Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
   3 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
 
 
   4 *
   5 *    This program is free software; you can redistribute it and/or modify
   6 *    it under the terms of the GNU General Public License as published by
   7 *    the Free Software Foundation; version 2 of the License.
   8 *
   9 *    This program is distributed in the hope that it will be useful,
  10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  13 *
  14 *    You should have received a copy of the GNU General Public License
  15 *    along with this program; if not, write to the Free Software
  16 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 *
  18 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
  19 *
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/interrupt.h>
  24#include <linux/types.h>
  25#include <linux/pci.h>
  26#include <linux/pci-aspm.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/delay.h>
  30#include <linux/fs.h>
  31#include <linux/timer.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/compat.h>
  35#include <linux/blktrace_api.h>
  36#include <linux/uaccess.h>
  37#include <linux/io.h>
  38#include <linux/dma-mapping.h>
  39#include <linux/completion.h>
  40#include <linux/moduleparam.h>
  41#include <scsi/scsi.h>
  42#include <scsi/scsi_cmnd.h>
  43#include <scsi/scsi_device.h>
  44#include <scsi/scsi_host.h>
  45#include <scsi/scsi_tcq.h>
 
 
 
  46#include <linux/cciss_ioctl.h>
  47#include <linux/string.h>
  48#include <linux/bitmap.h>
  49#include <linux/atomic.h>
  50#include <linux/jiffies.h>
 
 
 
  51#include <asm/div64.h>
  52#include "hpsa_cmd.h"
  53#include "hpsa.h"
  54
  55/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
  56#define HPSA_DRIVER_VERSION "3.4.4-1"
 
 
 
  57#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  58#define HPSA "hpsa"
  59
  60/* How long to wait (in milliseconds) for board to go into simple mode */
  61#define MAX_CONFIG_WAIT 30000
 
 
 
  62#define MAX_IOCTL_CONFIG_WAIT 1000
  63
  64/*define how many times we will try a command because of bus resets */
  65#define MAX_CMD_RETRIES 3
  66
  67/* Embedded module documentation macros - see modules.h */
  68MODULE_AUTHOR("Hewlett-Packard Company");
  69MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  70	HPSA_DRIVER_VERSION);
  71MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  72MODULE_VERSION(HPSA_DRIVER_VERSION);
  73MODULE_LICENSE("GPL");
  74
  75static int hpsa_allow_any;
  76module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
  77MODULE_PARM_DESC(hpsa_allow_any,
  78		"Allow hpsa driver to access unknown HP Smart Array hardware");
  79static int hpsa_simple_mode;
  80module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  81MODULE_PARM_DESC(hpsa_simple_mode,
  82	"Use 'simple mode' rather than 'performant mode'");
  83
  84/* define the PCI info for the cards we can control */
  85static const struct pci_device_id hpsa_pci_device_id[] = {
  86	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  87	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  88	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  89	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  90	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
  91	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
  92	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
  93	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
  94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
  95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
  96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
  97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
  98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
  99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
 106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 113	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 114	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 115	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 116	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 117	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 
 118	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 119	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 120	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 
 
 
 
 
 
 
 
 
 
 
 121	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 122	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 123	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 124	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 125	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 126	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
 127		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 128	{0,}
 129};
 130
 131MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 132
 133/*  board_id = Subsystem Device ID & Vendor ID
 134 *  product = Marketing Name for the board
 135 *  access = Address of the struct of function pointers
 136 */
 137static struct board_type products[] = {
 138	{0x3241103C, "Smart Array P212", &SA5_access},
 139	{0x3243103C, "Smart Array P410", &SA5_access},
 140	{0x3245103C, "Smart Array P410i", &SA5_access},
 141	{0x3247103C, "Smart Array P411", &SA5_access},
 142	{0x3249103C, "Smart Array P812", &SA5_access},
 143	{0x324A103C, "Smart Array P712m", &SA5_access},
 144	{0x324B103C, "Smart Array P711m", &SA5_access},
 
 145	{0x3350103C, "Smart Array P222", &SA5_access},
 146	{0x3351103C, "Smart Array P420", &SA5_access},
 147	{0x3352103C, "Smart Array P421", &SA5_access},
 148	{0x3353103C, "Smart Array P822", &SA5_access},
 149	{0x3354103C, "Smart Array P420i", &SA5_access},
 150	{0x3355103C, "Smart Array P220i", &SA5_access},
 151	{0x3356103C, "Smart Array P721m", &SA5_access},
 152	{0x1921103C, "Smart Array P830i", &SA5_access},
 153	{0x1922103C, "Smart Array P430", &SA5_access},
 154	{0x1923103C, "Smart Array P431", &SA5_access},
 155	{0x1924103C, "Smart Array P830", &SA5_access},
 156	{0x1926103C, "Smart Array P731m", &SA5_access},
 157	{0x1928103C, "Smart Array P230i", &SA5_access},
 158	{0x1929103C, "Smart Array P530", &SA5_access},
 159	{0x21BD103C, "Smart Array", &SA5_access},
 160	{0x21BE103C, "Smart Array", &SA5_access},
 161	{0x21BF103C, "Smart Array", &SA5_access},
 162	{0x21C0103C, "Smart Array", &SA5_access},
 163	{0x21C1103C, "Smart Array", &SA5_access},
 164	{0x21C2103C, "Smart Array", &SA5_access},
 165	{0x21C3103C, "Smart Array", &SA5_access},
 166	{0x21C4103C, "Smart Array", &SA5_access},
 167	{0x21C5103C, "Smart Array", &SA5_access},
 168	{0x21C7103C, "Smart Array", &SA5_access},
 169	{0x21C8103C, "Smart Array", &SA5_access},
 
 170	{0x21C9103C, "Smart Array", &SA5_access},
 
 
 
 
 
 
 
 
 
 
 
 171	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 172	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 173	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 174	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 175	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 176	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
 177};
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179static int number_of_controllers;
 180
 181static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 182static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 183static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
 184static void start_io(struct ctlr_info *h);
 185
 186#ifdef CONFIG_COMPAT
 187static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
 
 188#endif
 189
 190static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 191static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
 192static struct CommandList *cmd_alloc(struct ctlr_info *h);
 193static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
 
 
 194static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 195	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 196	int cmd_type);
 
 197#define VPD_PAGE (1 << 8)
 
 198
 199static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 200static void hpsa_scan_start(struct Scsi_Host *);
 201static int hpsa_scan_finished(struct Scsi_Host *sh,
 202	unsigned long elapsed_time);
 203static int hpsa_change_queue_depth(struct scsi_device *sdev,
 204	int qdepth, int reason);
 205
 206static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 207static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
 208static int hpsa_slave_alloc(struct scsi_device *sdev);
 
 209static void hpsa_slave_destroy(struct scsi_device *sdev);
 210
 211static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
 212static int check_for_unit_attention(struct ctlr_info *h,
 213	struct CommandList *c);
 214static void check_ioctl_unit_attention(struct ctlr_info *h,
 215	struct CommandList *c);
 216/* performant mode helper functions */
 217static void calc_bucket_map(int *bucket, int num_buckets,
 218	int nsgs, int min_blocks, int *bucket_map);
 219static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 
 220static inline u32 next_command(struct ctlr_info *h, u8 q);
 221static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 222			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 223			       u64 *cfg_offset);
 224static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 225				    unsigned long *memory_bar);
 226static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
 
 
 
 227static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 228				     int wait_for_ready);
 229static inline void finish_cmd(struct CommandList *c);
 230static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 231#define BOARD_NOT_READY 0
 232#define BOARD_READY 1
 233static void hpsa_drain_accel_commands(struct ctlr_info *h);
 234static void hpsa_flush_cache(struct ctlr_info *h);
 235static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 236	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 237	u8 *scsi3addr);
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 240{
 241	unsigned long *priv = shost_priv(sdev->host);
 242	return (struct ctlr_info *) *priv;
 243}
 244
 245static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 246{
 247	unsigned long *priv = shost_priv(sh);
 248	return (struct ctlr_info *) *priv;
 249}
 250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251static int check_for_unit_attention(struct ctlr_info *h,
 252	struct CommandList *c)
 253{
 254	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
 
 
 
 
 
 
 
 
 
 
 255		return 0;
 256
 257	switch (c->err_info->SenseInfo[12]) {
 258	case STATE_CHANGED:
 259		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
 260			"detected, command retried\n", h->ctlr);
 
 261		break;
 262	case LUN_FAILED:
 263		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
 264			"detected, action required\n", h->ctlr);
 265		break;
 266	case REPORT_LUNS_CHANGED:
 267		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
 268			"changed, action required\n", h->ctlr);
 269	/*
 270	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 271	 * target (array) devices.
 272	 */
 273		break;
 274	case POWER_OR_RESET:
 275		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
 276			"or device reset detected\n", h->ctlr);
 
 277		break;
 278	case UNIT_ATTENTION_CLEARED:
 279		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
 280		    "cleared by another initiator\n", h->ctlr);
 
 281		break;
 282	default:
 283		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
 284			"unit attention detected\n", h->ctlr);
 
 285		break;
 286	}
 287	return 1;
 288}
 289
 290static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 291{
 292	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 293		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 294		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 295		return 0;
 296	dev_warn(&h->pdev->dev, HPSA "device busy");
 297	return 1;
 298}
 299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 301					 struct device_attribute *attr,
 302					 const char *buf, size_t count)
 303{
 304	int status, len;
 305	struct ctlr_info *h;
 306	struct Scsi_Host *shost = class_to_shost(dev);
 307	char tmpbuf[10];
 308
 309	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 310		return -EACCES;
 311	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 312	strncpy(tmpbuf, buf, len);
 313	tmpbuf[len] = '\0';
 314	if (sscanf(tmpbuf, "%d", &status) != 1)
 315		return -EINVAL;
 316	h = shost_to_hba(shost);
 317	h->acciopath_status = !!status;
 318	dev_warn(&h->pdev->dev,
 319		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
 320		h->acciopath_status ? "enabled" : "disabled");
 321	return count;
 322}
 323
 324static ssize_t host_store_raid_offload_debug(struct device *dev,
 325					 struct device_attribute *attr,
 326					 const char *buf, size_t count)
 327{
 328	int debug_level, len;
 329	struct ctlr_info *h;
 330	struct Scsi_Host *shost = class_to_shost(dev);
 331	char tmpbuf[10];
 332
 333	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 334		return -EACCES;
 335	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 336	strncpy(tmpbuf, buf, len);
 337	tmpbuf[len] = '\0';
 338	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 339		return -EINVAL;
 340	if (debug_level < 0)
 341		debug_level = 0;
 342	h = shost_to_hba(shost);
 343	h->raid_offload_debug = debug_level;
 344	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 345		h->raid_offload_debug);
 346	return count;
 347}
 348
 349static ssize_t host_store_rescan(struct device *dev,
 350				 struct device_attribute *attr,
 351				 const char *buf, size_t count)
 352{
 353	struct ctlr_info *h;
 354	struct Scsi_Host *shost = class_to_shost(dev);
 355	h = shost_to_hba(shost);
 356	hpsa_scan_start(h->scsi_host);
 357	return count;
 358}
 359
 360static ssize_t host_show_firmware_revision(struct device *dev,
 361	     struct device_attribute *attr, char *buf)
 362{
 363	struct ctlr_info *h;
 364	struct Scsi_Host *shost = class_to_shost(dev);
 365	unsigned char *fwrev;
 366
 367	h = shost_to_hba(shost);
 368	if (!h->hba_inquiry_data)
 369		return 0;
 370	fwrev = &h->hba_inquiry_data[32];
 371	return snprintf(buf, 20, "%c%c%c%c\n",
 372		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 373}
 374
 375static ssize_t host_show_commands_outstanding(struct device *dev,
 376	     struct device_attribute *attr, char *buf)
 377{
 378	struct Scsi_Host *shost = class_to_shost(dev);
 379	struct ctlr_info *h = shost_to_hba(shost);
 380
 381	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
 
 382}
 383
 384static ssize_t host_show_transport_mode(struct device *dev,
 385	struct device_attribute *attr, char *buf)
 386{
 387	struct ctlr_info *h;
 388	struct Scsi_Host *shost = class_to_shost(dev);
 389
 390	h = shost_to_hba(shost);
 391	return snprintf(buf, 20, "%s\n",
 392		h->transMethod & CFGTBL_Trans_Performant ?
 393			"performant" : "simple");
 394}
 395
 396static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 397	struct device_attribute *attr, char *buf)
 398{
 399	struct ctlr_info *h;
 400	struct Scsi_Host *shost = class_to_shost(dev);
 401
 402	h = shost_to_hba(shost);
 403	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 404		(h->acciopath_status == 1) ?  "enabled" : "disabled");
 405}
 406
 407/* List of controllers which cannot be hard reset on kexec with reset_devices */
 408static u32 unresettable_controller[] = {
 409	0x324a103C, /* Smart Array P712m */
 410	0x324b103C, /* SmartArray P711m */
 411	0x3223103C, /* Smart Array P800 */
 412	0x3234103C, /* Smart Array P400 */
 413	0x3235103C, /* Smart Array P400i */
 414	0x3211103C, /* Smart Array E200i */
 415	0x3212103C, /* Smart Array E200 */
 416	0x3213103C, /* Smart Array E200i */
 417	0x3214103C, /* Smart Array E200i */
 418	0x3215103C, /* Smart Array E200i */
 419	0x3237103C, /* Smart Array E500 */
 420	0x323D103C, /* Smart Array P700m */
 421	0x40800E11, /* Smart Array 5i */
 422	0x409C0E11, /* Smart Array 6400 */
 423	0x409D0E11, /* Smart Array 6400 EM */
 424	0x40700E11, /* Smart Array 5300 */
 425	0x40820E11, /* Smart Array 532 */
 426	0x40830E11, /* Smart Array 5312 */
 427	0x409A0E11, /* Smart Array 641 */
 428	0x409B0E11, /* Smart Array 642 */
 429	0x40910E11, /* Smart Array 6i */
 430};
 431
 432/* List of controllers which cannot even be soft reset */
 433static u32 soft_unresettable_controller[] = {
 434	0x40800E11, /* Smart Array 5i */
 435	0x40700E11, /* Smart Array 5300 */
 436	0x40820E11, /* Smart Array 532 */
 437	0x40830E11, /* Smart Array 5312 */
 438	0x409A0E11, /* Smart Array 641 */
 439	0x409B0E11, /* Smart Array 642 */
 440	0x40910E11, /* Smart Array 6i */
 441	/* Exclude 640x boards.  These are two pci devices in one slot
 442	 * which share a battery backed cache module.  One controls the
 443	 * cache, the other accesses the cache through the one that controls
 444	 * it.  If we reset the one controlling the cache, the other will
 445	 * likely not be happy.  Just forbid resetting this conjoined mess.
 446	 * The 640x isn't really supported by hpsa anyway.
 447	 */
 448	0x409C0E11, /* Smart Array 6400 */
 449	0x409D0E11, /* Smart Array 6400 EM */
 450};
 451
 452static int ctlr_is_hard_resettable(u32 board_id)
 
 
 
 
 
 
 453{
 454	int i;
 455
 456	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
 457		if (unresettable_controller[i] == board_id)
 458			return 0;
 459	return 1;
 460}
 461
 462static int ctlr_is_soft_resettable(u32 board_id)
 463{
 464	int i;
 
 
 465
 466	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
 467		if (soft_unresettable_controller[i] == board_id)
 468			return 0;
 469	return 1;
 470}
 471
 472static int ctlr_is_resettable(u32 board_id)
 473{
 474	return ctlr_is_hard_resettable(board_id) ||
 475		ctlr_is_soft_resettable(board_id);
 476}
 477
 
 
 
 
 
 
 478static ssize_t host_show_resettable(struct device *dev,
 479	struct device_attribute *attr, char *buf)
 480{
 481	struct ctlr_info *h;
 482	struct Scsi_Host *shost = class_to_shost(dev);
 483
 484	h = shost_to_hba(shost);
 485	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 486}
 487
 488static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 489{
 490	return (scsi3addr[3] & 0xC0) == 0x40;
 491}
 492
 493static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
 494	"1(ADM)", "UNKNOWN"
 495};
 496#define HPSA_RAID_0	0
 497#define HPSA_RAID_4	1
 498#define HPSA_RAID_1	2	/* also used for RAID 10 */
 499#define HPSA_RAID_5	3	/* also used for RAID 50 */
 500#define HPSA_RAID_51	4
 501#define HPSA_RAID_6	5	/* also used for RAID 60 */
 502#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
 503#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
 
 
 
 
 
 
 504
 505static ssize_t raid_level_show(struct device *dev,
 506	     struct device_attribute *attr, char *buf)
 507{
 508	ssize_t l = 0;
 509	unsigned char rlevel;
 510	struct ctlr_info *h;
 511	struct scsi_device *sdev;
 512	struct hpsa_scsi_dev_t *hdev;
 513	unsigned long flags;
 514
 515	sdev = to_scsi_device(dev);
 516	h = sdev_to_hba(sdev);
 517	spin_lock_irqsave(&h->lock, flags);
 518	hdev = sdev->hostdata;
 519	if (!hdev) {
 520		spin_unlock_irqrestore(&h->lock, flags);
 521		return -ENODEV;
 522	}
 523
 524	/* Is this even a logical drive? */
 525	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
 526		spin_unlock_irqrestore(&h->lock, flags);
 527		l = snprintf(buf, PAGE_SIZE, "N/A\n");
 528		return l;
 529	}
 530
 531	rlevel = hdev->raid_level;
 532	spin_unlock_irqrestore(&h->lock, flags);
 533	if (rlevel > RAID_UNKNOWN)
 534		rlevel = RAID_UNKNOWN;
 535	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 536	return l;
 537}
 538
 539static ssize_t lunid_show(struct device *dev,
 540	     struct device_attribute *attr, char *buf)
 541{
 542	struct ctlr_info *h;
 543	struct scsi_device *sdev;
 544	struct hpsa_scsi_dev_t *hdev;
 545	unsigned long flags;
 546	unsigned char lunid[8];
 547
 548	sdev = to_scsi_device(dev);
 549	h = sdev_to_hba(sdev);
 550	spin_lock_irqsave(&h->lock, flags);
 551	hdev = sdev->hostdata;
 552	if (!hdev) {
 553		spin_unlock_irqrestore(&h->lock, flags);
 554		return -ENODEV;
 555	}
 556	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 557	spin_unlock_irqrestore(&h->lock, flags);
 558	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
 559		lunid[0], lunid[1], lunid[2], lunid[3],
 560		lunid[4], lunid[5], lunid[6], lunid[7]);
 561}
 562
 563static ssize_t unique_id_show(struct device *dev,
 564	     struct device_attribute *attr, char *buf)
 565{
 566	struct ctlr_info *h;
 567	struct scsi_device *sdev;
 568	struct hpsa_scsi_dev_t *hdev;
 569	unsigned long flags;
 570	unsigned char sn[16];
 571
 572	sdev = to_scsi_device(dev);
 573	h = sdev_to_hba(sdev);
 574	spin_lock_irqsave(&h->lock, flags);
 575	hdev = sdev->hostdata;
 576	if (!hdev) {
 577		spin_unlock_irqrestore(&h->lock, flags);
 578		return -ENODEV;
 579	}
 580	memcpy(sn, hdev->device_id, sizeof(sn));
 581	spin_unlock_irqrestore(&h->lock, flags);
 582	return snprintf(buf, 16 * 2 + 2,
 583			"%02X%02X%02X%02X%02X%02X%02X%02X"
 584			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
 585			sn[0], sn[1], sn[2], sn[3],
 586			sn[4], sn[5], sn[6], sn[7],
 587			sn[8], sn[9], sn[10], sn[11],
 588			sn[12], sn[13], sn[14], sn[15]);
 589}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 592	     struct device_attribute *attr, char *buf)
 593{
 594	struct ctlr_info *h;
 595	struct scsi_device *sdev;
 596	struct hpsa_scsi_dev_t *hdev;
 597	unsigned long flags;
 598	int offload_enabled;
 599
 600	sdev = to_scsi_device(dev);
 601	h = sdev_to_hba(sdev);
 602	spin_lock_irqsave(&h->lock, flags);
 603	hdev = sdev->hostdata;
 604	if (!hdev) {
 605		spin_unlock_irqrestore(&h->lock, flags);
 606		return -ENODEV;
 607	}
 608	offload_enabled = hdev->offload_enabled;
 609	spin_unlock_irqrestore(&h->lock, flags);
 610	return snprintf(buf, 20, "%d\n", offload_enabled);
 611}
 612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
 614static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
 615static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
 616static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 
 617static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 618			host_show_hp_ssd_smart_path_enabled, NULL);
 
 619static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 620		host_show_hp_ssd_smart_path_status,
 621		host_store_hp_ssd_smart_path_status);
 622static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 623			host_store_raid_offload_debug);
 624static DEVICE_ATTR(firmware_revision, S_IRUGO,
 625	host_show_firmware_revision, NULL);
 626static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 627	host_show_commands_outstanding, NULL);
 628static DEVICE_ATTR(transport_mode, S_IRUGO,
 629	host_show_transport_mode, NULL);
 630static DEVICE_ATTR(resettable, S_IRUGO,
 631	host_show_resettable, NULL);
 
 
 
 
 632
 633static struct device_attribute *hpsa_sdev_attrs[] = {
 634	&dev_attr_raid_level,
 635	&dev_attr_lunid,
 636	&dev_attr_unique_id,
 637	&dev_attr_hp_ssd_smart_path_enabled,
 
 
 638	NULL,
 639};
 640
 641static struct device_attribute *hpsa_shost_attrs[] = {
 642	&dev_attr_rescan,
 643	&dev_attr_firmware_revision,
 644	&dev_attr_commands_outstanding,
 645	&dev_attr_transport_mode,
 646	&dev_attr_resettable,
 647	&dev_attr_hp_ssd_smart_path_status,
 648	&dev_attr_raid_offload_debug,
 
 
 649	NULL,
 650};
 651
 
 
 
 652static struct scsi_host_template hpsa_driver_template = {
 653	.module			= THIS_MODULE,
 654	.name			= HPSA,
 655	.proc_name		= HPSA,
 656	.queuecommand		= hpsa_scsi_queue_command,
 657	.scan_start		= hpsa_scan_start,
 658	.scan_finished		= hpsa_scan_finished,
 659	.change_queue_depth	= hpsa_change_queue_depth,
 660	.this_id		= -1,
 661	.use_clustering		= ENABLE_CLUSTERING,
 662	.eh_abort_handler	= hpsa_eh_abort_handler,
 663	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
 664	.ioctl			= hpsa_ioctl,
 665	.slave_alloc		= hpsa_slave_alloc,
 
 666	.slave_destroy		= hpsa_slave_destroy,
 667#ifdef CONFIG_COMPAT
 668	.compat_ioctl		= hpsa_compat_ioctl,
 669#endif
 670	.sdev_attrs = hpsa_sdev_attrs,
 671	.shost_attrs = hpsa_shost_attrs,
 672	.max_sectors = 8192,
 673	.no_write_same = 1,
 674};
 675
 676
 677/* Enqueuing and dequeuing functions for cmdlists. */
 678static inline void addQ(struct list_head *list, struct CommandList *c)
 679{
 680	list_add_tail(&c->list, list);
 681}
 682
 683static inline u32 next_command(struct ctlr_info *h, u8 q)
 684{
 685	u32 a;
 686	struct reply_pool *rq = &h->reply_queue[q];
 687	unsigned long flags;
 688
 689	if (h->transMethod & CFGTBL_Trans_io_accel1)
 690		return h->access.command_completed(h, q);
 691
 692	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 693		return h->access.command_completed(h, q);
 694
 695	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 696		a = rq->head[rq->current_entry];
 697		rq->current_entry++;
 698		spin_lock_irqsave(&h->lock, flags);
 699		h->commands_outstanding--;
 700		spin_unlock_irqrestore(&h->lock, flags);
 701	} else {
 702		a = FIFO_EMPTY;
 703	}
 704	/* Check for wraparound */
 705	if (rq->current_entry == h->max_commands) {
 706		rq->current_entry = 0;
 707		rq->wraparound ^= 1;
 708	}
 709	return a;
 710}
 711
 712/*
 713 * There are some special bits in the bus address of the
 714 * command that we have to set for the controller to know
 715 * how to process the command:
 716 *
 717 * Normal performant mode:
 718 * bit 0: 1 means performant mode, 0 means simple mode.
 719 * bits 1-3 = block fetch table entry
 720 * bits 4-6 = command type (== 0)
 721 *
 722 * ioaccel1 mode:
 723 * bit 0 = "performant mode" bit.
 724 * bits 1-3 = block fetch table entry
 725 * bits 4-6 = command type (== 110)
 726 * (command type is needed because ioaccel1 mode
 727 * commands are submitted through the same register as normal
 728 * mode commands, so this is how the controller knows whether
 729 * the command is normal mode or ioaccel1 mode.)
 730 *
 731 * ioaccel2 mode:
 732 * bit 0 = "performant mode" bit.
 733 * bits 1-4 = block fetch table entry (note extra bit)
 734 * bits 4-6 = not needed, because ioaccel2 mode has
 735 * a separate special register for submitting commands.
 736 */
 737
 738/* set_performant_mode: Modify the tag for cciss performant
 
 739 * set bit 0 for pull model, bits 3-1 for block fetch
 740 * register number
 741 */
 742static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
 
 
 743{
 744	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
 745		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
 746		if (likely(h->msix_vector > 0))
 
 
 747			c->Header.ReplyQueue =
 748				raw_smp_processor_id() % h->nreply_queues;
 
 
 749	}
 750}
 751
 752static void set_ioaccel1_performant_mode(struct ctlr_info *h,
 753						struct CommandList *c)
 
 754{
 755	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
 756
 757	/* Tell the controller to post the reply to the queue for this
 
 758	 * processor.  This seems to give the best I/O throughput.
 759	 */
 760	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
 761	/* Set the bits in the address sent down to include:
 
 
 
 
 762	 *  - performant mode bit (bit 0)
 763	 *  - pull count (bits 1-3)
 764	 *  - command type (bits 4-6)
 765	 */
 766	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
 767					IOACCEL1_BUSADDR_CMDTYPE;
 768}
 769
 770static void set_ioaccel2_performant_mode(struct ctlr_info *h,
 771						struct CommandList *c)
 
 772{
 773	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
 
 774
 775	/* Tell the controller to post the reply to the queue for this
 776	 * processor.  This seems to give the best I/O throughput.
 777	 */
 778	cp->reply_queue = smp_processor_id() % h->nreply_queues;
 
 
 
 779	/* Set the bits in the address sent down to include:
 780	 *  - performant mode bit not used in ioaccel mode 2
 781	 *  - pull count (bits 0-3)
 782	 *  - command type isn't needed for ioaccel2
 783	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
 785}
 786
 787static int is_firmware_flash_cmd(u8 *cdb)
 788{
 789	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
 790}
 791
 792/*
 793 * During firmware flash, the heartbeat register may not update as frequently
 794 * as it should.  So we dial down lockup detection during firmware flash. and
 795 * dial it back up when firmware flash completes.
 796 */
 797#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
 798#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
 799static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
 800		struct CommandList *c)
 801{
 802	if (!is_firmware_flash_cmd(c->Request.CDB))
 803		return;
 804	atomic_inc(&h->firmware_flash_in_progress);
 805	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
 806}
 807
 808static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
 809		struct CommandList *c)
 810{
 811	if (is_firmware_flash_cmd(c->Request.CDB) &&
 812		atomic_dec_and_test(&h->firmware_flash_in_progress))
 813		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
 814}
 815
 816static void enqueue_cmd_and_start_io(struct ctlr_info *h,
 817	struct CommandList *c)
 818{
 819	unsigned long flags;
 820
 821	switch (c->cmd_type) {
 822	case CMD_IOACCEL1:
 823		set_ioaccel1_performant_mode(h, c);
 
 824		break;
 825	case CMD_IOACCEL2:
 826		set_ioaccel2_performant_mode(h, c);
 
 
 
 
 
 827		break;
 828	default:
 829		set_performant_mode(h, c);
 
 830	}
 831	dial_down_lockup_detection_during_fw_flash(h, c);
 832	spin_lock_irqsave(&h->lock, flags);
 833	addQ(&h->reqQ, c);
 834	h->Qdepth++;
 835	spin_unlock_irqrestore(&h->lock, flags);
 836	start_io(h);
 837}
 838
 839static inline void removeQ(struct CommandList *c)
 840{
 841	if (WARN_ON(list_empty(&c->list)))
 842		return;
 843	list_del_init(&c->list);
 
 844}
 845
 846static inline int is_hba_lunid(unsigned char scsi3addr[])
 847{
 848	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
 849}
 850
 851static inline int is_scsi_rev_5(struct ctlr_info *h)
 852{
 853	if (!h->hba_inquiry_data)
 854		return 0;
 855	if ((h->hba_inquiry_data[2] & 0x07) == 5)
 856		return 1;
 857	return 0;
 858}
 859
 860static int hpsa_find_target_lun(struct ctlr_info *h,
 861	unsigned char scsi3addr[], int bus, int *target, int *lun)
 862{
 863	/* finds an unused bus, target, lun for a new physical device
 864	 * assumes h->devlock is held
 865	 */
 866	int i, found = 0;
 867	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
 868
 869	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
 870
 871	for (i = 0; i < h->ndevices; i++) {
 872		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
 873			__set_bit(h->dev[i]->target, lun_taken);
 874	}
 875
 876	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
 877	if (i < HPSA_MAX_DEVICES) {
 878		/* *bus = 1; */
 879		*target = i;
 880		*lun = 0;
 881		found = 1;
 882	}
 883	return !found;
 884}
 885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886/* Add an entry into h->dev[] array. */
 887static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
 888		struct hpsa_scsi_dev_t *device,
 889		struct hpsa_scsi_dev_t *added[], int *nadded)
 890{
 891	/* assumes h->devlock is held */
 892	int n = h->ndevices;
 893	int i;
 894	unsigned char addr1[8], addr2[8];
 895	struct hpsa_scsi_dev_t *sd;
 896
 897	if (n >= HPSA_MAX_DEVICES) {
 898		dev_err(&h->pdev->dev, "too many devices, some will be "
 899			"inaccessible.\n");
 900		return -1;
 901	}
 902
 903	/* physical devices do not have lun or target assigned until now. */
 904	if (device->lun != -1)
 905		/* Logical device, lun is already assigned. */
 906		goto lun_assigned;
 907
 908	/* If this device a non-zero lun of a multi-lun device
 909	 * byte 4 of the 8-byte LUN addr will contain the logical
 910	 * unit no, zero otherise.
 911	 */
 912	if (device->scsi3addr[4] == 0) {
 913		/* This is not a non-zero lun of a multi-lun device */
 914		if (hpsa_find_target_lun(h, device->scsi3addr,
 915			device->bus, &device->target, &device->lun) != 0)
 916			return -1;
 917		goto lun_assigned;
 918	}
 919
 920	/* This is a non-zero lun of a multi-lun device.
 921	 * Search through our list and find the device which
 922	 * has the same 8 byte LUN address, excepting byte 4.
 923	 * Assign the same bus and target for this new LUN.
 924	 * Use the logical unit number from the firmware.
 925	 */
 926	memcpy(addr1, device->scsi3addr, 8);
 927	addr1[4] = 0;
 
 928	for (i = 0; i < n; i++) {
 929		sd = h->dev[i];
 930		memcpy(addr2, sd->scsi3addr, 8);
 931		addr2[4] = 0;
 932		/* differ only in byte 4? */
 
 933		if (memcmp(addr1, addr2, 8) == 0) {
 934			device->bus = sd->bus;
 935			device->target = sd->target;
 936			device->lun = device->scsi3addr[4];
 937			break;
 938		}
 939	}
 940	if (device->lun == -1) {
 941		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
 942			" suspect firmware bug or unsupported hardware "
 943			"configuration.\n");
 944			return -1;
 945	}
 946
 947lun_assigned:
 948
 949	h->dev[n] = device;
 950	h->ndevices++;
 951	added[*nadded] = device;
 952	(*nadded)++;
 953
 954	/* initially, (before registering with scsi layer) we don't
 955	 * know our hostno and we don't want to print anything first
 956	 * time anyway (the scsi layer's inquiries will show that info)
 957	 */
 958	/* if (hostno != -1) */
 959		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
 960			scsi_device_type(device->devtype), hostno,
 961			device->bus, device->target, device->lun);
 962	return 0;
 963}
 964
 965/* Update an entry in h->dev[] array. */
 966static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
 967	int entry, struct hpsa_scsi_dev_t *new_entry)
 968{
 
 969	/* assumes h->devlock is held */
 970	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 971
 972	/* Raid level changed. */
 973	h->dev[entry]->raid_level = new_entry->raid_level;
 974
 975	/* Raid offload parameters changed. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976	h->dev[entry]->offload_config = new_entry->offload_config;
 977	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
 978	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
 979	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
 980	h->dev[entry]->raid_map = new_entry->raid_map;
 981
 982	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
 983		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
 984		new_entry->target, new_entry->lun);
 
 
 
 
 
 
 
 
 
 
 985}
 986
 987/* Replace an entry from h->dev[] array. */
 988static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
 989	int entry, struct hpsa_scsi_dev_t *new_entry,
 990	struct hpsa_scsi_dev_t *added[], int *nadded,
 991	struct hpsa_scsi_dev_t *removed[], int *nremoved)
 992{
 993	/* assumes h->devlock is held */
 994	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 995	removed[*nremoved] = h->dev[entry];
 996	(*nremoved)++;
 997
 998	/*
 999	 * New physical devices won't have target/lun assigned yet
1000	 * so we need to preserve the values in the slot we are replacing.
1001	 */
1002	if (new_entry->target == -1) {
1003		new_entry->target = h->dev[entry]->target;
1004		new_entry->lun = h->dev[entry]->lun;
1005	}
1006
1007	h->dev[entry] = new_entry;
1008	added[*nadded] = new_entry;
1009	(*nadded)++;
1010	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1011		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1012			new_entry->target, new_entry->lun);
1013}
1014
1015/* Remove an entry from h->dev[] array. */
1016static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1017	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1018{
1019	/* assumes h->devlock is held */
1020	int i;
1021	struct hpsa_scsi_dev_t *sd;
1022
1023	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1024
1025	sd = h->dev[entry];
1026	removed[*nremoved] = h->dev[entry];
1027	(*nremoved)++;
1028
1029	for (i = entry; i < h->ndevices-1; i++)
1030		h->dev[i] = h->dev[i+1];
1031	h->ndevices--;
1032	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1033		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1034		sd->lun);
1035}
1036
1037#define SCSI3ADDR_EQ(a, b) ( \
1038	(a)[7] == (b)[7] && \
1039	(a)[6] == (b)[6] && \
1040	(a)[5] == (b)[5] && \
1041	(a)[4] == (b)[4] && \
1042	(a)[3] == (b)[3] && \
1043	(a)[2] == (b)[2] && \
1044	(a)[1] == (b)[1] && \
1045	(a)[0] == (b)[0])
1046
1047static void fixup_botched_add(struct ctlr_info *h,
1048	struct hpsa_scsi_dev_t *added)
1049{
1050	/* called when scsi_add_device fails in order to re-adjust
1051	 * h->dev[] to match the mid layer's view.
1052	 */
1053	unsigned long flags;
1054	int i, j;
1055
1056	spin_lock_irqsave(&h->lock, flags);
1057	for (i = 0; i < h->ndevices; i++) {
1058		if (h->dev[i] == added) {
1059			for (j = i; j < h->ndevices-1; j++)
1060				h->dev[j] = h->dev[j+1];
1061			h->ndevices--;
1062			break;
1063		}
1064	}
1065	spin_unlock_irqrestore(&h->lock, flags);
1066	kfree(added);
1067}
1068
1069static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1070	struct hpsa_scsi_dev_t *dev2)
1071{
1072	/* we compare everything except lun and target as these
1073	 * are not yet assigned.  Compare parts likely
1074	 * to differ first
1075	 */
1076	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1077		sizeof(dev1->scsi3addr)) != 0)
1078		return 0;
1079	if (memcmp(dev1->device_id, dev2->device_id,
1080		sizeof(dev1->device_id)) != 0)
1081		return 0;
1082	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1083		return 0;
1084	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1085		return 0;
1086	if (dev1->devtype != dev2->devtype)
1087		return 0;
1088	if (dev1->bus != dev2->bus)
1089		return 0;
1090	return 1;
1091}
1092
1093static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1094	struct hpsa_scsi_dev_t *dev2)
1095{
1096	/* Device attributes that can change, but don't mean
1097	 * that the device is a different device, nor that the OS
1098	 * needs to be told anything about the change.
1099	 */
1100	if (dev1->raid_level != dev2->raid_level)
1101		return 1;
1102	if (dev1->offload_config != dev2->offload_config)
1103		return 1;
1104	if (dev1->offload_enabled != dev2->offload_enabled)
1105		return 1;
 
 
 
1106	return 0;
1107}
1108
1109/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1110 * and return needle location in *index.  If scsi3addr matches, but not
1111 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1112 * location in *index.
1113 * In the case of a minor device attribute change, such as RAID level, just
1114 * return DEVICE_UPDATED, along with the updated device's location in index.
1115 * If needle not found, return DEVICE_NOT_FOUND.
1116 */
1117static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1118	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1119	int *index)
1120{
1121	int i;
1122#define DEVICE_NOT_FOUND 0
1123#define DEVICE_CHANGED 1
1124#define DEVICE_SAME 2
1125#define DEVICE_UPDATED 3
 
 
 
1126	for (i = 0; i < haystack_size; i++) {
1127		if (haystack[i] == NULL) /* previously removed. */
1128			continue;
1129		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1130			*index = i;
1131			if (device_is_the_same(needle, haystack[i])) {
1132				if (device_updated(needle, haystack[i]))
1133					return DEVICE_UPDATED;
1134				return DEVICE_SAME;
1135			} else {
1136				/* Keep offline devices offline */
1137				if (needle->volume_offline)
1138					return DEVICE_NOT_FOUND;
1139				return DEVICE_CHANGED;
1140			}
1141		}
1142	}
1143	*index = -1;
1144	return DEVICE_NOT_FOUND;
1145}
1146
1147static void hpsa_monitor_offline_device(struct ctlr_info *h,
1148					unsigned char scsi3addr[])
1149{
1150	struct offline_device_entry *device;
1151	unsigned long flags;
1152
1153	/* Check to see if device is already on the list */
1154	spin_lock_irqsave(&h->offline_device_lock, flags);
1155	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1156		if (memcmp(device->scsi3addr, scsi3addr,
1157			sizeof(device->scsi3addr)) == 0) {
1158			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1159			return;
1160		}
1161	}
1162	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1163
1164	/* Device is not on the list, add it. */
1165	device = kmalloc(sizeof(*device), GFP_KERNEL);
1166	if (!device) {
1167		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1168		return;
1169	}
1170	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1171	spin_lock_irqsave(&h->offline_device_lock, flags);
1172	list_add_tail(&device->offline_list, &h->offline_device_list);
1173	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1174}
1175
1176/* Print a message explaining various offline volume states */
1177static void hpsa_show_volume_status(struct ctlr_info *h,
1178	struct hpsa_scsi_dev_t *sd)
1179{
1180	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1181		dev_info(&h->pdev->dev,
1182			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1183			h->scsi_host->host_no,
1184			sd->bus, sd->target, sd->lun);
1185	switch (sd->volume_offline) {
1186	case HPSA_LV_OK:
1187		break;
1188	case HPSA_LV_UNDERGOING_ERASE:
1189		dev_info(&h->pdev->dev,
1190			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1191			h->scsi_host->host_no,
1192			sd->bus, sd->target, sd->lun);
1193		break;
 
 
 
 
 
 
1194	case HPSA_LV_UNDERGOING_RPI:
1195		dev_info(&h->pdev->dev,
1196			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1197			h->scsi_host->host_no,
1198			sd->bus, sd->target, sd->lun);
1199		break;
1200	case HPSA_LV_PENDING_RPI:
1201		dev_info(&h->pdev->dev,
1202				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1203				h->scsi_host->host_no,
1204				sd->bus, sd->target, sd->lun);
1205		break;
1206	case HPSA_LV_ENCRYPTED_NO_KEY:
1207		dev_info(&h->pdev->dev,
1208			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1209			h->scsi_host->host_no,
1210			sd->bus, sd->target, sd->lun);
1211		break;
1212	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1213		dev_info(&h->pdev->dev,
1214			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1215			h->scsi_host->host_no,
1216			sd->bus, sd->target, sd->lun);
1217		break;
1218	case HPSA_LV_UNDERGOING_ENCRYPTION:
1219		dev_info(&h->pdev->dev,
1220			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1221			h->scsi_host->host_no,
1222			sd->bus, sd->target, sd->lun);
1223		break;
1224	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1225		dev_info(&h->pdev->dev,
1226			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1227			h->scsi_host->host_no,
1228			sd->bus, sd->target, sd->lun);
1229		break;
1230	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1231		dev_info(&h->pdev->dev,
1232			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1233			h->scsi_host->host_no,
1234			sd->bus, sd->target, sd->lun);
1235		break;
1236	case HPSA_LV_PENDING_ENCRYPTION:
1237		dev_info(&h->pdev->dev,
1238			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1239			h->scsi_host->host_no,
1240			sd->bus, sd->target, sd->lun);
1241		break;
1242	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1243		dev_info(&h->pdev->dev,
1244			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1245			h->scsi_host->host_no,
1246			sd->bus, sd->target, sd->lun);
1247		break;
1248	}
1249}
1250
1251static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252	struct hpsa_scsi_dev_t *sd[], int nsds)
1253{
1254	/* sd contains scsi3 addresses and devtypes, and inquiry
1255	 * data.  This function takes what's in sd to be the current
1256	 * reality and updates h->dev[] to reflect that reality.
1257	 */
1258	int i, entry, device_change, changes = 0;
1259	struct hpsa_scsi_dev_t *csd;
1260	unsigned long flags;
1261	struct hpsa_scsi_dev_t **added, **removed;
1262	int nadded, nremoved;
1263	struct Scsi_Host *sh = NULL;
 
 
 
 
 
 
 
 
1264
1265	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1266	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1267
1268	if (!added || !removed) {
1269		dev_warn(&h->pdev->dev, "out of memory in "
1270			"adjust_hpsa_scsi_table\n");
1271		goto free_and_out;
1272	}
1273
1274	spin_lock_irqsave(&h->devlock, flags);
1275
1276	/* find any devices in h->dev[] that are not in
1277	 * sd[] and remove them from h->dev[], and for any
1278	 * devices which have changed, remove the old device
1279	 * info and add the new device info.
1280	 * If minor device attributes change, just update
1281	 * the existing device structure.
1282	 */
1283	i = 0;
1284	nremoved = 0;
1285	nadded = 0;
1286	while (i < h->ndevices) {
1287		csd = h->dev[i];
1288		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1289		if (device_change == DEVICE_NOT_FOUND) {
1290			changes++;
1291			hpsa_scsi_remove_entry(h, hostno, i,
1292				removed, &nremoved);
1293			continue; /* remove ^^^, hence i not incremented */
1294		} else if (device_change == DEVICE_CHANGED) {
1295			changes++;
1296			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1297				added, &nadded, removed, &nremoved);
1298			/* Set it to NULL to prevent it from being freed
1299			 * at the bottom of hpsa_update_scsi_devices()
1300			 */
1301			sd[entry] = NULL;
1302		} else if (device_change == DEVICE_UPDATED) {
1303			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1304		}
1305		i++;
1306	}
1307
1308	/* Now, make sure every device listed in sd[] is also
1309	 * listed in h->dev[], adding them if they aren't found
1310	 */
1311
1312	for (i = 0; i < nsds; i++) {
1313		if (!sd[i]) /* if already added above. */
1314			continue;
1315
1316		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1317		 * as the SCSI mid-layer does not handle such devices well.
1318		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1319		 * at 160Hz, and prevents the system from coming up.
1320		 */
1321		if (sd[i]->volume_offline) {
1322			hpsa_show_volume_status(h, sd[i]);
1323			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1324				h->scsi_host->host_no,
1325				sd[i]->bus, sd[i]->target, sd[i]->lun);
1326			continue;
1327		}
1328
1329		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1330					h->ndevices, &entry);
1331		if (device_change == DEVICE_NOT_FOUND) {
1332			changes++;
1333			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1334				added, &nadded) != 0)
1335				break;
1336			sd[i] = NULL; /* prevent from being freed later. */
1337		} else if (device_change == DEVICE_CHANGED) {
1338			/* should never happen... */
1339			changes++;
1340			dev_warn(&h->pdev->dev,
1341				"device unexpectedly changed.\n");
1342			/* but if it does happen, we just ignore that device */
1343		}
1344	}
 
 
 
 
 
 
 
 
 
 
 
1345	spin_unlock_irqrestore(&h->devlock, flags);
1346
1347	/* Monitor devices which are in one of several NOT READY states to be
1348	 * brought online later. This must be done without holding h->devlock,
1349	 * so don't touch h->dev[]
1350	 */
1351	for (i = 0; i < nsds; i++) {
1352		if (!sd[i]) /* if already added above. */
1353			continue;
1354		if (sd[i]->volume_offline)
1355			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1356	}
1357
1358	/* Don't notify scsi mid layer of any changes the first time through
1359	 * (or if there are no changes) scsi_scan_host will do it later the
1360	 * first time through.
1361	 */
1362	if (hostno == -1 || !changes)
1363		goto free_and_out;
1364
1365	sh = h->scsi_host;
1366	/* Notify scsi mid layer of any removed devices */
1367	for (i = 0; i < nremoved; i++) {
1368		struct scsi_device *sdev =
1369			scsi_device_lookup(sh, removed[i]->bus,
1370				removed[i]->target, removed[i]->lun);
1371		if (sdev != NULL) {
1372			scsi_remove_device(sdev);
1373			scsi_device_put(sdev);
1374		} else {
1375			/* We don't expect to get here.
1376			 * future cmds to this device will get selection
1377			 * timeout as if the device was gone.
1378			 */
1379			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1380				" for removal.", hostno, removed[i]->bus,
1381				removed[i]->target, removed[i]->lun);
1382		}
1383		kfree(removed[i]);
1384		removed[i] = NULL;
1385	}
1386
1387	/* Notify scsi mid layer of any added devices */
1388	for (i = 0; i < nadded; i++) {
1389		if (scsi_add_device(sh, added[i]->bus,
1390			added[i]->target, added[i]->lun) == 0)
 
 
 
1391			continue;
1392		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1393			"device not added.\n", hostno, added[i]->bus,
1394			added[i]->target, added[i]->lun);
 
 
1395		/* now we have to remove it from h->dev,
1396		 * since it didn't get added to scsi mid layer
1397		 */
1398		fixup_botched_add(h, added[i]);
 
1399	}
1400
1401free_and_out:
1402	kfree(added);
1403	kfree(removed);
1404}
1405
1406/*
1407 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1408 * Assume's h->devlock is held.
1409 */
1410static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1411	int bus, int target, int lun)
1412{
1413	int i;
1414	struct hpsa_scsi_dev_t *sd;
1415
1416	for (i = 0; i < h->ndevices; i++) {
1417		sd = h->dev[i];
1418		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1419			return sd;
1420	}
1421	return NULL;
1422}
1423
1424/* link sdev->hostdata to our per-device structure. */
1425static int hpsa_slave_alloc(struct scsi_device *sdev)
1426{
1427	struct hpsa_scsi_dev_t *sd;
1428	unsigned long flags;
1429	struct ctlr_info *h;
1430
1431	h = sdev_to_hba(sdev);
1432	spin_lock_irqsave(&h->devlock, flags);
1433	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1434		sdev_id(sdev), sdev->lun);
1435	if (sd != NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436		sdev->hostdata = sd;
 
 
1437	spin_unlock_irqrestore(&h->devlock, flags);
1438	return 0;
1439}
1440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441static void hpsa_slave_destroy(struct scsi_device *sdev)
1442{
1443	/* nothing to do. */
1444}
1445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1447{
1448	int i;
1449
1450	if (!h->cmd_sg_list)
1451		return;
1452	for (i = 0; i < h->nr_cmds; i++) {
1453		kfree(h->cmd_sg_list[i]);
1454		h->cmd_sg_list[i] = NULL;
1455	}
1456	kfree(h->cmd_sg_list);
1457	h->cmd_sg_list = NULL;
1458}
1459
1460static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1461{
1462	int i;
1463
1464	if (h->chainsize <= 0)
1465		return 0;
1466
1467	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1468				GFP_KERNEL);
1469	if (!h->cmd_sg_list)
1470		return -ENOMEM;
 
1471	for (i = 0; i < h->nr_cmds; i++) {
1472		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1473						h->chainsize, GFP_KERNEL);
1474		if (!h->cmd_sg_list[i])
1475			goto clean;
 
1476	}
1477	return 0;
1478
1479clean:
1480	hpsa_free_sg_chain_blocks(h);
1481	return -ENOMEM;
1482}
1483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1484static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1485	struct CommandList *c)
1486{
1487	struct SGDescriptor *chain_sg, *chain_block;
1488	u64 temp64;
 
1489
1490	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1491	chain_block = h->cmd_sg_list[c->cmdindex];
1492	chain_sg->Ext = HPSA_SG_CHAIN;
1493	chain_sg->Len = sizeof(*chain_sg) *
1494		(c->Header.SGTotal - h->max_cmd_sg_entries);
1495	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
 
1496				PCI_DMA_TODEVICE);
1497	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1498		/* prevent subsequent unmapping */
1499		chain_sg->Addr.lower = 0;
1500		chain_sg->Addr.upper = 0;
1501		return -1;
1502	}
1503	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1504	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1505	return 0;
1506}
1507
1508static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1509	struct CommandList *c)
1510{
1511	struct SGDescriptor *chain_sg;
1512	union u64bit temp64;
1513
1514	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1515		return;
1516
1517	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1518	temp64.val32.lower = chain_sg->Addr.lower;
1519	temp64.val32.upper = chain_sg->Addr.upper;
1520	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1521}
1522
1523
1524/* Decode the various types of errors on ioaccel2 path.
1525 * Return 1 for any error that should generate a RAID path retry.
1526 * Return 0 for errors that don't require a RAID path retry.
1527 */
1528static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1529					struct CommandList *c,
1530					struct scsi_cmnd *cmd,
1531					struct io_accel2_cmd *c2)
 
1532{
1533	int data_len;
1534	int retry = 0;
 
1535
1536	switch (c2->error_data.serv_response) {
1537	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1538		switch (c2->error_data.status) {
1539		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1540			break;
1541		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1542			dev_warn(&h->pdev->dev,
1543				"%s: task complete with check condition.\n",
1544				"HP SSD Smart Path");
1545			if (c2->error_data.data_present !=
1546					IOACCEL2_SENSE_DATA_PRESENT)
 
 
1547				break;
 
1548			/* copy the sense data */
1549			data_len = c2->error_data.sense_data_len;
1550			if (data_len > SCSI_SENSE_BUFFERSIZE)
1551				data_len = SCSI_SENSE_BUFFERSIZE;
1552			if (data_len > sizeof(c2->error_data.sense_data_buff))
1553				data_len =
1554					sizeof(c2->error_data.sense_data_buff);
1555			memcpy(cmd->sense_buffer,
1556				c2->error_data.sense_data_buff, data_len);
1557			cmd->result |= SAM_STAT_CHECK_CONDITION;
1558			retry = 1;
1559			break;
1560		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1561			dev_warn(&h->pdev->dev,
1562				"%s: task complete with BUSY status.\n",
1563				"HP SSD Smart Path");
1564			retry = 1;
1565			break;
1566		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1567			dev_warn(&h->pdev->dev,
1568				"%s: task complete with reservation conflict.\n",
1569				"HP SSD Smart Path");
1570			retry = 1;
1571			break;
1572		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1573			/* Make scsi midlayer do unlimited retries */
1574			cmd->result = DID_IMM_RETRY << 16;
1575			break;
1576		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1577			dev_warn(&h->pdev->dev,
1578				"%s: task complete with aborted status.\n",
1579				"HP SSD Smart Path");
1580			retry = 1;
1581			break;
1582		default:
1583			dev_warn(&h->pdev->dev,
1584				"%s: task complete with unrecognized status: 0x%02x\n",
1585				"HP SSD Smart Path", c2->error_data.status);
1586			retry = 1;
1587			break;
1588		}
1589		break;
1590	case IOACCEL2_SERV_RESPONSE_FAILURE:
1591		/* don't expect to get here. */
1592		dev_warn(&h->pdev->dev,
1593			"unexpected delivery or target failure, status = 0x%02x\n",
1594			c2->error_data.status);
1595		retry = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596		break;
1597	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1598		break;
1599	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1600		break;
1601	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1602		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1603		retry = 1;
1604		break;
1605	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1606		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1607		break;
1608	default:
1609		dev_warn(&h->pdev->dev,
1610			"%s: Unrecognized server response: 0x%02x\n",
1611			"HP SSD Smart Path",
1612			c2->error_data.serv_response);
1613		retry = 1;
1614		break;
1615	}
1616
1617	return retry;	/* retry on raid path? */
1618}
1619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620static void process_ioaccel2_completion(struct ctlr_info *h,
1621		struct CommandList *c, struct scsi_cmnd *cmd,
1622		struct hpsa_scsi_dev_t *dev)
1623{
1624	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1625	int raid_retry = 0;
1626
1627	/* check for good status */
1628	if (likely(c2->error_data.serv_response == 0 &&
1629			c2->error_data.status == 0)) {
1630		cmd_free(h, c);
1631		cmd->scsi_done(cmd);
1632		return;
1633	}
1634
1635	/* Any RAID offload error results in retry which will use
 
1636	 * the normal I/O path so the controller can handle whatever's
1637	 * wrong.
1638	 */
1639	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1640		c2->error_data.serv_response ==
1641			IOACCEL2_SERV_RESPONSE_FAILURE) {
1642		if (c2->error_data.status ==
1643			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1644			dev_warn(&h->pdev->dev,
1645				"%s: Path is unavailable, retrying on standard path.\n",
1646				"HP SSD Smart Path");
1647		else
1648			dev_warn(&h->pdev->dev,
1649				"%s: Error 0x%02x, retrying on standard path.\n",
1650				"HP SSD Smart Path", c2->error_data.status);
1651
1652		dev->offload_enabled = 0;
1653		h->drv_req_rescan = 1;	/* schedule controller for a rescan */
1654		cmd->result = DID_SOFT_ERROR << 16;
1655		cmd_free(h, c);
1656		cmd->scsi_done(cmd);
1657		return;
1658	}
1659	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1660	/* If error found, disable Smart Path, schedule a rescan,
1661	 * and force a retry on the standard path.
1662	 */
1663	if (raid_retry) {
1664		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1665			"HP SSD Smart Path");
1666		dev->offload_enabled = 0; /* Disable Smart Path */
1667		h->drv_req_rescan = 1;	  /* schedule controller rescan */
1668		cmd->result = DID_SOFT_ERROR << 16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1669	}
1670	cmd_free(h, c);
1671	cmd->scsi_done(cmd);
1672}
1673
1674static void complete_scsi_command(struct CommandList *cp)
1675{
1676	struct scsi_cmnd *cmd;
1677	struct ctlr_info *h;
1678	struct ErrorInfo *ei;
1679	struct hpsa_scsi_dev_t *dev;
 
1680
1681	unsigned char sense_key;
1682	unsigned char asc;      /* additional sense code */
1683	unsigned char ascq;     /* additional sense code qualifier */
1684	unsigned long sense_data_size;
1685
1686	ei = cp->err_info;
1687	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1688	h = cp->h;
 
 
 
 
 
 
1689	dev = cmd->device->hostdata;
 
 
 
 
 
1690
1691	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1692	if ((cp->cmd_type == CMD_SCSI) &&
1693		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1694		hpsa_unmap_sg_chain_block(h, cp);
1695
 
 
 
 
1696	cmd->result = (DID_OK << 16); 		/* host byte */
1697	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1698
1699	if (cp->cmd_type == CMD_IOACCEL2)
1700		return process_ioaccel2_completion(h, cp, cmd, dev);
 
 
 
 
 
 
 
1701
1702	cmd->result |= ei->ScsiStatus;
 
 
 
 
 
 
 
 
 
1703
1704	/* copy the sense data whether we need to or not. */
1705	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1706		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1707	else
1708		sense_data_size = sizeof(ei->SenseInfo);
1709	if (ei->SenseLen < sense_data_size)
1710		sense_data_size = ei->SenseLen;
1711
1712	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1713	scsi_set_resid(cmd, ei->ResidualCnt);
1714
1715	if (ei->CommandStatus == 0) {
1716		cmd_free(h, cp);
1717		cmd->scsi_done(cmd);
1718		return;
1719	}
1720
1721	/* For I/O accelerator commands, copy over some fields to the normal
1722	 * CISS header used below for error handling.
1723	 */
1724	if (cp->cmd_type == CMD_IOACCEL1) {
1725		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1726		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1727		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1728		cp->Header.Tag.lower = c->Tag.lower;
1729		cp->Header.Tag.upper = c->Tag.upper;
 
1730		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1731		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1732
1733		/* Any RAID offload error results in retry which will use
1734		 * the normal I/O path so the controller can handle whatever's
1735		 * wrong.
1736		 */
1737		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1738			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1739				dev->offload_enabled = 0;
1740			cmd->result = DID_SOFT_ERROR << 16;
1741			cmd_free(h, cp);
1742			cmd->scsi_done(cmd);
1743			return;
1744		}
1745	}
1746
1747	/* an error has occurred */
1748	switch (ei->CommandStatus) {
1749
1750	case CMD_TARGET_STATUS:
1751		if (ei->ScsiStatus) {
1752			/* Get sense key */
1753			sense_key = 0xf & ei->SenseInfo[2];
1754			/* Get additional sense code */
1755			asc = ei->SenseInfo[12];
1756			/* Get addition sense code qualifier */
1757			ascq = ei->SenseInfo[13];
1758		}
1759
 
 
 
1760		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1761			if (check_for_unit_attention(h, cp))
1762				break;
1763			if (sense_key == ILLEGAL_REQUEST) {
1764				/*
1765				 * SCSI REPORT_LUNS is commonly unsupported on
1766				 * Smart Array.  Suppress noisy complaint.
1767				 */
1768				if (cp->Request.CDB[0] == REPORT_LUNS)
1769					break;
1770
1771				/* If ASC/ASCQ indicate Logical Unit
1772				 * Not Supported condition,
1773				 */
1774				if ((asc == 0x25) && (ascq == 0x0)) {
1775					dev_warn(&h->pdev->dev, "cp %p "
1776						"has check condition\n", cp);
1777					break;
1778				}
1779			}
1780
1781			if (sense_key == NOT_READY) {
1782				/* If Sense is Not Ready, Logical Unit
1783				 * Not ready, Manual Intervention
1784				 * required
1785				 */
1786				if ((asc == 0x04) && (ascq == 0x03)) {
1787					dev_warn(&h->pdev->dev, "cp %p "
1788						"has check condition: unit "
1789						"not ready, manual "
1790						"intervention required\n", cp);
1791					break;
1792				}
1793			}
1794			if (sense_key == ABORTED_COMMAND) {
1795				/* Aborted command is retryable */
1796				dev_warn(&h->pdev->dev, "cp %p "
1797					"has check condition: aborted command: "
1798					"ASC: 0x%x, ASCQ: 0x%x\n",
1799					cp, asc, ascq);
1800				cmd->result |= DID_SOFT_ERROR << 16;
1801				break;
1802			}
1803			/* Must be some other type of check condition */
1804			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1805					"unknown type: "
1806					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1807					"Returning result: 0x%x, "
1808					"cmd=[%02x %02x %02x %02x %02x "
1809					"%02x %02x %02x %02x %02x %02x "
1810					"%02x %02x %02x %02x %02x]\n",
1811					cp, sense_key, asc, ascq,
1812					cmd->result,
1813					cmd->cmnd[0], cmd->cmnd[1],
1814					cmd->cmnd[2], cmd->cmnd[3],
1815					cmd->cmnd[4], cmd->cmnd[5],
1816					cmd->cmnd[6], cmd->cmnd[7],
1817					cmd->cmnd[8], cmd->cmnd[9],
1818					cmd->cmnd[10], cmd->cmnd[11],
1819					cmd->cmnd[12], cmd->cmnd[13],
1820					cmd->cmnd[14], cmd->cmnd[15]);
1821			break;
1822		}
1823
1824
1825		/* Problem was not a check condition
1826		 * Pass it up to the upper layers...
1827		 */
1828		if (ei->ScsiStatus) {
1829			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1830				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1831				"Returning result: 0x%x\n",
1832				cp, ei->ScsiStatus,
1833				sense_key, asc, ascq,
1834				cmd->result);
1835		} else {  /* scsi status is zero??? How??? */
1836			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1837				"Returning no connection.\n", cp),
1838
1839			/* Ordinarily, this case should never happen,
1840			 * but there is a bug in some released firmware
1841			 * revisions that allows it to happen if, for
1842			 * example, a 4100 backplane loses power and
1843			 * the tape drive is in it.  We assume that
1844			 * it's a fatal error of some kind because we
1845			 * can't show that it wasn't. We will make it
1846			 * look like selection timeout since that is
1847			 * the most common reason for this to occur,
1848			 * and it's severe enough.
1849			 */
1850
1851			cmd->result = DID_NO_CONNECT << 16;
1852		}
1853		break;
1854
1855	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1856		break;
1857	case CMD_DATA_OVERRUN:
1858		dev_warn(&h->pdev->dev, "cp %p has"
1859			" completed with data overrun "
1860			"reported\n", cp);
1861		break;
1862	case CMD_INVALID: {
1863		/* print_bytes(cp, sizeof(*cp), 1, 0);
1864		print_cmd(cp); */
1865		/* We get CMD_INVALID if you address a non-existent device
1866		 * instead of a selection timeout (no response).  You will
1867		 * see this if you yank out a drive, then try to access it.
1868		 * This is kind of a shame because it means that any other
1869		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1870		 * missing target. */
1871		cmd->result = DID_NO_CONNECT << 16;
1872	}
1873		break;
1874	case CMD_PROTOCOL_ERR:
1875		cmd->result = DID_ERROR << 16;
1876		dev_warn(&h->pdev->dev, "cp %p has "
1877			"protocol error\n", cp);
1878		break;
1879	case CMD_HARDWARE_ERR:
1880		cmd->result = DID_ERROR << 16;
1881		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
 
1882		break;
1883	case CMD_CONNECTION_LOST:
1884		cmd->result = DID_ERROR << 16;
1885		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
 
1886		break;
1887	case CMD_ABORTED:
1888		cmd->result = DID_ABORT << 16;
1889		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1890				cp, ei->ScsiStatus);
1891		break;
1892	case CMD_ABORT_FAILED:
1893		cmd->result = DID_ERROR << 16;
1894		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
 
1895		break;
1896	case CMD_UNSOLICITED_ABORT:
1897		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1898		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1899			"abort\n", cp);
1900		break;
1901	case CMD_TIMEOUT:
1902		cmd->result = DID_TIME_OUT << 16;
1903		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
 
1904		break;
1905	case CMD_UNABORTABLE:
1906		cmd->result = DID_ERROR << 16;
1907		dev_warn(&h->pdev->dev, "Command unabortable\n");
1908		break;
 
 
 
 
1909	case CMD_IOACCEL_DISABLED:
1910		/* This only handles the direct pass-through case since RAID
1911		 * offload is handled above.  Just attempt a retry.
1912		 */
1913		cmd->result = DID_SOFT_ERROR << 16;
1914		dev_warn(&h->pdev->dev,
1915				"cp %p had HP SSD Smart Path error\n", cp);
1916		break;
1917	default:
1918		cmd->result = DID_ERROR << 16;
1919		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1920				cp, ei->CommandStatus);
1921	}
1922	cmd_free(h, cp);
1923	cmd->scsi_done(cmd);
1924}
1925
1926static void hpsa_pci_unmap(struct pci_dev *pdev,
1927	struct CommandList *c, int sg_used, int data_direction)
1928{
1929	int i;
1930	union u64bit addr64;
1931
1932	for (i = 0; i < sg_used; i++) {
1933		addr64.val32.lower = c->SG[i].Addr.lower;
1934		addr64.val32.upper = c->SG[i].Addr.upper;
1935		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1936			data_direction);
1937	}
1938}
1939
1940static int hpsa_map_one(struct pci_dev *pdev,
1941		struct CommandList *cp,
1942		unsigned char *buf,
1943		size_t buflen,
1944		int data_direction)
1945{
1946	u64 addr64;
1947
1948	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1949		cp->Header.SGList = 0;
1950		cp->Header.SGTotal = 0;
1951		return 0;
1952	}
1953
1954	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1955	if (dma_mapping_error(&pdev->dev, addr64)) {
1956		/* Prevent subsequent unmap of something never mapped */
1957		cp->Header.SGList = 0;
1958		cp->Header.SGTotal = 0;
1959		return -1;
1960	}
1961	cp->SG[0].Addr.lower =
1962	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1963	cp->SG[0].Addr.upper =
1964	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1965	cp->SG[0].Len = buflen;
1966	cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1967	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1968	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1969	return 0;
1970}
1971
1972static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1973	struct CommandList *c)
 
 
1974{
1975	DECLARE_COMPLETION_ONSTACK(wait);
1976
1977	c->waiting = &wait;
1978	enqueue_cmd_and_start_io(h, c);
1979	wait_for_completion(&wait);
 
 
 
 
 
 
 
 
 
 
1980}
1981
1982static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1983	struct CommandList *c)
1984{
1985	unsigned long flags;
1986
1987	/* If controller lockup detected, fake a hardware error. */
1988	spin_lock_irqsave(&h->lock, flags);
1989	if (unlikely(h->lockup_detected)) {
1990		spin_unlock_irqrestore(&h->lock, flags);
1991		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1992	} else {
1993		spin_unlock_irqrestore(&h->lock, flags);
1994		hpsa_scsi_do_simple_cmd_core(h, c);
1995	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1996}
1997
1998#define MAX_DRIVER_CMD_RETRIES 25
1999static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2000	struct CommandList *c, int data_direction)
2001{
2002	int backoff_time = 10, retry_count = 0;
 
2003
2004	do {
2005		memset(c->err_info, 0, sizeof(*c->err_info));
2006		hpsa_scsi_do_simple_cmd_core(h, c);
 
 
 
2007		retry_count++;
2008		if (retry_count > 3) {
2009			msleep(backoff_time);
2010			if (backoff_time < 1000)
2011				backoff_time *= 2;
2012		}
2013	} while ((check_for_unit_attention(h, c) ||
2014			check_for_busy(h, c)) &&
2015			retry_count <= MAX_DRIVER_CMD_RETRIES);
2016	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
 
 
 
2017}
2018
2019static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2020				struct CommandList *c)
2021{
2022	const u8 *cdb = c->Request.CDB;
2023	const u8 *lun = c->Header.LUN.LunAddrBytes;
2024
2025	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2026	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2027		txt, lun[0], lun[1], lun[2], lun[3],
2028		lun[4], lun[5], lun[6], lun[7],
2029		cdb[0], cdb[1], cdb[2], cdb[3],
2030		cdb[4], cdb[5], cdb[6], cdb[7],
2031		cdb[8], cdb[9], cdb[10], cdb[11],
2032		cdb[12], cdb[13], cdb[14], cdb[15]);
2033}
2034
2035static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2036			struct CommandList *cp)
2037{
2038	const struct ErrorInfo *ei = cp->err_info;
2039	struct device *d = &cp->h->pdev->dev;
2040	const u8 *sd = ei->SenseInfo;
 
2041
2042	switch (ei->CommandStatus) {
2043	case CMD_TARGET_STATUS:
 
 
 
 
 
 
2044		hpsa_print_cmd(h, "SCSI status", cp);
2045		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2046			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2047				sd[2] & 0x0f, sd[12], sd[13]);
2048		else
2049			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2050		if (ei->ScsiStatus == 0)
2051			dev_warn(d, "SCSI status is abnormally zero.  "
2052			"(probably indicates selection timeout "
2053			"reported incorrectly due to a known "
2054			"firmware bug, circa July, 2001.)\n");
2055		break;
2056	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2057		break;
2058	case CMD_DATA_OVERRUN:
2059		hpsa_print_cmd(h, "overrun condition", cp);
2060		break;
2061	case CMD_INVALID: {
2062		/* controller unfortunately reports SCSI passthru's
2063		 * to non-existent targets as invalid commands.
2064		 */
2065		hpsa_print_cmd(h, "invalid command", cp);
2066		dev_warn(d, "probably means device no longer present\n");
2067		}
2068		break;
2069	case CMD_PROTOCOL_ERR:
2070		hpsa_print_cmd(h, "protocol error", cp);
2071		break;
2072	case CMD_HARDWARE_ERR:
2073		hpsa_print_cmd(h, "hardware error", cp);
2074		break;
2075	case CMD_CONNECTION_LOST:
2076		hpsa_print_cmd(h, "connection lost", cp);
2077		break;
2078	case CMD_ABORTED:
2079		hpsa_print_cmd(h, "aborted", cp);
2080		break;
2081	case CMD_ABORT_FAILED:
2082		hpsa_print_cmd(h, "abort failed", cp);
2083		break;
2084	case CMD_UNSOLICITED_ABORT:
2085		hpsa_print_cmd(h, "unsolicited abort", cp);
2086		break;
2087	case CMD_TIMEOUT:
2088		hpsa_print_cmd(h, "timed out", cp);
2089		break;
2090	case CMD_UNABORTABLE:
2091		hpsa_print_cmd(h, "unabortable", cp);
2092		break;
 
 
 
2093	default:
2094		hpsa_print_cmd(h, "unknown status", cp);
2095		dev_warn(d, "Unknown command status %x\n",
2096				ei->CommandStatus);
2097	}
2098}
2099
2100static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2101			u16 page, unsigned char *buf,
2102			unsigned char bufsize)
2103{
2104	int rc = IO_OK;
2105	struct CommandList *c;
2106	struct ErrorInfo *ei;
2107
2108	c = cmd_special_alloc(h);
2109
2110	if (c == NULL) {			/* trouble... */
2111		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2112		return -ENOMEM;
2113	}
2114
2115	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2116			page, scsi3addr, TYPE_CMD)) {
2117		rc = -1;
2118		goto out;
2119	}
2120	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
 
 
 
2121	ei = c->err_info;
2122	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2123		hpsa_scsi_interpret_error(h, c);
2124		rc = -1;
2125	}
2126out:
2127	cmd_special_free(h, c);
2128	return rc;
2129}
2130
2131static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2132		unsigned char *scsi3addr, unsigned char page,
2133		struct bmic_controller_parameters *buf, size_t bufsize)
2134{
2135	int rc = IO_OK;
2136	struct CommandList *c;
2137	struct ErrorInfo *ei;
2138
2139	c = cmd_special_alloc(h);
2140
2141	if (c == NULL) {			/* trouble... */
2142		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2143		return -ENOMEM;
2144	}
2145
2146	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2147			page, scsi3addr, TYPE_CMD)) {
2148		rc = -1;
 
 
 
2149		goto out;
2150	}
2151	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
 
2152	ei = c->err_info;
2153	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2154		hpsa_scsi_interpret_error(h, c);
2155		rc = -1;
2156	}
2157out:
2158	cmd_special_free(h, c);
2159	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160	}
2161
2162static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2163	u8 reset_type)
 
 
 
2164{
2165	int rc = IO_OK;
2166	struct CommandList *c;
2167	struct ErrorInfo *ei;
2168
2169	c = cmd_special_alloc(h);
 
 
 
 
2170
2171	if (c == NULL) {			/* trouble... */
2172		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2173		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174	}
2175
2176	/* fill_cmd can't fail here, no data buffer to map. */
2177	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2178			scsi3addr, TYPE_MSG);
2179	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2180	hpsa_scsi_do_simple_cmd_core(h, c);
2181	/* no unmap needed here because no data xfer. */
2182
2183	ei = c->err_info;
2184	if (ei->CommandStatus != 0) {
2185		hpsa_scsi_interpret_error(h, c);
2186		rc = -1;
2187	}
2188	cmd_special_free(h, c);
 
 
 
 
 
 
2189	return rc;
2190}
2191
2192static void hpsa_get_raid_level(struct ctlr_info *h,
2193	unsigned char *scsi3addr, unsigned char *raid_level)
2194{
2195	int rc;
2196	unsigned char *buf;
2197
2198	*raid_level = RAID_UNKNOWN;
2199	buf = kzalloc(64, GFP_KERNEL);
2200	if (!buf)
2201		return;
2202	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
 
 
 
 
 
 
 
2203	if (rc == 0)
2204		*raid_level = buf[8];
2205	if (*raid_level > RAID_UNKNOWN)
2206		*raid_level = RAID_UNKNOWN;
 
2207	kfree(buf);
2208	return;
2209}
2210
2211#define HPSA_MAP_DEBUG
2212#ifdef HPSA_MAP_DEBUG
2213static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2214				struct raid_map_data *map_buff)
2215{
2216	struct raid_map_disk_data *dd = &map_buff->data[0];
2217	int map, row, col;
2218	u16 map_cnt, row_cnt, disks_per_row;
2219
2220	if (rc != 0)
2221		return;
2222
2223	/* Show details only if debugging has been activated. */
2224	if (h->raid_offload_debug < 2)
2225		return;
2226
2227	dev_info(&h->pdev->dev, "structure_size = %u\n",
2228				le32_to_cpu(map_buff->structure_size));
2229	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2230			le32_to_cpu(map_buff->volume_blk_size));
2231	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2232			le64_to_cpu(map_buff->volume_blk_cnt));
2233	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2234			map_buff->phys_blk_shift);
2235	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2236			map_buff->parity_rotation_shift);
2237	dev_info(&h->pdev->dev, "strip_size = %u\n",
2238			le16_to_cpu(map_buff->strip_size));
2239	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2240			le64_to_cpu(map_buff->disk_starting_blk));
2241	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2242			le64_to_cpu(map_buff->disk_blk_cnt));
2243	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2244			le16_to_cpu(map_buff->data_disks_per_row));
2245	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2246			le16_to_cpu(map_buff->metadata_disks_per_row));
2247	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2248			le16_to_cpu(map_buff->row_cnt));
2249	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2250			le16_to_cpu(map_buff->layout_map_count));
2251	dev_info(&h->pdev->dev, "flags = %u\n",
2252			le16_to_cpu(map_buff->flags));
2253	if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2254		dev_info(&h->pdev->dev, "encrypytion = ON\n");
2255	else
2256		dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2257	dev_info(&h->pdev->dev, "dekindex = %u\n",
2258			le16_to_cpu(map_buff->dekindex));
2259
2260	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2261	for (map = 0; map < map_cnt; map++) {
2262		dev_info(&h->pdev->dev, "Map%u:\n", map);
2263		row_cnt = le16_to_cpu(map_buff->row_cnt);
2264		for (row = 0; row < row_cnt; row++) {
2265			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2266			disks_per_row =
2267				le16_to_cpu(map_buff->data_disks_per_row);
2268			for (col = 0; col < disks_per_row; col++, dd++)
2269				dev_info(&h->pdev->dev,
2270					"    D%02u: h=0x%04x xor=%u,%u\n",
2271					col, dd->ioaccel_handle,
2272					dd->xor_mult[0], dd->xor_mult[1]);
2273			disks_per_row =
2274				le16_to_cpu(map_buff->metadata_disks_per_row);
2275			for (col = 0; col < disks_per_row; col++, dd++)
2276				dev_info(&h->pdev->dev,
2277					"    M%02u: h=0x%04x xor=%u,%u\n",
2278					col, dd->ioaccel_handle,
2279					dd->xor_mult[0], dd->xor_mult[1]);
2280		}
2281	}
2282}
2283#else
2284static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2285			__attribute__((unused)) int rc,
2286			__attribute__((unused)) struct raid_map_data *map_buff)
2287{
2288}
2289#endif
2290
2291static int hpsa_get_raid_map(struct ctlr_info *h,
2292	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2293{
2294	int rc = 0;
2295	struct CommandList *c;
2296	struct ErrorInfo *ei;
2297
2298	c = cmd_special_alloc(h);
2299	if (c == NULL) {
2300		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2301		return -ENOMEM;
2302	}
2303	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2304			sizeof(this_device->raid_map), 0,
2305			scsi3addr, TYPE_CMD)) {
2306		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2307		cmd_special_free(h, c);
2308		return -ENOMEM;
2309	}
2310	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
 
 
 
2311	ei = c->err_info;
2312	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2313		hpsa_scsi_interpret_error(h, c);
2314		cmd_special_free(h, c);
2315		return -1;
2316	}
2317	cmd_special_free(h, c);
2318
2319	/* @todo in the future, dynamically allocate RAID map memory */
2320	if (le32_to_cpu(this_device->raid_map.structure_size) >
2321				sizeof(this_device->raid_map)) {
2322		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2323		rc = -1;
2324	}
2325	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2326	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2327}
2328
2329static int hpsa_vpd_page_supported(struct ctlr_info *h,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330	unsigned char scsi3addr[], u8 page)
2331{
2332	int rc;
2333	int i;
2334	int pages;
2335	unsigned char *buf, bufsize;
2336
2337	buf = kzalloc(256, GFP_KERNEL);
2338	if (!buf)
2339		return 0;
2340
2341	/* Get the size of the page list first */
2342	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2343				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2344				buf, HPSA_VPD_HEADER_SZ);
2345	if (rc != 0)
2346		goto exit_unsupported;
2347	pages = buf[3];
2348	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2349		bufsize = pages + HPSA_VPD_HEADER_SZ;
2350	else
2351		bufsize = 255;
2352
2353	/* Get the whole VPD page list */
2354	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2355				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2356				buf, bufsize);
2357	if (rc != 0)
2358		goto exit_unsupported;
2359
2360	pages = buf[3];
2361	for (i = 1; i <= pages; i++)
2362		if (buf[3 + i] == page)
2363			goto exit_supported;
2364exit_unsupported:
2365	kfree(buf);
2366	return 0;
2367exit_supported:
2368	kfree(buf);
2369	return 1;
2370}
2371
2372static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2373	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2374{
2375	int rc;
2376	unsigned char *buf;
2377	u8 ioaccel_status;
2378
2379	this_device->offload_config = 0;
2380	this_device->offload_enabled = 0;
 
2381
2382	buf = kzalloc(64, GFP_KERNEL);
2383	if (!buf)
2384		return;
2385	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2386		goto out;
2387	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2388			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2389	if (rc != 0)
2390		goto out;
2391
2392#define IOACCEL_STATUS_BYTE 4
2393#define OFFLOAD_CONFIGURED_BIT 0x01
2394#define OFFLOAD_ENABLED_BIT 0x02
2395	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2396	this_device->offload_config =
2397		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2398	if (this_device->offload_config) {
2399		this_device->offload_enabled =
2400			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2401		if (hpsa_get_raid_map(h, scsi3addr, this_device))
2402			this_device->offload_enabled = 0;
2403	}
 
2404out:
2405	kfree(buf);
2406	return;
2407}
2408
2409/* Get the device id from inquiry page 0x83 */
2410static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2411	unsigned char *device_id, int buflen)
2412{
2413	int rc;
2414	unsigned char *buf;
2415
2416	if (buflen > 16)
2417		buflen = 16;
 
 
2418	buf = kzalloc(64, GFP_KERNEL);
2419	if (!buf)
2420		return -1;
2421	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2422	if (rc == 0)
 
 
 
 
2423		memcpy(device_id, &buf[8], buflen);
 
 
2424	kfree(buf);
2425	return rc != 0;
 
2426}
2427
2428static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2429		struct ReportLUNdata *buf, int bufsize,
2430		int extended_response)
2431{
2432	int rc = IO_OK;
2433	struct CommandList *c;
2434	unsigned char scsi3addr[8];
2435	struct ErrorInfo *ei;
2436
2437	c = cmd_special_alloc(h);
2438	if (c == NULL) {			/* trouble... */
2439		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2440		return -1;
2441	}
2442	/* address the controller */
2443	memset(scsi3addr, 0, sizeof(scsi3addr));
2444	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2445		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2446		rc = -1;
2447		goto out;
2448	}
2449	if (extended_response)
2450		c->Request.CDB[1] = extended_response;
2451	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
 
 
 
2452	ei = c->err_info;
2453	if (ei->CommandStatus != 0 &&
2454	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2455		hpsa_scsi_interpret_error(h, c);
2456		rc = -1;
2457	} else {
2458		if (buf->extended_response_flag != extended_response) {
 
 
2459			dev_err(&h->pdev->dev,
2460				"report luns requested format %u, got %u\n",
2461				extended_response,
2462				buf->extended_response_flag);
2463			rc = -1;
2464		}
2465	}
2466out:
2467	cmd_special_free(h, c);
2468	return rc;
2469}
2470
2471static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2472		struct ReportLUNdata *buf,
2473		int bufsize, int extended_response)
2474{
2475	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476}
2477
2478static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2479		struct ReportLUNdata *buf, int bufsize)
2480{
2481	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2482}
2483
2484static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2485	int bus, int target, int lun)
2486{
2487	device->bus = bus;
2488	device->target = target;
2489	device->lun = lun;
2490}
2491
2492/* Use VPD inquiry to get details of volume status */
2493static int hpsa_get_volume_status(struct ctlr_info *h,
2494					unsigned char scsi3addr[])
2495{
2496	int rc;
2497	int status;
2498	int size;
2499	unsigned char *buf;
2500
2501	buf = kzalloc(64, GFP_KERNEL);
2502	if (!buf)
2503		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2504
2505	/* Does controller have VPD for logical volume status? */
2506	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) {
2507		dev_warn(&h->pdev->dev, "Logical volume status VPD page is unsupported.\n");
2508		goto exit_failed;
2509	}
2510
2511	/* Get the size of the VPD return buffer */
2512	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2513					buf, HPSA_VPD_HEADER_SZ);
2514	if (rc != 0) {
2515		dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2516		goto exit_failed;
2517	}
2518	size = buf[3];
2519
2520	/* Now get the whole VPD buffer */
2521	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2522					buf, size + HPSA_VPD_HEADER_SZ);
2523	if (rc != 0) {
2524		dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2525		goto exit_failed;
2526	}
2527	status = buf[4]; /* status byte */
2528
2529	kfree(buf);
2530	return status;
2531exit_failed:
2532	kfree(buf);
2533	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2534}
2535
2536/* Determine offline status of a volume.
2537 * Return either:
2538 *  0 (not offline)
2539 * -1 (offline for unknown reasons)
2540 *  # (integer code indicating one of several NOT READY states
2541 *     describing why a volume is to be kept offline)
2542 */
2543static unsigned char hpsa_volume_offline(struct ctlr_info *h,
2544					unsigned char scsi3addr[])
2545{
2546	struct CommandList *c;
2547	unsigned char *sense, sense_key, asc, ascq;
2548	int ldstat = 0;
 
 
2549	u16 cmd_status;
2550	u8 scsi_status;
2551#define ASC_LUN_NOT_READY 0x04
2552#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2553#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2554
2555	c = cmd_alloc(h);
2556	if (!c)
2557		return 0;
2558	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2559	hpsa_scsi_do_simple_cmd_core(h, c);
 
 
 
 
 
2560	sense = c->err_info->SenseInfo;
2561	sense_key = sense[2];
2562	asc = sense[12];
2563	ascq = sense[13];
 
 
2564	cmd_status = c->err_info->CommandStatus;
2565	scsi_status = c->err_info->ScsiStatus;
2566	cmd_free(h, c);
2567	/* Is the volume 'not ready'? */
2568	if (cmd_status != CMD_TARGET_STATUS ||
2569		scsi_status != SAM_STAT_CHECK_CONDITION ||
2570		sense_key != NOT_READY ||
2571		asc != ASC_LUN_NOT_READY)  {
2572		return 0;
2573	}
2574
2575	/* Determine the reason for not ready state */
2576	ldstat = hpsa_get_volume_status(h, scsi3addr);
2577
2578	/* Keep volume offline in certain cases: */
2579	switch (ldstat) {
2580	case HPSA_LV_UNDERGOING_ERASE:
 
2581	case HPSA_LV_UNDERGOING_RPI:
2582	case HPSA_LV_PENDING_RPI:
2583	case HPSA_LV_ENCRYPTED_NO_KEY:
2584	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2585	case HPSA_LV_UNDERGOING_ENCRYPTION:
2586	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2587	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2588		return ldstat;
2589	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2590		/* If VPD status page isn't available,
2591		 * use ASC/ASCQ to determine state
2592		 */
2593		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2594			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2595			return ldstat;
2596		break;
2597	default:
2598		break;
2599	}
2600	return 0;
2601}
2602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603static int hpsa_update_device_info(struct ctlr_info *h,
2604	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2605	unsigned char *is_OBDR_device)
2606{
2607
2608#define OBDR_SIG_OFFSET 43
2609#define OBDR_TAPE_SIG "$DR-10"
2610#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2611#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2612
2613	unsigned char *inq_buff;
2614	unsigned char *obdr_sig;
 
2615
2616	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2617	if (!inq_buff)
 
2618		goto bail_out;
 
2619
2620	/* Do an inquiry to the device to see what it is. */
2621	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2622		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2623		/* Inquiry failed (msg printed already) */
2624		dev_err(&h->pdev->dev,
2625			"hpsa_update_device_info: inquiry failed\n");
 
2626		goto bail_out;
2627	}
2628
 
 
 
2629	this_device->devtype = (inq_buff[0] & 0x1f);
2630	memcpy(this_device->scsi3addr, scsi3addr, 8);
2631	memcpy(this_device->vendor, &inq_buff[8],
2632		sizeof(this_device->vendor));
2633	memcpy(this_device->model, &inq_buff[16],
2634		sizeof(this_device->model));
 
2635	memset(this_device->device_id, 0,
2636		sizeof(this_device->device_id));
2637	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2638		sizeof(this_device->device_id));
 
 
 
 
 
 
 
2639
2640	if (this_device->devtype == TYPE_DISK &&
 
2641		is_logical_dev_addr_mode(scsi3addr)) {
 
 
2642		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2643		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2644			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2645		this_device->volume_offline =
2646			hpsa_volume_offline(h, scsi3addr);
 
 
2647	} else {
2648		this_device->raid_level = RAID_UNKNOWN;
2649		this_device->offload_config = 0;
2650		this_device->offload_enabled = 0;
 
 
2651		this_device->volume_offline = 0;
 
2652	}
2653
2654	if (is_OBDR_device) {
2655		/* See if this is a One-Button-Disaster-Recovery device
2656		 * by looking for "$DR-10" at offset 43 in inquiry data.
2657		 */
2658		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2659		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2660					strncmp(obdr_sig, OBDR_TAPE_SIG,
2661						OBDR_SIG_LEN) == 0);
2662	}
2663
2664	kfree(inq_buff);
2665	return 0;
2666
2667bail_out:
2668	kfree(inq_buff);
2669	return 1;
2670}
2671
2672static unsigned char *ext_target_model[] = {
2673	"MSA2012",
2674	"MSA2024",
2675	"MSA2312",
2676	"MSA2324",
2677	"P2000 G3 SAS",
2678	"MSA 2040 SAS",
2679	NULL,
2680};
2681
2682static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2683{
2684	int i;
2685
2686	for (i = 0; ext_target_model[i]; i++)
2687		if (strncmp(device->model, ext_target_model[i],
2688			strlen(ext_target_model[i])) == 0)
2689			return 1;
2690	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2691}
2692
2693/* Helper function to assign bus, target, lun mapping of devices.
2694 * Puts non-external target logical volumes on bus 0, external target logical
2695 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2696 * Logical drive target and lun are assigned at this time, but
2697 * physical device lun and target assignment are deferred (assigned
2698 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2699 */
2700static void figure_bus_target_lun(struct ctlr_info *h,
2701	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2702{
2703	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2704
2705	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2706		/* physical device, target and lun filled in later */
2707		if (is_hba_lunid(lunaddrbytes))
2708			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2709		else
 
 
 
 
 
2710			/* defer target, lun assignment for physical devices */
2711			hpsa_set_bus_target_lun(device, 2, -1, -1);
 
2712		return;
2713	}
2714	/* It's a logical device */
2715	if (is_ext_target(h, device)) {
2716		/* external target way, put logicals on bus 1
2717		 * and match target/lun numbers box
2718		 * reports, other smart array, bus 0, target 0, match lunid
2719		 */
2720		hpsa_set_bus_target_lun(device,
2721			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
 
2722		return;
2723	}
2724	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
 
2725}
2726
2727/*
2728 * If there is no lun 0 on a target, linux won't find any devices.
2729 * For the external targets (arrays), we have to manually detect the enclosure
2730 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2731 * it for some reason.  *tmpdevice is the target we're adding,
2732 * this_device is a pointer into the current element of currentsd[]
2733 * that we're building up in update_scsi_devices(), below.
2734 * lunzerobits is a bitmap that tracks which targets already have a
2735 * lun 0 assigned.
2736 * Returns 1 if an enclosure was added, 0 if not.
2737 */
2738static int add_ext_target_dev(struct ctlr_info *h,
2739	struct hpsa_scsi_dev_t *tmpdevice,
2740	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2741	unsigned long lunzerobits[], int *n_ext_target_devs)
2742{
2743	unsigned char scsi3addr[8];
2744
2745	if (test_bit(tmpdevice->target, lunzerobits))
2746		return 0; /* There is already a lun 0 on this target. */
2747
2748	if (!is_logical_dev_addr_mode(lunaddrbytes))
2749		return 0; /* It's the logical targets that may lack lun 0. */
2750
2751	if (!is_ext_target(h, tmpdevice))
2752		return 0; /* Only external target devices have this problem. */
2753
2754	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2755		return 0;
2756
2757	memset(scsi3addr, 0, 8);
2758	scsi3addr[3] = tmpdevice->target;
2759	if (is_hba_lunid(scsi3addr))
2760		return 0; /* Don't add the RAID controller here. */
2761
2762	if (is_scsi_rev_5(h))
2763		return 0; /* p1210m doesn't need to do this. */
2764
2765	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2766		dev_warn(&h->pdev->dev, "Maximum number of external "
2767			"target devices exceeded.  Check your hardware "
2768			"configuration.");
2769		return 0;
2770	}
2771
2772	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2773		return 0;
2774	(*n_ext_target_devs)++;
2775	hpsa_set_bus_target_lun(this_device,
2776				tmpdevice->bus, tmpdevice->target, 0);
2777	set_bit(tmpdevice->target, lunzerobits);
2778	return 1;
2779}
2780
2781/*
2782 * Get address of physical disk used for an ioaccel2 mode command:
2783 *	1. Extract ioaccel2 handle from the command.
2784 *	2. Find a matching ioaccel2 handle from list of physical disks.
2785 *	3. Return:
2786 *		1 and set scsi3addr to address of matching physical
2787 *		0 if no matching physical disk was found.
2788 */
2789static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2790	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2791{
2792	struct ReportExtendedLUNdata *physicals = NULL;
2793	int responsesize = 24;	/* size of physical extended response */
2794	int extended = 2;	/* flag forces reporting 'other dev info'. */
2795	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2796	u32 nphysicals = 0;	/* number of reported physical devs */
2797	int found = 0;		/* found match (1) or not (0) */
2798	u32 find;		/* handle we need to match */
2799	int i;
2800	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
2801	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2802	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2803	u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2804	u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2805
2806	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2807		return 0; /* no match */
2808
2809	/* point to the ioaccel2 device handle */
2810	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2811	if (c2a == NULL)
2812		return 0; /* no match */
2813
2814	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2815	if (scmd == NULL)
2816		return 0; /* no match */
2817
2818	d = scmd->device->hostdata;
2819	if (d == NULL)
2820		return 0; /* no match */
2821
2822	it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
2823	scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
2824	find = c2a->scsi_nexus;
2825
2826	if (h->raid_offload_debug > 0)
2827		dev_info(&h->pdev->dev,
2828			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2829			__func__, scsi_nexus,
2830			d->device_id[0], d->device_id[1], d->device_id[2],
2831			d->device_id[3], d->device_id[4], d->device_id[5],
2832			d->device_id[6], d->device_id[7], d->device_id[8],
2833			d->device_id[9], d->device_id[10], d->device_id[11],
2834			d->device_id[12], d->device_id[13], d->device_id[14],
2835			d->device_id[15]);
2836
2837	/* Get the list of physical devices */
2838	physicals = kzalloc(reportsize, GFP_KERNEL);
2839	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2840		reportsize, extended)) {
2841		dev_err(&h->pdev->dev,
2842			"Can't lookup %s device handle: report physical LUNs failed.\n",
2843			"HP SSD Smart Path");
2844		kfree(physicals);
2845		return 0;
2846	}
2847	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2848							responsesize;
2849
 
 
 
 
 
 
 
2850
2851	/* find ioaccel2 handle in list of physicals: */
2852	for (i = 0; i < nphysicals; i++) {
2853		/* handle is in bytes 28-31 of each lun */
2854		if (memcmp(&((struct ReportExtendedLUNdata *)
2855				physicals)->LUN[i][20], &find, 4) != 0) {
2856			continue; /* didn't match */
2857		}
2858		found = 1;
2859		memcpy(scsi3addr, &((struct ReportExtendedLUNdata *)
2860					physicals)->LUN[i][0], 8);
2861		if (h->raid_offload_debug > 0)
2862			dev_info(&h->pdev->dev,
2863				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2864				__func__, find,
2865				((struct ReportExtendedLUNdata *)
2866					physicals)->LUN[i][20],
2867				scsi3addr[0], scsi3addr[1], scsi3addr[2],
2868				scsi3addr[3], scsi3addr[4], scsi3addr[5],
2869				scsi3addr[6], scsi3addr[7]);
2870		break; /* found it */
2871	}
2872
2873	kfree(physicals);
2874	if (found)
2875		return 1;
2876	else
2877		return 0;
2878
 
 
 
 
 
2879}
 
2880/*
2881 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2882 * logdev.  The number of luns in physdev and logdev are returned in
2883 * *nphysicals and *nlogicals, respectively.
2884 * Returns 0 on success, -1 otherwise.
2885 */
2886static int hpsa_gather_lun_info(struct ctlr_info *h,
2887	int reportlunsize,
2888	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2889	struct ReportLUNdata *logdev, u32 *nlogicals)
2890{
2891	int physical_entry_size = 8;
2892
2893	*physical_mode = 0;
2894
2895	/* For I/O accelerator mode we need to read physical device handles */
2896	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2897		h->transMethod & CFGTBL_Trans_io_accel2) {
2898		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2899		physical_entry_size = 24;
2900	}
2901	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2902							*physical_mode)) {
2903		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2904		return -1;
2905	}
2906	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2907							physical_entry_size;
2908	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2909		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2910			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2911			*nphysicals - HPSA_MAX_PHYS_LUN);
2912		*nphysicals = HPSA_MAX_PHYS_LUN;
2913	}
2914	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
2915		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2916		return -1;
2917	}
2918	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2919	/* Reject Logicals in excess of our max capability. */
2920	if (*nlogicals > HPSA_MAX_LUN) {
2921		dev_warn(&h->pdev->dev,
2922			"maximum logical LUNs (%d) exceeded.  "
2923			"%d LUNs ignored.\n", HPSA_MAX_LUN,
2924			*nlogicals - HPSA_MAX_LUN);
2925			*nlogicals = HPSA_MAX_LUN;
2926	}
2927	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2928		dev_warn(&h->pdev->dev,
2929			"maximum logical + physical LUNs (%d) exceeded. "
2930			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2931			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2932		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2933	}
2934	return 0;
2935}
2936
2937u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
2938	int nphysicals, int nlogicals,
2939	struct ReportExtendedLUNdata *physdev_list,
2940	struct ReportLUNdata *logdev_list)
2941{
2942	/* Helper function, figure out where the LUN ID info is coming from
2943	 * given index i, lists of physical and logical devices, where in
2944	 * the list the raid controller is supposed to appear (first or last)
2945	 */
2946
2947	int logicals_start = nphysicals + (raid_ctlr_position == 0);
2948	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2949
2950	if (i == raid_ctlr_position)
2951		return RAID_CTLR_LUNID;
2952
2953	if (i < logicals_start)
2954		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
 
2955
2956	if (i < last_device)
2957		return &logdev_list->LUN[i - nphysicals -
2958			(raid_ctlr_position == 0)][0];
2959	BUG();
2960	return NULL;
2961}
2962
2963static int hpsa_hba_mode_enabled(struct ctlr_info *h)
 
 
 
 
2964{
2965	int rc;
2966	struct bmic_controller_parameters *ctlr_params;
2967	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2968		GFP_KERNEL);
2969
2970	if (!ctlr_params)
2971		return 0;
2972	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2973		sizeof(struct bmic_controller_parameters));
2974	if (rc != 0) {
2975		kfree(ctlr_params);
2976		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2977	}
2978	return ctlr_params->nvram_flags & (1 << 3) ? 1 : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979}
2980
2981static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2982{
2983	/* the idea here is we could get notified
2984	 * that some devices have changed, so we do a report
2985	 * physical luns and report logical luns cmd, and adjust
2986	 * our list of devices accordingly.
2987	 *
2988	 * The scsi3addr's of devices won't change so long as the
2989	 * adapter is not reset.  That means we can rescan and
2990	 * tell which devices we already know about, vs. new
2991	 * devices, vs.  disappearing devices.
2992	 */
2993	struct ReportExtendedLUNdata *physdev_list = NULL;
2994	struct ReportLUNdata *logdev_list = NULL;
 
 
2995	u32 nphysicals = 0;
2996	u32 nlogicals = 0;
2997	int physical_mode = 0;
2998	u32 ndev_allocated = 0;
2999	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3000	int ncurrent = 0;
3001	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
3002	int i, n_ext_target_devs, ndevs_to_allocate;
3003	int raid_ctlr_position;
3004	u8 rescan_hba_mode;
3005	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3006
3007	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3008	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3009	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3010	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
 
 
3011
3012	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
 
3013		dev_err(&h->pdev->dev, "out of memory\n");
3014		goto out;
3015	}
3016	memset(lunzerobits, 0, sizeof(lunzerobits));
3017
3018	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3019
3020	if (!h->hba_mode_enabled && rescan_hba_mode)
3021		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3022	else if (h->hba_mode_enabled && !rescan_hba_mode)
3023		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3024
3025	h->hba_mode_enabled = rescan_hba_mode;
3026
3027	if (hpsa_gather_lun_info(h, reportlunsize,
3028			(struct ReportLUNdata *) physdev_list, &nphysicals,
3029			&physical_mode, logdev_list, &nlogicals))
3030		goto out;
 
 
 
 
 
 
 
 
3031
3032	/* We might see up to the maximum number of logical and physical disks
3033	 * plus external target devices, and a device for the local RAID
3034	 * controller.
3035	 */
3036	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3037
3038	/* Allocate the per device structures */
3039	for (i = 0; i < ndevs_to_allocate; i++) {
3040		if (i >= HPSA_MAX_DEVICES) {
3041			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3042				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3043				ndevs_to_allocate - HPSA_MAX_DEVICES);
3044			break;
3045		}
3046
3047		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3048		if (!currentsd[i]) {
3049			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3050				__FILE__, __LINE__);
3051			goto out;
3052		}
3053		ndev_allocated++;
3054	}
3055
3056	if (unlikely(is_scsi_rev_5(h)))
3057		raid_ctlr_position = 0;
3058	else
3059		raid_ctlr_position = nphysicals + nlogicals;
3060
3061	/* adjust our table of devices */
3062	n_ext_target_devs = 0;
3063	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3064		u8 *lunaddrbytes, is_OBDR = 0;
 
 
 
 
 
3065
3066		/* Figure out where the LUN ID info is coming from */
3067		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3068			i, nphysicals, nlogicals, physdev_list, logdev_list);
3069		/* skip masked physical devices. */
3070		if (lunaddrbytes[3] & 0xC0 &&
3071			i < nphysicals + (raid_ctlr_position == 0))
3072			continue;
 
 
 
 
 
 
 
 
 
 
 
3073
3074		/* Get device type, vendor, model, device id */
3075		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3076							&is_OBDR))
3077			continue; /* skip it if we can't talk to it. */
 
 
 
 
 
 
 
 
 
 
 
3078		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
 
3079		this_device = currentsd[ncurrent];
3080
3081		/*
3082		 * For external target devices, we have to insert a LUN 0 which
3083		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3084		 * is nonetheless an enclosure device there.  We have to
3085		 * present that otherwise linux won't find anything if
3086		 * there is no lun 0.
3087		 */
3088		if (add_ext_target_dev(h, tmpdevice, this_device,
3089				lunaddrbytes, lunzerobits,
3090				&n_ext_target_devs)) {
3091			ncurrent++;
3092			this_device = currentsd[ncurrent];
 
3093		}
3094
 
3095		*this_device = *tmpdevice;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3096
3097		switch (this_device->devtype) {
3098		case TYPE_ROM:
3099			/* We don't *really* support actual CD-ROM devices,
3100			 * just "One Button Disaster Recovery" tape drive
3101			 * which temporarily pretends to be a CD-ROM drive.
3102			 * So we check that the device is really an OBDR tape
3103			 * device by checking for "$DR-10" in bytes 43-48 of
3104			 * the inquiry data.
3105			 */
3106			if (is_OBDR)
3107				ncurrent++;
3108			break;
3109		case TYPE_DISK:
3110			if (h->hba_mode_enabled) {
3111				/* never use raid mapper in HBA mode */
 
 
3112				this_device->offload_enabled = 0;
3113				ncurrent++;
3114				break;
3115			} else if (h->acciopath_status) {
3116				if (i >= nphysicals) {
3117					ncurrent++;
3118					break;
3119				}
3120			} else {
3121				if (i < nphysicals)
3122					break;
3123				ncurrent++;
3124				break;
3125			}
3126			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3127				memcpy(&this_device->ioaccel_handle,
3128					&lunaddrbytes[20],
3129					sizeof(this_device->ioaccel_handle));
3130				ncurrent++;
3131			}
 
3132			break;
3133		case TYPE_TAPE:
3134		case TYPE_MEDIUM_CHANGER:
3135			ncurrent++;
3136			break;
 
 
 
 
 
 
 
3137		case TYPE_RAID:
3138			/* Only present the Smartarray HBA as a RAID controller.
3139			 * If it's a RAID controller other than the HBA itself
3140			 * (an external RAID controller, MSA500 or similar)
3141			 * don't present it.
3142			 */
3143			if (!is_hba_lunid(lunaddrbytes))
3144				break;
3145			ncurrent++;
3146			break;
3147		default:
3148			break;
3149		}
3150		if (ncurrent >= HPSA_MAX_DEVICES)
3151			break;
3152	}
3153	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
 
 
 
 
 
 
 
 
 
 
 
 
3154out:
3155	kfree(tmpdevice);
3156	for (i = 0; i < ndev_allocated; i++)
3157		kfree(currentsd[i]);
3158	kfree(currentsd);
3159	kfree(physdev_list);
3160	kfree(logdev_list);
 
 
3161}
3162
3163/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 
 
 
 
 
 
 
 
 
 
 
 
3164 * dma mapping  and fills in the scatter gather entries of the
3165 * hpsa command, cp.
3166 */
3167static int hpsa_scatter_gather(struct ctlr_info *h,
3168		struct CommandList *cp,
3169		struct scsi_cmnd *cmd)
3170{
3171	unsigned int len;
3172	struct scatterlist *sg;
3173	u64 addr64;
3174	int use_sg, i, sg_index, chained;
3175	struct SGDescriptor *curr_sg;
3176
3177	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3178
3179	use_sg = scsi_dma_map(cmd);
3180	if (use_sg < 0)
3181		return use_sg;
3182
3183	if (!use_sg)
3184		goto sglist_finished;
3185
 
 
 
 
 
 
 
3186	curr_sg = cp->SG;
3187	chained = 0;
3188	sg_index = 0;
3189	scsi_for_each_sg(cmd, sg, use_sg, i) {
3190		if (i == h->max_cmd_sg_entries - 1 &&
3191			use_sg > h->max_cmd_sg_entries) {
3192			chained = 1;
3193			curr_sg = h->cmd_sg_list[cp->cmdindex];
3194			sg_index = 0;
3195		}
3196		addr64 = (u64) sg_dma_address(sg);
3197		len  = sg_dma_len(sg);
3198		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3199		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3200		curr_sg->Len = len;
3201		curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
3202		curr_sg++;
3203	}
3204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3205	if (use_sg + chained > h->maxSG)
3206		h->maxSG = use_sg + chained;
3207
3208	if (chained) {
3209		cp->Header.SGList = h->max_cmd_sg_entries;
3210		cp->Header.SGTotal = (u16) (use_sg + 1);
3211		if (hpsa_map_sg_chain_block(h, cp)) {
3212			scsi_dma_unmap(cmd);
3213			return -1;
3214		}
3215		return 0;
3216	}
3217
3218sglist_finished:
3219
3220	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3221	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
3222	return 0;
3223}
3224
3225#define IO_ACCEL_INELIGIBLE (1)
3226static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3227{
3228	int is_write = 0;
3229	u32 block;
3230	u32 block_cnt;
3231
3232	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3233	switch (cdb[0]) {
3234	case WRITE_6:
3235	case WRITE_12:
3236		is_write = 1;
3237	case READ_6:
3238	case READ_12:
3239		if (*cdb_len == 6) {
3240			block = (((u32) cdb[2]) << 8) | cdb[3];
 
 
3241			block_cnt = cdb[4];
 
 
3242		} else {
3243			BUG_ON(*cdb_len != 12);
3244			block = (((u32) cdb[2]) << 24) |
3245				(((u32) cdb[3]) << 16) |
3246				(((u32) cdb[4]) << 8) |
3247				cdb[5];
3248			block_cnt =
3249				(((u32) cdb[6]) << 24) |
3250				(((u32) cdb[7]) << 16) |
3251				(((u32) cdb[8]) << 8) |
3252				cdb[9];
3253		}
3254		if (block_cnt > 0xffff)
3255			return IO_ACCEL_INELIGIBLE;
3256
3257		cdb[0] = is_write ? WRITE_10 : READ_10;
3258		cdb[1] = 0;
3259		cdb[2] = (u8) (block >> 24);
3260		cdb[3] = (u8) (block >> 16);
3261		cdb[4] = (u8) (block >> 8);
3262		cdb[5] = (u8) (block);
3263		cdb[6] = 0;
3264		cdb[7] = (u8) (block_cnt >> 8);
3265		cdb[8] = (u8) (block_cnt);
3266		cdb[9] = 0;
3267		*cdb_len = 10;
3268		break;
3269	}
3270	return 0;
3271}
3272
3273static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3274	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3275	u8 *scsi3addr)
3276{
3277	struct scsi_cmnd *cmd = c->scsi_cmd;
3278	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3279	unsigned int len;
3280	unsigned int total_len = 0;
3281	struct scatterlist *sg;
3282	u64 addr64;
3283	int use_sg, i;
3284	struct SGDescriptor *curr_sg;
3285	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3286
3287	/* TODO: implement chaining support */
3288	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
 
3289		return IO_ACCEL_INELIGIBLE;
 
3290
3291	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3292
3293	if (fixup_ioaccel_cdb(cdb, &cdb_len))
 
3294		return IO_ACCEL_INELIGIBLE;
 
3295
3296	c->cmd_type = CMD_IOACCEL1;
3297
3298	/* Adjust the DMA address to point to the accelerated command buffer */
3299	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3300				(c->cmdindex * sizeof(*cp));
3301	BUG_ON(c->busaddr & 0x0000007F);
3302
3303	use_sg = scsi_dma_map(cmd);
3304	if (use_sg < 0)
 
3305		return use_sg;
 
3306
3307	if (use_sg) {
3308		curr_sg = cp->SG;
3309		scsi_for_each_sg(cmd, sg, use_sg, i) {
3310			addr64 = (u64) sg_dma_address(sg);
3311			len  = sg_dma_len(sg);
3312			total_len += len;
3313			curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3314			curr_sg->Addr.upper =
3315				(u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3316			curr_sg->Len = len;
3317
3318			if (i == (scsi_sg_count(cmd) - 1))
3319				curr_sg->Ext = HPSA_SG_LAST;
3320			else
3321				curr_sg->Ext = 0;  /* we are not chaining */
3322			curr_sg++;
3323		}
 
3324
3325		switch (cmd->sc_data_direction) {
3326		case DMA_TO_DEVICE:
3327			control |= IOACCEL1_CONTROL_DATA_OUT;
3328			break;
3329		case DMA_FROM_DEVICE:
3330			control |= IOACCEL1_CONTROL_DATA_IN;
3331			break;
3332		case DMA_NONE:
3333			control |= IOACCEL1_CONTROL_NODATAXFER;
3334			break;
3335		default:
3336			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3337			cmd->sc_data_direction);
3338			BUG();
3339			break;
3340		}
3341	} else {
3342		control |= IOACCEL1_CONTROL_NODATAXFER;
3343	}
3344
3345	c->Header.SGList = use_sg;
3346	/* Fill out the command structure to submit */
3347	cp->dev_handle = ioaccel_handle & 0xFFFF;
3348	cp->transfer_len = total_len;
3349	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3350			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3351	cp->control = control;
3352	memcpy(cp->CDB, cdb, cdb_len);
3353	memcpy(cp->CISS_LUN, scsi3addr, 8);
3354	/* Tag was already set at init time. */
3355	enqueue_cmd_and_start_io(h, c);
3356	return 0;
3357}
3358
3359/*
3360 * Queue a command directly to a device behind the controller using the
3361 * I/O accelerator path.
3362 */
3363static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3364	struct CommandList *c)
3365{
3366	struct scsi_cmnd *cmd = c->scsi_cmd;
3367	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3368
 
 
 
 
 
3369	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3370		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3371}
3372
3373/*
3374 * Set encryption parameters for the ioaccel2 request
3375 */
3376static void set_encrypt_ioaccel2(struct ctlr_info *h,
3377	struct CommandList *c, struct io_accel2_cmd *cp)
3378{
3379	struct scsi_cmnd *cmd = c->scsi_cmd;
3380	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3381	struct raid_map_data *map = &dev->raid_map;
3382	u64 first_block;
3383
3384	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3385
3386	/* Are we doing encryption on this device */
3387	if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3388		return;
3389	/* Set the data encryption key index. */
3390	cp->dekindex = map->dekindex;
3391
3392	/* Set the encryption enable flag, encoded into direction field. */
3393	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3394
3395	/* Set encryption tweak values based on logical block address
3396	 * If block size is 512, tweak value is LBA.
3397	 * For other block sizes, tweak is (LBA * block size)/ 512)
3398	 */
3399	switch (cmd->cmnd[0]) {
3400	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3401	case WRITE_6:
3402	case READ_6:
3403		if (map->volume_blk_size == 512) {
3404			cp->tweak_lower =
3405				(((u32) cmd->cmnd[2]) << 8) |
3406					cmd->cmnd[3];
3407			cp->tweak_upper = 0;
3408		} else {
3409			first_block =
3410				(((u64) cmd->cmnd[2]) << 8) |
3411					cmd->cmnd[3];
3412			first_block = (first_block * map->volume_blk_size)/512;
3413			cp->tweak_lower = (u32)first_block;
3414			cp->tweak_upper = (u32)(first_block >> 32);
3415		}
3416		break;
3417	case WRITE_10:
3418	case READ_10:
3419		if (map->volume_blk_size == 512) {
3420			cp->tweak_lower =
3421				(((u32) cmd->cmnd[2]) << 24) |
3422				(((u32) cmd->cmnd[3]) << 16) |
3423				(((u32) cmd->cmnd[4]) << 8) |
3424					cmd->cmnd[5];
3425			cp->tweak_upper = 0;
3426		} else {
3427			first_block =
3428				(((u64) cmd->cmnd[2]) << 24) |
3429				(((u64) cmd->cmnd[3]) << 16) |
3430				(((u64) cmd->cmnd[4]) << 8) |
3431					cmd->cmnd[5];
3432			first_block = (first_block * map->volume_blk_size)/512;
3433			cp->tweak_lower = (u32)first_block;
3434			cp->tweak_upper = (u32)(first_block >> 32);
3435		}
3436		break;
3437	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3438	case WRITE_12:
3439	case READ_12:
3440		if (map->volume_blk_size == 512) {
3441			cp->tweak_lower =
3442				(((u32) cmd->cmnd[2]) << 24) |
3443				(((u32) cmd->cmnd[3]) << 16) |
3444				(((u32) cmd->cmnd[4]) << 8) |
3445					cmd->cmnd[5];
3446			cp->tweak_upper = 0;
3447		} else {
3448			first_block =
3449				(((u64) cmd->cmnd[2]) << 24) |
3450				(((u64) cmd->cmnd[3]) << 16) |
3451				(((u64) cmd->cmnd[4]) << 8) |
3452					cmd->cmnd[5];
3453			first_block = (first_block * map->volume_blk_size)/512;
3454			cp->tweak_lower = (u32)first_block;
3455			cp->tweak_upper = (u32)(first_block >> 32);
3456		}
3457		break;
3458	case WRITE_16:
3459	case READ_16:
3460		if (map->volume_blk_size == 512) {
3461			cp->tweak_lower =
3462				(((u32) cmd->cmnd[6]) << 24) |
3463				(((u32) cmd->cmnd[7]) << 16) |
3464				(((u32) cmd->cmnd[8]) << 8) |
3465					cmd->cmnd[9];
3466			cp->tweak_upper =
3467				(((u32) cmd->cmnd[2]) << 24) |
3468				(((u32) cmd->cmnd[3]) << 16) |
3469				(((u32) cmd->cmnd[4]) << 8) |
3470					cmd->cmnd[5];
3471		} else {
3472			first_block =
3473				(((u64) cmd->cmnd[2]) << 56) |
3474				(((u64) cmd->cmnd[3]) << 48) |
3475				(((u64) cmd->cmnd[4]) << 40) |
3476				(((u64) cmd->cmnd[5]) << 32) |
3477				(((u64) cmd->cmnd[6]) << 24) |
3478				(((u64) cmd->cmnd[7]) << 16) |
3479				(((u64) cmd->cmnd[8]) << 8) |
3480					cmd->cmnd[9];
3481			first_block = (first_block * map->volume_blk_size)/512;
3482			cp->tweak_lower = (u32)first_block;
3483			cp->tweak_upper = (u32)(first_block >> 32);
3484		}
3485		break;
3486	default:
3487		dev_err(&h->pdev->dev,
3488			"ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3489			__func__);
3490		BUG();
3491		break;
3492	}
 
 
 
 
 
 
 
3493}
3494
3495static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3496	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3497	u8 *scsi3addr)
3498{
3499	struct scsi_cmnd *cmd = c->scsi_cmd;
3500	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3501	struct ioaccel2_sg_element *curr_sg;
3502	int use_sg, i;
3503	struct scatterlist *sg;
3504	u64 addr64;
3505	u32 len;
3506	u32 total_len = 0;
3507
3508	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3509		return IO_ACCEL_INELIGIBLE;
 
 
 
 
 
3510
3511	if (fixup_ioaccel_cdb(cdb, &cdb_len))
 
3512		return IO_ACCEL_INELIGIBLE;
 
 
3513	c->cmd_type = CMD_IOACCEL2;
3514	/* Adjust the DMA address to point to the accelerated command buffer */
3515	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3516				(c->cmdindex * sizeof(*cp));
3517	BUG_ON(c->busaddr & 0x0000007F);
3518
3519	memset(cp, 0, sizeof(*cp));
3520	cp->IU_type = IOACCEL2_IU_TYPE;
3521
3522	use_sg = scsi_dma_map(cmd);
3523	if (use_sg < 0)
 
3524		return use_sg;
 
3525
3526	if (use_sg) {
3527		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3528		curr_sg = cp->sg;
 
 
 
 
 
 
 
 
 
 
 
 
3529		scsi_for_each_sg(cmd, sg, use_sg, i) {
3530			addr64 = (u64) sg_dma_address(sg);
3531			len  = sg_dma_len(sg);
3532			total_len += len;
3533			curr_sg->address = cpu_to_le64(addr64);
3534			curr_sg->length = cpu_to_le32(len);
3535			curr_sg->reserved[0] = 0;
3536			curr_sg->reserved[1] = 0;
3537			curr_sg->reserved[2] = 0;
3538			curr_sg->chain_indicator = 0;
3539			curr_sg++;
3540		}
3541
3542		switch (cmd->sc_data_direction) {
3543		case DMA_TO_DEVICE:
3544			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3545			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3546			break;
3547		case DMA_FROM_DEVICE:
3548			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3549			cp->direction |= IOACCEL2_DIR_DATA_IN;
3550			break;
3551		case DMA_NONE:
3552			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3553			cp->direction |= IOACCEL2_DIR_NO_DATA;
3554			break;
3555		default:
3556			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3557				cmd->sc_data_direction);
3558			BUG();
3559			break;
3560		}
3561	} else {
3562		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3563		cp->direction |= IOACCEL2_DIR_NO_DATA;
3564	}
3565
3566	/* Set encryption parameters, if necessary */
3567	set_encrypt_ioaccel2(h, c, cp);
3568
3569	cp->scsi_nexus = ioaccel_handle;
3570	cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3571				DIRECT_LOOKUP_BIT;
3572	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3573
3574	/* fill in sg elements */
3575	cp->sg_count = (u8) use_sg;
3576
3577	cp->data_len = cpu_to_le32(total_len);
3578	cp->err_ptr = cpu_to_le64(c->busaddr +
3579			offsetof(struct io_accel2_cmd, error_data));
3580	cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));
 
 
 
 
 
 
 
 
 
 
 
 
3581
3582	enqueue_cmd_and_start_io(h, c);
3583	return 0;
3584}
3585
3586/*
3587 * Queue a command to the correct I/O accelerator path.
3588 */
3589static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3590	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3591	u8 *scsi3addr)
3592{
 
 
 
 
 
 
 
 
 
 
 
 
3593	if (h->transMethod & CFGTBL_Trans_io_accel1)
3594		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3595						cdb, cdb_len, scsi3addr);
 
3596	else
3597		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3598						cdb, cdb_len, scsi3addr);
 
3599}
3600
3601static void raid_map_helper(struct raid_map_data *map,
3602		int offload_to_mirror, u32 *map_index, u32 *current_group)
3603{
3604	if (offload_to_mirror == 0)  {
3605		/* use physical disk in the first mirrored group. */
3606		*map_index %= map->data_disks_per_row;
3607		return;
3608	}
3609	do {
3610		/* determine mirror group that *map_index indicates */
3611		*current_group = *map_index / map->data_disks_per_row;
 
3612		if (offload_to_mirror == *current_group)
3613			continue;
3614		if (*current_group < (map->layout_map_count - 1)) {
3615			/* select map index from next group */
3616			*map_index += map->data_disks_per_row;
3617			(*current_group)++;
3618		} else {
3619			/* select map index from first group */
3620			*map_index %= map->data_disks_per_row;
3621			*current_group = 0;
3622		}
3623	} while (offload_to_mirror != *current_group);
3624}
3625
3626/*
3627 * Attempt to perform offload RAID mapping for a logical volume I/O.
3628 */
3629static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3630	struct CommandList *c)
3631{
3632	struct scsi_cmnd *cmd = c->scsi_cmd;
3633	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3634	struct raid_map_data *map = &dev->raid_map;
3635	struct raid_map_disk_data *dd = &map->data[0];
3636	int is_write = 0;
3637	u32 map_index;
3638	u64 first_block, last_block;
3639	u32 block_cnt;
3640	u32 blocks_per_row;
3641	u64 first_row, last_row;
3642	u32 first_row_offset, last_row_offset;
3643	u32 first_column, last_column;
3644	u64 r0_first_row, r0_last_row;
3645	u32 r5or6_blocks_per_row;
3646	u64 r5or6_first_row, r5or6_last_row;
3647	u32 r5or6_first_row_offset, r5or6_last_row_offset;
3648	u32 r5or6_first_column, r5or6_last_column;
3649	u32 total_disks_per_row;
3650	u32 stripesize;
3651	u32 first_group, last_group, current_group;
3652	u32 map_row;
3653	u32 disk_handle;
3654	u64 disk_block;
3655	u32 disk_block_cnt;
3656	u8 cdb[16];
3657	u8 cdb_len;
 
3658#if BITS_PER_LONG == 32
3659	u64 tmpdiv;
3660#endif
3661	int offload_to_mirror;
3662
3663	BUG_ON(!(dev->offload_config && dev->offload_enabled));
 
3664
3665	/* check for valid opcode, get LBA and block count */
3666	switch (cmd->cmnd[0]) {
3667	case WRITE_6:
3668		is_write = 1;
3669	case READ_6:
3670		first_block =
3671			(((u64) cmd->cmnd[2]) << 8) |
3672			cmd->cmnd[3];
3673		block_cnt = cmd->cmnd[4];
 
 
3674		break;
3675	case WRITE_10:
3676		is_write = 1;
3677	case READ_10:
3678		first_block =
3679			(((u64) cmd->cmnd[2]) << 24) |
3680			(((u64) cmd->cmnd[3]) << 16) |
3681			(((u64) cmd->cmnd[4]) << 8) |
3682			cmd->cmnd[5];
3683		block_cnt =
3684			(((u32) cmd->cmnd[7]) << 8) |
3685			cmd->cmnd[8];
3686		break;
3687	case WRITE_12:
3688		is_write = 1;
3689	case READ_12:
3690		first_block =
3691			(((u64) cmd->cmnd[2]) << 24) |
3692			(((u64) cmd->cmnd[3]) << 16) |
3693			(((u64) cmd->cmnd[4]) << 8) |
3694			cmd->cmnd[5];
3695		block_cnt =
3696			(((u32) cmd->cmnd[6]) << 24) |
3697			(((u32) cmd->cmnd[7]) << 16) |
3698			(((u32) cmd->cmnd[8]) << 8) |
3699		cmd->cmnd[9];
3700		break;
3701	case WRITE_16:
3702		is_write = 1;
3703	case READ_16:
3704		first_block =
3705			(((u64) cmd->cmnd[2]) << 56) |
3706			(((u64) cmd->cmnd[3]) << 48) |
3707			(((u64) cmd->cmnd[4]) << 40) |
3708			(((u64) cmd->cmnd[5]) << 32) |
3709			(((u64) cmd->cmnd[6]) << 24) |
3710			(((u64) cmd->cmnd[7]) << 16) |
3711			(((u64) cmd->cmnd[8]) << 8) |
3712			cmd->cmnd[9];
3713		block_cnt =
3714			(((u32) cmd->cmnd[10]) << 24) |
3715			(((u32) cmd->cmnd[11]) << 16) |
3716			(((u32) cmd->cmnd[12]) << 8) |
3717			cmd->cmnd[13];
3718		break;
3719	default:
3720		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3721	}
3722	BUG_ON(block_cnt == 0);
3723	last_block = first_block + block_cnt - 1;
3724
3725	/* check for write to non-RAID-0 */
3726	if (is_write && dev->raid_level != 0)
3727		return IO_ACCEL_INELIGIBLE;
3728
3729	/* check for invalid block or wraparound */
3730	if (last_block >= map->volume_blk_cnt || last_block < first_block)
 
3731		return IO_ACCEL_INELIGIBLE;
3732
3733	/* calculate stripe information for the request */
3734	blocks_per_row = map->data_disks_per_row * map->strip_size;
 
 
3735#if BITS_PER_LONG == 32
3736	tmpdiv = first_block;
3737	(void) do_div(tmpdiv, blocks_per_row);
3738	first_row = tmpdiv;
3739	tmpdiv = last_block;
3740	(void) do_div(tmpdiv, blocks_per_row);
3741	last_row = tmpdiv;
3742	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3743	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3744	tmpdiv = first_row_offset;
3745	(void) do_div(tmpdiv,  map->strip_size);
3746	first_column = tmpdiv;
3747	tmpdiv = last_row_offset;
3748	(void) do_div(tmpdiv, map->strip_size);
3749	last_column = tmpdiv;
3750#else
3751	first_row = first_block / blocks_per_row;
3752	last_row = last_block / blocks_per_row;
3753	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3754	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3755	first_column = first_row_offset / map->strip_size;
3756	last_column = last_row_offset / map->strip_size;
3757#endif
3758
3759	/* if this isn't a single row/column then give to the controller */
3760	if ((first_row != last_row) || (first_column != last_column))
3761		return IO_ACCEL_INELIGIBLE;
3762
3763	/* proceeding with driver mapping */
3764	total_disks_per_row = map->data_disks_per_row +
3765				map->metadata_disks_per_row;
3766	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3767				map->row_cnt;
3768	map_index = (map_row * total_disks_per_row) + first_column;
3769
3770	switch (dev->raid_level) {
3771	case HPSA_RAID_0:
3772		break; /* nothing special to do */
3773	case HPSA_RAID_1:
3774		/* Handles load balance across RAID 1 members.
3775		 * (2-drive R1 and R10 with even # of drives.)
3776		 * Appropriate for SSDs, not optimal for HDDs
3777		 */
3778		BUG_ON(map->layout_map_count != 2);
3779		if (dev->offload_to_mirror)
3780			map_index += map->data_disks_per_row;
3781		dev->offload_to_mirror = !dev->offload_to_mirror;
3782		break;
3783	case HPSA_RAID_ADM:
3784		/* Handles N-way mirrors  (R1-ADM)
3785		 * and R10 with # of drives divisible by 3.)
3786		 */
3787		BUG_ON(map->layout_map_count != 3);
3788
3789		offload_to_mirror = dev->offload_to_mirror;
3790		raid_map_helper(map, offload_to_mirror,
3791				&map_index, &current_group);
3792		/* set mirror group to use next time */
3793		offload_to_mirror =
3794			(offload_to_mirror >= map->layout_map_count - 1)
 
3795			? 0 : offload_to_mirror + 1;
3796		/* FIXME: remove after debug/dev */
3797		BUG_ON(offload_to_mirror >= map->layout_map_count);
3798		dev_warn(&h->pdev->dev,
3799			"DEBUG: Using physical disk map index %d from mirror group %d\n",
3800			map_index, offload_to_mirror);
3801		dev->offload_to_mirror = offload_to_mirror;
3802		/* Avoid direct use of dev->offload_to_mirror within this
3803		 * function since multiple threads might simultaneously
3804		 * increment it beyond the range of dev->layout_map_count -1.
3805		 */
3806		break;
3807	case HPSA_RAID_5:
3808	case HPSA_RAID_6:
3809		if (map->layout_map_count <= 1)
3810			break;
3811
3812		/* Verify first and last block are in same RAID group */
3813		r5or6_blocks_per_row =
3814			map->strip_size * map->data_disks_per_row;
 
3815		BUG_ON(r5or6_blocks_per_row == 0);
3816		stripesize = r5or6_blocks_per_row * map->layout_map_count;
 
3817#if BITS_PER_LONG == 32
3818		tmpdiv = first_block;
3819		first_group = do_div(tmpdiv, stripesize);
3820		tmpdiv = first_group;
3821		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3822		first_group = tmpdiv;
3823		tmpdiv = last_block;
3824		last_group = do_div(tmpdiv, stripesize);
3825		tmpdiv = last_group;
3826		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3827		last_group = tmpdiv;
3828#else
3829		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3830		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3831#endif
3832		if (first_group != last_group)
3833			return IO_ACCEL_INELIGIBLE;
3834
3835		/* Verify request is in a single row of RAID 5/6 */
3836#if BITS_PER_LONG == 32
3837		tmpdiv = first_block;
3838		(void) do_div(tmpdiv, stripesize);
3839		first_row = r5or6_first_row = r0_first_row = tmpdiv;
3840		tmpdiv = last_block;
3841		(void) do_div(tmpdiv, stripesize);
3842		r5or6_last_row = r0_last_row = tmpdiv;
3843#else
3844		first_row = r5or6_first_row = r0_first_row =
3845						first_block / stripesize;
3846		r5or6_last_row = r0_last_row = last_block / stripesize;
3847#endif
3848		if (r5or6_first_row != r5or6_last_row)
3849			return IO_ACCEL_INELIGIBLE;
3850
3851
3852		/* Verify request is in a single column */
3853#if BITS_PER_LONG == 32
3854		tmpdiv = first_block;
3855		first_row_offset = do_div(tmpdiv, stripesize);
3856		tmpdiv = first_row_offset;
3857		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3858		r5or6_first_row_offset = first_row_offset;
3859		tmpdiv = last_block;
3860		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3861		tmpdiv = r5or6_last_row_offset;
3862		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3863		tmpdiv = r5or6_first_row_offset;
3864		(void) do_div(tmpdiv, map->strip_size);
3865		first_column = r5or6_first_column = tmpdiv;
3866		tmpdiv = r5or6_last_row_offset;
3867		(void) do_div(tmpdiv, map->strip_size);
3868		r5or6_last_column = tmpdiv;
3869#else
3870		first_row_offset = r5or6_first_row_offset =
3871			(u32)((first_block % stripesize) %
3872						r5or6_blocks_per_row);
3873
3874		r5or6_last_row_offset =
3875			(u32)((last_block % stripesize) %
3876						r5or6_blocks_per_row);
3877
3878		first_column = r5or6_first_column =
3879			r5or6_first_row_offset / map->strip_size;
3880		r5or6_last_column =
3881			r5or6_last_row_offset / map->strip_size;
3882#endif
3883		if (r5or6_first_column != r5or6_last_column)
3884			return IO_ACCEL_INELIGIBLE;
3885
3886		/* Request is eligible */
3887		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3888			map->row_cnt;
3889
3890		map_index = (first_group *
3891			(map->row_cnt * total_disks_per_row)) +
3892			(map_row * total_disks_per_row) + first_column;
3893		break;
3894	default:
3895		return IO_ACCEL_INELIGIBLE;
3896	}
3897
 
 
 
 
 
 
 
3898	disk_handle = dd[map_index].ioaccel_handle;
3899	disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3900			(first_row_offset - (first_column * map->strip_size));
 
 
3901	disk_block_cnt = block_cnt;
3902
3903	/* handle differing logical/physical block sizes */
3904	if (map->phys_blk_shift) {
3905		disk_block <<= map->phys_blk_shift;
3906		disk_block_cnt <<= map->phys_blk_shift;
3907	}
3908	BUG_ON(disk_block_cnt > 0xffff);
3909
3910	/* build the new CDB for the physical disk I/O */
3911	if (disk_block > 0xffffffff) {
3912		cdb[0] = is_write ? WRITE_16 : READ_16;
3913		cdb[1] = 0;
3914		cdb[2] = (u8) (disk_block >> 56);
3915		cdb[3] = (u8) (disk_block >> 48);
3916		cdb[4] = (u8) (disk_block >> 40);
3917		cdb[5] = (u8) (disk_block >> 32);
3918		cdb[6] = (u8) (disk_block >> 24);
3919		cdb[7] = (u8) (disk_block >> 16);
3920		cdb[8] = (u8) (disk_block >> 8);
3921		cdb[9] = (u8) (disk_block);
3922		cdb[10] = (u8) (disk_block_cnt >> 24);
3923		cdb[11] = (u8) (disk_block_cnt >> 16);
3924		cdb[12] = (u8) (disk_block_cnt >> 8);
3925		cdb[13] = (u8) (disk_block_cnt);
3926		cdb[14] = 0;
3927		cdb[15] = 0;
3928		cdb_len = 16;
3929	} else {
3930		cdb[0] = is_write ? WRITE_10 : READ_10;
3931		cdb[1] = 0;
3932		cdb[2] = (u8) (disk_block >> 24);
3933		cdb[3] = (u8) (disk_block >> 16);
3934		cdb[4] = (u8) (disk_block >> 8);
3935		cdb[5] = (u8) (disk_block);
3936		cdb[6] = 0;
3937		cdb[7] = (u8) (disk_block_cnt >> 8);
3938		cdb[8] = (u8) (disk_block_cnt);
3939		cdb[9] = 0;
3940		cdb_len = 10;
3941	}
3942	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3943						dev->scsi3addr);
 
3944}
3945
3946static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3947	void (*done)(struct scsi_cmnd *))
 
 
 
 
 
 
3948{
3949	struct ctlr_info *h;
3950	struct hpsa_scsi_dev_t *dev;
3951	unsigned char scsi3addr[8];
3952	struct CommandList *c;
3953	unsigned long flags;
3954	int rc = 0;
3955
3956	/* Get the ptr to our adapter structure out of cmd->host. */
3957	h = sdev_to_hba(cmd->device);
3958	dev = cmd->device->hostdata;
3959	if (!dev) {
3960		cmd->result = DID_NO_CONNECT << 16;
3961		done(cmd);
3962		return 0;
3963	}
3964	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3965
3966	spin_lock_irqsave(&h->lock, flags);
3967	if (unlikely(h->lockup_detected)) {
3968		spin_unlock_irqrestore(&h->lock, flags);
3969		cmd->result = DID_ERROR << 16;
3970		done(cmd);
3971		return 0;
3972	}
3973	spin_unlock_irqrestore(&h->lock, flags);
3974	c = cmd_alloc(h);
3975	if (c == NULL) {			/* trouble... */
3976		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3977		return SCSI_MLQUEUE_HOST_BUSY;
3978	}
3979
3980	/* Fill in the command list header */
3981
3982	cmd->scsi_done = done;    /* save this for use by completion code */
3983
3984	/* save c in case we have to abort it  */
3985	cmd->host_scribble = (unsigned char *) c;
3986
3987	c->cmd_type = CMD_SCSI;
3988	c->scsi_cmd = cmd;
3989
3990	/* Call alternate submit routine for I/O accelerated commands.
3991	 * Retries always go down the normal I/O path.
3992	 */
3993	if (likely(cmd->retries == 0 &&
3994		cmd->request->cmd_type == REQ_TYPE_FS &&
3995		h->acciopath_status)) {
3996		if (dev->offload_enabled) {
3997			rc = hpsa_scsi_ioaccel_raid_map(h, c);
3998			if (rc == 0)
3999				return 0; /* Sent on ioaccel path */
4000			if (rc < 0) {   /* scsi_dma_map failed. */
4001				cmd_free(h, c);
4002				return SCSI_MLQUEUE_HOST_BUSY;
4003			}
4004		} else if (dev->ioaccel_handle) {
4005			rc = hpsa_scsi_ioaccel_direct_map(h, c);
4006			if (rc == 0)
4007				return 0; /* Sent on direct map path */
4008			if (rc < 0) {   /* scsi_dma_map failed. */
4009				cmd_free(h, c);
4010				return SCSI_MLQUEUE_HOST_BUSY;
4011			}
4012		}
4013	}
4014
4015	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4016	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4017	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
4018	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
4019
4020	/* Fill in the request block... */
4021
4022	c->Request.Timeout = 0;
4023	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4024	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4025	c->Request.CDBLen = cmd->cmd_len;
4026	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4027	c->Request.Type.Type = TYPE_CMD;
4028	c->Request.Type.Attribute = ATTR_SIMPLE;
4029	switch (cmd->sc_data_direction) {
4030	case DMA_TO_DEVICE:
4031		c->Request.Type.Direction = XFER_WRITE;
 
4032		break;
4033	case DMA_FROM_DEVICE:
4034		c->Request.Type.Direction = XFER_READ;
 
4035		break;
4036	case DMA_NONE:
4037		c->Request.Type.Direction = XFER_NONE;
 
4038		break;
4039	case DMA_BIDIRECTIONAL:
4040		/* This can happen if a buggy application does a scsi passthru
4041		 * and sets both inlen and outlen to non-zero. ( see
4042		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4043		 */
4044
4045		c->Request.Type.Direction = XFER_RSVD;
 
4046		/* This is technically wrong, and hpsa controllers should
4047		 * reject it with CMD_INVALID, which is the most correct
4048		 * response, but non-fibre backends appear to let it
4049		 * slide by, and give the same results as if this field
4050		 * were set correctly.  Either way is acceptable for
4051		 * our purposes here.
4052		 */
4053
4054		break;
4055
4056	default:
4057		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4058			cmd->sc_data_direction);
4059		BUG();
4060		break;
4061	}
4062
4063	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4064		cmd_free(h, c);
4065		return SCSI_MLQUEUE_HOST_BUSY;
4066	}
4067	enqueue_cmd_and_start_io(h, c);
4068	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4069	return 0;
4070}
4071
4072static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
 
 
 
4073
4074static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4075{
4076	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4077
4078	/*
4079	 * Don't let rescans be initiated on a controller known
4080	 * to be locked up.  If the controller locks up *during*
4081	 * a rescan, that thread is probably hosed, but at least
4082	 * we can prevent new rescan threads from piling up on a
4083	 * locked up controller.
4084	 */
4085	spin_lock_irqsave(&h->lock, flags);
4086	if (unlikely(h->lockup_detected)) {
4087		spin_unlock_irqrestore(&h->lock, flags);
4088		spin_lock_irqsave(&h->scan_lock, flags);
4089		h->scan_finished = 1;
4090		wake_up_all(&h->scan_wait_queue);
4091		spin_unlock_irqrestore(&h->scan_lock, flags);
4092		return 1;
 
 
4093	}
4094	spin_unlock_irqrestore(&h->lock, flags);
4095	return 0;
 
 
 
 
 
 
 
 
 
4096}
4097
4098static void hpsa_scan_start(struct Scsi_Host *sh)
4099{
4100	struct ctlr_info *h = shost_to_hba(sh);
4101	unsigned long flags;
4102
4103	if (do_not_scan_if_controller_locked_up(h))
4104		return;
 
 
 
 
 
 
4105
4106	/* wait until any scan already in progress is finished. */
4107	while (1) {
4108		spin_lock_irqsave(&h->scan_lock, flags);
4109		if (h->scan_finished)
4110			break;
4111		spin_unlock_irqrestore(&h->scan_lock, flags);
4112		wait_event(h->scan_wait_queue, h->scan_finished);
4113		/* Note: We don't need to worry about a race between this
4114		 * thread and driver unload because the midlayer will
4115		 * have incremented the reference count, so unload won't
4116		 * happen if we're in here.
4117		 */
4118	}
4119	h->scan_finished = 0; /* mark scan as in progress */
4120	spin_unlock_irqrestore(&h->scan_lock, flags);
4121
4122	if (do_not_scan_if_controller_locked_up(h))
 
 
 
 
 
 
 
4123		return;
 
4124
4125	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4126
4127	spin_lock_irqsave(&h->scan_lock, flags);
4128	h->scan_finished = 1; /* mark scan as finished. */
4129	wake_up_all(&h->scan_wait_queue);
4130	spin_unlock_irqrestore(&h->scan_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
4131}
4132
4133static int hpsa_scan_finished(struct Scsi_Host *sh,
4134	unsigned long elapsed_time)
4135{
4136	struct ctlr_info *h = shost_to_hba(sh);
4137	unsigned long flags;
4138	int finished;
4139
4140	spin_lock_irqsave(&h->scan_lock, flags);
4141	finished = h->scan_finished;
4142	spin_unlock_irqrestore(&h->scan_lock, flags);
4143	return finished;
4144}
4145
4146static int hpsa_change_queue_depth(struct scsi_device *sdev,
4147	int qdepth, int reason)
4148{
4149	struct ctlr_info *h = sdev_to_hba(sdev);
4150
4151	if (reason != SCSI_QDEPTH_DEFAULT)
4152		return -ENOTSUPP;
4153
4154	if (qdepth < 1)
4155		qdepth = 1;
4156	else
4157		if (qdepth > h->nr_cmds)
4158			qdepth = h->nr_cmds;
4159	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
4160	return sdev->queue_depth;
4161}
4162
4163static void hpsa_unregister_scsi(struct ctlr_info *h)
4164{
4165	/* we are being forcibly unloaded, and may not refuse. */
4166	scsi_remove_host(h->scsi_host);
4167	scsi_host_put(h->scsi_host);
4168	h->scsi_host = NULL;
4169}
4170
4171static int hpsa_register_scsi(struct ctlr_info *h)
4172{
4173	struct Scsi_Host *sh;
4174	int error;
4175
4176	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4177	if (sh == NULL)
4178		goto fail;
 
 
4179
4180	sh->io_port = 0;
4181	sh->n_io_port = 0;
4182	sh->this_id = -1;
4183	sh->max_channel = 3;
4184	sh->max_cmd_len = MAX_COMMAND_SIZE;
4185	sh->max_lun = HPSA_MAX_LUN;
4186	sh->max_id = HPSA_MAX_LUN;
4187	sh->can_queue = h->nr_cmds;
4188	if (h->hba_mode_enabled)
4189		sh->cmd_per_lun = 7;
4190	else
4191		sh->cmd_per_lun = h->nr_cmds;
4192	sh->sg_tablesize = h->maxsgentries;
4193	h->scsi_host = sh;
4194	sh->hostdata[0] = (unsigned long) h;
4195	sh->irq = h->intr[h->intr_mode];
4196	sh->unique_id = sh->irq;
4197	error = scsi_add_host(sh, &h->pdev->dev);
4198	if (error)
4199		goto fail_host_put;
4200	scsi_scan_host(sh);
4201	return 0;
 
4202
4203 fail_host_put:
4204	dev_err(&h->pdev->dev, "%s: scsi_add_host"
4205		" failed for controller %d\n", __func__, h->ctlr);
4206	scsi_host_put(sh);
4207	return error;
4208 fail:
4209	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4210		" failed for controller %d\n", __func__, h->ctlr);
4211	return -ENOMEM;
 
 
4212}
4213
4214static int wait_for_device_to_become_ready(struct ctlr_info *h,
4215	unsigned char lunaddr[])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4216{
4217	int rc;
4218	int count = 0;
4219	int waittime = 1; /* seconds */
4220	struct CommandList *c;
4221
4222	c = cmd_special_alloc(h);
4223	if (!c) {
4224		dev_warn(&h->pdev->dev, "out of memory in "
4225			"wait_for_device_to_become_ready.\n");
4226		return IO_ERROR;
4227	}
4228
4229	/* Send test unit ready until device ready, or give up. */
4230	while (count < HPSA_TUR_RETRY_LIMIT) {
4231
4232		/* Wait for a bit.  do this first, because if we send
 
4233		 * the TUR right away, the reset will just abort it.
4234		 */
4235		msleep(1000 * waittime);
4236		count++;
4237		rc = 0; /* Device ready. */
 
 
4238
4239		/* Increase wait time with each try, up to a point. */
4240		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4241			waittime = waittime * 2;
4242
4243		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4244		(void) fill_cmd(c, TEST_UNIT_READY, h,
4245				NULL, 0, 0, lunaddr, TYPE_CMD);
4246		hpsa_scsi_do_simple_cmd_core(h, c);
4247		/* no unmap needed here because no data xfer. */
4248
4249		if (c->err_info->CommandStatus == CMD_SUCCESS)
4250			break;
4251
4252		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4253			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4254			(c->err_info->SenseInfo[2] == NO_SENSE ||
4255			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4256			break;
 
 
 
 
 
 
4257
4258		dev_warn(&h->pdev->dev, "waiting %d secs "
4259			"for device to become ready.\n", waittime);
4260		rc = 1; /* device not ready. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4261	}
4262
4263	if (rc)
4264		dev_warn(&h->pdev->dev, "giving up on device.\n");
4265	else
4266		dev_warn(&h->pdev->dev, "device is ready.\n");
4267
4268	cmd_special_free(h, c);
4269	return rc;
4270}
4271
4272/* Need at least one of these error handlers to keep ../scsi/hosts.c from
4273 * complaining.  Doing a host- or bus-reset can't do anything good here.
4274 */
4275static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4276{
4277	int rc;
4278	struct ctlr_info *h;
4279	struct hpsa_scsi_dev_t *dev;
 
 
4280
4281	/* find the controller to which the command to be aborted was sent */
4282	h = sdev_to_hba(scsicmd->device);
4283	if (h == NULL) /* paranoia */
4284		return FAILED;
 
 
 
 
4285	dev = scsicmd->device->hostdata;
4286	if (!dev) {
4287		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4288			"device lookup failed.\n");
4289		return FAILED;
4290	}
4291	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4292		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4293	/* send a reset to the SCSI LUN which the command was sent to */
4294	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4295	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4296		return SUCCESS;
4297
4298	dev_warn(&h->pdev->dev, "resetting device failed.\n");
4299	return FAILED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4300}
4301
4302static void swizzle_abort_tag(u8 *tag)
4303{
4304	u8 original_tag[8];
4305
4306	memcpy(original_tag, tag, 8);
4307	tag[0] = original_tag[3];
4308	tag[1] = original_tag[2];
4309	tag[2] = original_tag[1];
4310	tag[3] = original_tag[0];
4311	tag[4] = original_tag[7];
4312	tag[5] = original_tag[6];
4313	tag[6] = original_tag[5];
4314	tag[7] = original_tag[4];
4315}
4316
4317static void hpsa_get_tag(struct ctlr_info *h,
4318	struct CommandList *c, u32 *taglower, u32 *tagupper)
4319{
 
4320	if (c->cmd_type == CMD_IOACCEL1) {
4321		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4322			&h->ioaccel_cmd_pool[c->cmdindex];
4323		*tagupper = cm1->Tag.upper;
4324		*taglower = cm1->Tag.lower;
 
4325		return;
4326	}
4327	if (c->cmd_type == CMD_IOACCEL2) {
4328		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4329			&h->ioaccel2_cmd_pool[c->cmdindex];
4330		/* upper tag not used in ioaccel2 mode */
4331		memset(tagupper, 0, sizeof(*tagupper));
4332		*taglower = cm2->Tag;
4333		return;
4334	}
4335	*tagupper = c->Header.Tag.upper;
4336	*taglower = c->Header.Tag.lower;
 
4337}
4338
4339
4340static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4341	struct CommandList *abort, int swizzle)
4342{
4343	int rc = IO_OK;
4344	struct CommandList *c;
4345	struct ErrorInfo *ei;
4346	u32 tagupper, taglower;
4347
4348	c = cmd_special_alloc(h);
4349	if (c == NULL) {	/* trouble... */
4350		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4351		return -ENOMEM;
4352	}
4353
4354	/* fill_cmd can't fail here, no buffer to map */
4355	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4356		0, 0, scsi3addr, TYPE_MSG);
4357	if (swizzle)
4358		swizzle_abort_tag(&c->Request.CDB[4]);
4359	hpsa_scsi_do_simple_cmd_core(h, c);
4360	hpsa_get_tag(h, abort, &taglower, &tagupper);
4361	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4362		__func__, tagupper, taglower);
4363	/* no unmap needed here because no data xfer. */
4364
4365	ei = c->err_info;
4366	switch (ei->CommandStatus) {
4367	case CMD_SUCCESS:
4368		break;
 
 
 
4369	case CMD_UNABORTABLE: /* Very common, don't make noise. */
4370		rc = -1;
4371		break;
4372	default:
4373		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4374			__func__, tagupper, taglower);
4375		hpsa_scsi_interpret_error(h, c);
4376		rc = -1;
4377		break;
4378	}
4379	cmd_special_free(h, c);
4380	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4381		__func__, tagupper, taglower);
4382	return rc;
4383}
4384
4385/*
4386 * hpsa_find_cmd_in_queue
4387 *
4388 * Used to determine whether a command (find) is still present
4389 * in queue_head.   Optionally excludes the last element of queue_head.
4390 *
4391 * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4392 * not yet been submitted, and so can be aborted by the driver without
4393 * sending an abort to the hardware.
4394 *
4395 * Returns pointer to command if found in queue, NULL otherwise.
4396 */
4397static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4398			struct scsi_cmnd *find, struct list_head *queue_head)
4399{
4400	unsigned long flags;
4401	struct CommandList *c = NULL;	/* ptr into cmpQ */
 
 
 
 
4402
4403	if (!find)
4404		return 0;
4405	spin_lock_irqsave(&h->lock, flags);
4406	list_for_each_entry(c, queue_head, list) {
4407		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4408			continue;
4409		if (c->scsi_cmd == find) {
4410			spin_unlock_irqrestore(&h->lock, flags);
4411			return c;
4412		}
4413	}
4414	spin_unlock_irqrestore(&h->lock, flags);
4415	return NULL;
4416}
4417
4418static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4419					u8 *tag, struct list_head *queue_head)
4420{
4421	unsigned long flags;
4422	struct CommandList *c;
 
 
 
 
 
4423
4424	spin_lock_irqsave(&h->lock, flags);
4425	list_for_each_entry(c, queue_head, list) {
4426		if (memcmp(&c->Header.Tag, tag, 8) != 0)
4427			continue;
4428		spin_unlock_irqrestore(&h->lock, flags);
4429		return c;
4430	}
4431	spin_unlock_irqrestore(&h->lock, flags);
4432	return NULL;
 
 
 
 
 
 
 
 
 
 
4433}
4434
4435/* ioaccel2 path firmware cannot handle abort task requests.
4436 * Change abort requests to physical target reset, and send to the
4437 * address of the physical disk used for the ioaccel 2 command.
4438 * Return 0 on success (IO_OK)
4439 *	 -1 on failure
4440 */
4441
4442static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4443	unsigned char *scsi3addr, struct CommandList *abort)
4444{
4445	int rc = IO_OK;
4446	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4447	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4448	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4449	unsigned char *psa = &phys_scsi3addr[0];
4450
4451	/* Get a pointer to the hpsa logical device. */
4452	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4453	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4454	if (dev == NULL) {
4455		dev_warn(&h->pdev->dev,
4456			"Cannot abort: no device pointer for command.\n");
4457			return -1; /* not abortable */
4458	}
4459
4460	if (h->raid_offload_debug > 0)
4461		dev_info(&h->pdev->dev,
4462			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4463			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4464			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4465			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4466
4467	if (!dev->offload_enabled) {
4468		dev_warn(&h->pdev->dev,
4469			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4470		return -1; /* not abortable */
4471	}
4472
4473	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
4474	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4475		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4476		return -1; /* not abortable */
4477	}
4478
4479	/* send the reset */
4480	if (h->raid_offload_debug > 0)
4481		dev_info(&h->pdev->dev,
4482			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4483			psa[0], psa[1], psa[2], psa[3],
4484			psa[4], psa[5], psa[6], psa[7]);
4485	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4486	if (rc != 0) {
4487		dev_warn(&h->pdev->dev,
4488			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4489			psa[0], psa[1], psa[2], psa[3],
4490			psa[4], psa[5], psa[6], psa[7]);
4491		return rc; /* failed to reset */
4492	}
4493
4494	/* wait for device to recover */
4495	if (wait_for_device_to_become_ready(h, psa) != 0) {
4496		dev_warn(&h->pdev->dev,
4497			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4498			psa[0], psa[1], psa[2], psa[3],
4499			psa[4], psa[5], psa[6], psa[7]);
4500		return -1;  /* failed to recover */
4501	}
4502
4503	/* device recovered */
4504	dev_info(&h->pdev->dev,
4505		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4506		psa[0], psa[1], psa[2], psa[3],
4507		psa[4], psa[5], psa[6], psa[7]);
4508
4509	return rc; /* success */
4510}
4511
4512/* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4513 * tell which kind we're dealing with, so we send the abort both ways.  There
4514 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4515 * way we construct our tags but we check anyway in case the assumptions which
4516 * make this true someday become false.
4517 */
4518static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4519	unsigned char *scsi3addr, struct CommandList *abort)
4520{
4521	u8 swizzled_tag[8];
4522	struct CommandList *c;
4523	int rc = 0, rc2 = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4524
4525	/* ioccelerator mode 2 commands should be aborted via the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4526	 * accelerated path, since RAID path is unaware of these commands,
4527	 * but underlying firmware can't handle abort TMF.
4528	 * Change abort to physical device reset.
4529	 */
4530	if (abort->cmd_type == CMD_IOACCEL2)
4531		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
 
 
 
 
 
 
 
 
 
 
4532
4533	/* we do not expect to find the swizzled tag in our queue, but
4534	 * check anyway just to be sure the assumptions which make this
4535	 * the case haven't become wrong.
4536	 */
4537	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4538	swizzle_abort_tag(swizzled_tag);
4539	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4540	if (c != NULL) {
4541		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4542		return hpsa_send_abort(h, scsi3addr, abort, 0);
4543	}
4544	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4545
4546	/* if the command is still in our queue, we can't conclude that it was
4547	 * aborted (it might have just completed normally) but in any case
4548	 * we don't need to try to abort it another way.
4549	 */
4550	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4551	if (c)
4552		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4553	return rc && rc2;
4554}
4555
4556/* Send an abort for the specified command.
4557 *	If the device and controller support it,
4558 *		send a task abort request.
4559 */
4560static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4561{
4562
4563	int i, rc;
4564	struct ctlr_info *h;
4565	struct hpsa_scsi_dev_t *dev;
4566	struct CommandList *abort; /* pointer to command to be aborted */
4567	struct CommandList *found;
4568	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
4569	char msg[256];		/* For debug messaging. */
4570	int ml = 0;
4571	u32 tagupper, taglower;
 
4572
4573	/* Find the controller of the command to be aborted */
4574	h = sdev_to_hba(sc->device);
4575	if (WARN(h == NULL,
4576			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
4577		return FAILED;
4578
4579	/* Check that controller supports some kind of task abort */
4580	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4581		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4582		return FAILED;
4583
4584	memset(msg, 0, sizeof(msg));
4585	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
4586		h->scsi_host->host_no, sc->device->channel,
4587		sc->device->id, sc->device->lun);
4588
4589	/* Find the device of the command to be aborted */
4590	dev = sc->device->hostdata;
4591	if (!dev) {
4592		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4593				msg);
4594		return FAILED;
4595	}
4596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4597	/* Get SCSI command to be aborted */
4598	abort = (struct CommandList *) sc->host_scribble;
4599	if (abort == NULL) {
4600		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4601				msg);
4602		return FAILED;
4603	}
4604	hpsa_get_tag(h, abort, &taglower, &tagupper);
4605	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4606	as  = (struct scsi_cmnd *) abort->scsi_cmd;
4607	if (as != NULL)
4608		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4609			as->cmnd[0], as->serial_number);
4610	dev_dbg(&h->pdev->dev, "%s\n", msg);
4611	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4612		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4613
4614	/* Search reqQ to See if command is queued but not submitted,
4615	 * if so, complete the command with aborted status and remove
4616	 * it from the reqQ.
4617	 */
4618	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4619	if (found) {
4620		found->err_info->CommandStatus = CMD_ABORTED;
4621		finish_cmd(found);
4622		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4623				msg);
4624		return SUCCESS;
4625	}
4626
4627	/* not in reqQ, if also not in cmpQ, must have already completed */
4628	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4629	if (!found)  {
4630		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4631				msg);
 
 
 
 
 
 
 
 
4632		return SUCCESS;
4633	}
4634
 
 
 
 
 
 
 
 
 
 
 
 
 
4635	/*
4636	 * Command is in flight, or possibly already completed
4637	 * by the firmware (but not to the scsi mid layer) but we can't
4638	 * distinguish which.  Send the abort down.
4639	 */
4640	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4641	if (rc != 0) {
4642		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4643		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4644			h->scsi_host->host_no,
4645			dev->bus, dev->target, dev->lun);
4646		return FAILED;
4647	}
4648	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4649
4650	/* If the abort(s) above completed and actually aborted the
4651	 * command, then the command to be aborted should already be
4652	 * completed.  If not, wait around a bit more to see if they
4653	 * manage to complete normally.
4654	 */
4655#define ABORT_COMPLETE_WAIT_SECS 30
4656	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4657		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4658		if (!found)
4659			return SUCCESS;
4660		msleep(100);
4661	}
4662	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4663		msg, ABORT_COMPLETE_WAIT_SECS);
4664	return FAILED;
 
 
4665}
4666
4667
4668/*
4669 * For operations that cannot sleep, a command block is allocated at init,
4670 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4671 * which ones are free or in use.  Lock must be held when calling this.
4672 * cmd_free() is the complement.
4673 */
4674static struct CommandList *cmd_alloc(struct ctlr_info *h)
 
4675{
4676	struct CommandList *c;
4677	int i;
4678	union u64bit temp64;
4679	dma_addr_t cmd_dma_handle, err_dma_handle;
4680	unsigned long flags;
4681
4682	spin_lock_irqsave(&h->lock, flags);
4683	do {
4684		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4685		if (i == h->nr_cmds) {
4686			spin_unlock_irqrestore(&h->lock, flags);
4687			return NULL;
4688		}
4689	} while (test_and_set_bit
4690		 (i & (BITS_PER_LONG - 1),
4691		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4692	spin_unlock_irqrestore(&h->lock, flags);
4693
4694	c = h->cmd_pool + i;
4695	memset(c, 0, sizeof(*c));
4696	cmd_dma_handle = h->cmd_pool_dhandle
4697	    + i * sizeof(*c);
4698	c->err_info = h->errinfo_pool + i;
4699	memset(c->err_info, 0, sizeof(*c->err_info));
4700	err_dma_handle = h->errinfo_pool_dhandle
4701	    + i * sizeof(*c->err_info);
4702
4703	c->cmdindex = i;
4704
4705	INIT_LIST_HEAD(&c->list);
4706	c->busaddr = (u32) cmd_dma_handle;
4707	temp64.val = (u64) err_dma_handle;
4708	c->ErrDesc.Addr.lower = temp64.val32.lower;
4709	c->ErrDesc.Addr.upper = temp64.val32.upper;
4710	c->ErrDesc.Len = sizeof(*c->err_info);
 
 
 
 
 
 
 
 
 
4711
4712	c->h = h;
4713	return c;
4714}
4715
4716/* For operations that can wait for kmalloc to possibly sleep,
4717 * this routine can be called. Lock need not be held to call
4718 * cmd_special_alloc. cmd_special_free() is the complement.
4719 */
4720static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4721{
4722	struct CommandList *c;
4723	union u64bit temp64;
4724	dma_addr_t cmd_dma_handle, err_dma_handle;
 
 
 
 
 
4725
4726	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4727	if (c == NULL)
4728		return NULL;
4729	memset(c, 0, sizeof(*c));
 
 
 
 
4730
4731	c->cmd_type = CMD_SCSI;
4732	c->cmdindex = -1;
 
 
 
4733
4734	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
4735		    &err_dma_handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4736
4737	if (c->err_info == NULL) {
4738		pci_free_consistent(h->pdev,
4739			sizeof(*c), c, cmd_dma_handle);
4740		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4741	}
4742	memset(c->err_info, 0, sizeof(*c->err_info));
4743
4744	INIT_LIST_HEAD(&c->list);
4745	c->busaddr = (u32) cmd_dma_handle;
4746	temp64.val = (u64) err_dma_handle;
4747	c->ErrDesc.Addr.lower = temp64.val32.lower;
4748	c->ErrDesc.Addr.upper = temp64.val32.upper;
4749	c->ErrDesc.Len = sizeof(*c->err_info);
4750
4751	c->h = h;
4752	return c;
4753}
4754
 
 
 
 
 
 
4755static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4756{
4757	int i;
4758	unsigned long flags;
4759
4760	i = c - h->cmd_pool;
4761	spin_lock_irqsave(&h->lock, flags);
4762	clear_bit(i & (BITS_PER_LONG - 1),
4763		  h->cmd_pool_bits + (i / BITS_PER_LONG));
4764	spin_unlock_irqrestore(&h->lock, flags);
4765}
4766
4767static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4768{
4769	union u64bit temp64;
4770
4771	temp64.val32.lower = c->ErrDesc.Addr.lower;
4772	temp64.val32.upper = c->ErrDesc.Addr.upper;
4773	pci_free_consistent(h->pdev, sizeof(*c->err_info),
4774			    c->err_info, (dma_addr_t) temp64.val);
4775	pci_free_consistent(h->pdev, sizeof(*c),
4776			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4777}
4778
4779#ifdef CONFIG_COMPAT
4780
4781static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
 
4782{
4783	IOCTL32_Command_struct __user *arg32 =
4784	    (IOCTL32_Command_struct __user *) arg;
4785	IOCTL_Command_struct arg64;
4786	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4787	int err;
4788	u32 cp;
4789
4790	memset(&arg64, 0, sizeof(arg64));
4791	err = 0;
4792	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4793			   sizeof(arg64.LUN_info));
4794	err |= copy_from_user(&arg64.Request, &arg32->Request,
4795			   sizeof(arg64.Request));
4796	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4797			   sizeof(arg64.error_info));
4798	err |= get_user(arg64.buf_size, &arg32->buf_size);
4799	err |= get_user(cp, &arg32->buf);
4800	arg64.buf = compat_ptr(cp);
4801	err |= copy_to_user(p, &arg64, sizeof(arg64));
4802
4803	if (err)
4804		return -EFAULT;
4805
4806	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
4807	if (err)
4808		return err;
4809	err |= copy_in_user(&arg32->error_info, &p->error_info,
4810			 sizeof(arg32->error_info));
4811	if (err)
4812		return -EFAULT;
4813	return err;
4814}
4815
4816static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4817	int cmd, void *arg)
4818{
4819	BIG_IOCTL32_Command_struct __user *arg32 =
4820	    (BIG_IOCTL32_Command_struct __user *) arg;
4821	BIG_IOCTL_Command_struct arg64;
4822	BIG_IOCTL_Command_struct __user *p =
4823	    compat_alloc_user_space(sizeof(arg64));
4824	int err;
4825	u32 cp;
4826
4827	memset(&arg64, 0, sizeof(arg64));
4828	err = 0;
4829	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4830			   sizeof(arg64.LUN_info));
4831	err |= copy_from_user(&arg64.Request, &arg32->Request,
4832			   sizeof(arg64.Request));
4833	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4834			   sizeof(arg64.error_info));
4835	err |= get_user(arg64.buf_size, &arg32->buf_size);
4836	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4837	err |= get_user(cp, &arg32->buf);
4838	arg64.buf = compat_ptr(cp);
4839	err |= copy_to_user(p, &arg64, sizeof(arg64));
4840
4841	if (err)
4842		return -EFAULT;
4843
4844	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
4845	if (err)
4846		return err;
4847	err |= copy_in_user(&arg32->error_info, &p->error_info,
4848			 sizeof(arg32->error_info));
4849	if (err)
4850		return -EFAULT;
4851	return err;
4852}
4853
4854static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
4855{
4856	switch (cmd) {
4857	case CCISS_GETPCIINFO:
4858	case CCISS_GETINTINFO:
4859	case CCISS_SETINTINFO:
4860	case CCISS_GETNODENAME:
4861	case CCISS_SETNODENAME:
4862	case CCISS_GETHEARTBEAT:
4863	case CCISS_GETBUSTYPES:
4864	case CCISS_GETFIRMVER:
4865	case CCISS_GETDRIVVER:
4866	case CCISS_REVALIDVOLS:
4867	case CCISS_DEREGDISK:
4868	case CCISS_REGNEWDISK:
4869	case CCISS_REGNEWD:
4870	case CCISS_RESCANDISK:
4871	case CCISS_GETLUNINFO:
4872		return hpsa_ioctl(dev, cmd, arg);
4873
4874	case CCISS_PASSTHRU32:
4875		return hpsa_ioctl32_passthru(dev, cmd, arg);
4876	case CCISS_BIG_PASSTHRU32:
4877		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4878
4879	default:
4880		return -ENOIOCTLCMD;
4881	}
4882}
4883#endif
4884
4885static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4886{
4887	struct hpsa_pci_info pciinfo;
4888
4889	if (!argp)
4890		return -EINVAL;
4891	pciinfo.domain = pci_domain_nr(h->pdev->bus);
4892	pciinfo.bus = h->pdev->bus->number;
4893	pciinfo.dev_fn = h->pdev->devfn;
4894	pciinfo.board_id = h->board_id;
4895	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4896		return -EFAULT;
4897	return 0;
4898}
4899
4900static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4901{
4902	DriverVer_type DriverVer;
4903	unsigned char vmaj, vmin, vsubmin;
4904	int rc;
4905
4906	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4907		&vmaj, &vmin, &vsubmin);
4908	if (rc != 3) {
4909		dev_info(&h->pdev->dev, "driver version string '%s' "
4910			"unrecognized.", HPSA_DRIVER_VERSION);
4911		vmaj = 0;
4912		vmin = 0;
4913		vsubmin = 0;
4914	}
4915	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4916	if (!argp)
4917		return -EINVAL;
4918	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4919		return -EFAULT;
4920	return 0;
4921}
4922
4923static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4924{
4925	IOCTL_Command_struct iocommand;
4926	struct CommandList *c;
4927	char *buff = NULL;
4928	union u64bit temp64;
4929	int rc = 0;
4930
4931	if (!argp)
4932		return -EINVAL;
4933	if (!capable(CAP_SYS_RAWIO))
4934		return -EPERM;
4935	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4936		return -EFAULT;
4937	if ((iocommand.buf_size < 1) &&
4938	    (iocommand.Request.Type.Direction != XFER_NONE)) {
4939		return -EINVAL;
4940	}
4941	if (iocommand.buf_size > 0) {
4942		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4943		if (buff == NULL)
4944			return -EFAULT;
4945		if (iocommand.Request.Type.Direction == XFER_WRITE) {
4946			/* Copy the data into the buffer we created */
4947			if (copy_from_user(buff, iocommand.buf,
4948				iocommand.buf_size)) {
4949				rc = -EFAULT;
4950				goto out_kfree;
4951			}
4952		} else {
4953			memset(buff, 0, iocommand.buf_size);
4954		}
4955	}
4956	c = cmd_special_alloc(h);
4957	if (c == NULL) {
4958		rc = -ENOMEM;
4959		goto out_kfree;
4960	}
4961	/* Fill in the command type */
4962	c->cmd_type = CMD_IOCTL_PEND;
 
4963	/* Fill in Command Header */
4964	c->Header.ReplyQueue = 0; /* unused in simple mode */
4965	if (iocommand.buf_size > 0) {	/* buffer to fill */
4966		c->Header.SGList = 1;
4967		c->Header.SGTotal = 1;
4968	} else	{ /* no buffers to fill */
4969		c->Header.SGList = 0;
4970		c->Header.SGTotal = 0;
4971	}
4972	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4973	/* use the kernel address the cmd block for tag */
4974	c->Header.Tag.lower = c->busaddr;
4975
4976	/* Fill in Request block */
4977	memcpy(&c->Request, &iocommand.Request,
4978		sizeof(c->Request));
4979
4980	/* Fill in the scatter gather information */
4981	if (iocommand.buf_size > 0) {
4982		temp64.val = pci_map_single(h->pdev, buff,
4983			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4984		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
4985			c->SG[0].Addr.lower = 0;
4986			c->SG[0].Addr.upper = 0;
4987			c->SG[0].Len = 0;
4988			rc = -ENOMEM;
4989			goto out;
4990		}
4991		c->SG[0].Addr.lower = temp64.val32.lower;
4992		c->SG[0].Addr.upper = temp64.val32.upper;
4993		c->SG[0].Len = iocommand.buf_size;
4994		c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
4995	}
4996	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
 
4997	if (iocommand.buf_size > 0)
4998		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4999	check_ioctl_unit_attention(h, c);
 
 
 
 
5000
5001	/* Copy the error information out */
5002	memcpy(&iocommand.error_info, c->err_info,
5003		sizeof(iocommand.error_info));
5004	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5005		rc = -EFAULT;
5006		goto out;
5007	}
5008	if (iocommand.Request.Type.Direction == XFER_READ &&
5009		iocommand.buf_size > 0) {
5010		/* Copy the data out of the buffer we created */
5011		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5012			rc = -EFAULT;
5013			goto out;
5014		}
5015	}
5016out:
5017	cmd_special_free(h, c);
5018out_kfree:
5019	kfree(buff);
5020	return rc;
5021}
5022
5023static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5024{
5025	BIG_IOCTL_Command_struct *ioc;
5026	struct CommandList *c;
5027	unsigned char **buff = NULL;
5028	int *buff_size = NULL;
5029	union u64bit temp64;
5030	BYTE sg_used = 0;
5031	int status = 0;
5032	int i;
5033	u32 left;
5034	u32 sz;
5035	BYTE __user *data_ptr;
5036
5037	if (!argp)
5038		return -EINVAL;
5039	if (!capable(CAP_SYS_RAWIO))
5040		return -EPERM;
5041	ioc = (BIG_IOCTL_Command_struct *)
5042	    kmalloc(sizeof(*ioc), GFP_KERNEL);
5043	if (!ioc) {
5044		status = -ENOMEM;
5045		goto cleanup1;
5046	}
5047	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5048		status = -EFAULT;
5049		goto cleanup1;
5050	}
5051	if ((ioc->buf_size < 1) &&
5052	    (ioc->Request.Type.Direction != XFER_NONE)) {
5053		status = -EINVAL;
5054		goto cleanup1;
5055	}
5056	/* Check kmalloc limits  using all SGs */
5057	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5058		status = -EINVAL;
5059		goto cleanup1;
5060	}
5061	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5062		status = -EINVAL;
5063		goto cleanup1;
5064	}
5065	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5066	if (!buff) {
5067		status = -ENOMEM;
5068		goto cleanup1;
5069	}
5070	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5071	if (!buff_size) {
5072		status = -ENOMEM;
5073		goto cleanup1;
5074	}
5075	left = ioc->buf_size;
5076	data_ptr = ioc->buf;
5077	while (left) {
5078		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5079		buff_size[sg_used] = sz;
5080		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5081		if (buff[sg_used] == NULL) {
5082			status = -ENOMEM;
5083			goto cleanup1;
5084		}
5085		if (ioc->Request.Type.Direction == XFER_WRITE) {
5086			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5087				status = -ENOMEM;
5088				goto cleanup1;
5089			}
5090		} else
5091			memset(buff[sg_used], 0, sz);
5092		left -= sz;
5093		data_ptr += sz;
5094		sg_used++;
5095	}
5096	c = cmd_special_alloc(h);
5097	if (c == NULL) {
5098		status = -ENOMEM;
5099		goto cleanup1;
5100	}
5101	c->cmd_type = CMD_IOCTL_PEND;
 
5102	c->Header.ReplyQueue = 0;
5103	c->Header.SGList = c->Header.SGTotal = sg_used;
 
5104	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5105	c->Header.Tag.lower = c->busaddr;
5106	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5107	if (ioc->buf_size > 0) {
5108		int i;
5109		for (i = 0; i < sg_used; i++) {
5110			temp64.val = pci_map_single(h->pdev, buff[i],
5111				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5112			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
5113				c->SG[i].Addr.lower = 0;
5114				c->SG[i].Addr.upper = 0;
5115				c->SG[i].Len = 0;
5116				hpsa_pci_unmap(h->pdev, c, i,
5117					PCI_DMA_BIDIRECTIONAL);
5118				status = -ENOMEM;
5119				goto cleanup0;
5120			}
5121			c->SG[i].Addr.lower = temp64.val32.lower;
5122			c->SG[i].Addr.upper = temp64.val32.upper;
5123			c->SG[i].Len = buff_size[i];
5124			c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
5125		}
 
5126	}
5127	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
 
5128	if (sg_used)
5129		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5130	check_ioctl_unit_attention(h, c);
 
 
 
 
 
5131	/* Copy the error information out */
5132	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5133	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5134		status = -EFAULT;
5135		goto cleanup0;
5136	}
5137	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
 
 
5138		/* Copy the data out of the buffer we created */
5139		BYTE __user *ptr = ioc->buf;
5140		for (i = 0; i < sg_used; i++) {
5141			if (copy_to_user(ptr, buff[i], buff_size[i])) {
5142				status = -EFAULT;
5143				goto cleanup0;
5144			}
5145			ptr += buff_size[i];
5146		}
5147	}
5148	status = 0;
5149cleanup0:
5150	cmd_special_free(h, c);
5151cleanup1:
5152	if (buff) {
 
 
5153		for (i = 0; i < sg_used; i++)
5154			kfree(buff[i]);
5155		kfree(buff);
5156	}
5157	kfree(buff_size);
5158	kfree(ioc);
5159	return status;
5160}
5161
5162static void check_ioctl_unit_attention(struct ctlr_info *h,
5163	struct CommandList *c)
5164{
5165	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5166			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5167		(void) check_for_unit_attention(h, c);
5168}
5169
5170static int increment_passthru_count(struct ctlr_info *h)
5171{
5172	unsigned long flags;
5173
5174	spin_lock_irqsave(&h->passthru_count_lock, flags);
5175	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5176		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5177		return -1;
5178	}
5179	h->passthru_count++;
5180	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5181	return 0;
5182}
5183
5184static void decrement_passthru_count(struct ctlr_info *h)
5185{
5186	unsigned long flags;
5187
5188	spin_lock_irqsave(&h->passthru_count_lock, flags);
5189	if (h->passthru_count <= 0) {
5190		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5191		/* not expecting to get here. */
5192		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5193		return;
5194	}
5195	h->passthru_count--;
5196	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5197}
5198
5199/*
5200 * ioctl
5201 */
5202static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
5203{
5204	struct ctlr_info *h;
5205	void __user *argp = (void __user *)arg;
5206	int rc;
5207
5208	h = sdev_to_hba(dev);
5209
5210	switch (cmd) {
5211	case CCISS_DEREGDISK:
5212	case CCISS_REGNEWDISK:
5213	case CCISS_REGNEWD:
5214		hpsa_scan_start(h->scsi_host);
5215		return 0;
5216	case CCISS_GETPCIINFO:
5217		return hpsa_getpciinfo_ioctl(h, argp);
5218	case CCISS_GETDRIVVER:
5219		return hpsa_getdrivver_ioctl(h, argp);
5220	case CCISS_PASSTHRU:
5221		if (increment_passthru_count(h))
5222			return -EAGAIN;
5223		rc = hpsa_passthru_ioctl(h, argp);
5224		decrement_passthru_count(h);
5225		return rc;
5226	case CCISS_BIG_PASSTHRU:
5227		if (increment_passthru_count(h))
5228			return -EAGAIN;
5229		rc = hpsa_big_passthru_ioctl(h, argp);
5230		decrement_passthru_count(h);
5231		return rc;
5232	default:
5233		return -ENOTTY;
5234	}
5235}
5236
5237static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5238				u8 reset_type)
5239{
5240	struct CommandList *c;
5241
5242	c = cmd_alloc(h);
5243	if (!c)
5244		return -ENOMEM;
5245	/* fill_cmd can't fail here, no data buffer to map */
5246	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5247		RAID_CTLR_LUNID, TYPE_MSG);
5248	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5249	c->waiting = NULL;
5250	enqueue_cmd_and_start_io(h, c);
5251	/* Don't wait for completion, the reset won't complete.  Don't free
5252	 * the command either.  This is the last command we will send before
5253	 * re-initializing everything, so it doesn't matter and won't leak.
5254	 */
5255	return 0;
5256}
5257
5258static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5259	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5260	int cmd_type)
5261{
5262	int pci_dir = XFER_NONE;
5263	struct CommandList *a; /* for commands to be aborted */
5264
5265	c->cmd_type = CMD_IOCTL_PEND;
 
5266	c->Header.ReplyQueue = 0;
5267	if (buff != NULL && size > 0) {
5268		c->Header.SGList = 1;
5269		c->Header.SGTotal = 1;
5270	} else {
5271		c->Header.SGList = 0;
5272		c->Header.SGTotal = 0;
5273	}
5274	c->Header.Tag.lower = c->busaddr;
5275	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5276
5277	c->Request.Type.Type = cmd_type;
5278	if (cmd_type == TYPE_CMD) {
5279		switch (cmd) {
5280		case HPSA_INQUIRY:
5281			/* are we trying to read a vital product page */
5282			if (page_code & VPD_PAGE) {
5283				c->Request.CDB[1] = 0x01;
5284				c->Request.CDB[2] = (page_code & 0xff);
5285			}
5286			c->Request.CDBLen = 6;
5287			c->Request.Type.Attribute = ATTR_SIMPLE;
5288			c->Request.Type.Direction = XFER_READ;
5289			c->Request.Timeout = 0;
5290			c->Request.CDB[0] = HPSA_INQUIRY;
5291			c->Request.CDB[4] = size & 0xFF;
5292			break;
5293		case HPSA_REPORT_LOG:
5294		case HPSA_REPORT_PHYS:
5295			/* Talking to controller so It's a physical command
5296			   mode = 00 target = 0.  Nothing to write.
5297			 */
5298			c->Request.CDBLen = 12;
5299			c->Request.Type.Attribute = ATTR_SIMPLE;
5300			c->Request.Type.Direction = XFER_READ;
5301			c->Request.Timeout = 0;
5302			c->Request.CDB[0] = cmd;
5303			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5304			c->Request.CDB[7] = (size >> 16) & 0xFF;
5305			c->Request.CDB[8] = (size >> 8) & 0xFF;
5306			c->Request.CDB[9] = size & 0xFF;
5307			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5308		case HPSA_CACHE_FLUSH:
5309			c->Request.CDBLen = 12;
5310			c->Request.Type.Attribute = ATTR_SIMPLE;
5311			c->Request.Type.Direction = XFER_WRITE;
 
5312			c->Request.Timeout = 0;
5313			c->Request.CDB[0] = BMIC_WRITE;
5314			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5315			c->Request.CDB[7] = (size >> 8) & 0xFF;
5316			c->Request.CDB[8] = size & 0xFF;
5317			break;
5318		case TEST_UNIT_READY:
5319			c->Request.CDBLen = 6;
5320			c->Request.Type.Attribute = ATTR_SIMPLE;
5321			c->Request.Type.Direction = XFER_NONE;
5322			c->Request.Timeout = 0;
5323			break;
5324		case HPSA_GET_RAID_MAP:
5325			c->Request.CDBLen = 12;
5326			c->Request.Type.Attribute = ATTR_SIMPLE;
5327			c->Request.Type.Direction = XFER_READ;
5328			c->Request.Timeout = 0;
5329			c->Request.CDB[0] = HPSA_CISS_READ;
5330			c->Request.CDB[1] = cmd;
5331			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5332			c->Request.CDB[7] = (size >> 16) & 0xFF;
5333			c->Request.CDB[8] = (size >> 8) & 0xFF;
5334			c->Request.CDB[9] = size & 0xFF;
5335			break;
5336		case BMIC_SENSE_CONTROLLER_PARAMETERS:
5337			c->Request.CDBLen = 10;
5338			c->Request.Type.Attribute = ATTR_SIMPLE;
5339			c->Request.Type.Direction = XFER_READ;
5340			c->Request.Timeout = 0;
5341			c->Request.CDB[0] = BMIC_READ;
5342			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5343			c->Request.CDB[7] = (size >> 16) & 0xFF;
5344			c->Request.CDB[8] = (size >> 8) & 0xFF;
5345			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5346		default:
5347			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5348			BUG();
5349			return -1;
5350		}
5351	} else if (cmd_type == TYPE_MSG) {
5352		switch (cmd) {
5353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5354		case  HPSA_DEVICE_RESET_MSG:
5355			c->Request.CDBLen = 16;
5356			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
5357			c->Request.Type.Attribute = ATTR_SIMPLE;
5358			c->Request.Type.Direction = XFER_NONE;
5359			c->Request.Timeout = 0; /* Don't time out */
5360			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5361			c->Request.CDB[0] =  cmd;
5362			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5363			/* If bytes 4-7 are zero, it means reset the */
5364			/* LunID device */
5365			c->Request.CDB[4] = 0x00;
5366			c->Request.CDB[5] = 0x00;
5367			c->Request.CDB[6] = 0x00;
5368			c->Request.CDB[7] = 0x00;
5369			break;
5370		case  HPSA_ABORT_MSG:
5371			a = buff;       /* point to command to be aborted */
5372			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
5373				a->Header.Tag.upper, a->Header.Tag.lower,
5374				c->Header.Tag.upper, c->Header.Tag.lower);
5375			c->Request.CDBLen = 16;
5376			c->Request.Type.Type = TYPE_MSG;
5377			c->Request.Type.Attribute = ATTR_SIMPLE;
5378			c->Request.Type.Direction = XFER_WRITE;
5379			c->Request.Timeout = 0; /* Don't time out */
5380			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5381			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5382			c->Request.CDB[2] = 0x00; /* reserved */
5383			c->Request.CDB[3] = 0x00; /* reserved */
5384			/* Tag to abort goes in CDB[4]-CDB[11] */
5385			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
5386			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
5387			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
5388			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
5389			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
5390			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
5391			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
5392			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
5393			c->Request.CDB[12] = 0x00; /* reserved */
5394			c->Request.CDB[13] = 0x00; /* reserved */
5395			c->Request.CDB[14] = 0x00; /* reserved */
5396			c->Request.CDB[15] = 0x00; /* reserved */
5397		break;
5398		default:
5399			dev_warn(&h->pdev->dev, "unknown message type %d\n",
5400				cmd);
5401			BUG();
5402		}
5403	} else {
5404		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5405		BUG();
5406	}
5407
5408	switch (c->Request.Type.Direction) {
5409	case XFER_READ:
5410		pci_dir = PCI_DMA_FROMDEVICE;
5411		break;
5412	case XFER_WRITE:
5413		pci_dir = PCI_DMA_TODEVICE;
5414		break;
5415	case XFER_NONE:
5416		pci_dir = PCI_DMA_NONE;
5417		break;
5418	default:
5419		pci_dir = PCI_DMA_BIDIRECTIONAL;
5420	}
5421	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5422		return -1;
5423	return 0;
5424}
5425
5426/*
5427 * Map (physical) PCI mem into (virtual) kernel space
5428 */
5429static void __iomem *remap_pci_mem(ulong base, ulong size)
5430{
5431	ulong page_base = ((ulong) base) & PAGE_MASK;
5432	ulong page_offs = ((ulong) base) - page_base;
5433	void __iomem *page_remapped = ioremap_nocache(page_base,
5434		page_offs + size);
5435
5436	return page_remapped ? (page_remapped + page_offs) : NULL;
5437}
5438
5439/* Takes cmds off the submission queue and sends them to the hardware,
5440 * then puts them on the queue of cmds waiting for completion.
5441 */
5442static void start_io(struct ctlr_info *h)
5443{
5444	struct CommandList *c;
5445	unsigned long flags;
5446
5447	spin_lock_irqsave(&h->lock, flags);
5448	while (!list_empty(&h->reqQ)) {
5449		c = list_entry(h->reqQ.next, struct CommandList, list);
5450		/* can't do anything if fifo is full */
5451		if ((h->access.fifo_full(h))) {
5452			h->fifo_recently_full = 1;
5453			dev_warn(&h->pdev->dev, "fifo full\n");
5454			break;
5455		}
5456		h->fifo_recently_full = 0;
5457
5458		/* Get the first entry from the Request Q */
5459		removeQ(c);
5460		h->Qdepth--;
5461
5462		/* Put job onto the completed Q */
5463		addQ(&h->cmpQ, c);
5464
5465		/* Must increment commands_outstanding before unlocking
5466		 * and submitting to avoid race checking for fifo full
5467		 * condition.
5468		 */
5469		h->commands_outstanding++;
5470		if (h->commands_outstanding > h->max_outstanding)
5471			h->max_outstanding = h->commands_outstanding;
5472
5473		/* Tell the controller execute command */
5474		spin_unlock_irqrestore(&h->lock, flags);
5475		h->access.submit_command(h, c);
5476		spin_lock_irqsave(&h->lock, flags);
5477	}
5478	spin_unlock_irqrestore(&h->lock, flags);
5479}
5480
5481static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5482{
5483	return h->access.command_completed(h, q);
5484}
5485
5486static inline bool interrupt_pending(struct ctlr_info *h)
5487{
5488	return h->access.intr_pending(h);
5489}
5490
5491static inline long interrupt_not_for_us(struct ctlr_info *h)
5492{
5493	return (h->access.intr_pending(h) == 0) ||
5494		(h->interrupts_enabled == 0);
5495}
5496
5497static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5498	u32 raw_tag)
5499{
5500	if (unlikely(tag_index >= h->nr_cmds)) {
5501		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5502		return 1;
5503	}
5504	return 0;
5505}
5506
5507static inline void finish_cmd(struct CommandList *c)
5508{
5509	unsigned long flags;
5510	int io_may_be_stalled = 0;
5511	struct ctlr_info *h = c->h;
5512
5513	spin_lock_irqsave(&h->lock, flags);
5514	removeQ(c);
5515
5516	/*
5517	 * Check for possibly stalled i/o.
5518	 *
5519	 * If a fifo_full condition is encountered, requests will back up
5520	 * in h->reqQ.  This queue is only emptied out by start_io which is
5521	 * only called when a new i/o request comes in.  If no i/o's are
5522	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5523	 * start_io from here if we detect such a danger.
5524	 *
5525	 * Normally, we shouldn't hit this case, but pounding on the
5526	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5527	 * commands_outstanding is low.  We want to avoid calling
5528	 * start_io from in here as much as possible, and esp. don't
5529	 * want to get in a cycle where we call start_io every time
5530	 * through here.
5531	 */
5532	if (unlikely(h->fifo_recently_full) &&
5533		h->commands_outstanding < 5)
5534		io_may_be_stalled = 1;
5535
5536	spin_unlock_irqrestore(&h->lock, flags);
5537
5538	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5539	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5540			|| c->cmd_type == CMD_IOACCEL2))
5541		complete_scsi_command(c);
5542	else if (c->cmd_type == CMD_IOCTL_PEND)
5543		complete(c->waiting);
5544	if (unlikely(io_may_be_stalled))
5545		start_io(h);
5546}
5547
5548static inline u32 hpsa_tag_contains_index(u32 tag)
5549{
5550	return tag & DIRECT_LOOKUP_BIT;
5551}
5552
5553static inline u32 hpsa_tag_to_index(u32 tag)
5554{
5555	return tag >> DIRECT_LOOKUP_SHIFT;
5556}
5557
5558
5559static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5560{
5561#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5562#define HPSA_SIMPLE_ERROR_BITS 0x03
5563	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5564		return tag & ~HPSA_SIMPLE_ERROR_BITS;
5565	return tag & ~HPSA_PERF_ERROR_BITS;
5566}
5567
5568/* process completion of an indexed ("direct lookup") command */
5569static inline void process_indexed_cmd(struct ctlr_info *h,
5570	u32 raw_tag)
5571{
5572	u32 tag_index;
5573	struct CommandList *c;
5574
5575	tag_index = hpsa_tag_to_index(raw_tag);
5576	if (!bad_tag(h, tag_index, raw_tag)) {
5577		c = h->cmd_pool + tag_index;
5578		finish_cmd(c);
5579	}
5580}
5581
5582/* process completion of a non-indexed command */
5583static inline void process_nonindexed_cmd(struct ctlr_info *h,
5584	u32 raw_tag)
5585{
5586	u32 tag;
5587	struct CommandList *c = NULL;
5588	unsigned long flags;
5589
5590	tag = hpsa_tag_discard_error_bits(h, raw_tag);
5591	spin_lock_irqsave(&h->lock, flags);
5592	list_for_each_entry(c, &h->cmpQ, list) {
5593		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5594			spin_unlock_irqrestore(&h->lock, flags);
5595			finish_cmd(c);
5596			return;
5597		}
5598	}
5599	spin_unlock_irqrestore(&h->lock, flags);
5600	bad_tag(h, h->nr_cmds + 1, raw_tag);
5601}
5602
5603/* Some controllers, like p400, will give us one interrupt
5604 * after a soft reset, even if we turned interrupts off.
5605 * Only need to check for this in the hpsa_xxx_discard_completions
5606 * functions.
5607 */
5608static int ignore_bogus_interrupt(struct ctlr_info *h)
5609{
5610	if (likely(!reset_devices))
5611		return 0;
5612
5613	if (likely(h->interrupts_enabled))
5614		return 0;
5615
5616	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5617		"(known firmware bug.)  Ignoring.\n");
5618
5619	return 1;
5620}
5621
5622/*
5623 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5624 * Relies on (h-q[x] == x) being true for x such that
5625 * 0 <= x < MAX_REPLY_QUEUES.
5626 */
5627static struct ctlr_info *queue_to_hba(u8 *queue)
5628{
5629	return container_of((queue - *queue), struct ctlr_info, q[0]);
5630}
5631
5632static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5633{
5634	struct ctlr_info *h = queue_to_hba(queue);
5635	u8 q = *(u8 *) queue;
5636	u32 raw_tag;
5637
5638	if (ignore_bogus_interrupt(h))
5639		return IRQ_NONE;
5640
5641	if (interrupt_not_for_us(h))
5642		return IRQ_NONE;
5643	h->last_intr_timestamp = get_jiffies_64();
5644	while (interrupt_pending(h)) {
5645		raw_tag = get_next_completion(h, q);
5646		while (raw_tag != FIFO_EMPTY)
5647			raw_tag = next_command(h, q);
5648	}
5649	return IRQ_HANDLED;
5650}
5651
5652static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5653{
5654	struct ctlr_info *h = queue_to_hba(queue);
5655	u32 raw_tag;
5656	u8 q = *(u8 *) queue;
5657
5658	if (ignore_bogus_interrupt(h))
5659		return IRQ_NONE;
5660
5661	h->last_intr_timestamp = get_jiffies_64();
5662	raw_tag = get_next_completion(h, q);
5663	while (raw_tag != FIFO_EMPTY)
5664		raw_tag = next_command(h, q);
5665	return IRQ_HANDLED;
5666}
5667
5668static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5669{
5670	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5671	u32 raw_tag;
5672	u8 q = *(u8 *) queue;
5673
5674	if (interrupt_not_for_us(h))
5675		return IRQ_NONE;
5676	h->last_intr_timestamp = get_jiffies_64();
5677	while (interrupt_pending(h)) {
5678		raw_tag = get_next_completion(h, q);
5679		while (raw_tag != FIFO_EMPTY) {
5680			if (likely(hpsa_tag_contains_index(raw_tag)))
5681				process_indexed_cmd(h, raw_tag);
5682			else
5683				process_nonindexed_cmd(h, raw_tag);
5684			raw_tag = next_command(h, q);
5685		}
5686	}
5687	return IRQ_HANDLED;
5688}
5689
5690static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5691{
5692	struct ctlr_info *h = queue_to_hba(queue);
5693	u32 raw_tag;
5694	u8 q = *(u8 *) queue;
5695
5696	h->last_intr_timestamp = get_jiffies_64();
5697	raw_tag = get_next_completion(h, q);
5698	while (raw_tag != FIFO_EMPTY) {
5699		if (likely(hpsa_tag_contains_index(raw_tag)))
5700			process_indexed_cmd(h, raw_tag);
5701		else
5702			process_nonindexed_cmd(h, raw_tag);
5703		raw_tag = next_command(h, q);
5704	}
5705	return IRQ_HANDLED;
5706}
5707
5708/* Send a message CDB to the firmware. Careful, this only works
5709 * in simple mode, not performant mode due to the tag lookup.
5710 * We only ever use this immediately after a controller reset.
5711 */
5712static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5713			unsigned char type)
5714{
5715	struct Command {
5716		struct CommandListHeader CommandHeader;
5717		struct RequestBlock Request;
5718		struct ErrDescriptor ErrorDescriptor;
5719	};
5720	struct Command *cmd;
5721	static const size_t cmd_sz = sizeof(*cmd) +
5722					sizeof(cmd->ErrorDescriptor);
5723	dma_addr_t paddr64;
5724	uint32_t paddr32, tag;
 
5725	void __iomem *vaddr;
5726	int i, err;
5727
5728	vaddr = pci_ioremap_bar(pdev, 0);
5729	if (vaddr == NULL)
5730		return -ENOMEM;
5731
5732	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
5733	 * CCISS commands, so they must be allocated from the lower 4GiB of
5734	 * memory.
5735	 */
5736	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5737	if (err) {
5738		iounmap(vaddr);
5739		return -ENOMEM;
5740	}
5741
5742	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5743	if (cmd == NULL) {
5744		iounmap(vaddr);
5745		return -ENOMEM;
5746	}
5747
5748	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
5749	 * although there's no guarantee, we assume that the address is at
5750	 * least 4-byte aligned (most likely, it's page-aligned).
5751	 */
5752	paddr32 = paddr64;
5753
5754	cmd->CommandHeader.ReplyQueue = 0;
5755	cmd->CommandHeader.SGList = 0;
5756	cmd->CommandHeader.SGTotal = 0;
5757	cmd->CommandHeader.Tag.lower = paddr32;
5758	cmd->CommandHeader.Tag.upper = 0;
5759	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5760
5761	cmd->Request.CDBLen = 16;
5762	cmd->Request.Type.Type = TYPE_MSG;
5763	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
5764	cmd->Request.Type.Direction = XFER_NONE;
5765	cmd->Request.Timeout = 0; /* Don't time out */
5766	cmd->Request.CDB[0] = opcode;
5767	cmd->Request.CDB[1] = type;
5768	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5769	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
5770	cmd->ErrorDescriptor.Addr.upper = 0;
5771	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
5772
5773	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5774
5775	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5776		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5777		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5778			break;
5779		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5780	}
5781
5782	iounmap(vaddr);
5783
5784	/* we leak the DMA buffer here ... no choice since the controller could
5785	 *  still complete the command.
5786	 */
5787	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5788		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5789			opcode, type);
5790		return -ETIMEDOUT;
5791	}
5792
5793	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5794
5795	if (tag & HPSA_ERROR_BIT) {
5796		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5797			opcode, type);
5798		return -EIO;
5799	}
5800
5801	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5802		opcode, type);
5803	return 0;
5804}
5805
5806#define hpsa_noop(p) hpsa_message(p, 3, 0)
5807
5808static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5809	void * __iomem vaddr, u32 use_doorbell)
5810{
5811	u16 pmcsr;
5812	int pos;
5813
5814	if (use_doorbell) {
5815		/* For everything after the P600, the PCI power state method
5816		 * of resetting the controller doesn't work, so we have this
5817		 * other way using the doorbell register.
5818		 */
5819		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5820		writel(use_doorbell, vaddr + SA5_DOORBELL);
5821
5822		/* PMC hardware guys tell us we need a 5 second delay after
5823		 * doorbell reset and before any attempt to talk to the board
5824		 * at all to ensure that this actually works and doesn't fall
5825		 * over in some weird corner cases.
5826		 */
5827		msleep(5000);
5828	} else { /* Try to do it the PCI power state way */
5829
5830		/* Quoting from the Open CISS Specification: "The Power
5831		 * Management Control/Status Register (CSR) controls the power
5832		 * state of the device.  The normal operating state is D0,
5833		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5834		 * the controller, place the interface device in D3 then to D0,
5835		 * this causes a secondary PCI reset which will reset the
5836		 * controller." */
5837
5838		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5839		if (pos == 0) {
5840			dev_err(&pdev->dev,
5841				"hpsa_reset_controller: "
5842				"PCI PM not supported\n");
5843			return -ENODEV;
5844		}
5845		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
 
5846		/* enter the D3hot power management state */
5847		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5848		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5849		pmcsr |= PCI_D3hot;
5850		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5851
5852		msleep(500);
5853
5854		/* enter the D0 power management state */
5855		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5856		pmcsr |= PCI_D0;
5857		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5858
5859		/*
5860		 * The P600 requires a small delay when changing states.
5861		 * Otherwise we may think the board did not reset and we bail.
5862		 * This for kdump only and is particular to the P600.
5863		 */
5864		msleep(500);
5865	}
5866	return 0;
5867}
5868
5869static void init_driver_version(char *driver_version, int len)
5870{
5871	memset(driver_version, 0, len);
5872	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5873}
5874
5875static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5876{
5877	char *driver_version;
5878	int i, size = sizeof(cfgtable->driver_version);
5879
5880	driver_version = kmalloc(size, GFP_KERNEL);
5881	if (!driver_version)
5882		return -ENOMEM;
5883
5884	init_driver_version(driver_version, size);
5885	for (i = 0; i < size; i++)
5886		writeb(driver_version[i], &cfgtable->driver_version[i]);
5887	kfree(driver_version);
5888	return 0;
5889}
5890
5891static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5892					  unsigned char *driver_ver)
5893{
5894	int i;
5895
5896	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5897		driver_ver[i] = readb(&cfgtable->driver_version[i]);
5898}
5899
5900static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5901{
5902
5903	char *driver_ver, *old_driver_ver;
5904	int rc, size = sizeof(cfgtable->driver_version);
5905
5906	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5907	if (!old_driver_ver)
5908		return -ENOMEM;
5909	driver_ver = old_driver_ver + size;
5910
5911	/* After a reset, the 32 bytes of "driver version" in the cfgtable
5912	 * should have been changed, otherwise we know the reset failed.
5913	 */
5914	init_driver_version(old_driver_ver, size);
5915	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5916	rc = !memcmp(driver_ver, old_driver_ver, size);
5917	kfree(old_driver_ver);
5918	return rc;
5919}
5920/* This does a hard reset of the controller using PCI power management
5921 * states or the using the doorbell register.
5922 */
5923static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5924{
5925	u64 cfg_offset;
5926	u32 cfg_base_addr;
5927	u64 cfg_base_addr_index;
5928	void __iomem *vaddr;
5929	unsigned long paddr;
5930	u32 misc_fw_support;
5931	int rc;
5932	struct CfgTable __iomem *cfgtable;
5933	u32 use_doorbell;
5934	u32 board_id;
5935	u16 command_register;
5936
5937	/* For controllers as old as the P600, this is very nearly
5938	 * the same thing as
5939	 *
5940	 * pci_save_state(pci_dev);
5941	 * pci_set_power_state(pci_dev, PCI_D3hot);
5942	 * pci_set_power_state(pci_dev, PCI_D0);
5943	 * pci_restore_state(pci_dev);
5944	 *
5945	 * For controllers newer than the P600, the pci power state
5946	 * method of resetting doesn't work so we have another way
5947	 * using the doorbell register.
5948	 */
5949
5950	rc = hpsa_lookup_board_id(pdev, &board_id);
5951	if (rc < 0 || !ctlr_is_resettable(board_id)) {
5952		dev_warn(&pdev->dev, "Not resetting device.\n");
5953		return -ENODEV;
5954	}
5955
5956	/* if controller is soft- but not hard resettable... */
5957	if (!ctlr_is_hard_resettable(board_id))
5958		return -ENOTSUPP; /* try soft reset later. */
5959
5960	/* Save the PCI command register */
5961	pci_read_config_word(pdev, 4, &command_register);
5962	/* Turn the board off.  This is so that later pci_restore_state()
5963	 * won't turn the board on before the rest of config space is ready.
5964	 */
5965	pci_disable_device(pdev);
5966	pci_save_state(pdev);
5967
5968	/* find the first memory BAR, so we can find the cfg table */
5969	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5970	if (rc)
5971		return rc;
5972	vaddr = remap_pci_mem(paddr, 0x250);
5973	if (!vaddr)
5974		return -ENOMEM;
5975
5976	/* find cfgtable in order to check if reset via doorbell is supported */
5977	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5978					&cfg_base_addr_index, &cfg_offset);
5979	if (rc)
5980		goto unmap_vaddr;
5981	cfgtable = remap_pci_mem(pci_resource_start(pdev,
5982		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5983	if (!cfgtable) {
5984		rc = -ENOMEM;
5985		goto unmap_vaddr;
5986	}
5987	rc = write_driver_ver_to_cfgtable(cfgtable);
5988	if (rc)
5989		goto unmap_vaddr;
5990
5991	/* If reset via doorbell register is supported, use that.
5992	 * There are two such methods.  Favor the newest method.
5993	 */
5994	misc_fw_support = readl(&cfgtable->misc_fw_support);
5995	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5996	if (use_doorbell) {
5997		use_doorbell = DOORBELL_CTLR_RESET2;
5998	} else {
5999		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6000		if (use_doorbell) {
6001			dev_warn(&pdev->dev, "Soft reset not supported. "
6002				"Firmware update is required.\n");
6003			rc = -ENOTSUPP; /* try soft reset */
6004			goto unmap_cfgtable;
6005		}
6006	}
6007
6008	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6009	if (rc)
6010		goto unmap_cfgtable;
6011
6012	pci_restore_state(pdev);
6013	rc = pci_enable_device(pdev);
6014	if (rc) {
6015		dev_warn(&pdev->dev, "failed to enable device.\n");
6016		goto unmap_cfgtable;
6017	}
6018	pci_write_config_word(pdev, 4, command_register);
6019
6020	/* Some devices (notably the HP Smart Array 5i Controller)
6021	   need a little pause here */
6022	msleep(HPSA_POST_RESET_PAUSE_MSECS);
6023
6024	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6025	if (rc) {
6026		dev_warn(&pdev->dev,
6027			"failed waiting for board to become ready "
6028			"after hard reset\n");
6029		goto unmap_cfgtable;
6030	}
6031
6032	rc = controller_reset_failed(vaddr);
6033	if (rc < 0)
6034		goto unmap_cfgtable;
6035	if (rc) {
6036		dev_warn(&pdev->dev, "Unable to successfully reset "
6037			"controller. Will try soft reset.\n");
6038		rc = -ENOTSUPP;
6039	} else {
6040		dev_info(&pdev->dev, "board ready after hard reset.\n");
6041	}
6042
6043unmap_cfgtable:
6044	iounmap(cfgtable);
6045
6046unmap_vaddr:
6047	iounmap(vaddr);
6048	return rc;
6049}
6050
6051/*
6052 *  We cannot read the structure directly, for portability we must use
6053 *   the io functions.
6054 *   This is for debug only.
6055 */
6056static void print_cfg_table(struct device *dev, struct CfgTable *tb)
6057{
6058#ifdef HPSA_DEBUG
6059	int i;
6060	char temp_name[17];
6061
6062	dev_info(dev, "Controller Configuration information\n");
6063	dev_info(dev, "------------------------------------\n");
6064	for (i = 0; i < 4; i++)
6065		temp_name[i] = readb(&(tb->Signature[i]));
6066	temp_name[4] = '\0';
6067	dev_info(dev, "   Signature = %s\n", temp_name);
6068	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6069	dev_info(dev, "   Transport methods supported = 0x%x\n",
6070	       readl(&(tb->TransportSupport)));
6071	dev_info(dev, "   Transport methods active = 0x%x\n",
6072	       readl(&(tb->TransportActive)));
6073	dev_info(dev, "   Requested transport Method = 0x%x\n",
6074	       readl(&(tb->HostWrite.TransportRequest)));
6075	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6076	       readl(&(tb->HostWrite.CoalIntDelay)));
6077	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6078	       readl(&(tb->HostWrite.CoalIntCount)));
6079	dev_info(dev, "   Max outstanding commands = 0x%d\n",
6080	       readl(&(tb->CmdsOutMax)));
6081	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6082	for (i = 0; i < 16; i++)
6083		temp_name[i] = readb(&(tb->ServerName[i]));
6084	temp_name[16] = '\0';
6085	dev_info(dev, "   Server Name = %s\n", temp_name);
6086	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6087		readl(&(tb->HeartBeat)));
6088#endif				/* HPSA_DEBUG */
6089}
6090
6091static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6092{
6093	int i, offset, mem_type, bar_type;
6094
6095	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
6096		return 0;
6097	offset = 0;
6098	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6099		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6100		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6101			offset += 4;
6102		else {
6103			mem_type = pci_resource_flags(pdev, i) &
6104			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6105			switch (mem_type) {
6106			case PCI_BASE_ADDRESS_MEM_TYPE_32:
6107			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6108				offset += 4;	/* 32 bit */
6109				break;
6110			case PCI_BASE_ADDRESS_MEM_TYPE_64:
6111				offset += 8;
6112				break;
6113			default:	/* reserved in PCI 2.2 */
6114				dev_warn(&pdev->dev,
6115				       "base address is invalid\n");
6116				return -1;
6117				break;
6118			}
6119		}
6120		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6121			return i + 1;
6122	}
6123	return -1;
6124}
6125
 
 
 
 
 
 
6126/* If MSI/MSI-X is supported by the kernel we will try to enable it on
6127 * controllers that are capable. If not, we use IO-APIC mode.
6128 */
6129
6130static void hpsa_interrupt_mode(struct ctlr_info *h)
6131{
6132#ifdef CONFIG_PCI_MSI
6133	int err, i;
6134	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6135
6136	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6137		hpsa_msix_entries[i].vector = 0;
6138		hpsa_msix_entries[i].entry = i;
6139	}
6140
6141	/* Some boards advertise MSI but don't really support it */
6142	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6143	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6144		goto default_int_mode;
6145	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6146		dev_info(&h->pdev->dev, "MSIX\n");
6147		h->msix_vector = MAX_REPLY_QUEUES;
6148		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6149				      h->msix_vector);
6150		if (err > 0) {
6151			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6152			       "available\n", err);
6153			h->msix_vector = err;
6154			err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6155					      h->msix_vector);
6156		}
6157		if (!err) {
6158			for (i = 0; i < h->msix_vector; i++)
6159				h->intr[i] = hpsa_msix_entries[i].vector;
6160			return;
6161		} else {
6162			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
6163			       err);
6164			h->msix_vector = 0;
6165			goto default_int_mode;
6166		}
 
 
 
6167	}
6168	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6169		dev_info(&h->pdev->dev, "MSI\n");
6170		if (!pci_enable_msi(h->pdev))
6171			h->msi_vector = 1;
6172		else
6173			dev_warn(&h->pdev->dev, "MSI init failed\n");
6174	}
6175default_int_mode:
6176#endif				/* CONFIG_PCI_MSI */
6177	/* if we get here we're going to use the default interrupt mode */
6178	h->intr[h->intr_mode] = h->pdev->irq;
6179}
6180
6181static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6182{
6183	int i;
6184	u32 subsystem_vendor_id, subsystem_device_id;
6185
6186	subsystem_vendor_id = pdev->subsystem_vendor;
6187	subsystem_device_id = pdev->subsystem_device;
6188	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6189		    subsystem_vendor_id;
6190
6191	for (i = 0; i < ARRAY_SIZE(products); i++)
6192		if (*board_id == products[i].board_id)
6193			return i;
6194
6195	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6196		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6197		!hpsa_allow_any) {
6198		dev_warn(&pdev->dev, "unrecognized board ID: "
6199			"0x%08x, ignoring.\n", *board_id);
6200			return -ENODEV;
6201	}
6202	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6203}
6204
6205static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6206				    unsigned long *memory_bar)
6207{
6208	int i;
6209
6210	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6211		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6212			/* addressing mode bits already removed */
6213			*memory_bar = pci_resource_start(pdev, i);
6214			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6215				*memory_bar);
6216			return 0;
6217		}
6218	dev_warn(&pdev->dev, "no memory BAR found\n");
6219	return -ENODEV;
6220}
6221
6222static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6223				     int wait_for_ready)
6224{
6225	int i, iterations;
6226	u32 scratchpad;
6227	if (wait_for_ready)
6228		iterations = HPSA_BOARD_READY_ITERATIONS;
6229	else
6230		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6231
6232	for (i = 0; i < iterations; i++) {
6233		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6234		if (wait_for_ready) {
6235			if (scratchpad == HPSA_FIRMWARE_READY)
6236				return 0;
6237		} else {
6238			if (scratchpad != HPSA_FIRMWARE_READY)
6239				return 0;
6240		}
6241		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6242	}
6243	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6244	return -ENODEV;
6245}
6246
6247static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6248			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6249			       u64 *cfg_offset)
6250{
6251	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6252	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6253	*cfg_base_addr &= (u32) 0x0000ffff;
6254	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6255	if (*cfg_base_addr_index == -1) {
6256		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6257		return -ENODEV;
6258	}
6259	return 0;
6260}
6261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6262static int hpsa_find_cfgtables(struct ctlr_info *h)
6263{
6264	u64 cfg_offset;
6265	u32 cfg_base_addr;
6266	u64 cfg_base_addr_index;
6267	u32 trans_offset;
6268	int rc;
6269
6270	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6271		&cfg_base_addr_index, &cfg_offset);
6272	if (rc)
6273		return rc;
6274	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6275		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6276	if (!h->cfgtable)
 
6277		return -ENOMEM;
 
6278	rc = write_driver_ver_to_cfgtable(h->cfgtable);
6279	if (rc)
6280		return rc;
6281	/* Find performant mode table. */
6282	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6283	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6284				cfg_base_addr_index)+cfg_offset+trans_offset,
6285				sizeof(*h->transtable));
6286	if (!h->transtable)
 
 
6287		return -ENOMEM;
 
6288	return 0;
6289}
6290
6291static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6292{
6293	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
 
 
 
6294
6295	/* Limit commands in memory limited kdump scenario. */
6296	if (reset_devices && h->max_commands > 32)
6297		h->max_commands = 32;
6298
6299	if (h->max_commands < 16) {
6300		dev_warn(&h->pdev->dev, "Controller reports "
6301			"max supported commands of %d, an obvious lie. "
6302			"Using 16.  Ensure that firmware is up to date.\n",
6303			h->max_commands);
6304		h->max_commands = 16;
6305	}
6306}
6307
 
 
 
 
 
 
 
 
 
6308/* Interrogate the hardware for some limits:
6309 * max commands, max SG elements without chaining, and with chaining,
6310 * SG chain block size, etc.
6311 */
6312static void hpsa_find_board_params(struct ctlr_info *h)
6313{
6314	hpsa_get_max_perf_mode_cmds(h);
6315	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6316	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6317	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6318	/*
6319	 * Limit in-command s/g elements to 32 save dma'able memory.
6320	 * Howvever spec says if 0, use 31
6321	 */
6322	h->max_cmd_sg_entries = 31;
6323	if (h->maxsgentries > 512) {
6324		h->max_cmd_sg_entries = 32;
6325		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
6326		h->maxsgentries--; /* save one for chain pointer */
6327	} else {
 
 
 
 
 
 
6328		h->maxsgentries = 31; /* default to traditional values */
6329		h->chainsize = 0;
6330	}
6331
6332	/* Find out what task management functions are supported and cache */
6333	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6334	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6335		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6336	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6337		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
 
 
6338}
6339
6340static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6341{
6342	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6343		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6344		return false;
6345	}
6346	return true;
6347}
6348
6349static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6350{
6351	u32 driver_support;
6352
6353#ifdef CONFIG_X86
6354	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
6355	driver_support = readl(&(h->cfgtable->driver_support));
 
 
6356	driver_support |= ENABLE_SCSI_PREFETCH;
6357#endif
6358	driver_support |= ENABLE_UNIT_ATTN;
6359	writel(driver_support, &(h->cfgtable->driver_support));
6360}
6361
6362/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6363 * in a prefetch beyond physical memory.
6364 */
6365static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6366{
6367	u32 dma_prefetch;
6368
6369	if (h->board_id != 0x3225103C)
6370		return;
6371	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6372	dma_prefetch |= 0x8000;
6373	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6374}
6375
6376static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6377{
6378	int i;
6379	u32 doorbell_value;
6380	unsigned long flags;
6381	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6382	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6383		spin_lock_irqsave(&h->lock, flags);
6384		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6385		spin_unlock_irqrestore(&h->lock, flags);
6386		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6387			break;
6388		/* delay and try again */
6389		msleep(20);
6390	}
 
 
 
6391}
6392
6393static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6394{
6395	int i;
6396	u32 doorbell_value;
6397	unsigned long flags;
6398
6399	/* under certain very rare conditions, this can take awhile.
6400	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6401	 * as we enter this code.)
6402	 */
6403	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
 
 
6404		spin_lock_irqsave(&h->lock, flags);
6405		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6406		spin_unlock_irqrestore(&h->lock, flags);
6407		if (!(doorbell_value & CFGTBL_ChangeReq))
6408			break;
6409		/* delay and try again */
6410		usleep_range(10000, 20000);
6411	}
 
 
 
6412}
6413
 
6414static int hpsa_enter_simple_mode(struct ctlr_info *h)
6415{
6416	u32 trans_support;
6417
6418	trans_support = readl(&(h->cfgtable->TransportSupport));
6419	if (!(trans_support & SIMPLE_MODE))
6420		return -ENOTSUPP;
6421
6422	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6423
6424	/* Update the field, and then ring the doorbell */
6425	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6426	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6427	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6428	hpsa_wait_for_mode_change_ack(h);
 
6429	print_cfg_table(&h->pdev->dev, h->cfgtable);
6430	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6431		goto error;
6432	h->transMethod = CFGTBL_Trans_Simple;
6433	return 0;
6434error:
6435	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6436	return -ENODEV;
6437}
6438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6439static int hpsa_pci_init(struct ctlr_info *h)
6440{
6441	int prod_index, err;
6442
6443	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6444	if (prod_index < 0)
6445		return -ENODEV;
6446	h->product_name = products[prod_index].product_name;
6447	h->access = *(products[prod_index].access);
6448
 
 
 
6449	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6450			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6451
6452	err = pci_enable_device(h->pdev);
6453	if (err) {
6454		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
 
6455		return err;
6456	}
6457
6458	/* Enable bus mastering (pci_disable_device may disable this) */
6459	pci_set_master(h->pdev);
6460
6461	err = pci_request_regions(h->pdev, HPSA);
6462	if (err) {
6463		dev_err(&h->pdev->dev,
6464			"cannot obtain PCI resources, aborting\n");
 
6465		return err;
6466	}
6467	hpsa_interrupt_mode(h);
 
 
 
 
 
6468	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6469	if (err)
6470		goto err_out_free_res;
6471	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6472	if (!h->vaddr) {
 
6473		err = -ENOMEM;
6474		goto err_out_free_res;
6475	}
6476	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6477	if (err)
6478		goto err_out_free_res;
6479	err = hpsa_find_cfgtables(h);
6480	if (err)
6481		goto err_out_free_res;
6482	hpsa_find_board_params(h);
6483
6484	if (!hpsa_CISS_signature_present(h)) {
6485		err = -ENODEV;
6486		goto err_out_free_res;
6487	}
6488	hpsa_set_driver_support_bits(h);
6489	hpsa_p600_dma_prefetch_quirk(h);
6490	err = hpsa_enter_simple_mode(h);
6491	if (err)
6492		goto err_out_free_res;
6493	return 0;
6494
6495err_out_free_res:
6496	if (h->transtable)
6497		iounmap(h->transtable);
6498	if (h->cfgtable)
6499		iounmap(h->cfgtable);
6500	if (h->vaddr)
6501		iounmap(h->vaddr);
 
 
 
 
 
6502	pci_disable_device(h->pdev);
6503	pci_release_regions(h->pdev);
6504	return err;
6505}
6506
6507static void hpsa_hba_inquiry(struct ctlr_info *h)
6508{
6509	int rc;
6510
6511#define HBA_INQUIRY_BYTE_COUNT 64
6512	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6513	if (!h->hba_inquiry_data)
6514		return;
6515	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6516		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6517	if (rc != 0) {
6518		kfree(h->hba_inquiry_data);
6519		h->hba_inquiry_data = NULL;
6520	}
6521}
6522
6523static int hpsa_init_reset_devices(struct pci_dev *pdev)
6524{
6525	int rc, i;
 
6526
6527	if (!reset_devices)
6528		return 0;
6529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6530	/* Reset the controller with a PCI power-cycle or via doorbell */
6531	rc = hpsa_kdump_hard_reset_controller(pdev);
6532
6533	/* -ENOTSUPP here means we cannot reset the controller
6534	 * but it's already (and still) up and running in
6535	 * "performant mode".  Or, it might be 640x, which can't reset
6536	 * due to concerns about shared bbwc between 6402/6404 pair.
6537	 */
6538	if (rc == -ENOTSUPP)
6539		return rc; /* just try to do the kdump anyhow. */
6540	if (rc)
6541		return -ENODEV;
6542
6543	/* Now try to get the controller to respond to a no-op */
6544	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6545	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6546		if (hpsa_noop(pdev) == 0)
6547			break;
6548		else
6549			dev_warn(&pdev->dev, "no-op failed%s\n",
6550					(i < 11 ? "; re-trying" : ""));
6551	}
6552	return 0;
 
 
 
 
6553}
6554
6555static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6556{
6557	h->cmd_pool_bits = kzalloc(
6558		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6559		sizeof(unsigned long), GFP_KERNEL);
6560	h->cmd_pool = pci_alloc_consistent(h->pdev,
6561		    h->nr_cmds * sizeof(*h->cmd_pool),
6562		    &(h->cmd_pool_dhandle));
6563	h->errinfo_pool = pci_alloc_consistent(h->pdev,
6564		    h->nr_cmds * sizeof(*h->errinfo_pool),
6565		    &(h->errinfo_pool_dhandle));
6566	if ((h->cmd_pool_bits == NULL)
6567	    || (h->cmd_pool == NULL)
6568	    || (h->errinfo_pool == NULL)) {
6569		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6570		return -ENOMEM;
6571	}
 
6572	return 0;
 
 
 
6573}
6574
6575static void hpsa_free_cmd_pool(struct ctlr_info *h)
 
6576{
6577	kfree(h->cmd_pool_bits);
6578	if (h->cmd_pool)
6579		pci_free_consistent(h->pdev,
6580			    h->nr_cmds * sizeof(struct CommandList),
6581			    h->cmd_pool, h->cmd_pool_dhandle);
6582	if (h->ioaccel2_cmd_pool)
6583		pci_free_consistent(h->pdev,
6584			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6585			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6586	if (h->errinfo_pool)
6587		pci_free_consistent(h->pdev,
6588			    h->nr_cmds * sizeof(struct ErrorInfo),
6589			    h->errinfo_pool,
6590			    h->errinfo_pool_dhandle);
6591	if (h->ioaccel_cmd_pool)
6592		pci_free_consistent(h->pdev,
6593			h->nr_cmds * sizeof(struct io_accel1_cmd),
6594			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6595}
6596
6597static int hpsa_request_irq(struct ctlr_info *h,
 
6598	irqreturn_t (*msixhandler)(int, void *),
6599	irqreturn_t (*intxhandler)(int, void *))
6600{
6601	int rc, i;
6602
6603	/*
6604	 * initialize h->q[x] = x so that interrupt handlers know which
6605	 * queue to process.
6606	 */
6607	for (i = 0; i < MAX_REPLY_QUEUES; i++)
6608		h->q[i] = (u8) i;
6609
6610	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6611		/* If performant mode and MSI-X, use multiple reply queues */
6612		for (i = 0; i < h->msix_vector; i++)
6613			rc = request_irq(h->intr[i], msixhandler,
6614					0, h->devname,
 
6615					&h->q[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6616	} else {
6617		/* Use single reply pool */
6618		if (h->msix_vector > 0 || h->msi_vector) {
6619			rc = request_irq(h->intr[h->intr_mode],
6620				msixhandler, 0, h->devname,
 
 
 
6621				&h->q[h->intr_mode]);
6622		} else {
6623			rc = request_irq(h->intr[h->intr_mode],
6624				intxhandler, IRQF_SHARED, h->devname,
 
 
 
6625				&h->q[h->intr_mode]);
6626		}
6627	}
6628	if (rc) {
6629		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6630		       h->intr[h->intr_mode], h->devname);
 
6631		return -ENODEV;
6632	}
6633	return 0;
6634}
6635
6636static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6637{
6638	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6639		HPSA_RESET_TYPE_CONTROLLER)) {
6640		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6641		return -EIO;
6642	}
6643
6644	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6645	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
 
6646		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6647		return -1;
6648	}
6649
6650	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6651	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
 
6652		dev_warn(&h->pdev->dev, "Board failed to become ready "
6653			"after soft reset.\n");
6654		return -1;
6655	}
6656
6657	return 0;
6658}
6659
6660static void free_irqs(struct ctlr_info *h)
6661{
6662	int i;
6663
6664	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6665		/* Single reply queue, only one irq to free */
6666		i = h->intr_mode;
6667		free_irq(h->intr[i], &h->q[i]);
6668		return;
 
 
 
 
6669	}
6670
6671	for (i = 0; i < h->msix_vector; i++)
6672		free_irq(h->intr[i], &h->q[i]);
6673}
6674
6675static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6676{
6677	free_irqs(h);
6678#ifdef CONFIG_PCI_MSI
6679	if (h->msix_vector) {
6680		if (h->pdev->msix_enabled)
6681			pci_disable_msix(h->pdev);
6682	} else if (h->msi_vector) {
6683		if (h->pdev->msi_enabled)
6684			pci_disable_msi(h->pdev);
 
 
 
 
 
 
 
 
6685	}
6686#endif /* CONFIG_PCI_MSI */
6687}
6688
6689static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
 
6690{
6691	hpsa_free_irqs_and_disable_msix(h);
6692	hpsa_free_sg_chain_blocks(h);
6693	hpsa_free_cmd_pool(h);
6694	kfree(h->ioaccel1_blockFetchTable);
6695	kfree(h->blockFetchTable);
6696	pci_free_consistent(h->pdev, h->reply_pool_size,
6697		h->reply_pool, h->reply_pool_dhandle);
6698	if (h->vaddr)
6699		iounmap(h->vaddr);
6700	if (h->transtable)
6701		iounmap(h->transtable);
6702	if (h->cfgtable)
6703		iounmap(h->cfgtable);
6704	pci_release_regions(h->pdev);
6705	kfree(h);
 
 
 
6706}
6707
6708/* Called when controller lockup detected. */
6709static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6710{
6711	struct CommandList *c = NULL;
6712
6713	assert_spin_locked(&h->lock);
6714	/* Mark all outstanding commands as failed and complete them. */
6715	while (!list_empty(list)) {
6716		c = list_entry(list->next, struct CommandList, list);
6717		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6718		finish_cmd(c);
6719	}
 
6720}
6721
6722static void controller_lockup_detected(struct ctlr_info *h)
6723{
6724	unsigned long flags;
 
6725
6726	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6727	spin_lock_irqsave(&h->lock, flags);
6728	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
 
 
 
 
 
 
 
 
6729	spin_unlock_irqrestore(&h->lock, flags);
6730	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6731			h->lockup_detected);
6732	pci_disable_device(h->pdev);
6733	spin_lock_irqsave(&h->lock, flags);
6734	fail_all_cmds_on_list(h, &h->cmpQ);
6735	fail_all_cmds_on_list(h, &h->reqQ);
6736	spin_unlock_irqrestore(&h->lock, flags);
6737}
6738
6739static void detect_controller_lockup(struct ctlr_info *h)
6740{
6741	u64 now;
6742	u32 heartbeat;
6743	unsigned long flags;
6744
6745	now = get_jiffies_64();
6746	/* If we've received an interrupt recently, we're ok. */
6747	if (time_after64(h->last_intr_timestamp +
6748				(h->heartbeat_sample_interval), now))
6749		return;
6750
6751	/*
6752	 * If we've already checked the heartbeat recently, we're ok.
6753	 * This could happen if someone sends us a signal. We
6754	 * otherwise don't care about signals in this thread.
6755	 */
6756	if (time_after64(h->last_heartbeat_timestamp +
6757				(h->heartbeat_sample_interval), now))
6758		return;
6759
6760	/* If heartbeat has not changed since we last looked, we're not ok. */
6761	spin_lock_irqsave(&h->lock, flags);
6762	heartbeat = readl(&h->cfgtable->HeartBeat);
6763	spin_unlock_irqrestore(&h->lock, flags);
6764	if (h->last_heartbeat == heartbeat) {
6765		controller_lockup_detected(h);
6766		return;
6767	}
6768
6769	/* We're ok. */
6770	h->last_heartbeat = heartbeat;
6771	h->last_heartbeat_timestamp = now;
 
6772}
6773
6774static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6775{
6776	int i;
6777	char *event_type;
6778
6779	/* Clear the driver-requested rescan flag */
6780	h->drv_req_rescan = 0;
6781
6782	/* Ask the controller to clear the events we're handling. */
6783	if ((h->transMethod & (CFGTBL_Trans_io_accel1
6784			| CFGTBL_Trans_io_accel2)) &&
6785		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6786		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6787
6788		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6789			event_type = "state change";
6790		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6791			event_type = "configuration change";
6792		/* Stop sending new RAID offload reqs via the IO accelerator */
6793		scsi_block_requests(h->scsi_host);
6794		for (i = 0; i < h->ndevices; i++)
6795			h->dev[i]->offload_enabled = 0;
 
 
6796		hpsa_drain_accel_commands(h);
6797		/* Set 'accelerator path config change' bit */
6798		dev_warn(&h->pdev->dev,
6799			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6800			h->events, event_type);
6801		writel(h->events, &(h->cfgtable->clear_event_notify));
6802		/* Set the "clear event notify field update" bit 6 */
6803		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6804		/* Wait until ctlr clears 'clear event notify field', bit 6 */
6805		hpsa_wait_for_clear_event_notify_ack(h);
6806		scsi_unblock_requests(h->scsi_host);
6807	} else {
6808		/* Acknowledge controller notification events. */
6809		writel(h->events, &(h->cfgtable->clear_event_notify));
6810		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6811		hpsa_wait_for_clear_event_notify_ack(h);
6812#if 0
6813		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6814		hpsa_wait_for_mode_change_ack(h);
6815#endif
6816	}
6817	return;
6818}
6819
6820/* Check a register on the controller to see if there are configuration
6821 * changes (added/changed/removed logical drives, etc.) which mean that
6822 * we should rescan the controller for devices.
6823 * Also check flag for driver-initiated rescan.
6824 */
6825static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6826{
6827	if (h->drv_req_rescan)
 
6828		return 1;
 
6829
6830	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6831		return 0;
6832
6833	h->events = readl(&(h->cfgtable->event_notify));
6834	return h->events & RESCAN_REQUIRED_EVENT_BITS;
6835}
6836
6837/*
6838 * Check if any of the offline devices have become ready
6839 */
6840static int hpsa_offline_devices_ready(struct ctlr_info *h)
6841{
6842	unsigned long flags;
6843	struct offline_device_entry *d;
6844	struct list_head *this, *tmp;
6845
6846	spin_lock_irqsave(&h->offline_device_lock, flags);
6847	list_for_each_safe(this, tmp, &h->offline_device_list) {
6848		d = list_entry(this, struct offline_device_entry,
6849				offline_list);
6850		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6851		if (!hpsa_volume_offline(h, d->scsi3addr))
 
 
 
6852			return 1;
 
6853		spin_lock_irqsave(&h->offline_device_lock, flags);
6854	}
6855	spin_unlock_irqrestore(&h->offline_device_lock, flags);
6856	return 0;
6857}
6858
 
 
 
 
 
 
 
 
6859
6860static void hpsa_monitor_ctlr_worker(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6861{
6862	unsigned long flags;
6863	struct ctlr_info *h = container_of(to_delayed_work(work),
6864					struct ctlr_info, monitor_ctlr_work);
6865	detect_controller_lockup(h);
6866	if (h->lockup_detected)
 
 
 
 
 
 
 
 
6867		return;
 
6868
6869	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6870		scsi_host_get(h->scsi_host);
6871		h->drv_req_rescan = 0;
6872		hpsa_ack_ctlr_events(h);
6873		hpsa_scan_start(h->scsi_host);
6874		scsi_host_put(h->scsi_host);
6875	}
 
 
 
6876
 
 
 
 
 
 
 
 
 
6877	spin_lock_irqsave(&h->lock, flags);
6878	if (h->remove_in_progress) {
6879		spin_unlock_irqrestore(&h->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
6880		return;
6881	}
6882	schedule_delayed_work(&h->monitor_ctlr_work,
 
 
6883				h->heartbeat_sample_interval);
6884	spin_unlock_irqrestore(&h->lock, flags);
6885}
6886
 
 
 
 
 
 
 
 
 
 
 
 
6887static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6888{
6889	int dac, rc;
6890	struct ctlr_info *h;
6891	int try_soft_reset = 0;
6892	unsigned long flags;
 
6893
6894	if (number_of_controllers == 0)
6895		printk(KERN_INFO DRIVER_NAME "\n");
6896
6897	rc = hpsa_init_reset_devices(pdev);
 
 
 
 
 
 
6898	if (rc) {
6899		if (rc != -ENOTSUPP)
6900			return rc;
6901		/* If the reset fails in a particular way (it has no way to do
6902		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6903		 * a soft reset once we get the controller configured up to the
6904		 * point that it can accept a command.
6905		 */
6906		try_soft_reset = 1;
6907		rc = 0;
6908	}
6909
6910reinit_after_soft_reset:
6911
6912	/* Command structures must be aligned on a 32-byte boundary because
6913	 * the 5 lower bits of the address are used by the hardware. and by
6914	 * the driver.  See comments in hpsa.h for more info.
6915	 */
6916#define COMMANDLIST_ALIGNMENT 128
6917	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6918	h = kzalloc(sizeof(*h), GFP_KERNEL);
6919	if (!h)
 
6920		return -ENOMEM;
 
6921
6922	h->pdev = pdev;
 
6923	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6924	INIT_LIST_HEAD(&h->cmpQ);
6925	INIT_LIST_HEAD(&h->reqQ);
6926	INIT_LIST_HEAD(&h->offline_device_list);
6927	spin_lock_init(&h->lock);
6928	spin_lock_init(&h->offline_device_lock);
6929	spin_lock_init(&h->scan_lock);
6930	spin_lock_init(&h->passthru_count_lock);
 
 
 
 
 
 
 
 
 
 
 
6931	rc = hpsa_pci_init(h);
6932	if (rc != 0)
6933		goto clean1;
6934
6935	sprintf(h->devname, HPSA "%d", number_of_controllers);
 
 
 
 
 
 
6936	h->ctlr = number_of_controllers;
6937	number_of_controllers++;
6938
6939	/* configure PCI DMA stuff */
6940	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6941	if (rc == 0) {
6942		dac = 1;
6943	} else {
6944		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6945		if (rc == 0) {
6946			dac = 0;
6947		} else {
6948			dev_err(&pdev->dev, "no suitable DMA available\n");
6949			goto clean1;
6950		}
6951	}
6952
6953	/* make sure the board interrupts are off */
6954	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6955
6956	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6957		goto clean2;
6958	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6959	       h->devname, pdev->device,
6960	       h->intr[h->intr_mode], dac ? "" : " not");
6961	if (hpsa_allocate_cmd_pool(h))
6962		goto clean4;
6963	if (hpsa_allocate_sg_chain_blocks(h))
6964		goto clean4;
6965	init_waitqueue_head(&h->scan_wait_queue);
 
 
 
6966	h->scan_finished = 1; /* no scan currently in progress */
6967
6968	pci_set_drvdata(pdev, h);
6969	h->ndevices = 0;
6970	h->hba_mode_enabled = 0;
6971	h->scsi_host = NULL;
6972	spin_lock_init(&h->devlock);
6973	hpsa_put_ctlr_into_performant_mode(h);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6974
6975	/* At this point, the controller is ready to take commands.
 
6976	 * Now, if reset_devices and the hard reset didn't work, try
6977	 * the soft reset and see if that works.
6978	 */
6979	if (try_soft_reset) {
6980
6981		/* This is kind of gross.  We may or may not get a completion
6982		 * from the soft reset command, and if we do, then the value
6983		 * from the fifo may or may not be valid.  So, we wait 10 secs
6984		 * after the reset throwing away any completions we get during
6985		 * that time.  Unregister the interrupt handler and register
6986		 * fake ones to scoop up any residual completions.
6987		 */
6988		spin_lock_irqsave(&h->lock, flags);
6989		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6990		spin_unlock_irqrestore(&h->lock, flags);
6991		free_irqs(h);
6992		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6993					hpsa_intx_discard_completions);
6994		if (rc) {
6995			dev_warn(&h->pdev->dev, "Failed to request_irq after "
6996				"soft reset.\n");
6997			goto clean4;
 
 
 
 
 
 
 
 
 
 
 
6998		}
6999
7000		rc = hpsa_kdump_soft_reset(h);
7001		if (rc)
7002			/* Neither hard nor soft reset worked, we're hosed. */
7003			goto clean4;
7004
7005		dev_info(&h->pdev->dev, "Board READY.\n");
7006		dev_info(&h->pdev->dev,
7007			"Waiting for stale completions to drain.\n");
7008		h->access.set_intr_mask(h, HPSA_INTR_ON);
7009		msleep(10000);
7010		h->access.set_intr_mask(h, HPSA_INTR_OFF);
7011
7012		rc = controller_reset_failed(h->cfgtable);
7013		if (rc)
7014			dev_info(&h->pdev->dev,
7015				"Soft reset appears to have failed.\n");
7016
7017		/* since the controller's reset, we have to go back and re-init
7018		 * everything.  Easiest to just forget what we've done and do it
7019		 * all over again.
7020		 */
7021		hpsa_undo_allocations_after_kdump_soft_reset(h);
7022		try_soft_reset = 0;
7023		if (rc)
7024			/* don't go to clean4, we already unallocated */
7025			return -ENODEV;
7026
7027		goto reinit_after_soft_reset;
7028	}
7029
7030		/* Enable Accelerated IO path at driver layer */
7031		h->acciopath_status = 1;
 
 
7032
7033	h->drv_req_rescan = 0;
7034
7035	/* Turn the interrupts on so we can service requests */
7036	h->access.set_intr_mask(h, HPSA_INTR_ON);
7037
7038	hpsa_hba_inquiry(h);
7039	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
 
 
 
 
 
 
 
 
 
7040
7041	/* Monitor the controller for firmware lockups */
7042	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7043	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7044	schedule_delayed_work(&h->monitor_ctlr_work,
7045				h->heartbeat_sample_interval);
 
 
 
7046	return 0;
7047
7048clean4:
 
 
 
7049	hpsa_free_sg_chain_blocks(h);
 
7050	hpsa_free_cmd_pool(h);
7051	free_irqs(h);
7052clean2:
7053clean1:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7054	kfree(h);
7055	return rc;
7056}
7057
7058static void hpsa_flush_cache(struct ctlr_info *h)
7059{
7060	char *flush_buf;
7061	struct CommandList *c;
7062	unsigned long flags;
7063
7064	/* Don't bother trying to flush the cache if locked up */
7065	spin_lock_irqsave(&h->lock, flags);
7066	if (unlikely(h->lockup_detected)) {
7067		spin_unlock_irqrestore(&h->lock, flags);
7068		return;
7069	}
7070	spin_unlock_irqrestore(&h->lock, flags);
7071
7072	flush_buf = kzalloc(4, GFP_KERNEL);
7073	if (!flush_buf)
7074		return;
7075
7076	c = cmd_special_alloc(h);
7077	if (!c) {
7078		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7079		goto out_of_memory;
7080	}
7081	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7082		RAID_CTLR_LUNID, TYPE_CMD)) {
7083		goto out;
7084	}
7085	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
 
 
 
7086	if (c->err_info->CommandStatus != 0)
7087out:
7088		dev_warn(&h->pdev->dev,
7089			"error flushing cache on controller\n");
7090	cmd_special_free(h, c);
7091out_of_memory:
7092	kfree(flush_buf);
7093}
7094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7095static void hpsa_shutdown(struct pci_dev *pdev)
7096{
7097	struct ctlr_info *h;
7098
7099	h = pci_get_drvdata(pdev);
7100	/* Turn board interrupts off  and send the flush cache command
7101	 * sendcmd will turn off interrupt, and send the flush...
7102	 * To write all data in the battery backed cache to disks
7103	 */
7104	hpsa_flush_cache(h);
7105	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7106	hpsa_free_irqs_and_disable_msix(h);
 
7107}
7108
7109static void hpsa_free_device_info(struct ctlr_info *h)
7110{
7111	int i;
7112
7113	for (i = 0; i < h->ndevices; i++)
7114		kfree(h->dev[i]);
 
 
7115}
7116
7117static void hpsa_remove_one(struct pci_dev *pdev)
7118{
7119	struct ctlr_info *h;
7120	unsigned long flags;
7121
7122	if (pci_get_drvdata(pdev) == NULL) {
7123		dev_err(&pdev->dev, "unable to remove device\n");
7124		return;
7125	}
7126	h = pci_get_drvdata(pdev);
7127
7128	/* Get rid of any controller monitoring work items */
7129	spin_lock_irqsave(&h->lock, flags);
7130	h->remove_in_progress = 1;
7131	cancel_delayed_work(&h->monitor_ctlr_work);
7132	spin_unlock_irqrestore(&h->lock, flags);
 
 
 
 
7133
7134	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
 
 
 
 
 
 
 
 
 
7135	hpsa_shutdown(pdev);
7136	iounmap(h->vaddr);
7137	iounmap(h->transtable);
7138	iounmap(h->cfgtable);
7139	hpsa_free_device_info(h);
7140	hpsa_free_sg_chain_blocks(h);
7141	pci_free_consistent(h->pdev,
7142		h->nr_cmds * sizeof(struct CommandList),
7143		h->cmd_pool, h->cmd_pool_dhandle);
7144	pci_free_consistent(h->pdev,
7145		h->nr_cmds * sizeof(struct ErrorInfo),
7146		h->errinfo_pool, h->errinfo_pool_dhandle);
7147	pci_free_consistent(h->pdev, h->reply_pool_size,
7148		h->reply_pool, h->reply_pool_dhandle);
7149	kfree(h->cmd_pool_bits);
7150	kfree(h->blockFetchTable);
7151	kfree(h->ioaccel1_blockFetchTable);
7152	kfree(h->ioaccel2_blockFetchTable);
7153	kfree(h->hba_inquiry_data);
7154	pci_disable_device(pdev);
7155	pci_release_regions(pdev);
7156	kfree(h);
 
 
 
 
 
7157}
7158
7159static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7160	__attribute__((unused)) pm_message_t state)
7161{
7162	return -ENOSYS;
7163}
7164
7165static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7166{
7167	return -ENOSYS;
7168}
7169
7170static struct pci_driver hpsa_pci_driver = {
7171	.name = HPSA,
7172	.probe = hpsa_init_one,
7173	.remove = hpsa_remove_one,
7174	.id_table = hpsa_pci_device_id,	/* id_table */
7175	.shutdown = hpsa_shutdown,
7176	.suspend = hpsa_suspend,
7177	.resume = hpsa_resume,
7178};
7179
7180/* Fill in bucket_map[], given nsgs (the max number of
7181 * scatter gather elements supported) and bucket[],
7182 * which is an array of 8 integers.  The bucket[] array
7183 * contains 8 different DMA transfer sizes (in 16
7184 * byte increments) which the controller uses to fetch
7185 * commands.  This function fills in bucket_map[], which
7186 * maps a given number of scatter gather elements to one of
7187 * the 8 DMA transfer sizes.  The point of it is to allow the
7188 * controller to only do as much DMA as needed to fetch the
7189 * command, with the DMA transfer size encoded in the lower
7190 * bits of the command address.
7191 */
7192static void  calc_bucket_map(int bucket[], int num_buckets,
7193	int nsgs, int min_blocks, int *bucket_map)
7194{
7195	int i, j, b, size;
7196
7197	/* Note, bucket_map must have nsgs+1 entries. */
7198	for (i = 0; i <= nsgs; i++) {
7199		/* Compute size of a command with i SG entries */
7200		size = i + min_blocks;
7201		b = num_buckets; /* Assume the biggest bucket */
7202		/* Find the bucket that is just big enough */
7203		for (j = 0; j < num_buckets; j++) {
7204			if (bucket[j] >= size) {
7205				b = j;
7206				break;
7207			}
7208		}
7209		/* for a command with i SG entries, use bucket b. */
7210		bucket_map[i] = b;
7211	}
7212}
7213
7214static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
 
 
 
 
7215{
7216	int i;
7217	unsigned long register_value;
7218	unsigned long transMethod = CFGTBL_Trans_Performant |
7219			(trans_support & CFGTBL_Trans_use_short_tags) |
7220				CFGTBL_Trans_enable_directed_msix |
7221			(trans_support & (CFGTBL_Trans_io_accel1 |
7222				CFGTBL_Trans_io_accel2));
7223	struct access_method access = SA5_performant_access;
7224
7225	/* This is a bit complicated.  There are 8 registers on
7226	 * the controller which we write to to tell it 8 different
7227	 * sizes of commands which there may be.  It's a way of
7228	 * reducing the DMA done to fetch each command.  Encoded into
7229	 * each command's tag are 3 bits which communicate to the controller
7230	 * which of the eight sizes that command fits within.  The size of
7231	 * each command depends on how many scatter gather entries there are.
7232	 * Each SG entry requires 16 bytes.  The eight registers are programmed
7233	 * with the number of 16-byte blocks a command of that size requires.
7234	 * The smallest command possible requires 5 such 16 byte blocks.
7235	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7236	 * blocks.  Note, this only extends to the SG entries contained
7237	 * within the command block, and does not extend to chained blocks
7238	 * of SG elements.   bft[] contains the eight values we write to
7239	 * the registers.  They are not evenly distributed, but have more
7240	 * sizes for small commands, and fewer sizes for larger commands.
7241	 */
7242	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7243#define MIN_IOACCEL2_BFT_ENTRY 5
7244#define HPSA_IOACCEL2_HEADER_SZ 4
7245	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7246			13, 14, 15, 16, 17, 18, 19,
7247			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7248	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7249	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7250	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7251				 16 * MIN_IOACCEL2_BFT_ENTRY);
7252	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7253	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7254	/*  5 = 1 s/g entry or 4k
7255	 *  6 = 2 s/g entry or 8k
7256	 *  8 = 4 s/g entry or 16k
7257	 * 10 = 6 s/g entry or 24k
7258	 */
7259
 
 
 
 
 
 
 
7260	/* Controller spec: zero out this buffer. */
7261	memset(h->reply_pool, 0, h->reply_pool_size);
 
7262
7263	bft[7] = SG_ENTRIES_IN_CMD + 4;
7264	calc_bucket_map(bft, ARRAY_SIZE(bft),
7265				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7266	for (i = 0; i < 8; i++)
7267		writel(bft[i], &h->transtable->BlockFetch[i]);
7268
7269	/* size of controller ring buffer */
7270	writel(h->max_commands, &h->transtable->RepQSize);
7271	writel(h->nreply_queues, &h->transtable->RepQCount);
7272	writel(0, &h->transtable->RepQCtrAddrLow32);
7273	writel(0, &h->transtable->RepQCtrAddrHigh32);
7274
7275	for (i = 0; i < h->nreply_queues; i++) {
7276		writel(0, &h->transtable->RepQAddr[i].upper);
7277		writel(h->reply_pool_dhandle +
7278			(h->max_commands * sizeof(u64) * i),
7279			&h->transtable->RepQAddr[i].lower);
7280	}
7281
7282	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7283	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7284	/*
7285	 * enable outbound interrupt coalescing in accelerator mode;
7286	 */
7287	if (trans_support & CFGTBL_Trans_io_accel1) {
7288		access = SA5_ioaccel_mode1_access;
7289		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7290		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7291	} else {
7292		if (trans_support & CFGTBL_Trans_io_accel2) {
7293			access = SA5_ioaccel_mode2_access;
7294			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7295			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7296		}
7297	}
7298	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7299	hpsa_wait_for_mode_change_ack(h);
 
 
 
 
7300	register_value = readl(&(h->cfgtable->TransportActive));
7301	if (!(register_value & CFGTBL_Trans_Performant)) {
7302		dev_warn(&h->pdev->dev, "unable to get board into"
7303					" performant mode\n");
7304		return;
7305	}
7306	/* Change the access methods to the performant access methods */
7307	h->access = access;
7308	h->transMethod = transMethod;
7309
7310	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7311		(trans_support & CFGTBL_Trans_io_accel2)))
7312		return;
7313
7314	if (trans_support & CFGTBL_Trans_io_accel1) {
7315		/* Set up I/O accelerator mode */
7316		for (i = 0; i < h->nreply_queues; i++) {
7317			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7318			h->reply_queue[i].current_entry =
7319				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7320		}
7321		bft[7] = h->ioaccel_maxsg + 8;
7322		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7323				h->ioaccel1_blockFetchTable);
7324
7325		/* initialize all reply queue entries to unused */
7326		memset(h->reply_pool, (u8) IOACCEL_MODE1_REPLY_UNUSED,
7327				h->reply_pool_size);
 
 
7328
7329		/* set all the constant fields in the accelerator command
7330		 * frames once at init time to save CPU cycles later.
7331		 */
7332		for (i = 0; i < h->nr_cmds; i++) {
7333			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7334
7335			cp->function = IOACCEL1_FUNCTION_SCSIIO;
7336			cp->err_info = (u32) (h->errinfo_pool_dhandle +
7337					(i * sizeof(struct ErrorInfo)));
7338			cp->err_info_len = sizeof(struct ErrorInfo);
7339			cp->sgl_offset = IOACCEL1_SGLOFFSET;
7340			cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
 
7341			cp->timeout_sec = 0;
7342			cp->ReplyQueue = 0;
7343			cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) |
7344						DIRECT_LOOKUP_BIT;
7345			cp->Tag.upper = 0;
7346			cp->host_addr.lower =
7347				(u32) (h->ioaccel_cmd_pool_dhandle +
7348					(i * sizeof(struct io_accel1_cmd)));
7349			cp->host_addr.upper = 0;
7350		}
7351	} else if (trans_support & CFGTBL_Trans_io_accel2) {
7352		u64 cfg_offset, cfg_base_addr_index;
7353		u32 bft2_offset, cfg_base_addr;
7354		int rc;
7355
7356		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7357			&cfg_base_addr_index, &cfg_offset);
7358		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7359		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7360		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7361				4, h->ioaccel2_blockFetchTable);
7362		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7363		BUILD_BUG_ON(offsetof(struct CfgTable,
7364				io_accel_request_size_offset) != 0xb8);
7365		h->ioaccel2_bft2_regs =
7366			remap_pci_mem(pci_resource_start(h->pdev,
7367					cfg_base_addr_index) +
7368					cfg_offset + bft2_offset,
7369					ARRAY_SIZE(bft2) *
7370					sizeof(*h->ioaccel2_bft2_regs));
7371		for (i = 0; i < ARRAY_SIZE(bft2); i++)
7372			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7373	}
7374	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7375	hpsa_wait_for_mode_change_ack(h);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7376}
7377
7378static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
 
7379{
7380	h->ioaccel_maxsg =
7381		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7382	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7383		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7384
7385	/* Command structures must be aligned on a 128-byte boundary
7386	 * because the 7 lower bits of the address are used by the
7387	 * hardware.
7388	 */
7389#define IOACCEL1_COMMANDLIST_ALIGNMENT 128
7390	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7391			IOACCEL1_COMMANDLIST_ALIGNMENT);
7392	h->ioaccel_cmd_pool =
7393		pci_alloc_consistent(h->pdev,
7394			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7395			&(h->ioaccel_cmd_pool_dhandle));
7396
7397	h->ioaccel1_blockFetchTable =
7398		kmalloc(((h->ioaccel_maxsg + 1) *
7399				sizeof(u32)), GFP_KERNEL);
7400
7401	if ((h->ioaccel_cmd_pool == NULL) ||
7402		(h->ioaccel1_blockFetchTable == NULL))
7403		goto clean_up;
7404
7405	memset(h->ioaccel_cmd_pool, 0,
7406		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7407	return 0;
7408
7409clean_up:
7410	if (h->ioaccel_cmd_pool)
 
 
 
 
 
 
 
 
 
7411		pci_free_consistent(h->pdev,
7412			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7413			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7414	kfree(h->ioaccel1_blockFetchTable);
7415	return 1;
 
 
 
 
7416}
7417
7418static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
 
7419{
 
 
7420	/* Allocate ioaccel2 mode command blocks and block fetch table */
7421
7422	h->ioaccel_maxsg =
7423		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7424	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7425		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7426
7427#define IOACCEL2_COMMANDLIST_ALIGNMENT 128
7428	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7429			IOACCEL2_COMMANDLIST_ALIGNMENT);
7430	h->ioaccel2_cmd_pool =
7431		pci_alloc_consistent(h->pdev,
7432			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7433			&(h->ioaccel2_cmd_pool_dhandle));
7434
7435	h->ioaccel2_blockFetchTable =
7436		kmalloc(((h->ioaccel_maxsg + 1) *
7437				sizeof(u32)), GFP_KERNEL);
7438
7439	if ((h->ioaccel2_cmd_pool == NULL) ||
7440		(h->ioaccel2_blockFetchTable == NULL))
 
 
 
 
 
 
7441		goto clean_up;
7442
7443	memset(h->ioaccel2_cmd_pool, 0,
7444		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7445	return 0;
7446
7447clean_up:
7448	if (h->ioaccel2_cmd_pool)
7449		pci_free_consistent(h->pdev,
7450			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7451			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7452	kfree(h->ioaccel2_blockFetchTable);
7453	return 1;
 
 
 
 
 
 
7454}
7455
7456static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
 
 
 
7457{
7458	u32 trans_support;
7459	unsigned long transMethod = CFGTBL_Trans_Performant |
7460					CFGTBL_Trans_use_short_tags;
7461	int i;
7462
7463	if (hpsa_simple_mode)
7464		return;
7465
7466	trans_support = readl(&(h->cfgtable->TransportSupport));
7467	if (!(trans_support & PERFORMANT_MODE))
7468		return;
7469
7470	/* Check for I/O accelerator mode support */
7471	if (trans_support & CFGTBL_Trans_io_accel1) {
7472		transMethod |= CFGTBL_Trans_io_accel1 |
7473				CFGTBL_Trans_enable_directed_msix;
7474		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7475			goto clean_up;
7476	} else {
7477		if (trans_support & CFGTBL_Trans_io_accel2) {
7478				transMethod |= CFGTBL_Trans_io_accel2 |
7479				CFGTBL_Trans_enable_directed_msix;
7480		if (ioaccel2_alloc_cmds_and_bft(h))
7481			goto clean_up;
7482		}
7483	}
7484
7485	/* TODO, check that this next line h->nreply_queues is correct */
7486	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7487	hpsa_get_max_perf_mode_cmds(h);
7488	/* Performant mode ring buffer and supporting data structures */
7489	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
7490	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
7491				&(h->reply_pool_dhandle));
7492
7493	for (i = 0; i < h->nreply_queues; i++) {
7494		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
 
 
 
 
 
 
7495		h->reply_queue[i].size = h->max_commands;
7496		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7497		h->reply_queue[i].current_entry = 0;
7498	}
7499
7500	/* Need a block fetch table for performant mode */
7501	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7502				sizeof(u32)), GFP_KERNEL);
 
 
 
 
7503
7504	if ((h->reply_pool == NULL)
7505		|| (h->blockFetchTable == NULL))
7506		goto clean_up;
7507
7508	hpsa_enter_performant_mode(h, trans_support);
7509	return;
7510
7511clean_up:
7512	if (h->reply_pool)
7513		pci_free_consistent(h->pdev, h->reply_pool_size,
7514			h->reply_pool, h->reply_pool_dhandle);
7515	kfree(h->blockFetchTable);
 
 
 
 
 
 
7516}
7517
7518static int is_accelerated_cmd(struct CommandList *c)
7519{
7520	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7521}
7522
7523static void hpsa_drain_accel_commands(struct ctlr_info *h)
7524{
7525	struct CommandList *c = NULL;
7526	unsigned long flags;
7527	int accel_cmds_out;
7528
7529	do { /* wait for all outstanding commands to drain out */
7530		accel_cmds_out = 0;
7531		spin_lock_irqsave(&h->lock, flags);
7532		list_for_each_entry(c, &h->cmpQ, list)
7533			accel_cmds_out += is_accelerated_cmd(c);
7534		list_for_each_entry(c, &h->reqQ, list)
7535			accel_cmds_out += is_accelerated_cmd(c);
7536		spin_unlock_irqrestore(&h->lock, flags);
 
7537		if (accel_cmds_out <= 0)
7538			break;
7539		msleep(100);
7540	} while (1);
7541}
7542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7543/*
7544 *  This is it.  Register the PCI driver information for the cards we control
7545 *  the OS will call our registered routines when it finds one of our cards.
7546 */
7547static int __init hpsa_init(void)
7548{
7549	return pci_register_driver(&hpsa_pci_driver);
 
 
 
 
 
 
 
 
 
 
 
 
7550}
7551
7552static void __exit hpsa_cleanup(void)
7553{
7554	pci_unregister_driver(&hpsa_pci_driver);
 
7555}
7556
7557static void __attribute__((unused)) verify_offsets(void)
7558{
7559#define VERIFY_OFFSET(member, offset) \
7560	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7561
7562	VERIFY_OFFSET(structure_size, 0);
7563	VERIFY_OFFSET(volume_blk_size, 4);
7564	VERIFY_OFFSET(volume_blk_cnt, 8);
7565	VERIFY_OFFSET(phys_blk_shift, 16);
7566	VERIFY_OFFSET(parity_rotation_shift, 17);
7567	VERIFY_OFFSET(strip_size, 18);
7568	VERIFY_OFFSET(disk_starting_blk, 20);
7569	VERIFY_OFFSET(disk_blk_cnt, 28);
7570	VERIFY_OFFSET(data_disks_per_row, 36);
7571	VERIFY_OFFSET(metadata_disks_per_row, 38);
7572	VERIFY_OFFSET(row_cnt, 40);
7573	VERIFY_OFFSET(layout_map_count, 42);
7574	VERIFY_OFFSET(flags, 44);
7575	VERIFY_OFFSET(dekindex, 46);
7576	/* VERIFY_OFFSET(reserved, 48 */
7577	VERIFY_OFFSET(data, 64);
7578
7579#undef VERIFY_OFFSET
7580
7581#define VERIFY_OFFSET(member, offset) \
7582	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7583
7584	VERIFY_OFFSET(IU_type, 0);
7585	VERIFY_OFFSET(direction, 1);
7586	VERIFY_OFFSET(reply_queue, 2);
7587	/* VERIFY_OFFSET(reserved1, 3);  */
7588	VERIFY_OFFSET(scsi_nexus, 4);
7589	VERIFY_OFFSET(Tag, 8);
7590	VERIFY_OFFSET(cdb, 16);
7591	VERIFY_OFFSET(cciss_lun, 32);
7592	VERIFY_OFFSET(data_len, 40);
7593	VERIFY_OFFSET(cmd_priority_task_attr, 44);
7594	VERIFY_OFFSET(sg_count, 45);
7595	/* VERIFY_OFFSET(reserved3 */
7596	VERIFY_OFFSET(err_ptr, 48);
7597	VERIFY_OFFSET(err_len, 56);
7598	/* VERIFY_OFFSET(reserved4  */
7599	VERIFY_OFFSET(sg, 64);
7600
7601#undef VERIFY_OFFSET
7602
7603#define VERIFY_OFFSET(member, offset) \
7604	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7605
7606	VERIFY_OFFSET(dev_handle, 0x00);
7607	VERIFY_OFFSET(reserved1, 0x02);
7608	VERIFY_OFFSET(function, 0x03);
7609	VERIFY_OFFSET(reserved2, 0x04);
7610	VERIFY_OFFSET(err_info, 0x0C);
7611	VERIFY_OFFSET(reserved3, 0x10);
7612	VERIFY_OFFSET(err_info_len, 0x12);
7613	VERIFY_OFFSET(reserved4, 0x13);
7614	VERIFY_OFFSET(sgl_offset, 0x14);
7615	VERIFY_OFFSET(reserved5, 0x15);
7616	VERIFY_OFFSET(transfer_len, 0x1C);
7617	VERIFY_OFFSET(reserved6, 0x20);
7618	VERIFY_OFFSET(io_flags, 0x24);
7619	VERIFY_OFFSET(reserved7, 0x26);
7620	VERIFY_OFFSET(LUN, 0x34);
7621	VERIFY_OFFSET(control, 0x3C);
7622	VERIFY_OFFSET(CDB, 0x40);
7623	VERIFY_OFFSET(reserved8, 0x50);
7624	VERIFY_OFFSET(host_context_flags, 0x60);
7625	VERIFY_OFFSET(timeout_sec, 0x62);
7626	VERIFY_OFFSET(ReplyQueue, 0x64);
7627	VERIFY_OFFSET(reserved9, 0x65);
7628	VERIFY_OFFSET(Tag, 0x68);
7629	VERIFY_OFFSET(host_addr, 0x70);
7630	VERIFY_OFFSET(CISS_LUN, 0x78);
7631	VERIFY_OFFSET(SG, 0x78 + 8);
7632#undef VERIFY_OFFSET
7633}
7634
7635module_init(hpsa_init);
7636module_exit(hpsa_cleanup);
v4.10.11
    1/*
    2 *    Disk Array driver for HP Smart Array SAS controllers
    3 *    Copyright 2016 Microsemi Corporation
    4 *    Copyright 2014-2015 PMC-Sierra, Inc.
    5 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
    6 *
    7 *    This program is free software; you can redistribute it and/or modify
    8 *    it under the terms of the GNU General Public License as published by
    9 *    the Free Software Foundation; version 2 of the License.
   10 *
   11 *    This program is distributed in the hope that it will be useful,
   12 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
   13 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
   14 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
   15 *
   16 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
 
 
 
 
   17 *
   18 */
   19
   20#include <linux/module.h>
   21#include <linux/interrupt.h>
   22#include <linux/types.h>
   23#include <linux/pci.h>
   24#include <linux/pci-aspm.h>
   25#include <linux/kernel.h>
   26#include <linux/slab.h>
   27#include <linux/delay.h>
   28#include <linux/fs.h>
   29#include <linux/timer.h>
   30#include <linux/init.h>
   31#include <linux/spinlock.h>
   32#include <linux/compat.h>
   33#include <linux/blktrace_api.h>
   34#include <linux/uaccess.h>
   35#include <linux/io.h>
   36#include <linux/dma-mapping.h>
   37#include <linux/completion.h>
   38#include <linux/moduleparam.h>
   39#include <scsi/scsi.h>
   40#include <scsi/scsi_cmnd.h>
   41#include <scsi/scsi_device.h>
   42#include <scsi/scsi_host.h>
   43#include <scsi/scsi_tcq.h>
   44#include <scsi/scsi_eh.h>
   45#include <scsi/scsi_transport_sas.h>
   46#include <scsi/scsi_dbg.h>
   47#include <linux/cciss_ioctl.h>
   48#include <linux/string.h>
   49#include <linux/bitmap.h>
   50#include <linux/atomic.h>
   51#include <linux/jiffies.h>
   52#include <linux/percpu-defs.h>
   53#include <linux/percpu.h>
   54#include <asm/unaligned.h>
   55#include <asm/div64.h>
   56#include "hpsa_cmd.h"
   57#include "hpsa.h"
   58
   59/*
   60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
   61 * with an optional trailing '-' followed by a byte value (0-255).
   62 */
   63#define HPSA_DRIVER_VERSION "3.4.16-0"
   64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
   65#define HPSA "hpsa"
   66
   67/* How long to wait for CISS doorbell communication */
   68#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
   69#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
   70#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
   71#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
   72#define MAX_IOCTL_CONFIG_WAIT 1000
   73
   74/*define how many times we will try a command because of bus resets */
   75#define MAX_CMD_RETRIES 3
   76
   77/* Embedded module documentation macros - see modules.h */
   78MODULE_AUTHOR("Hewlett-Packard Company");
   79MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
   80	HPSA_DRIVER_VERSION);
   81MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
   82MODULE_VERSION(HPSA_DRIVER_VERSION);
   83MODULE_LICENSE("GPL");
   84
   85static int hpsa_allow_any;
   86module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
   87MODULE_PARM_DESC(hpsa_allow_any,
   88		"Allow hpsa driver to access unknown HP Smart Array hardware");
   89static int hpsa_simple_mode;
   90module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
   91MODULE_PARM_DESC(hpsa_simple_mode,
   92	"Use 'simple mode' rather than 'performant mode'");
   93
   94/* define the PCI info for the cards we can control */
   95static const struct pci_device_id hpsa_pci_device_id[] = {
   96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
   97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
   98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
   99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
  101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
  102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
  103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
  104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
  105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
  106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
  107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
  108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
  109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
  110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
  111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
  112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
  113	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
  114	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 
  115	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
  116	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
  117	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
  118	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
  119	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
  120	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
  121	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
  122	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
  123	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
  124	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
  125	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
  126	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
  127	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
  128	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
  129	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
  130	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
  131	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
  132	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
  133	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
  134	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
  135	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
  136	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
  137	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
  138	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
  139	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
  140	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
  141	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
  142	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
  143	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
  144	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
  145	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
  146	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
  147	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
  148		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
  149	{0,}
  150};
  151
  152MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
  153
  154/*  board_id = Subsystem Device ID & Vendor ID
  155 *  product = Marketing Name for the board
  156 *  access = Address of the struct of function pointers
  157 */
  158static struct board_type products[] = {
  159	{0x3241103C, "Smart Array P212", &SA5_access},
  160	{0x3243103C, "Smart Array P410", &SA5_access},
  161	{0x3245103C, "Smart Array P410i", &SA5_access},
  162	{0x3247103C, "Smart Array P411", &SA5_access},
  163	{0x3249103C, "Smart Array P812", &SA5_access},
  164	{0x324A103C, "Smart Array P712m", &SA5_access},
  165	{0x324B103C, "Smart Array P711m", &SA5_access},
  166	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
  167	{0x3350103C, "Smart Array P222", &SA5_access},
  168	{0x3351103C, "Smart Array P420", &SA5_access},
  169	{0x3352103C, "Smart Array P421", &SA5_access},
  170	{0x3353103C, "Smart Array P822", &SA5_access},
  171	{0x3354103C, "Smart Array P420i", &SA5_access},
  172	{0x3355103C, "Smart Array P220i", &SA5_access},
  173	{0x3356103C, "Smart Array P721m", &SA5_access},
  174	{0x1921103C, "Smart Array P830i", &SA5_access},
  175	{0x1922103C, "Smart Array P430", &SA5_access},
  176	{0x1923103C, "Smart Array P431", &SA5_access},
  177	{0x1924103C, "Smart Array P830", &SA5_access},
  178	{0x1926103C, "Smart Array P731m", &SA5_access},
  179	{0x1928103C, "Smart Array P230i", &SA5_access},
  180	{0x1929103C, "Smart Array P530", &SA5_access},
  181	{0x21BD103C, "Smart Array P244br", &SA5_access},
  182	{0x21BE103C, "Smart Array P741m", &SA5_access},
  183	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
  184	{0x21C0103C, "Smart Array P440ar", &SA5_access},
  185	{0x21C1103C, "Smart Array P840ar", &SA5_access},
  186	{0x21C2103C, "Smart Array P440", &SA5_access},
  187	{0x21C3103C, "Smart Array P441", &SA5_access},
  188	{0x21C4103C, "Smart Array", &SA5_access},
  189	{0x21C5103C, "Smart Array P841", &SA5_access},
  190	{0x21C6103C, "Smart HBA H244br", &SA5_access},
  191	{0x21C7103C, "Smart HBA H240", &SA5_access},
  192	{0x21C8103C, "Smart HBA H241", &SA5_access},
  193	{0x21C9103C, "Smart Array", &SA5_access},
  194	{0x21CA103C, "Smart Array P246br", &SA5_access},
  195	{0x21CB103C, "Smart Array P840", &SA5_access},
  196	{0x21CC103C, "Smart Array", &SA5_access},
  197	{0x21CD103C, "Smart Array", &SA5_access},
  198	{0x21CE103C, "Smart HBA", &SA5_access},
  199	{0x05809005, "SmartHBA-SA", &SA5_access},
  200	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
  201	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
  202	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
  203	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
  204	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
  205	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
  206	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
  207	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
  208	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
  209	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
  210	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
  211};
  212
  213static struct scsi_transport_template *hpsa_sas_transport_template;
  214static int hpsa_add_sas_host(struct ctlr_info *h);
  215static void hpsa_delete_sas_host(struct ctlr_info *h);
  216static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
  217			struct hpsa_scsi_dev_t *device);
  218static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
  219static struct hpsa_scsi_dev_t
  220	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
  221		struct sas_rphy *rphy);
  222
  223#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
  224static const struct scsi_cmnd hpsa_cmd_busy;
  225#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
  226static const struct scsi_cmnd hpsa_cmd_idle;
  227static int number_of_controllers;
  228
  229static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
  230static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
  231static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
 
  232
  233#ifdef CONFIG_COMPAT
  234static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
  235	void __user *arg);
  236#endif
  237
  238static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 
  239static struct CommandList *cmd_alloc(struct ctlr_info *h);
  240static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
  241static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
  242					    struct scsi_cmnd *scmd);
  243static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
  244	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
  245	int cmd_type);
  246static void hpsa_free_cmd_pool(struct ctlr_info *h);
  247#define VPD_PAGE (1 << 8)
  248#define HPSA_SIMPLE_ERROR_BITS 0x03
  249
  250static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
  251static void hpsa_scan_start(struct Scsi_Host *);
  252static int hpsa_scan_finished(struct Scsi_Host *sh,
  253	unsigned long elapsed_time);
  254static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 
  255
  256static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
  257static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
  258static int hpsa_slave_alloc(struct scsi_device *sdev);
  259static int hpsa_slave_configure(struct scsi_device *sdev);
  260static void hpsa_slave_destroy(struct scsi_device *sdev);
  261
  262static void hpsa_update_scsi_devices(struct ctlr_info *h);
  263static int check_for_unit_attention(struct ctlr_info *h,
  264	struct CommandList *c);
  265static void check_ioctl_unit_attention(struct ctlr_info *h,
  266	struct CommandList *c);
  267/* performant mode helper functions */
  268static void calc_bucket_map(int *bucket, int num_buckets,
  269	int nsgs, int min_blocks, u32 *bucket_map);
  270static void hpsa_free_performant_mode(struct ctlr_info *h);
  271static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
  272static inline u32 next_command(struct ctlr_info *h, u8 q);
  273static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
  274			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
  275			       u64 *cfg_offset);
  276static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
  277				    unsigned long *memory_bar);
  278static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
  279static int wait_for_device_to_become_ready(struct ctlr_info *h,
  280					   unsigned char lunaddr[],
  281					   int reply_queue);
  282static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
  283				     int wait_for_ready);
  284static inline void finish_cmd(struct CommandList *c);
  285static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
  286#define BOARD_NOT_READY 0
  287#define BOARD_READY 1
  288static void hpsa_drain_accel_commands(struct ctlr_info *h);
  289static void hpsa_flush_cache(struct ctlr_info *h);
  290static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
  291	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
  292	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
  293static void hpsa_command_resubmit_worker(struct work_struct *work);
  294static u32 lockup_detected(struct ctlr_info *h);
  295static int detect_controller_lockup(struct ctlr_info *h);
  296static void hpsa_disable_rld_caching(struct ctlr_info *h);
  297static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
  298	struct ReportExtendedLUNdata *buf, int bufsize);
  299static bool hpsa_vpd_page_supported(struct ctlr_info *h,
  300	unsigned char scsi3addr[], u8 page);
  301static int hpsa_luns_changed(struct ctlr_info *h);
  302static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
  303			       struct hpsa_scsi_dev_t *dev,
  304			       unsigned char *scsi3addr);
  305
  306static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
  307{
  308	unsigned long *priv = shost_priv(sdev->host);
  309	return (struct ctlr_info *) *priv;
  310}
  311
  312static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
  313{
  314	unsigned long *priv = shost_priv(sh);
  315	return (struct ctlr_info *) *priv;
  316}
  317
  318static inline bool hpsa_is_cmd_idle(struct CommandList *c)
  319{
  320	return c->scsi_cmd == SCSI_CMD_IDLE;
  321}
  322
  323static inline bool hpsa_is_pending_event(struct CommandList *c)
  324{
  325	return c->abort_pending || c->reset_pending;
  326}
  327
  328/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
  329static void decode_sense_data(const u8 *sense_data, int sense_data_len,
  330			u8 *sense_key, u8 *asc, u8 *ascq)
  331{
  332	struct scsi_sense_hdr sshdr;
  333	bool rc;
  334
  335	*sense_key = -1;
  336	*asc = -1;
  337	*ascq = -1;
  338
  339	if (sense_data_len < 1)
  340		return;
  341
  342	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
  343	if (rc) {
  344		*sense_key = sshdr.sense_key;
  345		*asc = sshdr.asc;
  346		*ascq = sshdr.ascq;
  347	}
  348}
  349
  350static int check_for_unit_attention(struct ctlr_info *h,
  351	struct CommandList *c)
  352{
  353	u8 sense_key, asc, ascq;
  354	int sense_len;
  355
  356	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
  357		sense_len = sizeof(c->err_info->SenseInfo);
  358	else
  359		sense_len = c->err_info->SenseLen;
  360
  361	decode_sense_data(c->err_info->SenseInfo, sense_len,
  362				&sense_key, &asc, &ascq);
  363	if (sense_key != UNIT_ATTENTION || asc == 0xff)
  364		return 0;
  365
  366	switch (asc) {
  367	case STATE_CHANGED:
  368		dev_warn(&h->pdev->dev,
  369			"%s: a state change detected, command retried\n",
  370			h->devname);
  371		break;
  372	case LUN_FAILED:
  373		dev_warn(&h->pdev->dev,
  374			"%s: LUN failure detected\n", h->devname);
  375		break;
  376	case REPORT_LUNS_CHANGED:
  377		dev_warn(&h->pdev->dev,
  378			"%s: report LUN data changed\n", h->devname);
  379	/*
  380	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
  381	 * target (array) devices.
  382	 */
  383		break;
  384	case POWER_OR_RESET:
  385		dev_warn(&h->pdev->dev,
  386			"%s: a power on or device reset detected\n",
  387			h->devname);
  388		break;
  389	case UNIT_ATTENTION_CLEARED:
  390		dev_warn(&h->pdev->dev,
  391			"%s: unit attention cleared by another initiator\n",
  392			h->devname);
  393		break;
  394	default:
  395		dev_warn(&h->pdev->dev,
  396			"%s: unknown unit attention detected\n",
  397			h->devname);
  398		break;
  399	}
  400	return 1;
  401}
  402
  403static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
  404{
  405	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
  406		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
  407		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
  408		return 0;
  409	dev_warn(&h->pdev->dev, HPSA "device busy");
  410	return 1;
  411}
  412
  413static u32 lockup_detected(struct ctlr_info *h);
  414static ssize_t host_show_lockup_detected(struct device *dev,
  415		struct device_attribute *attr, char *buf)
  416{
  417	int ld;
  418	struct ctlr_info *h;
  419	struct Scsi_Host *shost = class_to_shost(dev);
  420
  421	h = shost_to_hba(shost);
  422	ld = lockup_detected(h);
  423
  424	return sprintf(buf, "ld=%d\n", ld);
  425}
  426
  427static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
  428					 struct device_attribute *attr,
  429					 const char *buf, size_t count)
  430{
  431	int status, len;
  432	struct ctlr_info *h;
  433	struct Scsi_Host *shost = class_to_shost(dev);
  434	char tmpbuf[10];
  435
  436	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
  437		return -EACCES;
  438	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
  439	strncpy(tmpbuf, buf, len);
  440	tmpbuf[len] = '\0';
  441	if (sscanf(tmpbuf, "%d", &status) != 1)
  442		return -EINVAL;
  443	h = shost_to_hba(shost);
  444	h->acciopath_status = !!status;
  445	dev_warn(&h->pdev->dev,
  446		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
  447		h->acciopath_status ? "enabled" : "disabled");
  448	return count;
  449}
  450
  451static ssize_t host_store_raid_offload_debug(struct device *dev,
  452					 struct device_attribute *attr,
  453					 const char *buf, size_t count)
  454{
  455	int debug_level, len;
  456	struct ctlr_info *h;
  457	struct Scsi_Host *shost = class_to_shost(dev);
  458	char tmpbuf[10];
  459
  460	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
  461		return -EACCES;
  462	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
  463	strncpy(tmpbuf, buf, len);
  464	tmpbuf[len] = '\0';
  465	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
  466		return -EINVAL;
  467	if (debug_level < 0)
  468		debug_level = 0;
  469	h = shost_to_hba(shost);
  470	h->raid_offload_debug = debug_level;
  471	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
  472		h->raid_offload_debug);
  473	return count;
  474}
  475
  476static ssize_t host_store_rescan(struct device *dev,
  477				 struct device_attribute *attr,
  478				 const char *buf, size_t count)
  479{
  480	struct ctlr_info *h;
  481	struct Scsi_Host *shost = class_to_shost(dev);
  482	h = shost_to_hba(shost);
  483	hpsa_scan_start(h->scsi_host);
  484	return count;
  485}
  486
  487static ssize_t host_show_firmware_revision(struct device *dev,
  488	     struct device_attribute *attr, char *buf)
  489{
  490	struct ctlr_info *h;
  491	struct Scsi_Host *shost = class_to_shost(dev);
  492	unsigned char *fwrev;
  493
  494	h = shost_to_hba(shost);
  495	if (!h->hba_inquiry_data)
  496		return 0;
  497	fwrev = &h->hba_inquiry_data[32];
  498	return snprintf(buf, 20, "%c%c%c%c\n",
  499		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
  500}
  501
  502static ssize_t host_show_commands_outstanding(struct device *dev,
  503	     struct device_attribute *attr, char *buf)
  504{
  505	struct Scsi_Host *shost = class_to_shost(dev);
  506	struct ctlr_info *h = shost_to_hba(shost);
  507
  508	return snprintf(buf, 20, "%d\n",
  509			atomic_read(&h->commands_outstanding));
  510}
  511
  512static ssize_t host_show_transport_mode(struct device *dev,
  513	struct device_attribute *attr, char *buf)
  514{
  515	struct ctlr_info *h;
  516	struct Scsi_Host *shost = class_to_shost(dev);
  517
  518	h = shost_to_hba(shost);
  519	return snprintf(buf, 20, "%s\n",
  520		h->transMethod & CFGTBL_Trans_Performant ?
  521			"performant" : "simple");
  522}
  523
  524static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
  525	struct device_attribute *attr, char *buf)
  526{
  527	struct ctlr_info *h;
  528	struct Scsi_Host *shost = class_to_shost(dev);
  529
  530	h = shost_to_hba(shost);
  531	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
  532		(h->acciopath_status == 1) ?  "enabled" : "disabled");
  533}
  534
  535/* List of controllers which cannot be hard reset on kexec with reset_devices */
  536static u32 unresettable_controller[] = {
  537	0x324a103C, /* Smart Array P712m */
  538	0x324b103C, /* Smart Array P711m */
  539	0x3223103C, /* Smart Array P800 */
  540	0x3234103C, /* Smart Array P400 */
  541	0x3235103C, /* Smart Array P400i */
  542	0x3211103C, /* Smart Array E200i */
  543	0x3212103C, /* Smart Array E200 */
  544	0x3213103C, /* Smart Array E200i */
  545	0x3214103C, /* Smart Array E200i */
  546	0x3215103C, /* Smart Array E200i */
  547	0x3237103C, /* Smart Array E500 */
  548	0x323D103C, /* Smart Array P700m */
  549	0x40800E11, /* Smart Array 5i */
  550	0x409C0E11, /* Smart Array 6400 */
  551	0x409D0E11, /* Smart Array 6400 EM */
  552	0x40700E11, /* Smart Array 5300 */
  553	0x40820E11, /* Smart Array 532 */
  554	0x40830E11, /* Smart Array 5312 */
  555	0x409A0E11, /* Smart Array 641 */
  556	0x409B0E11, /* Smart Array 642 */
  557	0x40910E11, /* Smart Array 6i */
  558};
  559
  560/* List of controllers which cannot even be soft reset */
  561static u32 soft_unresettable_controller[] = {
  562	0x40800E11, /* Smart Array 5i */
  563	0x40700E11, /* Smart Array 5300 */
  564	0x40820E11, /* Smart Array 532 */
  565	0x40830E11, /* Smart Array 5312 */
  566	0x409A0E11, /* Smart Array 641 */
  567	0x409B0E11, /* Smart Array 642 */
  568	0x40910E11, /* Smart Array 6i */
  569	/* Exclude 640x boards.  These are two pci devices in one slot
  570	 * which share a battery backed cache module.  One controls the
  571	 * cache, the other accesses the cache through the one that controls
  572	 * it.  If we reset the one controlling the cache, the other will
  573	 * likely not be happy.  Just forbid resetting this conjoined mess.
  574	 * The 640x isn't really supported by hpsa anyway.
  575	 */
  576	0x409C0E11, /* Smart Array 6400 */
  577	0x409D0E11, /* Smart Array 6400 EM */
  578};
  579
  580static u32 needs_abort_tags_swizzled[] = {
  581	0x323D103C, /* Smart Array P700m */
  582	0x324a103C, /* Smart Array P712m */
  583	0x324b103C, /* SmartArray P711m */
  584};
  585
  586static int board_id_in_array(u32 a[], int nelems, u32 board_id)
  587{
  588	int i;
  589
  590	for (i = 0; i < nelems; i++)
  591		if (a[i] == board_id)
  592			return 1;
  593	return 0;
  594}
  595
  596static int ctlr_is_hard_resettable(u32 board_id)
  597{
  598	return !board_id_in_array(unresettable_controller,
  599			ARRAY_SIZE(unresettable_controller), board_id);
  600}
  601
  602static int ctlr_is_soft_resettable(u32 board_id)
  603{
  604	return !board_id_in_array(soft_unresettable_controller,
  605			ARRAY_SIZE(soft_unresettable_controller), board_id);
  606}
  607
  608static int ctlr_is_resettable(u32 board_id)
  609{
  610	return ctlr_is_hard_resettable(board_id) ||
  611		ctlr_is_soft_resettable(board_id);
  612}
  613
  614static int ctlr_needs_abort_tags_swizzled(u32 board_id)
  615{
  616	return board_id_in_array(needs_abort_tags_swizzled,
  617			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
  618}
  619
  620static ssize_t host_show_resettable(struct device *dev,
  621	struct device_attribute *attr, char *buf)
  622{
  623	struct ctlr_info *h;
  624	struct Scsi_Host *shost = class_to_shost(dev);
  625
  626	h = shost_to_hba(shost);
  627	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
  628}
  629
  630static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
  631{
  632	return (scsi3addr[3] & 0xC0) == 0x40;
  633}
  634
  635static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
  636	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
  637};
  638#define HPSA_RAID_0	0
  639#define HPSA_RAID_4	1
  640#define HPSA_RAID_1	2	/* also used for RAID 10 */
  641#define HPSA_RAID_5	3	/* also used for RAID 50 */
  642#define HPSA_RAID_51	4
  643#define HPSA_RAID_6	5	/* also used for RAID 60 */
  644#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
  645#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
  646#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
  647
  648static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
  649{
  650	return !device->physical_device;
  651}
  652
  653static ssize_t raid_level_show(struct device *dev,
  654	     struct device_attribute *attr, char *buf)
  655{
  656	ssize_t l = 0;
  657	unsigned char rlevel;
  658	struct ctlr_info *h;
  659	struct scsi_device *sdev;
  660	struct hpsa_scsi_dev_t *hdev;
  661	unsigned long flags;
  662
  663	sdev = to_scsi_device(dev);
  664	h = sdev_to_hba(sdev);
  665	spin_lock_irqsave(&h->lock, flags);
  666	hdev = sdev->hostdata;
  667	if (!hdev) {
  668		spin_unlock_irqrestore(&h->lock, flags);
  669		return -ENODEV;
  670	}
  671
  672	/* Is this even a logical drive? */
  673	if (!is_logical_device(hdev)) {
  674		spin_unlock_irqrestore(&h->lock, flags);
  675		l = snprintf(buf, PAGE_SIZE, "N/A\n");
  676		return l;
  677	}
  678
  679	rlevel = hdev->raid_level;
  680	spin_unlock_irqrestore(&h->lock, flags);
  681	if (rlevel > RAID_UNKNOWN)
  682		rlevel = RAID_UNKNOWN;
  683	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
  684	return l;
  685}
  686
  687static ssize_t lunid_show(struct device *dev,
  688	     struct device_attribute *attr, char *buf)
  689{
  690	struct ctlr_info *h;
  691	struct scsi_device *sdev;
  692	struct hpsa_scsi_dev_t *hdev;
  693	unsigned long flags;
  694	unsigned char lunid[8];
  695
  696	sdev = to_scsi_device(dev);
  697	h = sdev_to_hba(sdev);
  698	spin_lock_irqsave(&h->lock, flags);
  699	hdev = sdev->hostdata;
  700	if (!hdev) {
  701		spin_unlock_irqrestore(&h->lock, flags);
  702		return -ENODEV;
  703	}
  704	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
  705	spin_unlock_irqrestore(&h->lock, flags);
  706	return snprintf(buf, 20, "0x%8phN\n", lunid);
 
 
  707}
  708
  709static ssize_t unique_id_show(struct device *dev,
  710	     struct device_attribute *attr, char *buf)
  711{
  712	struct ctlr_info *h;
  713	struct scsi_device *sdev;
  714	struct hpsa_scsi_dev_t *hdev;
  715	unsigned long flags;
  716	unsigned char sn[16];
  717
  718	sdev = to_scsi_device(dev);
  719	h = sdev_to_hba(sdev);
  720	spin_lock_irqsave(&h->lock, flags);
  721	hdev = sdev->hostdata;
  722	if (!hdev) {
  723		spin_unlock_irqrestore(&h->lock, flags);
  724		return -ENODEV;
  725	}
  726	memcpy(sn, hdev->device_id, sizeof(sn));
  727	spin_unlock_irqrestore(&h->lock, flags);
  728	return snprintf(buf, 16 * 2 + 2,
  729			"%02X%02X%02X%02X%02X%02X%02X%02X"
  730			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
  731			sn[0], sn[1], sn[2], sn[3],
  732			sn[4], sn[5], sn[6], sn[7],
  733			sn[8], sn[9], sn[10], sn[11],
  734			sn[12], sn[13], sn[14], sn[15]);
  735}
  736
  737static ssize_t sas_address_show(struct device *dev,
  738	      struct device_attribute *attr, char *buf)
  739{
  740	struct ctlr_info *h;
  741	struct scsi_device *sdev;
  742	struct hpsa_scsi_dev_t *hdev;
  743	unsigned long flags;
  744	u64 sas_address;
  745
  746	sdev = to_scsi_device(dev);
  747	h = sdev_to_hba(sdev);
  748	spin_lock_irqsave(&h->lock, flags);
  749	hdev = sdev->hostdata;
  750	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
  751		spin_unlock_irqrestore(&h->lock, flags);
  752		return -ENODEV;
  753	}
  754	sas_address = hdev->sas_address;
  755	spin_unlock_irqrestore(&h->lock, flags);
  756
  757	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
  758}
  759
  760static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
  761	     struct device_attribute *attr, char *buf)
  762{
  763	struct ctlr_info *h;
  764	struct scsi_device *sdev;
  765	struct hpsa_scsi_dev_t *hdev;
  766	unsigned long flags;
  767	int offload_enabled;
  768
  769	sdev = to_scsi_device(dev);
  770	h = sdev_to_hba(sdev);
  771	spin_lock_irqsave(&h->lock, flags);
  772	hdev = sdev->hostdata;
  773	if (!hdev) {
  774		spin_unlock_irqrestore(&h->lock, flags);
  775		return -ENODEV;
  776	}
  777	offload_enabled = hdev->offload_enabled;
  778	spin_unlock_irqrestore(&h->lock, flags);
  779	return snprintf(buf, 20, "%d\n", offload_enabled);
  780}
  781
  782#define MAX_PATHS 8
  783static ssize_t path_info_show(struct device *dev,
  784	     struct device_attribute *attr, char *buf)
  785{
  786	struct ctlr_info *h;
  787	struct scsi_device *sdev;
  788	struct hpsa_scsi_dev_t *hdev;
  789	unsigned long flags;
  790	int i;
  791	int output_len = 0;
  792	u8 box;
  793	u8 bay;
  794	u8 path_map_index = 0;
  795	char *active;
  796	unsigned char phys_connector[2];
  797
  798	sdev = to_scsi_device(dev);
  799	h = sdev_to_hba(sdev);
  800	spin_lock_irqsave(&h->devlock, flags);
  801	hdev = sdev->hostdata;
  802	if (!hdev) {
  803		spin_unlock_irqrestore(&h->devlock, flags);
  804		return -ENODEV;
  805	}
  806
  807	bay = hdev->bay;
  808	for (i = 0; i < MAX_PATHS; i++) {
  809		path_map_index = 1<<i;
  810		if (i == hdev->active_path_index)
  811			active = "Active";
  812		else if (hdev->path_map & path_map_index)
  813			active = "Inactive";
  814		else
  815			continue;
  816
  817		output_len += scnprintf(buf + output_len,
  818				PAGE_SIZE - output_len,
  819				"[%d:%d:%d:%d] %20.20s ",
  820				h->scsi_host->host_no,
  821				hdev->bus, hdev->target, hdev->lun,
  822				scsi_device_type(hdev->devtype));
  823
  824		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
  825			output_len += scnprintf(buf + output_len,
  826						PAGE_SIZE - output_len,
  827						"%s\n", active);
  828			continue;
  829		}
  830
  831		box = hdev->box[i];
  832		memcpy(&phys_connector, &hdev->phys_connector[i],
  833			sizeof(phys_connector));
  834		if (phys_connector[0] < '0')
  835			phys_connector[0] = '0';
  836		if (phys_connector[1] < '0')
  837			phys_connector[1] = '0';
  838		output_len += scnprintf(buf + output_len,
  839				PAGE_SIZE - output_len,
  840				"PORT: %.2s ",
  841				phys_connector);
  842		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
  843			hdev->expose_device) {
  844			if (box == 0 || box == 0xFF) {
  845				output_len += scnprintf(buf + output_len,
  846					PAGE_SIZE - output_len,
  847					"BAY: %hhu %s\n",
  848					bay, active);
  849			} else {
  850				output_len += scnprintf(buf + output_len,
  851					PAGE_SIZE - output_len,
  852					"BOX: %hhu BAY: %hhu %s\n",
  853					box, bay, active);
  854			}
  855		} else if (box != 0 && box != 0xFF) {
  856			output_len += scnprintf(buf + output_len,
  857				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
  858				box, active);
  859		} else
  860			output_len += scnprintf(buf + output_len,
  861				PAGE_SIZE - output_len, "%s\n", active);
  862	}
  863
  864	spin_unlock_irqrestore(&h->devlock, flags);
  865	return output_len;
  866}
  867
  868static ssize_t host_show_ctlr_num(struct device *dev,
  869	struct device_attribute *attr, char *buf)
  870{
  871	struct ctlr_info *h;
  872	struct Scsi_Host *shost = class_to_shost(dev);
  873
  874	h = shost_to_hba(shost);
  875	return snprintf(buf, 20, "%d\n", h->ctlr);
  876}
  877
  878static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
  879static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
  880static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
  881static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
  882static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
  883static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
  884			host_show_hp_ssd_smart_path_enabled, NULL);
  885static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
  886static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
  887		host_show_hp_ssd_smart_path_status,
  888		host_store_hp_ssd_smart_path_status);
  889static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
  890			host_store_raid_offload_debug);
  891static DEVICE_ATTR(firmware_revision, S_IRUGO,
  892	host_show_firmware_revision, NULL);
  893static DEVICE_ATTR(commands_outstanding, S_IRUGO,
  894	host_show_commands_outstanding, NULL);
  895static DEVICE_ATTR(transport_mode, S_IRUGO,
  896	host_show_transport_mode, NULL);
  897static DEVICE_ATTR(resettable, S_IRUGO,
  898	host_show_resettable, NULL);
  899static DEVICE_ATTR(lockup_detected, S_IRUGO,
  900	host_show_lockup_detected, NULL);
  901static DEVICE_ATTR(ctlr_num, S_IRUGO,
  902	host_show_ctlr_num, NULL);
  903
  904static struct device_attribute *hpsa_sdev_attrs[] = {
  905	&dev_attr_raid_level,
  906	&dev_attr_lunid,
  907	&dev_attr_unique_id,
  908	&dev_attr_hp_ssd_smart_path_enabled,
  909	&dev_attr_path_info,
  910	&dev_attr_sas_address,
  911	NULL,
  912};
  913
  914static struct device_attribute *hpsa_shost_attrs[] = {
  915	&dev_attr_rescan,
  916	&dev_attr_firmware_revision,
  917	&dev_attr_commands_outstanding,
  918	&dev_attr_transport_mode,
  919	&dev_attr_resettable,
  920	&dev_attr_hp_ssd_smart_path_status,
  921	&dev_attr_raid_offload_debug,
  922	&dev_attr_lockup_detected,
  923	&dev_attr_ctlr_num,
  924	NULL,
  925};
  926
  927#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
  928		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
  929
  930static struct scsi_host_template hpsa_driver_template = {
  931	.module			= THIS_MODULE,
  932	.name			= HPSA,
  933	.proc_name		= HPSA,
  934	.queuecommand		= hpsa_scsi_queue_command,
  935	.scan_start		= hpsa_scan_start,
  936	.scan_finished		= hpsa_scan_finished,
  937	.change_queue_depth	= hpsa_change_queue_depth,
  938	.this_id		= -1,
  939	.use_clustering		= ENABLE_CLUSTERING,
  940	.eh_abort_handler	= hpsa_eh_abort_handler,
  941	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
  942	.ioctl			= hpsa_ioctl,
  943	.slave_alloc		= hpsa_slave_alloc,
  944	.slave_configure	= hpsa_slave_configure,
  945	.slave_destroy		= hpsa_slave_destroy,
  946#ifdef CONFIG_COMPAT
  947	.compat_ioctl		= hpsa_compat_ioctl,
  948#endif
  949	.sdev_attrs = hpsa_sdev_attrs,
  950	.shost_attrs = hpsa_shost_attrs,
  951	.max_sectors = 8192,
  952	.no_write_same = 1,
  953};
  954
 
 
 
 
 
 
 
  955static inline u32 next_command(struct ctlr_info *h, u8 q)
  956{
  957	u32 a;
  958	struct reply_queue_buffer *rq = &h->reply_queue[q];
 
  959
  960	if (h->transMethod & CFGTBL_Trans_io_accel1)
  961		return h->access.command_completed(h, q);
  962
  963	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
  964		return h->access.command_completed(h, q);
  965
  966	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
  967		a = rq->head[rq->current_entry];
  968		rq->current_entry++;
  969		atomic_dec(&h->commands_outstanding);
 
 
  970	} else {
  971		a = FIFO_EMPTY;
  972	}
  973	/* Check for wraparound */
  974	if (rq->current_entry == h->max_commands) {
  975		rq->current_entry = 0;
  976		rq->wraparound ^= 1;
  977	}
  978	return a;
  979}
  980
  981/*
  982 * There are some special bits in the bus address of the
  983 * command that we have to set for the controller to know
  984 * how to process the command:
  985 *
  986 * Normal performant mode:
  987 * bit 0: 1 means performant mode, 0 means simple mode.
  988 * bits 1-3 = block fetch table entry
  989 * bits 4-6 = command type (== 0)
  990 *
  991 * ioaccel1 mode:
  992 * bit 0 = "performant mode" bit.
  993 * bits 1-3 = block fetch table entry
  994 * bits 4-6 = command type (== 110)
  995 * (command type is needed because ioaccel1 mode
  996 * commands are submitted through the same register as normal
  997 * mode commands, so this is how the controller knows whether
  998 * the command is normal mode or ioaccel1 mode.)
  999 *
 1000 * ioaccel2 mode:
 1001 * bit 0 = "performant mode" bit.
 1002 * bits 1-4 = block fetch table entry (note extra bit)
 1003 * bits 4-6 = not needed, because ioaccel2 mode has
 1004 * a separate special register for submitting commands.
 1005 */
 1006
 1007/*
 1008 * set_performant_mode: Modify the tag for cciss performant
 1009 * set bit 0 for pull model, bits 3-1 for block fetch
 1010 * register number
 1011 */
 1012#define DEFAULT_REPLY_QUEUE (-1)
 1013static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
 1014					int reply_queue)
 1015{
 1016	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
 1017		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
 1018		if (unlikely(!h->msix_vectors))
 1019			return;
 1020		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
 1021			c->Header.ReplyQueue =
 1022				raw_smp_processor_id() % h->nreply_queues;
 1023		else
 1024			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
 1025	}
 1026}
 1027
 1028static void set_ioaccel1_performant_mode(struct ctlr_info *h,
 1029						struct CommandList *c,
 1030						int reply_queue)
 1031{
 1032	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
 1033
 1034	/*
 1035	 * Tell the controller to post the reply to the queue for this
 1036	 * processor.  This seems to give the best I/O throughput.
 1037	 */
 1038	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
 1039		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
 1040	else
 1041		cp->ReplyQueue = reply_queue % h->nreply_queues;
 1042	/*
 1043	 * Set the bits in the address sent down to include:
 1044	 *  - performant mode bit (bit 0)
 1045	 *  - pull count (bits 1-3)
 1046	 *  - command type (bits 4-6)
 1047	 */
 1048	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
 1049					IOACCEL1_BUSADDR_CMDTYPE;
 1050}
 1051
 1052static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
 1053						struct CommandList *c,
 1054						int reply_queue)
 1055{
 1056	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
 1057		&h->ioaccel2_cmd_pool[c->cmdindex];
 1058
 1059	/* Tell the controller to post the reply to the queue for this
 1060	 * processor.  This seems to give the best I/O throughput.
 1061	 */
 1062	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
 1063		cp->reply_queue = smp_processor_id() % h->nreply_queues;
 1064	else
 1065		cp->reply_queue = reply_queue % h->nreply_queues;
 1066	/* Set the bits in the address sent down to include:
 1067	 *  - performant mode bit not used in ioaccel mode 2
 1068	 *  - pull count (bits 0-3)
 1069	 *  - command type isn't needed for ioaccel2
 1070	 */
 1071	c->busaddr |= h->ioaccel2_blockFetchTable[0];
 1072}
 1073
 1074static void set_ioaccel2_performant_mode(struct ctlr_info *h,
 1075						struct CommandList *c,
 1076						int reply_queue)
 1077{
 1078	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
 1079
 1080	/*
 1081	 * Tell the controller to post the reply to the queue for this
 1082	 * processor.  This seems to give the best I/O throughput.
 1083	 */
 1084	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
 1085		cp->reply_queue = smp_processor_id() % h->nreply_queues;
 1086	else
 1087		cp->reply_queue = reply_queue % h->nreply_queues;
 1088	/*
 1089	 * Set the bits in the address sent down to include:
 1090	 *  - performant mode bit not used in ioaccel mode 2
 1091	 *  - pull count (bits 0-3)
 1092	 *  - command type isn't needed for ioaccel2
 1093	 */
 1094	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
 1095}
 1096
 1097static int is_firmware_flash_cmd(u8 *cdb)
 1098{
 1099	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
 1100}
 1101
 1102/*
 1103 * During firmware flash, the heartbeat register may not update as frequently
 1104 * as it should.  So we dial down lockup detection during firmware flash. and
 1105 * dial it back up when firmware flash completes.
 1106 */
 1107#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
 1108#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
 1109static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
 1110		struct CommandList *c)
 1111{
 1112	if (!is_firmware_flash_cmd(c->Request.CDB))
 1113		return;
 1114	atomic_inc(&h->firmware_flash_in_progress);
 1115	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
 1116}
 1117
 1118static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
 1119		struct CommandList *c)
 1120{
 1121	if (is_firmware_flash_cmd(c->Request.CDB) &&
 1122		atomic_dec_and_test(&h->firmware_flash_in_progress))
 1123		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
 1124}
 1125
 1126static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
 1127	struct CommandList *c, int reply_queue)
 1128{
 1129	dial_down_lockup_detection_during_fw_flash(h, c);
 1130	atomic_inc(&h->commands_outstanding);
 1131	switch (c->cmd_type) {
 1132	case CMD_IOACCEL1:
 1133		set_ioaccel1_performant_mode(h, c, reply_queue);
 1134		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
 1135		break;
 1136	case CMD_IOACCEL2:
 1137		set_ioaccel2_performant_mode(h, c, reply_queue);
 1138		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
 1139		break;
 1140	case IOACCEL2_TMF:
 1141		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
 1142		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
 1143		break;
 1144	default:
 1145		set_performant_mode(h, c, reply_queue);
 1146		h->access.submit_command(h, c);
 1147	}
 
 
 
 
 
 
 1148}
 1149
 1150static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
 1151{
 1152	if (unlikely(hpsa_is_pending_event(c)))
 1153		return finish_cmd(c);
 1154
 1155	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
 1156}
 1157
 1158static inline int is_hba_lunid(unsigned char scsi3addr[])
 1159{
 1160	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
 1161}
 1162
 1163static inline int is_scsi_rev_5(struct ctlr_info *h)
 1164{
 1165	if (!h->hba_inquiry_data)
 1166		return 0;
 1167	if ((h->hba_inquiry_data[2] & 0x07) == 5)
 1168		return 1;
 1169	return 0;
 1170}
 1171
 1172static int hpsa_find_target_lun(struct ctlr_info *h,
 1173	unsigned char scsi3addr[], int bus, int *target, int *lun)
 1174{
 1175	/* finds an unused bus, target, lun for a new physical device
 1176	 * assumes h->devlock is held
 1177	 */
 1178	int i, found = 0;
 1179	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
 1180
 1181	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
 1182
 1183	for (i = 0; i < h->ndevices; i++) {
 1184		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
 1185			__set_bit(h->dev[i]->target, lun_taken);
 1186	}
 1187
 1188	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
 1189	if (i < HPSA_MAX_DEVICES) {
 1190		/* *bus = 1; */
 1191		*target = i;
 1192		*lun = 0;
 1193		found = 1;
 1194	}
 1195	return !found;
 1196}
 1197
 1198static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
 1199	struct hpsa_scsi_dev_t *dev, char *description)
 1200{
 1201#define LABEL_SIZE 25
 1202	char label[LABEL_SIZE];
 1203
 1204	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
 1205		return;
 1206
 1207	switch (dev->devtype) {
 1208	case TYPE_RAID:
 1209		snprintf(label, LABEL_SIZE, "controller");
 1210		break;
 1211	case TYPE_ENCLOSURE:
 1212		snprintf(label, LABEL_SIZE, "enclosure");
 1213		break;
 1214	case TYPE_DISK:
 1215	case TYPE_ZBC:
 1216		if (dev->external)
 1217			snprintf(label, LABEL_SIZE, "external");
 1218		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
 1219			snprintf(label, LABEL_SIZE, "%s",
 1220				raid_label[PHYSICAL_DRIVE]);
 1221		else
 1222			snprintf(label, LABEL_SIZE, "RAID-%s",
 1223				dev->raid_level > RAID_UNKNOWN ? "?" :
 1224				raid_label[dev->raid_level]);
 1225		break;
 1226	case TYPE_ROM:
 1227		snprintf(label, LABEL_SIZE, "rom");
 1228		break;
 1229	case TYPE_TAPE:
 1230		snprintf(label, LABEL_SIZE, "tape");
 1231		break;
 1232	case TYPE_MEDIUM_CHANGER:
 1233		snprintf(label, LABEL_SIZE, "changer");
 1234		break;
 1235	default:
 1236		snprintf(label, LABEL_SIZE, "UNKNOWN");
 1237		break;
 1238	}
 1239
 1240	dev_printk(level, &h->pdev->dev,
 1241			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
 1242			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
 1243			description,
 1244			scsi_device_type(dev->devtype),
 1245			dev->vendor,
 1246			dev->model,
 1247			label,
 1248			dev->offload_config ? '+' : '-',
 1249			dev->offload_enabled ? '+' : '-',
 1250			dev->expose_device);
 1251}
 1252
 1253/* Add an entry into h->dev[] array. */
 1254static int hpsa_scsi_add_entry(struct ctlr_info *h,
 1255		struct hpsa_scsi_dev_t *device,
 1256		struct hpsa_scsi_dev_t *added[], int *nadded)
 1257{
 1258	/* assumes h->devlock is held */
 1259	int n = h->ndevices;
 1260	int i;
 1261	unsigned char addr1[8], addr2[8];
 1262	struct hpsa_scsi_dev_t *sd;
 1263
 1264	if (n >= HPSA_MAX_DEVICES) {
 1265		dev_err(&h->pdev->dev, "too many devices, some will be "
 1266			"inaccessible.\n");
 1267		return -1;
 1268	}
 1269
 1270	/* physical devices do not have lun or target assigned until now. */
 1271	if (device->lun != -1)
 1272		/* Logical device, lun is already assigned. */
 1273		goto lun_assigned;
 1274
 1275	/* If this device a non-zero lun of a multi-lun device
 1276	 * byte 4 of the 8-byte LUN addr will contain the logical
 1277	 * unit no, zero otherwise.
 1278	 */
 1279	if (device->scsi3addr[4] == 0) {
 1280		/* This is not a non-zero lun of a multi-lun device */
 1281		if (hpsa_find_target_lun(h, device->scsi3addr,
 1282			device->bus, &device->target, &device->lun) != 0)
 1283			return -1;
 1284		goto lun_assigned;
 1285	}
 1286
 1287	/* This is a non-zero lun of a multi-lun device.
 1288	 * Search through our list and find the device which
 1289	 * has the same 8 byte LUN address, excepting byte 4 and 5.
 1290	 * Assign the same bus and target for this new LUN.
 1291	 * Use the logical unit number from the firmware.
 1292	 */
 1293	memcpy(addr1, device->scsi3addr, 8);
 1294	addr1[4] = 0;
 1295	addr1[5] = 0;
 1296	for (i = 0; i < n; i++) {
 1297		sd = h->dev[i];
 1298		memcpy(addr2, sd->scsi3addr, 8);
 1299		addr2[4] = 0;
 1300		addr2[5] = 0;
 1301		/* differ only in byte 4 and 5? */
 1302		if (memcmp(addr1, addr2, 8) == 0) {
 1303			device->bus = sd->bus;
 1304			device->target = sd->target;
 1305			device->lun = device->scsi3addr[4];
 1306			break;
 1307		}
 1308	}
 1309	if (device->lun == -1) {
 1310		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
 1311			" suspect firmware bug or unsupported hardware "
 1312			"configuration.\n");
 1313			return -1;
 1314	}
 1315
 1316lun_assigned:
 1317
 1318	h->dev[n] = device;
 1319	h->ndevices++;
 1320	added[*nadded] = device;
 1321	(*nadded)++;
 1322	hpsa_show_dev_msg(KERN_INFO, h, device,
 1323		device->expose_device ? "added" : "masked");
 1324	device->offload_to_be_enabled = device->offload_enabled;
 1325	device->offload_enabled = 0;
 
 
 
 
 
 1326	return 0;
 1327}
 1328
 1329/* Update an entry in h->dev[] array. */
 1330static void hpsa_scsi_update_entry(struct ctlr_info *h,
 1331	int entry, struct hpsa_scsi_dev_t *new_entry)
 1332{
 1333	int offload_enabled;
 1334	/* assumes h->devlock is held */
 1335	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 1336
 1337	/* Raid level changed. */
 1338	h->dev[entry]->raid_level = new_entry->raid_level;
 1339
 1340	/* Raid offload parameters changed.  Careful about the ordering. */
 1341	if (new_entry->offload_config && new_entry->offload_enabled) {
 1342		/*
 1343		 * if drive is newly offload_enabled, we want to copy the
 1344		 * raid map data first.  If previously offload_enabled and
 1345		 * offload_config were set, raid map data had better be
 1346		 * the same as it was before.  if raid map data is changed
 1347		 * then it had better be the case that
 1348		 * h->dev[entry]->offload_enabled is currently 0.
 1349		 */
 1350		h->dev[entry]->raid_map = new_entry->raid_map;
 1351		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
 1352	}
 1353	if (new_entry->hba_ioaccel_enabled) {
 1354		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
 1355		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
 1356	}
 1357	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
 1358	h->dev[entry]->offload_config = new_entry->offload_config;
 
 
 1359	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
 1360	h->dev[entry]->queue_depth = new_entry->queue_depth;
 1361
 1362	/*
 1363	 * We can turn off ioaccel offload now, but need to delay turning
 1364	 * it on until we can update h->dev[entry]->phys_disk[], but we
 1365	 * can't do that until all the devices are updated.
 1366	 */
 1367	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
 1368	if (!new_entry->offload_enabled)
 1369		h->dev[entry]->offload_enabled = 0;
 1370
 1371	offload_enabled = h->dev[entry]->offload_enabled;
 1372	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
 1373	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
 1374	h->dev[entry]->offload_enabled = offload_enabled;
 1375}
 1376
 1377/* Replace an entry from h->dev[] array. */
 1378static void hpsa_scsi_replace_entry(struct ctlr_info *h,
 1379	int entry, struct hpsa_scsi_dev_t *new_entry,
 1380	struct hpsa_scsi_dev_t *added[], int *nadded,
 1381	struct hpsa_scsi_dev_t *removed[], int *nremoved)
 1382{
 1383	/* assumes h->devlock is held */
 1384	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 1385	removed[*nremoved] = h->dev[entry];
 1386	(*nremoved)++;
 1387
 1388	/*
 1389	 * New physical devices won't have target/lun assigned yet
 1390	 * so we need to preserve the values in the slot we are replacing.
 1391	 */
 1392	if (new_entry->target == -1) {
 1393		new_entry->target = h->dev[entry]->target;
 1394		new_entry->lun = h->dev[entry]->lun;
 1395	}
 1396
 1397	h->dev[entry] = new_entry;
 1398	added[*nadded] = new_entry;
 1399	(*nadded)++;
 1400	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
 1401	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
 1402	new_entry->offload_enabled = 0;
 1403}
 1404
 1405/* Remove an entry from h->dev[] array. */
 1406static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
 1407	struct hpsa_scsi_dev_t *removed[], int *nremoved)
 1408{
 1409	/* assumes h->devlock is held */
 1410	int i;
 1411	struct hpsa_scsi_dev_t *sd;
 1412
 1413	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 1414
 1415	sd = h->dev[entry];
 1416	removed[*nremoved] = h->dev[entry];
 1417	(*nremoved)++;
 1418
 1419	for (i = entry; i < h->ndevices-1; i++)
 1420		h->dev[i] = h->dev[i+1];
 1421	h->ndevices--;
 1422	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
 
 
 1423}
 1424
 1425#define SCSI3ADDR_EQ(a, b) ( \
 1426	(a)[7] == (b)[7] && \
 1427	(a)[6] == (b)[6] && \
 1428	(a)[5] == (b)[5] && \
 1429	(a)[4] == (b)[4] && \
 1430	(a)[3] == (b)[3] && \
 1431	(a)[2] == (b)[2] && \
 1432	(a)[1] == (b)[1] && \
 1433	(a)[0] == (b)[0])
 1434
 1435static void fixup_botched_add(struct ctlr_info *h,
 1436	struct hpsa_scsi_dev_t *added)
 1437{
 1438	/* called when scsi_add_device fails in order to re-adjust
 1439	 * h->dev[] to match the mid layer's view.
 1440	 */
 1441	unsigned long flags;
 1442	int i, j;
 1443
 1444	spin_lock_irqsave(&h->lock, flags);
 1445	for (i = 0; i < h->ndevices; i++) {
 1446		if (h->dev[i] == added) {
 1447			for (j = i; j < h->ndevices-1; j++)
 1448				h->dev[j] = h->dev[j+1];
 1449			h->ndevices--;
 1450			break;
 1451		}
 1452	}
 1453	spin_unlock_irqrestore(&h->lock, flags);
 1454	kfree(added);
 1455}
 1456
 1457static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
 1458	struct hpsa_scsi_dev_t *dev2)
 1459{
 1460	/* we compare everything except lun and target as these
 1461	 * are not yet assigned.  Compare parts likely
 1462	 * to differ first
 1463	 */
 1464	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
 1465		sizeof(dev1->scsi3addr)) != 0)
 1466		return 0;
 1467	if (memcmp(dev1->device_id, dev2->device_id,
 1468		sizeof(dev1->device_id)) != 0)
 1469		return 0;
 1470	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
 1471		return 0;
 1472	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
 1473		return 0;
 1474	if (dev1->devtype != dev2->devtype)
 1475		return 0;
 1476	if (dev1->bus != dev2->bus)
 1477		return 0;
 1478	return 1;
 1479}
 1480
 1481static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
 1482	struct hpsa_scsi_dev_t *dev2)
 1483{
 1484	/* Device attributes that can change, but don't mean
 1485	 * that the device is a different device, nor that the OS
 1486	 * needs to be told anything about the change.
 1487	 */
 1488	if (dev1->raid_level != dev2->raid_level)
 1489		return 1;
 1490	if (dev1->offload_config != dev2->offload_config)
 1491		return 1;
 1492	if (dev1->offload_enabled != dev2->offload_enabled)
 1493		return 1;
 1494	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
 1495		if (dev1->queue_depth != dev2->queue_depth)
 1496			return 1;
 1497	return 0;
 1498}
 1499
 1500/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 1501 * and return needle location in *index.  If scsi3addr matches, but not
 1502 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
 1503 * location in *index.
 1504 * In the case of a minor device attribute change, such as RAID level, just
 1505 * return DEVICE_UPDATED, along with the updated device's location in index.
 1506 * If needle not found, return DEVICE_NOT_FOUND.
 1507 */
 1508static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
 1509	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
 1510	int *index)
 1511{
 1512	int i;
 1513#define DEVICE_NOT_FOUND 0
 1514#define DEVICE_CHANGED 1
 1515#define DEVICE_SAME 2
 1516#define DEVICE_UPDATED 3
 1517	if (needle == NULL)
 1518		return DEVICE_NOT_FOUND;
 1519
 1520	for (i = 0; i < haystack_size; i++) {
 1521		if (haystack[i] == NULL) /* previously removed. */
 1522			continue;
 1523		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
 1524			*index = i;
 1525			if (device_is_the_same(needle, haystack[i])) {
 1526				if (device_updated(needle, haystack[i]))
 1527					return DEVICE_UPDATED;
 1528				return DEVICE_SAME;
 1529			} else {
 1530				/* Keep offline devices offline */
 1531				if (needle->volume_offline)
 1532					return DEVICE_NOT_FOUND;
 1533				return DEVICE_CHANGED;
 1534			}
 1535		}
 1536	}
 1537	*index = -1;
 1538	return DEVICE_NOT_FOUND;
 1539}
 1540
 1541static void hpsa_monitor_offline_device(struct ctlr_info *h,
 1542					unsigned char scsi3addr[])
 1543{
 1544	struct offline_device_entry *device;
 1545	unsigned long flags;
 1546
 1547	/* Check to see if device is already on the list */
 1548	spin_lock_irqsave(&h->offline_device_lock, flags);
 1549	list_for_each_entry(device, &h->offline_device_list, offline_list) {
 1550		if (memcmp(device->scsi3addr, scsi3addr,
 1551			sizeof(device->scsi3addr)) == 0) {
 1552			spin_unlock_irqrestore(&h->offline_device_lock, flags);
 1553			return;
 1554		}
 1555	}
 1556	spin_unlock_irqrestore(&h->offline_device_lock, flags);
 1557
 1558	/* Device is not on the list, add it. */
 1559	device = kmalloc(sizeof(*device), GFP_KERNEL);
 1560	if (!device)
 
 1561		return;
 1562
 1563	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
 1564	spin_lock_irqsave(&h->offline_device_lock, flags);
 1565	list_add_tail(&device->offline_list, &h->offline_device_list);
 1566	spin_unlock_irqrestore(&h->offline_device_lock, flags);
 1567}
 1568
 1569/* Print a message explaining various offline volume states */
 1570static void hpsa_show_volume_status(struct ctlr_info *h,
 1571	struct hpsa_scsi_dev_t *sd)
 1572{
 1573	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
 1574		dev_info(&h->pdev->dev,
 1575			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
 1576			h->scsi_host->host_no,
 1577			sd->bus, sd->target, sd->lun);
 1578	switch (sd->volume_offline) {
 1579	case HPSA_LV_OK:
 1580		break;
 1581	case HPSA_LV_UNDERGOING_ERASE:
 1582		dev_info(&h->pdev->dev,
 1583			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
 1584			h->scsi_host->host_no,
 1585			sd->bus, sd->target, sd->lun);
 1586		break;
 1587	case HPSA_LV_NOT_AVAILABLE:
 1588		dev_info(&h->pdev->dev,
 1589			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
 1590			h->scsi_host->host_no,
 1591			sd->bus, sd->target, sd->lun);
 1592		break;
 1593	case HPSA_LV_UNDERGOING_RPI:
 1594		dev_info(&h->pdev->dev,
 1595			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
 1596			h->scsi_host->host_no,
 1597			sd->bus, sd->target, sd->lun);
 1598		break;
 1599	case HPSA_LV_PENDING_RPI:
 1600		dev_info(&h->pdev->dev,
 1601			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
 1602			h->scsi_host->host_no,
 1603			sd->bus, sd->target, sd->lun);
 1604		break;
 1605	case HPSA_LV_ENCRYPTED_NO_KEY:
 1606		dev_info(&h->pdev->dev,
 1607			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
 1608			h->scsi_host->host_no,
 1609			sd->bus, sd->target, sd->lun);
 1610		break;
 1611	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
 1612		dev_info(&h->pdev->dev,
 1613			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
 1614			h->scsi_host->host_no,
 1615			sd->bus, sd->target, sd->lun);
 1616		break;
 1617	case HPSA_LV_UNDERGOING_ENCRYPTION:
 1618		dev_info(&h->pdev->dev,
 1619			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
 1620			h->scsi_host->host_no,
 1621			sd->bus, sd->target, sd->lun);
 1622		break;
 1623	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
 1624		dev_info(&h->pdev->dev,
 1625			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
 1626			h->scsi_host->host_no,
 1627			sd->bus, sd->target, sd->lun);
 1628		break;
 1629	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
 1630		dev_info(&h->pdev->dev,
 1631			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
 1632			h->scsi_host->host_no,
 1633			sd->bus, sd->target, sd->lun);
 1634		break;
 1635	case HPSA_LV_PENDING_ENCRYPTION:
 1636		dev_info(&h->pdev->dev,
 1637			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
 1638			h->scsi_host->host_no,
 1639			sd->bus, sd->target, sd->lun);
 1640		break;
 1641	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
 1642		dev_info(&h->pdev->dev,
 1643			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
 1644			h->scsi_host->host_no,
 1645			sd->bus, sd->target, sd->lun);
 1646		break;
 1647	}
 1648}
 1649
 1650/*
 1651 * Figure the list of physical drive pointers for a logical drive with
 1652 * raid offload configured.
 1653 */
 1654static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
 1655				struct hpsa_scsi_dev_t *dev[], int ndevices,
 1656				struct hpsa_scsi_dev_t *logical_drive)
 1657{
 1658	struct raid_map_data *map = &logical_drive->raid_map;
 1659	struct raid_map_disk_data *dd = &map->data[0];
 1660	int i, j;
 1661	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
 1662				le16_to_cpu(map->metadata_disks_per_row);
 1663	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
 1664				le16_to_cpu(map->layout_map_count) *
 1665				total_disks_per_row;
 1666	int nphys_disk = le16_to_cpu(map->layout_map_count) *
 1667				total_disks_per_row;
 1668	int qdepth;
 1669
 1670	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
 1671		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
 1672
 1673	logical_drive->nphysical_disks = nraid_map_entries;
 1674
 1675	qdepth = 0;
 1676	for (i = 0; i < nraid_map_entries; i++) {
 1677		logical_drive->phys_disk[i] = NULL;
 1678		if (!logical_drive->offload_config)
 1679			continue;
 1680		for (j = 0; j < ndevices; j++) {
 1681			if (dev[j] == NULL)
 1682				continue;
 1683			if (dev[j]->devtype != TYPE_DISK &&
 1684			    dev[j]->devtype != TYPE_ZBC)
 1685				continue;
 1686			if (is_logical_device(dev[j]))
 1687				continue;
 1688			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
 1689				continue;
 1690
 1691			logical_drive->phys_disk[i] = dev[j];
 1692			if (i < nphys_disk)
 1693				qdepth = min(h->nr_cmds, qdepth +
 1694				    logical_drive->phys_disk[i]->queue_depth);
 1695			break;
 1696		}
 1697
 1698		/*
 1699		 * This can happen if a physical drive is removed and
 1700		 * the logical drive is degraded.  In that case, the RAID
 1701		 * map data will refer to a physical disk which isn't actually
 1702		 * present.  And in that case offload_enabled should already
 1703		 * be 0, but we'll turn it off here just in case
 1704		 */
 1705		if (!logical_drive->phys_disk[i]) {
 1706			logical_drive->offload_enabled = 0;
 1707			logical_drive->offload_to_be_enabled = 0;
 1708			logical_drive->queue_depth = 8;
 1709		}
 1710	}
 1711	if (nraid_map_entries)
 1712		/*
 1713		 * This is correct for reads, too high for full stripe writes,
 1714		 * way too high for partial stripe writes
 1715		 */
 1716		logical_drive->queue_depth = qdepth;
 1717	else
 1718		logical_drive->queue_depth = h->nr_cmds;
 1719}
 1720
 1721static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
 1722				struct hpsa_scsi_dev_t *dev[], int ndevices)
 1723{
 1724	int i;
 1725
 1726	for (i = 0; i < ndevices; i++) {
 1727		if (dev[i] == NULL)
 1728			continue;
 1729		if (dev[i]->devtype != TYPE_DISK &&
 1730		    dev[i]->devtype != TYPE_ZBC)
 1731			continue;
 1732		if (!is_logical_device(dev[i]))
 1733			continue;
 1734
 1735		/*
 1736		 * If offload is currently enabled, the RAID map and
 1737		 * phys_disk[] assignment *better* not be changing
 1738		 * and since it isn't changing, we do not need to
 1739		 * update it.
 1740		 */
 1741		if (dev[i]->offload_enabled)
 1742			continue;
 1743
 1744		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
 1745	}
 1746}
 1747
 1748static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
 1749{
 1750	int rc = 0;
 1751
 1752	if (!h->scsi_host)
 1753		return 1;
 1754
 1755	if (is_logical_device(device)) /* RAID */
 1756		rc = scsi_add_device(h->scsi_host, device->bus,
 1757					device->target, device->lun);
 1758	else /* HBA */
 1759		rc = hpsa_add_sas_device(h->sas_host, device);
 1760
 1761	return rc;
 1762}
 1763
 1764static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
 1765						struct hpsa_scsi_dev_t *dev)
 1766{
 1767	int i;
 1768	int count = 0;
 1769
 1770	for (i = 0; i < h->nr_cmds; i++) {
 1771		struct CommandList *c = h->cmd_pool + i;
 1772		int refcount = atomic_inc_return(&c->refcount);
 1773
 1774		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
 1775				dev->scsi3addr)) {
 1776			unsigned long flags;
 1777
 1778			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
 1779			if (!hpsa_is_cmd_idle(c))
 1780				++count;
 1781			spin_unlock_irqrestore(&h->lock, flags);
 1782		}
 1783
 1784		cmd_free(h, c);
 1785	}
 1786
 1787	return count;
 1788}
 1789
 1790static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
 1791						struct hpsa_scsi_dev_t *device)
 1792{
 1793	int cmds = 0;
 1794	int waits = 0;
 1795
 1796	while (1) {
 1797		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
 1798		if (cmds == 0)
 1799			break;
 1800		if (++waits > 20)
 1801			break;
 1802		dev_warn(&h->pdev->dev,
 1803			"%s: removing device with %d outstanding commands!\n",
 1804			__func__, cmds);
 1805		msleep(1000);
 1806	}
 1807}
 1808
 1809static void hpsa_remove_device(struct ctlr_info *h,
 1810			struct hpsa_scsi_dev_t *device)
 1811{
 1812	struct scsi_device *sdev = NULL;
 1813
 1814	if (!h->scsi_host)
 1815		return;
 1816
 1817	if (is_logical_device(device)) { /* RAID */
 1818		sdev = scsi_device_lookup(h->scsi_host, device->bus,
 1819						device->target, device->lun);
 1820		if (sdev) {
 1821			scsi_remove_device(sdev);
 1822			scsi_device_put(sdev);
 1823		} else {
 1824			/*
 1825			 * We don't expect to get here.  Future commands
 1826			 * to this device will get a selection timeout as
 1827			 * if the device were gone.
 1828			 */
 1829			hpsa_show_dev_msg(KERN_WARNING, h, device,
 1830					"didn't find device for removal.");
 1831		}
 1832	} else { /* HBA */
 1833
 1834		device->removed = 1;
 1835		hpsa_wait_for_outstanding_commands_for_dev(h, device);
 1836
 1837		hpsa_remove_sas_device(device);
 1838	}
 1839}
 1840
 1841static void adjust_hpsa_scsi_table(struct ctlr_info *h,
 1842	struct hpsa_scsi_dev_t *sd[], int nsds)
 1843{
 1844	/* sd contains scsi3 addresses and devtypes, and inquiry
 1845	 * data.  This function takes what's in sd to be the current
 1846	 * reality and updates h->dev[] to reflect that reality.
 1847	 */
 1848	int i, entry, device_change, changes = 0;
 1849	struct hpsa_scsi_dev_t *csd;
 1850	unsigned long flags;
 1851	struct hpsa_scsi_dev_t **added, **removed;
 1852	int nadded, nremoved;
 1853
 1854	/*
 1855	 * A reset can cause a device status to change
 1856	 * re-schedule the scan to see what happened.
 1857	 */
 1858	if (h->reset_in_progress) {
 1859		h->drv_req_rescan = 1;
 1860		return;
 1861	}
 1862
 1863	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
 1864	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
 1865
 1866	if (!added || !removed) {
 1867		dev_warn(&h->pdev->dev, "out of memory in "
 1868			"adjust_hpsa_scsi_table\n");
 1869		goto free_and_out;
 1870	}
 1871
 1872	spin_lock_irqsave(&h->devlock, flags);
 1873
 1874	/* find any devices in h->dev[] that are not in
 1875	 * sd[] and remove them from h->dev[], and for any
 1876	 * devices which have changed, remove the old device
 1877	 * info and add the new device info.
 1878	 * If minor device attributes change, just update
 1879	 * the existing device structure.
 1880	 */
 1881	i = 0;
 1882	nremoved = 0;
 1883	nadded = 0;
 1884	while (i < h->ndevices) {
 1885		csd = h->dev[i];
 1886		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
 1887		if (device_change == DEVICE_NOT_FOUND) {
 1888			changes++;
 1889			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
 
 1890			continue; /* remove ^^^, hence i not incremented */
 1891		} else if (device_change == DEVICE_CHANGED) {
 1892			changes++;
 1893			hpsa_scsi_replace_entry(h, i, sd[entry],
 1894				added, &nadded, removed, &nremoved);
 1895			/* Set it to NULL to prevent it from being freed
 1896			 * at the bottom of hpsa_update_scsi_devices()
 1897			 */
 1898			sd[entry] = NULL;
 1899		} else if (device_change == DEVICE_UPDATED) {
 1900			hpsa_scsi_update_entry(h, i, sd[entry]);
 1901		}
 1902		i++;
 1903	}
 1904
 1905	/* Now, make sure every device listed in sd[] is also
 1906	 * listed in h->dev[], adding them if they aren't found
 1907	 */
 1908
 1909	for (i = 0; i < nsds; i++) {
 1910		if (!sd[i]) /* if already added above. */
 1911			continue;
 1912
 1913		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
 1914		 * as the SCSI mid-layer does not handle such devices well.
 1915		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
 1916		 * at 160Hz, and prevents the system from coming up.
 1917		 */
 1918		if (sd[i]->volume_offline) {
 1919			hpsa_show_volume_status(h, sd[i]);
 1920			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
 
 
 1921			continue;
 1922		}
 1923
 1924		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
 1925					h->ndevices, &entry);
 1926		if (device_change == DEVICE_NOT_FOUND) {
 1927			changes++;
 1928			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
 
 1929				break;
 1930			sd[i] = NULL; /* prevent from being freed later. */
 1931		} else if (device_change == DEVICE_CHANGED) {
 1932			/* should never happen... */
 1933			changes++;
 1934			dev_warn(&h->pdev->dev,
 1935				"device unexpectedly changed.\n");
 1936			/* but if it does happen, we just ignore that device */
 1937		}
 1938	}
 1939	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
 1940
 1941	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
 1942	 * any logical drives that need it enabled.
 1943	 */
 1944	for (i = 0; i < h->ndevices; i++) {
 1945		if (h->dev[i] == NULL)
 1946			continue;
 1947		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
 1948	}
 1949
 1950	spin_unlock_irqrestore(&h->devlock, flags);
 1951
 1952	/* Monitor devices which are in one of several NOT READY states to be
 1953	 * brought online later. This must be done without holding h->devlock,
 1954	 * so don't touch h->dev[]
 1955	 */
 1956	for (i = 0; i < nsds; i++) {
 1957		if (!sd[i]) /* if already added above. */
 1958			continue;
 1959		if (sd[i]->volume_offline)
 1960			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
 1961	}
 1962
 1963	/* Don't notify scsi mid layer of any changes the first time through
 1964	 * (or if there are no changes) scsi_scan_host will do it later the
 1965	 * first time through.
 1966	 */
 1967	if (!changes)
 1968		goto free_and_out;
 1969
 
 1970	/* Notify scsi mid layer of any removed devices */
 1971	for (i = 0; i < nremoved; i++) {
 1972		if (removed[i] == NULL)
 1973			continue;
 1974		if (removed[i]->expose_device)
 1975			hpsa_remove_device(h, removed[i]);
 
 
 
 
 
 
 
 
 
 
 
 1976		kfree(removed[i]);
 1977		removed[i] = NULL;
 1978	}
 1979
 1980	/* Notify scsi mid layer of any added devices */
 1981	for (i = 0; i < nadded; i++) {
 1982		int rc = 0;
 1983
 1984		if (added[i] == NULL)
 1985			continue;
 1986		if (!(added[i]->expose_device))
 1987			continue;
 1988		rc = hpsa_add_device(h, added[i]);
 1989		if (!rc)
 1990			continue;
 1991		dev_warn(&h->pdev->dev,
 1992			"addition failed %d, device not added.", rc);
 1993		/* now we have to remove it from h->dev,
 1994		 * since it didn't get added to scsi mid layer
 1995		 */
 1996		fixup_botched_add(h, added[i]);
 1997		h->drv_req_rescan = 1;
 1998	}
 1999
 2000free_and_out:
 2001	kfree(added);
 2002	kfree(removed);
 2003}
 2004
 2005/*
 2006 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
 2007 * Assume's h->devlock is held.
 2008 */
 2009static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
 2010	int bus, int target, int lun)
 2011{
 2012	int i;
 2013	struct hpsa_scsi_dev_t *sd;
 2014
 2015	for (i = 0; i < h->ndevices; i++) {
 2016		sd = h->dev[i];
 2017		if (sd->bus == bus && sd->target == target && sd->lun == lun)
 2018			return sd;
 2019	}
 2020	return NULL;
 2021}
 2022
 
 2023static int hpsa_slave_alloc(struct scsi_device *sdev)
 2024{
 2025	struct hpsa_scsi_dev_t *sd = NULL;
 2026	unsigned long flags;
 2027	struct ctlr_info *h;
 2028
 2029	h = sdev_to_hba(sdev);
 2030	spin_lock_irqsave(&h->devlock, flags);
 2031	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
 2032		struct scsi_target *starget;
 2033		struct sas_rphy *rphy;
 2034
 2035		starget = scsi_target(sdev);
 2036		rphy = target_to_rphy(starget);
 2037		sd = hpsa_find_device_by_sas_rphy(h, rphy);
 2038		if (sd) {
 2039			sd->target = sdev_id(sdev);
 2040			sd->lun = sdev->lun;
 2041		}
 2042	}
 2043	if (!sd)
 2044		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
 2045					sdev_id(sdev), sdev->lun);
 2046
 2047	if (sd && sd->expose_device) {
 2048		atomic_set(&sd->ioaccel_cmds_out, 0);
 2049		sdev->hostdata = sd;
 2050	} else
 2051		sdev->hostdata = NULL;
 2052	spin_unlock_irqrestore(&h->devlock, flags);
 2053	return 0;
 2054}
 2055
 2056/* configure scsi device based on internal per-device structure */
 2057static int hpsa_slave_configure(struct scsi_device *sdev)
 2058{
 2059	struct hpsa_scsi_dev_t *sd;
 2060	int queue_depth;
 2061
 2062	sd = sdev->hostdata;
 2063	sdev->no_uld_attach = !sd || !sd->expose_device;
 2064
 2065	if (sd)
 2066		queue_depth = sd->queue_depth != 0 ?
 2067			sd->queue_depth : sdev->host->can_queue;
 2068	else
 2069		queue_depth = sdev->host->can_queue;
 2070
 2071	scsi_change_queue_depth(sdev, queue_depth);
 2072
 2073	return 0;
 2074}
 2075
 2076static void hpsa_slave_destroy(struct scsi_device *sdev)
 2077{
 2078	/* nothing to do. */
 2079}
 2080
 2081static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
 2082{
 2083	int i;
 2084
 2085	if (!h->ioaccel2_cmd_sg_list)
 2086		return;
 2087	for (i = 0; i < h->nr_cmds; i++) {
 2088		kfree(h->ioaccel2_cmd_sg_list[i]);
 2089		h->ioaccel2_cmd_sg_list[i] = NULL;
 2090	}
 2091	kfree(h->ioaccel2_cmd_sg_list);
 2092	h->ioaccel2_cmd_sg_list = NULL;
 2093}
 2094
 2095static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
 2096{
 2097	int i;
 2098
 2099	if (h->chainsize <= 0)
 2100		return 0;
 2101
 2102	h->ioaccel2_cmd_sg_list =
 2103		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
 2104					GFP_KERNEL);
 2105	if (!h->ioaccel2_cmd_sg_list)
 2106		return -ENOMEM;
 2107	for (i = 0; i < h->nr_cmds; i++) {
 2108		h->ioaccel2_cmd_sg_list[i] =
 2109			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
 2110					h->maxsgentries, GFP_KERNEL);
 2111		if (!h->ioaccel2_cmd_sg_list[i])
 2112			goto clean;
 2113	}
 2114	return 0;
 2115
 2116clean:
 2117	hpsa_free_ioaccel2_sg_chain_blocks(h);
 2118	return -ENOMEM;
 2119}
 2120
 2121static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
 2122{
 2123	int i;
 2124
 2125	if (!h->cmd_sg_list)
 2126		return;
 2127	for (i = 0; i < h->nr_cmds; i++) {
 2128		kfree(h->cmd_sg_list[i]);
 2129		h->cmd_sg_list[i] = NULL;
 2130	}
 2131	kfree(h->cmd_sg_list);
 2132	h->cmd_sg_list = NULL;
 2133}
 2134
 2135static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
 2136{
 2137	int i;
 2138
 2139	if (h->chainsize <= 0)
 2140		return 0;
 2141
 2142	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
 2143				GFP_KERNEL);
 2144	if (!h->cmd_sg_list)
 2145		return -ENOMEM;
 2146
 2147	for (i = 0; i < h->nr_cmds; i++) {
 2148		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
 2149						h->chainsize, GFP_KERNEL);
 2150		if (!h->cmd_sg_list[i])
 2151			goto clean;
 2152
 2153	}
 2154	return 0;
 2155
 2156clean:
 2157	hpsa_free_sg_chain_blocks(h);
 2158	return -ENOMEM;
 2159}
 2160
 2161static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
 2162	struct io_accel2_cmd *cp, struct CommandList *c)
 2163{
 2164	struct ioaccel2_sg_element *chain_block;
 2165	u64 temp64;
 2166	u32 chain_size;
 2167
 2168	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
 2169	chain_size = le32_to_cpu(cp->sg[0].length);
 2170	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
 2171				PCI_DMA_TODEVICE);
 2172	if (dma_mapping_error(&h->pdev->dev, temp64)) {
 2173		/* prevent subsequent unmapping */
 2174		cp->sg->address = 0;
 2175		return -1;
 2176	}
 2177	cp->sg->address = cpu_to_le64(temp64);
 2178	return 0;
 2179}
 2180
 2181static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
 2182	struct io_accel2_cmd *cp)
 2183{
 2184	struct ioaccel2_sg_element *chain_sg;
 2185	u64 temp64;
 2186	u32 chain_size;
 2187
 2188	chain_sg = cp->sg;
 2189	temp64 = le64_to_cpu(chain_sg->address);
 2190	chain_size = le32_to_cpu(cp->sg[0].length);
 2191	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
 2192}
 2193
 2194static int hpsa_map_sg_chain_block(struct ctlr_info *h,
 2195	struct CommandList *c)
 2196{
 2197	struct SGDescriptor *chain_sg, *chain_block;
 2198	u64 temp64;
 2199	u32 chain_len;
 2200
 2201	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
 2202	chain_block = h->cmd_sg_list[c->cmdindex];
 2203	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
 2204	chain_len = sizeof(*chain_sg) *
 2205		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
 2206	chain_sg->Len = cpu_to_le32(chain_len);
 2207	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
 2208				PCI_DMA_TODEVICE);
 2209	if (dma_mapping_error(&h->pdev->dev, temp64)) {
 2210		/* prevent subsequent unmapping */
 2211		chain_sg->Addr = cpu_to_le64(0);
 
 2212		return -1;
 2213	}
 2214	chain_sg->Addr = cpu_to_le64(temp64);
 
 2215	return 0;
 2216}
 2217
 2218static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
 2219	struct CommandList *c)
 2220{
 2221	struct SGDescriptor *chain_sg;
 
 2222
 2223	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
 2224		return;
 2225
 2226	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
 2227	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
 2228			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
 
 2229}
 2230
 2231
 2232/* Decode the various types of errors on ioaccel2 path.
 2233 * Return 1 for any error that should generate a RAID path retry.
 2234 * Return 0 for errors that don't require a RAID path retry.
 2235 */
 2236static int handle_ioaccel_mode2_error(struct ctlr_info *h,
 2237					struct CommandList *c,
 2238					struct scsi_cmnd *cmd,
 2239					struct io_accel2_cmd *c2,
 2240					struct hpsa_scsi_dev_t *dev)
 2241{
 2242	int data_len;
 2243	int retry = 0;
 2244	u32 ioaccel2_resid = 0;
 2245
 2246	switch (c2->error_data.serv_response) {
 2247	case IOACCEL2_SERV_RESPONSE_COMPLETE:
 2248		switch (c2->error_data.status) {
 2249		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
 2250			break;
 2251		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
 2252			cmd->result |= SAM_STAT_CHECK_CONDITION;
 
 
 2253			if (c2->error_data.data_present !=
 2254					IOACCEL2_SENSE_DATA_PRESENT) {
 2255				memset(cmd->sense_buffer, 0,
 2256					SCSI_SENSE_BUFFERSIZE);
 2257				break;
 2258			}
 2259			/* copy the sense data */
 2260			data_len = c2->error_data.sense_data_len;
 2261			if (data_len > SCSI_SENSE_BUFFERSIZE)
 2262				data_len = SCSI_SENSE_BUFFERSIZE;
 2263			if (data_len > sizeof(c2->error_data.sense_data_buff))
 2264				data_len =
 2265					sizeof(c2->error_data.sense_data_buff);
 2266			memcpy(cmd->sense_buffer,
 2267				c2->error_data.sense_data_buff, data_len);
 
 2268			retry = 1;
 2269			break;
 2270		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
 
 
 
 2271			retry = 1;
 2272			break;
 2273		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
 
 
 
 2274			retry = 1;
 2275			break;
 2276		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
 2277			retry = 1;
 
 2278			break;
 2279		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
 
 
 
 2280			retry = 1;
 2281			break;
 2282		default:
 
 
 
 2283			retry = 1;
 2284			break;
 2285		}
 2286		break;
 2287	case IOACCEL2_SERV_RESPONSE_FAILURE:
 2288		switch (c2->error_data.status) {
 2289		case IOACCEL2_STATUS_SR_IO_ERROR:
 2290		case IOACCEL2_STATUS_SR_IO_ABORTED:
 2291		case IOACCEL2_STATUS_SR_OVERRUN:
 2292			retry = 1;
 2293			break;
 2294		case IOACCEL2_STATUS_SR_UNDERRUN:
 2295			cmd->result = (DID_OK << 16);		/* host byte */
 2296			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
 2297			ioaccel2_resid = get_unaligned_le32(
 2298						&c2->error_data.resid_cnt[0]);
 2299			scsi_set_resid(cmd, ioaccel2_resid);
 2300			break;
 2301		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
 2302		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
 2303		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
 2304			/*
 2305			 * Did an HBA disk disappear? We will eventually
 2306			 * get a state change event from the controller but
 2307			 * in the meantime, we need to tell the OS that the
 2308			 * HBA disk is no longer there and stop I/O
 2309			 * from going down. This allows the potential re-insert
 2310			 * of the disk to get the same device node.
 2311			 */
 2312			if (dev->physical_device && dev->expose_device) {
 2313				cmd->result = DID_NO_CONNECT << 16;
 2314				dev->removed = 1;
 2315				h->drv_req_rescan = 1;
 2316				dev_warn(&h->pdev->dev,
 2317					"%s: device is gone!\n", __func__);
 2318			} else
 2319				/*
 2320				 * Retry by sending down the RAID path.
 2321				 * We will get an event from ctlr to
 2322				 * trigger rescan regardless.
 2323				 */
 2324				retry = 1;
 2325			break;
 2326		default:
 2327			retry = 1;
 2328		}
 2329		break;
 2330	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
 2331		break;
 2332	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
 2333		break;
 2334	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
 
 2335		retry = 1;
 2336		break;
 2337	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
 
 2338		break;
 2339	default:
 
 
 
 
 2340		retry = 1;
 2341		break;
 2342	}
 2343
 2344	return retry;	/* retry on raid path? */
 2345}
 2346
 2347static void hpsa_cmd_resolve_events(struct ctlr_info *h,
 2348		struct CommandList *c)
 2349{
 2350	bool do_wake = false;
 2351
 2352	/*
 2353	 * Prevent the following race in the abort handler:
 2354	 *
 2355	 * 1. LLD is requested to abort a SCSI command
 2356	 * 2. The SCSI command completes
 2357	 * 3. The struct CommandList associated with step 2 is made available
 2358	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
 2359	 * 5. Abort handler follows scsi_cmnd->host_scribble and
 2360	 *    finds struct CommandList and tries to aborts it
 2361	 * Now we have aborted the wrong command.
 2362	 *
 2363	 * Reset c->scsi_cmd here so that the abort or reset handler will know
 2364	 * this command has completed.  Then, check to see if the handler is
 2365	 * waiting for this command, and, if so, wake it.
 2366	 */
 2367	c->scsi_cmd = SCSI_CMD_IDLE;
 2368	mb();	/* Declare command idle before checking for pending events. */
 2369	if (c->abort_pending) {
 2370		do_wake = true;
 2371		c->abort_pending = false;
 2372	}
 2373	if (c->reset_pending) {
 2374		unsigned long flags;
 2375		struct hpsa_scsi_dev_t *dev;
 2376
 2377		/*
 2378		 * There appears to be a reset pending; lock the lock and
 2379		 * reconfirm.  If so, then decrement the count of outstanding
 2380		 * commands and wake the reset command if this is the last one.
 2381		 */
 2382		spin_lock_irqsave(&h->lock, flags);
 2383		dev = c->reset_pending;		/* Re-fetch under the lock. */
 2384		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
 2385			do_wake = true;
 2386		c->reset_pending = NULL;
 2387		spin_unlock_irqrestore(&h->lock, flags);
 2388	}
 2389
 2390	if (do_wake)
 2391		wake_up_all(&h->event_sync_wait_queue);
 2392}
 2393
 2394static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
 2395				      struct CommandList *c)
 2396{
 2397	hpsa_cmd_resolve_events(h, c);
 2398	cmd_tagged_free(h, c);
 2399}
 2400
 2401static void hpsa_cmd_free_and_done(struct ctlr_info *h,
 2402		struct CommandList *c, struct scsi_cmnd *cmd)
 2403{
 2404	hpsa_cmd_resolve_and_free(h, c);
 2405	if (cmd && cmd->scsi_done)
 2406		cmd->scsi_done(cmd);
 2407}
 2408
 2409static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
 2410{
 2411	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
 2412	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
 2413}
 2414
 2415static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
 2416{
 2417	cmd->result = DID_ABORT << 16;
 2418}
 2419
 2420static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
 2421				    struct scsi_cmnd *cmd)
 2422{
 2423	hpsa_set_scsi_cmd_aborted(cmd);
 2424	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
 2425			 c->Request.CDB, c->err_info->ScsiStatus);
 2426	hpsa_cmd_resolve_and_free(h, c);
 2427}
 2428
 2429static void process_ioaccel2_completion(struct ctlr_info *h,
 2430		struct CommandList *c, struct scsi_cmnd *cmd,
 2431		struct hpsa_scsi_dev_t *dev)
 2432{
 2433	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 
 2434
 2435	/* check for good status */
 2436	if (likely(c2->error_data.serv_response == 0 &&
 2437			c2->error_data.status == 0))
 2438		return hpsa_cmd_free_and_done(h, c, cmd);
 
 
 
 2439
 2440	/*
 2441	 * Any RAID offload error results in retry which will use
 2442	 * the normal I/O path so the controller can handle whatever's
 2443	 * wrong.
 2444	 */
 2445	if (is_logical_device(dev) &&
 2446		c2->error_data.serv_response ==
 2447			IOACCEL2_SERV_RESPONSE_FAILURE) {
 2448		if (c2->error_data.status ==
 2449			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
 2450			dev->offload_enabled = 0;
 2451			dev->offload_to_be_enabled = 0;
 2452		}
 
 
 
 
 2453
 2454		return hpsa_retry_cmd(h, c);
 
 
 
 
 
 2455	}
 2456
 2457	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
 2458		return hpsa_retry_cmd(h, c);
 2459
 2460	return hpsa_cmd_free_and_done(h, c, cmd);
 2461}
 2462
 2463/* Returns 0 on success, < 0 otherwise. */
 2464static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
 2465					struct CommandList *cp)
 2466{
 2467	u8 tmf_status = cp->err_info->ScsiStatus;
 2468
 2469	switch (tmf_status) {
 2470	case CISS_TMF_COMPLETE:
 2471		/*
 2472		 * CISS_TMF_COMPLETE never happens, instead,
 2473		 * ei->CommandStatus == 0 for this case.
 2474		 */
 2475	case CISS_TMF_SUCCESS:
 2476		return 0;
 2477	case CISS_TMF_INVALID_FRAME:
 2478	case CISS_TMF_NOT_SUPPORTED:
 2479	case CISS_TMF_FAILED:
 2480	case CISS_TMF_WRONG_LUN:
 2481	case CISS_TMF_OVERLAPPED_TAG:
 2482		break;
 2483	default:
 2484		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
 2485				tmf_status);
 2486		break;
 2487	}
 2488	return -tmf_status;
 
 2489}
 2490
 2491static void complete_scsi_command(struct CommandList *cp)
 2492{
 2493	struct scsi_cmnd *cmd;
 2494	struct ctlr_info *h;
 2495	struct ErrorInfo *ei;
 2496	struct hpsa_scsi_dev_t *dev;
 2497	struct io_accel2_cmd *c2;
 2498
 2499	u8 sense_key;
 2500	u8 asc;      /* additional sense code */
 2501	u8 ascq;     /* additional sense code qualifier */
 2502	unsigned long sense_data_size;
 2503
 2504	ei = cp->err_info;
 2505	cmd = cp->scsi_cmd;
 2506	h = cp->h;
 2507
 2508	if (!cmd->device) {
 2509		cmd->result = DID_NO_CONNECT << 16;
 2510		return hpsa_cmd_free_and_done(h, cp, cmd);
 2511	}
 2512
 2513	dev = cmd->device->hostdata;
 2514	if (!dev) {
 2515		cmd->result = DID_NO_CONNECT << 16;
 2516		return hpsa_cmd_free_and_done(h, cp, cmd);
 2517	}
 2518	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
 2519
 2520	scsi_dma_unmap(cmd); /* undo the DMA mappings */
 2521	if ((cp->cmd_type == CMD_SCSI) &&
 2522		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
 2523		hpsa_unmap_sg_chain_block(h, cp);
 2524
 2525	if ((cp->cmd_type == CMD_IOACCEL2) &&
 2526		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
 2527		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
 2528
 2529	cmd->result = (DID_OK << 16); 		/* host byte */
 2530	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
 2531
 2532	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
 2533		if (dev->physical_device && dev->expose_device &&
 2534			dev->removed) {
 2535			cmd->result = DID_NO_CONNECT << 16;
 2536			return hpsa_cmd_free_and_done(h, cp, cmd);
 2537		}
 2538		if (likely(cp->phys_disk != NULL))
 2539			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
 2540	}
 2541
 2542	/*
 2543	 * We check for lockup status here as it may be set for
 2544	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
 2545	 * fail_all_oustanding_cmds()
 2546	 */
 2547	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
 2548		/* DID_NO_CONNECT will prevent a retry */
 2549		cmd->result = DID_NO_CONNECT << 16;
 2550		return hpsa_cmd_free_and_done(h, cp, cmd);
 2551	}
 2552
 2553	if ((unlikely(hpsa_is_pending_event(cp)))) {
 2554		if (cp->reset_pending)
 2555			return hpsa_cmd_free_and_done(h, cp, cmd);
 2556		if (cp->abort_pending)
 2557			return hpsa_cmd_abort_and_free(h, cp, cmd);
 2558	}
 
 2559
 2560	if (cp->cmd_type == CMD_IOACCEL2)
 2561		return process_ioaccel2_completion(h, cp, cmd, dev);
 2562
 2563	scsi_set_resid(cmd, ei->ResidualCnt);
 2564	if (ei->CommandStatus == 0)
 2565		return hpsa_cmd_free_and_done(h, cp, cmd);
 
 
 2566
 2567	/* For I/O accelerator commands, copy over some fields to the normal
 2568	 * CISS header used below for error handling.
 2569	 */
 2570	if (cp->cmd_type == CMD_IOACCEL1) {
 2571		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
 2572		cp->Header.SGList = scsi_sg_count(cmd);
 2573		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
 2574		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
 2575			IOACCEL1_IOFLAGS_CDBLEN_MASK;
 2576		cp->Header.tag = c->tag;
 2577		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
 2578		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
 2579
 2580		/* Any RAID offload error results in retry which will use
 2581		 * the normal I/O path so the controller can handle whatever's
 2582		 * wrong.
 2583		 */
 2584		if (is_logical_device(dev)) {
 2585			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
 2586				dev->offload_enabled = 0;
 2587			return hpsa_retry_cmd(h, cp);
 
 
 
 2588		}
 2589	}
 2590
 2591	/* an error has occurred */
 2592	switch (ei->CommandStatus) {
 2593
 2594	case CMD_TARGET_STATUS:
 2595		cmd->result |= ei->ScsiStatus;
 2596		/* copy the sense data */
 2597		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
 2598			sense_data_size = SCSI_SENSE_BUFFERSIZE;
 2599		else
 2600			sense_data_size = sizeof(ei->SenseInfo);
 2601		if (ei->SenseLen < sense_data_size)
 2602			sense_data_size = ei->SenseLen;
 2603		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
 2604		if (ei->ScsiStatus)
 2605			decode_sense_data(ei->SenseInfo, sense_data_size,
 2606				&sense_key, &asc, &ascq);
 2607		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2608			if (sense_key == ABORTED_COMMAND) {
 
 
 
 
 
 2609				cmd->result |= DID_SOFT_ERROR << 16;
 2610				break;
 2611			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2612			break;
 2613		}
 
 
 2614		/* Problem was not a check condition
 2615		 * Pass it up to the upper layers...
 2616		 */
 2617		if (ei->ScsiStatus) {
 2618			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
 2619				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
 2620				"Returning result: 0x%x\n",
 2621				cp, ei->ScsiStatus,
 2622				sense_key, asc, ascq,
 2623				cmd->result);
 2624		} else {  /* scsi status is zero??? How??? */
 2625			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
 2626				"Returning no connection.\n", cp),
 2627
 2628			/* Ordinarily, this case should never happen,
 2629			 * but there is a bug in some released firmware
 2630			 * revisions that allows it to happen if, for
 2631			 * example, a 4100 backplane loses power and
 2632			 * the tape drive is in it.  We assume that
 2633			 * it's a fatal error of some kind because we
 2634			 * can't show that it wasn't. We will make it
 2635			 * look like selection timeout since that is
 2636			 * the most common reason for this to occur,
 2637			 * and it's severe enough.
 2638			 */
 2639
 2640			cmd->result = DID_NO_CONNECT << 16;
 2641		}
 2642		break;
 2643
 2644	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
 2645		break;
 2646	case CMD_DATA_OVERRUN:
 2647		dev_warn(&h->pdev->dev,
 2648			"CDB %16phN data overrun\n", cp->Request.CDB);
 
 2649		break;
 2650	case CMD_INVALID: {
 2651		/* print_bytes(cp, sizeof(*cp), 1, 0);
 2652		print_cmd(cp); */
 2653		/* We get CMD_INVALID if you address a non-existent device
 2654		 * instead of a selection timeout (no response).  You will
 2655		 * see this if you yank out a drive, then try to access it.
 2656		 * This is kind of a shame because it means that any other
 2657		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
 2658		 * missing target. */
 2659		cmd->result = DID_NO_CONNECT << 16;
 2660	}
 2661		break;
 2662	case CMD_PROTOCOL_ERR:
 2663		cmd->result = DID_ERROR << 16;
 2664		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
 2665				cp->Request.CDB);
 2666		break;
 2667	case CMD_HARDWARE_ERR:
 2668		cmd->result = DID_ERROR << 16;
 2669		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
 2670			cp->Request.CDB);
 2671		break;
 2672	case CMD_CONNECTION_LOST:
 2673		cmd->result = DID_ERROR << 16;
 2674		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
 2675			cp->Request.CDB);
 2676		break;
 2677	case CMD_ABORTED:
 2678		/* Return now to avoid calling scsi_done(). */
 2679		return hpsa_cmd_abort_and_free(h, cp, cmd);
 
 
 2680	case CMD_ABORT_FAILED:
 2681		cmd->result = DID_ERROR << 16;
 2682		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
 2683			cp->Request.CDB);
 2684		break;
 2685	case CMD_UNSOLICITED_ABORT:
 2686		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
 2687		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
 2688			cp->Request.CDB);
 2689		break;
 2690	case CMD_TIMEOUT:
 2691		cmd->result = DID_TIME_OUT << 16;
 2692		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
 2693			cp->Request.CDB);
 2694		break;
 2695	case CMD_UNABORTABLE:
 2696		cmd->result = DID_ERROR << 16;
 2697		dev_warn(&h->pdev->dev, "Command unabortable\n");
 2698		break;
 2699	case CMD_TMF_STATUS:
 2700		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
 2701			cmd->result = DID_ERROR << 16;
 2702		break;
 2703	case CMD_IOACCEL_DISABLED:
 2704		/* This only handles the direct pass-through case since RAID
 2705		 * offload is handled above.  Just attempt a retry.
 2706		 */
 2707		cmd->result = DID_SOFT_ERROR << 16;
 2708		dev_warn(&h->pdev->dev,
 2709				"cp %p had HP SSD Smart Path error\n", cp);
 2710		break;
 2711	default:
 2712		cmd->result = DID_ERROR << 16;
 2713		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
 2714				cp, ei->CommandStatus);
 2715	}
 2716
 2717	return hpsa_cmd_free_and_done(h, cp, cmd);
 2718}
 2719
 2720static void hpsa_pci_unmap(struct pci_dev *pdev,
 2721	struct CommandList *c, int sg_used, int data_direction)
 2722{
 2723	int i;
 
 2724
 2725	for (i = 0; i < sg_used; i++)
 2726		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
 2727				le32_to_cpu(c->SG[i].Len),
 2728				data_direction);
 
 
 2729}
 2730
 2731static int hpsa_map_one(struct pci_dev *pdev,
 2732		struct CommandList *cp,
 2733		unsigned char *buf,
 2734		size_t buflen,
 2735		int data_direction)
 2736{
 2737	u64 addr64;
 2738
 2739	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
 2740		cp->Header.SGList = 0;
 2741		cp->Header.SGTotal = cpu_to_le16(0);
 2742		return 0;
 2743	}
 2744
 2745	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
 2746	if (dma_mapping_error(&pdev->dev, addr64)) {
 2747		/* Prevent subsequent unmap of something never mapped */
 2748		cp->Header.SGList = 0;
 2749		cp->Header.SGTotal = cpu_to_le16(0);
 2750		return -1;
 2751	}
 2752	cp->SG[0].Addr = cpu_to_le64(addr64);
 2753	cp->SG[0].Len = cpu_to_le32(buflen);
 2754	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
 2755	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
 2756	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
 
 
 
 2757	return 0;
 2758}
 2759
 2760#define NO_TIMEOUT ((unsigned long) -1)
 2761#define DEFAULT_TIMEOUT 30000 /* milliseconds */
 2762static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
 2763	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
 2764{
 2765	DECLARE_COMPLETION_ONSTACK(wait);
 2766
 2767	c->waiting = &wait;
 2768	__enqueue_cmd_and_start_io(h, c, reply_queue);
 2769	if (timeout_msecs == NO_TIMEOUT) {
 2770		/* TODO: get rid of this no-timeout thing */
 2771		wait_for_completion_io(&wait);
 2772		return IO_OK;
 2773	}
 2774	if (!wait_for_completion_io_timeout(&wait,
 2775					msecs_to_jiffies(timeout_msecs))) {
 2776		dev_warn(&h->pdev->dev, "Command timed out.\n");
 2777		return -ETIMEDOUT;
 2778	}
 2779	return IO_OK;
 2780}
 2781
 2782static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
 2783				   int reply_queue, unsigned long timeout_msecs)
 2784{
 2785	if (unlikely(lockup_detected(h))) {
 2786		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
 2787		return IO_OK;
 
 
 
 
 
 
 
 2788	}
 2789	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
 2790}
 2791
 2792static u32 lockup_detected(struct ctlr_info *h)
 2793{
 2794	int cpu;
 2795	u32 rc, *lockup_detected;
 2796
 2797	cpu = get_cpu();
 2798	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
 2799	rc = *lockup_detected;
 2800	put_cpu();
 2801	return rc;
 2802}
 2803
 2804#define MAX_DRIVER_CMD_RETRIES 25
 2805static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
 2806	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
 2807{
 2808	int backoff_time = 10, retry_count = 0;
 2809	int rc;
 2810
 2811	do {
 2812		memset(c->err_info, 0, sizeof(*c->err_info));
 2813		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 2814						  timeout_msecs);
 2815		if (rc)
 2816			break;
 2817		retry_count++;
 2818		if (retry_count > 3) {
 2819			msleep(backoff_time);
 2820			if (backoff_time < 1000)
 2821				backoff_time *= 2;
 2822		}
 2823	} while ((check_for_unit_attention(h, c) ||
 2824			check_for_busy(h, c)) &&
 2825			retry_count <= MAX_DRIVER_CMD_RETRIES);
 2826	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
 2827	if (retry_count > MAX_DRIVER_CMD_RETRIES)
 2828		rc = -EIO;
 2829	return rc;
 2830}
 2831
 2832static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
 2833				struct CommandList *c)
 2834{
 2835	const u8 *cdb = c->Request.CDB;
 2836	const u8 *lun = c->Header.LUN.LunAddrBytes;
 2837
 2838	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
 2839		 txt, lun, cdb);
 
 
 
 
 
 
 2840}
 2841
 2842static void hpsa_scsi_interpret_error(struct ctlr_info *h,
 2843			struct CommandList *cp)
 2844{
 2845	const struct ErrorInfo *ei = cp->err_info;
 2846	struct device *d = &cp->h->pdev->dev;
 2847	u8 sense_key, asc, ascq;
 2848	int sense_len;
 2849
 2850	switch (ei->CommandStatus) {
 2851	case CMD_TARGET_STATUS:
 2852		if (ei->SenseLen > sizeof(ei->SenseInfo))
 2853			sense_len = sizeof(ei->SenseInfo);
 2854		else
 2855			sense_len = ei->SenseLen;
 2856		decode_sense_data(ei->SenseInfo, sense_len,
 2857					&sense_key, &asc, &ascq);
 2858		hpsa_print_cmd(h, "SCSI status", cp);
 2859		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
 2860			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
 2861				sense_key, asc, ascq);
 2862		else
 2863			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
 2864		if (ei->ScsiStatus == 0)
 2865			dev_warn(d, "SCSI status is abnormally zero.  "
 2866			"(probably indicates selection timeout "
 2867			"reported incorrectly due to a known "
 2868			"firmware bug, circa July, 2001.)\n");
 2869		break;
 2870	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
 2871		break;
 2872	case CMD_DATA_OVERRUN:
 2873		hpsa_print_cmd(h, "overrun condition", cp);
 2874		break;
 2875	case CMD_INVALID: {
 2876		/* controller unfortunately reports SCSI passthru's
 2877		 * to non-existent targets as invalid commands.
 2878		 */
 2879		hpsa_print_cmd(h, "invalid command", cp);
 2880		dev_warn(d, "probably means device no longer present\n");
 2881		}
 2882		break;
 2883	case CMD_PROTOCOL_ERR:
 2884		hpsa_print_cmd(h, "protocol error", cp);
 2885		break;
 2886	case CMD_HARDWARE_ERR:
 2887		hpsa_print_cmd(h, "hardware error", cp);
 2888		break;
 2889	case CMD_CONNECTION_LOST:
 2890		hpsa_print_cmd(h, "connection lost", cp);
 2891		break;
 2892	case CMD_ABORTED:
 2893		hpsa_print_cmd(h, "aborted", cp);
 2894		break;
 2895	case CMD_ABORT_FAILED:
 2896		hpsa_print_cmd(h, "abort failed", cp);
 2897		break;
 2898	case CMD_UNSOLICITED_ABORT:
 2899		hpsa_print_cmd(h, "unsolicited abort", cp);
 2900		break;
 2901	case CMD_TIMEOUT:
 2902		hpsa_print_cmd(h, "timed out", cp);
 2903		break;
 2904	case CMD_UNABORTABLE:
 2905		hpsa_print_cmd(h, "unabortable", cp);
 2906		break;
 2907	case CMD_CTLR_LOCKUP:
 2908		hpsa_print_cmd(h, "controller lockup detected", cp);
 2909		break;
 2910	default:
 2911		hpsa_print_cmd(h, "unknown status", cp);
 2912		dev_warn(d, "Unknown command status %x\n",
 2913				ei->CommandStatus);
 2914	}
 2915}
 2916
 2917static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
 2918			u16 page, unsigned char *buf,
 2919			unsigned char bufsize)
 2920{
 2921	int rc = IO_OK;
 2922	struct CommandList *c;
 2923	struct ErrorInfo *ei;
 2924
 2925	c = cmd_alloc(h);
 
 
 
 
 
 2926
 2927	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
 2928			page, scsi3addr, TYPE_CMD)) {
 2929		rc = -1;
 2930		goto out;
 2931	}
 2932	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 2933					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
 2934	if (rc)
 2935		goto out;
 2936	ei = c->err_info;
 2937	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 2938		hpsa_scsi_interpret_error(h, c);
 2939		rc = -1;
 2940	}
 2941out:
 2942	cmd_free(h, c);
 2943	return rc;
 2944}
 2945
 2946static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
 2947	u8 reset_type, int reply_queue)
 
 2948{
 2949	int rc = IO_OK;
 2950	struct CommandList *c;
 2951	struct ErrorInfo *ei;
 2952
 2953	c = cmd_alloc(h);
 2954
 
 
 
 
 2955
 2956	/* fill_cmd can't fail here, no data buffer to map. */
 2957	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
 2958			scsi3addr, TYPE_MSG);
 2959	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
 2960	if (rc) {
 2961		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
 2962		goto out;
 2963	}
 2964	/* no unmap needed here because no data xfer. */
 2965
 2966	ei = c->err_info;
 2967	if (ei->CommandStatus != 0) {
 2968		hpsa_scsi_interpret_error(h, c);
 2969		rc = -1;
 2970	}
 2971out:
 2972	cmd_free(h, c);
 2973	return rc;
 2974}
 2975
 2976static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 2977			       struct hpsa_scsi_dev_t *dev,
 2978			       unsigned char *scsi3addr)
 2979{
 2980	int i;
 2981	bool match = false;
 2982	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 2983	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
 2984
 2985	if (hpsa_is_cmd_idle(c))
 2986		return false;
 2987
 2988	switch (c->cmd_type) {
 2989	case CMD_SCSI:
 2990	case CMD_IOCTL_PEND:
 2991		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
 2992				sizeof(c->Header.LUN.LunAddrBytes));
 2993		break;
 2994
 2995	case CMD_IOACCEL1:
 2996	case CMD_IOACCEL2:
 2997		if (c->phys_disk == dev) {
 2998			/* HBA mode match */
 2999			match = true;
 3000		} else {
 3001			/* Possible RAID mode -- check each phys dev. */
 3002			/* FIXME:  Do we need to take out a lock here?  If
 3003			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
 3004			 * instead. */
 3005			for (i = 0; i < dev->nphysical_disks && !match; i++) {
 3006				/* FIXME: an alternate test might be
 3007				 *
 3008				 * match = dev->phys_disk[i]->ioaccel_handle
 3009				 *              == c2->scsi_nexus;      */
 3010				match = dev->phys_disk[i] == c->phys_disk;
 3011			}
 3012		}
 3013		break;
 3014
 3015	case IOACCEL2_TMF:
 3016		for (i = 0; i < dev->nphysical_disks && !match; i++) {
 3017			match = dev->phys_disk[i]->ioaccel_handle ==
 3018					le32_to_cpu(ac->it_nexus);
 3019		}
 3020		break;
 3021
 3022	case 0:		/* The command is in the middle of being initialized. */
 3023		match = false;
 3024		break;
 3025
 3026	default:
 3027		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
 3028			c->cmd_type);
 3029		BUG();
 3030	}
 3031
 3032	return match;
 3033}
 3034
 3035static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
 3036	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
 3037{
 3038	int i;
 3039	int rc = 0;
 
 3040
 3041	/* We can really only handle one reset at a time */
 3042	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
 3043		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
 3044		return -EINTR;
 3045	}
 3046
 3047	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
 3048
 3049	for (i = 0; i < h->nr_cmds; i++) {
 3050		struct CommandList *c = h->cmd_pool + i;
 3051		int refcount = atomic_inc_return(&c->refcount);
 3052
 3053		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
 3054			unsigned long flags;
 3055
 3056			/*
 3057			 * Mark the target command as having a reset pending,
 3058			 * then lock a lock so that the command cannot complete
 3059			 * while we're considering it.  If the command is not
 3060			 * idle then count it; otherwise revoke the event.
 3061			 */
 3062			c->reset_pending = dev;
 3063			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
 3064			if (!hpsa_is_cmd_idle(c))
 3065				atomic_inc(&dev->reset_cmds_out);
 3066			else
 3067				c->reset_pending = NULL;
 3068			spin_unlock_irqrestore(&h->lock, flags);
 3069		}
 3070
 3071		cmd_free(h, c);
 3072	}
 3073
 3074	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
 3075	if (!rc)
 3076		wait_event(h->event_sync_wait_queue,
 3077			atomic_read(&dev->reset_cmds_out) == 0 ||
 3078			lockup_detected(h));
 
 3079
 3080	if (unlikely(lockup_detected(h))) {
 3081		dev_warn(&h->pdev->dev,
 3082			 "Controller lockup detected during reset wait\n");
 3083		rc = -ENODEV;
 3084	}
 3085
 3086	if (unlikely(rc))
 3087		atomic_set(&dev->reset_cmds_out, 0);
 3088	else
 3089		wait_for_device_to_become_ready(h, scsi3addr, 0);
 3090
 3091	mutex_unlock(&h->reset_mutex);
 3092	return rc;
 3093}
 3094
 3095static void hpsa_get_raid_level(struct ctlr_info *h,
 3096	unsigned char *scsi3addr, unsigned char *raid_level)
 3097{
 3098	int rc;
 3099	unsigned char *buf;
 3100
 3101	*raid_level = RAID_UNKNOWN;
 3102	buf = kzalloc(64, GFP_KERNEL);
 3103	if (!buf)
 3104		return;
 3105
 3106	if (!hpsa_vpd_page_supported(h, scsi3addr,
 3107		HPSA_VPD_LV_DEVICE_GEOMETRY))
 3108		goto exit;
 3109
 3110	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
 3111		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
 3112
 3113	if (rc == 0)
 3114		*raid_level = buf[8];
 3115	if (*raid_level > RAID_UNKNOWN)
 3116		*raid_level = RAID_UNKNOWN;
 3117exit:
 3118	kfree(buf);
 3119	return;
 3120}
 3121
 3122#define HPSA_MAP_DEBUG
 3123#ifdef HPSA_MAP_DEBUG
 3124static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
 3125				struct raid_map_data *map_buff)
 3126{
 3127	struct raid_map_disk_data *dd = &map_buff->data[0];
 3128	int map, row, col;
 3129	u16 map_cnt, row_cnt, disks_per_row;
 3130
 3131	if (rc != 0)
 3132		return;
 3133
 3134	/* Show details only if debugging has been activated. */
 3135	if (h->raid_offload_debug < 2)
 3136		return;
 3137
 3138	dev_info(&h->pdev->dev, "structure_size = %u\n",
 3139				le32_to_cpu(map_buff->structure_size));
 3140	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
 3141			le32_to_cpu(map_buff->volume_blk_size));
 3142	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
 3143			le64_to_cpu(map_buff->volume_blk_cnt));
 3144	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
 3145			map_buff->phys_blk_shift);
 3146	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
 3147			map_buff->parity_rotation_shift);
 3148	dev_info(&h->pdev->dev, "strip_size = %u\n",
 3149			le16_to_cpu(map_buff->strip_size));
 3150	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
 3151			le64_to_cpu(map_buff->disk_starting_blk));
 3152	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
 3153			le64_to_cpu(map_buff->disk_blk_cnt));
 3154	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
 3155			le16_to_cpu(map_buff->data_disks_per_row));
 3156	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
 3157			le16_to_cpu(map_buff->metadata_disks_per_row));
 3158	dev_info(&h->pdev->dev, "row_cnt = %u\n",
 3159			le16_to_cpu(map_buff->row_cnt));
 3160	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
 3161			le16_to_cpu(map_buff->layout_map_count));
 3162	dev_info(&h->pdev->dev, "flags = 0x%x\n",
 3163			le16_to_cpu(map_buff->flags));
 3164	dev_info(&h->pdev->dev, "encrypytion = %s\n",
 3165			le16_to_cpu(map_buff->flags) &
 3166			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
 
 3167	dev_info(&h->pdev->dev, "dekindex = %u\n",
 3168			le16_to_cpu(map_buff->dekindex));
 
 3169	map_cnt = le16_to_cpu(map_buff->layout_map_count);
 3170	for (map = 0; map < map_cnt; map++) {
 3171		dev_info(&h->pdev->dev, "Map%u:\n", map);
 3172		row_cnt = le16_to_cpu(map_buff->row_cnt);
 3173		for (row = 0; row < row_cnt; row++) {
 3174			dev_info(&h->pdev->dev, "  Row%u:\n", row);
 3175			disks_per_row =
 3176				le16_to_cpu(map_buff->data_disks_per_row);
 3177			for (col = 0; col < disks_per_row; col++, dd++)
 3178				dev_info(&h->pdev->dev,
 3179					"    D%02u: h=0x%04x xor=%u,%u\n",
 3180					col, dd->ioaccel_handle,
 3181					dd->xor_mult[0], dd->xor_mult[1]);
 3182			disks_per_row =
 3183				le16_to_cpu(map_buff->metadata_disks_per_row);
 3184			for (col = 0; col < disks_per_row; col++, dd++)
 3185				dev_info(&h->pdev->dev,
 3186					"    M%02u: h=0x%04x xor=%u,%u\n",
 3187					col, dd->ioaccel_handle,
 3188					dd->xor_mult[0], dd->xor_mult[1]);
 3189		}
 3190	}
 3191}
 3192#else
 3193static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
 3194			__attribute__((unused)) int rc,
 3195			__attribute__((unused)) struct raid_map_data *map_buff)
 3196{
 3197}
 3198#endif
 3199
 3200static int hpsa_get_raid_map(struct ctlr_info *h,
 3201	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
 3202{
 3203	int rc = 0;
 3204	struct CommandList *c;
 3205	struct ErrorInfo *ei;
 3206
 3207	c = cmd_alloc(h);
 3208
 
 
 
 3209	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
 3210			sizeof(this_device->raid_map), 0,
 3211			scsi3addr, TYPE_CMD)) {
 3212		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
 3213		cmd_free(h, c);
 3214		return -1;
 3215	}
 3216	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 3217					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
 3218	if (rc)
 3219		goto out;
 3220	ei = c->err_info;
 3221	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3222		hpsa_scsi_interpret_error(h, c);
 3223		rc = -1;
 3224		goto out;
 3225	}
 3226	cmd_free(h, c);
 3227
 3228	/* @todo in the future, dynamically allocate RAID map memory */
 3229	if (le32_to_cpu(this_device->raid_map.structure_size) >
 3230				sizeof(this_device->raid_map)) {
 3231		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
 3232		rc = -1;
 3233	}
 3234	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
 3235	return rc;
 3236out:
 3237	cmd_free(h, c);
 3238	return rc;
 3239}
 3240
 3241static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
 3242		unsigned char scsi3addr[], u16 bmic_device_index,
 3243		struct bmic_sense_subsystem_info *buf, size_t bufsize)
 3244{
 3245	int rc = IO_OK;
 3246	struct CommandList *c;
 3247	struct ErrorInfo *ei;
 3248
 3249	c = cmd_alloc(h);
 3250
 3251	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
 3252		0, RAID_CTLR_LUNID, TYPE_CMD);
 3253	if (rc)
 3254		goto out;
 3255
 3256	c->Request.CDB[2] = bmic_device_index & 0xff;
 3257	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
 3258
 3259	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 3260				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
 3261	if (rc)
 3262		goto out;
 3263	ei = c->err_info;
 3264	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3265		hpsa_scsi_interpret_error(h, c);
 3266		rc = -1;
 3267	}
 3268out:
 3269	cmd_free(h, c);
 3270	return rc;
 3271}
 3272
 3273static int hpsa_bmic_id_controller(struct ctlr_info *h,
 3274	struct bmic_identify_controller *buf, size_t bufsize)
 3275{
 3276	int rc = IO_OK;
 3277	struct CommandList *c;
 3278	struct ErrorInfo *ei;
 3279
 3280	c = cmd_alloc(h);
 3281
 3282	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
 3283		0, RAID_CTLR_LUNID, TYPE_CMD);
 3284	if (rc)
 3285		goto out;
 3286
 3287	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 3288		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
 3289	if (rc)
 3290		goto out;
 3291	ei = c->err_info;
 3292	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3293		hpsa_scsi_interpret_error(h, c);
 3294		rc = -1;
 3295	}
 3296out:
 3297	cmd_free(h, c);
 3298	return rc;
 3299}
 3300
 3301static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
 3302		unsigned char scsi3addr[], u16 bmic_device_index,
 3303		struct bmic_identify_physical_device *buf, size_t bufsize)
 3304{
 3305	int rc = IO_OK;
 3306	struct CommandList *c;
 3307	struct ErrorInfo *ei;
 3308
 3309	c = cmd_alloc(h);
 3310	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
 3311		0, RAID_CTLR_LUNID, TYPE_CMD);
 3312	if (rc)
 3313		goto out;
 3314
 3315	c->Request.CDB[2] = bmic_device_index & 0xff;
 3316	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
 3317
 3318	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
 3319						DEFAULT_TIMEOUT);
 3320	ei = c->err_info;
 3321	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3322		hpsa_scsi_interpret_error(h, c);
 3323		rc = -1;
 3324	}
 3325out:
 3326	cmd_free(h, c);
 3327
 3328	return rc;
 3329}
 3330
 3331/*
 3332 * get enclosure information
 3333 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
 3334 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
 3335 * Uses id_physical_device to determine the box_index.
 3336 */
 3337static void hpsa_get_enclosure_info(struct ctlr_info *h,
 3338			unsigned char *scsi3addr,
 3339			struct ReportExtendedLUNdata *rlep, int rle_index,
 3340			struct hpsa_scsi_dev_t *encl_dev)
 3341{
 3342	int rc = -1;
 3343	struct CommandList *c = NULL;
 3344	struct ErrorInfo *ei = NULL;
 3345	struct bmic_sense_storage_box_params *bssbp = NULL;
 3346	struct bmic_identify_physical_device *id_phys = NULL;
 3347	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
 3348	u16 bmic_device_index = 0;
 3349
 3350	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
 3351
 3352	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
 3353		rc = IO_OK;
 3354		goto out;
 3355	}
 3356
 3357	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
 3358	if (!bssbp)
 3359		goto out;
 3360
 3361	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
 3362	if (!id_phys)
 3363		goto out;
 3364
 3365	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
 3366						id_phys, sizeof(*id_phys));
 3367	if (rc) {
 3368		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
 3369			__func__, encl_dev->external, bmic_device_index);
 3370		goto out;
 3371	}
 3372
 3373	c = cmd_alloc(h);
 3374
 3375	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
 3376			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
 3377
 3378	if (rc)
 3379		goto out;
 3380
 3381	if (id_phys->phys_connector[1] == 'E')
 3382		c->Request.CDB[5] = id_phys->box_index;
 3383	else
 3384		c->Request.CDB[5] = 0;
 3385
 3386	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
 3387						DEFAULT_TIMEOUT);
 3388	if (rc)
 3389		goto out;
 3390
 3391	ei = c->err_info;
 3392	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3393		rc = -1;
 3394		goto out;
 3395	}
 3396
 3397	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
 3398	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
 3399		bssbp->phys_connector, sizeof(bssbp->phys_connector));
 3400
 3401	rc = IO_OK;
 3402out:
 3403	kfree(bssbp);
 3404	kfree(id_phys);
 3405
 3406	if (c)
 3407		cmd_free(h, c);
 3408
 3409	if (rc != IO_OK)
 3410		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
 3411			"Error, could not get enclosure information\n");
 3412}
 3413
 3414static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
 3415						unsigned char *scsi3addr)
 3416{
 3417	struct ReportExtendedLUNdata *physdev;
 3418	u32 nphysicals;
 3419	u64 sa = 0;
 3420	int i;
 3421
 3422	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
 3423	if (!physdev)
 3424		return 0;
 3425
 3426	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
 3427		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
 3428		kfree(physdev);
 3429		return 0;
 3430	}
 3431	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
 3432
 3433	for (i = 0; i < nphysicals; i++)
 3434		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
 3435			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
 3436			break;
 3437		}
 3438
 3439	kfree(physdev);
 3440
 3441	return sa;
 3442}
 3443
 3444static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
 3445					struct hpsa_scsi_dev_t *dev)
 3446{
 3447	int rc;
 3448	u64 sa = 0;
 3449
 3450	if (is_hba_lunid(scsi3addr)) {
 3451		struct bmic_sense_subsystem_info *ssi;
 3452
 3453		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
 3454		if (!ssi)
 3455			return;
 3456
 3457		rc = hpsa_bmic_sense_subsystem_information(h,
 3458					scsi3addr, 0, ssi, sizeof(*ssi));
 3459		if (rc == 0) {
 3460			sa = get_unaligned_be64(ssi->primary_world_wide_id);
 3461			h->sas_address = sa;
 3462		}
 3463
 3464		kfree(ssi);
 3465	} else
 3466		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
 3467
 3468	dev->sas_address = sa;
 3469}
 3470
 3471/* Get a device id from inquiry page 0x83 */
 3472static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 3473	unsigned char scsi3addr[], u8 page)
 3474{
 3475	int rc;
 3476	int i;
 3477	int pages;
 3478	unsigned char *buf, bufsize;
 3479
 3480	buf = kzalloc(256, GFP_KERNEL);
 3481	if (!buf)
 3482		return false;
 3483
 3484	/* Get the size of the page list first */
 3485	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
 3486				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
 3487				buf, HPSA_VPD_HEADER_SZ);
 3488	if (rc != 0)
 3489		goto exit_unsupported;
 3490	pages = buf[3];
 3491	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
 3492		bufsize = pages + HPSA_VPD_HEADER_SZ;
 3493	else
 3494		bufsize = 255;
 3495
 3496	/* Get the whole VPD page list */
 3497	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
 3498				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
 3499				buf, bufsize);
 3500	if (rc != 0)
 3501		goto exit_unsupported;
 3502
 3503	pages = buf[3];
 3504	for (i = 1; i <= pages; i++)
 3505		if (buf[3 + i] == page)
 3506			goto exit_supported;
 3507exit_unsupported:
 3508	kfree(buf);
 3509	return false;
 3510exit_supported:
 3511	kfree(buf);
 3512	return true;
 3513}
 3514
 3515static void hpsa_get_ioaccel_status(struct ctlr_info *h,
 3516	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
 3517{
 3518	int rc;
 3519	unsigned char *buf;
 3520	u8 ioaccel_status;
 3521
 3522	this_device->offload_config = 0;
 3523	this_device->offload_enabled = 0;
 3524	this_device->offload_to_be_enabled = 0;
 3525
 3526	buf = kzalloc(64, GFP_KERNEL);
 3527	if (!buf)
 3528		return;
 3529	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
 3530		goto out;
 3531	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
 3532			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
 3533	if (rc != 0)
 3534		goto out;
 3535
 3536#define IOACCEL_STATUS_BYTE 4
 3537#define OFFLOAD_CONFIGURED_BIT 0x01
 3538#define OFFLOAD_ENABLED_BIT 0x02
 3539	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
 3540	this_device->offload_config =
 3541		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
 3542	if (this_device->offload_config) {
 3543		this_device->offload_enabled =
 3544			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
 3545		if (hpsa_get_raid_map(h, scsi3addr, this_device))
 3546			this_device->offload_enabled = 0;
 3547	}
 3548	this_device->offload_to_be_enabled = this_device->offload_enabled;
 3549out:
 3550	kfree(buf);
 3551	return;
 3552}
 3553
 3554/* Get the device id from inquiry page 0x83 */
 3555static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
 3556	unsigned char *device_id, int index, int buflen)
 3557{
 3558	int rc;
 3559	unsigned char *buf;
 3560
 3561	/* Does controller have VPD for device id? */
 3562	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
 3563		return 1; /* not supported */
 3564
 3565	buf = kzalloc(64, GFP_KERNEL);
 3566	if (!buf)
 3567		return -ENOMEM;
 3568
 3569	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
 3570					HPSA_VPD_LV_DEVICE_ID, buf, 64);
 3571	if (rc == 0) {
 3572		if (buflen > 16)
 3573			buflen = 16;
 3574		memcpy(device_id, &buf[8], buflen);
 3575	}
 3576
 3577	kfree(buf);
 3578
 3579	return rc; /*0 - got id,  otherwise, didn't */
 3580}
 3581
 3582static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
 3583		void *buf, int bufsize,
 3584		int extended_response)
 3585{
 3586	int rc = IO_OK;
 3587	struct CommandList *c;
 3588	unsigned char scsi3addr[8];
 3589	struct ErrorInfo *ei;
 3590
 3591	c = cmd_alloc(h);
 3592
 
 
 
 3593	/* address the controller */
 3594	memset(scsi3addr, 0, sizeof(scsi3addr));
 3595	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
 3596		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
 3597		rc = -1;
 3598		goto out;
 3599	}
 3600	if (extended_response)
 3601		c->Request.CDB[1] = extended_response;
 3602	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 3603					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
 3604	if (rc)
 3605		goto out;
 3606	ei = c->err_info;
 3607	if (ei->CommandStatus != 0 &&
 3608	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3609		hpsa_scsi_interpret_error(h, c);
 3610		rc = -1;
 3611	} else {
 3612		struct ReportLUNdata *rld = buf;
 3613
 3614		if (rld->extended_response_flag != extended_response) {
 3615			dev_err(&h->pdev->dev,
 3616				"report luns requested format %u, got %u\n",
 3617				extended_response,
 3618				rld->extended_response_flag);
 3619			rc = -1;
 3620		}
 3621	}
 3622out:
 3623	cmd_free(h, c);
 3624	return rc;
 3625}
 3626
 3627static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 3628		struct ReportExtendedLUNdata *buf, int bufsize)
 
 3629{
 3630	int rc;
 3631	struct ReportLUNdata *lbuf;
 3632
 3633	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
 3634				      HPSA_REPORT_PHYS_EXTENDED);
 3635	if (!rc || !hpsa_allow_any)
 3636		return rc;
 3637
 3638	/* REPORT PHYS EXTENDED is not supported */
 3639	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
 3640	if (!lbuf)
 3641		return -ENOMEM;
 3642
 3643	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
 3644	if (!rc) {
 3645		int i;
 3646		u32 nphys;
 3647
 3648		/* Copy ReportLUNdata header */
 3649		memcpy(buf, lbuf, 8);
 3650		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
 3651		for (i = 0; i < nphys; i++)
 3652			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
 3653	}
 3654	kfree(lbuf);
 3655	return rc;
 3656}
 3657
 3658static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
 3659		struct ReportLUNdata *buf, int bufsize)
 3660{
 3661	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
 3662}
 3663
 3664static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
 3665	int bus, int target, int lun)
 3666{
 3667	device->bus = bus;
 3668	device->target = target;
 3669	device->lun = lun;
 3670}
 3671
 3672/* Use VPD inquiry to get details of volume status */
 3673static int hpsa_get_volume_status(struct ctlr_info *h,
 3674					unsigned char scsi3addr[])
 3675{
 3676	int rc;
 3677	int status;
 3678	int size;
 3679	unsigned char *buf;
 3680
 3681	buf = kzalloc(64, GFP_KERNEL);
 3682	if (!buf)
 3683		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
 3684
 3685	/* Does controller have VPD for logical volume status? */
 3686	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
 
 3687		goto exit_failed;
 
 3688
 3689	/* Get the size of the VPD return buffer */
 3690	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
 3691					buf, HPSA_VPD_HEADER_SZ);
 3692	if (rc != 0)
 
 3693		goto exit_failed;
 
 3694	size = buf[3];
 3695
 3696	/* Now get the whole VPD buffer */
 3697	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
 3698					buf, size + HPSA_VPD_HEADER_SZ);
 3699	if (rc != 0)
 
 3700		goto exit_failed;
 
 3701	status = buf[4]; /* status byte */
 3702
 3703	kfree(buf);
 3704	return status;
 3705exit_failed:
 3706	kfree(buf);
 3707	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
 3708}
 3709
 3710/* Determine offline status of a volume.
 3711 * Return either:
 3712 *  0 (not offline)
 3713 *  0xff (offline for unknown reasons)
 3714 *  # (integer code indicating one of several NOT READY states
 3715 *     describing why a volume is to be kept offline)
 3716 */
 3717static int hpsa_volume_offline(struct ctlr_info *h,
 3718					unsigned char scsi3addr[])
 3719{
 3720	struct CommandList *c;
 3721	unsigned char *sense;
 3722	u8 sense_key, asc, ascq;
 3723	int sense_len;
 3724	int rc, ldstat = 0;
 3725	u16 cmd_status;
 3726	u8 scsi_status;
 3727#define ASC_LUN_NOT_READY 0x04
 3728#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
 3729#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
 3730
 3731	c = cmd_alloc(h);
 3732
 
 3733	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
 3734	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 3735					DEFAULT_TIMEOUT);
 3736	if (rc) {
 3737		cmd_free(h, c);
 3738		return 0;
 3739	}
 3740	sense = c->err_info->SenseInfo;
 3741	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 3742		sense_len = sizeof(c->err_info->SenseInfo);
 3743	else
 3744		sense_len = c->err_info->SenseLen;
 3745	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
 3746	cmd_status = c->err_info->CommandStatus;
 3747	scsi_status = c->err_info->ScsiStatus;
 3748	cmd_free(h, c);
 3749	/* Is the volume 'not ready'? */
 3750	if (cmd_status != CMD_TARGET_STATUS ||
 3751		scsi_status != SAM_STAT_CHECK_CONDITION ||
 3752		sense_key != NOT_READY ||
 3753		asc != ASC_LUN_NOT_READY)  {
 3754		return 0;
 3755	}
 3756
 3757	/* Determine the reason for not ready state */
 3758	ldstat = hpsa_get_volume_status(h, scsi3addr);
 3759
 3760	/* Keep volume offline in certain cases: */
 3761	switch (ldstat) {
 3762	case HPSA_LV_UNDERGOING_ERASE:
 3763	case HPSA_LV_NOT_AVAILABLE:
 3764	case HPSA_LV_UNDERGOING_RPI:
 3765	case HPSA_LV_PENDING_RPI:
 3766	case HPSA_LV_ENCRYPTED_NO_KEY:
 3767	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
 3768	case HPSA_LV_UNDERGOING_ENCRYPTION:
 3769	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
 3770	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
 3771		return ldstat;
 3772	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
 3773		/* If VPD status page isn't available,
 3774		 * use ASC/ASCQ to determine state
 3775		 */
 3776		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
 3777			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
 3778			return ldstat;
 3779		break;
 3780	default:
 3781		break;
 3782	}
 3783	return 0;
 3784}
 3785
 3786/*
 3787 * Find out if a logical device supports aborts by simply trying one.
 3788 * Smart Array may claim not to support aborts on logical drives, but
 3789 * if a MSA2000 * is connected, the drives on that will be presented
 3790 * by the Smart Array as logical drives, and aborts may be sent to
 3791 * those devices successfully.  So the simplest way to find out is
 3792 * to simply try an abort and see how the device responds.
 3793 */
 3794static int hpsa_device_supports_aborts(struct ctlr_info *h,
 3795					unsigned char *scsi3addr)
 3796{
 3797	struct CommandList *c;
 3798	struct ErrorInfo *ei;
 3799	int rc = 0;
 3800
 3801	u64 tag = (u64) -1; /* bogus tag */
 3802
 3803	/* Assume that physical devices support aborts */
 3804	if (!is_logical_dev_addr_mode(scsi3addr))
 3805		return 1;
 3806
 3807	c = cmd_alloc(h);
 3808
 3809	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
 3810	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 3811					DEFAULT_TIMEOUT);
 3812	/* no unmap needed here because no data xfer. */
 3813	ei = c->err_info;
 3814	switch (ei->CommandStatus) {
 3815	case CMD_INVALID:
 3816		rc = 0;
 3817		break;
 3818	case CMD_UNABORTABLE:
 3819	case CMD_ABORT_FAILED:
 3820		rc = 1;
 3821		break;
 3822	case CMD_TMF_STATUS:
 3823		rc = hpsa_evaluate_tmf_status(h, c);
 3824		break;
 3825	default:
 3826		rc = 0;
 3827		break;
 3828	}
 3829	cmd_free(h, c);
 3830	return rc;
 3831}
 3832
 3833static int hpsa_update_device_info(struct ctlr_info *h,
 3834	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
 3835	unsigned char *is_OBDR_device)
 3836{
 3837
 3838#define OBDR_SIG_OFFSET 43
 3839#define OBDR_TAPE_SIG "$DR-10"
 3840#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
 3841#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
 3842
 3843	unsigned char *inq_buff;
 3844	unsigned char *obdr_sig;
 3845	int rc = 0;
 3846
 3847	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
 3848	if (!inq_buff) {
 3849		rc = -ENOMEM;
 3850		goto bail_out;
 3851	}
 3852
 3853	/* Do an inquiry to the device to see what it is. */
 3854	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
 3855		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
 3856		/* Inquiry failed (msg printed already) */
 3857		dev_err(&h->pdev->dev,
 3858			"hpsa_update_device_info: inquiry failed\n");
 3859		rc = -EIO;
 3860		goto bail_out;
 3861	}
 3862
 3863	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
 3864	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
 3865
 3866	this_device->devtype = (inq_buff[0] & 0x1f);
 3867	memcpy(this_device->scsi3addr, scsi3addr, 8);
 3868	memcpy(this_device->vendor, &inq_buff[8],
 3869		sizeof(this_device->vendor));
 3870	memcpy(this_device->model, &inq_buff[16],
 3871		sizeof(this_device->model));
 3872	this_device->rev = inq_buff[2];
 3873	memset(this_device->device_id, 0,
 3874		sizeof(this_device->device_id));
 3875	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
 3876		sizeof(this_device->device_id)))
 3877		dev_err(&h->pdev->dev,
 3878			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
 3879			h->ctlr, __func__,
 3880			h->scsi_host->host_no,
 3881			this_device->target, this_device->lun,
 3882			scsi_device_type(this_device->devtype),
 3883			this_device->model);
 3884
 3885	if ((this_device->devtype == TYPE_DISK ||
 3886		this_device->devtype == TYPE_ZBC) &&
 3887		is_logical_dev_addr_mode(scsi3addr)) {
 3888		int volume_offline;
 3889
 3890		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
 3891		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
 3892			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
 3893		volume_offline = hpsa_volume_offline(h, scsi3addr);
 3894		if (volume_offline < 0 || volume_offline > 0xff)
 3895			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
 3896		this_device->volume_offline = volume_offline & 0xff;
 3897	} else {
 3898		this_device->raid_level = RAID_UNKNOWN;
 3899		this_device->offload_config = 0;
 3900		this_device->offload_enabled = 0;
 3901		this_device->offload_to_be_enabled = 0;
 3902		this_device->hba_ioaccel_enabled = 0;
 3903		this_device->volume_offline = 0;
 3904		this_device->queue_depth = h->nr_cmds;
 3905	}
 3906
 3907	if (is_OBDR_device) {
 3908		/* See if this is a One-Button-Disaster-Recovery device
 3909		 * by looking for "$DR-10" at offset 43 in inquiry data.
 3910		 */
 3911		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
 3912		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
 3913					strncmp(obdr_sig, OBDR_TAPE_SIG,
 3914						OBDR_SIG_LEN) == 0);
 3915	}
 
 3916	kfree(inq_buff);
 3917	return 0;
 3918
 3919bail_out:
 3920	kfree(inq_buff);
 3921	return rc;
 3922}
 3923
 3924static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
 3925			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
 
 
 
 
 
 
 
 
 
 3926{
 3927	unsigned long flags;
 3928	int rc, entry;
 3929	/*
 3930	 * See if this device supports aborts.  If we already know
 3931	 * the device, we already know if it supports aborts, otherwise
 3932	 * we have to find out if it supports aborts by trying one.
 3933	 */
 3934	spin_lock_irqsave(&h->devlock, flags);
 3935	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
 3936	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
 3937		entry >= 0 && entry < h->ndevices) {
 3938		dev->supports_aborts = h->dev[entry]->supports_aborts;
 3939		spin_unlock_irqrestore(&h->devlock, flags);
 3940	} else {
 3941		spin_unlock_irqrestore(&h->devlock, flags);
 3942		dev->supports_aborts =
 3943				hpsa_device_supports_aborts(h, scsi3addr);
 3944		if (dev->supports_aborts < 0)
 3945			dev->supports_aborts = 0;
 3946	}
 3947}
 3948
 3949/*
 3950 * Helper function to assign bus, target, lun mapping of devices.
 
 3951 * Logical drive target and lun are assigned at this time, but
 3952 * physical device lun and target assignment are deferred (assigned
 3953 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 3954*/
 3955static void figure_bus_target_lun(struct ctlr_info *h,
 3956	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
 3957{
 3958	u32 lunid = get_unaligned_le32(lunaddrbytes);
 3959
 3960	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
 3961		/* physical device, target and lun filled in later */
 3962		if (is_hba_lunid(lunaddrbytes)) {
 3963			int bus = HPSA_HBA_BUS;
 3964
 3965			if (!device->rev)
 3966				bus = HPSA_LEGACY_HBA_BUS;
 3967			hpsa_set_bus_target_lun(device,
 3968					bus, 0, lunid & 0x3fff);
 3969		} else
 3970			/* defer target, lun assignment for physical devices */
 3971			hpsa_set_bus_target_lun(device,
 3972					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
 3973		return;
 3974	}
 3975	/* It's a logical device */
 3976	if (device->external) {
 
 
 
 
 3977		hpsa_set_bus_target_lun(device,
 3978			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
 3979			lunid & 0x00ff);
 3980		return;
 3981	}
 3982	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
 3983				0, lunid & 0x3fff);
 3984}
 3985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3986
 3987/*
 3988 * Get address of physical disk used for an ioaccel2 mode command:
 3989 *	1. Extract ioaccel2 handle from the command.
 3990 *	2. Find a matching ioaccel2 handle from list of physical disks.
 3991 *	3. Return:
 3992 *		1 and set scsi3addr to address of matching physical
 3993 *		0 if no matching physical disk was found.
 3994 */
 3995static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
 3996	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
 3997{
 3998	struct io_accel2_cmd *c2 =
 3999			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
 4000	unsigned long flags;
 
 
 
 
 4001	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4002
 4003	spin_lock_irqsave(&h->devlock, flags);
 4004	for (i = 0; i < h->ndevices; i++)
 4005		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
 4006			memcpy(scsi3addr, h->dev[i]->scsi3addr,
 4007				sizeof(h->dev[i]->scsi3addr));
 4008			spin_unlock_irqrestore(&h->devlock, flags);
 4009			return 1;
 4010		}
 4011	spin_unlock_irqrestore(&h->devlock, flags);
 4012	return 0;
 4013}
 
 
 
 
 
 
 
 
 
 
 
 
 4014
 4015static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
 4016	int i, int nphysicals, int nlocal_logicals)
 4017{
 4018	/* In report logicals, local logicals are listed first,
 4019	* then any externals.
 4020	*/
 4021	int logicals_start = nphysicals + (raid_ctlr_position == 0);
 4022
 4023	if (i == raid_ctlr_position)
 4024		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4025
 4026	if (i < logicals_start)
 
 
 
 4027		return 0;
 4028
 4029	/* i is in logicals range, but still within local logicals */
 4030	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
 4031		return 0;
 4032
 4033	return 1; /* it's an external lun */
 4034}
 4035
 4036/*
 4037 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 4038 * logdev.  The number of luns in physdev and logdev are returned in
 4039 * *nphysicals and *nlogicals, respectively.
 4040 * Returns 0 on success, -1 otherwise.
 4041 */
 4042static int hpsa_gather_lun_info(struct ctlr_info *h,
 4043	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
 
 4044	struct ReportLUNdata *logdev, u32 *nlogicals)
 4045{
 4046	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
 
 
 
 
 
 
 
 
 
 
 
 4047		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
 4048		return -1;
 4049	}
 4050	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
 
 4051	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
 4052		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
 4053			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
 
 4054		*nphysicals = HPSA_MAX_PHYS_LUN;
 4055	}
 4056	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
 4057		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
 4058		return -1;
 4059	}
 4060	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
 4061	/* Reject Logicals in excess of our max capability. */
 4062	if (*nlogicals > HPSA_MAX_LUN) {
 4063		dev_warn(&h->pdev->dev,
 4064			"maximum logical LUNs (%d) exceeded.  "
 4065			"%d LUNs ignored.\n", HPSA_MAX_LUN,
 4066			*nlogicals - HPSA_MAX_LUN);
 4067			*nlogicals = HPSA_MAX_LUN;
 4068	}
 4069	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
 4070		dev_warn(&h->pdev->dev,
 4071			"maximum logical + physical LUNs (%d) exceeded. "
 4072			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
 4073			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
 4074		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
 4075	}
 4076	return 0;
 4077}
 4078
 4079static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
 4080	int i, int nphysicals, int nlogicals,
 4081	struct ReportExtendedLUNdata *physdev_list,
 4082	struct ReportLUNdata *logdev_list)
 4083{
 4084	/* Helper function, figure out where the LUN ID info is coming from
 4085	 * given index i, lists of physical and logical devices, where in
 4086	 * the list the raid controller is supposed to appear (first or last)
 4087	 */
 4088
 4089	int logicals_start = nphysicals + (raid_ctlr_position == 0);
 4090	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
 4091
 4092	if (i == raid_ctlr_position)
 4093		return RAID_CTLR_LUNID;
 4094
 4095	if (i < logicals_start)
 4096		return &physdev_list->LUN[i -
 4097				(raid_ctlr_position == 0)].lunid[0];
 4098
 4099	if (i < last_device)
 4100		return &logdev_list->LUN[i - nphysicals -
 4101			(raid_ctlr_position == 0)][0];
 4102	BUG();
 4103	return NULL;
 4104}
 4105
 4106/* get physical drive ioaccel handle and queue depth */
 4107static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
 4108		struct hpsa_scsi_dev_t *dev,
 4109		struct ReportExtendedLUNdata *rlep, int rle_index,
 4110		struct bmic_identify_physical_device *id_phys)
 4111{
 4112	int rc;
 4113	struct ext_report_lun_entry *rle;
 
 
 4114
 4115	/*
 4116	 * external targets don't support BMIC
 4117	 */
 4118	if (dev->external) {
 4119		dev->queue_depth = 7;
 4120		return;
 4121	}
 4122
 4123	rle = &rlep->LUN[rle_index];
 4124
 4125	dev->ioaccel_handle = rle->ioaccel_handle;
 4126	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
 4127		dev->hba_ioaccel_enabled = 1;
 4128	memset(id_phys, 0, sizeof(*id_phys));
 4129	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
 4130			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
 4131			sizeof(*id_phys));
 4132	if (!rc)
 4133		/* Reserve space for FW operations */
 4134#define DRIVE_CMDS_RESERVED_FOR_FW 2
 4135#define DRIVE_QUEUE_DEPTH 7
 4136		dev->queue_depth =
 4137			le16_to_cpu(id_phys->current_queue_depth_limit) -
 4138				DRIVE_CMDS_RESERVED_FOR_FW;
 4139	else
 4140		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
 4141}
 4142
 4143static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
 4144	struct ReportExtendedLUNdata *rlep, int rle_index,
 4145	struct bmic_identify_physical_device *id_phys)
 4146{
 4147	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
 4148
 4149	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
 4150		this_device->hba_ioaccel_enabled = 1;
 4151
 4152	memcpy(&this_device->active_path_index,
 4153		&id_phys->active_path_number,
 4154		sizeof(this_device->active_path_index));
 4155	memcpy(&this_device->path_map,
 4156		&id_phys->redundant_path_present_map,
 4157		sizeof(this_device->path_map));
 4158	memcpy(&this_device->box,
 4159		&id_phys->alternate_paths_phys_box_on_port,
 4160		sizeof(this_device->box));
 4161	memcpy(&this_device->phys_connector,
 4162		&id_phys->alternate_paths_phys_connector,
 4163		sizeof(this_device->phys_connector));
 4164	memcpy(&this_device->bay,
 4165		&id_phys->phys_bay_in_box,
 4166		sizeof(this_device->bay));
 4167}
 4168
 4169/* get number of local logical disks. */
 4170static int hpsa_set_local_logical_count(struct ctlr_info *h,
 4171	struct bmic_identify_controller *id_ctlr,
 4172	u32 *nlocals)
 4173{
 4174	int rc;
 4175
 4176	if (!id_ctlr) {
 4177		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
 4178			__func__);
 4179		return -ENOMEM;
 4180	}
 4181	memset(id_ctlr, 0, sizeof(*id_ctlr));
 4182	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
 4183	if (!rc)
 4184		if (id_ctlr->configured_logical_drive_count < 256)
 4185			*nlocals = id_ctlr->configured_logical_drive_count;
 4186		else
 4187			*nlocals = le16_to_cpu(
 4188					id_ctlr->extended_logical_unit_count);
 4189	else
 4190		*nlocals = -1;
 4191	return rc;
 4192}
 4193
 4194static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
 4195{
 4196	struct bmic_identify_physical_device *id_phys;
 4197	bool is_spare = false;
 4198	int rc;
 4199
 4200	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
 4201	if (!id_phys)
 4202		return false;
 4203
 4204	rc = hpsa_bmic_id_physical_device(h,
 4205					lunaddrbytes,
 4206					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
 4207					id_phys, sizeof(*id_phys));
 4208	if (rc == 0)
 4209		is_spare = (id_phys->more_flags >> 6) & 0x01;
 4210
 4211	kfree(id_phys);
 4212	return is_spare;
 4213}
 4214
 4215#define RPL_DEV_FLAG_NON_DISK                           0x1
 4216#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
 4217#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
 4218
 4219#define BMIC_DEVICE_TYPE_ENCLOSURE  6
 4220
 4221static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
 4222				struct ext_report_lun_entry *rle)
 4223{
 4224	u8 device_flags;
 4225	u8 device_type;
 4226
 4227	if (!MASKED_DEVICE(lunaddrbytes))
 4228		return false;
 4229
 4230	device_flags = rle->device_flags;
 4231	device_type = rle->device_type;
 4232
 4233	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
 4234		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
 4235			return false;
 4236		return true;
 4237	}
 4238
 4239	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
 4240		return false;
 4241
 4242	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
 4243		return false;
 4244
 4245	/*
 4246	 * Spares may be spun down, we do not want to
 4247	 * do an Inquiry to a RAID set spare drive as
 4248	 * that would have them spun up, that is a
 4249	 * performance hit because I/O to the RAID device
 4250	 * stops while the spin up occurs which can take
 4251	 * over 50 seconds.
 4252	 */
 4253	if (hpsa_is_disk_spare(h, lunaddrbytes))
 4254		return true;
 4255
 4256	return false;
 4257}
 4258
 4259static void hpsa_update_scsi_devices(struct ctlr_info *h)
 4260{
 4261	/* the idea here is we could get notified
 4262	 * that some devices have changed, so we do a report
 4263	 * physical luns and report logical luns cmd, and adjust
 4264	 * our list of devices accordingly.
 4265	 *
 4266	 * The scsi3addr's of devices won't change so long as the
 4267	 * adapter is not reset.  That means we can rescan and
 4268	 * tell which devices we already know about, vs. new
 4269	 * devices, vs.  disappearing devices.
 4270	 */
 4271	struct ReportExtendedLUNdata *physdev_list = NULL;
 4272	struct ReportLUNdata *logdev_list = NULL;
 4273	struct bmic_identify_physical_device *id_phys = NULL;
 4274	struct bmic_identify_controller *id_ctlr = NULL;
 4275	u32 nphysicals = 0;
 4276	u32 nlogicals = 0;
 4277	u32 nlocal_logicals = 0;
 4278	u32 ndev_allocated = 0;
 4279	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
 4280	int ncurrent = 0;
 
 4281	int i, n_ext_target_devs, ndevs_to_allocate;
 4282	int raid_ctlr_position;
 4283	bool physical_device;
 4284	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
 4285
 4286	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
 4287	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
 4288	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
 4289	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
 4290	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
 4291	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
 4292
 4293	if (!currentsd || !physdev_list || !logdev_list ||
 4294		!tmpdevice || !id_phys || !id_ctlr) {
 4295		dev_err(&h->pdev->dev, "out of memory\n");
 4296		goto out;
 4297	}
 4298	memset(lunzerobits, 0, sizeof(lunzerobits));
 4299
 4300	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
 4301
 4302	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
 4303			logdev_list, &nlogicals)) {
 4304		h->drv_req_rescan = 1;
 
 
 
 
 
 
 
 4305		goto out;
 4306	}
 4307
 4308	/* Set number of local logicals (non PTRAID) */
 4309	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
 4310		dev_warn(&h->pdev->dev,
 4311			"%s: Can't determine number of local logical devices.\n",
 4312			__func__);
 4313	}
 4314
 4315	/* We might see up to the maximum number of logical and physical disks
 4316	 * plus external target devices, and a device for the local RAID
 4317	 * controller.
 4318	 */
 4319	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
 4320
 4321	/* Allocate the per device structures */
 4322	for (i = 0; i < ndevs_to_allocate; i++) {
 4323		if (i >= HPSA_MAX_DEVICES) {
 4324			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
 4325				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
 4326				ndevs_to_allocate - HPSA_MAX_DEVICES);
 4327			break;
 4328		}
 4329
 4330		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
 4331		if (!currentsd[i]) {
 4332			h->drv_req_rescan = 1;
 
 4333			goto out;
 4334		}
 4335		ndev_allocated++;
 4336	}
 4337
 4338	if (is_scsi_rev_5(h))
 4339		raid_ctlr_position = 0;
 4340	else
 4341		raid_ctlr_position = nphysicals + nlogicals;
 4342
 4343	/* adjust our table of devices */
 4344	n_ext_target_devs = 0;
 4345	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
 4346		u8 *lunaddrbytes, is_OBDR = 0;
 4347		int rc = 0;
 4348		int phys_dev_index = i - (raid_ctlr_position == 0);
 4349		bool skip_device = false;
 4350
 4351		physical_device = i < nphysicals + (raid_ctlr_position == 0);
 4352
 4353		/* Figure out where the LUN ID info is coming from */
 4354		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
 4355			i, nphysicals, nlogicals, physdev_list, logdev_list);
 4356
 4357		/* Determine if this is a lun from an external target array */
 4358		tmpdevice->external =
 4359			figure_external_status(h, raid_ctlr_position, i,
 4360						nphysicals, nlocal_logicals);
 4361
 4362		/*
 4363		 * Skip over some devices such as a spare.
 4364		 */
 4365		if (!tmpdevice->external && physical_device) {
 4366			skip_device = hpsa_skip_device(h, lunaddrbytes,
 4367					&physdev_list->LUN[phys_dev_index]);
 4368			if (skip_device)
 4369				continue;
 4370		}
 4371
 4372		/* Get device type, vendor, model, device id */
 4373		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
 4374							&is_OBDR);
 4375		if (rc == -ENOMEM) {
 4376			dev_warn(&h->pdev->dev,
 4377				"Out of memory, rescan deferred.\n");
 4378			h->drv_req_rescan = 1;
 4379			goto out;
 4380		}
 4381		if (rc) {
 4382			dev_warn(&h->pdev->dev,
 4383				"Inquiry failed, skipping device.\n");
 4384			continue;
 4385		}
 4386
 4387		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
 4388		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
 4389		this_device = currentsd[ncurrent];
 4390
 4391		/* Turn on discovery_polling if there are ext target devices.
 4392		 * Event-based change notification is unreliable for those.
 
 
 
 
 4393		 */
 4394		if (!h->discovery_polling) {
 4395			if (tmpdevice->external) {
 4396				h->discovery_polling = 1;
 4397				dev_info(&h->pdev->dev,
 4398					"External target, activate discovery polling.\n");
 4399			}
 4400		}
 4401
 4402
 4403		*this_device = *tmpdevice;
 4404		this_device->physical_device = physical_device;
 4405
 4406		/*
 4407		 * Expose all devices except for physical devices that
 4408		 * are masked.
 4409		 */
 4410		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
 4411			this_device->expose_device = 0;
 4412		else
 4413			this_device->expose_device = 1;
 4414
 4415
 4416		/*
 4417		 * Get the SAS address for physical devices that are exposed.
 4418		 */
 4419		if (this_device->physical_device && this_device->expose_device)
 4420			hpsa_get_sas_address(h, lunaddrbytes, this_device);
 4421
 4422		switch (this_device->devtype) {
 4423		case TYPE_ROM:
 4424			/* We don't *really* support actual CD-ROM devices,
 4425			 * just "One Button Disaster Recovery" tape drive
 4426			 * which temporarily pretends to be a CD-ROM drive.
 4427			 * So we check that the device is really an OBDR tape
 4428			 * device by checking for "$DR-10" in bytes 43-48 of
 4429			 * the inquiry data.
 4430			 */
 4431			if (is_OBDR)
 4432				ncurrent++;
 4433			break;
 4434		case TYPE_DISK:
 4435		case TYPE_ZBC:
 4436			if (this_device->physical_device) {
 4437				/* The disk is in HBA mode. */
 4438				/* Never use RAID mapper in HBA mode. */
 4439				this_device->offload_enabled = 0;
 4440				hpsa_get_ioaccel_drive_info(h, this_device,
 4441					physdev_list, phys_dev_index, id_phys);
 4442				hpsa_get_path_info(this_device,
 4443					physdev_list, phys_dev_index, id_phys);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4444			}
 4445			ncurrent++;
 4446			break;
 4447		case TYPE_TAPE:
 4448		case TYPE_MEDIUM_CHANGER:
 4449			ncurrent++;
 4450			break;
 4451		case TYPE_ENCLOSURE:
 4452			if (!this_device->external)
 4453				hpsa_get_enclosure_info(h, lunaddrbytes,
 4454						physdev_list, phys_dev_index,
 4455						this_device);
 4456			ncurrent++;
 4457			break;
 4458		case TYPE_RAID:
 4459			/* Only present the Smartarray HBA as a RAID controller.
 4460			 * If it's a RAID controller other than the HBA itself
 4461			 * (an external RAID controller, MSA500 or similar)
 4462			 * don't present it.
 4463			 */
 4464			if (!is_hba_lunid(lunaddrbytes))
 4465				break;
 4466			ncurrent++;
 4467			break;
 4468		default:
 4469			break;
 4470		}
 4471		if (ncurrent >= HPSA_MAX_DEVICES)
 4472			break;
 4473	}
 4474
 4475	if (h->sas_host == NULL) {
 4476		int rc = 0;
 4477
 4478		rc = hpsa_add_sas_host(h);
 4479		if (rc) {
 4480			dev_warn(&h->pdev->dev,
 4481				"Could not add sas host %d\n", rc);
 4482			goto out;
 4483		}
 4484	}
 4485
 4486	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
 4487out:
 4488	kfree(tmpdevice);
 4489	for (i = 0; i < ndev_allocated; i++)
 4490		kfree(currentsd[i]);
 4491	kfree(currentsd);
 4492	kfree(physdev_list);
 4493	kfree(logdev_list);
 4494	kfree(id_ctlr);
 4495	kfree(id_phys);
 4496}
 4497
 4498static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
 4499				   struct scatterlist *sg)
 4500{
 4501	u64 addr64 = (u64) sg_dma_address(sg);
 4502	unsigned int len = sg_dma_len(sg);
 4503
 4504	desc->Addr = cpu_to_le64(addr64);
 4505	desc->Len = cpu_to_le32(len);
 4506	desc->Ext = 0;
 4507}
 4508
 4509/*
 4510 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 4511 * dma mapping  and fills in the scatter gather entries of the
 4512 * hpsa command, cp.
 4513 */
 4514static int hpsa_scatter_gather(struct ctlr_info *h,
 4515		struct CommandList *cp,
 4516		struct scsi_cmnd *cmd)
 4517{
 
 4518	struct scatterlist *sg;
 4519	int use_sg, i, sg_limit, chained, last_sg;
 
 4520	struct SGDescriptor *curr_sg;
 4521
 4522	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
 4523
 4524	use_sg = scsi_dma_map(cmd);
 4525	if (use_sg < 0)
 4526		return use_sg;
 4527
 4528	if (!use_sg)
 4529		goto sglist_finished;
 4530
 4531	/*
 4532	 * If the number of entries is greater than the max for a single list,
 4533	 * then we have a chained list; we will set up all but one entry in the
 4534	 * first list (the last entry is saved for link information);
 4535	 * otherwise, we don't have a chained list and we'll set up at each of
 4536	 * the entries in the one list.
 4537	 */
 4538	curr_sg = cp->SG;
 4539	chained = use_sg > h->max_cmd_sg_entries;
 4540	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
 4541	last_sg = scsi_sg_count(cmd) - 1;
 4542	scsi_for_each_sg(cmd, sg, sg_limit, i) {
 4543		hpsa_set_sg_descriptor(curr_sg, sg);
 
 
 
 
 
 
 
 
 
 
 4544		curr_sg++;
 4545	}
 4546
 4547	if (chained) {
 4548		/*
 4549		 * Continue with the chained list.  Set curr_sg to the chained
 4550		 * list.  Modify the limit to the total count less the entries
 4551		 * we've already set up.  Resume the scan at the list entry
 4552		 * where the previous loop left off.
 4553		 */
 4554		curr_sg = h->cmd_sg_list[cp->cmdindex];
 4555		sg_limit = use_sg - sg_limit;
 4556		for_each_sg(sg, sg, sg_limit, i) {
 4557			hpsa_set_sg_descriptor(curr_sg, sg);
 4558			curr_sg++;
 4559		}
 4560	}
 4561
 4562	/* Back the pointer up to the last entry and mark it as "last". */
 4563	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
 4564
 4565	if (use_sg + chained > h->maxSG)
 4566		h->maxSG = use_sg + chained;
 4567
 4568	if (chained) {
 4569		cp->Header.SGList = h->max_cmd_sg_entries;
 4570		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
 4571		if (hpsa_map_sg_chain_block(h, cp)) {
 4572			scsi_dma_unmap(cmd);
 4573			return -1;
 4574		}
 4575		return 0;
 4576	}
 4577
 4578sglist_finished:
 4579
 4580	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
 4581	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
 4582	return 0;
 4583}
 4584
 4585#define IO_ACCEL_INELIGIBLE (1)
 4586static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
 4587{
 4588	int is_write = 0;
 4589	u32 block;
 4590	u32 block_cnt;
 4591
 4592	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
 4593	switch (cdb[0]) {
 4594	case WRITE_6:
 4595	case WRITE_12:
 4596		is_write = 1;
 4597	case READ_6:
 4598	case READ_12:
 4599		if (*cdb_len == 6) {
 4600			block = (((cdb[1] & 0x1F) << 16) |
 4601				(cdb[2] << 8) |
 4602				cdb[3]);
 4603			block_cnt = cdb[4];
 4604			if (block_cnt == 0)
 4605				block_cnt = 256;
 4606		} else {
 4607			BUG_ON(*cdb_len != 12);
 4608			block = get_unaligned_be32(&cdb[2]);
 4609			block_cnt = get_unaligned_be32(&cdb[6]);
 
 
 
 
 
 
 
 4610		}
 4611		if (block_cnt > 0xffff)
 4612			return IO_ACCEL_INELIGIBLE;
 4613
 4614		cdb[0] = is_write ? WRITE_10 : READ_10;
 4615		cdb[1] = 0;
 4616		cdb[2] = (u8) (block >> 24);
 4617		cdb[3] = (u8) (block >> 16);
 4618		cdb[4] = (u8) (block >> 8);
 4619		cdb[5] = (u8) (block);
 4620		cdb[6] = 0;
 4621		cdb[7] = (u8) (block_cnt >> 8);
 4622		cdb[8] = (u8) (block_cnt);
 4623		cdb[9] = 0;
 4624		*cdb_len = 10;
 4625		break;
 4626	}
 4627	return 0;
 4628}
 4629
 4630static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
 4631	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 4632	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
 4633{
 4634	struct scsi_cmnd *cmd = c->scsi_cmd;
 4635	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
 4636	unsigned int len;
 4637	unsigned int total_len = 0;
 4638	struct scatterlist *sg;
 4639	u64 addr64;
 4640	int use_sg, i;
 4641	struct SGDescriptor *curr_sg;
 4642	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
 4643
 4644	/* TODO: implement chaining support */
 4645	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
 4646		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4647		return IO_ACCEL_INELIGIBLE;
 4648	}
 4649
 4650	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
 4651
 4652	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
 4653		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4654		return IO_ACCEL_INELIGIBLE;
 4655	}
 4656
 4657	c->cmd_type = CMD_IOACCEL1;
 4658
 4659	/* Adjust the DMA address to point to the accelerated command buffer */
 4660	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
 4661				(c->cmdindex * sizeof(*cp));
 4662	BUG_ON(c->busaddr & 0x0000007F);
 4663
 4664	use_sg = scsi_dma_map(cmd);
 4665	if (use_sg < 0) {
 4666		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4667		return use_sg;
 4668	}
 4669
 4670	if (use_sg) {
 4671		curr_sg = cp->SG;
 4672		scsi_for_each_sg(cmd, sg, use_sg, i) {
 4673			addr64 = (u64) sg_dma_address(sg);
 4674			len  = sg_dma_len(sg);
 4675			total_len += len;
 4676			curr_sg->Addr = cpu_to_le64(addr64);
 4677			curr_sg->Len = cpu_to_le32(len);
 4678			curr_sg->Ext = cpu_to_le32(0);
 
 
 
 
 
 
 4679			curr_sg++;
 4680		}
 4681		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
 4682
 4683		switch (cmd->sc_data_direction) {
 4684		case DMA_TO_DEVICE:
 4685			control |= IOACCEL1_CONTROL_DATA_OUT;
 4686			break;
 4687		case DMA_FROM_DEVICE:
 4688			control |= IOACCEL1_CONTROL_DATA_IN;
 4689			break;
 4690		case DMA_NONE:
 4691			control |= IOACCEL1_CONTROL_NODATAXFER;
 4692			break;
 4693		default:
 4694			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
 4695			cmd->sc_data_direction);
 4696			BUG();
 4697			break;
 4698		}
 4699	} else {
 4700		control |= IOACCEL1_CONTROL_NODATAXFER;
 4701	}
 4702
 4703	c->Header.SGList = use_sg;
 4704	/* Fill out the command structure to submit */
 4705	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
 4706	cp->transfer_len = cpu_to_le32(total_len);
 4707	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
 4708			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
 4709	cp->control = cpu_to_le32(control);
 4710	memcpy(cp->CDB, cdb, cdb_len);
 4711	memcpy(cp->CISS_LUN, scsi3addr, 8);
 4712	/* Tag was already set at init time. */
 4713	enqueue_cmd_and_start_io(h, c);
 4714	return 0;
 4715}
 4716
 4717/*
 4718 * Queue a command directly to a device behind the controller using the
 4719 * I/O accelerator path.
 4720 */
 4721static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
 4722	struct CommandList *c)
 4723{
 4724	struct scsi_cmnd *cmd = c->scsi_cmd;
 4725	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 4726
 4727	if (!dev)
 4728		return -1;
 4729
 4730	c->phys_disk = dev;
 4731
 4732	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
 4733		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
 4734}
 4735
 4736/*
 4737 * Set encryption parameters for the ioaccel2 request
 4738 */
 4739static void set_encrypt_ioaccel2(struct ctlr_info *h,
 4740	struct CommandList *c, struct io_accel2_cmd *cp)
 4741{
 4742	struct scsi_cmnd *cmd = c->scsi_cmd;
 4743	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 4744	struct raid_map_data *map = &dev->raid_map;
 4745	u64 first_block;
 4746
 
 
 4747	/* Are we doing encryption on this device */
 4748	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
 4749		return;
 4750	/* Set the data encryption key index. */
 4751	cp->dekindex = map->dekindex;
 4752
 4753	/* Set the encryption enable flag, encoded into direction field. */
 4754	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
 4755
 4756	/* Set encryption tweak values based on logical block address
 4757	 * If block size is 512, tweak value is LBA.
 4758	 * For other block sizes, tweak is (LBA * block size)/ 512)
 4759	 */
 4760	switch (cmd->cmnd[0]) {
 4761	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
 
 4762	case READ_6:
 4763	case WRITE_6:
 4764		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
 4765				(cmd->cmnd[2] << 8) |
 4766				cmd->cmnd[3]);
 
 
 
 
 
 
 
 
 
 4767		break;
 4768	case WRITE_10:
 4769	case READ_10:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4770	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
 4771	case WRITE_12:
 4772	case READ_12:
 4773		first_block = get_unaligned_be32(&cmd->cmnd[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4774		break;
 4775	case WRITE_16:
 4776	case READ_16:
 4777		first_block = get_unaligned_be64(&cmd->cmnd[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4778		break;
 4779	default:
 4780		dev_err(&h->pdev->dev,
 4781			"ERROR: %s: size (0x%x) not supported for encryption\n",
 4782			__func__, cmd->cmnd[0]);
 4783		BUG();
 4784		break;
 4785	}
 4786
 4787	if (le32_to_cpu(map->volume_blk_size) != 512)
 4788		first_block = first_block *
 4789				le32_to_cpu(map->volume_blk_size)/512;
 4790
 4791	cp->tweak_lower = cpu_to_le32(first_block);
 4792	cp->tweak_upper = cpu_to_le32(first_block >> 32);
 4793}
 4794
 4795static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
 4796	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 4797	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
 4798{
 4799	struct scsi_cmnd *cmd = c->scsi_cmd;
 4800	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
 4801	struct ioaccel2_sg_element *curr_sg;
 4802	int use_sg, i;
 4803	struct scatterlist *sg;
 4804	u64 addr64;
 4805	u32 len;
 4806	u32 total_len = 0;
 4807
 4808	if (!cmd->device)
 4809		return -1;
 4810
 4811	if (!cmd->device->hostdata)
 4812		return -1;
 4813
 4814	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
 4815
 4816	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
 4817		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4818		return IO_ACCEL_INELIGIBLE;
 4819	}
 4820
 4821	c->cmd_type = CMD_IOACCEL2;
 4822	/* Adjust the DMA address to point to the accelerated command buffer */
 4823	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
 4824				(c->cmdindex * sizeof(*cp));
 4825	BUG_ON(c->busaddr & 0x0000007F);
 4826
 4827	memset(cp, 0, sizeof(*cp));
 4828	cp->IU_type = IOACCEL2_IU_TYPE;
 4829
 4830	use_sg = scsi_dma_map(cmd);
 4831	if (use_sg < 0) {
 4832		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4833		return use_sg;
 4834	}
 4835
 4836	if (use_sg) {
 
 4837		curr_sg = cp->sg;
 4838		if (use_sg > h->ioaccel_maxsg) {
 4839			addr64 = le64_to_cpu(
 4840				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
 4841			curr_sg->address = cpu_to_le64(addr64);
 4842			curr_sg->length = 0;
 4843			curr_sg->reserved[0] = 0;
 4844			curr_sg->reserved[1] = 0;
 4845			curr_sg->reserved[2] = 0;
 4846			curr_sg->chain_indicator = 0x80;
 4847
 4848			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
 4849		}
 4850		scsi_for_each_sg(cmd, sg, use_sg, i) {
 4851			addr64 = (u64) sg_dma_address(sg);
 4852			len  = sg_dma_len(sg);
 4853			total_len += len;
 4854			curr_sg->address = cpu_to_le64(addr64);
 4855			curr_sg->length = cpu_to_le32(len);
 4856			curr_sg->reserved[0] = 0;
 4857			curr_sg->reserved[1] = 0;
 4858			curr_sg->reserved[2] = 0;
 4859			curr_sg->chain_indicator = 0;
 4860			curr_sg++;
 4861		}
 4862
 4863		switch (cmd->sc_data_direction) {
 4864		case DMA_TO_DEVICE:
 4865			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 4866			cp->direction |= IOACCEL2_DIR_DATA_OUT;
 4867			break;
 4868		case DMA_FROM_DEVICE:
 4869			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 4870			cp->direction |= IOACCEL2_DIR_DATA_IN;
 4871			break;
 4872		case DMA_NONE:
 4873			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 4874			cp->direction |= IOACCEL2_DIR_NO_DATA;
 4875			break;
 4876		default:
 4877			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
 4878				cmd->sc_data_direction);
 4879			BUG();
 4880			break;
 4881		}
 4882	} else {
 4883		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 4884		cp->direction |= IOACCEL2_DIR_NO_DATA;
 4885	}
 4886
 4887	/* Set encryption parameters, if necessary */
 4888	set_encrypt_ioaccel2(h, c, cp);
 4889
 4890	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
 4891	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
 
 4892	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
 4893
 
 
 
 4894	cp->data_len = cpu_to_le32(total_len);
 4895	cp->err_ptr = cpu_to_le64(c->busaddr +
 4896			offsetof(struct io_accel2_cmd, error_data));
 4897	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
 4898
 4899	/* fill in sg elements */
 4900	if (use_sg > h->ioaccel_maxsg) {
 4901		cp->sg_count = 1;
 4902		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
 4903		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
 4904			atomic_dec(&phys_disk->ioaccel_cmds_out);
 4905			scsi_dma_unmap(cmd);
 4906			return -1;
 4907		}
 4908	} else
 4909		cp->sg_count = (u8) use_sg;
 4910
 4911	enqueue_cmd_and_start_io(h, c);
 4912	return 0;
 4913}
 4914
 4915/*
 4916 * Queue a command to the correct I/O accelerator path.
 4917 */
 4918static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 4919	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 4920	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
 4921{
 4922	if (!c->scsi_cmd->device)
 4923		return -1;
 4924
 4925	if (!c->scsi_cmd->device->hostdata)
 4926		return -1;
 4927
 4928	/* Try to honor the device's queue depth */
 4929	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
 4930					phys_disk->queue_depth) {
 4931		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4932		return IO_ACCEL_INELIGIBLE;
 4933	}
 4934	if (h->transMethod & CFGTBL_Trans_io_accel1)
 4935		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
 4936						cdb, cdb_len, scsi3addr,
 4937						phys_disk);
 4938	else
 4939		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
 4940						cdb, cdb_len, scsi3addr,
 4941						phys_disk);
 4942}
 4943
 4944static void raid_map_helper(struct raid_map_data *map,
 4945		int offload_to_mirror, u32 *map_index, u32 *current_group)
 4946{
 4947	if (offload_to_mirror == 0)  {
 4948		/* use physical disk in the first mirrored group. */
 4949		*map_index %= le16_to_cpu(map->data_disks_per_row);
 4950		return;
 4951	}
 4952	do {
 4953		/* determine mirror group that *map_index indicates */
 4954		*current_group = *map_index /
 4955			le16_to_cpu(map->data_disks_per_row);
 4956		if (offload_to_mirror == *current_group)
 4957			continue;
 4958		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
 4959			/* select map index from next group */
 4960			*map_index += le16_to_cpu(map->data_disks_per_row);
 4961			(*current_group)++;
 4962		} else {
 4963			/* select map index from first group */
 4964			*map_index %= le16_to_cpu(map->data_disks_per_row);
 4965			*current_group = 0;
 4966		}
 4967	} while (offload_to_mirror != *current_group);
 4968}
 4969
 4970/*
 4971 * Attempt to perform offload RAID mapping for a logical volume I/O.
 4972 */
 4973static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
 4974	struct CommandList *c)
 4975{
 4976	struct scsi_cmnd *cmd = c->scsi_cmd;
 4977	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 4978	struct raid_map_data *map = &dev->raid_map;
 4979	struct raid_map_disk_data *dd = &map->data[0];
 4980	int is_write = 0;
 4981	u32 map_index;
 4982	u64 first_block, last_block;
 4983	u32 block_cnt;
 4984	u32 blocks_per_row;
 4985	u64 first_row, last_row;
 4986	u32 first_row_offset, last_row_offset;
 4987	u32 first_column, last_column;
 4988	u64 r0_first_row, r0_last_row;
 4989	u32 r5or6_blocks_per_row;
 4990	u64 r5or6_first_row, r5or6_last_row;
 4991	u32 r5or6_first_row_offset, r5or6_last_row_offset;
 4992	u32 r5or6_first_column, r5or6_last_column;
 4993	u32 total_disks_per_row;
 4994	u32 stripesize;
 4995	u32 first_group, last_group, current_group;
 4996	u32 map_row;
 4997	u32 disk_handle;
 4998	u64 disk_block;
 4999	u32 disk_block_cnt;
 5000	u8 cdb[16];
 5001	u8 cdb_len;
 5002	u16 strip_size;
 5003#if BITS_PER_LONG == 32
 5004	u64 tmpdiv;
 5005#endif
 5006	int offload_to_mirror;
 5007
 5008	if (!dev)
 5009		return -1;
 5010
 5011	/* check for valid opcode, get LBA and block count */
 5012	switch (cmd->cmnd[0]) {
 5013	case WRITE_6:
 5014		is_write = 1;
 5015	case READ_6:
 5016		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
 5017				(cmd->cmnd[2] << 8) |
 5018				cmd->cmnd[3]);
 5019		block_cnt = cmd->cmnd[4];
 5020		if (block_cnt == 0)
 5021			block_cnt = 256;
 5022		break;
 5023	case WRITE_10:
 5024		is_write = 1;
 5025	case READ_10:
 5026		first_block =
 5027			(((u64) cmd->cmnd[2]) << 24) |
 5028			(((u64) cmd->cmnd[3]) << 16) |
 5029			(((u64) cmd->cmnd[4]) << 8) |
 5030			cmd->cmnd[5];
 5031		block_cnt =
 5032			(((u32) cmd->cmnd[7]) << 8) |
 5033			cmd->cmnd[8];
 5034		break;
 5035	case WRITE_12:
 5036		is_write = 1;
 5037	case READ_12:
 5038		first_block =
 5039			(((u64) cmd->cmnd[2]) << 24) |
 5040			(((u64) cmd->cmnd[3]) << 16) |
 5041			(((u64) cmd->cmnd[4]) << 8) |
 5042			cmd->cmnd[5];
 5043		block_cnt =
 5044			(((u32) cmd->cmnd[6]) << 24) |
 5045			(((u32) cmd->cmnd[7]) << 16) |
 5046			(((u32) cmd->cmnd[8]) << 8) |
 5047		cmd->cmnd[9];
 5048		break;
 5049	case WRITE_16:
 5050		is_write = 1;
 5051	case READ_16:
 5052		first_block =
 5053			(((u64) cmd->cmnd[2]) << 56) |
 5054			(((u64) cmd->cmnd[3]) << 48) |
 5055			(((u64) cmd->cmnd[4]) << 40) |
 5056			(((u64) cmd->cmnd[5]) << 32) |
 5057			(((u64) cmd->cmnd[6]) << 24) |
 5058			(((u64) cmd->cmnd[7]) << 16) |
 5059			(((u64) cmd->cmnd[8]) << 8) |
 5060			cmd->cmnd[9];
 5061		block_cnt =
 5062			(((u32) cmd->cmnd[10]) << 24) |
 5063			(((u32) cmd->cmnd[11]) << 16) |
 5064			(((u32) cmd->cmnd[12]) << 8) |
 5065			cmd->cmnd[13];
 5066		break;
 5067	default:
 5068		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
 5069	}
 
 5070	last_block = first_block + block_cnt - 1;
 5071
 5072	/* check for write to non-RAID-0 */
 5073	if (is_write && dev->raid_level != 0)
 5074		return IO_ACCEL_INELIGIBLE;
 5075
 5076	/* check for invalid block or wraparound */
 5077	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
 5078		last_block < first_block)
 5079		return IO_ACCEL_INELIGIBLE;
 5080
 5081	/* calculate stripe information for the request */
 5082	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
 5083				le16_to_cpu(map->strip_size);
 5084	strip_size = le16_to_cpu(map->strip_size);
 5085#if BITS_PER_LONG == 32
 5086	tmpdiv = first_block;
 5087	(void) do_div(tmpdiv, blocks_per_row);
 5088	first_row = tmpdiv;
 5089	tmpdiv = last_block;
 5090	(void) do_div(tmpdiv, blocks_per_row);
 5091	last_row = tmpdiv;
 5092	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
 5093	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
 5094	tmpdiv = first_row_offset;
 5095	(void) do_div(tmpdiv, strip_size);
 5096	first_column = tmpdiv;
 5097	tmpdiv = last_row_offset;
 5098	(void) do_div(tmpdiv, strip_size);
 5099	last_column = tmpdiv;
 5100#else
 5101	first_row = first_block / blocks_per_row;
 5102	last_row = last_block / blocks_per_row;
 5103	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
 5104	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
 5105	first_column = first_row_offset / strip_size;
 5106	last_column = last_row_offset / strip_size;
 5107#endif
 5108
 5109	/* if this isn't a single row/column then give to the controller */
 5110	if ((first_row != last_row) || (first_column != last_column))
 5111		return IO_ACCEL_INELIGIBLE;
 5112
 5113	/* proceeding with driver mapping */
 5114	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
 5115				le16_to_cpu(map->metadata_disks_per_row);
 5116	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
 5117				le16_to_cpu(map->row_cnt);
 5118	map_index = (map_row * total_disks_per_row) + first_column;
 5119
 5120	switch (dev->raid_level) {
 5121	case HPSA_RAID_0:
 5122		break; /* nothing special to do */
 5123	case HPSA_RAID_1:
 5124		/* Handles load balance across RAID 1 members.
 5125		 * (2-drive R1 and R10 with even # of drives.)
 5126		 * Appropriate for SSDs, not optimal for HDDs
 5127		 */
 5128		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
 5129		if (dev->offload_to_mirror)
 5130			map_index += le16_to_cpu(map->data_disks_per_row);
 5131		dev->offload_to_mirror = !dev->offload_to_mirror;
 5132		break;
 5133	case HPSA_RAID_ADM:
 5134		/* Handles N-way mirrors  (R1-ADM)
 5135		 * and R10 with # of drives divisible by 3.)
 5136		 */
 5137		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
 5138
 5139		offload_to_mirror = dev->offload_to_mirror;
 5140		raid_map_helper(map, offload_to_mirror,
 5141				&map_index, &current_group);
 5142		/* set mirror group to use next time */
 5143		offload_to_mirror =
 5144			(offload_to_mirror >=
 5145			le16_to_cpu(map->layout_map_count) - 1)
 5146			? 0 : offload_to_mirror + 1;
 
 
 
 
 
 5147		dev->offload_to_mirror = offload_to_mirror;
 5148		/* Avoid direct use of dev->offload_to_mirror within this
 5149		 * function since multiple threads might simultaneously
 5150		 * increment it beyond the range of dev->layout_map_count -1.
 5151		 */
 5152		break;
 5153	case HPSA_RAID_5:
 5154	case HPSA_RAID_6:
 5155		if (le16_to_cpu(map->layout_map_count) <= 1)
 5156			break;
 5157
 5158		/* Verify first and last block are in same RAID group */
 5159		r5or6_blocks_per_row =
 5160			le16_to_cpu(map->strip_size) *
 5161			le16_to_cpu(map->data_disks_per_row);
 5162		BUG_ON(r5or6_blocks_per_row == 0);
 5163		stripesize = r5or6_blocks_per_row *
 5164			le16_to_cpu(map->layout_map_count);
 5165#if BITS_PER_LONG == 32
 5166		tmpdiv = first_block;
 5167		first_group = do_div(tmpdiv, stripesize);
 5168		tmpdiv = first_group;
 5169		(void) do_div(tmpdiv, r5or6_blocks_per_row);
 5170		first_group = tmpdiv;
 5171		tmpdiv = last_block;
 5172		last_group = do_div(tmpdiv, stripesize);
 5173		tmpdiv = last_group;
 5174		(void) do_div(tmpdiv, r5or6_blocks_per_row);
 5175		last_group = tmpdiv;
 5176#else
 5177		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
 5178		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
 5179#endif
 5180		if (first_group != last_group)
 5181			return IO_ACCEL_INELIGIBLE;
 5182
 5183		/* Verify request is in a single row of RAID 5/6 */
 5184#if BITS_PER_LONG == 32
 5185		tmpdiv = first_block;
 5186		(void) do_div(tmpdiv, stripesize);
 5187		first_row = r5or6_first_row = r0_first_row = tmpdiv;
 5188		tmpdiv = last_block;
 5189		(void) do_div(tmpdiv, stripesize);
 5190		r5or6_last_row = r0_last_row = tmpdiv;
 5191#else
 5192		first_row = r5or6_first_row = r0_first_row =
 5193						first_block / stripesize;
 5194		r5or6_last_row = r0_last_row = last_block / stripesize;
 5195#endif
 5196		if (r5or6_first_row != r5or6_last_row)
 5197			return IO_ACCEL_INELIGIBLE;
 5198
 5199
 5200		/* Verify request is in a single column */
 5201#if BITS_PER_LONG == 32
 5202		tmpdiv = first_block;
 5203		first_row_offset = do_div(tmpdiv, stripesize);
 5204		tmpdiv = first_row_offset;
 5205		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
 5206		r5or6_first_row_offset = first_row_offset;
 5207		tmpdiv = last_block;
 5208		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
 5209		tmpdiv = r5or6_last_row_offset;
 5210		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
 5211		tmpdiv = r5or6_first_row_offset;
 5212		(void) do_div(tmpdiv, map->strip_size);
 5213		first_column = r5or6_first_column = tmpdiv;
 5214		tmpdiv = r5or6_last_row_offset;
 5215		(void) do_div(tmpdiv, map->strip_size);
 5216		r5or6_last_column = tmpdiv;
 5217#else
 5218		first_row_offset = r5or6_first_row_offset =
 5219			(u32)((first_block % stripesize) %
 5220						r5or6_blocks_per_row);
 5221
 5222		r5or6_last_row_offset =
 5223			(u32)((last_block % stripesize) %
 5224						r5or6_blocks_per_row);
 5225
 5226		first_column = r5or6_first_column =
 5227			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
 5228		r5or6_last_column =
 5229			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
 5230#endif
 5231		if (r5or6_first_column != r5or6_last_column)
 5232			return IO_ACCEL_INELIGIBLE;
 5233
 5234		/* Request is eligible */
 5235		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
 5236			le16_to_cpu(map->row_cnt);
 5237
 5238		map_index = (first_group *
 5239			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
 5240			(map_row * total_disks_per_row) + first_column;
 5241		break;
 5242	default:
 5243		return IO_ACCEL_INELIGIBLE;
 5244	}
 5245
 5246	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
 5247		return IO_ACCEL_INELIGIBLE;
 5248
 5249	c->phys_disk = dev->phys_disk[map_index];
 5250	if (!c->phys_disk)
 5251		return IO_ACCEL_INELIGIBLE;
 5252
 5253	disk_handle = dd[map_index].ioaccel_handle;
 5254	disk_block = le64_to_cpu(map->disk_starting_blk) +
 5255			first_row * le16_to_cpu(map->strip_size) +
 5256			(first_row_offset - first_column *
 5257			le16_to_cpu(map->strip_size));
 5258	disk_block_cnt = block_cnt;
 5259
 5260	/* handle differing logical/physical block sizes */
 5261	if (map->phys_blk_shift) {
 5262		disk_block <<= map->phys_blk_shift;
 5263		disk_block_cnt <<= map->phys_blk_shift;
 5264	}
 5265	BUG_ON(disk_block_cnt > 0xffff);
 5266
 5267	/* build the new CDB for the physical disk I/O */
 5268	if (disk_block > 0xffffffff) {
 5269		cdb[0] = is_write ? WRITE_16 : READ_16;
 5270		cdb[1] = 0;
 5271		cdb[2] = (u8) (disk_block >> 56);
 5272		cdb[3] = (u8) (disk_block >> 48);
 5273		cdb[4] = (u8) (disk_block >> 40);
 5274		cdb[5] = (u8) (disk_block >> 32);
 5275		cdb[6] = (u8) (disk_block >> 24);
 5276		cdb[7] = (u8) (disk_block >> 16);
 5277		cdb[8] = (u8) (disk_block >> 8);
 5278		cdb[9] = (u8) (disk_block);
 5279		cdb[10] = (u8) (disk_block_cnt >> 24);
 5280		cdb[11] = (u8) (disk_block_cnt >> 16);
 5281		cdb[12] = (u8) (disk_block_cnt >> 8);
 5282		cdb[13] = (u8) (disk_block_cnt);
 5283		cdb[14] = 0;
 5284		cdb[15] = 0;
 5285		cdb_len = 16;
 5286	} else {
 5287		cdb[0] = is_write ? WRITE_10 : READ_10;
 5288		cdb[1] = 0;
 5289		cdb[2] = (u8) (disk_block >> 24);
 5290		cdb[3] = (u8) (disk_block >> 16);
 5291		cdb[4] = (u8) (disk_block >> 8);
 5292		cdb[5] = (u8) (disk_block);
 5293		cdb[6] = 0;
 5294		cdb[7] = (u8) (disk_block_cnt >> 8);
 5295		cdb[8] = (u8) (disk_block_cnt);
 5296		cdb[9] = 0;
 5297		cdb_len = 10;
 5298	}
 5299	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
 5300						dev->scsi3addr,
 5301						dev->phys_disk[map_index]);
 5302}
 5303
 5304/*
 5305 * Submit commands down the "normal" RAID stack path
 5306 * All callers to hpsa_ciss_submit must check lockup_detected
 5307 * beforehand, before (opt.) and after calling cmd_alloc
 5308 */
 5309static int hpsa_ciss_submit(struct ctlr_info *h,
 5310	struct CommandList *c, struct scsi_cmnd *cmd,
 5311	unsigned char scsi3addr[])
 5312{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5313	cmd->host_scribble = (unsigned char *) c;
 
 5314	c->cmd_type = CMD_SCSI;
 5315	c->scsi_cmd = cmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5316	c->Header.ReplyQueue = 0;  /* unused in simple mode */
 5317	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
 5318	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
 
 5319
 5320	/* Fill in the request block... */
 5321
 5322	c->Request.Timeout = 0;
 
 5323	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
 5324	c->Request.CDBLen = cmd->cmd_len;
 5325	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
 
 
 5326	switch (cmd->sc_data_direction) {
 5327	case DMA_TO_DEVICE:
 5328		c->Request.type_attr_dir =
 5329			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
 5330		break;
 5331	case DMA_FROM_DEVICE:
 5332		c->Request.type_attr_dir =
 5333			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
 5334		break;
 5335	case DMA_NONE:
 5336		c->Request.type_attr_dir =
 5337			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
 5338		break;
 5339	case DMA_BIDIRECTIONAL:
 5340		/* This can happen if a buggy application does a scsi passthru
 5341		 * and sets both inlen and outlen to non-zero. ( see
 5342		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
 5343		 */
 5344
 5345		c->Request.type_attr_dir =
 5346			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
 5347		/* This is technically wrong, and hpsa controllers should
 5348		 * reject it with CMD_INVALID, which is the most correct
 5349		 * response, but non-fibre backends appear to let it
 5350		 * slide by, and give the same results as if this field
 5351		 * were set correctly.  Either way is acceptable for
 5352		 * our purposes here.
 5353		 */
 5354
 5355		break;
 5356
 5357	default:
 5358		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
 5359			cmd->sc_data_direction);
 5360		BUG();
 5361		break;
 5362	}
 5363
 5364	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
 5365		hpsa_cmd_resolve_and_free(h, c);
 5366		return SCSI_MLQUEUE_HOST_BUSY;
 5367	}
 5368	enqueue_cmd_and_start_io(h, c);
 5369	/* the cmd'll come back via intr handler in complete_scsi_command()  */
 5370	return 0;
 5371}
 5372
 5373static void hpsa_cmd_init(struct ctlr_info *h, int index,
 5374				struct CommandList *c)
 5375{
 5376	dma_addr_t cmd_dma_handle, err_dma_handle;
 5377
 5378	/* Zero out all of commandlist except the last field, refcount */
 5379	memset(c, 0, offsetof(struct CommandList, refcount));
 5380	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
 5381	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
 5382	c->err_info = h->errinfo_pool + index;
 5383	memset(c->err_info, 0, sizeof(*c->err_info));
 5384	err_dma_handle = h->errinfo_pool_dhandle
 5385	    + index * sizeof(*c->err_info);
 5386	c->cmdindex = index;
 5387	c->busaddr = (u32) cmd_dma_handle;
 5388	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
 5389	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
 5390	c->h = h;
 5391	c->scsi_cmd = SCSI_CMD_IDLE;
 5392}
 5393
 5394static void hpsa_preinitialize_commands(struct ctlr_info *h)
 5395{
 5396	int i;
 5397
 5398	for (i = 0; i < h->nr_cmds; i++) {
 5399		struct CommandList *c = h->cmd_pool + i;
 5400
 5401		hpsa_cmd_init(h, i, c);
 5402		atomic_set(&c->refcount, 0);
 5403	}
 5404}
 5405
 5406static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
 5407				struct CommandList *c)
 5408{
 5409	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
 5410
 5411	BUG_ON(c->cmdindex != index);
 5412
 5413	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
 5414	memset(c->err_info, 0, sizeof(*c->err_info));
 5415	c->busaddr = (u32) cmd_dma_handle;
 5416}
 5417
 5418static int hpsa_ioaccel_submit(struct ctlr_info *h,
 5419		struct CommandList *c, struct scsi_cmnd *cmd,
 5420		unsigned char *scsi3addr)
 5421{
 5422	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 5423	int rc = IO_ACCEL_INELIGIBLE;
 5424
 5425	if (!dev)
 5426		return SCSI_MLQUEUE_HOST_BUSY;
 5427
 5428	cmd->host_scribble = (unsigned char *) c;
 5429
 5430	if (dev->offload_enabled) {
 5431		hpsa_cmd_init(h, c->cmdindex, c);
 5432		c->cmd_type = CMD_SCSI;
 5433		c->scsi_cmd = cmd;
 5434		rc = hpsa_scsi_ioaccel_raid_map(h, c);
 5435		if (rc < 0)     /* scsi_dma_map failed. */
 5436			rc = SCSI_MLQUEUE_HOST_BUSY;
 5437	} else if (dev->hba_ioaccel_enabled) {
 5438		hpsa_cmd_init(h, c->cmdindex, c);
 5439		c->cmd_type = CMD_SCSI;
 5440		c->scsi_cmd = cmd;
 5441		rc = hpsa_scsi_ioaccel_direct_map(h, c);
 5442		if (rc < 0)     /* scsi_dma_map failed. */
 5443			rc = SCSI_MLQUEUE_HOST_BUSY;
 5444	}
 5445	return rc;
 5446}
 5447
 5448static void hpsa_command_resubmit_worker(struct work_struct *work)
 5449{
 5450	struct scsi_cmnd *cmd;
 5451	struct hpsa_scsi_dev_t *dev;
 5452	struct CommandList *c = container_of(work, struct CommandList, work);
 5453
 5454	cmd = c->scsi_cmd;
 5455	dev = cmd->device->hostdata;
 5456	if (!dev) {
 5457		cmd->result = DID_NO_CONNECT << 16;
 5458		return hpsa_cmd_free_and_done(c->h, c, cmd);
 5459	}
 5460	if (c->reset_pending)
 5461		return hpsa_cmd_resolve_and_free(c->h, c);
 5462	if (c->abort_pending)
 5463		return hpsa_cmd_abort_and_free(c->h, c, cmd);
 5464	if (c->cmd_type == CMD_IOACCEL2) {
 5465		struct ctlr_info *h = c->h;
 5466		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 5467		int rc;
 5468
 5469		if (c2->error_data.serv_response ==
 5470				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
 5471			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
 5472			if (rc == 0)
 5473				return;
 5474			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
 5475				/*
 5476				 * If we get here, it means dma mapping failed.
 5477				 * Try again via scsi mid layer, which will
 5478				 * then get SCSI_MLQUEUE_HOST_BUSY.
 5479				 */
 5480				cmd->result = DID_IMM_RETRY << 16;
 5481				return hpsa_cmd_free_and_done(h, c, cmd);
 5482			}
 5483			/* else, fall thru and resubmit down CISS path */
 5484		}
 5485	}
 5486	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
 5487	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
 5488		/*
 5489		 * If we get here, it means dma mapping failed. Try
 5490		 * again via scsi mid layer, which will then get
 5491		 * SCSI_MLQUEUE_HOST_BUSY.
 5492		 *
 5493		 * hpsa_ciss_submit will have already freed c
 5494		 * if it encountered a dma mapping failure.
 5495		 */
 5496		cmd->result = DID_IMM_RETRY << 16;
 5497		cmd->scsi_done(cmd);
 5498	}
 5499}
 5500
 5501/* Running in struct Scsi_Host->host_lock less mode */
 5502static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
 5503{
 5504	struct ctlr_info *h;
 5505	struct hpsa_scsi_dev_t *dev;
 5506	unsigned char scsi3addr[8];
 5507	struct CommandList *c;
 5508	int rc = 0;
 5509
 5510	/* Get the ptr to our adapter structure out of cmd->host. */
 5511	h = sdev_to_hba(cmd->device);
 5512
 5513	BUG_ON(cmd->request->tag < 0);
 5514
 5515	dev = cmd->device->hostdata;
 5516	if (!dev) {
 5517		cmd->result = DID_NO_CONNECT << 16;
 5518		cmd->scsi_done(cmd);
 5519		return 0;
 5520	}
 5521
 5522	if (dev->removed) {
 5523		cmd->result = DID_NO_CONNECT << 16;
 5524		cmd->scsi_done(cmd);
 5525		return 0;
 5526	}
 5527
 5528	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
 5529
 5530	if (unlikely(lockup_detected(h))) {
 5531		cmd->result = DID_NO_CONNECT << 16;
 5532		cmd->scsi_done(cmd);
 5533		return 0;
 5534	}
 5535	c = cmd_tagged_alloc(h, cmd);
 5536
 5537	/*
 5538	 * Call alternate submit routine for I/O accelerated commands.
 5539	 * Retries always go down the normal I/O path.
 
 
 
 5540	 */
 5541	if (likely(cmd->retries == 0 &&
 5542		cmd->request->cmd_type == REQ_TYPE_FS &&
 5543		h->acciopath_status)) {
 5544		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
 5545		if (rc == 0)
 5546			return 0;
 5547		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
 5548			hpsa_cmd_resolve_and_free(h, c);
 5549			return SCSI_MLQUEUE_HOST_BUSY;
 5550		}
 5551	}
 5552	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
 5553}
 5554
 5555static void hpsa_scan_complete(struct ctlr_info *h)
 5556{
 5557	unsigned long flags;
 5558
 5559	spin_lock_irqsave(&h->scan_lock, flags);
 5560	h->scan_finished = 1;
 5561	wake_up_all(&h->scan_wait_queue);
 5562	spin_unlock_irqrestore(&h->scan_lock, flags);
 5563}
 5564
 5565static void hpsa_scan_start(struct Scsi_Host *sh)
 5566{
 5567	struct ctlr_info *h = shost_to_hba(sh);
 5568	unsigned long flags;
 5569
 5570	/*
 5571	 * Don't let rescans be initiated on a controller known to be locked
 5572	 * up.  If the controller locks up *during* a rescan, that thread is
 5573	 * probably hosed, but at least we can prevent new rescan threads from
 5574	 * piling up on a locked up controller.
 5575	 */
 5576	if (unlikely(lockup_detected(h)))
 5577		return hpsa_scan_complete(h);
 5578
 5579	/* wait until any scan already in progress is finished. */
 5580	while (1) {
 5581		spin_lock_irqsave(&h->scan_lock, flags);
 5582		if (h->scan_finished)
 5583			break;
 5584		spin_unlock_irqrestore(&h->scan_lock, flags);
 5585		wait_event(h->scan_wait_queue, h->scan_finished);
 5586		/* Note: We don't need to worry about a race between this
 5587		 * thread and driver unload because the midlayer will
 5588		 * have incremented the reference count, so unload won't
 5589		 * happen if we're in here.
 5590		 */
 5591	}
 5592	h->scan_finished = 0; /* mark scan as in progress */
 5593	spin_unlock_irqrestore(&h->scan_lock, flags);
 5594
 5595	if (unlikely(lockup_detected(h)))
 5596		return hpsa_scan_complete(h);
 5597
 5598	/*
 5599	 * Do the scan after a reset completion
 5600	 */
 5601	if (h->reset_in_progress) {
 5602		h->drv_req_rescan = 1;
 5603		return;
 5604	}
 5605
 5606	hpsa_update_scsi_devices(h);
 5607
 5608	hpsa_scan_complete(h);
 5609}
 5610
 5611static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
 5612{
 5613	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
 5614
 5615	if (!logical_drive)
 5616		return -ENODEV;
 5617
 5618	if (qdepth < 1)
 5619		qdepth = 1;
 5620	else if (qdepth > logical_drive->queue_depth)
 5621		qdepth = logical_drive->queue_depth;
 5622
 5623	return scsi_change_queue_depth(sdev, qdepth);
 5624}
 5625
 5626static int hpsa_scan_finished(struct Scsi_Host *sh,
 5627	unsigned long elapsed_time)
 5628{
 5629	struct ctlr_info *h = shost_to_hba(sh);
 5630	unsigned long flags;
 5631	int finished;
 5632
 5633	spin_lock_irqsave(&h->scan_lock, flags);
 5634	finished = h->scan_finished;
 5635	spin_unlock_irqrestore(&h->scan_lock, flags);
 5636	return finished;
 5637}
 5638
 5639static int hpsa_scsi_host_alloc(struct ctlr_info *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5640{
 5641	struct Scsi_Host *sh;
 
 5642
 5643	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
 5644	if (sh == NULL) {
 5645		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
 5646		return -ENOMEM;
 5647	}
 5648
 5649	sh->io_port = 0;
 5650	sh->n_io_port = 0;
 5651	sh->this_id = -1;
 5652	sh->max_channel = 3;
 5653	sh->max_cmd_len = MAX_COMMAND_SIZE;
 5654	sh->max_lun = HPSA_MAX_LUN;
 5655	sh->max_id = HPSA_MAX_LUN;
 5656	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
 5657	sh->cmd_per_lun = sh->can_queue;
 
 
 
 5658	sh->sg_tablesize = h->maxsgentries;
 5659	sh->transportt = hpsa_sas_transport_template;
 5660	sh->hostdata[0] = (unsigned long) h;
 5661	sh->irq = pci_irq_vector(h->pdev, 0);
 5662	sh->unique_id = sh->irq;
 5663
 5664	h->scsi_host = sh;
 
 
 5665	return 0;
 5666}
 5667
 5668static int hpsa_scsi_add_host(struct ctlr_info *h)
 5669{
 5670	int rv;
 5671
 5672	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
 5673	if (rv) {
 5674		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
 5675		return rv;
 5676	}
 5677	scsi_scan_host(h->scsi_host);
 5678	return 0;
 5679}
 5680
 5681/*
 5682 * The block layer has already gone to the trouble of picking out a unique,
 5683 * small-integer tag for this request.  We use an offset from that value as
 5684 * an index to select our command block.  (The offset allows us to reserve the
 5685 * low-numbered entries for our own uses.)
 5686 */
 5687static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
 5688{
 5689	int idx = scmd->request->tag;
 5690
 5691	if (idx < 0)
 5692		return idx;
 5693
 5694	/* Offset to leave space for internal cmds. */
 5695	return idx += HPSA_NRESERVED_CMDS;
 5696}
 5697
 5698/*
 5699 * Send a TEST_UNIT_READY command to the specified LUN using the specified
 5700 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
 5701 */
 5702static int hpsa_send_test_unit_ready(struct ctlr_info *h,
 5703				struct CommandList *c, unsigned char lunaddr[],
 5704				int reply_queue)
 5705{
 5706	int rc;
 5707
 5708	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
 5709	(void) fill_cmd(c, TEST_UNIT_READY, h,
 5710			NULL, 0, 0, lunaddr, TYPE_CMD);
 5711	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
 5712	if (rc)
 5713		return rc;
 5714	/* no unmap needed here because no data xfer. */
 5715
 5716	/* Check if the unit is already ready. */
 5717	if (c->err_info->CommandStatus == CMD_SUCCESS)
 5718		return 0;
 5719
 5720	/*
 5721	 * The first command sent after reset will receive "unit attention" to
 5722	 * indicate that the LUN has been reset...this is actually what we're
 5723	 * looking for (but, success is good too).
 5724	 */
 5725	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
 5726		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
 5727			(c->err_info->SenseInfo[2] == NO_SENSE ||
 5728			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
 5729		return 0;
 5730
 5731	return 1;
 5732}
 5733
 5734/*
 5735 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
 5736 * returns zero when the unit is ready, and non-zero when giving up.
 5737 */
 5738static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
 5739				struct CommandList *c,
 5740				unsigned char lunaddr[], int reply_queue)
 5741{
 5742	int rc;
 5743	int count = 0;
 5744	int waittime = 1; /* seconds */
 
 
 
 
 
 
 
 
 5745
 5746	/* Send test unit ready until device ready, or give up. */
 5747	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
 5748
 5749		/*
 5750		 * Wait for a bit.  do this first, because if we send
 5751		 * the TUR right away, the reset will just abort it.
 5752		 */
 5753		msleep(1000 * waittime);
 5754
 5755		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
 5756		if (!rc)
 5757			break;
 5758
 5759		/* Increase wait time with each try, up to a point. */
 5760		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
 5761			waittime *= 2;
 5762
 5763		dev_warn(&h->pdev->dev,
 5764			 "waiting %d secs for device to become ready.\n",
 5765			 waittime);
 5766	}
 
 5767
 5768	return rc;
 5769}
 5770
 5771static int wait_for_device_to_become_ready(struct ctlr_info *h,
 5772					   unsigned char lunaddr[],
 5773					   int reply_queue)
 5774{
 5775	int first_queue;
 5776	int last_queue;
 5777	int rq;
 5778	int rc = 0;
 5779	struct CommandList *c;
 5780
 5781	c = cmd_alloc(h);
 5782
 5783	/*
 5784	 * If no specific reply queue was requested, then send the TUR
 5785	 * repeatedly, requesting a reply on each reply queue; otherwise execute
 5786	 * the loop exactly once using only the specified queue.
 5787	 */
 5788	if (reply_queue == DEFAULT_REPLY_QUEUE) {
 5789		first_queue = 0;
 5790		last_queue = h->nreply_queues - 1;
 5791	} else {
 5792		first_queue = reply_queue;
 5793		last_queue = reply_queue;
 5794	}
 5795
 5796	for (rq = first_queue; rq <= last_queue; rq++) {
 5797		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
 5798		if (rc)
 5799			break;
 5800	}
 5801
 5802	if (rc)
 5803		dev_warn(&h->pdev->dev, "giving up on device.\n");
 5804	else
 5805		dev_warn(&h->pdev->dev, "device is ready.\n");
 5806
 5807	cmd_free(h, c);
 5808	return rc;
 5809}
 5810
 5811/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 5812 * complaining.  Doing a host- or bus-reset can't do anything good here.
 5813 */
 5814static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
 5815{
 5816	int rc;
 5817	struct ctlr_info *h;
 5818	struct hpsa_scsi_dev_t *dev;
 5819	u8 reset_type;
 5820	char msg[48];
 5821
 5822	/* find the controller to which the command to be aborted was sent */
 5823	h = sdev_to_hba(scsicmd->device);
 5824	if (h == NULL) /* paranoia */
 5825		return FAILED;
 5826
 5827	if (lockup_detected(h))
 5828		return FAILED;
 5829
 5830	dev = scsicmd->device->hostdata;
 5831	if (!dev) {
 5832		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
 
 5833		return FAILED;
 5834	}
 5835
 5836	/* if controller locked up, we can guarantee command won't complete */
 5837	if (lockup_detected(h)) {
 5838		snprintf(msg, sizeof(msg),
 5839			 "cmd %d RESET FAILED, lockup detected",
 5840			 hpsa_get_cmd_index(scsicmd));
 5841		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 5842		return FAILED;
 5843	}
 5844
 5845	/* this reset request might be the result of a lockup; check */
 5846	if (detect_controller_lockup(h)) {
 5847		snprintf(msg, sizeof(msg),
 5848			 "cmd %d RESET FAILED, new lockup detected",
 5849			 hpsa_get_cmd_index(scsicmd));
 5850		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 5851		return FAILED;
 5852	}
 5853
 5854	/* Do not attempt on controller */
 5855	if (is_hba_lunid(dev->scsi3addr))
 5856		return SUCCESS;
 5857
 5858	if (is_logical_dev_addr_mode(dev->scsi3addr))
 5859		reset_type = HPSA_DEVICE_RESET_MSG;
 5860	else
 5861		reset_type = HPSA_PHYS_TARGET_RESET;
 5862
 5863	sprintf(msg, "resetting %s",
 5864		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
 5865	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 5866
 5867	h->reset_in_progress = 1;
 5868
 5869	/* send a reset to the SCSI LUN which the command was sent to */
 5870	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
 5871			   DEFAULT_REPLY_QUEUE);
 5872	sprintf(msg, "reset %s %s",
 5873		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
 5874		rc == 0 ? "completed successfully" : "failed");
 5875	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 5876	h->reset_in_progress = 0;
 5877	return rc == 0 ? SUCCESS : FAILED;
 5878}
 5879
 5880static void swizzle_abort_tag(u8 *tag)
 5881{
 5882	u8 original_tag[8];
 5883
 5884	memcpy(original_tag, tag, 8);
 5885	tag[0] = original_tag[3];
 5886	tag[1] = original_tag[2];
 5887	tag[2] = original_tag[1];
 5888	tag[3] = original_tag[0];
 5889	tag[4] = original_tag[7];
 5890	tag[5] = original_tag[6];
 5891	tag[6] = original_tag[5];
 5892	tag[7] = original_tag[4];
 5893}
 5894
 5895static void hpsa_get_tag(struct ctlr_info *h,
 5896	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
 5897{
 5898	u64 tag;
 5899	if (c->cmd_type == CMD_IOACCEL1) {
 5900		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
 5901			&h->ioaccel_cmd_pool[c->cmdindex];
 5902		tag = le64_to_cpu(cm1->tag);
 5903		*tagupper = cpu_to_le32(tag >> 32);
 5904		*taglower = cpu_to_le32(tag);
 5905		return;
 5906	}
 5907	if (c->cmd_type == CMD_IOACCEL2) {
 5908		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
 5909			&h->ioaccel2_cmd_pool[c->cmdindex];
 5910		/* upper tag not used in ioaccel2 mode */
 5911		memset(tagupper, 0, sizeof(*tagupper));
 5912		*taglower = cm2->Tag;
 5913		return;
 5914	}
 5915	tag = le64_to_cpu(c->Header.tag);
 5916	*tagupper = cpu_to_le32(tag >> 32);
 5917	*taglower = cpu_to_le32(tag);
 5918}
 5919
 
 5920static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
 5921	struct CommandList *abort, int reply_queue)
 5922{
 5923	int rc = IO_OK;
 5924	struct CommandList *c;
 5925	struct ErrorInfo *ei;
 5926	__le32 tagupper, taglower;
 5927
 5928	c = cmd_alloc(h);
 
 
 
 
 5929
 5930	/* fill_cmd can't fail here, no buffer to map */
 5931	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
 5932		0, 0, scsi3addr, TYPE_MSG);
 5933	if (h->needs_abort_tags_swizzled)
 5934		swizzle_abort_tag(&c->Request.CDB[4]);
 5935	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
 5936	hpsa_get_tag(h, abort, &taglower, &tagupper);
 5937	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
 5938		__func__, tagupper, taglower);
 5939	/* no unmap needed here because no data xfer. */
 5940
 5941	ei = c->err_info;
 5942	switch (ei->CommandStatus) {
 5943	case CMD_SUCCESS:
 5944		break;
 5945	case CMD_TMF_STATUS:
 5946		rc = hpsa_evaluate_tmf_status(h, c);
 5947		break;
 5948	case CMD_UNABORTABLE: /* Very common, don't make noise. */
 5949		rc = -1;
 5950		break;
 5951	default:
 5952		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
 5953			__func__, tagupper, taglower);
 5954		hpsa_scsi_interpret_error(h, c);
 5955		rc = -1;
 5956		break;
 5957	}
 5958	cmd_free(h, c);
 5959	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
 5960		__func__, tagupper, taglower);
 5961	return rc;
 5962}
 5963
 5964static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
 5965	struct CommandList *command_to_abort, int reply_queue)
 
 
 
 
 
 
 
 
 
 
 
 
 5966{
 5967	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 5968	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
 5969	struct io_accel2_cmd *c2a =
 5970		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
 5971	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
 5972	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
 5973
 5974	if (!dev)
 5975		return;
 
 
 
 
 
 
 
 
 
 
 
 
 5976
 5977	/*
 5978	 * We're overlaying struct hpsa_tmf_struct on top of something which
 5979	 * was allocated as a struct io_accel2_cmd, so we better be sure it
 5980	 * actually fits, and doesn't overrun the error info space.
 5981	 */
 5982	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
 5983			sizeof(struct io_accel2_cmd));
 5984	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
 5985			offsetof(struct hpsa_tmf_struct, error_len) +
 5986				sizeof(ac->error_len));
 5987
 5988	c->cmd_type = IOACCEL2_TMF;
 5989	c->scsi_cmd = SCSI_CMD_BUSY;
 5990
 5991	/* Adjust the DMA address to point to the accelerated command buffer */
 5992	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
 5993				(c->cmdindex * sizeof(struct io_accel2_cmd));
 5994	BUG_ON(c->busaddr & 0x0000007F);
 5995
 5996	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
 5997	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
 5998	ac->reply_queue = reply_queue;
 5999	ac->tmf = IOACCEL2_TMF_ABORT;
 6000	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
 6001	memset(ac->lun_id, 0, sizeof(ac->lun_id));
 6002	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
 6003	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
 6004	ac->error_ptr = cpu_to_le64(c->busaddr +
 6005			offsetof(struct io_accel2_cmd, error_data));
 6006	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
 6007}
 6008
 6009/* ioaccel2 path firmware cannot handle abort task requests.
 6010 * Change abort requests to physical target reset, and send to the
 6011 * address of the physical disk used for the ioaccel 2 command.
 6012 * Return 0 on success (IO_OK)
 6013 *	 -1 on failure
 6014 */
 6015
 6016static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
 6017	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
 6018{
 6019	int rc = IO_OK;
 6020	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
 6021	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
 6022	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
 6023	unsigned char *psa = &phys_scsi3addr[0];
 6024
 6025	/* Get a pointer to the hpsa logical device. */
 6026	scmd = abort->scsi_cmd;
 6027	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
 6028	if (dev == NULL) {
 6029		dev_warn(&h->pdev->dev,
 6030			"Cannot abort: no device pointer for command.\n");
 6031			return -1; /* not abortable */
 6032	}
 6033
 6034	if (h->raid_offload_debug > 0)
 6035		dev_info(&h->pdev->dev,
 6036			"scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
 6037			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
 6038			"Reset as abort", scsi3addr);
 
 6039
 6040	if (!dev->offload_enabled) {
 6041		dev_warn(&h->pdev->dev,
 6042			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
 6043		return -1; /* not abortable */
 6044	}
 6045
 6046	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
 6047	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
 6048		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
 6049		return -1; /* not abortable */
 6050	}
 6051
 6052	/* send the reset */
 6053	if (h->raid_offload_debug > 0)
 6054		dev_info(&h->pdev->dev,
 6055			"Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
 6056			psa);
 6057	rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
 
 6058	if (rc != 0) {
 6059		dev_warn(&h->pdev->dev,
 6060			"Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
 6061			psa);
 
 6062		return rc; /* failed to reset */
 6063	}
 6064
 6065	/* wait for device to recover */
 6066	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
 6067		dev_warn(&h->pdev->dev,
 6068			"Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
 6069			psa);
 
 6070		return -1;  /* failed to recover */
 6071	}
 6072
 6073	/* device recovered */
 6074	dev_info(&h->pdev->dev,
 6075		"Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
 6076		psa);
 
 6077
 6078	return rc; /* success */
 6079}
 6080
 6081static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
 6082	struct CommandList *abort, int reply_queue)
 
 
 
 
 
 
 6083{
 6084	int rc = IO_OK;
 6085	struct CommandList *c;
 6086	__le32 taglower, tagupper;
 6087	struct hpsa_scsi_dev_t *dev;
 6088	struct io_accel2_cmd *c2;
 6089
 6090	dev = abort->scsi_cmd->device->hostdata;
 6091	if (!dev)
 6092		return -1;
 6093
 6094	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
 6095		return -1;
 6096
 6097	c = cmd_alloc(h);
 6098	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
 6099	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 6100	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
 6101	hpsa_get_tag(h, abort, &taglower, &tagupper);
 6102	dev_dbg(&h->pdev->dev,
 6103		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
 6104		__func__, tagupper, taglower);
 6105	/* no unmap needed here because no data xfer. */
 6106
 6107	dev_dbg(&h->pdev->dev,
 6108		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
 6109		__func__, tagupper, taglower, c2->error_data.serv_response);
 6110	switch (c2->error_data.serv_response) {
 6111	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
 6112	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
 6113		rc = 0;
 6114		break;
 6115	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
 6116	case IOACCEL2_SERV_RESPONSE_FAILURE:
 6117	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
 6118		rc = -1;
 6119		break;
 6120	default:
 6121		dev_warn(&h->pdev->dev,
 6122			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
 6123			__func__, tagupper, taglower,
 6124			c2->error_data.serv_response);
 6125		rc = -1;
 6126	}
 6127	cmd_free(h, c);
 6128	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
 6129		tagupper, taglower);
 6130	return rc;
 6131}
 6132
 6133static int hpsa_send_abort_both_ways(struct ctlr_info *h,
 6134	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
 6135{
 6136	/*
 6137	 * ioccelerator mode 2 commands should be aborted via the
 6138	 * accelerated path, since RAID path is unaware of these commands,
 6139	 * but not all underlying firmware can handle abort TMF.
 6140	 * Change abort to physical device reset when abort TMF is unsupported.
 6141	 */
 6142	if (abort->cmd_type == CMD_IOACCEL2) {
 6143		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
 6144			dev->physical_device)
 6145			return hpsa_send_abort_ioaccel2(h, abort,
 6146						reply_queue);
 6147		else
 6148			return hpsa_send_reset_as_abort_ioaccel2(h,
 6149							dev->scsi3addr,
 6150							abort, reply_queue);
 6151	}
 6152	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
 6153}
 6154
 6155/* Find out which reply queue a command was meant to return on */
 6156static int hpsa_extract_reply_queue(struct ctlr_info *h,
 6157					struct CommandList *c)
 6158{
 6159	if (c->cmd_type == CMD_IOACCEL2)
 6160		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
 6161	return c->Header.ReplyQueue;
 6162}
 6163
 6164/*
 6165 * Limit concurrency of abort commands to prevent
 6166 * over-subscription of commands
 6167 */
 6168static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
 6169{
 6170#define ABORT_CMD_WAIT_MSECS 5000
 6171	return !wait_event_timeout(h->abort_cmd_wait_queue,
 6172			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
 6173			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
 
 
 6174}
 6175
 6176/* Send an abort for the specified command.
 6177 *	If the device and controller support it,
 6178 *		send a task abort request.
 6179 */
 6180static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
 6181{
 6182
 6183	int rc;
 6184	struct ctlr_info *h;
 6185	struct hpsa_scsi_dev_t *dev;
 6186	struct CommandList *abort; /* pointer to command to be aborted */
 
 6187	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
 6188	char msg[256];		/* For debug messaging. */
 6189	int ml = 0;
 6190	__le32 tagupper, taglower;
 6191	int refcount, reply_queue;
 6192
 6193	if (sc == NULL)
 
 
 
 6194		return FAILED;
 6195
 6196	if (sc->device == NULL)
 
 
 6197		return FAILED;
 6198
 6199	/* Find the controller of the command to be aborted */
 6200	h = sdev_to_hba(sc->device);
 6201	if (h == NULL)
 6202		return FAILED;
 6203
 6204	/* Find the device of the command to be aborted */
 6205	dev = sc->device->hostdata;
 6206	if (!dev) {
 6207		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
 6208				msg);
 6209		return FAILED;
 6210	}
 6211
 6212	/* If controller locked up, we can guarantee command won't complete */
 6213	if (lockup_detected(h)) {
 6214		hpsa_show_dev_msg(KERN_WARNING, h, dev,
 6215					"ABORT FAILED, lockup detected");
 6216		return FAILED;
 6217	}
 6218
 6219	/* This is a good time to check if controller lockup has occurred */
 6220	if (detect_controller_lockup(h)) {
 6221		hpsa_show_dev_msg(KERN_WARNING, h, dev,
 6222					"ABORT FAILED, new lockup detected");
 6223		return FAILED;
 6224	}
 6225
 6226	/* Check that controller supports some kind of task abort */
 6227	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
 6228		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
 6229		return FAILED;
 6230
 6231	memset(msg, 0, sizeof(msg));
 6232	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
 6233		h->scsi_host->host_no, sc->device->channel,
 6234		sc->device->id, sc->device->lun,
 6235		"Aborting command", sc);
 6236
 6237	/* Get SCSI command to be aborted */
 6238	abort = (struct CommandList *) sc->host_scribble;
 6239	if (abort == NULL) {
 6240		/* This can happen if the command already completed. */
 6241		return SUCCESS;
 
 6242	}
 6243	refcount = atomic_inc_return(&abort->refcount);
 6244	if (refcount == 1) { /* Command is done already. */
 6245		cmd_free(h, abort);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6246		return SUCCESS;
 6247	}
 6248
 6249	/* Don't bother trying the abort if we know it won't work. */
 6250	if (abort->cmd_type != CMD_IOACCEL2 &&
 6251		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
 6252		cmd_free(h, abort);
 6253		return FAILED;
 6254	}
 6255
 6256	/*
 6257	 * Check that we're aborting the right command.
 6258	 * It's possible the CommandList already completed and got re-used.
 6259	 */
 6260	if (abort->scsi_cmd != sc) {
 6261		cmd_free(h, abort);
 6262		return SUCCESS;
 6263	}
 6264
 6265	abort->abort_pending = true;
 6266	hpsa_get_tag(h, abort, &taglower, &tagupper);
 6267	reply_queue = hpsa_extract_reply_queue(h, abort);
 6268	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
 6269	as  = abort->scsi_cmd;
 6270	if (as != NULL)
 6271		ml += sprintf(msg+ml,
 6272			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
 6273			as->cmd_len, as->cmnd[0], as->cmnd[1],
 6274			as->serial_number);
 6275	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
 6276	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
 6277
 6278	/*
 6279	 * Command is in flight, or possibly already completed
 6280	 * by the firmware (but not to the scsi mid layer) but we can't
 6281	 * distinguish which.  Send the abort down.
 6282	 */
 6283	if (wait_for_available_abort_cmd(h)) {
 6284		dev_warn(&h->pdev->dev,
 6285			"%s FAILED, timeout waiting for an abort command to become available.\n",
 6286			msg);
 6287		cmd_free(h, abort);
 
 6288		return FAILED;
 6289	}
 6290	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
 6291	atomic_inc(&h->abort_cmds_available);
 6292	wake_up_all(&h->abort_cmd_wait_queue);
 6293	if (rc != 0) {
 6294		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
 6295		hpsa_show_dev_msg(KERN_WARNING, h, dev,
 6296				"FAILED to abort command");
 6297		cmd_free(h, abort);
 6298		return FAILED;
 
 
 
 
 6299	}
 6300	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
 6301	wait_event(h->event_sync_wait_queue,
 6302		   abort->scsi_cmd != sc || lockup_detected(h));
 6303	cmd_free(h, abort);
 6304	return !lockup_detected(h) ? SUCCESS : FAILED;
 6305}
 6306
 
 6307/*
 6308 * For operations with an associated SCSI command, a command block is allocated
 6309 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
 6310 * block request tag as an index into a table of entries.  cmd_tagged_free() is
 6311 * the complement, although cmd_free() may be called instead.
 6312 */
 6313static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 6314					    struct scsi_cmnd *scmd)
 6315{
 6316	int idx = hpsa_get_cmd_index(scmd);
 6317	struct CommandList *c = h->cmd_pool + idx;
 
 
 
 6318
 6319	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
 6320		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
 6321			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
 6322		/* The index value comes from the block layer, so if it's out of
 6323		 * bounds, it's probably not our bug.
 6324		 */
 6325		BUG();
 6326	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6327
 6328	atomic_inc(&c->refcount);
 6329	if (unlikely(!hpsa_is_cmd_idle(c))) {
 6330		/*
 6331		 * We expect that the SCSI layer will hand us a unique tag
 6332		 * value.  Thus, there should never be a collision here between
 6333		 * two requests...because if the selected command isn't idle
 6334		 * then someone is going to be very disappointed.
 6335		 */
 6336		dev_err(&h->pdev->dev,
 6337			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
 6338			idx);
 6339		if (c->scsi_cmd != NULL)
 6340			scsi_print_command(c->scsi_cmd);
 6341		scsi_print_command(scmd);
 6342	}
 6343
 6344	hpsa_cmd_partial_init(h, idx, c);
 6345	return c;
 6346}
 6347
 6348static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
 
 
 
 
 6349{
 6350	/*
 6351	 * Release our reference to the block.  We don't need to do anything
 6352	 * else to free it, because it is accessed by index.  (There's no point
 6353	 * in checking the result of the decrement, since we cannot guarantee
 6354	 * that there isn't a concurrent abort which is also accessing it.)
 6355	 */
 6356	(void)atomic_dec(&c->refcount);
 6357}
 6358
 6359/*
 6360 * For operations that cannot sleep, a command block is allocated at init,
 6361 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 6362 * which ones are free or in use.  Lock must be held when calling this.
 6363 * cmd_free() is the complement.
 6364 * This function never gives up and returns NULL.  If it hangs,
 6365 * another thread must call cmd_free() to free some tags.
 6366 */
 6367
 6368static struct CommandList *cmd_alloc(struct ctlr_info *h)
 6369{
 6370	struct CommandList *c;
 6371	int refcount, i;
 6372	int offset = 0;
 6373
 6374	/*
 6375	 * There is some *extremely* small but non-zero chance that that
 6376	 * multiple threads could get in here, and one thread could
 6377	 * be scanning through the list of bits looking for a free
 6378	 * one, but the free ones are always behind him, and other
 6379	 * threads sneak in behind him and eat them before he can
 6380	 * get to them, so that while there is always a free one, a
 6381	 * very unlucky thread might be starved anyway, never able to
 6382	 * beat the other threads.  In reality, this happens so
 6383	 * infrequently as to be indistinguishable from never.
 6384	 *
 6385	 * Note that we start allocating commands before the SCSI host structure
 6386	 * is initialized.  Since the search starts at bit zero, this
 6387	 * all works, since we have at least one command structure available;
 6388	 * however, it means that the structures with the low indexes have to be
 6389	 * reserved for driver-initiated requests, while requests from the block
 6390	 * layer will use the higher indexes.
 6391	 */
 6392
 6393	for (;;) {
 6394		i = find_next_zero_bit(h->cmd_pool_bits,
 6395					HPSA_NRESERVED_CMDS,
 6396					offset);
 6397		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
 6398			offset = 0;
 6399			continue;
 6400		}
 6401		c = h->cmd_pool + i;
 6402		refcount = atomic_inc_return(&c->refcount);
 6403		if (unlikely(refcount > 1)) {
 6404			cmd_free(h, c); /* already in use */
 6405			offset = (i + 1) % HPSA_NRESERVED_CMDS;
 6406			continue;
 6407		}
 6408		set_bit(i & (BITS_PER_LONG - 1),
 6409			h->cmd_pool_bits + (i / BITS_PER_LONG));
 6410		break; /* it's ours now. */
 6411	}
 6412	hpsa_cmd_partial_init(h, i, c);
 
 
 
 
 
 
 
 
 
 6413	return c;
 6414}
 6415
 6416/*
 6417 * This is the complementary operation to cmd_alloc().  Note, however, in some
 6418 * corner cases it may also be used to free blocks allocated by
 6419 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
 6420 * the clear-bit is harmless.
 6421 */
 6422static void cmd_free(struct ctlr_info *h, struct CommandList *c)
 6423{
 6424	if (atomic_dec_and_test(&c->refcount)) {
 6425		int i;
 
 
 
 
 
 
 
 
 
 
 
 6426
 6427		i = c - h->cmd_pool;
 6428		clear_bit(i & (BITS_PER_LONG - 1),
 6429			  h->cmd_pool_bits + (i / BITS_PER_LONG));
 6430	}
 
 
 6431}
 6432
 6433#ifdef CONFIG_COMPAT
 6434
 6435static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
 6436	void __user *arg)
 6437{
 6438	IOCTL32_Command_struct __user *arg32 =
 6439	    (IOCTL32_Command_struct __user *) arg;
 6440	IOCTL_Command_struct arg64;
 6441	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
 6442	int err;
 6443	u32 cp;
 6444
 6445	memset(&arg64, 0, sizeof(arg64));
 6446	err = 0;
 6447	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
 6448			   sizeof(arg64.LUN_info));
 6449	err |= copy_from_user(&arg64.Request, &arg32->Request,
 6450			   sizeof(arg64.Request));
 6451	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
 6452			   sizeof(arg64.error_info));
 6453	err |= get_user(arg64.buf_size, &arg32->buf_size);
 6454	err |= get_user(cp, &arg32->buf);
 6455	arg64.buf = compat_ptr(cp);
 6456	err |= copy_to_user(p, &arg64, sizeof(arg64));
 6457
 6458	if (err)
 6459		return -EFAULT;
 6460
 6461	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
 6462	if (err)
 6463		return err;
 6464	err |= copy_in_user(&arg32->error_info, &p->error_info,
 6465			 sizeof(arg32->error_info));
 6466	if (err)
 6467		return -EFAULT;
 6468	return err;
 6469}
 6470
 6471static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
 6472	int cmd, void __user *arg)
 6473{
 6474	BIG_IOCTL32_Command_struct __user *arg32 =
 6475	    (BIG_IOCTL32_Command_struct __user *) arg;
 6476	BIG_IOCTL_Command_struct arg64;
 6477	BIG_IOCTL_Command_struct __user *p =
 6478	    compat_alloc_user_space(sizeof(arg64));
 6479	int err;
 6480	u32 cp;
 6481
 6482	memset(&arg64, 0, sizeof(arg64));
 6483	err = 0;
 6484	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
 6485			   sizeof(arg64.LUN_info));
 6486	err |= copy_from_user(&arg64.Request, &arg32->Request,
 6487			   sizeof(arg64.Request));
 6488	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
 6489			   sizeof(arg64.error_info));
 6490	err |= get_user(arg64.buf_size, &arg32->buf_size);
 6491	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
 6492	err |= get_user(cp, &arg32->buf);
 6493	arg64.buf = compat_ptr(cp);
 6494	err |= copy_to_user(p, &arg64, sizeof(arg64));
 6495
 6496	if (err)
 6497		return -EFAULT;
 6498
 6499	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
 6500	if (err)
 6501		return err;
 6502	err |= copy_in_user(&arg32->error_info, &p->error_info,
 6503			 sizeof(arg32->error_info));
 6504	if (err)
 6505		return -EFAULT;
 6506	return err;
 6507}
 6508
 6509static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
 6510{
 6511	switch (cmd) {
 6512	case CCISS_GETPCIINFO:
 6513	case CCISS_GETINTINFO:
 6514	case CCISS_SETINTINFO:
 6515	case CCISS_GETNODENAME:
 6516	case CCISS_SETNODENAME:
 6517	case CCISS_GETHEARTBEAT:
 6518	case CCISS_GETBUSTYPES:
 6519	case CCISS_GETFIRMVER:
 6520	case CCISS_GETDRIVVER:
 6521	case CCISS_REVALIDVOLS:
 6522	case CCISS_DEREGDISK:
 6523	case CCISS_REGNEWDISK:
 6524	case CCISS_REGNEWD:
 6525	case CCISS_RESCANDISK:
 6526	case CCISS_GETLUNINFO:
 6527		return hpsa_ioctl(dev, cmd, arg);
 6528
 6529	case CCISS_PASSTHRU32:
 6530		return hpsa_ioctl32_passthru(dev, cmd, arg);
 6531	case CCISS_BIG_PASSTHRU32:
 6532		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
 6533
 6534	default:
 6535		return -ENOIOCTLCMD;
 6536	}
 6537}
 6538#endif
 6539
 6540static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
 6541{
 6542	struct hpsa_pci_info pciinfo;
 6543
 6544	if (!argp)
 6545		return -EINVAL;
 6546	pciinfo.domain = pci_domain_nr(h->pdev->bus);
 6547	pciinfo.bus = h->pdev->bus->number;
 6548	pciinfo.dev_fn = h->pdev->devfn;
 6549	pciinfo.board_id = h->board_id;
 6550	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
 6551		return -EFAULT;
 6552	return 0;
 6553}
 6554
 6555static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
 6556{
 6557	DriverVer_type DriverVer;
 6558	unsigned char vmaj, vmin, vsubmin;
 6559	int rc;
 6560
 6561	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
 6562		&vmaj, &vmin, &vsubmin);
 6563	if (rc != 3) {
 6564		dev_info(&h->pdev->dev, "driver version string '%s' "
 6565			"unrecognized.", HPSA_DRIVER_VERSION);
 6566		vmaj = 0;
 6567		vmin = 0;
 6568		vsubmin = 0;
 6569	}
 6570	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
 6571	if (!argp)
 6572		return -EINVAL;
 6573	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
 6574		return -EFAULT;
 6575	return 0;
 6576}
 6577
 6578static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
 6579{
 6580	IOCTL_Command_struct iocommand;
 6581	struct CommandList *c;
 6582	char *buff = NULL;
 6583	u64 temp64;
 6584	int rc = 0;
 6585
 6586	if (!argp)
 6587		return -EINVAL;
 6588	if (!capable(CAP_SYS_RAWIO))
 6589		return -EPERM;
 6590	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
 6591		return -EFAULT;
 6592	if ((iocommand.buf_size < 1) &&
 6593	    (iocommand.Request.Type.Direction != XFER_NONE)) {
 6594		return -EINVAL;
 6595	}
 6596	if (iocommand.buf_size > 0) {
 6597		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
 6598		if (buff == NULL)
 6599			return -ENOMEM;
 6600		if (iocommand.Request.Type.Direction & XFER_WRITE) {
 6601			/* Copy the data into the buffer we created */
 6602			if (copy_from_user(buff, iocommand.buf,
 6603				iocommand.buf_size)) {
 6604				rc = -EFAULT;
 6605				goto out_kfree;
 6606			}
 6607		} else {
 6608			memset(buff, 0, iocommand.buf_size);
 6609		}
 6610	}
 6611	c = cmd_alloc(h);
 6612
 
 
 
 6613	/* Fill in the command type */
 6614	c->cmd_type = CMD_IOCTL_PEND;
 6615	c->scsi_cmd = SCSI_CMD_BUSY;
 6616	/* Fill in Command Header */
 6617	c->Header.ReplyQueue = 0; /* unused in simple mode */
 6618	if (iocommand.buf_size > 0) {	/* buffer to fill */
 6619		c->Header.SGList = 1;
 6620		c->Header.SGTotal = cpu_to_le16(1);
 6621	} else	{ /* no buffers to fill */
 6622		c->Header.SGList = 0;
 6623		c->Header.SGTotal = cpu_to_le16(0);
 6624	}
 6625	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
 
 
 6626
 6627	/* Fill in Request block */
 6628	memcpy(&c->Request, &iocommand.Request,
 6629		sizeof(c->Request));
 6630
 6631	/* Fill in the scatter gather information */
 6632	if (iocommand.buf_size > 0) {
 6633		temp64 = pci_map_single(h->pdev, buff,
 6634			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
 6635		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
 6636			c->SG[0].Addr = cpu_to_le64(0);
 6637			c->SG[0].Len = cpu_to_le32(0);
 
 6638			rc = -ENOMEM;
 6639			goto out;
 6640		}
 6641		c->SG[0].Addr = cpu_to_le64(temp64);
 6642		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
 6643		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
 
 6644	}
 6645	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 6646					NO_TIMEOUT);
 6647	if (iocommand.buf_size > 0)
 6648		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
 6649	check_ioctl_unit_attention(h, c);
 6650	if (rc) {
 6651		rc = -EIO;
 6652		goto out;
 6653	}
 6654
 6655	/* Copy the error information out */
 6656	memcpy(&iocommand.error_info, c->err_info,
 6657		sizeof(iocommand.error_info));
 6658	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
 6659		rc = -EFAULT;
 6660		goto out;
 6661	}
 6662	if ((iocommand.Request.Type.Direction & XFER_READ) &&
 6663		iocommand.buf_size > 0) {
 6664		/* Copy the data out of the buffer we created */
 6665		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
 6666			rc = -EFAULT;
 6667			goto out;
 6668		}
 6669	}
 6670out:
 6671	cmd_free(h, c);
 6672out_kfree:
 6673	kfree(buff);
 6674	return rc;
 6675}
 6676
 6677static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
 6678{
 6679	BIG_IOCTL_Command_struct *ioc;
 6680	struct CommandList *c;
 6681	unsigned char **buff = NULL;
 6682	int *buff_size = NULL;
 6683	u64 temp64;
 6684	BYTE sg_used = 0;
 6685	int status = 0;
 
 6686	u32 left;
 6687	u32 sz;
 6688	BYTE __user *data_ptr;
 6689
 6690	if (!argp)
 6691		return -EINVAL;
 6692	if (!capable(CAP_SYS_RAWIO))
 6693		return -EPERM;
 6694	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
 
 6695	if (!ioc) {
 6696		status = -ENOMEM;
 6697		goto cleanup1;
 6698	}
 6699	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
 6700		status = -EFAULT;
 6701		goto cleanup1;
 6702	}
 6703	if ((ioc->buf_size < 1) &&
 6704	    (ioc->Request.Type.Direction != XFER_NONE)) {
 6705		status = -EINVAL;
 6706		goto cleanup1;
 6707	}
 6708	/* Check kmalloc limits  using all SGs */
 6709	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
 6710		status = -EINVAL;
 6711		goto cleanup1;
 6712	}
 6713	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
 6714		status = -EINVAL;
 6715		goto cleanup1;
 6716	}
 6717	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
 6718	if (!buff) {
 6719		status = -ENOMEM;
 6720		goto cleanup1;
 6721	}
 6722	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
 6723	if (!buff_size) {
 6724		status = -ENOMEM;
 6725		goto cleanup1;
 6726	}
 6727	left = ioc->buf_size;
 6728	data_ptr = ioc->buf;
 6729	while (left) {
 6730		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
 6731		buff_size[sg_used] = sz;
 6732		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
 6733		if (buff[sg_used] == NULL) {
 6734			status = -ENOMEM;
 6735			goto cleanup1;
 6736		}
 6737		if (ioc->Request.Type.Direction & XFER_WRITE) {
 6738			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
 6739				status = -EFAULT;
 6740				goto cleanup1;
 6741			}
 6742		} else
 6743			memset(buff[sg_used], 0, sz);
 6744		left -= sz;
 6745		data_ptr += sz;
 6746		sg_used++;
 6747	}
 6748	c = cmd_alloc(h);
 6749
 
 
 
 6750	c->cmd_type = CMD_IOCTL_PEND;
 6751	c->scsi_cmd = SCSI_CMD_BUSY;
 6752	c->Header.ReplyQueue = 0;
 6753	c->Header.SGList = (u8) sg_used;
 6754	c->Header.SGTotal = cpu_to_le16(sg_used);
 6755	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
 
 6756	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
 6757	if (ioc->buf_size > 0) {
 6758		int i;
 6759		for (i = 0; i < sg_used; i++) {
 6760			temp64 = pci_map_single(h->pdev, buff[i],
 6761				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
 6762			if (dma_mapping_error(&h->pdev->dev,
 6763							(dma_addr_t) temp64)) {
 6764				c->SG[i].Addr = cpu_to_le64(0);
 6765				c->SG[i].Len = cpu_to_le32(0);
 6766				hpsa_pci_unmap(h->pdev, c, i,
 6767					PCI_DMA_BIDIRECTIONAL);
 6768				status = -ENOMEM;
 6769				goto cleanup0;
 6770			}
 6771			c->SG[i].Addr = cpu_to_le64(temp64);
 6772			c->SG[i].Len = cpu_to_le32(buff_size[i]);
 6773			c->SG[i].Ext = cpu_to_le32(0);
 
 6774		}
 6775		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
 6776	}
 6777	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 6778						NO_TIMEOUT);
 6779	if (sg_used)
 6780		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
 6781	check_ioctl_unit_attention(h, c);
 6782	if (status) {
 6783		status = -EIO;
 6784		goto cleanup0;
 6785	}
 6786
 6787	/* Copy the error information out */
 6788	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
 6789	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
 6790		status = -EFAULT;
 6791		goto cleanup0;
 6792	}
 6793	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
 6794		int i;
 6795
 6796		/* Copy the data out of the buffer we created */
 6797		BYTE __user *ptr = ioc->buf;
 6798		for (i = 0; i < sg_used; i++) {
 6799			if (copy_to_user(ptr, buff[i], buff_size[i])) {
 6800				status = -EFAULT;
 6801				goto cleanup0;
 6802			}
 6803			ptr += buff_size[i];
 6804		}
 6805	}
 6806	status = 0;
 6807cleanup0:
 6808	cmd_free(h, c);
 6809cleanup1:
 6810	if (buff) {
 6811		int i;
 6812
 6813		for (i = 0; i < sg_used; i++)
 6814			kfree(buff[i]);
 6815		kfree(buff);
 6816	}
 6817	kfree(buff_size);
 6818	kfree(ioc);
 6819	return status;
 6820}
 6821
 6822static void check_ioctl_unit_attention(struct ctlr_info *h,
 6823	struct CommandList *c)
 6824{
 6825	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
 6826			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
 6827		(void) check_for_unit_attention(h, c);
 6828}
 6829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6830/*
 6831 * ioctl
 6832 */
 6833static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
 6834{
 6835	struct ctlr_info *h;
 6836	void __user *argp = (void __user *)arg;
 6837	int rc;
 6838
 6839	h = sdev_to_hba(dev);
 6840
 6841	switch (cmd) {
 6842	case CCISS_DEREGDISK:
 6843	case CCISS_REGNEWDISK:
 6844	case CCISS_REGNEWD:
 6845		hpsa_scan_start(h->scsi_host);
 6846		return 0;
 6847	case CCISS_GETPCIINFO:
 6848		return hpsa_getpciinfo_ioctl(h, argp);
 6849	case CCISS_GETDRIVVER:
 6850		return hpsa_getdrivver_ioctl(h, argp);
 6851	case CCISS_PASSTHRU:
 6852		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
 6853			return -EAGAIN;
 6854		rc = hpsa_passthru_ioctl(h, argp);
 6855		atomic_inc(&h->passthru_cmds_avail);
 6856		return rc;
 6857	case CCISS_BIG_PASSTHRU:
 6858		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
 6859			return -EAGAIN;
 6860		rc = hpsa_big_passthru_ioctl(h, argp);
 6861		atomic_inc(&h->passthru_cmds_avail);
 6862		return rc;
 6863	default:
 6864		return -ENOTTY;
 6865	}
 6866}
 6867
 6868static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
 6869				u8 reset_type)
 6870{
 6871	struct CommandList *c;
 6872
 6873	c = cmd_alloc(h);
 6874
 
 6875	/* fill_cmd can't fail here, no data buffer to map */
 6876	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
 6877		RAID_CTLR_LUNID, TYPE_MSG);
 6878	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
 6879	c->waiting = NULL;
 6880	enqueue_cmd_and_start_io(h, c);
 6881	/* Don't wait for completion, the reset won't complete.  Don't free
 6882	 * the command either.  This is the last command we will send before
 6883	 * re-initializing everything, so it doesn't matter and won't leak.
 6884	 */
 6885	return;
 6886}
 6887
 6888static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 6889	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 6890	int cmd_type)
 6891{
 6892	int pci_dir = XFER_NONE;
 6893	u64 tag; /* for commands to be aborted */
 6894
 6895	c->cmd_type = CMD_IOCTL_PEND;
 6896	c->scsi_cmd = SCSI_CMD_BUSY;
 6897	c->Header.ReplyQueue = 0;
 6898	if (buff != NULL && size > 0) {
 6899		c->Header.SGList = 1;
 6900		c->Header.SGTotal = cpu_to_le16(1);
 6901	} else {
 6902		c->Header.SGList = 0;
 6903		c->Header.SGTotal = cpu_to_le16(0);
 6904	}
 
 6905	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
 6906
 
 6907	if (cmd_type == TYPE_CMD) {
 6908		switch (cmd) {
 6909		case HPSA_INQUIRY:
 6910			/* are we trying to read a vital product page */
 6911			if (page_code & VPD_PAGE) {
 6912				c->Request.CDB[1] = 0x01;
 6913				c->Request.CDB[2] = (page_code & 0xff);
 6914			}
 6915			c->Request.CDBLen = 6;
 6916			c->Request.type_attr_dir =
 6917				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6918			c->Request.Timeout = 0;
 6919			c->Request.CDB[0] = HPSA_INQUIRY;
 6920			c->Request.CDB[4] = size & 0xFF;
 6921			break;
 6922		case HPSA_REPORT_LOG:
 6923		case HPSA_REPORT_PHYS:
 6924			/* Talking to controller so It's a physical command
 6925			   mode = 00 target = 0.  Nothing to write.
 6926			 */
 6927			c->Request.CDBLen = 12;
 6928			c->Request.type_attr_dir =
 6929				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6930			c->Request.Timeout = 0;
 6931			c->Request.CDB[0] = cmd;
 6932			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
 6933			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6934			c->Request.CDB[8] = (size >> 8) & 0xFF;
 6935			c->Request.CDB[9] = size & 0xFF;
 6936			break;
 6937		case BMIC_SENSE_DIAG_OPTIONS:
 6938			c->Request.CDBLen = 16;
 6939			c->Request.type_attr_dir =
 6940				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6941			c->Request.Timeout = 0;
 6942			/* Spec says this should be BMIC_WRITE */
 6943			c->Request.CDB[0] = BMIC_READ;
 6944			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
 6945			break;
 6946		case BMIC_SET_DIAG_OPTIONS:
 6947			c->Request.CDBLen = 16;
 6948			c->Request.type_attr_dir =
 6949					TYPE_ATTR_DIR(cmd_type,
 6950						ATTR_SIMPLE, XFER_WRITE);
 6951			c->Request.Timeout = 0;
 6952			c->Request.CDB[0] = BMIC_WRITE;
 6953			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
 6954			break;
 6955		case HPSA_CACHE_FLUSH:
 6956			c->Request.CDBLen = 12;
 6957			c->Request.type_attr_dir =
 6958					TYPE_ATTR_DIR(cmd_type,
 6959						ATTR_SIMPLE, XFER_WRITE);
 6960			c->Request.Timeout = 0;
 6961			c->Request.CDB[0] = BMIC_WRITE;
 6962			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
 6963			c->Request.CDB[7] = (size >> 8) & 0xFF;
 6964			c->Request.CDB[8] = size & 0xFF;
 6965			break;
 6966		case TEST_UNIT_READY:
 6967			c->Request.CDBLen = 6;
 6968			c->Request.type_attr_dir =
 6969				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 6970			c->Request.Timeout = 0;
 6971			break;
 6972		case HPSA_GET_RAID_MAP:
 6973			c->Request.CDBLen = 12;
 6974			c->Request.type_attr_dir =
 6975				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6976			c->Request.Timeout = 0;
 6977			c->Request.CDB[0] = HPSA_CISS_READ;
 6978			c->Request.CDB[1] = cmd;
 6979			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
 6980			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6981			c->Request.CDB[8] = (size >> 8) & 0xFF;
 6982			c->Request.CDB[9] = size & 0xFF;
 6983			break;
 6984		case BMIC_SENSE_CONTROLLER_PARAMETERS:
 6985			c->Request.CDBLen = 10;
 6986			c->Request.type_attr_dir =
 6987				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6988			c->Request.Timeout = 0;
 6989			c->Request.CDB[0] = BMIC_READ;
 6990			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
 6991			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6992			c->Request.CDB[8] = (size >> 8) & 0xFF;
 6993			break;
 6994		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
 6995			c->Request.CDBLen = 10;
 6996			c->Request.type_attr_dir =
 6997				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6998			c->Request.Timeout = 0;
 6999			c->Request.CDB[0] = BMIC_READ;
 7000			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
 7001			c->Request.CDB[7] = (size >> 16) & 0xFF;
 7002			c->Request.CDB[8] = (size >> 8) & 0XFF;
 7003			break;
 7004		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
 7005			c->Request.CDBLen = 10;
 7006			c->Request.type_attr_dir =
 7007				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 7008			c->Request.Timeout = 0;
 7009			c->Request.CDB[0] = BMIC_READ;
 7010			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
 7011			c->Request.CDB[7] = (size >> 16) & 0xFF;
 7012			c->Request.CDB[8] = (size >> 8) & 0XFF;
 7013			break;
 7014		case BMIC_SENSE_STORAGE_BOX_PARAMS:
 7015			c->Request.CDBLen = 10;
 7016			c->Request.type_attr_dir =
 7017				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 7018			c->Request.Timeout = 0;
 7019			c->Request.CDB[0] = BMIC_READ;
 7020			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
 7021			c->Request.CDB[7] = (size >> 16) & 0xFF;
 7022			c->Request.CDB[8] = (size >> 8) & 0XFF;
 7023			break;
 7024		case BMIC_IDENTIFY_CONTROLLER:
 7025			c->Request.CDBLen = 10;
 7026			c->Request.type_attr_dir =
 7027				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 7028			c->Request.Timeout = 0;
 7029			c->Request.CDB[0] = BMIC_READ;
 7030			c->Request.CDB[1] = 0;
 7031			c->Request.CDB[2] = 0;
 7032			c->Request.CDB[3] = 0;
 7033			c->Request.CDB[4] = 0;
 7034			c->Request.CDB[5] = 0;
 7035			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
 7036			c->Request.CDB[7] = (size >> 16) & 0xFF;
 7037			c->Request.CDB[8] = (size >> 8) & 0XFF;
 7038			c->Request.CDB[9] = 0;
 7039			break;
 7040		default:
 7041			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
 7042			BUG();
 7043			return -1;
 7044		}
 7045	} else if (cmd_type == TYPE_MSG) {
 7046		switch (cmd) {
 7047
 7048		case  HPSA_PHYS_TARGET_RESET:
 7049			c->Request.CDBLen = 16;
 7050			c->Request.type_attr_dir =
 7051				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 7052			c->Request.Timeout = 0; /* Don't time out */
 7053			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
 7054			c->Request.CDB[0] = HPSA_RESET;
 7055			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
 7056			/* Physical target reset needs no control bytes 4-7*/
 7057			c->Request.CDB[4] = 0x00;
 7058			c->Request.CDB[5] = 0x00;
 7059			c->Request.CDB[6] = 0x00;
 7060			c->Request.CDB[7] = 0x00;
 7061			break;
 7062		case  HPSA_DEVICE_RESET_MSG:
 7063			c->Request.CDBLen = 16;
 7064			c->Request.type_attr_dir =
 7065				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 
 7066			c->Request.Timeout = 0; /* Don't time out */
 7067			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
 7068			c->Request.CDB[0] =  cmd;
 7069			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
 7070			/* If bytes 4-7 are zero, it means reset the */
 7071			/* LunID device */
 7072			c->Request.CDB[4] = 0x00;
 7073			c->Request.CDB[5] = 0x00;
 7074			c->Request.CDB[6] = 0x00;
 7075			c->Request.CDB[7] = 0x00;
 7076			break;
 7077		case  HPSA_ABORT_MSG:
 7078			memcpy(&tag, buff, sizeof(tag));
 7079			dev_dbg(&h->pdev->dev,
 7080				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
 7081				tag, c->Header.tag);
 7082			c->Request.CDBLen = 16;
 7083			c->Request.type_attr_dir =
 7084					TYPE_ATTR_DIR(cmd_type,
 7085						ATTR_SIMPLE, XFER_WRITE);
 7086			c->Request.Timeout = 0; /* Don't time out */
 7087			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
 7088			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
 7089			c->Request.CDB[2] = 0x00; /* reserved */
 7090			c->Request.CDB[3] = 0x00; /* reserved */
 7091			/* Tag to abort goes in CDB[4]-CDB[11] */
 7092			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
 
 
 
 
 
 
 
 7093			c->Request.CDB[12] = 0x00; /* reserved */
 7094			c->Request.CDB[13] = 0x00; /* reserved */
 7095			c->Request.CDB[14] = 0x00; /* reserved */
 7096			c->Request.CDB[15] = 0x00; /* reserved */
 7097		break;
 7098		default:
 7099			dev_warn(&h->pdev->dev, "unknown message type %d\n",
 7100				cmd);
 7101			BUG();
 7102		}
 7103	} else {
 7104		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
 7105		BUG();
 7106	}
 7107
 7108	switch (GET_DIR(c->Request.type_attr_dir)) {
 7109	case XFER_READ:
 7110		pci_dir = PCI_DMA_FROMDEVICE;
 7111		break;
 7112	case XFER_WRITE:
 7113		pci_dir = PCI_DMA_TODEVICE;
 7114		break;
 7115	case XFER_NONE:
 7116		pci_dir = PCI_DMA_NONE;
 7117		break;
 7118	default:
 7119		pci_dir = PCI_DMA_BIDIRECTIONAL;
 7120	}
 7121	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
 7122		return -1;
 7123	return 0;
 7124}
 7125
 7126/*
 7127 * Map (physical) PCI mem into (virtual) kernel space
 7128 */
 7129static void __iomem *remap_pci_mem(ulong base, ulong size)
 7130{
 7131	ulong page_base = ((ulong) base) & PAGE_MASK;
 7132	ulong page_offs = ((ulong) base) - page_base;
 7133	void __iomem *page_remapped = ioremap_nocache(page_base,
 7134		page_offs + size);
 7135
 7136	return page_remapped ? (page_remapped + page_offs) : NULL;
 7137}
 7138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7139static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
 7140{
 7141	return h->access.command_completed(h, q);
 7142}
 7143
 7144static inline bool interrupt_pending(struct ctlr_info *h)
 7145{
 7146	return h->access.intr_pending(h);
 7147}
 7148
 7149static inline long interrupt_not_for_us(struct ctlr_info *h)
 7150{
 7151	return (h->access.intr_pending(h) == 0) ||
 7152		(h->interrupts_enabled == 0);
 7153}
 7154
 7155static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
 7156	u32 raw_tag)
 7157{
 7158	if (unlikely(tag_index >= h->nr_cmds)) {
 7159		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
 7160		return 1;
 7161	}
 7162	return 0;
 7163}
 7164
 7165static inline void finish_cmd(struct CommandList *c)
 7166{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7167	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
 7168	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
 7169			|| c->cmd_type == CMD_IOACCEL2))
 7170		complete_scsi_command(c);
 7171	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
 7172		complete(c->waiting);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7173}
 7174
 7175/* process completion of an indexed ("direct lookup") command */
 7176static inline void process_indexed_cmd(struct ctlr_info *h,
 7177	u32 raw_tag)
 7178{
 7179	u32 tag_index;
 7180	struct CommandList *c;
 7181
 7182	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
 7183	if (!bad_tag(h, tag_index, raw_tag)) {
 7184		c = h->cmd_pool + tag_index;
 7185		finish_cmd(c);
 7186	}
 7187}
 7188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7189/* Some controllers, like p400, will give us one interrupt
 7190 * after a soft reset, even if we turned interrupts off.
 7191 * Only need to check for this in the hpsa_xxx_discard_completions
 7192 * functions.
 7193 */
 7194static int ignore_bogus_interrupt(struct ctlr_info *h)
 7195{
 7196	if (likely(!reset_devices))
 7197		return 0;
 7198
 7199	if (likely(h->interrupts_enabled))
 7200		return 0;
 7201
 7202	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
 7203		"(known firmware bug.)  Ignoring.\n");
 7204
 7205	return 1;
 7206}
 7207
 7208/*
 7209 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 7210 * Relies on (h-q[x] == x) being true for x such that
 7211 * 0 <= x < MAX_REPLY_QUEUES.
 7212 */
 7213static struct ctlr_info *queue_to_hba(u8 *queue)
 7214{
 7215	return container_of((queue - *queue), struct ctlr_info, q[0]);
 7216}
 7217
 7218static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
 7219{
 7220	struct ctlr_info *h = queue_to_hba(queue);
 7221	u8 q = *(u8 *) queue;
 7222	u32 raw_tag;
 7223
 7224	if (ignore_bogus_interrupt(h))
 7225		return IRQ_NONE;
 7226
 7227	if (interrupt_not_for_us(h))
 7228		return IRQ_NONE;
 7229	h->last_intr_timestamp = get_jiffies_64();
 7230	while (interrupt_pending(h)) {
 7231		raw_tag = get_next_completion(h, q);
 7232		while (raw_tag != FIFO_EMPTY)
 7233			raw_tag = next_command(h, q);
 7234	}
 7235	return IRQ_HANDLED;
 7236}
 7237
 7238static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
 7239{
 7240	struct ctlr_info *h = queue_to_hba(queue);
 7241	u32 raw_tag;
 7242	u8 q = *(u8 *) queue;
 7243
 7244	if (ignore_bogus_interrupt(h))
 7245		return IRQ_NONE;
 7246
 7247	h->last_intr_timestamp = get_jiffies_64();
 7248	raw_tag = get_next_completion(h, q);
 7249	while (raw_tag != FIFO_EMPTY)
 7250		raw_tag = next_command(h, q);
 7251	return IRQ_HANDLED;
 7252}
 7253
 7254static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
 7255{
 7256	struct ctlr_info *h = queue_to_hba((u8 *) queue);
 7257	u32 raw_tag;
 7258	u8 q = *(u8 *) queue;
 7259
 7260	if (interrupt_not_for_us(h))
 7261		return IRQ_NONE;
 7262	h->last_intr_timestamp = get_jiffies_64();
 7263	while (interrupt_pending(h)) {
 7264		raw_tag = get_next_completion(h, q);
 7265		while (raw_tag != FIFO_EMPTY) {
 7266			process_indexed_cmd(h, raw_tag);
 
 
 
 7267			raw_tag = next_command(h, q);
 7268		}
 7269	}
 7270	return IRQ_HANDLED;
 7271}
 7272
 7273static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
 7274{
 7275	struct ctlr_info *h = queue_to_hba(queue);
 7276	u32 raw_tag;
 7277	u8 q = *(u8 *) queue;
 7278
 7279	h->last_intr_timestamp = get_jiffies_64();
 7280	raw_tag = get_next_completion(h, q);
 7281	while (raw_tag != FIFO_EMPTY) {
 7282		process_indexed_cmd(h, raw_tag);
 
 
 
 7283		raw_tag = next_command(h, q);
 7284	}
 7285	return IRQ_HANDLED;
 7286}
 7287
 7288/* Send a message CDB to the firmware. Careful, this only works
 7289 * in simple mode, not performant mode due to the tag lookup.
 7290 * We only ever use this immediately after a controller reset.
 7291 */
 7292static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
 7293			unsigned char type)
 7294{
 7295	struct Command {
 7296		struct CommandListHeader CommandHeader;
 7297		struct RequestBlock Request;
 7298		struct ErrDescriptor ErrorDescriptor;
 7299	};
 7300	struct Command *cmd;
 7301	static const size_t cmd_sz = sizeof(*cmd) +
 7302					sizeof(cmd->ErrorDescriptor);
 7303	dma_addr_t paddr64;
 7304	__le32 paddr32;
 7305	u32 tag;
 7306	void __iomem *vaddr;
 7307	int i, err;
 7308
 7309	vaddr = pci_ioremap_bar(pdev, 0);
 7310	if (vaddr == NULL)
 7311		return -ENOMEM;
 7312
 7313	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
 7314	 * CCISS commands, so they must be allocated from the lower 4GiB of
 7315	 * memory.
 7316	 */
 7317	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
 7318	if (err) {
 7319		iounmap(vaddr);
 7320		return err;
 7321	}
 7322
 7323	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
 7324	if (cmd == NULL) {
 7325		iounmap(vaddr);
 7326		return -ENOMEM;
 7327	}
 7328
 7329	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
 7330	 * although there's no guarantee, we assume that the address is at
 7331	 * least 4-byte aligned (most likely, it's page-aligned).
 7332	 */
 7333	paddr32 = cpu_to_le32(paddr64);
 7334
 7335	cmd->CommandHeader.ReplyQueue = 0;
 7336	cmd->CommandHeader.SGList = 0;
 7337	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
 7338	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
 
 7339	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
 7340
 7341	cmd->Request.CDBLen = 16;
 7342	cmd->Request.type_attr_dir =
 7343			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
 
 7344	cmd->Request.Timeout = 0; /* Don't time out */
 7345	cmd->Request.CDB[0] = opcode;
 7346	cmd->Request.CDB[1] = type;
 7347	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
 7348	cmd->ErrorDescriptor.Addr =
 7349			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
 7350	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
 7351
 7352	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
 7353
 7354	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
 7355		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
 7356		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
 7357			break;
 7358		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
 7359	}
 7360
 7361	iounmap(vaddr);
 7362
 7363	/* we leak the DMA buffer here ... no choice since the controller could
 7364	 *  still complete the command.
 7365	 */
 7366	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
 7367		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
 7368			opcode, type);
 7369		return -ETIMEDOUT;
 7370	}
 7371
 7372	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
 7373
 7374	if (tag & HPSA_ERROR_BIT) {
 7375		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
 7376			opcode, type);
 7377		return -EIO;
 7378	}
 7379
 7380	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
 7381		opcode, type);
 7382	return 0;
 7383}
 7384
 7385#define hpsa_noop(p) hpsa_message(p, 3, 0)
 7386
 7387static int hpsa_controller_hard_reset(struct pci_dev *pdev,
 7388	void __iomem *vaddr, u32 use_doorbell)
 7389{
 
 
 7390
 7391	if (use_doorbell) {
 7392		/* For everything after the P600, the PCI power state method
 7393		 * of resetting the controller doesn't work, so we have this
 7394		 * other way using the doorbell register.
 7395		 */
 7396		dev_info(&pdev->dev, "using doorbell to reset controller\n");
 7397		writel(use_doorbell, vaddr + SA5_DOORBELL);
 7398
 7399		/* PMC hardware guys tell us we need a 10 second delay after
 7400		 * doorbell reset and before any attempt to talk to the board
 7401		 * at all to ensure that this actually works and doesn't fall
 7402		 * over in some weird corner cases.
 7403		 */
 7404		msleep(10000);
 7405	} else { /* Try to do it the PCI power state way */
 7406
 7407		/* Quoting from the Open CISS Specification: "The Power
 7408		 * Management Control/Status Register (CSR) controls the power
 7409		 * state of the device.  The normal operating state is D0,
 7410		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
 7411		 * the controller, place the interface device in D3 then to D0,
 7412		 * this causes a secondary PCI reset which will reset the
 7413		 * controller." */
 7414
 7415		int rc = 0;
 7416
 
 
 
 
 
 7417		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
 7418
 7419		/* enter the D3hot power management state */
 7420		rc = pci_set_power_state(pdev, PCI_D3hot);
 7421		if (rc)
 7422			return rc;
 
 7423
 7424		msleep(500);
 7425
 7426		/* enter the D0 power management state */
 7427		rc = pci_set_power_state(pdev, PCI_D0);
 7428		if (rc)
 7429			return rc;
 7430
 7431		/*
 7432		 * The P600 requires a small delay when changing states.
 7433		 * Otherwise we may think the board did not reset and we bail.
 7434		 * This for kdump only and is particular to the P600.
 7435		 */
 7436		msleep(500);
 7437	}
 7438	return 0;
 7439}
 7440
 7441static void init_driver_version(char *driver_version, int len)
 7442{
 7443	memset(driver_version, 0, len);
 7444	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
 7445}
 7446
 7447static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
 7448{
 7449	char *driver_version;
 7450	int i, size = sizeof(cfgtable->driver_version);
 7451
 7452	driver_version = kmalloc(size, GFP_KERNEL);
 7453	if (!driver_version)
 7454		return -ENOMEM;
 7455
 7456	init_driver_version(driver_version, size);
 7457	for (i = 0; i < size; i++)
 7458		writeb(driver_version[i], &cfgtable->driver_version[i]);
 7459	kfree(driver_version);
 7460	return 0;
 7461}
 7462
 7463static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
 7464					  unsigned char *driver_ver)
 7465{
 7466	int i;
 7467
 7468	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
 7469		driver_ver[i] = readb(&cfgtable->driver_version[i]);
 7470}
 7471
 7472static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
 7473{
 7474
 7475	char *driver_ver, *old_driver_ver;
 7476	int rc, size = sizeof(cfgtable->driver_version);
 7477
 7478	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
 7479	if (!old_driver_ver)
 7480		return -ENOMEM;
 7481	driver_ver = old_driver_ver + size;
 7482
 7483	/* After a reset, the 32 bytes of "driver version" in the cfgtable
 7484	 * should have been changed, otherwise we know the reset failed.
 7485	 */
 7486	init_driver_version(old_driver_ver, size);
 7487	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
 7488	rc = !memcmp(driver_ver, old_driver_ver, size);
 7489	kfree(old_driver_ver);
 7490	return rc;
 7491}
 7492/* This does a hard reset of the controller using PCI power management
 7493 * states or the using the doorbell register.
 7494 */
 7495static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
 7496{
 7497	u64 cfg_offset;
 7498	u32 cfg_base_addr;
 7499	u64 cfg_base_addr_index;
 7500	void __iomem *vaddr;
 7501	unsigned long paddr;
 7502	u32 misc_fw_support;
 7503	int rc;
 7504	struct CfgTable __iomem *cfgtable;
 7505	u32 use_doorbell;
 
 7506	u16 command_register;
 7507
 7508	/* For controllers as old as the P600, this is very nearly
 7509	 * the same thing as
 7510	 *
 7511	 * pci_save_state(pci_dev);
 7512	 * pci_set_power_state(pci_dev, PCI_D3hot);
 7513	 * pci_set_power_state(pci_dev, PCI_D0);
 7514	 * pci_restore_state(pci_dev);
 7515	 *
 7516	 * For controllers newer than the P600, the pci power state
 7517	 * method of resetting doesn't work so we have another way
 7518	 * using the doorbell register.
 7519	 */
 7520
 7521	if (!ctlr_is_resettable(board_id)) {
 7522		dev_warn(&pdev->dev, "Controller not resettable\n");
 
 7523		return -ENODEV;
 7524	}
 7525
 7526	/* if controller is soft- but not hard resettable... */
 7527	if (!ctlr_is_hard_resettable(board_id))
 7528		return -ENOTSUPP; /* try soft reset later. */
 7529
 7530	/* Save the PCI command register */
 7531	pci_read_config_word(pdev, 4, &command_register);
 
 
 
 
 7532	pci_save_state(pdev);
 7533
 7534	/* find the first memory BAR, so we can find the cfg table */
 7535	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
 7536	if (rc)
 7537		return rc;
 7538	vaddr = remap_pci_mem(paddr, 0x250);
 7539	if (!vaddr)
 7540		return -ENOMEM;
 7541
 7542	/* find cfgtable in order to check if reset via doorbell is supported */
 7543	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
 7544					&cfg_base_addr_index, &cfg_offset);
 7545	if (rc)
 7546		goto unmap_vaddr;
 7547	cfgtable = remap_pci_mem(pci_resource_start(pdev,
 7548		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
 7549	if (!cfgtable) {
 7550		rc = -ENOMEM;
 7551		goto unmap_vaddr;
 7552	}
 7553	rc = write_driver_ver_to_cfgtable(cfgtable);
 7554	if (rc)
 7555		goto unmap_cfgtable;
 7556
 7557	/* If reset via doorbell register is supported, use that.
 7558	 * There are two such methods.  Favor the newest method.
 7559	 */
 7560	misc_fw_support = readl(&cfgtable->misc_fw_support);
 7561	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
 7562	if (use_doorbell) {
 7563		use_doorbell = DOORBELL_CTLR_RESET2;
 7564	} else {
 7565		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
 7566		if (use_doorbell) {
 7567			dev_warn(&pdev->dev,
 7568				"Soft reset not supported. Firmware update is required.\n");
 7569			rc = -ENOTSUPP; /* try soft reset */
 7570			goto unmap_cfgtable;
 7571		}
 7572	}
 7573
 7574	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
 7575	if (rc)
 7576		goto unmap_cfgtable;
 7577
 7578	pci_restore_state(pdev);
 
 
 
 
 
 7579	pci_write_config_word(pdev, 4, command_register);
 7580
 7581	/* Some devices (notably the HP Smart Array 5i Controller)
 7582	   need a little pause here */
 7583	msleep(HPSA_POST_RESET_PAUSE_MSECS);
 7584
 7585	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
 7586	if (rc) {
 7587		dev_warn(&pdev->dev,
 7588			"Failed waiting for board to become ready after hard reset\n");
 
 7589		goto unmap_cfgtable;
 7590	}
 7591
 7592	rc = controller_reset_failed(vaddr);
 7593	if (rc < 0)
 7594		goto unmap_cfgtable;
 7595	if (rc) {
 7596		dev_warn(&pdev->dev, "Unable to successfully reset "
 7597			"controller. Will try soft reset.\n");
 7598		rc = -ENOTSUPP;
 7599	} else {
 7600		dev_info(&pdev->dev, "board ready after hard reset.\n");
 7601	}
 7602
 7603unmap_cfgtable:
 7604	iounmap(cfgtable);
 7605
 7606unmap_vaddr:
 7607	iounmap(vaddr);
 7608	return rc;
 7609}
 7610
 7611/*
 7612 *  We cannot read the structure directly, for portability we must use
 7613 *   the io functions.
 7614 *   This is for debug only.
 7615 */
 7616static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
 7617{
 7618#ifdef HPSA_DEBUG
 7619	int i;
 7620	char temp_name[17];
 7621
 7622	dev_info(dev, "Controller Configuration information\n");
 7623	dev_info(dev, "------------------------------------\n");
 7624	for (i = 0; i < 4; i++)
 7625		temp_name[i] = readb(&(tb->Signature[i]));
 7626	temp_name[4] = '\0';
 7627	dev_info(dev, "   Signature = %s\n", temp_name);
 7628	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
 7629	dev_info(dev, "   Transport methods supported = 0x%x\n",
 7630	       readl(&(tb->TransportSupport)));
 7631	dev_info(dev, "   Transport methods active = 0x%x\n",
 7632	       readl(&(tb->TransportActive)));
 7633	dev_info(dev, "   Requested transport Method = 0x%x\n",
 7634	       readl(&(tb->HostWrite.TransportRequest)));
 7635	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
 7636	       readl(&(tb->HostWrite.CoalIntDelay)));
 7637	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
 7638	       readl(&(tb->HostWrite.CoalIntCount)));
 7639	dev_info(dev, "   Max outstanding commands = %d\n",
 7640	       readl(&(tb->CmdsOutMax)));
 7641	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
 7642	for (i = 0; i < 16; i++)
 7643		temp_name[i] = readb(&(tb->ServerName[i]));
 7644	temp_name[16] = '\0';
 7645	dev_info(dev, "   Server Name = %s\n", temp_name);
 7646	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
 7647		readl(&(tb->HeartBeat)));
 7648#endif				/* HPSA_DEBUG */
 7649}
 7650
 7651static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
 7652{
 7653	int i, offset, mem_type, bar_type;
 7654
 7655	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
 7656		return 0;
 7657	offset = 0;
 7658	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
 7659		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
 7660		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
 7661			offset += 4;
 7662		else {
 7663			mem_type = pci_resource_flags(pdev, i) &
 7664			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
 7665			switch (mem_type) {
 7666			case PCI_BASE_ADDRESS_MEM_TYPE_32:
 7667			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
 7668				offset += 4;	/* 32 bit */
 7669				break;
 7670			case PCI_BASE_ADDRESS_MEM_TYPE_64:
 7671				offset += 8;
 7672				break;
 7673			default:	/* reserved in PCI 2.2 */
 7674				dev_warn(&pdev->dev,
 7675				       "base address is invalid\n");
 7676				return -1;
 7677				break;
 7678			}
 7679		}
 7680		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
 7681			return i + 1;
 7682	}
 7683	return -1;
 7684}
 7685
 7686static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
 7687{
 7688	pci_free_irq_vectors(h->pdev);
 7689	h->msix_vectors = 0;
 7690}
 7691
 7692/* If MSI/MSI-X is supported by the kernel we will try to enable it on
 7693 * controllers that are capable. If not, we use legacy INTx mode.
 7694 */
 7695static int hpsa_interrupt_mode(struct ctlr_info *h)
 
 7696{
 7697	unsigned int flags = PCI_IRQ_LEGACY;
 7698	int ret;
 
 
 
 
 
 
 7699
 7700	/* Some boards advertise MSI but don't really support it */
 7701	switch (h->board_id) {
 7702	case 0x40700E11:
 7703	case 0x40800E11:
 7704	case 0x40820E11:
 7705	case 0x40830E11:
 7706		break;
 7707	default:
 7708		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
 7709				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
 7710		if (ret > 0) {
 7711			h->msix_vectors = ret;
 7712			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 7713		}
 7714
 7715		flags |= PCI_IRQ_MSI;
 7716		break;
 7717	}
 7718
 7719	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
 7720	if (ret < 0)
 7721		return ret;
 7722	return 0;
 
 
 
 
 
 
 7723}
 7724
 7725static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
 7726{
 7727	int i;
 7728	u32 subsystem_vendor_id, subsystem_device_id;
 7729
 7730	subsystem_vendor_id = pdev->subsystem_vendor;
 7731	subsystem_device_id = pdev->subsystem_device;
 7732	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
 7733		    subsystem_vendor_id;
 7734
 7735	for (i = 0; i < ARRAY_SIZE(products); i++)
 7736		if (*board_id == products[i].board_id)
 7737			return i;
 7738
 7739	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
 7740		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
 7741		!hpsa_allow_any) {
 7742		dev_warn(&pdev->dev, "unrecognized board ID: "
 7743			"0x%08x, ignoring.\n", *board_id);
 7744			return -ENODEV;
 7745	}
 7746	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
 7747}
 7748
 7749static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 7750				    unsigned long *memory_bar)
 7751{
 7752	int i;
 7753
 7754	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
 7755		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
 7756			/* addressing mode bits already removed */
 7757			*memory_bar = pci_resource_start(pdev, i);
 7758			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
 7759				*memory_bar);
 7760			return 0;
 7761		}
 7762	dev_warn(&pdev->dev, "no memory BAR found\n");
 7763	return -ENODEV;
 7764}
 7765
 7766static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 7767				     int wait_for_ready)
 7768{
 7769	int i, iterations;
 7770	u32 scratchpad;
 7771	if (wait_for_ready)
 7772		iterations = HPSA_BOARD_READY_ITERATIONS;
 7773	else
 7774		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
 7775
 7776	for (i = 0; i < iterations; i++) {
 7777		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
 7778		if (wait_for_ready) {
 7779			if (scratchpad == HPSA_FIRMWARE_READY)
 7780				return 0;
 7781		} else {
 7782			if (scratchpad != HPSA_FIRMWARE_READY)
 7783				return 0;
 7784		}
 7785		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
 7786	}
 7787	dev_warn(&pdev->dev, "board not ready, timed out.\n");
 7788	return -ENODEV;
 7789}
 7790
 7791static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 7792			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 7793			       u64 *cfg_offset)
 7794{
 7795	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
 7796	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
 7797	*cfg_base_addr &= (u32) 0x0000ffff;
 7798	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
 7799	if (*cfg_base_addr_index == -1) {
 7800		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
 7801		return -ENODEV;
 7802	}
 7803	return 0;
 7804}
 7805
 7806static void hpsa_free_cfgtables(struct ctlr_info *h)
 7807{
 7808	if (h->transtable) {
 7809		iounmap(h->transtable);
 7810		h->transtable = NULL;
 7811	}
 7812	if (h->cfgtable) {
 7813		iounmap(h->cfgtable);
 7814		h->cfgtable = NULL;
 7815	}
 7816}
 7817
 7818/* Find and map CISS config table and transfer table
 7819+ * several items must be unmapped (freed) later
 7820+ * */
 7821static int hpsa_find_cfgtables(struct ctlr_info *h)
 7822{
 7823	u64 cfg_offset;
 7824	u32 cfg_base_addr;
 7825	u64 cfg_base_addr_index;
 7826	u32 trans_offset;
 7827	int rc;
 7828
 7829	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
 7830		&cfg_base_addr_index, &cfg_offset);
 7831	if (rc)
 7832		return rc;
 7833	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
 7834		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
 7835	if (!h->cfgtable) {
 7836		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
 7837		return -ENOMEM;
 7838	}
 7839	rc = write_driver_ver_to_cfgtable(h->cfgtable);
 7840	if (rc)
 7841		return rc;
 7842	/* Find performant mode table. */
 7843	trans_offset = readl(&h->cfgtable->TransMethodOffset);
 7844	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
 7845				cfg_base_addr_index)+cfg_offset+trans_offset,
 7846				sizeof(*h->transtable));
 7847	if (!h->transtable) {
 7848		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
 7849		hpsa_free_cfgtables(h);
 7850		return -ENOMEM;
 7851	}
 7852	return 0;
 7853}
 7854
 7855static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
 7856{
 7857#define MIN_MAX_COMMANDS 16
 7858	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
 7859
 7860	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
 7861
 7862	/* Limit commands in memory limited kdump scenario. */
 7863	if (reset_devices && h->max_commands > 32)
 7864		h->max_commands = 32;
 7865
 7866	if (h->max_commands < MIN_MAX_COMMANDS) {
 7867		dev_warn(&h->pdev->dev,
 7868			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
 7869			h->max_commands,
 7870			MIN_MAX_COMMANDS);
 7871		h->max_commands = MIN_MAX_COMMANDS;
 7872	}
 7873}
 7874
 7875/* If the controller reports that the total max sg entries is greater than 512,
 7876 * then we know that chained SG blocks work.  (Original smart arrays did not
 7877 * support chained SG blocks and would return zero for max sg entries.)
 7878 */
 7879static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
 7880{
 7881	return h->maxsgentries > 512;
 7882}
 7883
 7884/* Interrogate the hardware for some limits:
 7885 * max commands, max SG elements without chaining, and with chaining,
 7886 * SG chain block size, etc.
 7887 */
 7888static void hpsa_find_board_params(struct ctlr_info *h)
 7889{
 7890	hpsa_get_max_perf_mode_cmds(h);
 7891	h->nr_cmds = h->max_commands;
 7892	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
 7893	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
 7894	if (hpsa_supports_chained_sg_blocks(h)) {
 7895		/* Limit in-command s/g elements to 32 save dma'able memory. */
 
 
 
 
 7896		h->max_cmd_sg_entries = 32;
 7897		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
 7898		h->maxsgentries--; /* save one for chain pointer */
 7899	} else {
 7900		/*
 7901		 * Original smart arrays supported at most 31 s/g entries
 7902		 * embedded inline in the command (trying to use more
 7903		 * would lock up the controller)
 7904		 */
 7905		h->max_cmd_sg_entries = 31;
 7906		h->maxsgentries = 31; /* default to traditional values */
 7907		h->chainsize = 0;
 7908	}
 7909
 7910	/* Find out what task management functions are supported and cache */
 7911	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
 7912	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
 7913		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
 7914	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
 7915		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
 7916	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
 7917		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
 7918}
 7919
 7920static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
 7921{
 7922	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
 7923		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
 7924		return false;
 7925	}
 7926	return true;
 7927}
 7928
 7929static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
 7930{
 7931	u32 driver_support;
 7932
 
 
 7933	driver_support = readl(&(h->cfgtable->driver_support));
 7934	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
 7935#ifdef CONFIG_X86
 7936	driver_support |= ENABLE_SCSI_PREFETCH;
 7937#endif
 7938	driver_support |= ENABLE_UNIT_ATTN;
 7939	writel(driver_support, &(h->cfgtable->driver_support));
 7940}
 7941
 7942/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 7943 * in a prefetch beyond physical memory.
 7944 */
 7945static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
 7946{
 7947	u32 dma_prefetch;
 7948
 7949	if (h->board_id != 0x3225103C)
 7950		return;
 7951	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
 7952	dma_prefetch |= 0x8000;
 7953	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
 7954}
 7955
 7956static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
 7957{
 7958	int i;
 7959	u32 doorbell_value;
 7960	unsigned long flags;
 7961	/* wait until the clear_event_notify bit 6 is cleared by controller. */
 7962	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
 7963		spin_lock_irqsave(&h->lock, flags);
 7964		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
 7965		spin_unlock_irqrestore(&h->lock, flags);
 7966		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
 7967			goto done;
 7968		/* delay and try again */
 7969		msleep(CLEAR_EVENT_WAIT_INTERVAL);
 7970	}
 7971	return -ENODEV;
 7972done:
 7973	return 0;
 7974}
 7975
 7976static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
 7977{
 7978	int i;
 7979	u32 doorbell_value;
 7980	unsigned long flags;
 7981
 7982	/* under certain very rare conditions, this can take awhile.
 7983	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
 7984	 * as we enter this code.)
 7985	 */
 7986	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
 7987		if (h->remove_in_progress)
 7988			goto done;
 7989		spin_lock_irqsave(&h->lock, flags);
 7990		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
 7991		spin_unlock_irqrestore(&h->lock, flags);
 7992		if (!(doorbell_value & CFGTBL_ChangeReq))
 7993			goto done;
 7994		/* delay and try again */
 7995		msleep(MODE_CHANGE_WAIT_INTERVAL);
 7996	}
 7997	return -ENODEV;
 7998done:
 7999	return 0;
 8000}
 8001
 8002/* return -ENODEV or other reason on error, 0 on success */
 8003static int hpsa_enter_simple_mode(struct ctlr_info *h)
 8004{
 8005	u32 trans_support;
 8006
 8007	trans_support = readl(&(h->cfgtable->TransportSupport));
 8008	if (!(trans_support & SIMPLE_MODE))
 8009		return -ENOTSUPP;
 8010
 8011	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
 8012
 8013	/* Update the field, and then ring the doorbell */
 8014	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
 8015	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
 8016	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 8017	if (hpsa_wait_for_mode_change_ack(h))
 8018		goto error;
 8019	print_cfg_table(&h->pdev->dev, h->cfgtable);
 8020	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
 8021		goto error;
 8022	h->transMethod = CFGTBL_Trans_Simple;
 8023	return 0;
 8024error:
 8025	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
 8026	return -ENODEV;
 8027}
 8028
 8029/* free items allocated or mapped by hpsa_pci_init */
 8030static void hpsa_free_pci_init(struct ctlr_info *h)
 8031{
 8032	hpsa_free_cfgtables(h);			/* pci_init 4 */
 8033	iounmap(h->vaddr);			/* pci_init 3 */
 8034	h->vaddr = NULL;
 8035	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
 8036	/*
 8037	 * call pci_disable_device before pci_release_regions per
 8038	 * Documentation/PCI/pci.txt
 8039	 */
 8040	pci_disable_device(h->pdev);		/* pci_init 1 */
 8041	pci_release_regions(h->pdev);		/* pci_init 2 */
 8042}
 8043
 8044/* several items must be freed later */
 8045static int hpsa_pci_init(struct ctlr_info *h)
 8046{
 8047	int prod_index, err;
 8048
 8049	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
 8050	if (prod_index < 0)
 8051		return prod_index;
 8052	h->product_name = products[prod_index].product_name;
 8053	h->access = *(products[prod_index].access);
 8054
 8055	h->needs_abort_tags_swizzled =
 8056		ctlr_needs_abort_tags_swizzled(h->board_id);
 8057
 8058	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
 8059			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
 8060
 8061	err = pci_enable_device(h->pdev);
 8062	if (err) {
 8063		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
 8064		pci_disable_device(h->pdev);
 8065		return err;
 8066	}
 8067
 
 
 
 8068	err = pci_request_regions(h->pdev, HPSA);
 8069	if (err) {
 8070		dev_err(&h->pdev->dev,
 8071			"failed to obtain PCI resources\n");
 8072		pci_disable_device(h->pdev);
 8073		return err;
 8074	}
 8075
 8076	pci_set_master(h->pdev);
 8077
 8078	err = hpsa_interrupt_mode(h);
 8079	if (err)
 8080		goto clean1;
 8081	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
 8082	if (err)
 8083		goto clean2;	/* intmode+region, pci */
 8084	h->vaddr = remap_pci_mem(h->paddr, 0x250);
 8085	if (!h->vaddr) {
 8086		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
 8087		err = -ENOMEM;
 8088		goto clean2;	/* intmode+region, pci */
 8089	}
 8090	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
 8091	if (err)
 8092		goto clean3;	/* vaddr, intmode+region, pci */
 8093	err = hpsa_find_cfgtables(h);
 8094	if (err)
 8095		goto clean3;	/* vaddr, intmode+region, pci */
 8096	hpsa_find_board_params(h);
 8097
 8098	if (!hpsa_CISS_signature_present(h)) {
 8099		err = -ENODEV;
 8100		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
 8101	}
 8102	hpsa_set_driver_support_bits(h);
 8103	hpsa_p600_dma_prefetch_quirk(h);
 8104	err = hpsa_enter_simple_mode(h);
 8105	if (err)
 8106		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
 8107	return 0;
 8108
 8109clean4:	/* cfgtables, vaddr, intmode+region, pci */
 8110	hpsa_free_cfgtables(h);
 8111clean3:	/* vaddr, intmode+region, pci */
 8112	iounmap(h->vaddr);
 8113	h->vaddr = NULL;
 8114clean2:	/* intmode+region, pci */
 8115	hpsa_disable_interrupt_mode(h);
 8116clean1:
 8117	/*
 8118	 * call pci_disable_device before pci_release_regions per
 8119	 * Documentation/PCI/pci.txt
 8120	 */
 8121	pci_disable_device(h->pdev);
 8122	pci_release_regions(h->pdev);
 8123	return err;
 8124}
 8125
 8126static void hpsa_hba_inquiry(struct ctlr_info *h)
 8127{
 8128	int rc;
 8129
 8130#define HBA_INQUIRY_BYTE_COUNT 64
 8131	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
 8132	if (!h->hba_inquiry_data)
 8133		return;
 8134	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
 8135		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
 8136	if (rc != 0) {
 8137		kfree(h->hba_inquiry_data);
 8138		h->hba_inquiry_data = NULL;
 8139	}
 8140}
 8141
 8142static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
 8143{
 8144	int rc, i;
 8145	void __iomem *vaddr;
 8146
 8147	if (!reset_devices)
 8148		return 0;
 8149
 8150	/* kdump kernel is loading, we don't know in which state is
 8151	 * the pci interface. The dev->enable_cnt is equal zero
 8152	 * so we call enable+disable, wait a while and switch it on.
 8153	 */
 8154	rc = pci_enable_device(pdev);
 8155	if (rc) {
 8156		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
 8157		return -ENODEV;
 8158	}
 8159	pci_disable_device(pdev);
 8160	msleep(260);			/* a randomly chosen number */
 8161	rc = pci_enable_device(pdev);
 8162	if (rc) {
 8163		dev_warn(&pdev->dev, "failed to enable device.\n");
 8164		return -ENODEV;
 8165	}
 8166
 8167	pci_set_master(pdev);
 8168
 8169	vaddr = pci_ioremap_bar(pdev, 0);
 8170	if (vaddr == NULL) {
 8171		rc = -ENOMEM;
 8172		goto out_disable;
 8173	}
 8174	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
 8175	iounmap(vaddr);
 8176
 8177	/* Reset the controller with a PCI power-cycle or via doorbell */
 8178	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
 8179
 8180	/* -ENOTSUPP here means we cannot reset the controller
 8181	 * but it's already (and still) up and running in
 8182	 * "performant mode".  Or, it might be 640x, which can't reset
 8183	 * due to concerns about shared bbwc between 6402/6404 pair.
 8184	 */
 
 
 8185	if (rc)
 8186		goto out_disable;
 8187
 8188	/* Now try to get the controller to respond to a no-op */
 8189	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
 8190	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
 8191		if (hpsa_noop(pdev) == 0)
 8192			break;
 8193		else
 8194			dev_warn(&pdev->dev, "no-op failed%s\n",
 8195					(i < 11 ? "; re-trying" : ""));
 8196	}
 8197
 8198out_disable:
 8199
 8200	pci_disable_device(pdev);
 8201	return rc;
 8202}
 8203
 8204static void hpsa_free_cmd_pool(struct ctlr_info *h)
 8205{
 8206	kfree(h->cmd_pool_bits);
 8207	h->cmd_pool_bits = NULL;
 8208	if (h->cmd_pool) {
 8209		pci_free_consistent(h->pdev,
 8210				h->nr_cmds * sizeof(struct CommandList),
 8211				h->cmd_pool,
 8212				h->cmd_pool_dhandle);
 8213		h->cmd_pool = NULL;
 8214		h->cmd_pool_dhandle = 0;
 8215	}
 8216	if (h->errinfo_pool) {
 8217		pci_free_consistent(h->pdev,
 8218				h->nr_cmds * sizeof(struct ErrorInfo),
 8219				h->errinfo_pool,
 8220				h->errinfo_pool_dhandle);
 8221		h->errinfo_pool = NULL;
 8222		h->errinfo_pool_dhandle = 0;
 8223	}
 8224}
 8225
 8226static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
 8227{
 8228	h->cmd_pool_bits = kzalloc(
 8229		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
 8230		sizeof(unsigned long), GFP_KERNEL);
 8231	h->cmd_pool = pci_alloc_consistent(h->pdev,
 8232		    h->nr_cmds * sizeof(*h->cmd_pool),
 8233		    &(h->cmd_pool_dhandle));
 8234	h->errinfo_pool = pci_alloc_consistent(h->pdev,
 8235		    h->nr_cmds * sizeof(*h->errinfo_pool),
 8236		    &(h->errinfo_pool_dhandle));
 8237	if ((h->cmd_pool_bits == NULL)
 8238	    || (h->cmd_pool == NULL)
 8239	    || (h->errinfo_pool == NULL)) {
 8240		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
 8241		goto clean_up;
 8242	}
 8243	hpsa_preinitialize_commands(h);
 8244	return 0;
 8245clean_up:
 8246	hpsa_free_cmd_pool(h);
 8247	return -ENOMEM;
 8248}
 8249
 8250/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
 8251static void hpsa_free_irqs(struct ctlr_info *h)
 8252{
 8253	int i;
 8254
 8255	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
 8256		/* Single reply queue, only one irq to free */
 8257		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
 8258		h->q[h->intr_mode] = 0;
 8259		return;
 8260	}
 8261
 8262	for (i = 0; i < h->msix_vectors; i++) {
 8263		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
 8264		h->q[i] = 0;
 8265	}
 8266	for (; i < MAX_REPLY_QUEUES; i++)
 8267		h->q[i] = 0;
 
 
 
 8268}
 8269
 8270/* returns 0 on success; cleans up and returns -Enn on error */
 8271static int hpsa_request_irqs(struct ctlr_info *h,
 8272	irqreturn_t (*msixhandler)(int, void *),
 8273	irqreturn_t (*intxhandler)(int, void *))
 8274{
 8275	int rc, i;
 8276
 8277	/*
 8278	 * initialize h->q[x] = x so that interrupt handlers know which
 8279	 * queue to process.
 8280	 */
 8281	for (i = 0; i < MAX_REPLY_QUEUES; i++)
 8282		h->q[i] = (u8) i;
 8283
 8284	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
 8285		/* If performant mode and MSI-X, use multiple reply queues */
 8286		for (i = 0; i < h->msix_vectors; i++) {
 8287			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
 8288			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
 8289					0, h->intrname[i],
 8290					&h->q[i]);
 8291			if (rc) {
 8292				int j;
 8293
 8294				dev_err(&h->pdev->dev,
 8295					"failed to get irq %d for %s\n",
 8296				       pci_irq_vector(h->pdev, i), h->devname);
 8297				for (j = 0; j < i; j++) {
 8298					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
 8299					h->q[j] = 0;
 8300				}
 8301				for (; j < MAX_REPLY_QUEUES; j++)
 8302					h->q[j] = 0;
 8303				return rc;
 8304			}
 8305		}
 8306	} else {
 8307		/* Use single reply pool */
 8308		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
 8309			sprintf(h->intrname[0], "%s-msi%s", h->devname,
 8310				h->msix_vectors ? "x" : "");
 8311			rc = request_irq(pci_irq_vector(h->pdev, 0),
 8312				msixhandler, 0,
 8313				h->intrname[0],
 8314				&h->q[h->intr_mode]);
 8315		} else {
 8316			sprintf(h->intrname[h->intr_mode],
 8317				"%s-intx", h->devname);
 8318			rc = request_irq(pci_irq_vector(h->pdev, 0),
 8319				intxhandler, IRQF_SHARED,
 8320				h->intrname[0],
 8321				&h->q[h->intr_mode]);
 8322		}
 8323	}
 8324	if (rc) {
 8325		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
 8326		       pci_irq_vector(h->pdev, 0), h->devname);
 8327		hpsa_free_irqs(h);
 8328		return -ENODEV;
 8329	}
 8330	return 0;
 8331}
 8332
 8333static int hpsa_kdump_soft_reset(struct ctlr_info *h)
 8334{
 8335	int rc;
 8336	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
 
 
 
 8337
 8338	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
 8339	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
 8340	if (rc) {
 8341		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
 8342		return rc;
 8343	}
 8344
 8345	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
 8346	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
 8347	if (rc) {
 8348		dev_warn(&h->pdev->dev, "Board failed to become ready "
 8349			"after soft reset.\n");
 8350		return rc;
 8351	}
 8352
 8353	return 0;
 8354}
 8355
 8356static void hpsa_free_reply_queues(struct ctlr_info *h)
 8357{
 8358	int i;
 8359
 8360	for (i = 0; i < h->nreply_queues; i++) {
 8361		if (!h->reply_queue[i].head)
 8362			continue;
 8363		pci_free_consistent(h->pdev,
 8364					h->reply_queue_size,
 8365					h->reply_queue[i].head,
 8366					h->reply_queue[i].busaddr);
 8367		h->reply_queue[i].head = NULL;
 8368		h->reply_queue[i].busaddr = 0;
 8369	}
 8370	h->reply_queue_size = 0;
 
 
 8371}
 8372
 8373static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
 8374{
 8375	hpsa_free_performant_mode(h);		/* init_one 7 */
 8376	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
 8377	hpsa_free_cmd_pool(h);			/* init_one 5 */
 8378	hpsa_free_irqs(h);			/* init_one 4 */
 8379	scsi_host_put(h->scsi_host);		/* init_one 3 */
 8380	h->scsi_host = NULL;			/* init_one 3 */
 8381	hpsa_free_pci_init(h);			/* init_one 2_5 */
 8382	free_percpu(h->lockup_detected);	/* init_one 2 */
 8383	h->lockup_detected = NULL;		/* init_one 2 */
 8384	if (h->resubmit_wq) {
 8385		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
 8386		h->resubmit_wq = NULL;
 8387	}
 8388	if (h->rescan_ctlr_wq) {
 8389		destroy_workqueue(h->rescan_ctlr_wq);
 8390		h->rescan_ctlr_wq = NULL;
 8391	}
 8392	kfree(h);				/* init_one 1 */
 8393}
 8394
 8395/* Called when controller lockup detected. */
 8396static void fail_all_outstanding_cmds(struct ctlr_info *h)
 8397{
 8398	int i, refcount;
 8399	struct CommandList *c;
 8400	int failcount = 0;
 8401
 8402	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
 8403	for (i = 0; i < h->nr_cmds; i++) {
 8404		c = h->cmd_pool + i;
 8405		refcount = atomic_inc_return(&c->refcount);
 8406		if (refcount > 1) {
 8407			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
 8408			finish_cmd(c);
 8409			atomic_dec(&h->commands_outstanding);
 8410			failcount++;
 8411		}
 8412		cmd_free(h, c);
 8413	}
 8414	dev_warn(&h->pdev->dev,
 8415		"failed %d commands in fail_all\n", failcount);
 8416}
 8417
 8418static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
 
 8419{
 8420	int cpu;
 8421
 8422	for_each_online_cpu(cpu) {
 8423		u32 *lockup_detected;
 8424		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
 8425		*lockup_detected = value;
 
 
 8426	}
 8427	wmb(); /* be sure the per-cpu variables are out to memory */
 8428}
 8429
 8430static void controller_lockup_detected(struct ctlr_info *h)
 8431{
 8432	unsigned long flags;
 8433	u32 lockup_detected;
 8434
 8435	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8436	spin_lock_irqsave(&h->lock, flags);
 8437	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
 8438	if (!lockup_detected) {
 8439		/* no heartbeat, but controller gave us a zero. */
 8440		dev_warn(&h->pdev->dev,
 8441			"lockup detected after %d but scratchpad register is zero\n",
 8442			h->heartbeat_sample_interval / HZ);
 8443		lockup_detected = 0xffffffff;
 8444	}
 8445	set_lockup_detected_for_all_cpus(h, lockup_detected);
 8446	spin_unlock_irqrestore(&h->lock, flags);
 8447	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
 8448			lockup_detected, h->heartbeat_sample_interval / HZ);
 8449	pci_disable_device(h->pdev);
 8450	fail_all_outstanding_cmds(h);
 
 
 
 8451}
 8452
 8453static int detect_controller_lockup(struct ctlr_info *h)
 8454{
 8455	u64 now;
 8456	u32 heartbeat;
 8457	unsigned long flags;
 8458
 8459	now = get_jiffies_64();
 8460	/* If we've received an interrupt recently, we're ok. */
 8461	if (time_after64(h->last_intr_timestamp +
 8462				(h->heartbeat_sample_interval), now))
 8463		return false;
 8464
 8465	/*
 8466	 * If we've already checked the heartbeat recently, we're ok.
 8467	 * This could happen if someone sends us a signal. We
 8468	 * otherwise don't care about signals in this thread.
 8469	 */
 8470	if (time_after64(h->last_heartbeat_timestamp +
 8471				(h->heartbeat_sample_interval), now))
 8472		return false;
 8473
 8474	/* If heartbeat has not changed since we last looked, we're not ok. */
 8475	spin_lock_irqsave(&h->lock, flags);
 8476	heartbeat = readl(&h->cfgtable->HeartBeat);
 8477	spin_unlock_irqrestore(&h->lock, flags);
 8478	if (h->last_heartbeat == heartbeat) {
 8479		controller_lockup_detected(h);
 8480		return true;
 8481	}
 8482
 8483	/* We're ok. */
 8484	h->last_heartbeat = heartbeat;
 8485	h->last_heartbeat_timestamp = now;
 8486	return false;
 8487}
 8488
 8489static void hpsa_ack_ctlr_events(struct ctlr_info *h)
 8490{
 8491	int i;
 8492	char *event_type;
 8493
 8494	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
 8495		return;
 8496
 8497	/* Ask the controller to clear the events we're handling. */
 8498	if ((h->transMethod & (CFGTBL_Trans_io_accel1
 8499			| CFGTBL_Trans_io_accel2)) &&
 8500		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
 8501		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
 8502
 8503		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
 8504			event_type = "state change";
 8505		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
 8506			event_type = "configuration change";
 8507		/* Stop sending new RAID offload reqs via the IO accelerator */
 8508		scsi_block_requests(h->scsi_host);
 8509		for (i = 0; i < h->ndevices; i++) {
 8510			h->dev[i]->offload_enabled = 0;
 8511			h->dev[i]->offload_to_be_enabled = 0;
 8512		}
 8513		hpsa_drain_accel_commands(h);
 8514		/* Set 'accelerator path config change' bit */
 8515		dev_warn(&h->pdev->dev,
 8516			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
 8517			h->events, event_type);
 8518		writel(h->events, &(h->cfgtable->clear_event_notify));
 8519		/* Set the "clear event notify field update" bit 6 */
 8520		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
 8521		/* Wait until ctlr clears 'clear event notify field', bit 6 */
 8522		hpsa_wait_for_clear_event_notify_ack(h);
 8523		scsi_unblock_requests(h->scsi_host);
 8524	} else {
 8525		/* Acknowledge controller notification events. */
 8526		writel(h->events, &(h->cfgtable->clear_event_notify));
 8527		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
 8528		hpsa_wait_for_clear_event_notify_ack(h);
 8529#if 0
 8530		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 8531		hpsa_wait_for_mode_change_ack(h);
 8532#endif
 8533	}
 8534	return;
 8535}
 8536
 8537/* Check a register on the controller to see if there are configuration
 8538 * changes (added/changed/removed logical drives, etc.) which mean that
 8539 * we should rescan the controller for devices.
 8540 * Also check flag for driver-initiated rescan.
 8541 */
 8542static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
 8543{
 8544	if (h->drv_req_rescan) {
 8545		h->drv_req_rescan = 0;
 8546		return 1;
 8547	}
 8548
 8549	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
 8550		return 0;
 8551
 8552	h->events = readl(&(h->cfgtable->event_notify));
 8553	return h->events & RESCAN_REQUIRED_EVENT_BITS;
 8554}
 8555
 8556/*
 8557 * Check if any of the offline devices have become ready
 8558 */
 8559static int hpsa_offline_devices_ready(struct ctlr_info *h)
 8560{
 8561	unsigned long flags;
 8562	struct offline_device_entry *d;
 8563	struct list_head *this, *tmp;
 8564
 8565	spin_lock_irqsave(&h->offline_device_lock, flags);
 8566	list_for_each_safe(this, tmp, &h->offline_device_list) {
 8567		d = list_entry(this, struct offline_device_entry,
 8568				offline_list);
 8569		spin_unlock_irqrestore(&h->offline_device_lock, flags);
 8570		if (!hpsa_volume_offline(h, d->scsi3addr)) {
 8571			spin_lock_irqsave(&h->offline_device_lock, flags);
 8572			list_del(&d->offline_list);
 8573			spin_unlock_irqrestore(&h->offline_device_lock, flags);
 8574			return 1;
 8575		}
 8576		spin_lock_irqsave(&h->offline_device_lock, flags);
 8577	}
 8578	spin_unlock_irqrestore(&h->offline_device_lock, flags);
 8579	return 0;
 8580}
 8581
 8582static int hpsa_luns_changed(struct ctlr_info *h)
 8583{
 8584	int rc = 1; /* assume there are changes */
 8585	struct ReportLUNdata *logdev = NULL;
 8586
 8587	/* if we can't find out if lun data has changed,
 8588	 * assume that it has.
 8589	 */
 8590
 8591	if (!h->lastlogicals)
 8592		return rc;
 8593
 8594	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
 8595	if (!logdev)
 8596		return rc;
 8597
 8598	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
 8599		dev_warn(&h->pdev->dev,
 8600			"report luns failed, can't track lun changes.\n");
 8601		goto out;
 8602	}
 8603	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
 8604		dev_info(&h->pdev->dev,
 8605			"Lun changes detected.\n");
 8606		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
 8607		goto out;
 8608	} else
 8609		rc = 0; /* no changes detected. */
 8610out:
 8611	kfree(logdev);
 8612	return rc;
 8613}
 8614
 8615static void hpsa_rescan_ctlr_worker(struct work_struct *work)
 8616{
 8617	unsigned long flags;
 8618	struct ctlr_info *h = container_of(to_delayed_work(work),
 8619					struct ctlr_info, rescan_ctlr_work);
 8620
 8621
 8622	if (h->remove_in_progress)
 8623		return;
 8624
 8625	/*
 8626	 * Do the scan after the reset
 8627	 */
 8628	if (h->reset_in_progress) {
 8629		h->drv_req_rescan = 1;
 8630		return;
 8631	}
 8632
 8633	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
 8634		scsi_host_get(h->scsi_host);
 
 8635		hpsa_ack_ctlr_events(h);
 8636		hpsa_scan_start(h->scsi_host);
 8637		scsi_host_put(h->scsi_host);
 8638	} else if (h->discovery_polling) {
 8639		hpsa_disable_rld_caching(h);
 8640		if (hpsa_luns_changed(h)) {
 8641			struct Scsi_Host *sh = NULL;
 8642
 8643			dev_info(&h->pdev->dev,
 8644				"driver discovery polling rescan.\n");
 8645			sh = scsi_host_get(h->scsi_host);
 8646			if (sh != NULL) {
 8647				hpsa_scan_start(sh);
 8648				scsi_host_put(sh);
 8649			}
 8650		}
 8651	}
 8652	spin_lock_irqsave(&h->lock, flags);
 8653	if (!h->remove_in_progress)
 8654		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
 8655				h->heartbeat_sample_interval);
 8656	spin_unlock_irqrestore(&h->lock, flags);
 8657}
 8658
 8659static void hpsa_monitor_ctlr_worker(struct work_struct *work)
 8660{
 8661	unsigned long flags;
 8662	struct ctlr_info *h = container_of(to_delayed_work(work),
 8663					struct ctlr_info, monitor_ctlr_work);
 8664
 8665	detect_controller_lockup(h);
 8666	if (lockup_detected(h))
 8667		return;
 8668
 8669	spin_lock_irqsave(&h->lock, flags);
 8670	if (!h->remove_in_progress)
 8671		schedule_delayed_work(&h->monitor_ctlr_work,
 8672				h->heartbeat_sample_interval);
 8673	spin_unlock_irqrestore(&h->lock, flags);
 8674}
 8675
 8676static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
 8677						char *name)
 8678{
 8679	struct workqueue_struct *wq = NULL;
 8680
 8681	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
 8682	if (!wq)
 8683		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
 8684
 8685	return wq;
 8686}
 8687
 8688static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 8689{
 8690	int dac, rc;
 8691	struct ctlr_info *h;
 8692	int try_soft_reset = 0;
 8693	unsigned long flags;
 8694	u32 board_id;
 8695
 8696	if (number_of_controllers == 0)
 8697		printk(KERN_INFO DRIVER_NAME "\n");
 8698
 8699	rc = hpsa_lookup_board_id(pdev, &board_id);
 8700	if (rc < 0) {
 8701		dev_warn(&pdev->dev, "Board ID not found\n");
 8702		return rc;
 8703	}
 8704
 8705	rc = hpsa_init_reset_devices(pdev, board_id);
 8706	if (rc) {
 8707		if (rc != -ENOTSUPP)
 8708			return rc;
 8709		/* If the reset fails in a particular way (it has no way to do
 8710		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
 8711		 * a soft reset once we get the controller configured up to the
 8712		 * point that it can accept a command.
 8713		 */
 8714		try_soft_reset = 1;
 8715		rc = 0;
 8716	}
 8717
 8718reinit_after_soft_reset:
 8719
 8720	/* Command structures must be aligned on a 32-byte boundary because
 8721	 * the 5 lower bits of the address are used by the hardware. and by
 8722	 * the driver.  See comments in hpsa.h for more info.
 8723	 */
 
 8724	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
 8725	h = kzalloc(sizeof(*h), GFP_KERNEL);
 8726	if (!h) {
 8727		dev_err(&pdev->dev, "Failed to allocate controller head\n");
 8728		return -ENOMEM;
 8729	}
 8730
 8731	h->pdev = pdev;
 8732
 8733	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
 
 
 8734	INIT_LIST_HEAD(&h->offline_device_list);
 8735	spin_lock_init(&h->lock);
 8736	spin_lock_init(&h->offline_device_lock);
 8737	spin_lock_init(&h->scan_lock);
 8738	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
 8739	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
 8740
 8741	/* Allocate and clear per-cpu variable lockup_detected */
 8742	h->lockup_detected = alloc_percpu(u32);
 8743	if (!h->lockup_detected) {
 8744		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
 8745		rc = -ENOMEM;
 8746		goto clean1;	/* aer/h */
 8747	}
 8748	set_lockup_detected_for_all_cpus(h, 0);
 8749
 8750	rc = hpsa_pci_init(h);
 8751	if (rc)
 8752		goto clean2;	/* lu, aer/h */
 8753
 8754	/* relies on h-> settings made by hpsa_pci_init, including
 8755	 * interrupt_mode h->intr */
 8756	rc = hpsa_scsi_host_alloc(h);
 8757	if (rc)
 8758		goto clean2_5;	/* pci, lu, aer/h */
 8759
 8760	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
 8761	h->ctlr = number_of_controllers;
 8762	number_of_controllers++;
 8763
 8764	/* configure PCI DMA stuff */
 8765	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
 8766	if (rc == 0) {
 8767		dac = 1;
 8768	} else {
 8769		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
 8770		if (rc == 0) {
 8771			dac = 0;
 8772		} else {
 8773			dev_err(&pdev->dev, "no suitable DMA available\n");
 8774			goto clean3;	/* shost, pci, lu, aer/h */
 8775		}
 8776	}
 8777
 8778	/* make sure the board interrupts are off */
 8779	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8780
 8781	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
 8782	if (rc)
 8783		goto clean3;	/* shost, pci, lu, aer/h */
 8784	rc = hpsa_alloc_cmd_pool(h);
 8785	if (rc)
 8786		goto clean4;	/* irq, shost, pci, lu, aer/h */
 8787	rc = hpsa_alloc_sg_chain_blocks(h);
 8788	if (rc)
 8789		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
 8790	init_waitqueue_head(&h->scan_wait_queue);
 8791	init_waitqueue_head(&h->abort_cmd_wait_queue);
 8792	init_waitqueue_head(&h->event_sync_wait_queue);
 8793	mutex_init(&h->reset_mutex);
 8794	h->scan_finished = 1; /* no scan currently in progress */
 8795
 8796	pci_set_drvdata(pdev, h);
 8797	h->ndevices = 0;
 8798
 
 8799	spin_lock_init(&h->devlock);
 8800	rc = hpsa_put_ctlr_into_performant_mode(h);
 8801	if (rc)
 8802		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
 8803
 8804	/* create the resubmit workqueue */
 8805	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
 8806	if (!h->rescan_ctlr_wq) {
 8807		rc = -ENOMEM;
 8808		goto clean7;
 8809	}
 8810
 8811	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
 8812	if (!h->resubmit_wq) {
 8813		rc = -ENOMEM;
 8814		goto clean7;	/* aer/h */
 8815	}
 8816
 8817	/*
 8818	 * At this point, the controller is ready to take commands.
 8819	 * Now, if reset_devices and the hard reset didn't work, try
 8820	 * the soft reset and see if that works.
 8821	 */
 8822	if (try_soft_reset) {
 8823
 8824		/* This is kind of gross.  We may or may not get a completion
 8825		 * from the soft reset command, and if we do, then the value
 8826		 * from the fifo may or may not be valid.  So, we wait 10 secs
 8827		 * after the reset throwing away any completions we get during
 8828		 * that time.  Unregister the interrupt handler and register
 8829		 * fake ones to scoop up any residual completions.
 8830		 */
 8831		spin_lock_irqsave(&h->lock, flags);
 8832		h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8833		spin_unlock_irqrestore(&h->lock, flags);
 8834		hpsa_free_irqs(h);
 8835		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
 8836					hpsa_intx_discard_completions);
 8837		if (rc) {
 8838			dev_warn(&h->pdev->dev,
 8839				"Failed to request_irq after soft reset.\n");
 8840			/*
 8841			 * cannot goto clean7 or free_irqs will be called
 8842			 * again. Instead, do its work
 8843			 */
 8844			hpsa_free_performant_mode(h);	/* clean7 */
 8845			hpsa_free_sg_chain_blocks(h);	/* clean6 */
 8846			hpsa_free_cmd_pool(h);		/* clean5 */
 8847			/*
 8848			 * skip hpsa_free_irqs(h) clean4 since that
 8849			 * was just called before request_irqs failed
 8850			 */
 8851			goto clean3;
 8852		}
 8853
 8854		rc = hpsa_kdump_soft_reset(h);
 8855		if (rc)
 8856			/* Neither hard nor soft reset worked, we're hosed. */
 8857			goto clean7;
 8858
 8859		dev_info(&h->pdev->dev, "Board READY.\n");
 8860		dev_info(&h->pdev->dev,
 8861			"Waiting for stale completions to drain.\n");
 8862		h->access.set_intr_mask(h, HPSA_INTR_ON);
 8863		msleep(10000);
 8864		h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8865
 8866		rc = controller_reset_failed(h->cfgtable);
 8867		if (rc)
 8868			dev_info(&h->pdev->dev,
 8869				"Soft reset appears to have failed.\n");
 8870
 8871		/* since the controller's reset, we have to go back and re-init
 8872		 * everything.  Easiest to just forget what we've done and do it
 8873		 * all over again.
 8874		 */
 8875		hpsa_undo_allocations_after_kdump_soft_reset(h);
 8876		try_soft_reset = 0;
 8877		if (rc)
 8878			/* don't goto clean, we already unallocated */
 8879			return -ENODEV;
 8880
 8881		goto reinit_after_soft_reset;
 8882	}
 8883
 8884	/* Enable Accelerated IO path at driver layer */
 8885	h->acciopath_status = 1;
 8886	/* Disable discovery polling.*/
 8887	h->discovery_polling = 0;
 8888
 
 8889
 8890	/* Turn the interrupts on so we can service requests */
 8891	h->access.set_intr_mask(h, HPSA_INTR_ON);
 8892
 8893	hpsa_hba_inquiry(h);
 8894
 8895	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
 8896	if (!h->lastlogicals)
 8897		dev_info(&h->pdev->dev,
 8898			"Can't track change to report lun data\n");
 8899
 8900	/* hook into SCSI subsystem */
 8901	rc = hpsa_scsi_add_host(h);
 8902	if (rc)
 8903		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
 8904
 8905	/* Monitor the controller for firmware lockups */
 8906	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
 8907	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
 8908	schedule_delayed_work(&h->monitor_ctlr_work,
 8909				h->heartbeat_sample_interval);
 8910	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
 8911	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
 8912				h->heartbeat_sample_interval);
 8913	return 0;
 8914
 8915clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
 8916	hpsa_free_performant_mode(h);
 8917	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8918clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
 8919	hpsa_free_sg_chain_blocks(h);
 8920clean5: /* cmd, irq, shost, pci, lu, aer/h */
 8921	hpsa_free_cmd_pool(h);
 8922clean4: /* irq, shost, pci, lu, aer/h */
 8923	hpsa_free_irqs(h);
 8924clean3: /* shost, pci, lu, aer/h */
 8925	scsi_host_put(h->scsi_host);
 8926	h->scsi_host = NULL;
 8927clean2_5: /* pci, lu, aer/h */
 8928	hpsa_free_pci_init(h);
 8929clean2: /* lu, aer/h */
 8930	if (h->lockup_detected) {
 8931		free_percpu(h->lockup_detected);
 8932		h->lockup_detected = NULL;
 8933	}
 8934clean1:	/* wq/aer/h */
 8935	if (h->resubmit_wq) {
 8936		destroy_workqueue(h->resubmit_wq);
 8937		h->resubmit_wq = NULL;
 8938	}
 8939	if (h->rescan_ctlr_wq) {
 8940		destroy_workqueue(h->rescan_ctlr_wq);
 8941		h->rescan_ctlr_wq = NULL;
 8942	}
 8943	kfree(h);
 8944	return rc;
 8945}
 8946
 8947static void hpsa_flush_cache(struct ctlr_info *h)
 8948{
 8949	char *flush_buf;
 8950	struct CommandList *c;
 8951	int rc;
 8952
 8953	if (unlikely(lockup_detected(h)))
 
 
 
 8954		return;
 
 
 
 8955	flush_buf = kzalloc(4, GFP_KERNEL);
 8956	if (!flush_buf)
 8957		return;
 8958
 8959	c = cmd_alloc(h);
 8960
 
 
 
 8961	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
 8962		RAID_CTLR_LUNID, TYPE_CMD)) {
 8963		goto out;
 8964	}
 8965	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 8966					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
 8967	if (rc)
 8968		goto out;
 8969	if (c->err_info->CommandStatus != 0)
 8970out:
 8971		dev_warn(&h->pdev->dev,
 8972			"error flushing cache on controller\n");
 8973	cmd_free(h, c);
 
 8974	kfree(flush_buf);
 8975}
 8976
 8977/* Make controller gather fresh report lun data each time we
 8978 * send down a report luns request
 8979 */
 8980static void hpsa_disable_rld_caching(struct ctlr_info *h)
 8981{
 8982	u32 *options;
 8983	struct CommandList *c;
 8984	int rc;
 8985
 8986	/* Don't bother trying to set diag options if locked up */
 8987	if (unlikely(h->lockup_detected))
 8988		return;
 8989
 8990	options = kzalloc(sizeof(*options), GFP_KERNEL);
 8991	if (!options)
 8992		return;
 8993
 8994	c = cmd_alloc(h);
 8995
 8996	/* first, get the current diag options settings */
 8997	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
 8998		RAID_CTLR_LUNID, TYPE_CMD))
 8999		goto errout;
 9000
 9001	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 9002		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
 9003	if ((rc != 0) || (c->err_info->CommandStatus != 0))
 9004		goto errout;
 9005
 9006	/* Now, set the bit for disabling the RLD caching */
 9007	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
 9008
 9009	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
 9010		RAID_CTLR_LUNID, TYPE_CMD))
 9011		goto errout;
 9012
 9013	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 9014		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
 9015	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
 9016		goto errout;
 9017
 9018	/* Now verify that it got set: */
 9019	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
 9020		RAID_CTLR_LUNID, TYPE_CMD))
 9021		goto errout;
 9022
 9023	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
 9024		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
 9025	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
 9026		goto errout;
 9027
 9028	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
 9029		goto out;
 9030
 9031errout:
 9032	dev_err(&h->pdev->dev,
 9033			"Error: failed to disable report lun data caching.\n");
 9034out:
 9035	cmd_free(h, c);
 9036	kfree(options);
 9037}
 9038
 9039static void hpsa_shutdown(struct pci_dev *pdev)
 9040{
 9041	struct ctlr_info *h;
 9042
 9043	h = pci_get_drvdata(pdev);
 9044	/* Turn board interrupts off  and send the flush cache command
 9045	 * sendcmd will turn off interrupt, and send the flush...
 9046	 * To write all data in the battery backed cache to disks
 9047	 */
 9048	hpsa_flush_cache(h);
 9049	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 9050	hpsa_free_irqs(h);			/* init_one 4 */
 9051	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
 9052}
 9053
 9054static void hpsa_free_device_info(struct ctlr_info *h)
 9055{
 9056	int i;
 9057
 9058	for (i = 0; i < h->ndevices; i++) {
 9059		kfree(h->dev[i]);
 9060		h->dev[i] = NULL;
 9061	}
 9062}
 9063
 9064static void hpsa_remove_one(struct pci_dev *pdev)
 9065{
 9066	struct ctlr_info *h;
 9067	unsigned long flags;
 9068
 9069	if (pci_get_drvdata(pdev) == NULL) {
 9070		dev_err(&pdev->dev, "unable to remove device\n");
 9071		return;
 9072	}
 9073	h = pci_get_drvdata(pdev);
 9074
 9075	/* Get rid of any controller monitoring work items */
 9076	spin_lock_irqsave(&h->lock, flags);
 9077	h->remove_in_progress = 1;
 
 9078	spin_unlock_irqrestore(&h->lock, flags);
 9079	cancel_delayed_work_sync(&h->monitor_ctlr_work);
 9080	cancel_delayed_work_sync(&h->rescan_ctlr_work);
 9081	destroy_workqueue(h->rescan_ctlr_wq);
 9082	destroy_workqueue(h->resubmit_wq);
 9083
 9084	/*
 9085	 * Call before disabling interrupts.
 9086	 * scsi_remove_host can trigger I/O operations especially
 9087	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
 9088	 * operations which cannot complete and will hang the system.
 9089	 */
 9090	if (h->scsi_host)
 9091		scsi_remove_host(h->scsi_host);		/* init_one 8 */
 9092	/* includes hpsa_free_irqs - init_one 4 */
 9093	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
 9094	hpsa_shutdown(pdev);
 9095
 9096	hpsa_free_device_info(h);		/* scan */
 9097
 9098	kfree(h->hba_inquiry_data);			/* init_one 10 */
 9099	h->hba_inquiry_data = NULL;			/* init_one 10 */
 9100	hpsa_free_ioaccel2_sg_chain_blocks(h);
 9101	hpsa_free_performant_mode(h);			/* init_one 7 */
 9102	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
 9103	hpsa_free_cmd_pool(h);				/* init_one 5 */
 9104	kfree(h->lastlogicals);
 9105
 9106	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
 9107
 9108	scsi_host_put(h->scsi_host);			/* init_one 3 */
 9109	h->scsi_host = NULL;				/* init_one 3 */
 9110
 9111	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
 9112	hpsa_free_pci_init(h);				/* init_one 2.5 */
 9113
 9114	free_percpu(h->lockup_detected);		/* init_one 2 */
 9115	h->lockup_detected = NULL;			/* init_one 2 */
 9116	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
 9117
 9118	hpsa_delete_sas_host(h);
 9119
 9120	kfree(h);					/* init_one 1 */
 9121}
 9122
 9123static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
 9124	__attribute__((unused)) pm_message_t state)
 9125{
 9126	return -ENOSYS;
 9127}
 9128
 9129static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
 9130{
 9131	return -ENOSYS;
 9132}
 9133
 9134static struct pci_driver hpsa_pci_driver = {
 9135	.name = HPSA,
 9136	.probe = hpsa_init_one,
 9137	.remove = hpsa_remove_one,
 9138	.id_table = hpsa_pci_device_id,	/* id_table */
 9139	.shutdown = hpsa_shutdown,
 9140	.suspend = hpsa_suspend,
 9141	.resume = hpsa_resume,
 9142};
 9143
 9144/* Fill in bucket_map[], given nsgs (the max number of
 9145 * scatter gather elements supported) and bucket[],
 9146 * which is an array of 8 integers.  The bucket[] array
 9147 * contains 8 different DMA transfer sizes (in 16
 9148 * byte increments) which the controller uses to fetch
 9149 * commands.  This function fills in bucket_map[], which
 9150 * maps a given number of scatter gather elements to one of
 9151 * the 8 DMA transfer sizes.  The point of it is to allow the
 9152 * controller to only do as much DMA as needed to fetch the
 9153 * command, with the DMA transfer size encoded in the lower
 9154 * bits of the command address.
 9155 */
 9156static void  calc_bucket_map(int bucket[], int num_buckets,
 9157	int nsgs, int min_blocks, u32 *bucket_map)
 9158{
 9159	int i, j, b, size;
 9160
 9161	/* Note, bucket_map must have nsgs+1 entries. */
 9162	for (i = 0; i <= nsgs; i++) {
 9163		/* Compute size of a command with i SG entries */
 9164		size = i + min_blocks;
 9165		b = num_buckets; /* Assume the biggest bucket */
 9166		/* Find the bucket that is just big enough */
 9167		for (j = 0; j < num_buckets; j++) {
 9168			if (bucket[j] >= size) {
 9169				b = j;
 9170				break;
 9171			}
 9172		}
 9173		/* for a command with i SG entries, use bucket b. */
 9174		bucket_map[i] = b;
 9175	}
 9176}
 9177
 9178/*
 9179 * return -ENODEV on err, 0 on success (or no action)
 9180 * allocates numerous items that must be freed later
 9181 */
 9182static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
 9183{
 9184	int i;
 9185	unsigned long register_value;
 9186	unsigned long transMethod = CFGTBL_Trans_Performant |
 9187			(trans_support & CFGTBL_Trans_use_short_tags) |
 9188				CFGTBL_Trans_enable_directed_msix |
 9189			(trans_support & (CFGTBL_Trans_io_accel1 |
 9190				CFGTBL_Trans_io_accel2));
 9191	struct access_method access = SA5_performant_access;
 9192
 9193	/* This is a bit complicated.  There are 8 registers on
 9194	 * the controller which we write to to tell it 8 different
 9195	 * sizes of commands which there may be.  It's a way of
 9196	 * reducing the DMA done to fetch each command.  Encoded into
 9197	 * each command's tag are 3 bits which communicate to the controller
 9198	 * which of the eight sizes that command fits within.  The size of
 9199	 * each command depends on how many scatter gather entries there are.
 9200	 * Each SG entry requires 16 bytes.  The eight registers are programmed
 9201	 * with the number of 16-byte blocks a command of that size requires.
 9202	 * The smallest command possible requires 5 such 16 byte blocks.
 9203	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
 9204	 * blocks.  Note, this only extends to the SG entries contained
 9205	 * within the command block, and does not extend to chained blocks
 9206	 * of SG elements.   bft[] contains the eight values we write to
 9207	 * the registers.  They are not evenly distributed, but have more
 9208	 * sizes for small commands, and fewer sizes for larger commands.
 9209	 */
 9210	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
 9211#define MIN_IOACCEL2_BFT_ENTRY 5
 9212#define HPSA_IOACCEL2_HEADER_SZ 4
 9213	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
 9214			13, 14, 15, 16, 17, 18, 19,
 9215			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
 9216	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
 9217	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
 9218	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
 9219				 16 * MIN_IOACCEL2_BFT_ENTRY);
 9220	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
 9221	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
 9222	/*  5 = 1 s/g entry or 4k
 9223	 *  6 = 2 s/g entry or 8k
 9224	 *  8 = 4 s/g entry or 16k
 9225	 * 10 = 6 s/g entry or 24k
 9226	 */
 9227
 9228	/* If the controller supports either ioaccel method then
 9229	 * we can also use the RAID stack submit path that does not
 9230	 * perform the superfluous readl() after each command submission.
 9231	 */
 9232	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
 9233		access = SA5_performant_access_no_read;
 9234
 9235	/* Controller spec: zero out this buffer. */
 9236	for (i = 0; i < h->nreply_queues; i++)
 9237		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
 9238
 9239	bft[7] = SG_ENTRIES_IN_CMD + 4;
 9240	calc_bucket_map(bft, ARRAY_SIZE(bft),
 9241				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
 9242	for (i = 0; i < 8; i++)
 9243		writel(bft[i], &h->transtable->BlockFetch[i]);
 9244
 9245	/* size of controller ring buffer */
 9246	writel(h->max_commands, &h->transtable->RepQSize);
 9247	writel(h->nreply_queues, &h->transtable->RepQCount);
 9248	writel(0, &h->transtable->RepQCtrAddrLow32);
 9249	writel(0, &h->transtable->RepQCtrAddrHigh32);
 9250
 9251	for (i = 0; i < h->nreply_queues; i++) {
 9252		writel(0, &h->transtable->RepQAddr[i].upper);
 9253		writel(h->reply_queue[i].busaddr,
 
 9254			&h->transtable->RepQAddr[i].lower);
 9255	}
 9256
 9257	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
 9258	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
 9259	/*
 9260	 * enable outbound interrupt coalescing in accelerator mode;
 9261	 */
 9262	if (trans_support & CFGTBL_Trans_io_accel1) {
 9263		access = SA5_ioaccel_mode1_access;
 9264		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
 9265		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
 9266	} else {
 9267		if (trans_support & CFGTBL_Trans_io_accel2) {
 9268			access = SA5_ioaccel_mode2_access;
 9269			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
 9270			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
 9271		}
 9272	}
 9273	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 9274	if (hpsa_wait_for_mode_change_ack(h)) {
 9275		dev_err(&h->pdev->dev,
 9276			"performant mode problem - doorbell timeout\n");
 9277		return -ENODEV;
 9278	}
 9279	register_value = readl(&(h->cfgtable->TransportActive));
 9280	if (!(register_value & CFGTBL_Trans_Performant)) {
 9281		dev_err(&h->pdev->dev,
 9282			"performant mode problem - transport not active\n");
 9283		return -ENODEV;
 9284	}
 9285	/* Change the access methods to the performant access methods */
 9286	h->access = access;
 9287	h->transMethod = transMethod;
 9288
 9289	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
 9290		(trans_support & CFGTBL_Trans_io_accel2)))
 9291		return 0;
 9292
 9293	if (trans_support & CFGTBL_Trans_io_accel1) {
 9294		/* Set up I/O accelerator mode */
 9295		for (i = 0; i < h->nreply_queues; i++) {
 9296			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
 9297			h->reply_queue[i].current_entry =
 9298				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
 9299		}
 9300		bft[7] = h->ioaccel_maxsg + 8;
 9301		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
 9302				h->ioaccel1_blockFetchTable);
 9303
 9304		/* initialize all reply queue entries to unused */
 9305		for (i = 0; i < h->nreply_queues; i++)
 9306			memset(h->reply_queue[i].head,
 9307				(u8) IOACCEL_MODE1_REPLY_UNUSED,
 9308				h->reply_queue_size);
 9309
 9310		/* set all the constant fields in the accelerator command
 9311		 * frames once at init time to save CPU cycles later.
 9312		 */
 9313		for (i = 0; i < h->nr_cmds; i++) {
 9314			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
 9315
 9316			cp->function = IOACCEL1_FUNCTION_SCSIIO;
 9317			cp->err_info = (u32) (h->errinfo_pool_dhandle +
 9318					(i * sizeof(struct ErrorInfo)));
 9319			cp->err_info_len = sizeof(struct ErrorInfo);
 9320			cp->sgl_offset = IOACCEL1_SGLOFFSET;
 9321			cp->host_context_flags =
 9322				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
 9323			cp->timeout_sec = 0;
 9324			cp->ReplyQueue = 0;
 9325			cp->tag =
 9326				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
 9327			cp->host_addr =
 9328				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
 
 9329					(i * sizeof(struct io_accel1_cmd)));
 
 9330		}
 9331	} else if (trans_support & CFGTBL_Trans_io_accel2) {
 9332		u64 cfg_offset, cfg_base_addr_index;
 9333		u32 bft2_offset, cfg_base_addr;
 9334		int rc;
 9335
 9336		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
 9337			&cfg_base_addr_index, &cfg_offset);
 9338		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
 9339		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
 9340		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
 9341				4, h->ioaccel2_blockFetchTable);
 9342		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
 9343		BUILD_BUG_ON(offsetof(struct CfgTable,
 9344				io_accel_request_size_offset) != 0xb8);
 9345		h->ioaccel2_bft2_regs =
 9346			remap_pci_mem(pci_resource_start(h->pdev,
 9347					cfg_base_addr_index) +
 9348					cfg_offset + bft2_offset,
 9349					ARRAY_SIZE(bft2) *
 9350					sizeof(*h->ioaccel2_bft2_regs));
 9351		for (i = 0; i < ARRAY_SIZE(bft2); i++)
 9352			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
 9353	}
 9354	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 9355	if (hpsa_wait_for_mode_change_ack(h)) {
 9356		dev_err(&h->pdev->dev,
 9357			"performant mode problem - enabling ioaccel mode\n");
 9358		return -ENODEV;
 9359	}
 9360	return 0;
 9361}
 9362
 9363/* Free ioaccel1 mode command blocks and block fetch table */
 9364static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
 9365{
 9366	if (h->ioaccel_cmd_pool) {
 9367		pci_free_consistent(h->pdev,
 9368			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
 9369			h->ioaccel_cmd_pool,
 9370			h->ioaccel_cmd_pool_dhandle);
 9371		h->ioaccel_cmd_pool = NULL;
 9372		h->ioaccel_cmd_pool_dhandle = 0;
 9373	}
 9374	kfree(h->ioaccel1_blockFetchTable);
 9375	h->ioaccel1_blockFetchTable = NULL;
 9376}
 9377
 9378/* Allocate ioaccel1 mode command blocks and block fetch table */
 9379static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
 9380{
 9381	h->ioaccel_maxsg =
 9382		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
 9383	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
 9384		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
 9385
 9386	/* Command structures must be aligned on a 128-byte boundary
 9387	 * because the 7 lower bits of the address are used by the
 9388	 * hardware.
 9389	 */
 
 9390	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
 9391			IOACCEL1_COMMANDLIST_ALIGNMENT);
 9392	h->ioaccel_cmd_pool =
 9393		pci_alloc_consistent(h->pdev,
 9394			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
 9395			&(h->ioaccel_cmd_pool_dhandle));
 9396
 9397	h->ioaccel1_blockFetchTable =
 9398		kmalloc(((h->ioaccel_maxsg + 1) *
 9399				sizeof(u32)), GFP_KERNEL);
 9400
 9401	if ((h->ioaccel_cmd_pool == NULL) ||
 9402		(h->ioaccel1_blockFetchTable == NULL))
 9403		goto clean_up;
 9404
 9405	memset(h->ioaccel_cmd_pool, 0,
 9406		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
 9407	return 0;
 9408
 9409clean_up:
 9410	hpsa_free_ioaccel1_cmd_and_bft(h);
 9411	return -ENOMEM;
 9412}
 9413
 9414/* Free ioaccel2 mode command blocks and block fetch table */
 9415static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
 9416{
 9417	hpsa_free_ioaccel2_sg_chain_blocks(h);
 9418
 9419	if (h->ioaccel2_cmd_pool) {
 9420		pci_free_consistent(h->pdev,
 9421			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
 9422			h->ioaccel2_cmd_pool,
 9423			h->ioaccel2_cmd_pool_dhandle);
 9424		h->ioaccel2_cmd_pool = NULL;
 9425		h->ioaccel2_cmd_pool_dhandle = 0;
 9426	}
 9427	kfree(h->ioaccel2_blockFetchTable);
 9428	h->ioaccel2_blockFetchTable = NULL;
 9429}
 9430
 9431/* Allocate ioaccel2 mode command blocks and block fetch table */
 9432static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
 9433{
 9434	int rc;
 9435
 9436	/* Allocate ioaccel2 mode command blocks and block fetch table */
 9437
 9438	h->ioaccel_maxsg =
 9439		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
 9440	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
 9441		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
 9442
 
 9443	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
 9444			IOACCEL2_COMMANDLIST_ALIGNMENT);
 9445	h->ioaccel2_cmd_pool =
 9446		pci_alloc_consistent(h->pdev,
 9447			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
 9448			&(h->ioaccel2_cmd_pool_dhandle));
 9449
 9450	h->ioaccel2_blockFetchTable =
 9451		kmalloc(((h->ioaccel_maxsg + 1) *
 9452				sizeof(u32)), GFP_KERNEL);
 9453
 9454	if ((h->ioaccel2_cmd_pool == NULL) ||
 9455		(h->ioaccel2_blockFetchTable == NULL)) {
 9456		rc = -ENOMEM;
 9457		goto clean_up;
 9458	}
 9459
 9460	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
 9461	if (rc)
 9462		goto clean_up;
 9463
 9464	memset(h->ioaccel2_cmd_pool, 0,
 9465		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
 9466	return 0;
 9467
 9468clean_up:
 9469	hpsa_free_ioaccel2_cmd_and_bft(h);
 9470	return rc;
 9471}
 9472
 9473/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
 9474static void hpsa_free_performant_mode(struct ctlr_info *h)
 9475{
 9476	kfree(h->blockFetchTable);
 9477	h->blockFetchTable = NULL;
 9478	hpsa_free_reply_queues(h);
 9479	hpsa_free_ioaccel1_cmd_and_bft(h);
 9480	hpsa_free_ioaccel2_cmd_and_bft(h);
 9481}
 9482
 9483/* return -ENODEV on error, 0 on success (or no action)
 9484 * allocates numerous items that must be freed later
 9485 */
 9486static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
 9487{
 9488	u32 trans_support;
 9489	unsigned long transMethod = CFGTBL_Trans_Performant |
 9490					CFGTBL_Trans_use_short_tags;
 9491	int i, rc;
 9492
 9493	if (hpsa_simple_mode)
 9494		return 0;
 9495
 9496	trans_support = readl(&(h->cfgtable->TransportSupport));
 9497	if (!(trans_support & PERFORMANT_MODE))
 9498		return 0;
 9499
 9500	/* Check for I/O accelerator mode support */
 9501	if (trans_support & CFGTBL_Trans_io_accel1) {
 9502		transMethod |= CFGTBL_Trans_io_accel1 |
 9503				CFGTBL_Trans_enable_directed_msix;
 9504		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
 9505		if (rc)
 9506			return rc;
 9507	} else if (trans_support & CFGTBL_Trans_io_accel2) {
 9508		transMethod |= CFGTBL_Trans_io_accel2 |
 9509				CFGTBL_Trans_enable_directed_msix;
 9510		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
 9511		if (rc)
 9512			return rc;
 9513	}
 9514
 9515	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
 
 9516	hpsa_get_max_perf_mode_cmds(h);
 9517	/* Performant mode ring buffer and supporting data structures */
 9518	h->reply_queue_size = h->max_commands * sizeof(u64);
 
 
 9519
 9520	for (i = 0; i < h->nreply_queues; i++) {
 9521		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
 9522						h->reply_queue_size,
 9523						&(h->reply_queue[i].busaddr));
 9524		if (!h->reply_queue[i].head) {
 9525			rc = -ENOMEM;
 9526			goto clean1;	/* rq, ioaccel */
 9527		}
 9528		h->reply_queue[i].size = h->max_commands;
 9529		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
 9530		h->reply_queue[i].current_entry = 0;
 9531	}
 9532
 9533	/* Need a block fetch table for performant mode */
 9534	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
 9535				sizeof(u32)), GFP_KERNEL);
 9536	if (!h->blockFetchTable) {
 9537		rc = -ENOMEM;
 9538		goto clean1;	/* rq, ioaccel */
 9539	}
 9540
 9541	rc = hpsa_enter_performant_mode(h, trans_support);
 9542	if (rc)
 9543		goto clean2;	/* bft, rq, ioaccel */
 9544	return 0;
 
 
 9545
 9546clean2:	/* bft, rq, ioaccel */
 
 
 
 9547	kfree(h->blockFetchTable);
 9548	h->blockFetchTable = NULL;
 9549clean1:	/* rq, ioaccel */
 9550	hpsa_free_reply_queues(h);
 9551	hpsa_free_ioaccel1_cmd_and_bft(h);
 9552	hpsa_free_ioaccel2_cmd_and_bft(h);
 9553	return rc;
 9554}
 9555
 9556static int is_accelerated_cmd(struct CommandList *c)
 9557{
 9558	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
 9559}
 9560
 9561static void hpsa_drain_accel_commands(struct ctlr_info *h)
 9562{
 9563	struct CommandList *c = NULL;
 9564	int i, accel_cmds_out;
 9565	int refcount;
 9566
 9567	do { /* wait for all outstanding ioaccel commands to drain out */
 9568		accel_cmds_out = 0;
 9569		for (i = 0; i < h->nr_cmds; i++) {
 9570			c = h->cmd_pool + i;
 9571			refcount = atomic_inc_return(&c->refcount);
 9572			if (refcount > 1) /* Command is allocated */
 9573				accel_cmds_out += is_accelerated_cmd(c);
 9574			cmd_free(h, c);
 9575		}
 9576		if (accel_cmds_out <= 0)
 9577			break;
 9578		msleep(100);
 9579	} while (1);
 9580}
 9581
 9582static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
 9583				struct hpsa_sas_port *hpsa_sas_port)
 9584{
 9585	struct hpsa_sas_phy *hpsa_sas_phy;
 9586	struct sas_phy *phy;
 9587
 9588	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
 9589	if (!hpsa_sas_phy)
 9590		return NULL;
 9591
 9592	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
 9593		hpsa_sas_port->next_phy_index);
 9594	if (!phy) {
 9595		kfree(hpsa_sas_phy);
 9596		return NULL;
 9597	}
 9598
 9599	hpsa_sas_port->next_phy_index++;
 9600	hpsa_sas_phy->phy = phy;
 9601	hpsa_sas_phy->parent_port = hpsa_sas_port;
 9602
 9603	return hpsa_sas_phy;
 9604}
 9605
 9606static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
 9607{
 9608	struct sas_phy *phy = hpsa_sas_phy->phy;
 9609
 9610	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
 9611	sas_phy_free(phy);
 9612	if (hpsa_sas_phy->added_to_port)
 9613		list_del(&hpsa_sas_phy->phy_list_entry);
 9614	kfree(hpsa_sas_phy);
 9615}
 9616
 9617static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
 9618{
 9619	int rc;
 9620	struct hpsa_sas_port *hpsa_sas_port;
 9621	struct sas_phy *phy;
 9622	struct sas_identify *identify;
 9623
 9624	hpsa_sas_port = hpsa_sas_phy->parent_port;
 9625	phy = hpsa_sas_phy->phy;
 9626
 9627	identify = &phy->identify;
 9628	memset(identify, 0, sizeof(*identify));
 9629	identify->sas_address = hpsa_sas_port->sas_address;
 9630	identify->device_type = SAS_END_DEVICE;
 9631	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
 9632	identify->target_port_protocols = SAS_PROTOCOL_STP;
 9633	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
 9634	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
 9635	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
 9636	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
 9637	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
 9638
 9639	rc = sas_phy_add(hpsa_sas_phy->phy);
 9640	if (rc)
 9641		return rc;
 9642
 9643	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
 9644	list_add_tail(&hpsa_sas_phy->phy_list_entry,
 9645			&hpsa_sas_port->phy_list_head);
 9646	hpsa_sas_phy->added_to_port = true;
 9647
 9648	return 0;
 9649}
 9650
 9651static int
 9652	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
 9653				struct sas_rphy *rphy)
 9654{
 9655	struct sas_identify *identify;
 9656
 9657	identify = &rphy->identify;
 9658	identify->sas_address = hpsa_sas_port->sas_address;
 9659	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
 9660	identify->target_port_protocols = SAS_PROTOCOL_STP;
 9661
 9662	return sas_rphy_add(rphy);
 9663}
 9664
 9665static struct hpsa_sas_port
 9666	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
 9667				u64 sas_address)
 9668{
 9669	int rc;
 9670	struct hpsa_sas_port *hpsa_sas_port;
 9671	struct sas_port *port;
 9672
 9673	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
 9674	if (!hpsa_sas_port)
 9675		return NULL;
 9676
 9677	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
 9678	hpsa_sas_port->parent_node = hpsa_sas_node;
 9679
 9680	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
 9681	if (!port)
 9682		goto free_hpsa_port;
 9683
 9684	rc = sas_port_add(port);
 9685	if (rc)
 9686		goto free_sas_port;
 9687
 9688	hpsa_sas_port->port = port;
 9689	hpsa_sas_port->sas_address = sas_address;
 9690	list_add_tail(&hpsa_sas_port->port_list_entry,
 9691			&hpsa_sas_node->port_list_head);
 9692
 9693	return hpsa_sas_port;
 9694
 9695free_sas_port:
 9696	sas_port_free(port);
 9697free_hpsa_port:
 9698	kfree(hpsa_sas_port);
 9699
 9700	return NULL;
 9701}
 9702
 9703static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
 9704{
 9705	struct hpsa_sas_phy *hpsa_sas_phy;
 9706	struct hpsa_sas_phy *next;
 9707
 9708	list_for_each_entry_safe(hpsa_sas_phy, next,
 9709			&hpsa_sas_port->phy_list_head, phy_list_entry)
 9710		hpsa_free_sas_phy(hpsa_sas_phy);
 9711
 9712	sas_port_delete(hpsa_sas_port->port);
 9713	list_del(&hpsa_sas_port->port_list_entry);
 9714	kfree(hpsa_sas_port);
 9715}
 9716
 9717static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
 9718{
 9719	struct hpsa_sas_node *hpsa_sas_node;
 9720
 9721	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
 9722	if (hpsa_sas_node) {
 9723		hpsa_sas_node->parent_dev = parent_dev;
 9724		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
 9725	}
 9726
 9727	return hpsa_sas_node;
 9728}
 9729
 9730static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
 9731{
 9732	struct hpsa_sas_port *hpsa_sas_port;
 9733	struct hpsa_sas_port *next;
 9734
 9735	if (!hpsa_sas_node)
 9736		return;
 9737
 9738	list_for_each_entry_safe(hpsa_sas_port, next,
 9739			&hpsa_sas_node->port_list_head, port_list_entry)
 9740		hpsa_free_sas_port(hpsa_sas_port);
 9741
 9742	kfree(hpsa_sas_node);
 9743}
 9744
 9745static struct hpsa_scsi_dev_t
 9746	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 9747					struct sas_rphy *rphy)
 9748{
 9749	int i;
 9750	struct hpsa_scsi_dev_t *device;
 9751
 9752	for (i = 0; i < h->ndevices; i++) {
 9753		device = h->dev[i];
 9754		if (!device->sas_port)
 9755			continue;
 9756		if (device->sas_port->rphy == rphy)
 9757			return device;
 9758	}
 9759
 9760	return NULL;
 9761}
 9762
 9763static int hpsa_add_sas_host(struct ctlr_info *h)
 9764{
 9765	int rc;
 9766	struct device *parent_dev;
 9767	struct hpsa_sas_node *hpsa_sas_node;
 9768	struct hpsa_sas_port *hpsa_sas_port;
 9769	struct hpsa_sas_phy *hpsa_sas_phy;
 9770
 9771	parent_dev = &h->scsi_host->shost_gendev;
 9772
 9773	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
 9774	if (!hpsa_sas_node)
 9775		return -ENOMEM;
 9776
 9777	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
 9778	if (!hpsa_sas_port) {
 9779		rc = -ENODEV;
 9780		goto free_sas_node;
 9781	}
 9782
 9783	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
 9784	if (!hpsa_sas_phy) {
 9785		rc = -ENODEV;
 9786		goto free_sas_port;
 9787	}
 9788
 9789	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
 9790	if (rc)
 9791		goto free_sas_phy;
 9792
 9793	h->sas_host = hpsa_sas_node;
 9794
 9795	return 0;
 9796
 9797free_sas_phy:
 9798	hpsa_free_sas_phy(hpsa_sas_phy);
 9799free_sas_port:
 9800	hpsa_free_sas_port(hpsa_sas_port);
 9801free_sas_node:
 9802	hpsa_free_sas_node(hpsa_sas_node);
 9803
 9804	return rc;
 9805}
 9806
 9807static void hpsa_delete_sas_host(struct ctlr_info *h)
 9808{
 9809	hpsa_free_sas_node(h->sas_host);
 9810}
 9811
 9812static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 9813				struct hpsa_scsi_dev_t *device)
 9814{
 9815	int rc;
 9816	struct hpsa_sas_port *hpsa_sas_port;
 9817	struct sas_rphy *rphy;
 9818
 9819	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
 9820	if (!hpsa_sas_port)
 9821		return -ENOMEM;
 9822
 9823	rphy = sas_end_device_alloc(hpsa_sas_port->port);
 9824	if (!rphy) {
 9825		rc = -ENODEV;
 9826		goto free_sas_port;
 9827	}
 9828
 9829	hpsa_sas_port->rphy = rphy;
 9830	device->sas_port = hpsa_sas_port;
 9831
 9832	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
 9833	if (rc)
 9834		goto free_sas_port;
 9835
 9836	return 0;
 9837
 9838free_sas_port:
 9839	hpsa_free_sas_port(hpsa_sas_port);
 9840	device->sas_port = NULL;
 9841
 9842	return rc;
 9843}
 9844
 9845static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
 9846{
 9847	if (device->sas_port) {
 9848		hpsa_free_sas_port(device->sas_port);
 9849		device->sas_port = NULL;
 9850	}
 9851}
 9852
 9853static int
 9854hpsa_sas_get_linkerrors(struct sas_phy *phy)
 9855{
 9856	return 0;
 9857}
 9858
 9859static int
 9860hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
 9861{
 9862	*identifier = 0;
 9863	return 0;
 9864}
 9865
 9866static int
 9867hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
 9868{
 9869	return -ENXIO;
 9870}
 9871
 9872static int
 9873hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
 9874{
 9875	return 0;
 9876}
 9877
 9878static int
 9879hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
 9880{
 9881	return 0;
 9882}
 9883
 9884static int
 9885hpsa_sas_phy_setup(struct sas_phy *phy)
 9886{
 9887	return 0;
 9888}
 9889
 9890static void
 9891hpsa_sas_phy_release(struct sas_phy *phy)
 9892{
 9893}
 9894
 9895static int
 9896hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
 9897{
 9898	return -EINVAL;
 9899}
 9900
 9901/* SMP = Serial Management Protocol */
 9902static int
 9903hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
 9904struct request *req)
 9905{
 9906	return -EINVAL;
 9907}
 9908
 9909static struct sas_function_template hpsa_sas_transport_functions = {
 9910	.get_linkerrors = hpsa_sas_get_linkerrors,
 9911	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
 9912	.get_bay_identifier = hpsa_sas_get_bay_identifier,
 9913	.phy_reset = hpsa_sas_phy_reset,
 9914	.phy_enable = hpsa_sas_phy_enable,
 9915	.phy_setup = hpsa_sas_phy_setup,
 9916	.phy_release = hpsa_sas_phy_release,
 9917	.set_phy_speed = hpsa_sas_phy_speed,
 9918	.smp_handler = hpsa_sas_smp_handler,
 9919};
 9920
 9921/*
 9922 *  This is it.  Register the PCI driver information for the cards we control
 9923 *  the OS will call our registered routines when it finds one of our cards.
 9924 */
 9925static int __init hpsa_init(void)
 9926{
 9927	int rc;
 9928
 9929	hpsa_sas_transport_template =
 9930		sas_attach_transport(&hpsa_sas_transport_functions);
 9931	if (!hpsa_sas_transport_template)
 9932		return -ENODEV;
 9933
 9934	rc = pci_register_driver(&hpsa_pci_driver);
 9935
 9936	if (rc)
 9937		sas_release_transport(hpsa_sas_transport_template);
 9938
 9939	return rc;
 9940}
 9941
 9942static void __exit hpsa_cleanup(void)
 9943{
 9944	pci_unregister_driver(&hpsa_pci_driver);
 9945	sas_release_transport(hpsa_sas_transport_template);
 9946}
 9947
 9948static void __attribute__((unused)) verify_offsets(void)
 9949{
 9950#define VERIFY_OFFSET(member, offset) \
 9951	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
 9952
 9953	VERIFY_OFFSET(structure_size, 0);
 9954	VERIFY_OFFSET(volume_blk_size, 4);
 9955	VERIFY_OFFSET(volume_blk_cnt, 8);
 9956	VERIFY_OFFSET(phys_blk_shift, 16);
 9957	VERIFY_OFFSET(parity_rotation_shift, 17);
 9958	VERIFY_OFFSET(strip_size, 18);
 9959	VERIFY_OFFSET(disk_starting_blk, 20);
 9960	VERIFY_OFFSET(disk_blk_cnt, 28);
 9961	VERIFY_OFFSET(data_disks_per_row, 36);
 9962	VERIFY_OFFSET(metadata_disks_per_row, 38);
 9963	VERIFY_OFFSET(row_cnt, 40);
 9964	VERIFY_OFFSET(layout_map_count, 42);
 9965	VERIFY_OFFSET(flags, 44);
 9966	VERIFY_OFFSET(dekindex, 46);
 9967	/* VERIFY_OFFSET(reserved, 48 */
 9968	VERIFY_OFFSET(data, 64);
 9969
 9970#undef VERIFY_OFFSET
 9971
 9972#define VERIFY_OFFSET(member, offset) \
 9973	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
 9974
 9975	VERIFY_OFFSET(IU_type, 0);
 9976	VERIFY_OFFSET(direction, 1);
 9977	VERIFY_OFFSET(reply_queue, 2);
 9978	/* VERIFY_OFFSET(reserved1, 3);  */
 9979	VERIFY_OFFSET(scsi_nexus, 4);
 9980	VERIFY_OFFSET(Tag, 8);
 9981	VERIFY_OFFSET(cdb, 16);
 9982	VERIFY_OFFSET(cciss_lun, 32);
 9983	VERIFY_OFFSET(data_len, 40);
 9984	VERIFY_OFFSET(cmd_priority_task_attr, 44);
 9985	VERIFY_OFFSET(sg_count, 45);
 9986	/* VERIFY_OFFSET(reserved3 */
 9987	VERIFY_OFFSET(err_ptr, 48);
 9988	VERIFY_OFFSET(err_len, 56);
 9989	/* VERIFY_OFFSET(reserved4  */
 9990	VERIFY_OFFSET(sg, 64);
 9991
 9992#undef VERIFY_OFFSET
 9993
 9994#define VERIFY_OFFSET(member, offset) \
 9995	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
 9996
 9997	VERIFY_OFFSET(dev_handle, 0x00);
 9998	VERIFY_OFFSET(reserved1, 0x02);
 9999	VERIFY_OFFSET(function, 0x03);
10000	VERIFY_OFFSET(reserved2, 0x04);
10001	VERIFY_OFFSET(err_info, 0x0C);
10002	VERIFY_OFFSET(reserved3, 0x10);
10003	VERIFY_OFFSET(err_info_len, 0x12);
10004	VERIFY_OFFSET(reserved4, 0x13);
10005	VERIFY_OFFSET(sgl_offset, 0x14);
10006	VERIFY_OFFSET(reserved5, 0x15);
10007	VERIFY_OFFSET(transfer_len, 0x1C);
10008	VERIFY_OFFSET(reserved6, 0x20);
10009	VERIFY_OFFSET(io_flags, 0x24);
10010	VERIFY_OFFSET(reserved7, 0x26);
10011	VERIFY_OFFSET(LUN, 0x34);
10012	VERIFY_OFFSET(control, 0x3C);
10013	VERIFY_OFFSET(CDB, 0x40);
10014	VERIFY_OFFSET(reserved8, 0x50);
10015	VERIFY_OFFSET(host_context_flags, 0x60);
10016	VERIFY_OFFSET(timeout_sec, 0x62);
10017	VERIFY_OFFSET(ReplyQueue, 0x64);
10018	VERIFY_OFFSET(reserved9, 0x65);
10019	VERIFY_OFFSET(tag, 0x68);
10020	VERIFY_OFFSET(host_addr, 0x70);
10021	VERIFY_OFFSET(CISS_LUN, 0x78);
10022	VERIFY_OFFSET(SG, 0x78 + 8);
10023#undef VERIFY_OFFSET
10024}
10025
10026module_init(hpsa_init);
10027module_exit(hpsa_cleanup);