Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2  Red Black Trees
  3  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  4  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  5  (C) 2012  Michel Lespinasse <walken@google.com>
  6
  7  This program is free software; you can redistribute it and/or modify
  8  it under the terms of the GNU General Public License as published by
  9  the Free Software Foundation; either version 2 of the License, or
 10  (at your option) any later version.
 11
 12  This program is distributed in the hope that it will be useful,
 13  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15  GNU General Public License for more details.
 16
 17  You should have received a copy of the GNU General Public License
 18  along with this program; if not, write to the Free Software
 19  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 20
 21  linux/lib/rbtree.c
 22*/
 23
 24#include <linux/rbtree_augmented.h>
 25#include <linux/export.h>
 26
 27/*
 28 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 29 *
 30 *  1) A node is either red or black
 31 *  2) The root is black
 32 *  3) All leaves (NULL) are black
 33 *  4) Both children of every red node are black
 34 *  5) Every simple path from root to leaves contains the same number
 35 *     of black nodes.
 36 *
 37 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 38 *  consecutive red nodes in a path and every red node is therefore followed by
 39 *  a black. So if B is the number of black nodes on every simple path (as per
 40 *  5), then the longest possible path due to 4 is 2B.
 41 *
 42 *  We shall indicate color with case, where black nodes are uppercase and red
 43 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 44 *  parentheses and have some accompanying text comment.
 45 */
 46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47static inline void rb_set_black(struct rb_node *rb)
 48{
 49	rb->__rb_parent_color |= RB_BLACK;
 50}
 51
 52static inline struct rb_node *rb_red_parent(struct rb_node *red)
 53{
 54	return (struct rb_node *)red->__rb_parent_color;
 55}
 56
 57/*
 58 * Helper function for rotations:
 59 * - old's parent and color get assigned to new
 60 * - old gets assigned new as a parent and 'color' as a color.
 61 */
 62static inline void
 63__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
 64			struct rb_root *root, int color)
 65{
 66	struct rb_node *parent = rb_parent(old);
 67	new->__rb_parent_color = old->__rb_parent_color;
 68	rb_set_parent_color(old, new, color);
 69	__rb_change_child(old, new, parent, root);
 70}
 71
 72static __always_inline void
 73__rb_insert(struct rb_node *node, struct rb_root *root,
 74	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 75{
 76	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
 77
 78	while (true) {
 79		/*
 80		 * Loop invariant: node is red
 81		 *
 82		 * If there is a black parent, we are done.
 83		 * Otherwise, take some corrective action as we don't
 84		 * want a red root or two consecutive red nodes.
 85		 */
 86		if (!parent) {
 87			rb_set_parent_color(node, NULL, RB_BLACK);
 88			break;
 89		} else if (rb_is_black(parent))
 90			break;
 91
 92		gparent = rb_red_parent(parent);
 93
 94		tmp = gparent->rb_right;
 95		if (parent != tmp) {	/* parent == gparent->rb_left */
 96			if (tmp && rb_is_red(tmp)) {
 97				/*
 98				 * Case 1 - color flips
 99				 *
100				 *       G            g
101				 *      / \          / \
102				 *     p   u  -->   P   U
103				 *    /            /
104				 *   n            N
105				 *
106				 * However, since g's parent might be red, and
107				 * 4) does not allow this, we need to recurse
108				 * at g.
109				 */
110				rb_set_parent_color(tmp, gparent, RB_BLACK);
111				rb_set_parent_color(parent, gparent, RB_BLACK);
112				node = gparent;
113				parent = rb_parent(node);
114				rb_set_parent_color(node, parent, RB_RED);
115				continue;
116			}
117
118			tmp = parent->rb_right;
119			if (node == tmp) {
120				/*
121				 * Case 2 - left rotate at parent
122				 *
123				 *      G             G
124				 *     / \           / \
125				 *    p   U  -->    n   U
126				 *     \           /
127				 *      n         p
128				 *
129				 * This still leaves us in violation of 4), the
130				 * continuation into Case 3 will fix that.
131				 */
132				parent->rb_right = tmp = node->rb_left;
133				node->rb_left = parent;
 
134				if (tmp)
135					rb_set_parent_color(tmp, parent,
136							    RB_BLACK);
137				rb_set_parent_color(parent, node, RB_RED);
138				augment_rotate(parent, node);
139				parent = node;
140				tmp = node->rb_right;
141			}
142
143			/*
144			 * Case 3 - right rotate at gparent
145			 *
146			 *        G           P
147			 *       / \         / \
148			 *      p   U  -->  n   g
149			 *     /                 \
150			 *    n                   U
151			 */
152			gparent->rb_left = tmp;  /* == parent->rb_right */
153			parent->rb_right = gparent;
154			if (tmp)
155				rb_set_parent_color(tmp, gparent, RB_BLACK);
156			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
157			augment_rotate(gparent, parent);
158			break;
159		} else {
160			tmp = gparent->rb_left;
161			if (tmp && rb_is_red(tmp)) {
162				/* Case 1 - color flips */
163				rb_set_parent_color(tmp, gparent, RB_BLACK);
164				rb_set_parent_color(parent, gparent, RB_BLACK);
165				node = gparent;
166				parent = rb_parent(node);
167				rb_set_parent_color(node, parent, RB_RED);
168				continue;
169			}
170
171			tmp = parent->rb_left;
172			if (node == tmp) {
173				/* Case 2 - right rotate at parent */
174				parent->rb_left = tmp = node->rb_right;
175				node->rb_right = parent;
 
176				if (tmp)
177					rb_set_parent_color(tmp, parent,
178							    RB_BLACK);
179				rb_set_parent_color(parent, node, RB_RED);
180				augment_rotate(parent, node);
181				parent = node;
182				tmp = node->rb_left;
183			}
184
185			/* Case 3 - left rotate at gparent */
186			gparent->rb_right = tmp;  /* == parent->rb_left */
187			parent->rb_left = gparent;
188			if (tmp)
189				rb_set_parent_color(tmp, gparent, RB_BLACK);
190			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
191			augment_rotate(gparent, parent);
192			break;
193		}
194	}
195}
196
197/*
198 * Inline version for rb_erase() use - we want to be able to inline
199 * and eliminate the dummy_rotate callback there
200 */
201static __always_inline void
202____rb_erase_color(struct rb_node *parent, struct rb_root *root,
203	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
204{
205	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
206
207	while (true) {
208		/*
209		 * Loop invariants:
210		 * - node is black (or NULL on first iteration)
211		 * - node is not the root (parent is not NULL)
212		 * - All leaf paths going through parent and node have a
213		 *   black node count that is 1 lower than other leaf paths.
214		 */
215		sibling = parent->rb_right;
216		if (node != sibling) {	/* node == parent->rb_left */
217			if (rb_is_red(sibling)) {
218				/*
219				 * Case 1 - left rotate at parent
220				 *
221				 *     P               S
222				 *    / \             / \
223				 *   N   s    -->    p   Sr
224				 *      / \         / \
225				 *     Sl  Sr      N   Sl
226				 */
227				parent->rb_right = tmp1 = sibling->rb_left;
228				sibling->rb_left = parent;
 
229				rb_set_parent_color(tmp1, parent, RB_BLACK);
230				__rb_rotate_set_parents(parent, sibling, root,
231							RB_RED);
232				augment_rotate(parent, sibling);
233				sibling = tmp1;
234			}
235			tmp1 = sibling->rb_right;
236			if (!tmp1 || rb_is_black(tmp1)) {
237				tmp2 = sibling->rb_left;
238				if (!tmp2 || rb_is_black(tmp2)) {
239					/*
240					 * Case 2 - sibling color flip
241					 * (p could be either color here)
242					 *
243					 *    (p)           (p)
244					 *    / \           / \
245					 *   N   S    -->  N   s
246					 *      / \           / \
247					 *     Sl  Sr        Sl  Sr
248					 *
249					 * This leaves us violating 5) which
250					 * can be fixed by flipping p to black
251					 * if it was red, or by recursing at p.
252					 * p is red when coming from Case 1.
253					 */
254					rb_set_parent_color(sibling, parent,
255							    RB_RED);
256					if (rb_is_red(parent))
257						rb_set_black(parent);
258					else {
259						node = parent;
260						parent = rb_parent(node);
261						if (parent)
262							continue;
263					}
264					break;
265				}
266				/*
267				 * Case 3 - right rotate at sibling
268				 * (p could be either color here)
269				 *
270				 *   (p)           (p)
271				 *   / \           / \
272				 *  N   S    -->  N   Sl
273				 *     / \             \
274				 *    sl  Sr            s
275				 *                       \
276				 *                        Sr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277				 */
278				sibling->rb_left = tmp1 = tmp2->rb_right;
279				tmp2->rb_right = sibling;
280				parent->rb_right = tmp2;
 
281				if (tmp1)
282					rb_set_parent_color(tmp1, sibling,
283							    RB_BLACK);
284				augment_rotate(sibling, tmp2);
285				tmp1 = sibling;
286				sibling = tmp2;
287			}
288			/*
289			 * Case 4 - left rotate at parent + color flips
290			 * (p and sl could be either color here.
291			 *  After rotation, p becomes black, s acquires
292			 *  p's color, and sl keeps its color)
293			 *
294			 *      (p)             (s)
295			 *      / \             / \
296			 *     N   S     -->   P   Sr
297			 *        / \         / \
298			 *      (sl) sr      N  (sl)
299			 */
300			parent->rb_right = tmp2 = sibling->rb_left;
301			sibling->rb_left = parent;
 
302			rb_set_parent_color(tmp1, sibling, RB_BLACK);
303			if (tmp2)
304				rb_set_parent(tmp2, parent);
305			__rb_rotate_set_parents(parent, sibling, root,
306						RB_BLACK);
307			augment_rotate(parent, sibling);
308			break;
309		} else {
310			sibling = parent->rb_left;
311			if (rb_is_red(sibling)) {
312				/* Case 1 - right rotate at parent */
313				parent->rb_left = tmp1 = sibling->rb_right;
314				sibling->rb_right = parent;
 
315				rb_set_parent_color(tmp1, parent, RB_BLACK);
316				__rb_rotate_set_parents(parent, sibling, root,
317							RB_RED);
318				augment_rotate(parent, sibling);
319				sibling = tmp1;
320			}
321			tmp1 = sibling->rb_left;
322			if (!tmp1 || rb_is_black(tmp1)) {
323				tmp2 = sibling->rb_right;
324				if (!tmp2 || rb_is_black(tmp2)) {
325					/* Case 2 - sibling color flip */
326					rb_set_parent_color(sibling, parent,
327							    RB_RED);
328					if (rb_is_red(parent))
329						rb_set_black(parent);
330					else {
331						node = parent;
332						parent = rb_parent(node);
333						if (parent)
334							continue;
335					}
336					break;
337				}
338				/* Case 3 - right rotate at sibling */
339				sibling->rb_right = tmp1 = tmp2->rb_left;
340				tmp2->rb_left = sibling;
341				parent->rb_left = tmp2;
 
342				if (tmp1)
343					rb_set_parent_color(tmp1, sibling,
344							    RB_BLACK);
345				augment_rotate(sibling, tmp2);
346				tmp1 = sibling;
347				sibling = tmp2;
348			}
349			/* Case 4 - left rotate at parent + color flips */
350			parent->rb_left = tmp2 = sibling->rb_right;
351			sibling->rb_right = parent;
 
352			rb_set_parent_color(tmp1, sibling, RB_BLACK);
353			if (tmp2)
354				rb_set_parent(tmp2, parent);
355			__rb_rotate_set_parents(parent, sibling, root,
356						RB_BLACK);
357			augment_rotate(parent, sibling);
358			break;
359		}
360	}
361}
362
363/* Non-inline version for rb_erase_augmented() use */
364void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
365	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
366{
367	____rb_erase_color(parent, root, augment_rotate);
368}
369EXPORT_SYMBOL(__rb_erase_color);
370
371/*
372 * Non-augmented rbtree manipulation functions.
373 *
374 * We use dummy augmented callbacks here, and have the compiler optimize them
375 * out of the rb_insert_color() and rb_erase() function definitions.
376 */
377
378static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
379static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
380static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
381
382static const struct rb_augment_callbacks dummy_callbacks = {
383	dummy_propagate, dummy_copy, dummy_rotate
384};
385
386void rb_insert_color(struct rb_node *node, struct rb_root *root)
387{
388	__rb_insert(node, root, dummy_rotate);
389}
390EXPORT_SYMBOL(rb_insert_color);
391
392void rb_erase(struct rb_node *node, struct rb_root *root)
393{
394	struct rb_node *rebalance;
395	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
396	if (rebalance)
397		____rb_erase_color(rebalance, root, dummy_rotate);
398}
399EXPORT_SYMBOL(rb_erase);
400
401/*
402 * Augmented rbtree manipulation functions.
403 *
404 * This instantiates the same __always_inline functions as in the non-augmented
405 * case, but this time with user-defined callbacks.
406 */
407
408void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
409	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
410{
411	__rb_insert(node, root, augment_rotate);
412}
413EXPORT_SYMBOL(__rb_insert_augmented);
414
415/*
416 * This function returns the first node (in sort order) of the tree.
417 */
418struct rb_node *rb_first(const struct rb_root *root)
419{
420	struct rb_node	*n;
421
422	n = root->rb_node;
423	if (!n)
424		return NULL;
425	while (n->rb_left)
426		n = n->rb_left;
427	return n;
428}
429EXPORT_SYMBOL(rb_first);
430
431struct rb_node *rb_last(const struct rb_root *root)
432{
433	struct rb_node	*n;
434
435	n = root->rb_node;
436	if (!n)
437		return NULL;
438	while (n->rb_right)
439		n = n->rb_right;
440	return n;
441}
442EXPORT_SYMBOL(rb_last);
443
444struct rb_node *rb_next(const struct rb_node *node)
445{
446	struct rb_node *parent;
447
448	if (RB_EMPTY_NODE(node))
449		return NULL;
450
451	/*
452	 * If we have a right-hand child, go down and then left as far
453	 * as we can.
454	 */
455	if (node->rb_right) {
456		node = node->rb_right; 
457		while (node->rb_left)
458			node=node->rb_left;
459		return (struct rb_node *)node;
460	}
461
462	/*
463	 * No right-hand children. Everything down and left is smaller than us,
464	 * so any 'next' node must be in the general direction of our parent.
465	 * Go up the tree; any time the ancestor is a right-hand child of its
466	 * parent, keep going up. First time it's a left-hand child of its
467	 * parent, said parent is our 'next' node.
468	 */
469	while ((parent = rb_parent(node)) && node == parent->rb_right)
470		node = parent;
471
472	return parent;
473}
474EXPORT_SYMBOL(rb_next);
475
476struct rb_node *rb_prev(const struct rb_node *node)
477{
478	struct rb_node *parent;
479
480	if (RB_EMPTY_NODE(node))
481		return NULL;
482
483	/*
484	 * If we have a left-hand child, go down and then right as far
485	 * as we can.
486	 */
487	if (node->rb_left) {
488		node = node->rb_left; 
489		while (node->rb_right)
490			node=node->rb_right;
491		return (struct rb_node *)node;
492	}
493
494	/*
495	 * No left-hand children. Go up till we find an ancestor which
496	 * is a right-hand child of its parent.
497	 */
498	while ((parent = rb_parent(node)) && node == parent->rb_left)
499		node = parent;
500
501	return parent;
502}
503EXPORT_SYMBOL(rb_prev);
504
505void rb_replace_node(struct rb_node *victim, struct rb_node *new,
506		     struct rb_root *root)
507{
508	struct rb_node *parent = rb_parent(victim);
509
 
 
 
510	/* Set the surrounding nodes to point to the replacement */
511	__rb_change_child(victim, new, parent, root);
512	if (victim->rb_left)
513		rb_set_parent(victim->rb_left, new);
514	if (victim->rb_right)
515		rb_set_parent(victim->rb_right, new);
 
 
 
 
 
 
 
 
516
517	/* Copy the pointers/colour from the victim to the replacement */
518	*new = *victim;
 
 
 
 
 
 
 
 
 
 
 
 
519}
520EXPORT_SYMBOL(rb_replace_node);
521
522static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
523{
524	for (;;) {
525		if (node->rb_left)
526			node = node->rb_left;
527		else if (node->rb_right)
528			node = node->rb_right;
529		else
530			return (struct rb_node *)node;
531	}
532}
533
534struct rb_node *rb_next_postorder(const struct rb_node *node)
535{
536	const struct rb_node *parent;
537	if (!node)
538		return NULL;
539	parent = rb_parent(node);
540
541	/* If we're sitting on node, we've already seen our children */
542	if (parent && node == parent->rb_left && parent->rb_right) {
543		/* If we are the parent's left node, go to the parent's right
544		 * node then all the way down to the left */
545		return rb_left_deepest_node(parent->rb_right);
546	} else
547		/* Otherwise we are the parent's right node, and the parent
548		 * should be next */
549		return (struct rb_node *)parent;
550}
551EXPORT_SYMBOL(rb_next_postorder);
552
553struct rb_node *rb_first_postorder(const struct rb_root *root)
554{
555	if (!root->rb_node)
556		return NULL;
557
558	return rb_left_deepest_node(root->rb_node);
559}
560EXPORT_SYMBOL(rb_first_postorder);
v4.10.11
  1/*
  2  Red Black Trees
  3  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  4  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  5  (C) 2012  Michel Lespinasse <walken@google.com>
  6
  7  This program is free software; you can redistribute it and/or modify
  8  it under the terms of the GNU General Public License as published by
  9  the Free Software Foundation; either version 2 of the License, or
 10  (at your option) any later version.
 11
 12  This program is distributed in the hope that it will be useful,
 13  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15  GNU General Public License for more details.
 16
 17  You should have received a copy of the GNU General Public License
 18  along with this program; if not, write to the Free Software
 19  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 20
 21  linux/lib/rbtree.c
 22*/
 23
 24#include <linux/rbtree_augmented.h>
 25#include <linux/export.h>
 26
 27/*
 28 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 29 *
 30 *  1) A node is either red or black
 31 *  2) The root is black
 32 *  3) All leaves (NULL) are black
 33 *  4) Both children of every red node are black
 34 *  5) Every simple path from root to leaves contains the same number
 35 *     of black nodes.
 36 *
 37 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 38 *  consecutive red nodes in a path and every red node is therefore followed by
 39 *  a black. So if B is the number of black nodes on every simple path (as per
 40 *  5), then the longest possible path due to 4 is 2B.
 41 *
 42 *  We shall indicate color with case, where black nodes are uppercase and red
 43 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 44 *  parentheses and have some accompanying text comment.
 45 */
 46
 47/*
 48 * Notes on lockless lookups:
 49 *
 50 * All stores to the tree structure (rb_left and rb_right) must be done using
 51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
 52 * tree structure as seen in program order.
 53 *
 54 * These two requirements will allow lockless iteration of the tree -- not
 55 * correct iteration mind you, tree rotations are not atomic so a lookup might
 56 * miss entire subtrees.
 57 *
 58 * But they do guarantee that any such traversal will only see valid elements
 59 * and that it will indeed complete -- does not get stuck in a loop.
 60 *
 61 * It also guarantees that if the lookup returns an element it is the 'correct'
 62 * one. But not returning an element does _NOT_ mean it's not present.
 63 *
 64 * NOTE:
 65 *
 66 * Stores to __rb_parent_color are not important for simple lookups so those
 67 * are left undone as of now. Nor did I check for loops involving parent
 68 * pointers.
 69 */
 70
 71static inline void rb_set_black(struct rb_node *rb)
 72{
 73	rb->__rb_parent_color |= RB_BLACK;
 74}
 75
 76static inline struct rb_node *rb_red_parent(struct rb_node *red)
 77{
 78	return (struct rb_node *)red->__rb_parent_color;
 79}
 80
 81/*
 82 * Helper function for rotations:
 83 * - old's parent and color get assigned to new
 84 * - old gets assigned new as a parent and 'color' as a color.
 85 */
 86static inline void
 87__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
 88			struct rb_root *root, int color)
 89{
 90	struct rb_node *parent = rb_parent(old);
 91	new->__rb_parent_color = old->__rb_parent_color;
 92	rb_set_parent_color(old, new, color);
 93	__rb_change_child(old, new, parent, root);
 94}
 95
 96static __always_inline void
 97__rb_insert(struct rb_node *node, struct rb_root *root,
 98	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
 99{
100	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
101
102	while (true) {
103		/*
104		 * Loop invariant: node is red
105		 *
106		 * If there is a black parent, we are done.
107		 * Otherwise, take some corrective action as we don't
108		 * want a red root or two consecutive red nodes.
109		 */
110		if (!parent) {
111			rb_set_parent_color(node, NULL, RB_BLACK);
112			break;
113		} else if (rb_is_black(parent))
114			break;
115
116		gparent = rb_red_parent(parent);
117
118		tmp = gparent->rb_right;
119		if (parent != tmp) {	/* parent == gparent->rb_left */
120			if (tmp && rb_is_red(tmp)) {
121				/*
122				 * Case 1 - color flips
123				 *
124				 *       G            g
125				 *      / \          / \
126				 *     p   u  -->   P   U
127				 *    /            /
128				 *   n            n
129				 *
130				 * However, since g's parent might be red, and
131				 * 4) does not allow this, we need to recurse
132				 * at g.
133				 */
134				rb_set_parent_color(tmp, gparent, RB_BLACK);
135				rb_set_parent_color(parent, gparent, RB_BLACK);
136				node = gparent;
137				parent = rb_parent(node);
138				rb_set_parent_color(node, parent, RB_RED);
139				continue;
140			}
141
142			tmp = parent->rb_right;
143			if (node == tmp) {
144				/*
145				 * Case 2 - left rotate at parent
146				 *
147				 *      G             G
148				 *     / \           / \
149				 *    p   U  -->    n   U
150				 *     \           /
151				 *      n         p
152				 *
153				 * This still leaves us in violation of 4), the
154				 * continuation into Case 3 will fix that.
155				 */
156				tmp = node->rb_left;
157				WRITE_ONCE(parent->rb_right, tmp);
158				WRITE_ONCE(node->rb_left, parent);
159				if (tmp)
160					rb_set_parent_color(tmp, parent,
161							    RB_BLACK);
162				rb_set_parent_color(parent, node, RB_RED);
163				augment_rotate(parent, node);
164				parent = node;
165				tmp = node->rb_right;
166			}
167
168			/*
169			 * Case 3 - right rotate at gparent
170			 *
171			 *        G           P
172			 *       / \         / \
173			 *      p   U  -->  n   g
174			 *     /                 \
175			 *    n                   U
176			 */
177			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
178			WRITE_ONCE(parent->rb_right, gparent);
179			if (tmp)
180				rb_set_parent_color(tmp, gparent, RB_BLACK);
181			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
182			augment_rotate(gparent, parent);
183			break;
184		} else {
185			tmp = gparent->rb_left;
186			if (tmp && rb_is_red(tmp)) {
187				/* Case 1 - color flips */
188				rb_set_parent_color(tmp, gparent, RB_BLACK);
189				rb_set_parent_color(parent, gparent, RB_BLACK);
190				node = gparent;
191				parent = rb_parent(node);
192				rb_set_parent_color(node, parent, RB_RED);
193				continue;
194			}
195
196			tmp = parent->rb_left;
197			if (node == tmp) {
198				/* Case 2 - right rotate at parent */
199				tmp = node->rb_right;
200				WRITE_ONCE(parent->rb_left, tmp);
201				WRITE_ONCE(node->rb_right, parent);
202				if (tmp)
203					rb_set_parent_color(tmp, parent,
204							    RB_BLACK);
205				rb_set_parent_color(parent, node, RB_RED);
206				augment_rotate(parent, node);
207				parent = node;
208				tmp = node->rb_left;
209			}
210
211			/* Case 3 - left rotate at gparent */
212			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
213			WRITE_ONCE(parent->rb_left, gparent);
214			if (tmp)
215				rb_set_parent_color(tmp, gparent, RB_BLACK);
216			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
217			augment_rotate(gparent, parent);
218			break;
219		}
220	}
221}
222
223/*
224 * Inline version for rb_erase() use - we want to be able to inline
225 * and eliminate the dummy_rotate callback there
226 */
227static __always_inline void
228____rb_erase_color(struct rb_node *parent, struct rb_root *root,
229	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
230{
231	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
232
233	while (true) {
234		/*
235		 * Loop invariants:
236		 * - node is black (or NULL on first iteration)
237		 * - node is not the root (parent is not NULL)
238		 * - All leaf paths going through parent and node have a
239		 *   black node count that is 1 lower than other leaf paths.
240		 */
241		sibling = parent->rb_right;
242		if (node != sibling) {	/* node == parent->rb_left */
243			if (rb_is_red(sibling)) {
244				/*
245				 * Case 1 - left rotate at parent
246				 *
247				 *     P               S
248				 *    / \             / \
249				 *   N   s    -->    p   Sr
250				 *      / \         / \
251				 *     Sl  Sr      N   Sl
252				 */
253				tmp1 = sibling->rb_left;
254				WRITE_ONCE(parent->rb_right, tmp1);
255				WRITE_ONCE(sibling->rb_left, parent);
256				rb_set_parent_color(tmp1, parent, RB_BLACK);
257				__rb_rotate_set_parents(parent, sibling, root,
258							RB_RED);
259				augment_rotate(parent, sibling);
260				sibling = tmp1;
261			}
262			tmp1 = sibling->rb_right;
263			if (!tmp1 || rb_is_black(tmp1)) {
264				tmp2 = sibling->rb_left;
265				if (!tmp2 || rb_is_black(tmp2)) {
266					/*
267					 * Case 2 - sibling color flip
268					 * (p could be either color here)
269					 *
270					 *    (p)           (p)
271					 *    / \           / \
272					 *   N   S    -->  N   s
273					 *      / \           / \
274					 *     Sl  Sr        Sl  Sr
275					 *
276					 * This leaves us violating 5) which
277					 * can be fixed by flipping p to black
278					 * if it was red, or by recursing at p.
279					 * p is red when coming from Case 1.
280					 */
281					rb_set_parent_color(sibling, parent,
282							    RB_RED);
283					if (rb_is_red(parent))
284						rb_set_black(parent);
285					else {
286						node = parent;
287						parent = rb_parent(node);
288						if (parent)
289							continue;
290					}
291					break;
292				}
293				/*
294				 * Case 3 - right rotate at sibling
295				 * (p could be either color here)
296				 *
297				 *   (p)           (p)
298				 *   / \           / \
299				 *  N   S    -->  N   sl
300				 *     / \             \
301				 *    sl  Sr            S
302				 *                       \
303				 *                        Sr
304				 *
305				 * Note: p might be red, and then both
306				 * p and sl are red after rotation(which
307				 * breaks property 4). This is fixed in
308				 * Case 4 (in __rb_rotate_set_parents()
309				 *         which set sl the color of p
310				 *         and set p RB_BLACK)
311				 *
312				 *   (p)            (sl)
313				 *   / \            /  \
314				 *  N   sl   -->   P    S
315				 *       \        /      \
316				 *        S      N        Sr
317				 *         \
318				 *          Sr
319				 */
320				tmp1 = tmp2->rb_right;
321				WRITE_ONCE(sibling->rb_left, tmp1);
322				WRITE_ONCE(tmp2->rb_right, sibling);
323				WRITE_ONCE(parent->rb_right, tmp2);
324				if (tmp1)
325					rb_set_parent_color(tmp1, sibling,
326							    RB_BLACK);
327				augment_rotate(sibling, tmp2);
328				tmp1 = sibling;
329				sibling = tmp2;
330			}
331			/*
332			 * Case 4 - left rotate at parent + color flips
333			 * (p and sl could be either color here.
334			 *  After rotation, p becomes black, s acquires
335			 *  p's color, and sl keeps its color)
336			 *
337			 *      (p)             (s)
338			 *      / \             / \
339			 *     N   S     -->   P   Sr
340			 *        / \         / \
341			 *      (sl) sr      N  (sl)
342			 */
343			tmp2 = sibling->rb_left;
344			WRITE_ONCE(parent->rb_right, tmp2);
345			WRITE_ONCE(sibling->rb_left, parent);
346			rb_set_parent_color(tmp1, sibling, RB_BLACK);
347			if (tmp2)
348				rb_set_parent(tmp2, parent);
349			__rb_rotate_set_parents(parent, sibling, root,
350						RB_BLACK);
351			augment_rotate(parent, sibling);
352			break;
353		} else {
354			sibling = parent->rb_left;
355			if (rb_is_red(sibling)) {
356				/* Case 1 - right rotate at parent */
357				tmp1 = sibling->rb_right;
358				WRITE_ONCE(parent->rb_left, tmp1);
359				WRITE_ONCE(sibling->rb_right, parent);
360				rb_set_parent_color(tmp1, parent, RB_BLACK);
361				__rb_rotate_set_parents(parent, sibling, root,
362							RB_RED);
363				augment_rotate(parent, sibling);
364				sibling = tmp1;
365			}
366			tmp1 = sibling->rb_left;
367			if (!tmp1 || rb_is_black(tmp1)) {
368				tmp2 = sibling->rb_right;
369				if (!tmp2 || rb_is_black(tmp2)) {
370					/* Case 2 - sibling color flip */
371					rb_set_parent_color(sibling, parent,
372							    RB_RED);
373					if (rb_is_red(parent))
374						rb_set_black(parent);
375					else {
376						node = parent;
377						parent = rb_parent(node);
378						if (parent)
379							continue;
380					}
381					break;
382				}
383				/* Case 3 - left rotate at sibling */
384				tmp1 = tmp2->rb_left;
385				WRITE_ONCE(sibling->rb_right, tmp1);
386				WRITE_ONCE(tmp2->rb_left, sibling);
387				WRITE_ONCE(parent->rb_left, tmp2);
388				if (tmp1)
389					rb_set_parent_color(tmp1, sibling,
390							    RB_BLACK);
391				augment_rotate(sibling, tmp2);
392				tmp1 = sibling;
393				sibling = tmp2;
394			}
395			/* Case 4 - right rotate at parent + color flips */
396			tmp2 = sibling->rb_right;
397			WRITE_ONCE(parent->rb_left, tmp2);
398			WRITE_ONCE(sibling->rb_right, parent);
399			rb_set_parent_color(tmp1, sibling, RB_BLACK);
400			if (tmp2)
401				rb_set_parent(tmp2, parent);
402			__rb_rotate_set_parents(parent, sibling, root,
403						RB_BLACK);
404			augment_rotate(parent, sibling);
405			break;
406		}
407	}
408}
409
410/* Non-inline version for rb_erase_augmented() use */
411void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
412	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
413{
414	____rb_erase_color(parent, root, augment_rotate);
415}
416EXPORT_SYMBOL(__rb_erase_color);
417
418/*
419 * Non-augmented rbtree manipulation functions.
420 *
421 * We use dummy augmented callbacks here, and have the compiler optimize them
422 * out of the rb_insert_color() and rb_erase() function definitions.
423 */
424
425static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
426static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
427static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
428
429static const struct rb_augment_callbacks dummy_callbacks = {
430	dummy_propagate, dummy_copy, dummy_rotate
431};
432
433void rb_insert_color(struct rb_node *node, struct rb_root *root)
434{
435	__rb_insert(node, root, dummy_rotate);
436}
437EXPORT_SYMBOL(rb_insert_color);
438
439void rb_erase(struct rb_node *node, struct rb_root *root)
440{
441	struct rb_node *rebalance;
442	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
443	if (rebalance)
444		____rb_erase_color(rebalance, root, dummy_rotate);
445}
446EXPORT_SYMBOL(rb_erase);
447
448/*
449 * Augmented rbtree manipulation functions.
450 *
451 * This instantiates the same __always_inline functions as in the non-augmented
452 * case, but this time with user-defined callbacks.
453 */
454
455void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
456	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
457{
458	__rb_insert(node, root, augment_rotate);
459}
460EXPORT_SYMBOL(__rb_insert_augmented);
461
462/*
463 * This function returns the first node (in sort order) of the tree.
464 */
465struct rb_node *rb_first(const struct rb_root *root)
466{
467	struct rb_node	*n;
468
469	n = root->rb_node;
470	if (!n)
471		return NULL;
472	while (n->rb_left)
473		n = n->rb_left;
474	return n;
475}
476EXPORT_SYMBOL(rb_first);
477
478struct rb_node *rb_last(const struct rb_root *root)
479{
480	struct rb_node	*n;
481
482	n = root->rb_node;
483	if (!n)
484		return NULL;
485	while (n->rb_right)
486		n = n->rb_right;
487	return n;
488}
489EXPORT_SYMBOL(rb_last);
490
491struct rb_node *rb_next(const struct rb_node *node)
492{
493	struct rb_node *parent;
494
495	if (RB_EMPTY_NODE(node))
496		return NULL;
497
498	/*
499	 * If we have a right-hand child, go down and then left as far
500	 * as we can.
501	 */
502	if (node->rb_right) {
503		node = node->rb_right; 
504		while (node->rb_left)
505			node=node->rb_left;
506		return (struct rb_node *)node;
507	}
508
509	/*
510	 * No right-hand children. Everything down and left is smaller than us,
511	 * so any 'next' node must be in the general direction of our parent.
512	 * Go up the tree; any time the ancestor is a right-hand child of its
513	 * parent, keep going up. First time it's a left-hand child of its
514	 * parent, said parent is our 'next' node.
515	 */
516	while ((parent = rb_parent(node)) && node == parent->rb_right)
517		node = parent;
518
519	return parent;
520}
521EXPORT_SYMBOL(rb_next);
522
523struct rb_node *rb_prev(const struct rb_node *node)
524{
525	struct rb_node *parent;
526
527	if (RB_EMPTY_NODE(node))
528		return NULL;
529
530	/*
531	 * If we have a left-hand child, go down and then right as far
532	 * as we can.
533	 */
534	if (node->rb_left) {
535		node = node->rb_left; 
536		while (node->rb_right)
537			node=node->rb_right;
538		return (struct rb_node *)node;
539	}
540
541	/*
542	 * No left-hand children. Go up till we find an ancestor which
543	 * is a right-hand child of its parent.
544	 */
545	while ((parent = rb_parent(node)) && node == parent->rb_left)
546		node = parent;
547
548	return parent;
549}
550EXPORT_SYMBOL(rb_prev);
551
552void rb_replace_node(struct rb_node *victim, struct rb_node *new,
553		     struct rb_root *root)
554{
555	struct rb_node *parent = rb_parent(victim);
556
557	/* Copy the pointers/colour from the victim to the replacement */
558	*new = *victim;
559
560	/* Set the surrounding nodes to point to the replacement */
 
561	if (victim->rb_left)
562		rb_set_parent(victim->rb_left, new);
563	if (victim->rb_right)
564		rb_set_parent(victim->rb_right, new);
565	__rb_change_child(victim, new, parent, root);
566}
567EXPORT_SYMBOL(rb_replace_node);
568
569void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
570			 struct rb_root *root)
571{
572	struct rb_node *parent = rb_parent(victim);
573
574	/* Copy the pointers/colour from the victim to the replacement */
575	*new = *victim;
576
577	/* Set the surrounding nodes to point to the replacement */
578	if (victim->rb_left)
579		rb_set_parent(victim->rb_left, new);
580	if (victim->rb_right)
581		rb_set_parent(victim->rb_right, new);
582
583	/* Set the parent's pointer to the new node last after an RCU barrier
584	 * so that the pointers onwards are seen to be set correctly when doing
585	 * an RCU walk over the tree.
586	 */
587	__rb_change_child_rcu(victim, new, parent, root);
588}
589EXPORT_SYMBOL(rb_replace_node_rcu);
590
591static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
592{
593	for (;;) {
594		if (node->rb_left)
595			node = node->rb_left;
596		else if (node->rb_right)
597			node = node->rb_right;
598		else
599			return (struct rb_node *)node;
600	}
601}
602
603struct rb_node *rb_next_postorder(const struct rb_node *node)
604{
605	const struct rb_node *parent;
606	if (!node)
607		return NULL;
608	parent = rb_parent(node);
609
610	/* If we're sitting on node, we've already seen our children */
611	if (parent && node == parent->rb_left && parent->rb_right) {
612		/* If we are the parent's left node, go to the parent's right
613		 * node then all the way down to the left */
614		return rb_left_deepest_node(parent->rb_right);
615	} else
616		/* Otherwise we are the parent's right node, and the parent
617		 * should be next */
618		return (struct rb_node *)parent;
619}
620EXPORT_SYMBOL(rb_next_postorder);
621
622struct rb_node *rb_first_postorder(const struct rb_root *root)
623{
624	if (!root->rb_node)
625		return NULL;
626
627	return rb_left_deepest_node(root->rb_node);
628}
629EXPORT_SYMBOL(rb_first_postorder);