 * populated part of the candidate area.
 498 */
 499static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
 500			    int size, int align, bool pop_only)
 501{
 502	int cand_off = off;
 503
 504	while (true) {
 505		int head = ALIGN(cand_off, align) - off;
 506		int page_start, page_end, rs, re;
 507
 508		if (this_size < head + size)
 509			return -1;
 510
 511		if (!pop_only)
 512			return head;
 513
 514		/*
 515		 * If the first unpopulated page is beyond the end of the
 516		 * allocation, the whole allocation is populated;
 517		 * otherwise, retry from the end of the unpopulated area.
 518		 */
 519		page_start = PFN_DOWN(head + off);
 520		page_end = PFN_UP(head + off + size);
 521
 522		rs = page_start;
 523		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
 524		if (rs >= page_end)
 525			return head;
 526		cand_off = re * PAGE_SIZE;
 527	}
 528}
 529
 530/**
 531 * pcpu_alloc_area - allocate area from a pcpu_chunk
 532 * @chunk: chunk of interest
 533 * @size: wanted size in bytes
 534 * @align: wanted align
 535 * @pop_only: allocate only from the populated area
 536 * @occ_pages_p: out param for the number of pages the area occupies
 537 *
 538 * Try to allocate @size bytes area aligned at @align from @chunk.
 539 * Note that this function only allocates the offset.  It doesn't
 540 * populate or map the area.
 541 *
 542 * @chunk->map must have at least two free slots.
 543 *
 544 * CONTEXT:
 545 * pcpu_lock.
 546 *
 547 * RETURNS:
 548 * Allocated offset in @chunk on success, -1 if no matching area is
 549 * found.
 550 */
 551static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
 552			   bool pop_only, int *occ_pages_p)
 553{
 554	int oslot = pcpu_chunk_slot(chunk);
 555	int max_contig = 0;
 556	int i, off;
 557	bool seen_free = false;
 558	int *p;
 559
 560	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
 561		int head, tail;
 562		int this_size;
 563
 564		off = *p;
 565		if (off & 1)
 566			continue;
 567
 
 
 
 568		this_size = (p[1] & ~1) - off;
 569
 570		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
 571					pop_only);
 572		if (head < 0) {
 573			if (!seen_free) {
 574				chunk->first_free = i;
 575				seen_free = true;
 576			}
 577			max_contig = max(this_size, max_contig);
 578			continue;
 579		}
 580
 581		/*
 582		 * If head is small or the previous block is free,
 583		 * merge'em.  Note that 'small' is defined as smaller
 584		 * than sizeof(int), which is very small but isn't too
 585		 * uncommon for percpu allocations.
 586		 */
 587		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
 588			*p = off += head;
 589			if (p[-1] & 1)
 590				chunk->free_size -= head;
 591			else
 592				max_contig = max(*p - p[-1], max_contig);
 593			this_size -= head;
 594			head = 0;
 595		}
 596
 597		/* if tail is small, just keep it around */
 598		tail = this_size - head - size;
 599		if (tail < sizeof(int)) {
 600			tail = 0;
 601			size = this_size - head;
 602		}
 603
 604		/* split if warranted */
 605		if (head || tail) {
 606			int nr_extra = !!head + !!tail;
 607
 608			/* insert new subblocks */
 609			memmove(p + nr_extra + 1, p + 1,
 610				sizeof(chunk->map[0]) * (chunk->map_used - i));
 611			chunk->map_used += nr_extra;
 612
 613			if (head) {
 614				if (!seen_free) {
 615					chunk->first_free = i;
 616					seen_free = true;
 617				}
 618				*++p = off += head;
 619				++i;
 620				max_contig = max(head, max_contig);
 621			}
 622			if (tail) {
 623				p[1] = off + size;
 624				max_contig = max(tail, max_contig);
 625			}
 626		}
 627
 628		if (!seen_free)
 629			chunk->first_free = i + 1;
 630
 631		/* update hint and mark allocated */
 632		if (i + 1 == chunk->map_used)
 633			chunk->contig_hint = max_contig; /* fully scanned */
 634		else
 635			chunk->contig_hint = max(chunk->contig_hint,
 636						 max_contig);
 637
 638		chunk->free_size -= size;
 639		*p |= 1;
 640
 641		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
 642		pcpu_chunk_relocate(chunk, oslot);
 643		return off;
 644	}
 645
 646	chunk->contig_hint = max_contig;	/* fully scanned */
 647	pcpu_chunk_relocate(chunk, oslot);
 648
 649	/* tell the upper layer that this chunk has no matching area */
 650	return -1;
 651}
 652
 653/**
 654 * pcpu_free_area - free area to a pcpu_chunk
 655 * @chunk: chunk of interest
 656 * @freeme: offset of area to free
 657 * @occ_pages_p: out param for the number of pages the area occupies
 658 *
 659 * Free area starting from @freeme to @chunk.  Note that this function
 660 * only modifies the allocation map.  It doesn't depopulate or unmap
 661 * the area.
 662 *
 663 * CONTEXT:
 664 * pcpu_lock.
 665 */
 666static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
 667			   int *occ_pages_p)
 668{
 669	int oslot = pcpu_chunk_slot(chunk);
 670	int off = 0;
 671	unsigned i, j;
 672	int to_free = 0;
 673	int *p;
 674
 675	freeme |= 1;	/* we are searching for <given offset, in use> pair */
 676
 677	i = 0;
 678	j = chunk->map_used;
 679	while (i != j) {
 680		unsigned k = (i + j) / 2;
 681		off = chunk->map[k];
 682		if (off < freeme)
 683			i = k + 1;
 684		else if (off > freeme)
 685			j = k;
 686		else
 687			i = j = k;
 688	}
 689	BUG_ON(off != freeme);
 690
 691	if (i < chunk->first_free)
 692		chunk->first_free = i;
 693
 694	p = chunk->map + i;
 695	*p = off &= ~1;
 696	chunk->free_size += (p[1] & ~1) - off;
 697
 698	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
 699
 700	/* merge with next? */
 701	if (!(p[1] & 1))
 702		to_free++;
 703	/* merge with previous? */
 704	if (i > 0 && !(p[-1] & 1)) {
 705		to_free++;
 706		i--;
 707		p--;
 708	}
 709	if (to_free) {
 710		chunk->map_used -= to_free;
 711		memmove(p + 1, p + 1 + to_free,
 712			(chunk->map_used - i) * sizeof(chunk->map[0]));
 713	}
 714
 715	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
 716	pcpu_chunk_relocate(chunk, oslot);
 717}
 718
 719static struct pcpu_chunk *pcpu_alloc_chunk(void)
 720{
 721	struct pcpu_chunk *chunk;
 722
 723	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
 724	if (!chunk)
 725		return NULL;
 726
 727	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
 728						sizeof(chunk->map[0]));
 729	if (!chunk->map) {
 730		pcpu_mem_free(chunk);
 731		return NULL;
 732	}
 733
 734	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
 735	chunk->map[0] = 0;
 736	chunk->map[1] = pcpu_unit_size | 1;
 737	chunk->map_used = 1;
 738
 739	INIT_LIST_HEAD(&chunk->list);
 740	INIT_LIST_HEAD(&chunk->map_extend_list);
 741	chunk->free_size = pcpu_unit_size;
 742	chunk->contig_hint = pcpu_unit_size;
 743
 744	return chunk;
 745}
 746
 747static void pcpu_free_chunk(struct pcpu_chunk *chunk)
 748{
 749	if (!chunk)
 750		return;
 751	pcpu_mem_free(chunk->map);
 752	pcpu_mem_free(chunk);
 753}
 754
 755/**
 756 * pcpu_chunk_populated - post-population bookkeeping
 757 * @chunk: pcpu_chunk which got populated
 758 * @page_start: the start page
 759 * @page_end: the end page
 760 *
 761 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 762 * the bookkeeping information accordingly.  Must be called after each
 763 * successful population.
 764 */
 765static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
 766				 int page_start, int page_end)
 767{
 768	int nr = page_end - page_start;
 769
 770	lockdep_assert_held(&pcpu_lock);
 771
 772	bitmap_set(chunk->populated, page_start, nr);
 773	chunk->nr_populated += nr;
 774	pcpu_nr_empty_pop_pages += nr;
 775}
 776
 777/**
 778 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 779 * @chunk: pcpu_chunk which got depopulated
 780 * @page_start: the start page
 781 * @page_end: the end page
 782 *
 783 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 784 * Update the bookkeeping information accordingly.  Must be called after
 785 * each successful depopulation.
 786 */
 787static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
 788				   int page_start, int page_end)
 789{
 790	int nr = page_end - page_start;
 791
 792	lockdep_assert_held(&pcpu_lock);
 793
 794	bitmap_clear(chunk->populated, page_start, nr);
 795	chunk->nr_populated -= nr;
 796	pcpu_nr_empty_pop_pages -= nr;
 797}
 798
 799/*
 800 * Chunk management implementation.
 801 *
 802 * To allow different implementations, chunk alloc/free and
 803 * [de]population are implemented in a separate file which is pulled
 804 * into this file and compiled together.  The following functions
 805 * should be implemented.
 806 *
 807 * pcpu_populate_chunk		- populate the specified range of a chunk
 808 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 809 * pcpu_create_chunk		- create a new chunk
 810 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 811 * pcpu_addr_to_page		- translate address to physical address
 812 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
 813 */
 814static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
 815static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
 816static struct pcpu_chunk *pcpu_create_chunk(void);
 817static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
 818static struct page *pcpu_addr_to_page(void *addr);
 819static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
 820
 821#ifdef CONFIG_NEED_PER_CPU_KM
 822#include "percpu-km.c"
 823#else
 824#include "percpu-vm.c"
 825#endif
 826
 827/**
 828 * pcpu_chunk_addr_search - determine chunk containing specified address
 829 * @addr: address for which the chunk needs to be determined.
 830 *
 831 * RETURNS:
 832 * The address of the found chunk.
 833 */
 834static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
 835{
 836	/* is it in the first chunk? */
 837	if (pcpu_addr_in_first_chunk(addr)) {
 838		/* is it in the reserved area? */
 839		if (pcpu_addr_in_reserved_chunk(addr))
 840			return pcpu_reserved_chunk;
 841		return pcpu_first_chunk;
 842	}
 843
 844	/*
 845	 * The address is relative to unit0 which might be unused and
 846	 * thus unmapped.  Offset the address to the unit space of the
 847	 * current processor before looking it up in the vmalloc
 848	 * space.  Note that any possible cpu id can be used here, so
 849	 * there's no need to worry about preemption or cpu hotplug.
 850	 */
 851	addr += pcpu_unit_offsets[raw_smp_processor_id()];
 852	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
 853}
 854
 855/**
 856 * pcpu_alloc - the percpu allocator
 857 * @size: size of area to allocate in bytes
 858 * @align: alignment of area (max PAGE_SIZE)
 859 * @reserved: allocate from the reserved chunk if available
 860 * @gfp: allocation flags
 861 *
 862 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
 863 * contain %GFP_KERNEL, the allocation is atomic.
 
 
 864 *
 865 * RETURNS:
 866 * Percpu pointer to the allocated area on success, NULL on failure.
 867 */
 868static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
 869				 gfp_t gfp)
 870{
 871	static int warn_limit = 10;
 872	struct pcpu_chunk *chunk;
 873	const char *err;
 874	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
 875	int occ_pages = 0;
 876	int slot, off, new_alloc, cpu, ret;
 877	unsigned long flags;
 878	void __percpu *ptr;
 879
 880	/*
 881	 * We want the lowest bit of offset available for in-use/free
 882	 * indicator, so force >= 16bit alignment and make size even.
 883	 */
 884	if (unlikely(align < 2))
 885		align = 2;
 886
 887	size = ALIGN(size, 2);
 
 888
 889	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
 890		     !is_power_of_2(align))) {
 891		WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
 892		     size, align);
 893		return NULL;
 894	}
 895
 896	if (!is_atomic)
 897		mutex_lock(&pcpu_alloc_mutex);
 898
 899	spin_lock_irqsave(&pcpu_lock, flags);
 900
 901	/* serve reserved allocations from the reserved chunk if available */
 902	if (reserved && pcpu_reserved_chunk) {
 903		chunk = pcpu_reserved_chunk;
 904
 905		if (size > chunk->contig_hint) {
 906			err = "alloc from reserved chunk failed";
 907			goto fail_unlock;
 908		}
 909
 910		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
 911			spin_unlock_irqrestore(&pcpu_lock, flags);
 912			if (is_atomic ||
 913			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
 914				err = "failed to extend area map of reserved chunk";
 915				goto fail;
 916			}
 917			spin_lock_irqsave(&pcpu_lock, flags);
 918		}
 919
 920		off = pcpu_alloc_area(chunk, size, align, is_atomic,
 921				      &occ_pages);
 922		if (off >= 0)
 923			goto area_found;
 924
 925		err = "alloc from reserved chunk failed";
 926		goto fail_unlock;
 927	}
 928
 929restart:
 930	/* search through normal chunks */
 931	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
 932		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
 933			if (size > chunk->contig_hint)
 934				continue;
 935
 936			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
 937			if (new_alloc) {
 938				if (is_atomic)
 939					continue;
 940				spin_unlock_irqrestore(&pcpu_lock, flags);
 941				if (pcpu_extend_area_map(chunk,
 942							 new_alloc) < 0) {
 943					err = "failed to extend area map";
 944					goto fail;
 945				}
 946				spin_lock_irqsave(&pcpu_lock, flags);
 947				/*
 948				 * pcpu_lock has been dropped, need to
 949				 * restart cpu_slot list walking.
 950				 */
 951				goto restart;
 952			}
 953
 954			off = pcpu_alloc_area(chunk, size, align, is_atomic,
 955					      &occ_pages);
 956			if (off >= 0)
 957				goto area_found;
 958		}
 959	}
 960
 
 961	spin_unlock_irqrestore(&pcpu_lock, flags);
 962
 963	/*
 964	 * No space left.  Create a new chunk.  We don't want multiple
 965	 * tasks to create chunks simultaneously.  Serialize and create iff
 966	 * there's still no empty chunk after grabbing the mutex.
 967	 */
 968	if (is_atomic)
 969		goto fail;
 970
 971	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
 972		chunk = pcpu_create_chunk();
 973		if (!chunk) {
 974			err = "failed to allocate new chunk";
 975			goto fail;
 976		}
 977
 978		spin_lock_irqsave(&pcpu_lock, flags);
 979		pcpu_chunk_relocate(chunk, -1);
 980	} else {
 981		spin_lock_irqsave(&pcpu_lock, flags);
 982	}
 983
 
 
 984	goto restart;
 985
 986area_found:
 987	spin_unlock_irqrestore(&pcpu_lock, flags);
 988
 989	/* populate if not all pages are already there */
 990	if (!is_atomic) {
 991		int page_start, page_end, rs, re;
 992
 993		page_start = PFN_DOWN(off);
 994		page_end = PFN_UP(off + size);
 995
 996		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
 997			WARN_ON(chunk->immutable);
 998
 999			ret = pcpu_populate_chunk(chunk, rs, re);
1000
1001			spin_lock_irqsave(&pcpu_lock, flags);
1002			if (ret) {
1003				pcpu_free_area(chunk, off, &occ_pages);
1004				err = "failed to populate";
1005				goto fail_unlock;
1006			}
1007			pcpu_chunk_populated(chunk, rs, re);
1008			spin_unlock_irqrestore(&pcpu_lock, flags);
1009		}
1010
1011		mutex_unlock(&pcpu_alloc_mutex);
1012	}
1013
1014	if (chunk != pcpu_reserved_chunk) {
1015		spin_lock_irqsave(&pcpu_lock, flags);
1016		pcpu_nr_empty_pop_pages -= occ_pages;
1017		spin_unlock_irqrestore(&pcpu_lock, flags);
 
1018	}
1019
1020	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1021		pcpu_schedule_balance_work();
1022
1023	/* clear the areas and return address relative to base address */
1024	for_each_possible_cpu(cpu)
1025		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1026
 
1027	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1028	kmemleak_alloc_percpu(ptr, size, gfp);
1029	return ptr;
1030
1031fail_unlock:
1032	spin_unlock_irqrestore(&pcpu_lock, flags);
1033fail:
1034	if (!is_atomic && warn_limit) {
1035		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1036			size, align, is_atomic, err);
 
1037		dump_stack();
1038		if (!--warn_limit)
1039			pr_info("limit reached, disable warning\n");
1040	}
1041	if (is_atomic) {
1042		/* see the flag handling in pcpu_blance_workfn() */
1043		pcpu_atomic_alloc_failed = true;
1044		pcpu_schedule_balance_work();
1045	} else {
1046		mutex_unlock(&pcpu_alloc_mutex);
1047	}
1048	return NULL;
1049}
1050
1051/**
1052 * __alloc_percpu_gfp - allocate dynamic percpu area
1053 * @size: size of area to allocate in bytes
1054 * @align: alignment of area (max PAGE_SIZE)
1055 * @gfp: allocation flags
1056 *
1057 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1058 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1059 * be called from any context but is a lot more likely to fail.
 
 
1060 *
1061 * RETURNS:
1062 * Percpu pointer to the allocated area on success, NULL on failure.
1063 */
1064void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1065{
1066	return pcpu_alloc(size, align, false, gfp);
1067}
1068EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1069
1070/**
1071 * __alloc_percpu - allocate dynamic percpu area
1072 * @size: size of area to allocate in bytes
1073 * @align: alignment of area (max PAGE_SIZE)
1074 *
1075 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1076 */
1077void __percpu *__alloc_percpu(size_t size, size_t align)
1078{
1079	return pcpu_alloc(size, align, false, GFP_KERNEL);
1080}
1081EXPORT_SYMBOL_GPL(__alloc_percpu);
1082
1083/**
1084 * __alloc_reserved_percpu - allocate reserved percpu area
1085 * @size: size of area to allocate in bytes
1086 * @align: alignment of area (max PAGE_SIZE)
1087 *
1088 * Allocate zero-filled percpu area of @size bytes aligned at @align
1089 * from reserved percpu area if arch has set it up; otherwise,
1090 * allocation is served from the same dynamic area.  Might sleep.
1091 * Might trigger writeouts.
1092 *
1093 * CONTEXT:
1094 * Does GFP_KERNEL allocation.
1095 *
1096 * RETURNS:
1097 * Percpu pointer to the allocated area on success, NULL on failure.
1098 */
1099void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1100{
1101	return pcpu_alloc(size, align, true, GFP_KERNEL);
1102}
1103
1104/**
1105 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1106 * @work: unused
1107 *
1108 * Reclaim all fully free chunks except for the first one.
 
 
 
1109 */
1110static void pcpu_balance_workfn(struct work_struct *work)
1111{
1112	LIST_HEAD(to_free);
1113	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1114	struct pcpu_chunk *chunk, *next;
1115	int slot, nr_to_pop, ret;
1116
1117	/*
1118	 * There's no reason to keep around multiple unused chunks and VM
1119	 * areas can be scarce.  Destroy all free chunks except for one.
1120	 */
1121	mutex_lock(&pcpu_alloc_mutex);
1122	spin_lock_irq(&pcpu_lock);
1123
1124	list_for_each_entry_safe(chunk, next, free_head, list) {
1125		WARN_ON(chunk->immutable);
1126
1127		/* spare the first one */
1128		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1129			continue;
1130
1131		list_del_init(&chunk->map_extend_list);
1132		list_move(&chunk->list, &to_free);
1133	}
1134
1135	spin_unlock_irq(&pcpu_lock);
1136
1137	list_for_each_entry_safe(chunk, next, &to_free, list) {
1138		int rs, re;
1139
1140		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141			pcpu_depopulate_chunk(chunk, rs, re);
1142			spin_lock_irq(&pcpu_lock);
1143			pcpu_chunk_depopulated(chunk, rs, re);
1144			spin_unlock_irq(&pcpu_lock);
1145		}
1146		pcpu_destroy_chunk(chunk);
1147	}
1148
1149	/* service chunks which requested async area map extension */
1150	do {
1151		int new_alloc = 0;
1152
1153		spin_lock_irq(&pcpu_lock);
1154
1155		chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1156					struct pcpu_chunk, map_extend_list);
1157		if (chunk) {
1158			list_del_init(&chunk->map_extend_list);
1159			new_alloc = pcpu_need_to_extend(chunk, false);
1160		}
1161
1162		spin_unlock_irq(&pcpu_lock);
1163
1164		if (new_alloc)
1165			pcpu_extend_area_map(chunk, new_alloc);
1166	} while (chunk);
1167
1168	/*
1169	 * Ensure there are certain number of free populated pages for
1170	 * atomic allocs.  Fill up from the most packed so that atomic
1171	 * allocs don't increase fragmentation.  If atomic allocation
1172	 * failed previously, always populate the maximum amount.  This
1173	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1174	 * failing indefinitely; however, large atomic allocs are not
1175	 * something we support properly and can be highly unreliable and
1176	 * inefficient.
1177	 */
1178retry_pop:
1179	if (pcpu_atomic_alloc_failed) {
1180		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1181		/* best effort anyway, don't worry about synchronization */
1182		pcpu_atomic_alloc_failed = false;
1183	} else {
1184		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1185				  pcpu_nr_empty_pop_pages,
1186				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1187	}
1188
1189	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1190		int nr_unpop = 0, rs, re;
1191
1192		if (!nr_to_pop)
1193			break;
1194
1195		spin_lock_irq(&pcpu_lock);
1196		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1197			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1198			if (nr_unpop)
1199				break;
1200		}
1201		spin_unlock_irq(&pcpu_lock);
1202
1203		if (!nr_unpop)
1204			continue;
1205
1206		/* @chunk can't go away while pcpu_alloc_mutex is held */
1207		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1208			int nr = min(re - rs, nr_to_pop);
1209
1210			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1211			if (!ret) {
1212				nr_to_pop -= nr;
1213				spin_lock_irq(&pcpu_lock);
1214				pcpu_chunk_populated(chunk, rs, rs + nr);
1215				spin_unlock_irq(&pcpu_lock);
1216			} else {
1217				nr_to_pop = 0;
1218			}
1219
1220			if (!nr_to_pop)
1221				break;
1222		}
1223	}
1224
1225	if (nr_to_pop) {
1226		/* ran out of chunks to populate, create a new one and retry */
1227		chunk = pcpu_create_chunk();
1228		if (chunk) {
1229			spin_lock_irq(&pcpu_lock);
1230			pcpu_chunk_relocate(chunk, -1);
1231			spin_unlock_irq(&pcpu_lock);
1232			goto retry_pop;
1233		}
1234	}
1235
1236	mutex_unlock(&pcpu_alloc_mutex);
1237}
1238
1239/**
1240 * free_percpu - free percpu area
1241 * @ptr: pointer to area to free
1242 *
1243 * Free percpu area @ptr.
1244 *
1245 * CONTEXT:
1246 * Can be called from atomic context.
1247 */
1248void free_percpu(void __percpu *ptr)
1249{
1250	void *addr;
1251	struct pcpu_chunk *chunk;
1252	unsigned long flags;
1253	int off, occ_pages;
1254
1255	if (!ptr)
1256		return;
1257
1258	kmemleak_free_percpu(ptr);
1259
1260	addr = __pcpu_ptr_to_addr(ptr);
1261
1262	spin_lock_irqsave(&pcpu_lock, flags);
1263
1264	chunk = pcpu_chunk_addr_search(addr);
1265	off = addr - chunk->base_addr;
1266
1267	pcpu_free_area(chunk, off, &occ_pages);
1268
1269	if (chunk != pcpu_reserved_chunk)
1270		pcpu_nr_empty_pop_pages += occ_pages;
1271
1272	/* if there are more than one fully free chunks, wake up grim reaper */
1273	if (chunk->free_size == pcpu_unit_size) {
1274		struct pcpu_chunk *pos;
1275
1276		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1277			if (pos != chunk) {
1278				pcpu_schedule_balance_work();
1279				break;
1280			}
1281	}
1282
1283	spin_unlock_irqrestore(&pcpu_lock, flags);
1284}
1285EXPORT_SYMBOL_GPL(free_percpu);
1286
1287/**
1288 * is_kernel_percpu_address - test whether address is from static percpu area
1289 * @addr: address to test
1290 *
1291 * Test whether @addr belongs to in-kernel static percpu area.  Module
1292 * static percpu areas are not considered.  For those, use
1293 * is_module_percpu_address().
1294 *
1295 * RETURNS:
1296 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1297 */
1298bool is_kernel_percpu_address(unsigned long addr)
1299{
1300#ifdef CONFIG_SMP
1301	const size_t static_size = __per_cpu_end - __per_cpu_start;
1302	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1303	unsigned int cpu;
1304
1305	for_each_possible_cpu(cpu) {
1306		void *start = per_cpu_ptr(base, cpu);
1307
1308		if ((void *)addr >= start && (void *)addr < start + static_size)
1309			return true;
1310        }
1311#endif
1312	/* on UP, can't distinguish from other static vars, always false */
1313	return false;
1314}
1315
1316/**
1317 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1318 * @addr: the address to be converted to physical address
1319 *
1320 * Given @addr which is dereferenceable address obtained via one of
1321 * percpu access macros, this function translates it into its physical
1322 * address.  The caller is responsible for ensuring @addr stays valid
1323 * until this function finishes.
1324 *
1325 * percpu allocator has special setup for the first chunk, which currently
1326 * supports either embedding in linear address space or vmalloc mapping,
1327 * and, from the second one, the backing allocator (currently either vm or
1328 * km) provides translation.
1329 *
1330 * The addr can be translated simply without checking if it falls into the
1331 * first chunk. But the current code reflects better how percpu allocator
1332 * actually works, and the verification can discover both bugs in percpu
1333 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1334 * code.
1335 *
1336 * RETURNS:
1337 * The physical address for @addr.
1338 */
1339phys_addr_t per_cpu_ptr_to_phys(void *addr)
1340{
1341	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1342	bool in_first_chunk = false;
1343	unsigned long first_low, first_high;
1344	unsigned int cpu;
1345
1346	/*
1347	 * The following test on unit_low/high isn't strictly
1348	 * necessary but will speed up lookups of addresses which
1349	 * aren't in the first chunk.
1350	 */
1351	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1352	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1353				     pcpu_unit_pages);
1354	if ((unsigned long)addr >= first_low &&
1355	    (unsigned long)addr < first_high) {
1356		for_each_possible_cpu(cpu) {
1357			void *start = per_cpu_ptr(base, cpu);
1358
1359			if (addr >= start && addr < start + pcpu_unit_size) {
1360				in_first_chunk = true;
1361				break;
1362			}
1363		}
1364	}
1365
1366	if (in_first_chunk) {
1367		if (!is_vmalloc_addr(addr))
1368			return __pa(addr);
1369		else
1370			return page_to_phys(vmalloc_to_page(addr)) +
1371			       offset_in_page(addr);
1372	} else
1373		return page_to_phys(pcpu_addr_to_page(addr)) +
1374		       offset_in_page(addr);
1375}
1376
1377/**
1378 * pcpu_alloc_alloc_info - allocate percpu allocation info
1379 * @nr_groups: the number of groups
1380 * @nr_units: the number of units
1381 *
1382 * Allocate ai which is large enough for @nr_groups groups containing
1383 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1384 * cpu_map array which is long enough for @nr_units and filled with
1385 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1386 * pointer of other groups.
1387 *
1388 * RETURNS:
1389 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1390 * failure.
1391 */
1392struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1393						      int nr_units)
1394{
1395	struct pcpu_alloc_info *ai;
1396	size_t base_size, ai_size;
1397	void *ptr;
1398	int unit;
1399
1400	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1401			  __alignof__(ai->groups[0].cpu_map[0]));
1402	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1403
1404	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1405	if (!ptr)
1406		return NULL;
1407	ai = ptr;
1408	ptr += base_size;
1409
1410	ai->groups[0].cpu_map = ptr;
1411
1412	for (unit = 0; unit < nr_units; unit++)
1413		ai->groups[0].cpu_map[unit] = NR_CPUS;
1414
1415	ai->nr_groups = nr_groups;
1416	ai->__ai_size = PFN_ALIGN(ai_size);
1417
1418	return ai;
1419}
1420
1421/**
1422 * pcpu_free_alloc_info - free percpu allocation info
1423 * @ai: pcpu_alloc_info to free
1424 *
1425 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1426 */
1427void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1428{
1429	memblock_free_early(__pa(ai), ai->__ai_size);
1430}
1431
1432/**
1433 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1434 * @lvl: loglevel
1435 * @ai: allocation info to dump
1436 *
1437 * Print out information about @ai using loglevel @lvl.
1438 */
1439static void pcpu_dump_alloc_info(const char *lvl,
1440				 const struct pcpu_alloc_info *ai)
1441{
1442	int group_width = 1, cpu_width = 1, width;
1443	char empty_str[] = "--------";
1444	int alloc = 0, alloc_end = 0;
1445	int group, v;
1446	int upa, apl;	/* units per alloc, allocs per line */
1447
1448	v = ai->nr_groups;
1449	while (v /= 10)
1450		group_width++;
1451
1452	v = num_possible_cpus();
1453	while (v /= 10)
1454		cpu_width++;
1455	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1456
1457	upa = ai->alloc_size / ai->unit_size;
1458	width = upa * (cpu_width + 1) + group_width + 3;
1459	apl = rounddown_pow_of_two(max(60 / width, 1));
1460
1461	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1462	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1463	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1464
1465	for (group = 0; group < ai->nr_groups; group++) {
1466		const struct pcpu_group_info *gi = &ai->groups[group];
1467		int unit = 0, unit_end = 0;
1468
1469		BUG_ON(gi->nr_units % upa);
1470		for (alloc_end += gi->nr_units / upa;
1471		     alloc < alloc_end; alloc++) {
1472			if (!(alloc % apl)) {
1473				pr_cont("\n");
1474				printk("%spcpu-alloc: ", lvl);
1475			}
1476			pr_cont("[%0*d] ", group_width, group);
1477
1478			for (unit_end += upa; unit < unit_end; unit++)
1479				if (gi->cpu_map[unit] != NR_CPUS)
1480					pr_cont("%0*d ",
1481						cpu_width, gi->cpu_map[unit]);
1482				else
1483					pr_cont("%s ", empty_str);
1484		}
1485	}
1486	pr_cont("\n");
1487}
1488
1489/**
1490 * pcpu_setup_first_chunk - initialize the first percpu chunk
1491 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1492 * @base_addr: mapped address
1493 *
1494 * Initialize the first percpu chunk which contains the kernel static
1495 * perpcu area.  This function is to be called from arch percpu area
1496 * setup path.
1497 *
1498 * @ai contains all information necessary to initialize the first
1499 * chunk and prime the dynamic percpu allocator.
1500 *
1501 * @ai->static_size is the size of static percpu area.
1502 *
1503 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1504 * reserve after the static area in the first chunk.  This reserves
1505 * the first chunk such that it's available only through reserved
1506 * percpu allocation.  This is primarily used to serve module percpu
1507 * static areas on architectures where the addressing model has
1508 * limited offset range for symbol relocations to guarantee module
1509 * percpu symbols fall inside the relocatable range.
1510 *
1511 * @ai->dyn_size determines the number of bytes available for dynamic
1512 * allocation in the first chunk.  The area between @ai->static_size +
1513 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1514 *
1515 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1516 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1517 * @ai->dyn_size.
1518 *
1519 * @ai->atom_size is the allocation atom size and used as alignment
1520 * for vm areas.
1521 *
1522 * @ai->alloc_size is the allocation size and always multiple of
1523 * @ai->atom_size.  This is larger than @ai->atom_size if
1524 * @ai->unit_size is larger than @ai->atom_size.
1525 *
1526 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1527 * percpu areas.  Units which should be colocated are put into the
1528 * same group.  Dynamic VM areas will be allocated according to these
1529 * groupings.  If @ai->nr_groups is zero, a single group containing
1530 * all units is assumed.
1531 *
1532 * The caller should have mapped the first chunk at @base_addr and
1533 * copied static data to each unit.
1534 *
1535 * If the first chunk ends up with both reserved and dynamic areas, it
1536 * is served by two chunks - one to serve the core static and reserved
1537 * areas and the other for the dynamic area.  They share the same vm
1538 * and page map but uses different area allocation map to stay away
1539 * from each other.  The latter chunk is circulated in the chunk slots
1540 * and available for dynamic allocation like any other chunks.
1541 *
1542 * RETURNS:
1543 * 0 on success, -errno on failure.
1544 */
1545int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1546				  void *base_addr)
1547{
 
1548	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1549	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1550	size_t dyn_size = ai->dyn_size;
1551	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1552	struct pcpu_chunk *schunk, *dchunk = NULL;
1553	unsigned long *group_offsets;
1554	size_t *group_sizes;
1555	unsigned long *unit_off;
1556	unsigned int cpu;
1557	int *unit_map;
1558	int group, unit, i;
1559
 
 
1560#define PCPU_SETUP_BUG_ON(cond)	do {					\
1561	if (unlikely(cond)) {						\
1562		pr_emerg("failed to initialize, %s\n", #cond);		\
1563		pr_emerg("cpu_possible_mask=%*pb\n",			\
1564			 cpumask_pr_args(cpu_possible_mask));		\
1565		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1566		BUG();							\
1567	}								\
1568} while (0)
1569
1570	/* sanity checks */
1571	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1572#ifdef CONFIG_SMP
1573	PCPU_SETUP_BUG_ON(!ai->static_size);
1574	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1575#endif
1576	PCPU_SETUP_BUG_ON(!base_addr);
1577	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1578	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1579	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1580	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1581	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1582	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1583
1584	/* process group information and build config tables accordingly */
1585	group_offsets = memblock_virt_alloc(ai->nr_groups *
1586					     sizeof(group_offsets[0]), 0);
1587	group_sizes = memblock_virt_alloc(ai->nr_groups *
1588					   sizeof(group_sizes[0]), 0);
1589	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1590	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1591
1592	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1593		unit_map[cpu] = UINT_MAX;
1594
1595	pcpu_low_unit_cpu = NR_CPUS;
1596	pcpu_high_unit_cpu = NR_CPUS;
1597
1598	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1599		const struct pcpu_group_info *gi = &ai->groups[group];
1600
1601		group_offsets[group] = gi->base_offset;
1602		group_sizes[group] = gi->nr_units * ai->unit_size;
1603
1604		for (i = 0; i < gi->nr_units; i++) {
1605			cpu = gi->cpu_map[i];
1606			if (cpu == NR_CPUS)
1607				continue;
1608
1609			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1610			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1611			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1612
1613			unit_map[cpu] = unit + i;
1614			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1615
1616			/* determine low/high unit_cpu */
1617			if (pcpu_low_unit_cpu == NR_CPUS ||
1618			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1619				pcpu_low_unit_cpu = cpu;
1620			if (pcpu_high_unit_cpu == NR_CPUS ||
1621			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1622				pcpu_high_unit_cpu = cpu;
1623		}
1624	}
1625	pcpu_nr_units = unit;
1626
1627	for_each_possible_cpu(cpu)
1628		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1629
1630	/* we're done parsing the input, undefine BUG macro and dump config */
1631#undef PCPU_SETUP_BUG_ON
1632	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1633
1634	pcpu_nr_groups = ai->nr_groups;
1635	pcpu_group_offsets = group_offsets;
1636	pcpu_group_sizes = group_sizes;
1637	pcpu_unit_map = unit_map;
1638	pcpu_unit_offsets = unit_off;
1639
1640	/* determine basic parameters */
1641	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1642	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1643	pcpu_atom_size = ai->atom_size;
1644	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1645		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1646
1647	/*
1648	 * Allocate chunk slots.  The additional last slot is for
1649	 * empty chunks.
1650	 */
1651	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1652	pcpu_slot = memblock_virt_alloc(
1653			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1654	for (i = 0; i < pcpu_nr_slots; i++)
1655		INIT_LIST_HEAD(&pcpu_slot[i]);
1656
1657	/*
1658	 * Initialize static chunk.  If reserved_size is zero, the
1659	 * static chunk covers static area + dynamic allocation area
1660	 * in the first chunk.  If reserved_size is not zero, it
1661	 * covers static area + reserved area (mostly used for module
1662	 * static percpu allocation).
1663	 */
1664	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1665	INIT_LIST_HEAD(&schunk->list);
1666	INIT_LIST_HEAD(&schunk->map_extend_list);
1667	schunk->base_addr = base_addr;
1668	schunk->map = smap;
1669	schunk->map_alloc = ARRAY_SIZE(smap);
1670	schunk->immutable = true;
1671	bitmap_fill(schunk->populated, pcpu_unit_pages);
1672	schunk->nr_populated = pcpu_unit_pages;
1673
1674	if (ai->reserved_size) {
1675		schunk->free_size = ai->reserved_size;
1676		pcpu_reserved_chunk = schunk;
1677		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1678	} else {
1679		schunk->free_size = dyn_size;
1680		dyn_size = 0;			/* dynamic area covered */
1681	}
1682	schunk->contig_hint = schunk->free_size;
1683
1684	schunk->map[0] = 1;
1685	schunk->map[1] = ai->static_size;
1686	schunk->map_used = 1;
1687	if (schunk->free_size)
1688		schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1689	schunk->map[schunk->map_used] |= 1;
 
1690
1691	/* init dynamic chunk if necessary */
1692	if (dyn_size) {
1693		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1694		INIT_LIST_HEAD(&dchunk->list);
1695		INIT_LIST_HEAD(&dchunk->map_extend_list);
1696		dchunk->base_addr = base_addr;
1697		dchunk->map = dmap;
1698		dchunk->map_alloc = ARRAY_SIZE(dmap);
1699		dchunk->immutable = true;
1700		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1701		dchunk->nr_populated = pcpu_unit_pages;
1702
1703		dchunk->contig_hint = dchunk->free_size = dyn_size;
1704		dchunk->map[0] = 1;
1705		dchunk->map[1] = pcpu_reserved_chunk_limit;
1706		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1707		dchunk->map_used = 2;
1708	}
1709
1710	/* link the first chunk in */
1711	pcpu_first_chunk = dchunk ?: schunk;
1712	pcpu_nr_empty_pop_pages +=
1713		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1714	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1715
1716	/* we're done */
1717	pcpu_base_addr = base_addr;
1718	return 0;
1719}
1720
1721#ifdef CONFIG_SMP
1722
1723const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1724	[PCPU_FC_AUTO]	= "auto",
1725	[PCPU_FC_EMBED]	= "embed",
1726	[PCPU_FC_PAGE]	= "page",
1727};
1728
1729enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1730
1731static int __init percpu_alloc_setup(char *str)
1732{
1733	if (!str)
1734		return -EINVAL;
1735
1736	if (0)
1737		/* nada */;
1738#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1739	else if (!strcmp(str, "embed"))
1740		pcpu_chosen_fc = PCPU_FC_EMBED;
1741#endif
1742#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1743	else if (!strcmp(str, "page"))
1744		pcpu_chosen_fc = PCPU_FC_PAGE;
1745#endif
1746	else
1747		pr_warn("unknown allocator %s specified\n", str);
1748
1749	return 0;
1750}
1751early_param("percpu_alloc", percpu_alloc_setup);
1752
1753/*
1754 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1755 * Build it if needed by the arch config or the generic setup is going
1756 * to be used.
1757 */
1758#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1759	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1760#define BUILD_EMBED_FIRST_CHUNK
1761#endif
1762
1763/* build pcpu_page_first_chunk() iff needed by the arch config */
1764#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1765#define BUILD_PAGE_FIRST_CHUNK
1766#endif
1767
1768/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1769#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1770/**
1771 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1772 * @reserved_size: the size of reserved percpu area in bytes
1773 * @dyn_size: minimum free size for dynamic allocation in bytes
1774 * @atom_size: allocation atom size
1775 * @cpu_distance_fn: callback to determine distance between cpus, optional
1776 *
1777 * This function determines grouping of units, their mappings to cpus
1778 * and other parameters considering needed percpu size, allocation
1779 * atom size and distances between CPUs.
1780 *
1781 * Groups are always multiples of atom size and CPUs which are of
1782 * LOCAL_DISTANCE both ways are grouped together and share space for
1783 * units in the same group.  The returned configuration is guaranteed
1784 * to have CPUs on different nodes on different groups and >=75% usage
1785 * of allocated virtual address space.
1786 *
1787 * RETURNS:
1788 * On success, pointer to the new allocation_info is returned.  On
1789 * failure, ERR_PTR value is returned.
1790 */
1791static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1792				size_t reserved_size, size_t dyn_size,
1793				size_t atom_size,
1794				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1795{
1796	static int group_map[NR_CPUS] __initdata;
1797	static int group_cnt[NR_CPUS] __initdata;
1798	const size_t static_size = __per_cpu_end - __per_cpu_start;
1799	int nr_groups = 1, nr_units = 0;
1800	size_t size_sum, min_unit_size, alloc_size;
1801	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1802	int last_allocs, group, unit;
1803	unsigned int cpu, tcpu;
1804	struct pcpu_alloc_info *ai;
1805	unsigned int *cpu_map;
1806
1807	/* this function may be called multiple times */
1808	memset(group_map, 0, sizeof(group_map));
1809	memset(group_cnt, 0, sizeof(group_cnt));
1810
1811	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1812	size_sum = PFN_ALIGN(static_size + reserved_size +
1813			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1814	dyn_size = size_sum - static_size - reserved_size;
1815
1816	/*
1817	 * Determine min_unit_size, alloc_size and max_upa such that
1818	 * alloc_size is multiple of atom_size and is the smallest
1819	 * which can accommodate 4k aligned segments which are equal to
1820	 * or larger than min_unit_size.
1821	 */
1822	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1823
1824	alloc_size = roundup(min_unit_size, atom_size);
1825	upa = alloc_size / min_unit_size;
1826	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1827		upa--;
1828	max_upa = upa;
1829
1830	/* group cpus according to their proximity */
1831	for_each_possible_cpu(cpu) {
1832		group = 0;
1833	next_group:
1834		for_each_possible_cpu(tcpu) {
1835			if (cpu == tcpu)
1836				break;
1837			if (group_map[tcpu] == group && cpu_distance_fn &&
1838			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1839			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1840				group++;
1841				nr_groups = max(nr_groups, group + 1);
1842				goto next_group;
1843			}
1844		}
1845		group_map[cpu] = group;
1846		group_cnt[group]++;
1847	}
1848
1849	/*
1850	 * Expand unit size until address space usage goes over 75%
1851	 * and then as much as possible without using more address
1852	 * space.
1853	 */
1854	last_allocs = INT_MAX;
1855	for (upa = max_upa; upa; upa--) {
1856		int allocs = 0, wasted = 0;
1857
1858		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1859			continue;
1860
1861		for (group = 0; group < nr_groups; group++) {
1862			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1863			allocs += this_allocs;
1864			wasted += this_allocs * upa - group_cnt[group];
1865		}
1866
1867		/*
1868		 * Don't accept if wastage is over 1/3.  The
1869		 * greater-than comparison ensures upa==1 always
1870		 * passes the following check.
1871		 */
1872		if (wasted > num_possible_cpus() / 3)
1873			continue;
1874
1875		/* and then don't consume more memory */
1876		if (allocs > last_allocs)
1877			break;
1878		last_allocs = allocs;
1879		best_upa = upa;
1880	}
1881	upa = best_upa;
1882
1883	/* allocate and fill alloc_info */
1884	for (group = 0; group < nr_groups; group++)
1885		nr_units += roundup(group_cnt[group], upa);
1886
1887	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1888	if (!ai)
1889		return ERR_PTR(-ENOMEM);
1890	cpu_map = ai->groups[0].cpu_map;
1891
1892	for (group = 0; group < nr_groups; group++) {
1893		ai->groups[group].cpu_map = cpu_map;
1894		cpu_map += roundup(group_cnt[group], upa);
1895	}
1896
1897	ai->static_size = static_size;
1898	ai->reserved_size = reserved_size;
1899	ai->dyn_size = dyn_size;
1900	ai->unit_size = alloc_size / upa;
1901	ai->atom_size = atom_size;
1902	ai->alloc_size = alloc_size;
1903
1904	for (group = 0, unit = 0; group_cnt[group]; group++) {
1905		struct pcpu_group_info *gi = &ai->groups[group];
1906
1907		/*
1908		 * Initialize base_offset as if all groups are located
1909		 * back-to-back.  The caller should update this to
1910		 * reflect actual allocation.
1911		 */
1912		gi->base_offset = unit * ai->unit_size;
1913
1914		for_each_possible_cpu(cpu)
1915			if (group_map[cpu] == group)
1916				gi->cpu_map[gi->nr_units++] = cpu;
1917		gi->nr_units = roundup(gi->nr_units, upa);
1918		unit += gi->nr_units;
1919	}
1920	BUG_ON(unit != nr_units);
1921
1922	return ai;
1923}
1924#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1925
1926#if defined(BUILD_EMBED_FIRST_CHUNK)
1927/**
1928 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1929 * @reserved_size: the size of reserved percpu area in bytes
1930 * @dyn_size: minimum free size for dynamic allocation in bytes
1931 * @atom_size: allocation atom size
1932 * @cpu_distance_fn: callback to determine distance between cpus, optional
1933 * @alloc_fn: function to allocate percpu page
1934 * @free_fn: function to free percpu page
1935 *
1936 * This is a helper to ease setting up embedded first percpu chunk and
1937 * can be called where pcpu_setup_first_chunk() is expected.
1938 *
1939 * If this function is used to setup the first chunk, it is allocated
1940 * by calling @alloc_fn and used as-is without being mapped into
1941 * vmalloc area.  Allocations are always whole multiples of @atom_size
1942 * aligned to @atom_size.
1943 *
1944 * This enables the first chunk to piggy back on the linear physical
1945 * mapping which often uses larger page size.  Please note that this
1946 * can result in very sparse cpu->unit mapping on NUMA machines thus
1947 * requiring large vmalloc address space.  Don't use this allocator if
1948 * vmalloc space is not orders of magnitude larger than distances
1949 * between node memory addresses (ie. 32bit NUMA machines).
1950 *
1951 * @dyn_size specifies the minimum dynamic area size.
1952 *
1953 * If the needed size is smaller than the minimum or specified unit
1954 * size, the leftover is returned using @free_fn.
1955 *
1956 * RETURNS:
1957 * 0 on success, -errno on failure.
1958 */
1959int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1960				  size_t atom_size,
1961				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1962				  pcpu_fc_alloc_fn_t alloc_fn,
1963				  pcpu_fc_free_fn_t free_fn)
1964{
1965	void *base = (void *)ULONG_MAX;
1966	void **areas = NULL;
1967	struct pcpu_alloc_info *ai;
1968	size_t size_sum, areas_size;
1969	unsigned long max_distance;
1970	int group, i, highest_group, rc;
1971
1972	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1973				   cpu_distance_fn);
1974	if (IS_ERR(ai))
1975		return PTR_ERR(ai);
1976
1977	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1978	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1979
1980	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1981	if (!areas) {
1982		rc = -ENOMEM;
1983		goto out_free;
1984	}
1985
1986	/* allocate, copy and determine base address & max_distance */
1987	highest_group = 0;
1988	for (group = 0; group < ai->nr_groups; group++) {
1989		struct pcpu_group_info *gi = &ai->groups[group];
1990		unsigned int cpu = NR_CPUS;
1991		void *ptr;
1992
1993		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1994			cpu = gi->cpu_map[i];
1995		BUG_ON(cpu == NR_CPUS);
1996
1997		/* allocate space for the whole group */
1998		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1999		if (!ptr) {
2000			rc = -ENOMEM;
2001			goto out_free_areas;
2002		}
2003		/* kmemleak tracks the percpu allocations separately */
2004		kmemleak_free(ptr);
2005		areas[group] = ptr;
2006
2007		base = min(ptr, base);
2008		if (ptr > areas[highest_group])
2009			highest_group = group;
2010	}
2011	max_distance = areas[highest_group] - base;
2012	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2013
2014	/* warn if maximum distance is further than 75% of vmalloc space */
2015	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2016		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2017				max_distance, VMALLOC_TOTAL);
2018#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2019		/* and fail if we have fallback */
2020		rc = -EINVAL;
2021		goto out_free_areas;
2022#endif
2023	}
2024
2025	/*
2026	 * Copy data and free unused parts.  This should happen after all
2027	 * allocations are complete; otherwise, we may end up with
2028	 * overlapping groups.
2029	 */
2030	for (group = 0; group < ai->nr_groups; group++) {
2031		struct pcpu_group_info *gi = &ai->groups[group];
2032		void *ptr = areas[group];
2033
2034		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2035			if (gi->cpu_map[i] == NR_CPUS) {
2036				/* unused unit, free whole */
2037				free_fn(ptr, ai->unit_size);
2038				continue;
2039			}
2040			/* copy and return the unused part */
2041			memcpy(ptr, __per_cpu_load, ai->static_size);
2042			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2043		}
2044	}
2045
2046	/* base address is now known, determine group base offsets */
 
2047	for (group = 0; group < ai->nr_groups; group++) {
2048		ai->groups[group].base_offset = areas[group] - base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049	}
2050
2051	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2052		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2053		ai->dyn_size, ai->unit_size);
2054
2055	rc = pcpu_setup_first_chunk(ai, base);
2056	goto out_free;
2057
2058out_free_areas:
2059	for (group = 0; group < ai->nr_groups; group++)
2060		if (areas[group])
2061			free_fn(areas[group],
2062				ai->groups[group].nr_units * ai->unit_size);
2063out_free:
2064	pcpu_free_alloc_info(ai);
2065	if (areas)
2066		memblock_free_early(__pa(areas), areas_size);
2067	return rc;
2068}
2069#endif /* BUILD_EMBED_FIRST_CHUNK */
2070
2071#ifdef BUILD_PAGE_FIRST_CHUNK
2072/**
2073 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2074 * @reserved_size: the size of reserved percpu area in bytes
2075 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2076 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2077 * @populate_pte_fn: function to populate pte
2078 *
2079 * This is a helper to ease setting up page-remapped first percpu
2080 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2081 *
2082 * This is the basic allocator.  Static percpu area is allocated
2083 * page-by-page into vmalloc area.
2084 *
2085 * RETURNS:
2086 * 0 on success, -errno on failure.
2087 */
2088int __init pcpu_page_first_chunk(size_t reserved_size,
2089				 pcpu_fc_alloc_fn_t alloc_fn,
2090				 pcpu_fc_free_fn_t free_fn,
2091				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2092{
2093	static struct vm_struct vm;
2094	struct pcpu_alloc_info *ai;
2095	char psize_str[16];
2096	int unit_pages;
2097	size_t pages_size;
2098	struct page **pages;
2099	int unit, i, j, rc;
2100	int upa;
2101	int nr_g0_units;
2102
2103	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2104
2105	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2106	if (IS_ERR(ai))
2107		return PTR_ERR(ai);
2108	BUG_ON(ai->nr_groups != 1);
2109	upa = ai->alloc_size/ai->unit_size;
2110	nr_g0_units = roundup(num_possible_cpus(), upa);
2111	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2112		pcpu_free_alloc_info(ai);
2113		return -EINVAL;
2114	}
2115
2116	unit_pages = ai->unit_size >> PAGE_SHIFT;
2117
2118	/* unaligned allocations can't be freed, round up to page size */
2119	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2120			       sizeof(pages[0]));
2121	pages = memblock_virt_alloc(pages_size, 0);
2122
2123	/* allocate pages */
2124	j = 0;
2125	for (unit = 0; unit < num_possible_cpus(); unit++) {
2126		unsigned int cpu = ai->groups[0].cpu_map[unit];
2127		for (i = 0; i < unit_pages; i++) {
 
2128			void *ptr;
2129
2130			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2131			if (!ptr) {
2132				pr_warn("failed to allocate %s page for cpu%u\n",
2133						psize_str, cpu);
2134				goto enomem;
2135			}
2136			/* kmemleak tracks the percpu allocations separately */
2137			kmemleak_free(ptr);
2138			pages[j++] = virt_to_page(ptr);
2139		}
2140	}
2141
2142	/* allocate vm area, map the pages and copy static data */
2143	vm.flags = VM_ALLOC;
2144	vm.size = num_possible_cpus() * ai->unit_size;
2145	vm_area_register_early(&vm, PAGE_SIZE);
2146
2147	for (unit = 0; unit < num_possible_cpus(); unit++) {
2148		unsigned long unit_addr =
2149			(unsigned long)vm.addr + unit * ai->unit_size;
2150
2151		for (i = 0; i < unit_pages; i++)
2152			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2153
2154		/* pte already populated, the following shouldn't fail */
2155		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2156				      unit_pages);
2157		if (rc < 0)
2158			panic("failed to map percpu area, err=%d\n", rc);
2159
2160		/*
2161		 * FIXME: Archs with virtual cache should flush local
2162		 * cache for the linear mapping here - something
2163		 * equivalent to flush_cache_vmap() on the local cpu.
2164		 * flush_cache_vmap() can't be used as most supporting
2165		 * data structures are not set up yet.
2166		 */
2167
2168		/* copy static data */
2169		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2170	}
2171
2172	/* we're ready, commit */
2173	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2174		unit_pages, psize_str, vm.addr, ai->static_size,
2175		ai->reserved_size, ai->dyn_size);
2176
2177	rc = pcpu_setup_first_chunk(ai, vm.addr);
2178	goto out_free_ar;
2179
2180enomem:
2181	while (--j >= 0)
2182		free_fn(page_address(pages[j]), PAGE_SIZE);
2183	rc = -ENOMEM;
2184out_free_ar:
2185	memblock_free_early(__pa(pages), pages_size);
2186	pcpu_free_alloc_info(ai);
2187	return rc;
2188}
2189#endif /* BUILD_PAGE_FIRST_CHUNK */
2190
2191#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2192/*
2193 * Generic SMP percpu area setup.
2194 *
2195 * The embedding helper is used because its behavior closely resembles
2196 * the original non-dynamic generic percpu area setup.  This is
2197 * important because many archs have addressing restrictions and might
2198 * fail if the percpu area is located far away from the previous
2199 * location.  As an added bonus, in non-NUMA cases, embedding is
2200 * generally a good idea TLB-wise because percpu area can piggy back
2201 * on the physical linear memory mapping which uses large page
2202 * mappings on applicable archs.
2203 */
2204unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2205EXPORT_SYMBOL(__per_cpu_offset);
2206
2207static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2208				       size_t align)
2209{
2210	return  memblock_virt_alloc_from_nopanic(
2211			size, align, __pa(MAX_DMA_ADDRESS));
2212}
2213
2214static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2215{
2216	memblock_free_early(__pa(ptr), size);
2217}
2218
2219void __init setup_per_cpu_areas(void)
2220{
2221	unsigned long delta;
2222	unsigned int cpu;
2223	int rc;
2224
2225	/*
2226	 * Always reserve area for module percpu variables.  That's
2227	 * what the legacy allocator did.
2228	 */
2229	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2230				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2231				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2232	if (rc < 0)
2233		panic("Failed to initialize percpu areas.");
2234
2235	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2236	for_each_possible_cpu(cpu)
2237		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2238}
2239#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2240
2241#else	/* CONFIG_SMP */
2242
2243/*
2244 * UP percpu area setup.
2245 *
2246 * UP always uses km-based percpu allocator with identity mapping.
2247 * Static percpu variables are indistinguishable from the usual static
2248 * variables and don't require any special preparation.
2249 */
2250void __init setup_per_cpu_areas(void)
2251{
2252	const size_t unit_size =
2253		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2254					 PERCPU_DYNAMIC_RESERVE));
2255	struct pcpu_alloc_info *ai;
2256	void *fc;
2257
2258	ai = pcpu_alloc_alloc_info(1, 1);
2259	fc = memblock_virt_alloc_from_nopanic(unit_size,
2260					      PAGE_SIZE,
2261					      __pa(MAX_DMA_ADDRESS));
2262	if (!ai || !fc)
2263		panic("Failed to allocate memory for percpu areas.");
2264	/* kmemleak tracks the percpu allocations separately */
2265	kmemleak_free(fc);
2266
2267	ai->dyn_size = unit_size;
2268	ai->unit_size = unit_size;
2269	ai->atom_size = unit_size;
2270	ai->alloc_size = unit_size;
2271	ai->groups[0].nr_units = 1;
2272	ai->groups[0].cpu_map[0] = 0;
2273
2274	if (pcpu_setup_first_chunk(ai, fc) < 0)
2275		panic("Failed to initialize percpu areas.");
2276}
2277
2278#endif	/* CONFIG_SMP */
2279
2280/*
2281 * First and reserved chunks are initialized with temporary allocation
2282 * map in initdata so that they can be used before slab is online.
2283 * This function is called after slab is brought up and replaces those
2284 * with properly allocated maps.
2285 */
2286void __init percpu_init_late(void)
2287{
2288	struct pcpu_chunk *target_chunks[] =
2289		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2290	struct pcpu_chunk *chunk;
2291	unsigned long flags;
2292	int i;
2293
2294	for (i = 0; (chunk = target_chunks[i]); i++) {
2295		int *map;
2296		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2297
2298		BUILD_BUG_ON(size > PAGE_SIZE);
2299
2300		map = pcpu_mem_zalloc(size);
2301		BUG_ON(!map);
2302
2303		spin_lock_irqsave(&pcpu_lock, flags);
2304		memcpy(map, chunk->map, size);
2305		chunk->map = map;
2306		spin_unlock_irqrestore(&pcpu_lock, flags);
2307	}
2308}
2309
2310/*
2311 * Percpu allocator is initialized early during boot when neither slab or
2312 * workqueue is available.  Plug async management until everything is up
2313 * and running.
2314 */
2315static int __init percpu_enable_async(void)
2316{
2317	pcpu_async_enabled = true;
2318	return 0;
2319}
2320subsys_initcall(percpu_enable_async);