Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 *  linux/mm/mempool.c
  3 *
  4 *  memory buffer pool support. Such pools are mostly used
  5 *  for guaranteed, deadlock-free memory allocations during
  6 *  extreme VM load.
  7 *
  8 *  started by Ingo Molnar, Copyright (C) 2001
 
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/slab.h>
 
 
 
 13#include <linux/export.h>
 14#include <linux/mempool.h>
 15#include <linux/blkdev.h>
 16#include <linux/writeback.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 17
 18static void add_element(mempool_t *pool, void *element)
 19{
 20	BUG_ON(pool->curr_nr >= pool->min_nr);
 
 
 21	pool->elements[pool->curr_nr++] = element;
 22}
 23
 24static void *remove_element(mempool_t *pool)
 25{
 26	BUG_ON(pool->curr_nr <= 0);
 27	return pool->elements[--pool->curr_nr];
 
 
 
 
 28}
 29
 30/**
 31 * mempool_destroy - deallocate a memory pool
 32 * @pool:      pointer to the memory pool which was allocated via
 33 *             mempool_create().
 34 *
 35 * Free all reserved elements in @pool and @pool itself.  This function
 36 * only sleeps if the free_fn() function sleeps.
 37 */
 38void mempool_destroy(mempool_t *pool)
 39{
 
 
 
 40	while (pool->curr_nr) {
 41		void *element = remove_element(pool);
 42		pool->free(element, pool->pool_data);
 43	}
 44	kfree(pool->elements);
 45	kfree(pool);
 46}
 47EXPORT_SYMBOL(mempool_destroy);
 48
 49/**
 50 * mempool_create - create a memory pool
 51 * @min_nr:    the minimum number of elements guaranteed to be
 52 *             allocated for this pool.
 53 * @alloc_fn:  user-defined element-allocation function.
 54 * @free_fn:   user-defined element-freeing function.
 55 * @pool_data: optional private data available to the user-defined functions.
 56 *
 57 * this function creates and allocates a guaranteed size, preallocated
 58 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
 59 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
 60 * functions might sleep - as long as the mempool_alloc() function is not called
 61 * from IRQ contexts.
 62 */
 63mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
 64				mempool_free_t *free_fn, void *pool_data)
 65{
 66	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
 67				   GFP_KERNEL, NUMA_NO_NODE);
 68}
 69EXPORT_SYMBOL(mempool_create);
 70
 71mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
 72			       mempool_free_t *free_fn, void *pool_data,
 73			       gfp_t gfp_mask, int node_id)
 74{
 75	mempool_t *pool;
 76	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
 77	if (!pool)
 78		return NULL;
 79	pool->elements = kmalloc_node(min_nr * sizeof(void *),
 80				      gfp_mask, node_id);
 81	if (!pool->elements) {
 82		kfree(pool);
 83		return NULL;
 84	}
 85	spin_lock_init(&pool->lock);
 86	pool->min_nr = min_nr;
 87	pool->pool_data = pool_data;
 88	init_waitqueue_head(&pool->wait);
 89	pool->alloc = alloc_fn;
 90	pool->free = free_fn;
 91
 92	/*
 93	 * First pre-allocate the guaranteed number of buffers.
 94	 */
 95	while (pool->curr_nr < pool->min_nr) {
 96		void *element;
 97
 98		element = pool->alloc(gfp_mask, pool->pool_data);
 99		if (unlikely(!element)) {
100			mempool_destroy(pool);
101			return NULL;
102		}
103		add_element(pool, element);
104	}
105	return pool;
106}
107EXPORT_SYMBOL(mempool_create_node);
108
109/**
110 * mempool_resize - resize an existing memory pool
111 * @pool:       pointer to the memory pool which was allocated via
112 *              mempool_create().
113 * @new_min_nr: the new minimum number of elements guaranteed to be
114 *              allocated for this pool.
115 * @gfp_mask:   the usual allocation bitmask.
116 *
117 * This function shrinks/grows the pool. In the case of growing,
118 * it cannot be guaranteed that the pool will be grown to the new
119 * size immediately, but new mempool_free() calls will refill it.
 
120 *
121 * Note, the caller must guarantee that no mempool_destroy is called
122 * while this function is running. mempool_alloc() & mempool_free()
123 * might be called (eg. from IRQ contexts) while this function executes.
124 */
125int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
126{
127	void *element;
128	void **new_elements;
129	unsigned long flags;
130
131	BUG_ON(new_min_nr <= 0);
 
132
133	spin_lock_irqsave(&pool->lock, flags);
134	if (new_min_nr <= pool->min_nr) {
135		while (new_min_nr < pool->curr_nr) {
136			element = remove_element(pool);
137			spin_unlock_irqrestore(&pool->lock, flags);
138			pool->free(element, pool->pool_data);
139			spin_lock_irqsave(&pool->lock, flags);
140		}
141		pool->min_nr = new_min_nr;
142		goto out_unlock;
143	}
144	spin_unlock_irqrestore(&pool->lock, flags);
145
146	/* Grow the pool */
147	new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask);
 
148	if (!new_elements)
149		return -ENOMEM;
150
151	spin_lock_irqsave(&pool->lock, flags);
152	if (unlikely(new_min_nr <= pool->min_nr)) {
153		/* Raced, other resize will do our work */
154		spin_unlock_irqrestore(&pool->lock, flags);
155		kfree(new_elements);
156		goto out;
157	}
158	memcpy(new_elements, pool->elements,
159			pool->curr_nr * sizeof(*new_elements));
160	kfree(pool->elements);
161	pool->elements = new_elements;
162	pool->min_nr = new_min_nr;
163
164	while (pool->curr_nr < pool->min_nr) {
165		spin_unlock_irqrestore(&pool->lock, flags);
166		element = pool->alloc(gfp_mask, pool->pool_data);
167		if (!element)
168			goto out;
169		spin_lock_irqsave(&pool->lock, flags);
170		if (pool->curr_nr < pool->min_nr) {
171			add_element(pool, element);
172		} else {
173			spin_unlock_irqrestore(&pool->lock, flags);
174			pool->free(element, pool->pool_data);	/* Raced */
175			goto out;
176		}
177	}
178out_unlock:
179	spin_unlock_irqrestore(&pool->lock, flags);
180out:
181	return 0;
182}
183EXPORT_SYMBOL(mempool_resize);
184
185/**
186 * mempool_alloc - allocate an element from a specific memory pool
187 * @pool:      pointer to the memory pool which was allocated via
188 *             mempool_create().
189 * @gfp_mask:  the usual allocation bitmask.
190 *
191 * this function only sleeps if the alloc_fn() function sleeps or
192 * returns NULL. Note that due to preallocation, this function
193 * *never* fails when called from process contexts. (it might
194 * fail if called from an IRQ context.)
 
195 */
196void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
197{
198	void *element;
199	unsigned long flags;
200	wait_queue_t wait;
201	gfp_t gfp_temp;
202
203	might_sleep_if(gfp_mask & __GFP_WAIT);
 
204
205	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
206	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
207	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
208
209	gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
210
211repeat_alloc:
212
213	element = pool->alloc(gfp_temp, pool->pool_data);
214	if (likely(element != NULL))
215		return element;
216
217	spin_lock_irqsave(&pool->lock, flags);
218	if (likely(pool->curr_nr)) {
219		element = remove_element(pool);
220		spin_unlock_irqrestore(&pool->lock, flags);
221		/* paired with rmb in mempool_free(), read comment there */
222		smp_wmb();
 
 
 
 
 
223		return element;
224	}
225
226	/*
227	 * We use gfp mask w/o __GFP_WAIT or IO for the first round.  If
228	 * alloc failed with that and @pool was empty, retry immediately.
229	 */
230	if (gfp_temp != gfp_mask) {
231		spin_unlock_irqrestore(&pool->lock, flags);
232		gfp_temp = gfp_mask;
233		goto repeat_alloc;
234	}
235
236	/* We must not sleep if !__GFP_WAIT */
237	if (!(gfp_mask & __GFP_WAIT)) {
238		spin_unlock_irqrestore(&pool->lock, flags);
239		return NULL;
240	}
241
242	/* Let's wait for someone else to return an element to @pool */
243	init_wait(&wait);
244	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
245
246	spin_unlock_irqrestore(&pool->lock, flags);
247
248	/*
249	 * FIXME: this should be io_schedule().  The timeout is there as a
250	 * workaround for some DM problems in 2.6.18.
251	 */
252	io_schedule_timeout(5*HZ);
253
254	finish_wait(&pool->wait, &wait);
255	goto repeat_alloc;
256}
257EXPORT_SYMBOL(mempool_alloc);
258
259/**
260 * mempool_free - return an element to the pool.
261 * @element:   pool element pointer.
262 * @pool:      pointer to the memory pool which was allocated via
263 *             mempool_create().
264 *
265 * this function only sleeps if the free_fn() function sleeps.
266 */
267void mempool_free(void *element, mempool_t *pool)
268{
269	unsigned long flags;
270
271	if (unlikely(element == NULL))
272		return;
273
274	/*
275	 * Paired with the wmb in mempool_alloc().  The preceding read is
276	 * for @element and the following @pool->curr_nr.  This ensures
277	 * that the visible value of @pool->curr_nr is from after the
278	 * allocation of @element.  This is necessary for fringe cases
279	 * where @element was passed to this task without going through
280	 * barriers.
281	 *
282	 * For example, assume @p is %NULL at the beginning and one task
283	 * performs "p = mempool_alloc(...);" while another task is doing
284	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
285	 * may end up using curr_nr value which is from before allocation
286	 * of @p without the following rmb.
287	 */
288	smp_rmb();
289
290	/*
291	 * For correctness, we need a test which is guaranteed to trigger
292	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
293	 * without locking achieves that and refilling as soon as possible
294	 * is desirable.
295	 *
296	 * Because curr_nr visible here is always a value after the
297	 * allocation of @element, any task which decremented curr_nr below
298	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
299	 * incremented to min_nr afterwards.  If curr_nr gets incremented
300	 * to min_nr after the allocation of @element, the elements
301	 * allocated after that are subject to the same guarantee.
302	 *
303	 * Waiters happen iff curr_nr is 0 and the above guarantee also
304	 * ensures that there will be frees which return elements to the
305	 * pool waking up the waiters.
306	 */
307	if (unlikely(pool->curr_nr < pool->min_nr)) {
308		spin_lock_irqsave(&pool->lock, flags);
309		if (likely(pool->curr_nr < pool->min_nr)) {
310			add_element(pool, element);
311			spin_unlock_irqrestore(&pool->lock, flags);
312			wake_up(&pool->wait);
313			return;
314		}
315		spin_unlock_irqrestore(&pool->lock, flags);
316	}
317	pool->free(element, pool->pool_data);
318}
319EXPORT_SYMBOL(mempool_free);
320
321/*
322 * A commonly used alloc and free fn.
323 */
324void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
325{
326	struct kmem_cache *mem = pool_data;
 
327	return kmem_cache_alloc(mem, gfp_mask);
328}
329EXPORT_SYMBOL(mempool_alloc_slab);
330
331void mempool_free_slab(void *element, void *pool_data)
332{
333	struct kmem_cache *mem = pool_data;
334	kmem_cache_free(mem, element);
335}
336EXPORT_SYMBOL(mempool_free_slab);
337
338/*
339 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
340 * specified by pool_data
341 */
342void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
343{
344	size_t size = (size_t)pool_data;
345	return kmalloc(size, gfp_mask);
346}
347EXPORT_SYMBOL(mempool_kmalloc);
348
349void mempool_kfree(void *element, void *pool_data)
350{
351	kfree(element);
352}
353EXPORT_SYMBOL(mempool_kfree);
354
355/*
356 * A simple mempool-backed page allocator that allocates pages
357 * of the order specified by pool_data.
358 */
359void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
360{
361	int order = (int)(long)pool_data;
362	return alloc_pages(gfp_mask, order);
363}
364EXPORT_SYMBOL(mempool_alloc_pages);
365
366void mempool_free_pages(void *element, void *pool_data)
367{
368	int order = (int)(long)pool_data;
369	__free_pages(element, order);
370}
371EXPORT_SYMBOL(mempool_free_pages);
v4.10.11
  1/*
  2 *  linux/mm/mempool.c
  3 *
  4 *  memory buffer pool support. Such pools are mostly used
  5 *  for guaranteed, deadlock-free memory allocations during
  6 *  extreme VM load.
  7 *
  8 *  started by Ingo Molnar, Copyright (C) 2001
  9 *  debugging by David Rientjes, Copyright (C) 2015
 10 */
 11
 12#include <linux/mm.h>
 13#include <linux/slab.h>
 14#include <linux/highmem.h>
 15#include <linux/kasan.h>
 16#include <linux/kmemleak.h>
 17#include <linux/export.h>
 18#include <linux/mempool.h>
 19#include <linux/blkdev.h>
 20#include <linux/writeback.h>
 21#include "slab.h"
 22
 23#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 24static void poison_error(mempool_t *pool, void *element, size_t size,
 25			 size_t byte)
 26{
 27	const int nr = pool->curr_nr;
 28	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
 29	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
 30	int i;
 31
 32	pr_err("BUG: mempool element poison mismatch\n");
 33	pr_err("Mempool %p size %zu\n", pool, size);
 34	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
 35	for (i = start; i < end; i++)
 36		pr_cont("%x ", *(u8 *)(element + i));
 37	pr_cont("%s\n", end < size ? "..." : "");
 38	dump_stack();
 39}
 40
 41static void __check_element(mempool_t *pool, void *element, size_t size)
 42{
 43	u8 *obj = element;
 44	size_t i;
 45
 46	for (i = 0; i < size; i++) {
 47		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
 48
 49		if (obj[i] != exp) {
 50			poison_error(pool, element, size, i);
 51			return;
 52		}
 53	}
 54	memset(obj, POISON_INUSE, size);
 55}
 56
 57static void check_element(mempool_t *pool, void *element)
 58{
 59	/* Mempools backed by slab allocator */
 60	if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
 61		__check_element(pool, element, ksize(element));
 62
 63	/* Mempools backed by page allocator */
 64	if (pool->free == mempool_free_pages) {
 65		int order = (int)(long)pool->pool_data;
 66		void *addr = kmap_atomic((struct page *)element);
 67
 68		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
 69		kunmap_atomic(addr);
 70	}
 71}
 72
 73static void __poison_element(void *element, size_t size)
 74{
 75	u8 *obj = element;
 76
 77	memset(obj, POISON_FREE, size - 1);
 78	obj[size - 1] = POISON_END;
 79}
 80
 81static void poison_element(mempool_t *pool, void *element)
 82{
 83	/* Mempools backed by slab allocator */
 84	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
 85		__poison_element(element, ksize(element));
 86
 87	/* Mempools backed by page allocator */
 88	if (pool->alloc == mempool_alloc_pages) {
 89		int order = (int)(long)pool->pool_data;
 90		void *addr = kmap_atomic((struct page *)element);
 91
 92		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
 93		kunmap_atomic(addr);
 94	}
 95}
 96#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
 97static inline void check_element(mempool_t *pool, void *element)
 98{
 99}
100static inline void poison_element(mempool_t *pool, void *element)
101{
102}
103#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
104
105static void kasan_poison_element(mempool_t *pool, void *element)
106{
107	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
108		kasan_poison_kfree(element);
109	if (pool->alloc == mempool_alloc_pages)
110		kasan_free_pages(element, (unsigned long)pool->pool_data);
111}
112
113static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
114{
115	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
116		kasan_unpoison_slab(element);
117	if (pool->alloc == mempool_alloc_pages)
118		kasan_alloc_pages(element, (unsigned long)pool->pool_data);
119}
120
121static void add_element(mempool_t *pool, void *element)
122{
123	BUG_ON(pool->curr_nr >= pool->min_nr);
124	poison_element(pool, element);
125	kasan_poison_element(pool, element);
126	pool->elements[pool->curr_nr++] = element;
127}
128
129static void *remove_element(mempool_t *pool, gfp_t flags)
130{
131	void *element = pool->elements[--pool->curr_nr];
132
133	BUG_ON(pool->curr_nr < 0);
134	kasan_unpoison_element(pool, element, flags);
135	check_element(pool, element);
136	return element;
137}
138
139/**
140 * mempool_destroy - deallocate a memory pool
141 * @pool:      pointer to the memory pool which was allocated via
142 *             mempool_create().
143 *
144 * Free all reserved elements in @pool and @pool itself.  This function
145 * only sleeps if the free_fn() function sleeps.
146 */
147void mempool_destroy(mempool_t *pool)
148{
149	if (unlikely(!pool))
150		return;
151
152	while (pool->curr_nr) {
153		void *element = remove_element(pool, GFP_KERNEL);
154		pool->free(element, pool->pool_data);
155	}
156	kfree(pool->elements);
157	kfree(pool);
158}
159EXPORT_SYMBOL(mempool_destroy);
160
161/**
162 * mempool_create - create a memory pool
163 * @min_nr:    the minimum number of elements guaranteed to be
164 *             allocated for this pool.
165 * @alloc_fn:  user-defined element-allocation function.
166 * @free_fn:   user-defined element-freeing function.
167 * @pool_data: optional private data available to the user-defined functions.
168 *
169 * this function creates and allocates a guaranteed size, preallocated
170 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
171 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
172 * functions might sleep - as long as the mempool_alloc() function is not called
173 * from IRQ contexts.
174 */
175mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
176				mempool_free_t *free_fn, void *pool_data)
177{
178	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
179				   GFP_KERNEL, NUMA_NO_NODE);
180}
181EXPORT_SYMBOL(mempool_create);
182
183mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
184			       mempool_free_t *free_fn, void *pool_data,
185			       gfp_t gfp_mask, int node_id)
186{
187	mempool_t *pool;
188	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
189	if (!pool)
190		return NULL;
191	pool->elements = kmalloc_node(min_nr * sizeof(void *),
192				      gfp_mask, node_id);
193	if (!pool->elements) {
194		kfree(pool);
195		return NULL;
196	}
197	spin_lock_init(&pool->lock);
198	pool->min_nr = min_nr;
199	pool->pool_data = pool_data;
200	init_waitqueue_head(&pool->wait);
201	pool->alloc = alloc_fn;
202	pool->free = free_fn;
203
204	/*
205	 * First pre-allocate the guaranteed number of buffers.
206	 */
207	while (pool->curr_nr < pool->min_nr) {
208		void *element;
209
210		element = pool->alloc(gfp_mask, pool->pool_data);
211		if (unlikely(!element)) {
212			mempool_destroy(pool);
213			return NULL;
214		}
215		add_element(pool, element);
216	}
217	return pool;
218}
219EXPORT_SYMBOL(mempool_create_node);
220
221/**
222 * mempool_resize - resize an existing memory pool
223 * @pool:       pointer to the memory pool which was allocated via
224 *              mempool_create().
225 * @new_min_nr: the new minimum number of elements guaranteed to be
226 *              allocated for this pool.
 
227 *
228 * This function shrinks/grows the pool. In the case of growing,
229 * it cannot be guaranteed that the pool will be grown to the new
230 * size immediately, but new mempool_free() calls will refill it.
231 * This function may sleep.
232 *
233 * Note, the caller must guarantee that no mempool_destroy is called
234 * while this function is running. mempool_alloc() & mempool_free()
235 * might be called (eg. from IRQ contexts) while this function executes.
236 */
237int mempool_resize(mempool_t *pool, int new_min_nr)
238{
239	void *element;
240	void **new_elements;
241	unsigned long flags;
242
243	BUG_ON(new_min_nr <= 0);
244	might_sleep();
245
246	spin_lock_irqsave(&pool->lock, flags);
247	if (new_min_nr <= pool->min_nr) {
248		while (new_min_nr < pool->curr_nr) {
249			element = remove_element(pool, GFP_KERNEL);
250			spin_unlock_irqrestore(&pool->lock, flags);
251			pool->free(element, pool->pool_data);
252			spin_lock_irqsave(&pool->lock, flags);
253		}
254		pool->min_nr = new_min_nr;
255		goto out_unlock;
256	}
257	spin_unlock_irqrestore(&pool->lock, flags);
258
259	/* Grow the pool */
260	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
261				     GFP_KERNEL);
262	if (!new_elements)
263		return -ENOMEM;
264
265	spin_lock_irqsave(&pool->lock, flags);
266	if (unlikely(new_min_nr <= pool->min_nr)) {
267		/* Raced, other resize will do our work */
268		spin_unlock_irqrestore(&pool->lock, flags);
269		kfree(new_elements);
270		goto out;
271	}
272	memcpy(new_elements, pool->elements,
273			pool->curr_nr * sizeof(*new_elements));
274	kfree(pool->elements);
275	pool->elements = new_elements;
276	pool->min_nr = new_min_nr;
277
278	while (pool->curr_nr < pool->min_nr) {
279		spin_unlock_irqrestore(&pool->lock, flags);
280		element = pool->alloc(GFP_KERNEL, pool->pool_data);
281		if (!element)
282			goto out;
283		spin_lock_irqsave(&pool->lock, flags);
284		if (pool->curr_nr < pool->min_nr) {
285			add_element(pool, element);
286		} else {
287			spin_unlock_irqrestore(&pool->lock, flags);
288			pool->free(element, pool->pool_data);	/* Raced */
289			goto out;
290		}
291	}
292out_unlock:
293	spin_unlock_irqrestore(&pool->lock, flags);
294out:
295	return 0;
296}
297EXPORT_SYMBOL(mempool_resize);
298
299/**
300 * mempool_alloc - allocate an element from a specific memory pool
301 * @pool:      pointer to the memory pool which was allocated via
302 *             mempool_create().
303 * @gfp_mask:  the usual allocation bitmask.
304 *
305 * this function only sleeps if the alloc_fn() function sleeps or
306 * returns NULL. Note that due to preallocation, this function
307 * *never* fails when called from process contexts. (it might
308 * fail if called from an IRQ context.)
309 * Note: using __GFP_ZERO is not supported.
310 */
311void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
312{
313	void *element;
314	unsigned long flags;
315	wait_queue_t wait;
316	gfp_t gfp_temp;
317
318	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
319	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
320
321	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
322	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
323	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
324
325	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
326
327repeat_alloc:
328
329	element = pool->alloc(gfp_temp, pool->pool_data);
330	if (likely(element != NULL))
331		return element;
332
333	spin_lock_irqsave(&pool->lock, flags);
334	if (likely(pool->curr_nr)) {
335		element = remove_element(pool, gfp_temp);
336		spin_unlock_irqrestore(&pool->lock, flags);
337		/* paired with rmb in mempool_free(), read comment there */
338		smp_wmb();
339		/*
340		 * Update the allocation stack trace as this is more useful
341		 * for debugging.
342		 */
343		kmemleak_update_trace(element);
344		return element;
345	}
346
347	/*
348	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
349	 * alloc failed with that and @pool was empty, retry immediately.
350	 */
351	if (gfp_temp != gfp_mask) {
352		spin_unlock_irqrestore(&pool->lock, flags);
353		gfp_temp = gfp_mask;
354		goto repeat_alloc;
355	}
356
357	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
358	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
359		spin_unlock_irqrestore(&pool->lock, flags);
360		return NULL;
361	}
362
363	/* Let's wait for someone else to return an element to @pool */
364	init_wait(&wait);
365	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
366
367	spin_unlock_irqrestore(&pool->lock, flags);
368
369	/*
370	 * FIXME: this should be io_schedule().  The timeout is there as a
371	 * workaround for some DM problems in 2.6.18.
372	 */
373	io_schedule_timeout(5*HZ);
374
375	finish_wait(&pool->wait, &wait);
376	goto repeat_alloc;
377}
378EXPORT_SYMBOL(mempool_alloc);
379
380/**
381 * mempool_free - return an element to the pool.
382 * @element:   pool element pointer.
383 * @pool:      pointer to the memory pool which was allocated via
384 *             mempool_create().
385 *
386 * this function only sleeps if the free_fn() function sleeps.
387 */
388void mempool_free(void *element, mempool_t *pool)
389{
390	unsigned long flags;
391
392	if (unlikely(element == NULL))
393		return;
394
395	/*
396	 * Paired with the wmb in mempool_alloc().  The preceding read is
397	 * for @element and the following @pool->curr_nr.  This ensures
398	 * that the visible value of @pool->curr_nr is from after the
399	 * allocation of @element.  This is necessary for fringe cases
400	 * where @element was passed to this task without going through
401	 * barriers.
402	 *
403	 * For example, assume @p is %NULL at the beginning and one task
404	 * performs "p = mempool_alloc(...);" while another task is doing
405	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
406	 * may end up using curr_nr value which is from before allocation
407	 * of @p without the following rmb.
408	 */
409	smp_rmb();
410
411	/*
412	 * For correctness, we need a test which is guaranteed to trigger
413	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
414	 * without locking achieves that and refilling as soon as possible
415	 * is desirable.
416	 *
417	 * Because curr_nr visible here is always a value after the
418	 * allocation of @element, any task which decremented curr_nr below
419	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
420	 * incremented to min_nr afterwards.  If curr_nr gets incremented
421	 * to min_nr after the allocation of @element, the elements
422	 * allocated after that are subject to the same guarantee.
423	 *
424	 * Waiters happen iff curr_nr is 0 and the above guarantee also
425	 * ensures that there will be frees which return elements to the
426	 * pool waking up the waiters.
427	 */
428	if (unlikely(pool->curr_nr < pool->min_nr)) {
429		spin_lock_irqsave(&pool->lock, flags);
430		if (likely(pool->curr_nr < pool->min_nr)) {
431			add_element(pool, element);
432			spin_unlock_irqrestore(&pool->lock, flags);
433			wake_up(&pool->wait);
434			return;
435		}
436		spin_unlock_irqrestore(&pool->lock, flags);
437	}
438	pool->free(element, pool->pool_data);
439}
440EXPORT_SYMBOL(mempool_free);
441
442/*
443 * A commonly used alloc and free fn.
444 */
445void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
446{
447	struct kmem_cache *mem = pool_data;
448	VM_BUG_ON(mem->ctor);
449	return kmem_cache_alloc(mem, gfp_mask);
450}
451EXPORT_SYMBOL(mempool_alloc_slab);
452
453void mempool_free_slab(void *element, void *pool_data)
454{
455	struct kmem_cache *mem = pool_data;
456	kmem_cache_free(mem, element);
457}
458EXPORT_SYMBOL(mempool_free_slab);
459
460/*
461 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
462 * specified by pool_data
463 */
464void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
465{
466	size_t size = (size_t)pool_data;
467	return kmalloc(size, gfp_mask);
468}
469EXPORT_SYMBOL(mempool_kmalloc);
470
471void mempool_kfree(void *element, void *pool_data)
472{
473	kfree(element);
474}
475EXPORT_SYMBOL(mempool_kfree);
476
477/*
478 * A simple mempool-backed page allocator that allocates pages
479 * of the order specified by pool_data.
480 */
481void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
482{
483	int order = (int)(long)pool_data;
484	return alloc_pages(gfp_mask, order);
485}
486EXPORT_SYMBOL(mempool_alloc_pages);
487
488void mempool_free_pages(void *element, void *pool_data)
489{
490	int order = (int)(long)pool_data;
491	__free_pages(element, order);
492}
493EXPORT_SYMBOL(mempool_free_pages);