Loading...
1/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15#include <linux/init.h>
16#include <linux/types.h>
17#include <linux/idr.h>
18#include <linux/input/mt.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/random.h>
22#include <linux/major.h>
23#include <linux/proc_fs.h>
24#include <linux/sched.h>
25#include <linux/seq_file.h>
26#include <linux/poll.h>
27#include <linux/device.h>
28#include <linux/mutex.h>
29#include <linux/rcupdate.h>
30#include "input-compat.h"
31
32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33MODULE_DESCRIPTION("Input core");
34MODULE_LICENSE("GPL");
35
36#define INPUT_MAX_CHAR_DEVICES 1024
37#define INPUT_FIRST_DYNAMIC_DEV 256
38static DEFINE_IDA(input_ida);
39
40static LIST_HEAD(input_dev_list);
41static LIST_HEAD(input_handler_list);
42
43/*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49static DEFINE_MUTEX(input_mutex);
50
51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
55{
56 return code <= max && test_bit(code, bm);
57}
58
59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60{
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
64
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
67
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
71
72 return value;
73}
74
75static void input_start_autorepeat(struct input_dev *dev, int code)
76{
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84}
85
86static void input_stop_autorepeat(struct input_dev *dev)
87{
88 del_timer(&dev->timer);
89}
90
91/*
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
95 */
96static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
98{
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
102
103 for (v = vals; v != vals + count; v++) {
104 if (handler->filter &&
105 handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
111
112 count = end - vals;
113 if (!count)
114 return 0;
115
116 if (handler->events)
117 handler->events(handle, vals, count);
118 else if (handler->event)
119 for (v = vals; v != end; v++)
120 handler->event(handle, v->type, v->code, v->value);
121
122 return count;
123}
124
125/*
126 * Pass values first through all filters and then, if event has not been
127 * filtered out, through all open handles. This function is called with
128 * dev->event_lock held and interrupts disabled.
129 */
130static void input_pass_values(struct input_dev *dev,
131 struct input_value *vals, unsigned int count)
132{
133 struct input_handle *handle;
134 struct input_value *v;
135
136 if (!count)
137 return;
138
139 rcu_read_lock();
140
141 handle = rcu_dereference(dev->grab);
142 if (handle) {
143 count = input_to_handler(handle, vals, count);
144 } else {
145 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
146 if (handle->open)
147 count = input_to_handler(handle, vals, count);
148 }
149
150 rcu_read_unlock();
151
152 add_input_randomness(vals->type, vals->code, vals->value);
153
154 /* trigger auto repeat for key events */
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
161 }
162 }
163}
164
165static void input_pass_event(struct input_dev *dev,
166 unsigned int type, unsigned int code, int value)
167{
168 struct input_value vals[] = { { type, code, value } };
169
170 input_pass_values(dev, vals, ARRAY_SIZE(vals));
171}
172
173/*
174 * Generate software autorepeat event. Note that we take
175 * dev->event_lock here to avoid racing with input_event
176 * which may cause keys get "stuck".
177 */
178static void input_repeat_key(unsigned long data)
179{
180 struct input_dev *dev = (void *) data;
181 unsigned long flags;
182
183 spin_lock_irqsave(&dev->event_lock, flags);
184
185 if (test_bit(dev->repeat_key, dev->key) &&
186 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
187 struct input_value vals[] = {
188 { EV_KEY, dev->repeat_key, 2 },
189 input_value_sync
190 };
191
192 input_pass_values(dev, vals, ARRAY_SIZE(vals));
193
194 if (dev->rep[REP_PERIOD])
195 mod_timer(&dev->timer, jiffies +
196 msecs_to_jiffies(dev->rep[REP_PERIOD]));
197 }
198
199 spin_unlock_irqrestore(&dev->event_lock, flags);
200}
201
202#define INPUT_IGNORE_EVENT 0
203#define INPUT_PASS_TO_HANDLERS 1
204#define INPUT_PASS_TO_DEVICE 2
205#define INPUT_SLOT 4
206#define INPUT_FLUSH 8
207#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
208
209static int input_handle_abs_event(struct input_dev *dev,
210 unsigned int code, int *pval)
211{
212 struct input_mt *mt = dev->mt;
213 bool is_mt_event;
214 int *pold;
215
216 if (code == ABS_MT_SLOT) {
217 /*
218 * "Stage" the event; we'll flush it later, when we
219 * get actual touch data.
220 */
221 if (mt && *pval >= 0 && *pval < mt->num_slots)
222 mt->slot = *pval;
223
224 return INPUT_IGNORE_EVENT;
225 }
226
227 is_mt_event = input_is_mt_value(code);
228
229 if (!is_mt_event) {
230 pold = &dev->absinfo[code].value;
231 } else if (mt) {
232 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
233 } else {
234 /*
235 * Bypass filtering for multi-touch events when
236 * not employing slots.
237 */
238 pold = NULL;
239 }
240
241 if (pold) {
242 *pval = input_defuzz_abs_event(*pval, *pold,
243 dev->absinfo[code].fuzz);
244 if (*pold == *pval)
245 return INPUT_IGNORE_EVENT;
246
247 *pold = *pval;
248 }
249
250 /* Flush pending "slot" event */
251 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
253 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
254 }
255
256 return INPUT_PASS_TO_HANDLERS;
257}
258
259static int input_get_disposition(struct input_dev *dev,
260 unsigned int type, unsigned int code, int value)
261{
262 int disposition = INPUT_IGNORE_EVENT;
263
264 switch (type) {
265
266 case EV_SYN:
267 switch (code) {
268 case SYN_CONFIG:
269 disposition = INPUT_PASS_TO_ALL;
270 break;
271
272 case SYN_REPORT:
273 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
274 break;
275 case SYN_MT_REPORT:
276 disposition = INPUT_PASS_TO_HANDLERS;
277 break;
278 }
279 break;
280
281 case EV_KEY:
282 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
283
284 /* auto-repeat bypasses state updates */
285 if (value == 2) {
286 disposition = INPUT_PASS_TO_HANDLERS;
287 break;
288 }
289
290 if (!!test_bit(code, dev->key) != !!value) {
291
292 __change_bit(code, dev->key);
293 disposition = INPUT_PASS_TO_HANDLERS;
294 }
295 }
296 break;
297
298 case EV_SW:
299 if (is_event_supported(code, dev->swbit, SW_MAX) &&
300 !!test_bit(code, dev->sw) != !!value) {
301
302 __change_bit(code, dev->sw);
303 disposition = INPUT_PASS_TO_HANDLERS;
304 }
305 break;
306
307 case EV_ABS:
308 if (is_event_supported(code, dev->absbit, ABS_MAX))
309 disposition = input_handle_abs_event(dev, code, &value);
310
311 break;
312
313 case EV_REL:
314 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
315 disposition = INPUT_PASS_TO_HANDLERS;
316
317 break;
318
319 case EV_MSC:
320 if (is_event_supported(code, dev->mscbit, MSC_MAX))
321 disposition = INPUT_PASS_TO_ALL;
322
323 break;
324
325 case EV_LED:
326 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
327 !!test_bit(code, dev->led) != !!value) {
328
329 __change_bit(code, dev->led);
330 disposition = INPUT_PASS_TO_ALL;
331 }
332 break;
333
334 case EV_SND:
335 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
336
337 if (!!test_bit(code, dev->snd) != !!value)
338 __change_bit(code, dev->snd);
339 disposition = INPUT_PASS_TO_ALL;
340 }
341 break;
342
343 case EV_REP:
344 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
345 dev->rep[code] = value;
346 disposition = INPUT_PASS_TO_ALL;
347 }
348 break;
349
350 case EV_FF:
351 if (value >= 0)
352 disposition = INPUT_PASS_TO_ALL;
353 break;
354
355 case EV_PWR:
356 disposition = INPUT_PASS_TO_ALL;
357 break;
358 }
359
360 return disposition;
361}
362
363static void input_handle_event(struct input_dev *dev,
364 unsigned int type, unsigned int code, int value)
365{
366 int disposition;
367
368 disposition = input_get_disposition(dev, type, code, value);
369
370 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
371 dev->event(dev, type, code, value);
372
373 if (!dev->vals)
374 return;
375
376 if (disposition & INPUT_PASS_TO_HANDLERS) {
377 struct input_value *v;
378
379 if (disposition & INPUT_SLOT) {
380 v = &dev->vals[dev->num_vals++];
381 v->type = EV_ABS;
382 v->code = ABS_MT_SLOT;
383 v->value = dev->mt->slot;
384 }
385
386 v = &dev->vals[dev->num_vals++];
387 v->type = type;
388 v->code = code;
389 v->value = value;
390 }
391
392 if (disposition & INPUT_FLUSH) {
393 if (dev->num_vals >= 2)
394 input_pass_values(dev, dev->vals, dev->num_vals);
395 dev->num_vals = 0;
396 } else if (dev->num_vals >= dev->max_vals - 2) {
397 dev->vals[dev->num_vals++] = input_value_sync;
398 input_pass_values(dev, dev->vals, dev->num_vals);
399 dev->num_vals = 0;
400 }
401
402}
403
404/**
405 * input_event() - report new input event
406 * @dev: device that generated the event
407 * @type: type of the event
408 * @code: event code
409 * @value: value of the event
410 *
411 * This function should be used by drivers implementing various input
412 * devices to report input events. See also input_inject_event().
413 *
414 * NOTE: input_event() may be safely used right after input device was
415 * allocated with input_allocate_device(), even before it is registered
416 * with input_register_device(), but the event will not reach any of the
417 * input handlers. Such early invocation of input_event() may be used
418 * to 'seed' initial state of a switch or initial position of absolute
419 * axis, etc.
420 */
421void input_event(struct input_dev *dev,
422 unsigned int type, unsigned int code, int value)
423{
424 unsigned long flags;
425
426 if (is_event_supported(type, dev->evbit, EV_MAX)) {
427
428 spin_lock_irqsave(&dev->event_lock, flags);
429 input_handle_event(dev, type, code, value);
430 spin_unlock_irqrestore(&dev->event_lock, flags);
431 }
432}
433EXPORT_SYMBOL(input_event);
434
435/**
436 * input_inject_event() - send input event from input handler
437 * @handle: input handle to send event through
438 * @type: type of the event
439 * @code: event code
440 * @value: value of the event
441 *
442 * Similar to input_event() but will ignore event if device is
443 * "grabbed" and handle injecting event is not the one that owns
444 * the device.
445 */
446void input_inject_event(struct input_handle *handle,
447 unsigned int type, unsigned int code, int value)
448{
449 struct input_dev *dev = handle->dev;
450 struct input_handle *grab;
451 unsigned long flags;
452
453 if (is_event_supported(type, dev->evbit, EV_MAX)) {
454 spin_lock_irqsave(&dev->event_lock, flags);
455
456 rcu_read_lock();
457 grab = rcu_dereference(dev->grab);
458 if (!grab || grab == handle)
459 input_handle_event(dev, type, code, value);
460 rcu_read_unlock();
461
462 spin_unlock_irqrestore(&dev->event_lock, flags);
463 }
464}
465EXPORT_SYMBOL(input_inject_event);
466
467/**
468 * input_alloc_absinfo - allocates array of input_absinfo structs
469 * @dev: the input device emitting absolute events
470 *
471 * If the absinfo struct the caller asked for is already allocated, this
472 * functions will not do anything.
473 */
474void input_alloc_absinfo(struct input_dev *dev)
475{
476 if (!dev->absinfo)
477 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
478 GFP_KERNEL);
479
480 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
481}
482EXPORT_SYMBOL(input_alloc_absinfo);
483
484void input_set_abs_params(struct input_dev *dev, unsigned int axis,
485 int min, int max, int fuzz, int flat)
486{
487 struct input_absinfo *absinfo;
488
489 input_alloc_absinfo(dev);
490 if (!dev->absinfo)
491 return;
492
493 absinfo = &dev->absinfo[axis];
494 absinfo->minimum = min;
495 absinfo->maximum = max;
496 absinfo->fuzz = fuzz;
497 absinfo->flat = flat;
498
499 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
500}
501EXPORT_SYMBOL(input_set_abs_params);
502
503
504/**
505 * input_grab_device - grabs device for exclusive use
506 * @handle: input handle that wants to own the device
507 *
508 * When a device is grabbed by an input handle all events generated by
509 * the device are delivered only to this handle. Also events injected
510 * by other input handles are ignored while device is grabbed.
511 */
512int input_grab_device(struct input_handle *handle)
513{
514 struct input_dev *dev = handle->dev;
515 int retval;
516
517 retval = mutex_lock_interruptible(&dev->mutex);
518 if (retval)
519 return retval;
520
521 if (dev->grab) {
522 retval = -EBUSY;
523 goto out;
524 }
525
526 rcu_assign_pointer(dev->grab, handle);
527
528 out:
529 mutex_unlock(&dev->mutex);
530 return retval;
531}
532EXPORT_SYMBOL(input_grab_device);
533
534static void __input_release_device(struct input_handle *handle)
535{
536 struct input_dev *dev = handle->dev;
537 struct input_handle *grabber;
538
539 grabber = rcu_dereference_protected(dev->grab,
540 lockdep_is_held(&dev->mutex));
541 if (grabber == handle) {
542 rcu_assign_pointer(dev->grab, NULL);
543 /* Make sure input_pass_event() notices that grab is gone */
544 synchronize_rcu();
545
546 list_for_each_entry(handle, &dev->h_list, d_node)
547 if (handle->open && handle->handler->start)
548 handle->handler->start(handle);
549 }
550}
551
552/**
553 * input_release_device - release previously grabbed device
554 * @handle: input handle that owns the device
555 *
556 * Releases previously grabbed device so that other input handles can
557 * start receiving input events. Upon release all handlers attached
558 * to the device have their start() method called so they have a change
559 * to synchronize device state with the rest of the system.
560 */
561void input_release_device(struct input_handle *handle)
562{
563 struct input_dev *dev = handle->dev;
564
565 mutex_lock(&dev->mutex);
566 __input_release_device(handle);
567 mutex_unlock(&dev->mutex);
568}
569EXPORT_SYMBOL(input_release_device);
570
571/**
572 * input_open_device - open input device
573 * @handle: handle through which device is being accessed
574 *
575 * This function should be called by input handlers when they
576 * want to start receive events from given input device.
577 */
578int input_open_device(struct input_handle *handle)
579{
580 struct input_dev *dev = handle->dev;
581 int retval;
582
583 retval = mutex_lock_interruptible(&dev->mutex);
584 if (retval)
585 return retval;
586
587 if (dev->going_away) {
588 retval = -ENODEV;
589 goto out;
590 }
591
592 handle->open++;
593
594 if (!dev->users++ && dev->open)
595 retval = dev->open(dev);
596
597 if (retval) {
598 dev->users--;
599 if (!--handle->open) {
600 /*
601 * Make sure we are not delivering any more events
602 * through this handle
603 */
604 synchronize_rcu();
605 }
606 }
607
608 out:
609 mutex_unlock(&dev->mutex);
610 return retval;
611}
612EXPORT_SYMBOL(input_open_device);
613
614int input_flush_device(struct input_handle *handle, struct file *file)
615{
616 struct input_dev *dev = handle->dev;
617 int retval;
618
619 retval = mutex_lock_interruptible(&dev->mutex);
620 if (retval)
621 return retval;
622
623 if (dev->flush)
624 retval = dev->flush(dev, file);
625
626 mutex_unlock(&dev->mutex);
627 return retval;
628}
629EXPORT_SYMBOL(input_flush_device);
630
631/**
632 * input_close_device - close input device
633 * @handle: handle through which device is being accessed
634 *
635 * This function should be called by input handlers when they
636 * want to stop receive events from given input device.
637 */
638void input_close_device(struct input_handle *handle)
639{
640 struct input_dev *dev = handle->dev;
641
642 mutex_lock(&dev->mutex);
643
644 __input_release_device(handle);
645
646 if (!--dev->users && dev->close)
647 dev->close(dev);
648
649 if (!--handle->open) {
650 /*
651 * synchronize_rcu() makes sure that input_pass_event()
652 * completed and that no more input events are delivered
653 * through this handle
654 */
655 synchronize_rcu();
656 }
657
658 mutex_unlock(&dev->mutex);
659}
660EXPORT_SYMBOL(input_close_device);
661
662/*
663 * Simulate keyup events for all keys that are marked as pressed.
664 * The function must be called with dev->event_lock held.
665 */
666static void input_dev_release_keys(struct input_dev *dev)
667{
668 int code;
669
670 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
671 for (code = 0; code <= KEY_MAX; code++) {
672 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
673 __test_and_clear_bit(code, dev->key)) {
674 input_pass_event(dev, EV_KEY, code, 0);
675 }
676 }
677 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
678 }
679}
680
681/*
682 * Prepare device for unregistering
683 */
684static void input_disconnect_device(struct input_dev *dev)
685{
686 struct input_handle *handle;
687
688 /*
689 * Mark device as going away. Note that we take dev->mutex here
690 * not to protect access to dev->going_away but rather to ensure
691 * that there are no threads in the middle of input_open_device()
692 */
693 mutex_lock(&dev->mutex);
694 dev->going_away = true;
695 mutex_unlock(&dev->mutex);
696
697 spin_lock_irq(&dev->event_lock);
698
699 /*
700 * Simulate keyup events for all pressed keys so that handlers
701 * are not left with "stuck" keys. The driver may continue
702 * generate events even after we done here but they will not
703 * reach any handlers.
704 */
705 input_dev_release_keys(dev);
706
707 list_for_each_entry(handle, &dev->h_list, d_node)
708 handle->open = 0;
709
710 spin_unlock_irq(&dev->event_lock);
711}
712
713/**
714 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
715 * @ke: keymap entry containing scancode to be converted.
716 * @scancode: pointer to the location where converted scancode should
717 * be stored.
718 *
719 * This function is used to convert scancode stored in &struct keymap_entry
720 * into scalar form understood by legacy keymap handling methods. These
721 * methods expect scancodes to be represented as 'unsigned int'.
722 */
723int input_scancode_to_scalar(const struct input_keymap_entry *ke,
724 unsigned int *scancode)
725{
726 switch (ke->len) {
727 case 1:
728 *scancode = *((u8 *)ke->scancode);
729 break;
730
731 case 2:
732 *scancode = *((u16 *)ke->scancode);
733 break;
734
735 case 4:
736 *scancode = *((u32 *)ke->scancode);
737 break;
738
739 default:
740 return -EINVAL;
741 }
742
743 return 0;
744}
745EXPORT_SYMBOL(input_scancode_to_scalar);
746
747/*
748 * Those routines handle the default case where no [gs]etkeycode() is
749 * defined. In this case, an array indexed by the scancode is used.
750 */
751
752static unsigned int input_fetch_keycode(struct input_dev *dev,
753 unsigned int index)
754{
755 switch (dev->keycodesize) {
756 case 1:
757 return ((u8 *)dev->keycode)[index];
758
759 case 2:
760 return ((u16 *)dev->keycode)[index];
761
762 default:
763 return ((u32 *)dev->keycode)[index];
764 }
765}
766
767static int input_default_getkeycode(struct input_dev *dev,
768 struct input_keymap_entry *ke)
769{
770 unsigned int index;
771 int error;
772
773 if (!dev->keycodesize)
774 return -EINVAL;
775
776 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
777 index = ke->index;
778 else {
779 error = input_scancode_to_scalar(ke, &index);
780 if (error)
781 return error;
782 }
783
784 if (index >= dev->keycodemax)
785 return -EINVAL;
786
787 ke->keycode = input_fetch_keycode(dev, index);
788 ke->index = index;
789 ke->len = sizeof(index);
790 memcpy(ke->scancode, &index, sizeof(index));
791
792 return 0;
793}
794
795static int input_default_setkeycode(struct input_dev *dev,
796 const struct input_keymap_entry *ke,
797 unsigned int *old_keycode)
798{
799 unsigned int index;
800 int error;
801 int i;
802
803 if (!dev->keycodesize)
804 return -EINVAL;
805
806 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
807 index = ke->index;
808 } else {
809 error = input_scancode_to_scalar(ke, &index);
810 if (error)
811 return error;
812 }
813
814 if (index >= dev->keycodemax)
815 return -EINVAL;
816
817 if (dev->keycodesize < sizeof(ke->keycode) &&
818 (ke->keycode >> (dev->keycodesize * 8)))
819 return -EINVAL;
820
821 switch (dev->keycodesize) {
822 case 1: {
823 u8 *k = (u8 *)dev->keycode;
824 *old_keycode = k[index];
825 k[index] = ke->keycode;
826 break;
827 }
828 case 2: {
829 u16 *k = (u16 *)dev->keycode;
830 *old_keycode = k[index];
831 k[index] = ke->keycode;
832 break;
833 }
834 default: {
835 u32 *k = (u32 *)dev->keycode;
836 *old_keycode = k[index];
837 k[index] = ke->keycode;
838 break;
839 }
840 }
841
842 __clear_bit(*old_keycode, dev->keybit);
843 __set_bit(ke->keycode, dev->keybit);
844
845 for (i = 0; i < dev->keycodemax; i++) {
846 if (input_fetch_keycode(dev, i) == *old_keycode) {
847 __set_bit(*old_keycode, dev->keybit);
848 break; /* Setting the bit twice is useless, so break */
849 }
850 }
851
852 return 0;
853}
854
855/**
856 * input_get_keycode - retrieve keycode currently mapped to a given scancode
857 * @dev: input device which keymap is being queried
858 * @ke: keymap entry
859 *
860 * This function should be called by anyone interested in retrieving current
861 * keymap. Presently evdev handlers use it.
862 */
863int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
864{
865 unsigned long flags;
866 int retval;
867
868 spin_lock_irqsave(&dev->event_lock, flags);
869 retval = dev->getkeycode(dev, ke);
870 spin_unlock_irqrestore(&dev->event_lock, flags);
871
872 return retval;
873}
874EXPORT_SYMBOL(input_get_keycode);
875
876/**
877 * input_set_keycode - attribute a keycode to a given scancode
878 * @dev: input device which keymap is being updated
879 * @ke: new keymap entry
880 *
881 * This function should be called by anyone needing to update current
882 * keymap. Presently keyboard and evdev handlers use it.
883 */
884int input_set_keycode(struct input_dev *dev,
885 const struct input_keymap_entry *ke)
886{
887 unsigned long flags;
888 unsigned int old_keycode;
889 int retval;
890
891 if (ke->keycode > KEY_MAX)
892 return -EINVAL;
893
894 spin_lock_irqsave(&dev->event_lock, flags);
895
896 retval = dev->setkeycode(dev, ke, &old_keycode);
897 if (retval)
898 goto out;
899
900 /* Make sure KEY_RESERVED did not get enabled. */
901 __clear_bit(KEY_RESERVED, dev->keybit);
902
903 /*
904 * Simulate keyup event if keycode is not present
905 * in the keymap anymore
906 */
907 if (test_bit(EV_KEY, dev->evbit) &&
908 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
909 __test_and_clear_bit(old_keycode, dev->key)) {
910 struct input_value vals[] = {
911 { EV_KEY, old_keycode, 0 },
912 input_value_sync
913 };
914
915 input_pass_values(dev, vals, ARRAY_SIZE(vals));
916 }
917
918 out:
919 spin_unlock_irqrestore(&dev->event_lock, flags);
920
921 return retval;
922}
923EXPORT_SYMBOL(input_set_keycode);
924
925static const struct input_device_id *input_match_device(struct input_handler *handler,
926 struct input_dev *dev)
927{
928 const struct input_device_id *id;
929
930 for (id = handler->id_table; id->flags || id->driver_info; id++) {
931
932 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
933 if (id->bustype != dev->id.bustype)
934 continue;
935
936 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
937 if (id->vendor != dev->id.vendor)
938 continue;
939
940 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
941 if (id->product != dev->id.product)
942 continue;
943
944 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
945 if (id->version != dev->id.version)
946 continue;
947
948 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
949 continue;
950
951 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
952 continue;
953
954 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
955 continue;
956
957 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
958 continue;
959
960 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
961 continue;
962
963 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
964 continue;
965
966 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
967 continue;
968
969 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
970 continue;
971
972 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
973 continue;
974
975 if (!handler->match || handler->match(handler, dev))
976 return id;
977 }
978
979 return NULL;
980}
981
982static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
983{
984 const struct input_device_id *id;
985 int error;
986
987 id = input_match_device(handler, dev);
988 if (!id)
989 return -ENODEV;
990
991 error = handler->connect(handler, dev, id);
992 if (error && error != -ENODEV)
993 pr_err("failed to attach handler %s to device %s, error: %d\n",
994 handler->name, kobject_name(&dev->dev.kobj), error);
995
996 return error;
997}
998
999#ifdef CONFIG_COMPAT
1000
1001static int input_bits_to_string(char *buf, int buf_size,
1002 unsigned long bits, bool skip_empty)
1003{
1004 int len = 0;
1005
1006 if (INPUT_COMPAT_TEST) {
1007 u32 dword = bits >> 32;
1008 if (dword || !skip_empty)
1009 len += snprintf(buf, buf_size, "%x ", dword);
1010
1011 dword = bits & 0xffffffffUL;
1012 if (dword || !skip_empty || len)
1013 len += snprintf(buf + len, max(buf_size - len, 0),
1014 "%x", dword);
1015 } else {
1016 if (bits || !skip_empty)
1017 len += snprintf(buf, buf_size, "%lx", bits);
1018 }
1019
1020 return len;
1021}
1022
1023#else /* !CONFIG_COMPAT */
1024
1025static int input_bits_to_string(char *buf, int buf_size,
1026 unsigned long bits, bool skip_empty)
1027{
1028 return bits || !skip_empty ?
1029 snprintf(buf, buf_size, "%lx", bits) : 0;
1030}
1031
1032#endif
1033
1034#ifdef CONFIG_PROC_FS
1035
1036static struct proc_dir_entry *proc_bus_input_dir;
1037static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1038static int input_devices_state;
1039
1040static inline void input_wakeup_procfs_readers(void)
1041{
1042 input_devices_state++;
1043 wake_up(&input_devices_poll_wait);
1044}
1045
1046static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1047{
1048 poll_wait(file, &input_devices_poll_wait, wait);
1049 if (file->f_version != input_devices_state) {
1050 file->f_version = input_devices_state;
1051 return POLLIN | POLLRDNORM;
1052 }
1053
1054 return 0;
1055}
1056
1057union input_seq_state {
1058 struct {
1059 unsigned short pos;
1060 bool mutex_acquired;
1061 };
1062 void *p;
1063};
1064
1065static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1066{
1067 union input_seq_state *state = (union input_seq_state *)&seq->private;
1068 int error;
1069
1070 /* We need to fit into seq->private pointer */
1071 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1072
1073 error = mutex_lock_interruptible(&input_mutex);
1074 if (error) {
1075 state->mutex_acquired = false;
1076 return ERR_PTR(error);
1077 }
1078
1079 state->mutex_acquired = true;
1080
1081 return seq_list_start(&input_dev_list, *pos);
1082}
1083
1084static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1085{
1086 return seq_list_next(v, &input_dev_list, pos);
1087}
1088
1089static void input_seq_stop(struct seq_file *seq, void *v)
1090{
1091 union input_seq_state *state = (union input_seq_state *)&seq->private;
1092
1093 if (state->mutex_acquired)
1094 mutex_unlock(&input_mutex);
1095}
1096
1097static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1098 unsigned long *bitmap, int max)
1099{
1100 int i;
1101 bool skip_empty = true;
1102 char buf[18];
1103
1104 seq_printf(seq, "B: %s=", name);
1105
1106 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1107 if (input_bits_to_string(buf, sizeof(buf),
1108 bitmap[i], skip_empty)) {
1109 skip_empty = false;
1110 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1111 }
1112 }
1113
1114 /*
1115 * If no output was produced print a single 0.
1116 */
1117 if (skip_empty)
1118 seq_puts(seq, "0");
1119
1120 seq_putc(seq, '\n');
1121}
1122
1123static int input_devices_seq_show(struct seq_file *seq, void *v)
1124{
1125 struct input_dev *dev = container_of(v, struct input_dev, node);
1126 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1127 struct input_handle *handle;
1128
1129 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1130 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1131
1132 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1133 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1134 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1135 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1136 seq_printf(seq, "H: Handlers=");
1137
1138 list_for_each_entry(handle, &dev->h_list, d_node)
1139 seq_printf(seq, "%s ", handle->name);
1140 seq_putc(seq, '\n');
1141
1142 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1143
1144 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1145 if (test_bit(EV_KEY, dev->evbit))
1146 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1147 if (test_bit(EV_REL, dev->evbit))
1148 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1149 if (test_bit(EV_ABS, dev->evbit))
1150 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1151 if (test_bit(EV_MSC, dev->evbit))
1152 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1153 if (test_bit(EV_LED, dev->evbit))
1154 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1155 if (test_bit(EV_SND, dev->evbit))
1156 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1157 if (test_bit(EV_FF, dev->evbit))
1158 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1159 if (test_bit(EV_SW, dev->evbit))
1160 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1161
1162 seq_putc(seq, '\n');
1163
1164 kfree(path);
1165 return 0;
1166}
1167
1168static const struct seq_operations input_devices_seq_ops = {
1169 .start = input_devices_seq_start,
1170 .next = input_devices_seq_next,
1171 .stop = input_seq_stop,
1172 .show = input_devices_seq_show,
1173};
1174
1175static int input_proc_devices_open(struct inode *inode, struct file *file)
1176{
1177 return seq_open(file, &input_devices_seq_ops);
1178}
1179
1180static const struct file_operations input_devices_fileops = {
1181 .owner = THIS_MODULE,
1182 .open = input_proc_devices_open,
1183 .poll = input_proc_devices_poll,
1184 .read = seq_read,
1185 .llseek = seq_lseek,
1186 .release = seq_release,
1187};
1188
1189static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1190{
1191 union input_seq_state *state = (union input_seq_state *)&seq->private;
1192 int error;
1193
1194 /* We need to fit into seq->private pointer */
1195 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1196
1197 error = mutex_lock_interruptible(&input_mutex);
1198 if (error) {
1199 state->mutex_acquired = false;
1200 return ERR_PTR(error);
1201 }
1202
1203 state->mutex_acquired = true;
1204 state->pos = *pos;
1205
1206 return seq_list_start(&input_handler_list, *pos);
1207}
1208
1209static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1210{
1211 union input_seq_state *state = (union input_seq_state *)&seq->private;
1212
1213 state->pos = *pos + 1;
1214 return seq_list_next(v, &input_handler_list, pos);
1215}
1216
1217static int input_handlers_seq_show(struct seq_file *seq, void *v)
1218{
1219 struct input_handler *handler = container_of(v, struct input_handler, node);
1220 union input_seq_state *state = (union input_seq_state *)&seq->private;
1221
1222 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1223 if (handler->filter)
1224 seq_puts(seq, " (filter)");
1225 if (handler->legacy_minors)
1226 seq_printf(seq, " Minor=%d", handler->minor);
1227 seq_putc(seq, '\n');
1228
1229 return 0;
1230}
1231
1232static const struct seq_operations input_handlers_seq_ops = {
1233 .start = input_handlers_seq_start,
1234 .next = input_handlers_seq_next,
1235 .stop = input_seq_stop,
1236 .show = input_handlers_seq_show,
1237};
1238
1239static int input_proc_handlers_open(struct inode *inode, struct file *file)
1240{
1241 return seq_open(file, &input_handlers_seq_ops);
1242}
1243
1244static const struct file_operations input_handlers_fileops = {
1245 .owner = THIS_MODULE,
1246 .open = input_proc_handlers_open,
1247 .read = seq_read,
1248 .llseek = seq_lseek,
1249 .release = seq_release,
1250};
1251
1252static int __init input_proc_init(void)
1253{
1254 struct proc_dir_entry *entry;
1255
1256 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1257 if (!proc_bus_input_dir)
1258 return -ENOMEM;
1259
1260 entry = proc_create("devices", 0, proc_bus_input_dir,
1261 &input_devices_fileops);
1262 if (!entry)
1263 goto fail1;
1264
1265 entry = proc_create("handlers", 0, proc_bus_input_dir,
1266 &input_handlers_fileops);
1267 if (!entry)
1268 goto fail2;
1269
1270 return 0;
1271
1272 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1273 fail1: remove_proc_entry("bus/input", NULL);
1274 return -ENOMEM;
1275}
1276
1277static void input_proc_exit(void)
1278{
1279 remove_proc_entry("devices", proc_bus_input_dir);
1280 remove_proc_entry("handlers", proc_bus_input_dir);
1281 remove_proc_entry("bus/input", NULL);
1282}
1283
1284#else /* !CONFIG_PROC_FS */
1285static inline void input_wakeup_procfs_readers(void) { }
1286static inline int input_proc_init(void) { return 0; }
1287static inline void input_proc_exit(void) { }
1288#endif
1289
1290#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1291static ssize_t input_dev_show_##name(struct device *dev, \
1292 struct device_attribute *attr, \
1293 char *buf) \
1294{ \
1295 struct input_dev *input_dev = to_input_dev(dev); \
1296 \
1297 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1298 input_dev->name ? input_dev->name : ""); \
1299} \
1300static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1301
1302INPUT_DEV_STRING_ATTR_SHOW(name);
1303INPUT_DEV_STRING_ATTR_SHOW(phys);
1304INPUT_DEV_STRING_ATTR_SHOW(uniq);
1305
1306static int input_print_modalias_bits(char *buf, int size,
1307 char name, unsigned long *bm,
1308 unsigned int min_bit, unsigned int max_bit)
1309{
1310 int len = 0, i;
1311
1312 len += snprintf(buf, max(size, 0), "%c", name);
1313 for (i = min_bit; i < max_bit; i++)
1314 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1315 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1316 return len;
1317}
1318
1319static int input_print_modalias(char *buf, int size, struct input_dev *id,
1320 int add_cr)
1321{
1322 int len;
1323
1324 len = snprintf(buf, max(size, 0),
1325 "input:b%04Xv%04Xp%04Xe%04X-",
1326 id->id.bustype, id->id.vendor,
1327 id->id.product, id->id.version);
1328
1329 len += input_print_modalias_bits(buf + len, size - len,
1330 'e', id->evbit, 0, EV_MAX);
1331 len += input_print_modalias_bits(buf + len, size - len,
1332 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1333 len += input_print_modalias_bits(buf + len, size - len,
1334 'r', id->relbit, 0, REL_MAX);
1335 len += input_print_modalias_bits(buf + len, size - len,
1336 'a', id->absbit, 0, ABS_MAX);
1337 len += input_print_modalias_bits(buf + len, size - len,
1338 'm', id->mscbit, 0, MSC_MAX);
1339 len += input_print_modalias_bits(buf + len, size - len,
1340 'l', id->ledbit, 0, LED_MAX);
1341 len += input_print_modalias_bits(buf + len, size - len,
1342 's', id->sndbit, 0, SND_MAX);
1343 len += input_print_modalias_bits(buf + len, size - len,
1344 'f', id->ffbit, 0, FF_MAX);
1345 len += input_print_modalias_bits(buf + len, size - len,
1346 'w', id->swbit, 0, SW_MAX);
1347
1348 if (add_cr)
1349 len += snprintf(buf + len, max(size - len, 0), "\n");
1350
1351 return len;
1352}
1353
1354static ssize_t input_dev_show_modalias(struct device *dev,
1355 struct device_attribute *attr,
1356 char *buf)
1357{
1358 struct input_dev *id = to_input_dev(dev);
1359 ssize_t len;
1360
1361 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1362
1363 return min_t(int, len, PAGE_SIZE);
1364}
1365static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1366
1367static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1368 int max, int add_cr);
1369
1370static ssize_t input_dev_show_properties(struct device *dev,
1371 struct device_attribute *attr,
1372 char *buf)
1373{
1374 struct input_dev *input_dev = to_input_dev(dev);
1375 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1376 INPUT_PROP_MAX, true);
1377 return min_t(int, len, PAGE_SIZE);
1378}
1379static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1380
1381static struct attribute *input_dev_attrs[] = {
1382 &dev_attr_name.attr,
1383 &dev_attr_phys.attr,
1384 &dev_attr_uniq.attr,
1385 &dev_attr_modalias.attr,
1386 &dev_attr_properties.attr,
1387 NULL
1388};
1389
1390static struct attribute_group input_dev_attr_group = {
1391 .attrs = input_dev_attrs,
1392};
1393
1394#define INPUT_DEV_ID_ATTR(name) \
1395static ssize_t input_dev_show_id_##name(struct device *dev, \
1396 struct device_attribute *attr, \
1397 char *buf) \
1398{ \
1399 struct input_dev *input_dev = to_input_dev(dev); \
1400 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1401} \
1402static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1403
1404INPUT_DEV_ID_ATTR(bustype);
1405INPUT_DEV_ID_ATTR(vendor);
1406INPUT_DEV_ID_ATTR(product);
1407INPUT_DEV_ID_ATTR(version);
1408
1409static struct attribute *input_dev_id_attrs[] = {
1410 &dev_attr_bustype.attr,
1411 &dev_attr_vendor.attr,
1412 &dev_attr_product.attr,
1413 &dev_attr_version.attr,
1414 NULL
1415};
1416
1417static struct attribute_group input_dev_id_attr_group = {
1418 .name = "id",
1419 .attrs = input_dev_id_attrs,
1420};
1421
1422static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1423 int max, int add_cr)
1424{
1425 int i;
1426 int len = 0;
1427 bool skip_empty = true;
1428
1429 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1430 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1431 bitmap[i], skip_empty);
1432 if (len) {
1433 skip_empty = false;
1434 if (i > 0)
1435 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1436 }
1437 }
1438
1439 /*
1440 * If no output was produced print a single 0.
1441 */
1442 if (len == 0)
1443 len = snprintf(buf, buf_size, "%d", 0);
1444
1445 if (add_cr)
1446 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1447
1448 return len;
1449}
1450
1451#define INPUT_DEV_CAP_ATTR(ev, bm) \
1452static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1453 struct device_attribute *attr, \
1454 char *buf) \
1455{ \
1456 struct input_dev *input_dev = to_input_dev(dev); \
1457 int len = input_print_bitmap(buf, PAGE_SIZE, \
1458 input_dev->bm##bit, ev##_MAX, \
1459 true); \
1460 return min_t(int, len, PAGE_SIZE); \
1461} \
1462static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1463
1464INPUT_DEV_CAP_ATTR(EV, ev);
1465INPUT_DEV_CAP_ATTR(KEY, key);
1466INPUT_DEV_CAP_ATTR(REL, rel);
1467INPUT_DEV_CAP_ATTR(ABS, abs);
1468INPUT_DEV_CAP_ATTR(MSC, msc);
1469INPUT_DEV_CAP_ATTR(LED, led);
1470INPUT_DEV_CAP_ATTR(SND, snd);
1471INPUT_DEV_CAP_ATTR(FF, ff);
1472INPUT_DEV_CAP_ATTR(SW, sw);
1473
1474static struct attribute *input_dev_caps_attrs[] = {
1475 &dev_attr_ev.attr,
1476 &dev_attr_key.attr,
1477 &dev_attr_rel.attr,
1478 &dev_attr_abs.attr,
1479 &dev_attr_msc.attr,
1480 &dev_attr_led.attr,
1481 &dev_attr_snd.attr,
1482 &dev_attr_ff.attr,
1483 &dev_attr_sw.attr,
1484 NULL
1485};
1486
1487static struct attribute_group input_dev_caps_attr_group = {
1488 .name = "capabilities",
1489 .attrs = input_dev_caps_attrs,
1490};
1491
1492static const struct attribute_group *input_dev_attr_groups[] = {
1493 &input_dev_attr_group,
1494 &input_dev_id_attr_group,
1495 &input_dev_caps_attr_group,
1496 NULL
1497};
1498
1499static void input_dev_release(struct device *device)
1500{
1501 struct input_dev *dev = to_input_dev(device);
1502
1503 input_ff_destroy(dev);
1504 input_mt_destroy_slots(dev);
1505 kfree(dev->absinfo);
1506 kfree(dev->vals);
1507 kfree(dev);
1508
1509 module_put(THIS_MODULE);
1510}
1511
1512/*
1513 * Input uevent interface - loading event handlers based on
1514 * device bitfields.
1515 */
1516static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1517 const char *name, unsigned long *bitmap, int max)
1518{
1519 int len;
1520
1521 if (add_uevent_var(env, "%s", name))
1522 return -ENOMEM;
1523
1524 len = input_print_bitmap(&env->buf[env->buflen - 1],
1525 sizeof(env->buf) - env->buflen,
1526 bitmap, max, false);
1527 if (len >= (sizeof(env->buf) - env->buflen))
1528 return -ENOMEM;
1529
1530 env->buflen += len;
1531 return 0;
1532}
1533
1534static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1535 struct input_dev *dev)
1536{
1537 int len;
1538
1539 if (add_uevent_var(env, "MODALIAS="))
1540 return -ENOMEM;
1541
1542 len = input_print_modalias(&env->buf[env->buflen - 1],
1543 sizeof(env->buf) - env->buflen,
1544 dev, 0);
1545 if (len >= (sizeof(env->buf) - env->buflen))
1546 return -ENOMEM;
1547
1548 env->buflen += len;
1549 return 0;
1550}
1551
1552#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1553 do { \
1554 int err = add_uevent_var(env, fmt, val); \
1555 if (err) \
1556 return err; \
1557 } while (0)
1558
1559#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1560 do { \
1561 int err = input_add_uevent_bm_var(env, name, bm, max); \
1562 if (err) \
1563 return err; \
1564 } while (0)
1565
1566#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1567 do { \
1568 int err = input_add_uevent_modalias_var(env, dev); \
1569 if (err) \
1570 return err; \
1571 } while (0)
1572
1573static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1574{
1575 struct input_dev *dev = to_input_dev(device);
1576
1577 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1578 dev->id.bustype, dev->id.vendor,
1579 dev->id.product, dev->id.version);
1580 if (dev->name)
1581 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1582 if (dev->phys)
1583 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1584 if (dev->uniq)
1585 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1586
1587 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1588
1589 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1590 if (test_bit(EV_KEY, dev->evbit))
1591 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1592 if (test_bit(EV_REL, dev->evbit))
1593 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1594 if (test_bit(EV_ABS, dev->evbit))
1595 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1596 if (test_bit(EV_MSC, dev->evbit))
1597 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1598 if (test_bit(EV_LED, dev->evbit))
1599 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1600 if (test_bit(EV_SND, dev->evbit))
1601 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1602 if (test_bit(EV_FF, dev->evbit))
1603 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1604 if (test_bit(EV_SW, dev->evbit))
1605 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1606
1607 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1608
1609 return 0;
1610}
1611
1612#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1613 do { \
1614 int i; \
1615 bool active; \
1616 \
1617 if (!test_bit(EV_##type, dev->evbit)) \
1618 break; \
1619 \
1620 for (i = 0; i < type##_MAX; i++) { \
1621 if (!test_bit(i, dev->bits##bit)) \
1622 continue; \
1623 \
1624 active = test_bit(i, dev->bits); \
1625 if (!active && !on) \
1626 continue; \
1627 \
1628 dev->event(dev, EV_##type, i, on ? active : 0); \
1629 } \
1630 } while (0)
1631
1632static void input_dev_toggle(struct input_dev *dev, bool activate)
1633{
1634 if (!dev->event)
1635 return;
1636
1637 INPUT_DO_TOGGLE(dev, LED, led, activate);
1638 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1639
1640 if (activate && test_bit(EV_REP, dev->evbit)) {
1641 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1642 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1643 }
1644}
1645
1646/**
1647 * input_reset_device() - reset/restore the state of input device
1648 * @dev: input device whose state needs to be reset
1649 *
1650 * This function tries to reset the state of an opened input device and
1651 * bring internal state and state if the hardware in sync with each other.
1652 * We mark all keys as released, restore LED state, repeat rate, etc.
1653 */
1654void input_reset_device(struct input_dev *dev)
1655{
1656 unsigned long flags;
1657
1658 mutex_lock(&dev->mutex);
1659 spin_lock_irqsave(&dev->event_lock, flags);
1660
1661 input_dev_toggle(dev, true);
1662 input_dev_release_keys(dev);
1663
1664 spin_unlock_irqrestore(&dev->event_lock, flags);
1665 mutex_unlock(&dev->mutex);
1666}
1667EXPORT_SYMBOL(input_reset_device);
1668
1669#ifdef CONFIG_PM_SLEEP
1670static int input_dev_suspend(struct device *dev)
1671{
1672 struct input_dev *input_dev = to_input_dev(dev);
1673
1674 spin_lock_irq(&input_dev->event_lock);
1675
1676 /*
1677 * Keys that are pressed now are unlikely to be
1678 * still pressed when we resume.
1679 */
1680 input_dev_release_keys(input_dev);
1681
1682 /* Turn off LEDs and sounds, if any are active. */
1683 input_dev_toggle(input_dev, false);
1684
1685 spin_unlock_irq(&input_dev->event_lock);
1686
1687 return 0;
1688}
1689
1690static int input_dev_resume(struct device *dev)
1691{
1692 struct input_dev *input_dev = to_input_dev(dev);
1693
1694 spin_lock_irq(&input_dev->event_lock);
1695
1696 /* Restore state of LEDs and sounds, if any were active. */
1697 input_dev_toggle(input_dev, true);
1698
1699 spin_unlock_irq(&input_dev->event_lock);
1700
1701 return 0;
1702}
1703
1704static int input_dev_freeze(struct device *dev)
1705{
1706 struct input_dev *input_dev = to_input_dev(dev);
1707
1708 spin_lock_irq(&input_dev->event_lock);
1709
1710 /*
1711 * Keys that are pressed now are unlikely to be
1712 * still pressed when we resume.
1713 */
1714 input_dev_release_keys(input_dev);
1715
1716 spin_unlock_irq(&input_dev->event_lock);
1717
1718 return 0;
1719}
1720
1721static int input_dev_poweroff(struct device *dev)
1722{
1723 struct input_dev *input_dev = to_input_dev(dev);
1724
1725 spin_lock_irq(&input_dev->event_lock);
1726
1727 /* Turn off LEDs and sounds, if any are active. */
1728 input_dev_toggle(input_dev, false);
1729
1730 spin_unlock_irq(&input_dev->event_lock);
1731
1732 return 0;
1733}
1734
1735static const struct dev_pm_ops input_dev_pm_ops = {
1736 .suspend = input_dev_suspend,
1737 .resume = input_dev_resume,
1738 .freeze = input_dev_freeze,
1739 .poweroff = input_dev_poweroff,
1740 .restore = input_dev_resume,
1741};
1742#endif /* CONFIG_PM */
1743
1744static struct device_type input_dev_type = {
1745 .groups = input_dev_attr_groups,
1746 .release = input_dev_release,
1747 .uevent = input_dev_uevent,
1748#ifdef CONFIG_PM_SLEEP
1749 .pm = &input_dev_pm_ops,
1750#endif
1751};
1752
1753static char *input_devnode(struct device *dev, umode_t *mode)
1754{
1755 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1756}
1757
1758struct class input_class = {
1759 .name = "input",
1760 .devnode = input_devnode,
1761};
1762EXPORT_SYMBOL_GPL(input_class);
1763
1764/**
1765 * input_allocate_device - allocate memory for new input device
1766 *
1767 * Returns prepared struct input_dev or %NULL.
1768 *
1769 * NOTE: Use input_free_device() to free devices that have not been
1770 * registered; input_unregister_device() should be used for already
1771 * registered devices.
1772 */
1773struct input_dev *input_allocate_device(void)
1774{
1775 static atomic_t input_no = ATOMIC_INIT(0);
1776 struct input_dev *dev;
1777
1778 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1779 if (dev) {
1780 dev->dev.type = &input_dev_type;
1781 dev->dev.class = &input_class;
1782 device_initialize(&dev->dev);
1783 mutex_init(&dev->mutex);
1784 spin_lock_init(&dev->event_lock);
1785 init_timer(&dev->timer);
1786 INIT_LIST_HEAD(&dev->h_list);
1787 INIT_LIST_HEAD(&dev->node);
1788
1789 dev_set_name(&dev->dev, "input%ld",
1790 (unsigned long) atomic_inc_return(&input_no) - 1);
1791
1792 __module_get(THIS_MODULE);
1793 }
1794
1795 return dev;
1796}
1797EXPORT_SYMBOL(input_allocate_device);
1798
1799struct input_devres {
1800 struct input_dev *input;
1801};
1802
1803static int devm_input_device_match(struct device *dev, void *res, void *data)
1804{
1805 struct input_devres *devres = res;
1806
1807 return devres->input == data;
1808}
1809
1810static void devm_input_device_release(struct device *dev, void *res)
1811{
1812 struct input_devres *devres = res;
1813 struct input_dev *input = devres->input;
1814
1815 dev_dbg(dev, "%s: dropping reference to %s\n",
1816 __func__, dev_name(&input->dev));
1817 input_put_device(input);
1818}
1819
1820/**
1821 * devm_input_allocate_device - allocate managed input device
1822 * @dev: device owning the input device being created
1823 *
1824 * Returns prepared struct input_dev or %NULL.
1825 *
1826 * Managed input devices do not need to be explicitly unregistered or
1827 * freed as it will be done automatically when owner device unbinds from
1828 * its driver (or binding fails). Once managed input device is allocated,
1829 * it is ready to be set up and registered in the same fashion as regular
1830 * input device. There are no special devm_input_device_[un]register()
1831 * variants, regular ones work with both managed and unmanaged devices,
1832 * should you need them. In most cases however, managed input device need
1833 * not be explicitly unregistered or freed.
1834 *
1835 * NOTE: the owner device is set up as parent of input device and users
1836 * should not override it.
1837 */
1838struct input_dev *devm_input_allocate_device(struct device *dev)
1839{
1840 struct input_dev *input;
1841 struct input_devres *devres;
1842
1843 devres = devres_alloc(devm_input_device_release,
1844 sizeof(struct input_devres), GFP_KERNEL);
1845 if (!devres)
1846 return NULL;
1847
1848 input = input_allocate_device();
1849 if (!input) {
1850 devres_free(devres);
1851 return NULL;
1852 }
1853
1854 input->dev.parent = dev;
1855 input->devres_managed = true;
1856
1857 devres->input = input;
1858 devres_add(dev, devres);
1859
1860 return input;
1861}
1862EXPORT_SYMBOL(devm_input_allocate_device);
1863
1864/**
1865 * input_free_device - free memory occupied by input_dev structure
1866 * @dev: input device to free
1867 *
1868 * This function should only be used if input_register_device()
1869 * was not called yet or if it failed. Once device was registered
1870 * use input_unregister_device() and memory will be freed once last
1871 * reference to the device is dropped.
1872 *
1873 * Device should be allocated by input_allocate_device().
1874 *
1875 * NOTE: If there are references to the input device then memory
1876 * will not be freed until last reference is dropped.
1877 */
1878void input_free_device(struct input_dev *dev)
1879{
1880 if (dev) {
1881 if (dev->devres_managed)
1882 WARN_ON(devres_destroy(dev->dev.parent,
1883 devm_input_device_release,
1884 devm_input_device_match,
1885 dev));
1886 input_put_device(dev);
1887 }
1888}
1889EXPORT_SYMBOL(input_free_device);
1890
1891/**
1892 * input_set_capability - mark device as capable of a certain event
1893 * @dev: device that is capable of emitting or accepting event
1894 * @type: type of the event (EV_KEY, EV_REL, etc...)
1895 * @code: event code
1896 *
1897 * In addition to setting up corresponding bit in appropriate capability
1898 * bitmap the function also adjusts dev->evbit.
1899 */
1900void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1901{
1902 switch (type) {
1903 case EV_KEY:
1904 __set_bit(code, dev->keybit);
1905 break;
1906
1907 case EV_REL:
1908 __set_bit(code, dev->relbit);
1909 break;
1910
1911 case EV_ABS:
1912 input_alloc_absinfo(dev);
1913 if (!dev->absinfo)
1914 return;
1915
1916 __set_bit(code, dev->absbit);
1917 break;
1918
1919 case EV_MSC:
1920 __set_bit(code, dev->mscbit);
1921 break;
1922
1923 case EV_SW:
1924 __set_bit(code, dev->swbit);
1925 break;
1926
1927 case EV_LED:
1928 __set_bit(code, dev->ledbit);
1929 break;
1930
1931 case EV_SND:
1932 __set_bit(code, dev->sndbit);
1933 break;
1934
1935 case EV_FF:
1936 __set_bit(code, dev->ffbit);
1937 break;
1938
1939 case EV_PWR:
1940 /* do nothing */
1941 break;
1942
1943 default:
1944 pr_err("input_set_capability: unknown type %u (code %u)\n",
1945 type, code);
1946 dump_stack();
1947 return;
1948 }
1949
1950 __set_bit(type, dev->evbit);
1951}
1952EXPORT_SYMBOL(input_set_capability);
1953
1954static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1955{
1956 int mt_slots;
1957 int i;
1958 unsigned int events;
1959
1960 if (dev->mt) {
1961 mt_slots = dev->mt->num_slots;
1962 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1963 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1964 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1965 mt_slots = clamp(mt_slots, 2, 32);
1966 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1967 mt_slots = 2;
1968 } else {
1969 mt_slots = 0;
1970 }
1971
1972 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1973
1974 for (i = 0; i < ABS_CNT; i++) {
1975 if (test_bit(i, dev->absbit)) {
1976 if (input_is_mt_axis(i))
1977 events += mt_slots;
1978 else
1979 events++;
1980 }
1981 }
1982
1983 for (i = 0; i < REL_CNT; i++)
1984 if (test_bit(i, dev->relbit))
1985 events++;
1986
1987 /* Make room for KEY and MSC events */
1988 events += 7;
1989
1990 return events;
1991}
1992
1993#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1994 do { \
1995 if (!test_bit(EV_##type, dev->evbit)) \
1996 memset(dev->bits##bit, 0, \
1997 sizeof(dev->bits##bit)); \
1998 } while (0)
1999
2000static void input_cleanse_bitmasks(struct input_dev *dev)
2001{
2002 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2003 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2004 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2005 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2006 INPUT_CLEANSE_BITMASK(dev, LED, led);
2007 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2008 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2009 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2010}
2011
2012static void __input_unregister_device(struct input_dev *dev)
2013{
2014 struct input_handle *handle, *next;
2015
2016 input_disconnect_device(dev);
2017
2018 mutex_lock(&input_mutex);
2019
2020 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2021 handle->handler->disconnect(handle);
2022 WARN_ON(!list_empty(&dev->h_list));
2023
2024 del_timer_sync(&dev->timer);
2025 list_del_init(&dev->node);
2026
2027 input_wakeup_procfs_readers();
2028
2029 mutex_unlock(&input_mutex);
2030
2031 device_del(&dev->dev);
2032}
2033
2034static void devm_input_device_unregister(struct device *dev, void *res)
2035{
2036 struct input_devres *devres = res;
2037 struct input_dev *input = devres->input;
2038
2039 dev_dbg(dev, "%s: unregistering device %s\n",
2040 __func__, dev_name(&input->dev));
2041 __input_unregister_device(input);
2042}
2043
2044/**
2045 * input_register_device - register device with input core
2046 * @dev: device to be registered
2047 *
2048 * This function registers device with input core. The device must be
2049 * allocated with input_allocate_device() and all it's capabilities
2050 * set up before registering.
2051 * If function fails the device must be freed with input_free_device().
2052 * Once device has been successfully registered it can be unregistered
2053 * with input_unregister_device(); input_free_device() should not be
2054 * called in this case.
2055 *
2056 * Note that this function is also used to register managed input devices
2057 * (ones allocated with devm_input_allocate_device()). Such managed input
2058 * devices need not be explicitly unregistered or freed, their tear down
2059 * is controlled by the devres infrastructure. It is also worth noting
2060 * that tear down of managed input devices is internally a 2-step process:
2061 * registered managed input device is first unregistered, but stays in
2062 * memory and can still handle input_event() calls (although events will
2063 * not be delivered anywhere). The freeing of managed input device will
2064 * happen later, when devres stack is unwound to the point where device
2065 * allocation was made.
2066 */
2067int input_register_device(struct input_dev *dev)
2068{
2069 struct input_devres *devres = NULL;
2070 struct input_handler *handler;
2071 unsigned int packet_size;
2072 const char *path;
2073 int error;
2074
2075 if (dev->devres_managed) {
2076 devres = devres_alloc(devm_input_device_unregister,
2077 sizeof(struct input_devres), GFP_KERNEL);
2078 if (!devres)
2079 return -ENOMEM;
2080
2081 devres->input = dev;
2082 }
2083
2084 /* Every input device generates EV_SYN/SYN_REPORT events. */
2085 __set_bit(EV_SYN, dev->evbit);
2086
2087 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2088 __clear_bit(KEY_RESERVED, dev->keybit);
2089
2090 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2091 input_cleanse_bitmasks(dev);
2092
2093 packet_size = input_estimate_events_per_packet(dev);
2094 if (dev->hint_events_per_packet < packet_size)
2095 dev->hint_events_per_packet = packet_size;
2096
2097 dev->max_vals = dev->hint_events_per_packet + 2;
2098 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2099 if (!dev->vals) {
2100 error = -ENOMEM;
2101 goto err_devres_free;
2102 }
2103
2104 /*
2105 * If delay and period are pre-set by the driver, then autorepeating
2106 * is handled by the driver itself and we don't do it in input.c.
2107 */
2108 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2109 dev->timer.data = (long) dev;
2110 dev->timer.function = input_repeat_key;
2111 dev->rep[REP_DELAY] = 250;
2112 dev->rep[REP_PERIOD] = 33;
2113 }
2114
2115 if (!dev->getkeycode)
2116 dev->getkeycode = input_default_getkeycode;
2117
2118 if (!dev->setkeycode)
2119 dev->setkeycode = input_default_setkeycode;
2120
2121 error = device_add(&dev->dev);
2122 if (error)
2123 goto err_free_vals;
2124
2125 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2126 pr_info("%s as %s\n",
2127 dev->name ? dev->name : "Unspecified device",
2128 path ? path : "N/A");
2129 kfree(path);
2130
2131 error = mutex_lock_interruptible(&input_mutex);
2132 if (error)
2133 goto err_device_del;
2134
2135 list_add_tail(&dev->node, &input_dev_list);
2136
2137 list_for_each_entry(handler, &input_handler_list, node)
2138 input_attach_handler(dev, handler);
2139
2140 input_wakeup_procfs_readers();
2141
2142 mutex_unlock(&input_mutex);
2143
2144 if (dev->devres_managed) {
2145 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2146 __func__, dev_name(&dev->dev));
2147 devres_add(dev->dev.parent, devres);
2148 }
2149 return 0;
2150
2151err_device_del:
2152 device_del(&dev->dev);
2153err_free_vals:
2154 kfree(dev->vals);
2155 dev->vals = NULL;
2156err_devres_free:
2157 devres_free(devres);
2158 return error;
2159}
2160EXPORT_SYMBOL(input_register_device);
2161
2162/**
2163 * input_unregister_device - unregister previously registered device
2164 * @dev: device to be unregistered
2165 *
2166 * This function unregisters an input device. Once device is unregistered
2167 * the caller should not try to access it as it may get freed at any moment.
2168 */
2169void input_unregister_device(struct input_dev *dev)
2170{
2171 if (dev->devres_managed) {
2172 WARN_ON(devres_destroy(dev->dev.parent,
2173 devm_input_device_unregister,
2174 devm_input_device_match,
2175 dev));
2176 __input_unregister_device(dev);
2177 /*
2178 * We do not do input_put_device() here because it will be done
2179 * when 2nd devres fires up.
2180 */
2181 } else {
2182 __input_unregister_device(dev);
2183 input_put_device(dev);
2184 }
2185}
2186EXPORT_SYMBOL(input_unregister_device);
2187
2188/**
2189 * input_register_handler - register a new input handler
2190 * @handler: handler to be registered
2191 *
2192 * This function registers a new input handler (interface) for input
2193 * devices in the system and attaches it to all input devices that
2194 * are compatible with the handler.
2195 */
2196int input_register_handler(struct input_handler *handler)
2197{
2198 struct input_dev *dev;
2199 int error;
2200
2201 error = mutex_lock_interruptible(&input_mutex);
2202 if (error)
2203 return error;
2204
2205 INIT_LIST_HEAD(&handler->h_list);
2206
2207 list_add_tail(&handler->node, &input_handler_list);
2208
2209 list_for_each_entry(dev, &input_dev_list, node)
2210 input_attach_handler(dev, handler);
2211
2212 input_wakeup_procfs_readers();
2213
2214 mutex_unlock(&input_mutex);
2215 return 0;
2216}
2217EXPORT_SYMBOL(input_register_handler);
2218
2219/**
2220 * input_unregister_handler - unregisters an input handler
2221 * @handler: handler to be unregistered
2222 *
2223 * This function disconnects a handler from its input devices and
2224 * removes it from lists of known handlers.
2225 */
2226void input_unregister_handler(struct input_handler *handler)
2227{
2228 struct input_handle *handle, *next;
2229
2230 mutex_lock(&input_mutex);
2231
2232 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2233 handler->disconnect(handle);
2234 WARN_ON(!list_empty(&handler->h_list));
2235
2236 list_del_init(&handler->node);
2237
2238 input_wakeup_procfs_readers();
2239
2240 mutex_unlock(&input_mutex);
2241}
2242EXPORT_SYMBOL(input_unregister_handler);
2243
2244/**
2245 * input_handler_for_each_handle - handle iterator
2246 * @handler: input handler to iterate
2247 * @data: data for the callback
2248 * @fn: function to be called for each handle
2249 *
2250 * Iterate over @bus's list of devices, and call @fn for each, passing
2251 * it @data and stop when @fn returns a non-zero value. The function is
2252 * using RCU to traverse the list and therefore may be usind in atonic
2253 * contexts. The @fn callback is invoked from RCU critical section and
2254 * thus must not sleep.
2255 */
2256int input_handler_for_each_handle(struct input_handler *handler, void *data,
2257 int (*fn)(struct input_handle *, void *))
2258{
2259 struct input_handle *handle;
2260 int retval = 0;
2261
2262 rcu_read_lock();
2263
2264 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2265 retval = fn(handle, data);
2266 if (retval)
2267 break;
2268 }
2269
2270 rcu_read_unlock();
2271
2272 return retval;
2273}
2274EXPORT_SYMBOL(input_handler_for_each_handle);
2275
2276/**
2277 * input_register_handle - register a new input handle
2278 * @handle: handle to register
2279 *
2280 * This function puts a new input handle onto device's
2281 * and handler's lists so that events can flow through
2282 * it once it is opened using input_open_device().
2283 *
2284 * This function is supposed to be called from handler's
2285 * connect() method.
2286 */
2287int input_register_handle(struct input_handle *handle)
2288{
2289 struct input_handler *handler = handle->handler;
2290 struct input_dev *dev = handle->dev;
2291 int error;
2292
2293 /*
2294 * We take dev->mutex here to prevent race with
2295 * input_release_device().
2296 */
2297 error = mutex_lock_interruptible(&dev->mutex);
2298 if (error)
2299 return error;
2300
2301 /*
2302 * Filters go to the head of the list, normal handlers
2303 * to the tail.
2304 */
2305 if (handler->filter)
2306 list_add_rcu(&handle->d_node, &dev->h_list);
2307 else
2308 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2309
2310 mutex_unlock(&dev->mutex);
2311
2312 /*
2313 * Since we are supposed to be called from ->connect()
2314 * which is mutually exclusive with ->disconnect()
2315 * we can't be racing with input_unregister_handle()
2316 * and so separate lock is not needed here.
2317 */
2318 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2319
2320 if (handler->start)
2321 handler->start(handle);
2322
2323 return 0;
2324}
2325EXPORT_SYMBOL(input_register_handle);
2326
2327/**
2328 * input_unregister_handle - unregister an input handle
2329 * @handle: handle to unregister
2330 *
2331 * This function removes input handle from device's
2332 * and handler's lists.
2333 *
2334 * This function is supposed to be called from handler's
2335 * disconnect() method.
2336 */
2337void input_unregister_handle(struct input_handle *handle)
2338{
2339 struct input_dev *dev = handle->dev;
2340
2341 list_del_rcu(&handle->h_node);
2342
2343 /*
2344 * Take dev->mutex to prevent race with input_release_device().
2345 */
2346 mutex_lock(&dev->mutex);
2347 list_del_rcu(&handle->d_node);
2348 mutex_unlock(&dev->mutex);
2349
2350 synchronize_rcu();
2351}
2352EXPORT_SYMBOL(input_unregister_handle);
2353
2354/**
2355 * input_get_new_minor - allocates a new input minor number
2356 * @legacy_base: beginning or the legacy range to be searched
2357 * @legacy_num: size of legacy range
2358 * @allow_dynamic: whether we can also take ID from the dynamic range
2359 *
2360 * This function allocates a new device minor for from input major namespace.
2361 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2362 * parameters and whether ID can be allocated from dynamic range if there are
2363 * no free IDs in legacy range.
2364 */
2365int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2366 bool allow_dynamic)
2367{
2368 /*
2369 * This function should be called from input handler's ->connect()
2370 * methods, which are serialized with input_mutex, so no additional
2371 * locking is needed here.
2372 */
2373 if (legacy_base >= 0) {
2374 int minor = ida_simple_get(&input_ida,
2375 legacy_base,
2376 legacy_base + legacy_num,
2377 GFP_KERNEL);
2378 if (minor >= 0 || !allow_dynamic)
2379 return minor;
2380 }
2381
2382 return ida_simple_get(&input_ida,
2383 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2384 GFP_KERNEL);
2385}
2386EXPORT_SYMBOL(input_get_new_minor);
2387
2388/**
2389 * input_free_minor - release previously allocated minor
2390 * @minor: minor to be released
2391 *
2392 * This function releases previously allocated input minor so that it can be
2393 * reused later.
2394 */
2395void input_free_minor(unsigned int minor)
2396{
2397 ida_simple_remove(&input_ida, minor);
2398}
2399EXPORT_SYMBOL(input_free_minor);
2400
2401static int __init input_init(void)
2402{
2403 int err;
2404
2405 err = class_register(&input_class);
2406 if (err) {
2407 pr_err("unable to register input_dev class\n");
2408 return err;
2409 }
2410
2411 err = input_proc_init();
2412 if (err)
2413 goto fail1;
2414
2415 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2416 INPUT_MAX_CHAR_DEVICES, "input");
2417 if (err) {
2418 pr_err("unable to register char major %d", INPUT_MAJOR);
2419 goto fail2;
2420 }
2421
2422 return 0;
2423
2424 fail2: input_proc_exit();
2425 fail1: class_unregister(&input_class);
2426 return err;
2427}
2428
2429static void __exit input_exit(void)
2430{
2431 input_proc_exit();
2432 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2433 INPUT_MAX_CHAR_DEVICES);
2434 class_unregister(&input_class);
2435}
2436
2437subsys_initcall(input_init);
2438module_exit(input_exit);
1/*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7/*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15#include <linux/init.h>
16#include <linux/types.h>
17#include <linux/idr.h>
18#include <linux/input/mt.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/random.h>
22#include <linux/major.h>
23#include <linux/proc_fs.h>
24#include <linux/sched.h>
25#include <linux/seq_file.h>
26#include <linux/poll.h>
27#include <linux/device.h>
28#include <linux/mutex.h>
29#include <linux/rcupdate.h>
30#include "input-compat.h"
31
32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33MODULE_DESCRIPTION("Input core");
34MODULE_LICENSE("GPL");
35
36#define INPUT_MAX_CHAR_DEVICES 1024
37#define INPUT_FIRST_DYNAMIC_DEV 256
38static DEFINE_IDA(input_ida);
39
40static LIST_HEAD(input_dev_list);
41static LIST_HEAD(input_handler_list);
42
43/*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49static DEFINE_MUTEX(input_mutex);
50
51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
55{
56 return code <= max && test_bit(code, bm);
57}
58
59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60{
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
64
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
67
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
71
72 return value;
73}
74
75static void input_start_autorepeat(struct input_dev *dev, int code)
76{
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84}
85
86static void input_stop_autorepeat(struct input_dev *dev)
87{
88 del_timer(&dev->timer);
89}
90
91/*
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
95 */
96static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
98{
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
102
103 if (handler->filter) {
104 for (v = vals; v != vals + count; v++) {
105 if (handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
111 count = end - vals;
112 }
113
114 if (!count)
115 return 0;
116
117 if (handler->events)
118 handler->events(handle, vals, count);
119 else if (handler->event)
120 for (v = vals; v != vals + count; v++)
121 handler->event(handle, v->type, v->code, v->value);
122
123 return count;
124}
125
126/*
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
130 */
131static void input_pass_values(struct input_dev *dev,
132 struct input_value *vals, unsigned int count)
133{
134 struct input_handle *handle;
135 struct input_value *v;
136
137 if (!count)
138 return;
139
140 rcu_read_lock();
141
142 handle = rcu_dereference(dev->grab);
143 if (handle) {
144 count = input_to_handler(handle, vals, count);
145 } else {
146 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 if (handle->open) {
148 count = input_to_handler(handle, vals, count);
149 if (!count)
150 break;
151 }
152 }
153
154 rcu_read_unlock();
155
156 /* trigger auto repeat for key events */
157 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
158 for (v = vals; v != vals + count; v++) {
159 if (v->type == EV_KEY && v->value != 2) {
160 if (v->value)
161 input_start_autorepeat(dev, v->code);
162 else
163 input_stop_autorepeat(dev);
164 }
165 }
166 }
167}
168
169static void input_pass_event(struct input_dev *dev,
170 unsigned int type, unsigned int code, int value)
171{
172 struct input_value vals[] = { { type, code, value } };
173
174 input_pass_values(dev, vals, ARRAY_SIZE(vals));
175}
176
177/*
178 * Generate software autorepeat event. Note that we take
179 * dev->event_lock here to avoid racing with input_event
180 * which may cause keys get "stuck".
181 */
182static void input_repeat_key(unsigned long data)
183{
184 struct input_dev *dev = (void *) data;
185 unsigned long flags;
186
187 spin_lock_irqsave(&dev->event_lock, flags);
188
189 if (test_bit(dev->repeat_key, dev->key) &&
190 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
191 struct input_value vals[] = {
192 { EV_KEY, dev->repeat_key, 2 },
193 input_value_sync
194 };
195
196 input_pass_values(dev, vals, ARRAY_SIZE(vals));
197
198 if (dev->rep[REP_PERIOD])
199 mod_timer(&dev->timer, jiffies +
200 msecs_to_jiffies(dev->rep[REP_PERIOD]));
201 }
202
203 spin_unlock_irqrestore(&dev->event_lock, flags);
204}
205
206#define INPUT_IGNORE_EVENT 0
207#define INPUT_PASS_TO_HANDLERS 1
208#define INPUT_PASS_TO_DEVICE 2
209#define INPUT_SLOT 4
210#define INPUT_FLUSH 8
211#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
212
213static int input_handle_abs_event(struct input_dev *dev,
214 unsigned int code, int *pval)
215{
216 struct input_mt *mt = dev->mt;
217 bool is_mt_event;
218 int *pold;
219
220 if (code == ABS_MT_SLOT) {
221 /*
222 * "Stage" the event; we'll flush it later, when we
223 * get actual touch data.
224 */
225 if (mt && *pval >= 0 && *pval < mt->num_slots)
226 mt->slot = *pval;
227
228 return INPUT_IGNORE_EVENT;
229 }
230
231 is_mt_event = input_is_mt_value(code);
232
233 if (!is_mt_event) {
234 pold = &dev->absinfo[code].value;
235 } else if (mt) {
236 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
237 } else {
238 /*
239 * Bypass filtering for multi-touch events when
240 * not employing slots.
241 */
242 pold = NULL;
243 }
244
245 if (pold) {
246 *pval = input_defuzz_abs_event(*pval, *pold,
247 dev->absinfo[code].fuzz);
248 if (*pold == *pval)
249 return INPUT_IGNORE_EVENT;
250
251 *pold = *pval;
252 }
253
254 /* Flush pending "slot" event */
255 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
256 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
257 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
258 }
259
260 return INPUT_PASS_TO_HANDLERS;
261}
262
263static int input_get_disposition(struct input_dev *dev,
264 unsigned int type, unsigned int code, int *pval)
265{
266 int disposition = INPUT_IGNORE_EVENT;
267 int value = *pval;
268
269 switch (type) {
270
271 case EV_SYN:
272 switch (code) {
273 case SYN_CONFIG:
274 disposition = INPUT_PASS_TO_ALL;
275 break;
276
277 case SYN_REPORT:
278 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
279 break;
280 case SYN_MT_REPORT:
281 disposition = INPUT_PASS_TO_HANDLERS;
282 break;
283 }
284 break;
285
286 case EV_KEY:
287 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
288
289 /* auto-repeat bypasses state updates */
290 if (value == 2) {
291 disposition = INPUT_PASS_TO_HANDLERS;
292 break;
293 }
294
295 if (!!test_bit(code, dev->key) != !!value) {
296
297 __change_bit(code, dev->key);
298 disposition = INPUT_PASS_TO_HANDLERS;
299 }
300 }
301 break;
302
303 case EV_SW:
304 if (is_event_supported(code, dev->swbit, SW_MAX) &&
305 !!test_bit(code, dev->sw) != !!value) {
306
307 __change_bit(code, dev->sw);
308 disposition = INPUT_PASS_TO_HANDLERS;
309 }
310 break;
311
312 case EV_ABS:
313 if (is_event_supported(code, dev->absbit, ABS_MAX))
314 disposition = input_handle_abs_event(dev, code, &value);
315
316 break;
317
318 case EV_REL:
319 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
320 disposition = INPUT_PASS_TO_HANDLERS;
321
322 break;
323
324 case EV_MSC:
325 if (is_event_supported(code, dev->mscbit, MSC_MAX))
326 disposition = INPUT_PASS_TO_ALL;
327
328 break;
329
330 case EV_LED:
331 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
332 !!test_bit(code, dev->led) != !!value) {
333
334 __change_bit(code, dev->led);
335 disposition = INPUT_PASS_TO_ALL;
336 }
337 break;
338
339 case EV_SND:
340 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
341
342 if (!!test_bit(code, dev->snd) != !!value)
343 __change_bit(code, dev->snd);
344 disposition = INPUT_PASS_TO_ALL;
345 }
346 break;
347
348 case EV_REP:
349 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
350 dev->rep[code] = value;
351 disposition = INPUT_PASS_TO_ALL;
352 }
353 break;
354
355 case EV_FF:
356 if (value >= 0)
357 disposition = INPUT_PASS_TO_ALL;
358 break;
359
360 case EV_PWR:
361 disposition = INPUT_PASS_TO_ALL;
362 break;
363 }
364
365 *pval = value;
366 return disposition;
367}
368
369static void input_handle_event(struct input_dev *dev,
370 unsigned int type, unsigned int code, int value)
371{
372 int disposition = input_get_disposition(dev, type, code, &value);
373
374 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
375 add_input_randomness(type, code, value);
376
377 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
378 dev->event(dev, type, code, value);
379
380 if (!dev->vals)
381 return;
382
383 if (disposition & INPUT_PASS_TO_HANDLERS) {
384 struct input_value *v;
385
386 if (disposition & INPUT_SLOT) {
387 v = &dev->vals[dev->num_vals++];
388 v->type = EV_ABS;
389 v->code = ABS_MT_SLOT;
390 v->value = dev->mt->slot;
391 }
392
393 v = &dev->vals[dev->num_vals++];
394 v->type = type;
395 v->code = code;
396 v->value = value;
397 }
398
399 if (disposition & INPUT_FLUSH) {
400 if (dev->num_vals >= 2)
401 input_pass_values(dev, dev->vals, dev->num_vals);
402 dev->num_vals = 0;
403 } else if (dev->num_vals >= dev->max_vals - 2) {
404 dev->vals[dev->num_vals++] = input_value_sync;
405 input_pass_values(dev, dev->vals, dev->num_vals);
406 dev->num_vals = 0;
407 }
408
409}
410
411/**
412 * input_event() - report new input event
413 * @dev: device that generated the event
414 * @type: type of the event
415 * @code: event code
416 * @value: value of the event
417 *
418 * This function should be used by drivers implementing various input
419 * devices to report input events. See also input_inject_event().
420 *
421 * NOTE: input_event() may be safely used right after input device was
422 * allocated with input_allocate_device(), even before it is registered
423 * with input_register_device(), but the event will not reach any of the
424 * input handlers. Such early invocation of input_event() may be used
425 * to 'seed' initial state of a switch or initial position of absolute
426 * axis, etc.
427 */
428void input_event(struct input_dev *dev,
429 unsigned int type, unsigned int code, int value)
430{
431 unsigned long flags;
432
433 if (is_event_supported(type, dev->evbit, EV_MAX)) {
434
435 spin_lock_irqsave(&dev->event_lock, flags);
436 input_handle_event(dev, type, code, value);
437 spin_unlock_irqrestore(&dev->event_lock, flags);
438 }
439}
440EXPORT_SYMBOL(input_event);
441
442/**
443 * input_inject_event() - send input event from input handler
444 * @handle: input handle to send event through
445 * @type: type of the event
446 * @code: event code
447 * @value: value of the event
448 *
449 * Similar to input_event() but will ignore event if device is
450 * "grabbed" and handle injecting event is not the one that owns
451 * the device.
452 */
453void input_inject_event(struct input_handle *handle,
454 unsigned int type, unsigned int code, int value)
455{
456 struct input_dev *dev = handle->dev;
457 struct input_handle *grab;
458 unsigned long flags;
459
460 if (is_event_supported(type, dev->evbit, EV_MAX)) {
461 spin_lock_irqsave(&dev->event_lock, flags);
462
463 rcu_read_lock();
464 grab = rcu_dereference(dev->grab);
465 if (!grab || grab == handle)
466 input_handle_event(dev, type, code, value);
467 rcu_read_unlock();
468
469 spin_unlock_irqrestore(&dev->event_lock, flags);
470 }
471}
472EXPORT_SYMBOL(input_inject_event);
473
474/**
475 * input_alloc_absinfo - allocates array of input_absinfo structs
476 * @dev: the input device emitting absolute events
477 *
478 * If the absinfo struct the caller asked for is already allocated, this
479 * functions will not do anything.
480 */
481void input_alloc_absinfo(struct input_dev *dev)
482{
483 if (!dev->absinfo)
484 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
485 GFP_KERNEL);
486
487 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
488}
489EXPORT_SYMBOL(input_alloc_absinfo);
490
491void input_set_abs_params(struct input_dev *dev, unsigned int axis,
492 int min, int max, int fuzz, int flat)
493{
494 struct input_absinfo *absinfo;
495
496 input_alloc_absinfo(dev);
497 if (!dev->absinfo)
498 return;
499
500 absinfo = &dev->absinfo[axis];
501 absinfo->minimum = min;
502 absinfo->maximum = max;
503 absinfo->fuzz = fuzz;
504 absinfo->flat = flat;
505
506 __set_bit(EV_ABS, dev->evbit);
507 __set_bit(axis, dev->absbit);
508}
509EXPORT_SYMBOL(input_set_abs_params);
510
511
512/**
513 * input_grab_device - grabs device for exclusive use
514 * @handle: input handle that wants to own the device
515 *
516 * When a device is grabbed by an input handle all events generated by
517 * the device are delivered only to this handle. Also events injected
518 * by other input handles are ignored while device is grabbed.
519 */
520int input_grab_device(struct input_handle *handle)
521{
522 struct input_dev *dev = handle->dev;
523 int retval;
524
525 retval = mutex_lock_interruptible(&dev->mutex);
526 if (retval)
527 return retval;
528
529 if (dev->grab) {
530 retval = -EBUSY;
531 goto out;
532 }
533
534 rcu_assign_pointer(dev->grab, handle);
535
536 out:
537 mutex_unlock(&dev->mutex);
538 return retval;
539}
540EXPORT_SYMBOL(input_grab_device);
541
542static void __input_release_device(struct input_handle *handle)
543{
544 struct input_dev *dev = handle->dev;
545 struct input_handle *grabber;
546
547 grabber = rcu_dereference_protected(dev->grab,
548 lockdep_is_held(&dev->mutex));
549 if (grabber == handle) {
550 rcu_assign_pointer(dev->grab, NULL);
551 /* Make sure input_pass_event() notices that grab is gone */
552 synchronize_rcu();
553
554 list_for_each_entry(handle, &dev->h_list, d_node)
555 if (handle->open && handle->handler->start)
556 handle->handler->start(handle);
557 }
558}
559
560/**
561 * input_release_device - release previously grabbed device
562 * @handle: input handle that owns the device
563 *
564 * Releases previously grabbed device so that other input handles can
565 * start receiving input events. Upon release all handlers attached
566 * to the device have their start() method called so they have a change
567 * to synchronize device state with the rest of the system.
568 */
569void input_release_device(struct input_handle *handle)
570{
571 struct input_dev *dev = handle->dev;
572
573 mutex_lock(&dev->mutex);
574 __input_release_device(handle);
575 mutex_unlock(&dev->mutex);
576}
577EXPORT_SYMBOL(input_release_device);
578
579/**
580 * input_open_device - open input device
581 * @handle: handle through which device is being accessed
582 *
583 * This function should be called by input handlers when they
584 * want to start receive events from given input device.
585 */
586int input_open_device(struct input_handle *handle)
587{
588 struct input_dev *dev = handle->dev;
589 int retval;
590
591 retval = mutex_lock_interruptible(&dev->mutex);
592 if (retval)
593 return retval;
594
595 if (dev->going_away) {
596 retval = -ENODEV;
597 goto out;
598 }
599
600 handle->open++;
601
602 if (!dev->users++ && dev->open)
603 retval = dev->open(dev);
604
605 if (retval) {
606 dev->users--;
607 if (!--handle->open) {
608 /*
609 * Make sure we are not delivering any more events
610 * through this handle
611 */
612 synchronize_rcu();
613 }
614 }
615
616 out:
617 mutex_unlock(&dev->mutex);
618 return retval;
619}
620EXPORT_SYMBOL(input_open_device);
621
622int input_flush_device(struct input_handle *handle, struct file *file)
623{
624 struct input_dev *dev = handle->dev;
625 int retval;
626
627 retval = mutex_lock_interruptible(&dev->mutex);
628 if (retval)
629 return retval;
630
631 if (dev->flush)
632 retval = dev->flush(dev, file);
633
634 mutex_unlock(&dev->mutex);
635 return retval;
636}
637EXPORT_SYMBOL(input_flush_device);
638
639/**
640 * input_close_device - close input device
641 * @handle: handle through which device is being accessed
642 *
643 * This function should be called by input handlers when they
644 * want to stop receive events from given input device.
645 */
646void input_close_device(struct input_handle *handle)
647{
648 struct input_dev *dev = handle->dev;
649
650 mutex_lock(&dev->mutex);
651
652 __input_release_device(handle);
653
654 if (!--dev->users && dev->close)
655 dev->close(dev);
656
657 if (!--handle->open) {
658 /*
659 * synchronize_rcu() makes sure that input_pass_event()
660 * completed and that no more input events are delivered
661 * through this handle
662 */
663 synchronize_rcu();
664 }
665
666 mutex_unlock(&dev->mutex);
667}
668EXPORT_SYMBOL(input_close_device);
669
670/*
671 * Simulate keyup events for all keys that are marked as pressed.
672 * The function must be called with dev->event_lock held.
673 */
674static void input_dev_release_keys(struct input_dev *dev)
675{
676 bool need_sync = false;
677 int code;
678
679 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
680 for_each_set_bit(code, dev->key, KEY_CNT) {
681 input_pass_event(dev, EV_KEY, code, 0);
682 need_sync = true;
683 }
684
685 if (need_sync)
686 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
687
688 memset(dev->key, 0, sizeof(dev->key));
689 }
690}
691
692/*
693 * Prepare device for unregistering
694 */
695static void input_disconnect_device(struct input_dev *dev)
696{
697 struct input_handle *handle;
698
699 /*
700 * Mark device as going away. Note that we take dev->mutex here
701 * not to protect access to dev->going_away but rather to ensure
702 * that there are no threads in the middle of input_open_device()
703 */
704 mutex_lock(&dev->mutex);
705 dev->going_away = true;
706 mutex_unlock(&dev->mutex);
707
708 spin_lock_irq(&dev->event_lock);
709
710 /*
711 * Simulate keyup events for all pressed keys so that handlers
712 * are not left with "stuck" keys. The driver may continue
713 * generate events even after we done here but they will not
714 * reach any handlers.
715 */
716 input_dev_release_keys(dev);
717
718 list_for_each_entry(handle, &dev->h_list, d_node)
719 handle->open = 0;
720
721 spin_unlock_irq(&dev->event_lock);
722}
723
724/**
725 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
726 * @ke: keymap entry containing scancode to be converted.
727 * @scancode: pointer to the location where converted scancode should
728 * be stored.
729 *
730 * This function is used to convert scancode stored in &struct keymap_entry
731 * into scalar form understood by legacy keymap handling methods. These
732 * methods expect scancodes to be represented as 'unsigned int'.
733 */
734int input_scancode_to_scalar(const struct input_keymap_entry *ke,
735 unsigned int *scancode)
736{
737 switch (ke->len) {
738 case 1:
739 *scancode = *((u8 *)ke->scancode);
740 break;
741
742 case 2:
743 *scancode = *((u16 *)ke->scancode);
744 break;
745
746 case 4:
747 *scancode = *((u32 *)ke->scancode);
748 break;
749
750 default:
751 return -EINVAL;
752 }
753
754 return 0;
755}
756EXPORT_SYMBOL(input_scancode_to_scalar);
757
758/*
759 * Those routines handle the default case where no [gs]etkeycode() is
760 * defined. In this case, an array indexed by the scancode is used.
761 */
762
763static unsigned int input_fetch_keycode(struct input_dev *dev,
764 unsigned int index)
765{
766 switch (dev->keycodesize) {
767 case 1:
768 return ((u8 *)dev->keycode)[index];
769
770 case 2:
771 return ((u16 *)dev->keycode)[index];
772
773 default:
774 return ((u32 *)dev->keycode)[index];
775 }
776}
777
778static int input_default_getkeycode(struct input_dev *dev,
779 struct input_keymap_entry *ke)
780{
781 unsigned int index;
782 int error;
783
784 if (!dev->keycodesize)
785 return -EINVAL;
786
787 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
788 index = ke->index;
789 else {
790 error = input_scancode_to_scalar(ke, &index);
791 if (error)
792 return error;
793 }
794
795 if (index >= dev->keycodemax)
796 return -EINVAL;
797
798 ke->keycode = input_fetch_keycode(dev, index);
799 ke->index = index;
800 ke->len = sizeof(index);
801 memcpy(ke->scancode, &index, sizeof(index));
802
803 return 0;
804}
805
806static int input_default_setkeycode(struct input_dev *dev,
807 const struct input_keymap_entry *ke,
808 unsigned int *old_keycode)
809{
810 unsigned int index;
811 int error;
812 int i;
813
814 if (!dev->keycodesize)
815 return -EINVAL;
816
817 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
818 index = ke->index;
819 } else {
820 error = input_scancode_to_scalar(ke, &index);
821 if (error)
822 return error;
823 }
824
825 if (index >= dev->keycodemax)
826 return -EINVAL;
827
828 if (dev->keycodesize < sizeof(ke->keycode) &&
829 (ke->keycode >> (dev->keycodesize * 8)))
830 return -EINVAL;
831
832 switch (dev->keycodesize) {
833 case 1: {
834 u8 *k = (u8 *)dev->keycode;
835 *old_keycode = k[index];
836 k[index] = ke->keycode;
837 break;
838 }
839 case 2: {
840 u16 *k = (u16 *)dev->keycode;
841 *old_keycode = k[index];
842 k[index] = ke->keycode;
843 break;
844 }
845 default: {
846 u32 *k = (u32 *)dev->keycode;
847 *old_keycode = k[index];
848 k[index] = ke->keycode;
849 break;
850 }
851 }
852
853 __clear_bit(*old_keycode, dev->keybit);
854 __set_bit(ke->keycode, dev->keybit);
855
856 for (i = 0; i < dev->keycodemax; i++) {
857 if (input_fetch_keycode(dev, i) == *old_keycode) {
858 __set_bit(*old_keycode, dev->keybit);
859 break; /* Setting the bit twice is useless, so break */
860 }
861 }
862
863 return 0;
864}
865
866/**
867 * input_get_keycode - retrieve keycode currently mapped to a given scancode
868 * @dev: input device which keymap is being queried
869 * @ke: keymap entry
870 *
871 * This function should be called by anyone interested in retrieving current
872 * keymap. Presently evdev handlers use it.
873 */
874int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
875{
876 unsigned long flags;
877 int retval;
878
879 spin_lock_irqsave(&dev->event_lock, flags);
880 retval = dev->getkeycode(dev, ke);
881 spin_unlock_irqrestore(&dev->event_lock, flags);
882
883 return retval;
884}
885EXPORT_SYMBOL(input_get_keycode);
886
887/**
888 * input_set_keycode - attribute a keycode to a given scancode
889 * @dev: input device which keymap is being updated
890 * @ke: new keymap entry
891 *
892 * This function should be called by anyone needing to update current
893 * keymap. Presently keyboard and evdev handlers use it.
894 */
895int input_set_keycode(struct input_dev *dev,
896 const struct input_keymap_entry *ke)
897{
898 unsigned long flags;
899 unsigned int old_keycode;
900 int retval;
901
902 if (ke->keycode > KEY_MAX)
903 return -EINVAL;
904
905 spin_lock_irqsave(&dev->event_lock, flags);
906
907 retval = dev->setkeycode(dev, ke, &old_keycode);
908 if (retval)
909 goto out;
910
911 /* Make sure KEY_RESERVED did not get enabled. */
912 __clear_bit(KEY_RESERVED, dev->keybit);
913
914 /*
915 * Simulate keyup event if keycode is not present
916 * in the keymap anymore
917 */
918 if (test_bit(EV_KEY, dev->evbit) &&
919 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
920 __test_and_clear_bit(old_keycode, dev->key)) {
921 struct input_value vals[] = {
922 { EV_KEY, old_keycode, 0 },
923 input_value_sync
924 };
925
926 input_pass_values(dev, vals, ARRAY_SIZE(vals));
927 }
928
929 out:
930 spin_unlock_irqrestore(&dev->event_lock, flags);
931
932 return retval;
933}
934EXPORT_SYMBOL(input_set_keycode);
935
936static const struct input_device_id *input_match_device(struct input_handler *handler,
937 struct input_dev *dev)
938{
939 const struct input_device_id *id;
940
941 for (id = handler->id_table; id->flags || id->driver_info; id++) {
942
943 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
944 if (id->bustype != dev->id.bustype)
945 continue;
946
947 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
948 if (id->vendor != dev->id.vendor)
949 continue;
950
951 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
952 if (id->product != dev->id.product)
953 continue;
954
955 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
956 if (id->version != dev->id.version)
957 continue;
958
959 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
960 continue;
961
962 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
963 continue;
964
965 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
966 continue;
967
968 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
969 continue;
970
971 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
972 continue;
973
974 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
975 continue;
976
977 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
978 continue;
979
980 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
981 continue;
982
983 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
984 continue;
985
986 if (!handler->match || handler->match(handler, dev))
987 return id;
988 }
989
990 return NULL;
991}
992
993static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
994{
995 const struct input_device_id *id;
996 int error;
997
998 id = input_match_device(handler, dev);
999 if (!id)
1000 return -ENODEV;
1001
1002 error = handler->connect(handler, dev, id);
1003 if (error && error != -ENODEV)
1004 pr_err("failed to attach handler %s to device %s, error: %d\n",
1005 handler->name, kobject_name(&dev->dev.kobj), error);
1006
1007 return error;
1008}
1009
1010#ifdef CONFIG_COMPAT
1011
1012static int input_bits_to_string(char *buf, int buf_size,
1013 unsigned long bits, bool skip_empty)
1014{
1015 int len = 0;
1016
1017 if (in_compat_syscall()) {
1018 u32 dword = bits >> 32;
1019 if (dword || !skip_empty)
1020 len += snprintf(buf, buf_size, "%x ", dword);
1021
1022 dword = bits & 0xffffffffUL;
1023 if (dword || !skip_empty || len)
1024 len += snprintf(buf + len, max(buf_size - len, 0),
1025 "%x", dword);
1026 } else {
1027 if (bits || !skip_empty)
1028 len += snprintf(buf, buf_size, "%lx", bits);
1029 }
1030
1031 return len;
1032}
1033
1034#else /* !CONFIG_COMPAT */
1035
1036static int input_bits_to_string(char *buf, int buf_size,
1037 unsigned long bits, bool skip_empty)
1038{
1039 return bits || !skip_empty ?
1040 snprintf(buf, buf_size, "%lx", bits) : 0;
1041}
1042
1043#endif
1044
1045#ifdef CONFIG_PROC_FS
1046
1047static struct proc_dir_entry *proc_bus_input_dir;
1048static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1049static int input_devices_state;
1050
1051static inline void input_wakeup_procfs_readers(void)
1052{
1053 input_devices_state++;
1054 wake_up(&input_devices_poll_wait);
1055}
1056
1057static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1058{
1059 poll_wait(file, &input_devices_poll_wait, wait);
1060 if (file->f_version != input_devices_state) {
1061 file->f_version = input_devices_state;
1062 return POLLIN | POLLRDNORM;
1063 }
1064
1065 return 0;
1066}
1067
1068union input_seq_state {
1069 struct {
1070 unsigned short pos;
1071 bool mutex_acquired;
1072 };
1073 void *p;
1074};
1075
1076static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1077{
1078 union input_seq_state *state = (union input_seq_state *)&seq->private;
1079 int error;
1080
1081 /* We need to fit into seq->private pointer */
1082 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1083
1084 error = mutex_lock_interruptible(&input_mutex);
1085 if (error) {
1086 state->mutex_acquired = false;
1087 return ERR_PTR(error);
1088 }
1089
1090 state->mutex_acquired = true;
1091
1092 return seq_list_start(&input_dev_list, *pos);
1093}
1094
1095static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1096{
1097 return seq_list_next(v, &input_dev_list, pos);
1098}
1099
1100static void input_seq_stop(struct seq_file *seq, void *v)
1101{
1102 union input_seq_state *state = (union input_seq_state *)&seq->private;
1103
1104 if (state->mutex_acquired)
1105 mutex_unlock(&input_mutex);
1106}
1107
1108static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1109 unsigned long *bitmap, int max)
1110{
1111 int i;
1112 bool skip_empty = true;
1113 char buf[18];
1114
1115 seq_printf(seq, "B: %s=", name);
1116
1117 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1118 if (input_bits_to_string(buf, sizeof(buf),
1119 bitmap[i], skip_empty)) {
1120 skip_empty = false;
1121 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1122 }
1123 }
1124
1125 /*
1126 * If no output was produced print a single 0.
1127 */
1128 if (skip_empty)
1129 seq_puts(seq, "0");
1130
1131 seq_putc(seq, '\n');
1132}
1133
1134static int input_devices_seq_show(struct seq_file *seq, void *v)
1135{
1136 struct input_dev *dev = container_of(v, struct input_dev, node);
1137 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1138 struct input_handle *handle;
1139
1140 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1141 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1142
1143 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1144 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1145 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1146 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1147 seq_printf(seq, "H: Handlers=");
1148
1149 list_for_each_entry(handle, &dev->h_list, d_node)
1150 seq_printf(seq, "%s ", handle->name);
1151 seq_putc(seq, '\n');
1152
1153 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1154
1155 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1156 if (test_bit(EV_KEY, dev->evbit))
1157 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1158 if (test_bit(EV_REL, dev->evbit))
1159 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1160 if (test_bit(EV_ABS, dev->evbit))
1161 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1162 if (test_bit(EV_MSC, dev->evbit))
1163 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1164 if (test_bit(EV_LED, dev->evbit))
1165 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1166 if (test_bit(EV_SND, dev->evbit))
1167 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1168 if (test_bit(EV_FF, dev->evbit))
1169 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1170 if (test_bit(EV_SW, dev->evbit))
1171 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1172
1173 seq_putc(seq, '\n');
1174
1175 kfree(path);
1176 return 0;
1177}
1178
1179static const struct seq_operations input_devices_seq_ops = {
1180 .start = input_devices_seq_start,
1181 .next = input_devices_seq_next,
1182 .stop = input_seq_stop,
1183 .show = input_devices_seq_show,
1184};
1185
1186static int input_proc_devices_open(struct inode *inode, struct file *file)
1187{
1188 return seq_open(file, &input_devices_seq_ops);
1189}
1190
1191static const struct file_operations input_devices_fileops = {
1192 .owner = THIS_MODULE,
1193 .open = input_proc_devices_open,
1194 .poll = input_proc_devices_poll,
1195 .read = seq_read,
1196 .llseek = seq_lseek,
1197 .release = seq_release,
1198};
1199
1200static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1201{
1202 union input_seq_state *state = (union input_seq_state *)&seq->private;
1203 int error;
1204
1205 /* We need to fit into seq->private pointer */
1206 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1207
1208 error = mutex_lock_interruptible(&input_mutex);
1209 if (error) {
1210 state->mutex_acquired = false;
1211 return ERR_PTR(error);
1212 }
1213
1214 state->mutex_acquired = true;
1215 state->pos = *pos;
1216
1217 return seq_list_start(&input_handler_list, *pos);
1218}
1219
1220static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1221{
1222 union input_seq_state *state = (union input_seq_state *)&seq->private;
1223
1224 state->pos = *pos + 1;
1225 return seq_list_next(v, &input_handler_list, pos);
1226}
1227
1228static int input_handlers_seq_show(struct seq_file *seq, void *v)
1229{
1230 struct input_handler *handler = container_of(v, struct input_handler, node);
1231 union input_seq_state *state = (union input_seq_state *)&seq->private;
1232
1233 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1234 if (handler->filter)
1235 seq_puts(seq, " (filter)");
1236 if (handler->legacy_minors)
1237 seq_printf(seq, " Minor=%d", handler->minor);
1238 seq_putc(seq, '\n');
1239
1240 return 0;
1241}
1242
1243static const struct seq_operations input_handlers_seq_ops = {
1244 .start = input_handlers_seq_start,
1245 .next = input_handlers_seq_next,
1246 .stop = input_seq_stop,
1247 .show = input_handlers_seq_show,
1248};
1249
1250static int input_proc_handlers_open(struct inode *inode, struct file *file)
1251{
1252 return seq_open(file, &input_handlers_seq_ops);
1253}
1254
1255static const struct file_operations input_handlers_fileops = {
1256 .owner = THIS_MODULE,
1257 .open = input_proc_handlers_open,
1258 .read = seq_read,
1259 .llseek = seq_lseek,
1260 .release = seq_release,
1261};
1262
1263static int __init input_proc_init(void)
1264{
1265 struct proc_dir_entry *entry;
1266
1267 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1268 if (!proc_bus_input_dir)
1269 return -ENOMEM;
1270
1271 entry = proc_create("devices", 0, proc_bus_input_dir,
1272 &input_devices_fileops);
1273 if (!entry)
1274 goto fail1;
1275
1276 entry = proc_create("handlers", 0, proc_bus_input_dir,
1277 &input_handlers_fileops);
1278 if (!entry)
1279 goto fail2;
1280
1281 return 0;
1282
1283 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1284 fail1: remove_proc_entry("bus/input", NULL);
1285 return -ENOMEM;
1286}
1287
1288static void input_proc_exit(void)
1289{
1290 remove_proc_entry("devices", proc_bus_input_dir);
1291 remove_proc_entry("handlers", proc_bus_input_dir);
1292 remove_proc_entry("bus/input", NULL);
1293}
1294
1295#else /* !CONFIG_PROC_FS */
1296static inline void input_wakeup_procfs_readers(void) { }
1297static inline int input_proc_init(void) { return 0; }
1298static inline void input_proc_exit(void) { }
1299#endif
1300
1301#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1302static ssize_t input_dev_show_##name(struct device *dev, \
1303 struct device_attribute *attr, \
1304 char *buf) \
1305{ \
1306 struct input_dev *input_dev = to_input_dev(dev); \
1307 \
1308 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1309 input_dev->name ? input_dev->name : ""); \
1310} \
1311static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1312
1313INPUT_DEV_STRING_ATTR_SHOW(name);
1314INPUT_DEV_STRING_ATTR_SHOW(phys);
1315INPUT_DEV_STRING_ATTR_SHOW(uniq);
1316
1317static int input_print_modalias_bits(char *buf, int size,
1318 char name, unsigned long *bm,
1319 unsigned int min_bit, unsigned int max_bit)
1320{
1321 int len = 0, i;
1322
1323 len += snprintf(buf, max(size, 0), "%c", name);
1324 for (i = min_bit; i < max_bit; i++)
1325 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1326 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1327 return len;
1328}
1329
1330static int input_print_modalias(char *buf, int size, struct input_dev *id,
1331 int add_cr)
1332{
1333 int len;
1334
1335 len = snprintf(buf, max(size, 0),
1336 "input:b%04Xv%04Xp%04Xe%04X-",
1337 id->id.bustype, id->id.vendor,
1338 id->id.product, id->id.version);
1339
1340 len += input_print_modalias_bits(buf + len, size - len,
1341 'e', id->evbit, 0, EV_MAX);
1342 len += input_print_modalias_bits(buf + len, size - len,
1343 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1344 len += input_print_modalias_bits(buf + len, size - len,
1345 'r', id->relbit, 0, REL_MAX);
1346 len += input_print_modalias_bits(buf + len, size - len,
1347 'a', id->absbit, 0, ABS_MAX);
1348 len += input_print_modalias_bits(buf + len, size - len,
1349 'm', id->mscbit, 0, MSC_MAX);
1350 len += input_print_modalias_bits(buf + len, size - len,
1351 'l', id->ledbit, 0, LED_MAX);
1352 len += input_print_modalias_bits(buf + len, size - len,
1353 's', id->sndbit, 0, SND_MAX);
1354 len += input_print_modalias_bits(buf + len, size - len,
1355 'f', id->ffbit, 0, FF_MAX);
1356 len += input_print_modalias_bits(buf + len, size - len,
1357 'w', id->swbit, 0, SW_MAX);
1358
1359 if (add_cr)
1360 len += snprintf(buf + len, max(size - len, 0), "\n");
1361
1362 return len;
1363}
1364
1365static ssize_t input_dev_show_modalias(struct device *dev,
1366 struct device_attribute *attr,
1367 char *buf)
1368{
1369 struct input_dev *id = to_input_dev(dev);
1370 ssize_t len;
1371
1372 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1373
1374 return min_t(int, len, PAGE_SIZE);
1375}
1376static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1377
1378static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1379 int max, int add_cr);
1380
1381static ssize_t input_dev_show_properties(struct device *dev,
1382 struct device_attribute *attr,
1383 char *buf)
1384{
1385 struct input_dev *input_dev = to_input_dev(dev);
1386 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1387 INPUT_PROP_MAX, true);
1388 return min_t(int, len, PAGE_SIZE);
1389}
1390static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1391
1392static struct attribute *input_dev_attrs[] = {
1393 &dev_attr_name.attr,
1394 &dev_attr_phys.attr,
1395 &dev_attr_uniq.attr,
1396 &dev_attr_modalias.attr,
1397 &dev_attr_properties.attr,
1398 NULL
1399};
1400
1401static struct attribute_group input_dev_attr_group = {
1402 .attrs = input_dev_attrs,
1403};
1404
1405#define INPUT_DEV_ID_ATTR(name) \
1406static ssize_t input_dev_show_id_##name(struct device *dev, \
1407 struct device_attribute *attr, \
1408 char *buf) \
1409{ \
1410 struct input_dev *input_dev = to_input_dev(dev); \
1411 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1412} \
1413static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1414
1415INPUT_DEV_ID_ATTR(bustype);
1416INPUT_DEV_ID_ATTR(vendor);
1417INPUT_DEV_ID_ATTR(product);
1418INPUT_DEV_ID_ATTR(version);
1419
1420static struct attribute *input_dev_id_attrs[] = {
1421 &dev_attr_bustype.attr,
1422 &dev_attr_vendor.attr,
1423 &dev_attr_product.attr,
1424 &dev_attr_version.attr,
1425 NULL
1426};
1427
1428static struct attribute_group input_dev_id_attr_group = {
1429 .name = "id",
1430 .attrs = input_dev_id_attrs,
1431};
1432
1433static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1434 int max, int add_cr)
1435{
1436 int i;
1437 int len = 0;
1438 bool skip_empty = true;
1439
1440 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1441 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1442 bitmap[i], skip_empty);
1443 if (len) {
1444 skip_empty = false;
1445 if (i > 0)
1446 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1447 }
1448 }
1449
1450 /*
1451 * If no output was produced print a single 0.
1452 */
1453 if (len == 0)
1454 len = snprintf(buf, buf_size, "%d", 0);
1455
1456 if (add_cr)
1457 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1458
1459 return len;
1460}
1461
1462#define INPUT_DEV_CAP_ATTR(ev, bm) \
1463static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1464 struct device_attribute *attr, \
1465 char *buf) \
1466{ \
1467 struct input_dev *input_dev = to_input_dev(dev); \
1468 int len = input_print_bitmap(buf, PAGE_SIZE, \
1469 input_dev->bm##bit, ev##_MAX, \
1470 true); \
1471 return min_t(int, len, PAGE_SIZE); \
1472} \
1473static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1474
1475INPUT_DEV_CAP_ATTR(EV, ev);
1476INPUT_DEV_CAP_ATTR(KEY, key);
1477INPUT_DEV_CAP_ATTR(REL, rel);
1478INPUT_DEV_CAP_ATTR(ABS, abs);
1479INPUT_DEV_CAP_ATTR(MSC, msc);
1480INPUT_DEV_CAP_ATTR(LED, led);
1481INPUT_DEV_CAP_ATTR(SND, snd);
1482INPUT_DEV_CAP_ATTR(FF, ff);
1483INPUT_DEV_CAP_ATTR(SW, sw);
1484
1485static struct attribute *input_dev_caps_attrs[] = {
1486 &dev_attr_ev.attr,
1487 &dev_attr_key.attr,
1488 &dev_attr_rel.attr,
1489 &dev_attr_abs.attr,
1490 &dev_attr_msc.attr,
1491 &dev_attr_led.attr,
1492 &dev_attr_snd.attr,
1493 &dev_attr_ff.attr,
1494 &dev_attr_sw.attr,
1495 NULL
1496};
1497
1498static struct attribute_group input_dev_caps_attr_group = {
1499 .name = "capabilities",
1500 .attrs = input_dev_caps_attrs,
1501};
1502
1503static const struct attribute_group *input_dev_attr_groups[] = {
1504 &input_dev_attr_group,
1505 &input_dev_id_attr_group,
1506 &input_dev_caps_attr_group,
1507 NULL
1508};
1509
1510static void input_dev_release(struct device *device)
1511{
1512 struct input_dev *dev = to_input_dev(device);
1513
1514 input_ff_destroy(dev);
1515 input_mt_destroy_slots(dev);
1516 kfree(dev->absinfo);
1517 kfree(dev->vals);
1518 kfree(dev);
1519
1520 module_put(THIS_MODULE);
1521}
1522
1523/*
1524 * Input uevent interface - loading event handlers based on
1525 * device bitfields.
1526 */
1527static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1528 const char *name, unsigned long *bitmap, int max)
1529{
1530 int len;
1531
1532 if (add_uevent_var(env, "%s", name))
1533 return -ENOMEM;
1534
1535 len = input_print_bitmap(&env->buf[env->buflen - 1],
1536 sizeof(env->buf) - env->buflen,
1537 bitmap, max, false);
1538 if (len >= (sizeof(env->buf) - env->buflen))
1539 return -ENOMEM;
1540
1541 env->buflen += len;
1542 return 0;
1543}
1544
1545static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1546 struct input_dev *dev)
1547{
1548 int len;
1549
1550 if (add_uevent_var(env, "MODALIAS="))
1551 return -ENOMEM;
1552
1553 len = input_print_modalias(&env->buf[env->buflen - 1],
1554 sizeof(env->buf) - env->buflen,
1555 dev, 0);
1556 if (len >= (sizeof(env->buf) - env->buflen))
1557 return -ENOMEM;
1558
1559 env->buflen += len;
1560 return 0;
1561}
1562
1563#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1564 do { \
1565 int err = add_uevent_var(env, fmt, val); \
1566 if (err) \
1567 return err; \
1568 } while (0)
1569
1570#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1571 do { \
1572 int err = input_add_uevent_bm_var(env, name, bm, max); \
1573 if (err) \
1574 return err; \
1575 } while (0)
1576
1577#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1578 do { \
1579 int err = input_add_uevent_modalias_var(env, dev); \
1580 if (err) \
1581 return err; \
1582 } while (0)
1583
1584static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1585{
1586 struct input_dev *dev = to_input_dev(device);
1587
1588 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1589 dev->id.bustype, dev->id.vendor,
1590 dev->id.product, dev->id.version);
1591 if (dev->name)
1592 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1593 if (dev->phys)
1594 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1595 if (dev->uniq)
1596 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1597
1598 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1599
1600 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1601 if (test_bit(EV_KEY, dev->evbit))
1602 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1603 if (test_bit(EV_REL, dev->evbit))
1604 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1605 if (test_bit(EV_ABS, dev->evbit))
1606 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1607 if (test_bit(EV_MSC, dev->evbit))
1608 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1609 if (test_bit(EV_LED, dev->evbit))
1610 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1611 if (test_bit(EV_SND, dev->evbit))
1612 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1613 if (test_bit(EV_FF, dev->evbit))
1614 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1615 if (test_bit(EV_SW, dev->evbit))
1616 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1617
1618 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1619
1620 return 0;
1621}
1622
1623#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1624 do { \
1625 int i; \
1626 bool active; \
1627 \
1628 if (!test_bit(EV_##type, dev->evbit)) \
1629 break; \
1630 \
1631 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1632 active = test_bit(i, dev->bits); \
1633 if (!active && !on) \
1634 continue; \
1635 \
1636 dev->event(dev, EV_##type, i, on ? active : 0); \
1637 } \
1638 } while (0)
1639
1640static void input_dev_toggle(struct input_dev *dev, bool activate)
1641{
1642 if (!dev->event)
1643 return;
1644
1645 INPUT_DO_TOGGLE(dev, LED, led, activate);
1646 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1647
1648 if (activate && test_bit(EV_REP, dev->evbit)) {
1649 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1650 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1651 }
1652}
1653
1654/**
1655 * input_reset_device() - reset/restore the state of input device
1656 * @dev: input device whose state needs to be reset
1657 *
1658 * This function tries to reset the state of an opened input device and
1659 * bring internal state and state if the hardware in sync with each other.
1660 * We mark all keys as released, restore LED state, repeat rate, etc.
1661 */
1662void input_reset_device(struct input_dev *dev)
1663{
1664 unsigned long flags;
1665
1666 mutex_lock(&dev->mutex);
1667 spin_lock_irqsave(&dev->event_lock, flags);
1668
1669 input_dev_toggle(dev, true);
1670 input_dev_release_keys(dev);
1671
1672 spin_unlock_irqrestore(&dev->event_lock, flags);
1673 mutex_unlock(&dev->mutex);
1674}
1675EXPORT_SYMBOL(input_reset_device);
1676
1677#ifdef CONFIG_PM_SLEEP
1678static int input_dev_suspend(struct device *dev)
1679{
1680 struct input_dev *input_dev = to_input_dev(dev);
1681
1682 spin_lock_irq(&input_dev->event_lock);
1683
1684 /*
1685 * Keys that are pressed now are unlikely to be
1686 * still pressed when we resume.
1687 */
1688 input_dev_release_keys(input_dev);
1689
1690 /* Turn off LEDs and sounds, if any are active. */
1691 input_dev_toggle(input_dev, false);
1692
1693 spin_unlock_irq(&input_dev->event_lock);
1694
1695 return 0;
1696}
1697
1698static int input_dev_resume(struct device *dev)
1699{
1700 struct input_dev *input_dev = to_input_dev(dev);
1701
1702 spin_lock_irq(&input_dev->event_lock);
1703
1704 /* Restore state of LEDs and sounds, if any were active. */
1705 input_dev_toggle(input_dev, true);
1706
1707 spin_unlock_irq(&input_dev->event_lock);
1708
1709 return 0;
1710}
1711
1712static int input_dev_freeze(struct device *dev)
1713{
1714 struct input_dev *input_dev = to_input_dev(dev);
1715
1716 spin_lock_irq(&input_dev->event_lock);
1717
1718 /*
1719 * Keys that are pressed now are unlikely to be
1720 * still pressed when we resume.
1721 */
1722 input_dev_release_keys(input_dev);
1723
1724 spin_unlock_irq(&input_dev->event_lock);
1725
1726 return 0;
1727}
1728
1729static int input_dev_poweroff(struct device *dev)
1730{
1731 struct input_dev *input_dev = to_input_dev(dev);
1732
1733 spin_lock_irq(&input_dev->event_lock);
1734
1735 /* Turn off LEDs and sounds, if any are active. */
1736 input_dev_toggle(input_dev, false);
1737
1738 spin_unlock_irq(&input_dev->event_lock);
1739
1740 return 0;
1741}
1742
1743static const struct dev_pm_ops input_dev_pm_ops = {
1744 .suspend = input_dev_suspend,
1745 .resume = input_dev_resume,
1746 .freeze = input_dev_freeze,
1747 .poweroff = input_dev_poweroff,
1748 .restore = input_dev_resume,
1749};
1750#endif /* CONFIG_PM */
1751
1752static struct device_type input_dev_type = {
1753 .groups = input_dev_attr_groups,
1754 .release = input_dev_release,
1755 .uevent = input_dev_uevent,
1756#ifdef CONFIG_PM_SLEEP
1757 .pm = &input_dev_pm_ops,
1758#endif
1759};
1760
1761static char *input_devnode(struct device *dev, umode_t *mode)
1762{
1763 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1764}
1765
1766struct class input_class = {
1767 .name = "input",
1768 .devnode = input_devnode,
1769};
1770EXPORT_SYMBOL_GPL(input_class);
1771
1772/**
1773 * input_allocate_device - allocate memory for new input device
1774 *
1775 * Returns prepared struct input_dev or %NULL.
1776 *
1777 * NOTE: Use input_free_device() to free devices that have not been
1778 * registered; input_unregister_device() should be used for already
1779 * registered devices.
1780 */
1781struct input_dev *input_allocate_device(void)
1782{
1783 static atomic_t input_no = ATOMIC_INIT(-1);
1784 struct input_dev *dev;
1785
1786 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1787 if (dev) {
1788 dev->dev.type = &input_dev_type;
1789 dev->dev.class = &input_class;
1790 device_initialize(&dev->dev);
1791 mutex_init(&dev->mutex);
1792 spin_lock_init(&dev->event_lock);
1793 init_timer(&dev->timer);
1794 INIT_LIST_HEAD(&dev->h_list);
1795 INIT_LIST_HEAD(&dev->node);
1796
1797 dev_set_name(&dev->dev, "input%lu",
1798 (unsigned long)atomic_inc_return(&input_no));
1799
1800 __module_get(THIS_MODULE);
1801 }
1802
1803 return dev;
1804}
1805EXPORT_SYMBOL(input_allocate_device);
1806
1807struct input_devres {
1808 struct input_dev *input;
1809};
1810
1811static int devm_input_device_match(struct device *dev, void *res, void *data)
1812{
1813 struct input_devres *devres = res;
1814
1815 return devres->input == data;
1816}
1817
1818static void devm_input_device_release(struct device *dev, void *res)
1819{
1820 struct input_devres *devres = res;
1821 struct input_dev *input = devres->input;
1822
1823 dev_dbg(dev, "%s: dropping reference to %s\n",
1824 __func__, dev_name(&input->dev));
1825 input_put_device(input);
1826}
1827
1828/**
1829 * devm_input_allocate_device - allocate managed input device
1830 * @dev: device owning the input device being created
1831 *
1832 * Returns prepared struct input_dev or %NULL.
1833 *
1834 * Managed input devices do not need to be explicitly unregistered or
1835 * freed as it will be done automatically when owner device unbinds from
1836 * its driver (or binding fails). Once managed input device is allocated,
1837 * it is ready to be set up and registered in the same fashion as regular
1838 * input device. There are no special devm_input_device_[un]register()
1839 * variants, regular ones work with both managed and unmanaged devices,
1840 * should you need them. In most cases however, managed input device need
1841 * not be explicitly unregistered or freed.
1842 *
1843 * NOTE: the owner device is set up as parent of input device and users
1844 * should not override it.
1845 */
1846struct input_dev *devm_input_allocate_device(struct device *dev)
1847{
1848 struct input_dev *input;
1849 struct input_devres *devres;
1850
1851 devres = devres_alloc(devm_input_device_release,
1852 sizeof(struct input_devres), GFP_KERNEL);
1853 if (!devres)
1854 return NULL;
1855
1856 input = input_allocate_device();
1857 if (!input) {
1858 devres_free(devres);
1859 return NULL;
1860 }
1861
1862 input->dev.parent = dev;
1863 input->devres_managed = true;
1864
1865 devres->input = input;
1866 devres_add(dev, devres);
1867
1868 return input;
1869}
1870EXPORT_SYMBOL(devm_input_allocate_device);
1871
1872/**
1873 * input_free_device - free memory occupied by input_dev structure
1874 * @dev: input device to free
1875 *
1876 * This function should only be used if input_register_device()
1877 * was not called yet or if it failed. Once device was registered
1878 * use input_unregister_device() and memory will be freed once last
1879 * reference to the device is dropped.
1880 *
1881 * Device should be allocated by input_allocate_device().
1882 *
1883 * NOTE: If there are references to the input device then memory
1884 * will not be freed until last reference is dropped.
1885 */
1886void input_free_device(struct input_dev *dev)
1887{
1888 if (dev) {
1889 if (dev->devres_managed)
1890 WARN_ON(devres_destroy(dev->dev.parent,
1891 devm_input_device_release,
1892 devm_input_device_match,
1893 dev));
1894 input_put_device(dev);
1895 }
1896}
1897EXPORT_SYMBOL(input_free_device);
1898
1899/**
1900 * input_set_capability - mark device as capable of a certain event
1901 * @dev: device that is capable of emitting or accepting event
1902 * @type: type of the event (EV_KEY, EV_REL, etc...)
1903 * @code: event code
1904 *
1905 * In addition to setting up corresponding bit in appropriate capability
1906 * bitmap the function also adjusts dev->evbit.
1907 */
1908void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1909{
1910 switch (type) {
1911 case EV_KEY:
1912 __set_bit(code, dev->keybit);
1913 break;
1914
1915 case EV_REL:
1916 __set_bit(code, dev->relbit);
1917 break;
1918
1919 case EV_ABS:
1920 input_alloc_absinfo(dev);
1921 if (!dev->absinfo)
1922 return;
1923
1924 __set_bit(code, dev->absbit);
1925 break;
1926
1927 case EV_MSC:
1928 __set_bit(code, dev->mscbit);
1929 break;
1930
1931 case EV_SW:
1932 __set_bit(code, dev->swbit);
1933 break;
1934
1935 case EV_LED:
1936 __set_bit(code, dev->ledbit);
1937 break;
1938
1939 case EV_SND:
1940 __set_bit(code, dev->sndbit);
1941 break;
1942
1943 case EV_FF:
1944 __set_bit(code, dev->ffbit);
1945 break;
1946
1947 case EV_PWR:
1948 /* do nothing */
1949 break;
1950
1951 default:
1952 pr_err("input_set_capability: unknown type %u (code %u)\n",
1953 type, code);
1954 dump_stack();
1955 return;
1956 }
1957
1958 __set_bit(type, dev->evbit);
1959}
1960EXPORT_SYMBOL(input_set_capability);
1961
1962static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1963{
1964 int mt_slots;
1965 int i;
1966 unsigned int events;
1967
1968 if (dev->mt) {
1969 mt_slots = dev->mt->num_slots;
1970 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1971 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1972 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1973 mt_slots = clamp(mt_slots, 2, 32);
1974 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1975 mt_slots = 2;
1976 } else {
1977 mt_slots = 0;
1978 }
1979
1980 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1981
1982 if (test_bit(EV_ABS, dev->evbit))
1983 for_each_set_bit(i, dev->absbit, ABS_CNT)
1984 events += input_is_mt_axis(i) ? mt_slots : 1;
1985
1986 if (test_bit(EV_REL, dev->evbit))
1987 events += bitmap_weight(dev->relbit, REL_CNT);
1988
1989 /* Make room for KEY and MSC events */
1990 events += 7;
1991
1992 return events;
1993}
1994
1995#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1996 do { \
1997 if (!test_bit(EV_##type, dev->evbit)) \
1998 memset(dev->bits##bit, 0, \
1999 sizeof(dev->bits##bit)); \
2000 } while (0)
2001
2002static void input_cleanse_bitmasks(struct input_dev *dev)
2003{
2004 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2005 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2006 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2007 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2008 INPUT_CLEANSE_BITMASK(dev, LED, led);
2009 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2010 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2011 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2012}
2013
2014static void __input_unregister_device(struct input_dev *dev)
2015{
2016 struct input_handle *handle, *next;
2017
2018 input_disconnect_device(dev);
2019
2020 mutex_lock(&input_mutex);
2021
2022 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2023 handle->handler->disconnect(handle);
2024 WARN_ON(!list_empty(&dev->h_list));
2025
2026 del_timer_sync(&dev->timer);
2027 list_del_init(&dev->node);
2028
2029 input_wakeup_procfs_readers();
2030
2031 mutex_unlock(&input_mutex);
2032
2033 device_del(&dev->dev);
2034}
2035
2036static void devm_input_device_unregister(struct device *dev, void *res)
2037{
2038 struct input_devres *devres = res;
2039 struct input_dev *input = devres->input;
2040
2041 dev_dbg(dev, "%s: unregistering device %s\n",
2042 __func__, dev_name(&input->dev));
2043 __input_unregister_device(input);
2044}
2045
2046/**
2047 * input_enable_softrepeat - enable software autorepeat
2048 * @dev: input device
2049 * @delay: repeat delay
2050 * @period: repeat period
2051 *
2052 * Enable software autorepeat on the input device.
2053 */
2054void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2055{
2056 dev->timer.data = (unsigned long) dev;
2057 dev->timer.function = input_repeat_key;
2058 dev->rep[REP_DELAY] = delay;
2059 dev->rep[REP_PERIOD] = period;
2060}
2061EXPORT_SYMBOL(input_enable_softrepeat);
2062
2063/**
2064 * input_register_device - register device with input core
2065 * @dev: device to be registered
2066 *
2067 * This function registers device with input core. The device must be
2068 * allocated with input_allocate_device() and all it's capabilities
2069 * set up before registering.
2070 * If function fails the device must be freed with input_free_device().
2071 * Once device has been successfully registered it can be unregistered
2072 * with input_unregister_device(); input_free_device() should not be
2073 * called in this case.
2074 *
2075 * Note that this function is also used to register managed input devices
2076 * (ones allocated with devm_input_allocate_device()). Such managed input
2077 * devices need not be explicitly unregistered or freed, their tear down
2078 * is controlled by the devres infrastructure. It is also worth noting
2079 * that tear down of managed input devices is internally a 2-step process:
2080 * registered managed input device is first unregistered, but stays in
2081 * memory and can still handle input_event() calls (although events will
2082 * not be delivered anywhere). The freeing of managed input device will
2083 * happen later, when devres stack is unwound to the point where device
2084 * allocation was made.
2085 */
2086int input_register_device(struct input_dev *dev)
2087{
2088 struct input_devres *devres = NULL;
2089 struct input_handler *handler;
2090 unsigned int packet_size;
2091 const char *path;
2092 int error;
2093
2094 if (dev->devres_managed) {
2095 devres = devres_alloc(devm_input_device_unregister,
2096 sizeof(struct input_devres), GFP_KERNEL);
2097 if (!devres)
2098 return -ENOMEM;
2099
2100 devres->input = dev;
2101 }
2102
2103 /* Every input device generates EV_SYN/SYN_REPORT events. */
2104 __set_bit(EV_SYN, dev->evbit);
2105
2106 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2107 __clear_bit(KEY_RESERVED, dev->keybit);
2108
2109 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2110 input_cleanse_bitmasks(dev);
2111
2112 packet_size = input_estimate_events_per_packet(dev);
2113 if (dev->hint_events_per_packet < packet_size)
2114 dev->hint_events_per_packet = packet_size;
2115
2116 dev->max_vals = dev->hint_events_per_packet + 2;
2117 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2118 if (!dev->vals) {
2119 error = -ENOMEM;
2120 goto err_devres_free;
2121 }
2122
2123 /*
2124 * If delay and period are pre-set by the driver, then autorepeating
2125 * is handled by the driver itself and we don't do it in input.c.
2126 */
2127 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2128 input_enable_softrepeat(dev, 250, 33);
2129
2130 if (!dev->getkeycode)
2131 dev->getkeycode = input_default_getkeycode;
2132
2133 if (!dev->setkeycode)
2134 dev->setkeycode = input_default_setkeycode;
2135
2136 error = device_add(&dev->dev);
2137 if (error)
2138 goto err_free_vals;
2139
2140 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2141 pr_info("%s as %s\n",
2142 dev->name ? dev->name : "Unspecified device",
2143 path ? path : "N/A");
2144 kfree(path);
2145
2146 error = mutex_lock_interruptible(&input_mutex);
2147 if (error)
2148 goto err_device_del;
2149
2150 list_add_tail(&dev->node, &input_dev_list);
2151
2152 list_for_each_entry(handler, &input_handler_list, node)
2153 input_attach_handler(dev, handler);
2154
2155 input_wakeup_procfs_readers();
2156
2157 mutex_unlock(&input_mutex);
2158
2159 if (dev->devres_managed) {
2160 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2161 __func__, dev_name(&dev->dev));
2162 devres_add(dev->dev.parent, devres);
2163 }
2164 return 0;
2165
2166err_device_del:
2167 device_del(&dev->dev);
2168err_free_vals:
2169 kfree(dev->vals);
2170 dev->vals = NULL;
2171err_devres_free:
2172 devres_free(devres);
2173 return error;
2174}
2175EXPORT_SYMBOL(input_register_device);
2176
2177/**
2178 * input_unregister_device - unregister previously registered device
2179 * @dev: device to be unregistered
2180 *
2181 * This function unregisters an input device. Once device is unregistered
2182 * the caller should not try to access it as it may get freed at any moment.
2183 */
2184void input_unregister_device(struct input_dev *dev)
2185{
2186 if (dev->devres_managed) {
2187 WARN_ON(devres_destroy(dev->dev.parent,
2188 devm_input_device_unregister,
2189 devm_input_device_match,
2190 dev));
2191 __input_unregister_device(dev);
2192 /*
2193 * We do not do input_put_device() here because it will be done
2194 * when 2nd devres fires up.
2195 */
2196 } else {
2197 __input_unregister_device(dev);
2198 input_put_device(dev);
2199 }
2200}
2201EXPORT_SYMBOL(input_unregister_device);
2202
2203/**
2204 * input_register_handler - register a new input handler
2205 * @handler: handler to be registered
2206 *
2207 * This function registers a new input handler (interface) for input
2208 * devices in the system and attaches it to all input devices that
2209 * are compatible with the handler.
2210 */
2211int input_register_handler(struct input_handler *handler)
2212{
2213 struct input_dev *dev;
2214 int error;
2215
2216 error = mutex_lock_interruptible(&input_mutex);
2217 if (error)
2218 return error;
2219
2220 INIT_LIST_HEAD(&handler->h_list);
2221
2222 list_add_tail(&handler->node, &input_handler_list);
2223
2224 list_for_each_entry(dev, &input_dev_list, node)
2225 input_attach_handler(dev, handler);
2226
2227 input_wakeup_procfs_readers();
2228
2229 mutex_unlock(&input_mutex);
2230 return 0;
2231}
2232EXPORT_SYMBOL(input_register_handler);
2233
2234/**
2235 * input_unregister_handler - unregisters an input handler
2236 * @handler: handler to be unregistered
2237 *
2238 * This function disconnects a handler from its input devices and
2239 * removes it from lists of known handlers.
2240 */
2241void input_unregister_handler(struct input_handler *handler)
2242{
2243 struct input_handle *handle, *next;
2244
2245 mutex_lock(&input_mutex);
2246
2247 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2248 handler->disconnect(handle);
2249 WARN_ON(!list_empty(&handler->h_list));
2250
2251 list_del_init(&handler->node);
2252
2253 input_wakeup_procfs_readers();
2254
2255 mutex_unlock(&input_mutex);
2256}
2257EXPORT_SYMBOL(input_unregister_handler);
2258
2259/**
2260 * input_handler_for_each_handle - handle iterator
2261 * @handler: input handler to iterate
2262 * @data: data for the callback
2263 * @fn: function to be called for each handle
2264 *
2265 * Iterate over @bus's list of devices, and call @fn for each, passing
2266 * it @data and stop when @fn returns a non-zero value. The function is
2267 * using RCU to traverse the list and therefore may be using in atomic
2268 * contexts. The @fn callback is invoked from RCU critical section and
2269 * thus must not sleep.
2270 */
2271int input_handler_for_each_handle(struct input_handler *handler, void *data,
2272 int (*fn)(struct input_handle *, void *))
2273{
2274 struct input_handle *handle;
2275 int retval = 0;
2276
2277 rcu_read_lock();
2278
2279 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2280 retval = fn(handle, data);
2281 if (retval)
2282 break;
2283 }
2284
2285 rcu_read_unlock();
2286
2287 return retval;
2288}
2289EXPORT_SYMBOL(input_handler_for_each_handle);
2290
2291/**
2292 * input_register_handle - register a new input handle
2293 * @handle: handle to register
2294 *
2295 * This function puts a new input handle onto device's
2296 * and handler's lists so that events can flow through
2297 * it once it is opened using input_open_device().
2298 *
2299 * This function is supposed to be called from handler's
2300 * connect() method.
2301 */
2302int input_register_handle(struct input_handle *handle)
2303{
2304 struct input_handler *handler = handle->handler;
2305 struct input_dev *dev = handle->dev;
2306 int error;
2307
2308 /*
2309 * We take dev->mutex here to prevent race with
2310 * input_release_device().
2311 */
2312 error = mutex_lock_interruptible(&dev->mutex);
2313 if (error)
2314 return error;
2315
2316 /*
2317 * Filters go to the head of the list, normal handlers
2318 * to the tail.
2319 */
2320 if (handler->filter)
2321 list_add_rcu(&handle->d_node, &dev->h_list);
2322 else
2323 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2324
2325 mutex_unlock(&dev->mutex);
2326
2327 /*
2328 * Since we are supposed to be called from ->connect()
2329 * which is mutually exclusive with ->disconnect()
2330 * we can't be racing with input_unregister_handle()
2331 * and so separate lock is not needed here.
2332 */
2333 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2334
2335 if (handler->start)
2336 handler->start(handle);
2337
2338 return 0;
2339}
2340EXPORT_SYMBOL(input_register_handle);
2341
2342/**
2343 * input_unregister_handle - unregister an input handle
2344 * @handle: handle to unregister
2345 *
2346 * This function removes input handle from device's
2347 * and handler's lists.
2348 *
2349 * This function is supposed to be called from handler's
2350 * disconnect() method.
2351 */
2352void input_unregister_handle(struct input_handle *handle)
2353{
2354 struct input_dev *dev = handle->dev;
2355
2356 list_del_rcu(&handle->h_node);
2357
2358 /*
2359 * Take dev->mutex to prevent race with input_release_device().
2360 */
2361 mutex_lock(&dev->mutex);
2362 list_del_rcu(&handle->d_node);
2363 mutex_unlock(&dev->mutex);
2364
2365 synchronize_rcu();
2366}
2367EXPORT_SYMBOL(input_unregister_handle);
2368
2369/**
2370 * input_get_new_minor - allocates a new input minor number
2371 * @legacy_base: beginning or the legacy range to be searched
2372 * @legacy_num: size of legacy range
2373 * @allow_dynamic: whether we can also take ID from the dynamic range
2374 *
2375 * This function allocates a new device minor for from input major namespace.
2376 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2377 * parameters and whether ID can be allocated from dynamic range if there are
2378 * no free IDs in legacy range.
2379 */
2380int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2381 bool allow_dynamic)
2382{
2383 /*
2384 * This function should be called from input handler's ->connect()
2385 * methods, which are serialized with input_mutex, so no additional
2386 * locking is needed here.
2387 */
2388 if (legacy_base >= 0) {
2389 int minor = ida_simple_get(&input_ida,
2390 legacy_base,
2391 legacy_base + legacy_num,
2392 GFP_KERNEL);
2393 if (minor >= 0 || !allow_dynamic)
2394 return minor;
2395 }
2396
2397 return ida_simple_get(&input_ida,
2398 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2399 GFP_KERNEL);
2400}
2401EXPORT_SYMBOL(input_get_new_minor);
2402
2403/**
2404 * input_free_minor - release previously allocated minor
2405 * @minor: minor to be released
2406 *
2407 * This function releases previously allocated input minor so that it can be
2408 * reused later.
2409 */
2410void input_free_minor(unsigned int minor)
2411{
2412 ida_simple_remove(&input_ida, minor);
2413}
2414EXPORT_SYMBOL(input_free_minor);
2415
2416static int __init input_init(void)
2417{
2418 int err;
2419
2420 err = class_register(&input_class);
2421 if (err) {
2422 pr_err("unable to register input_dev class\n");
2423 return err;
2424 }
2425
2426 err = input_proc_init();
2427 if (err)
2428 goto fail1;
2429
2430 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2431 INPUT_MAX_CHAR_DEVICES, "input");
2432 if (err) {
2433 pr_err("unable to register char major %d", INPUT_MAJOR);
2434 goto fail2;
2435 }
2436
2437 return 0;
2438
2439 fail2: input_proc_exit();
2440 fail1: class_unregister(&input_class);
2441 return err;
2442}
2443
2444static void __exit input_exit(void)
2445{
2446 input_proc_exit();
2447 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2448 INPUT_MAX_CHAR_DEVICES);
2449 class_unregister(&input_class);
2450}
2451
2452subsys_initcall(input_init);
2453module_exit(input_exit);