Loading...
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/mutex.h>
17#include <linux/err.h>
18#include <linux/rbtree.h>
19#include <linux/sched.h>
20
21#define CREATE_TRACE_POINTS
22#include <trace/events/regmap.h>
23
24#include "internal.h"
25
26/*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32#undef LOG_DEVICE
33
34static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 unsigned int mask, unsigned int val,
36 bool *change);
37
38static int _regmap_bus_read(void *context, unsigned int reg,
39 unsigned int *val);
40static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 unsigned int val);
42static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 unsigned int val);
44
45bool regmap_reg_in_ranges(unsigned int reg,
46 const struct regmap_range *ranges,
47 unsigned int nranges)
48{
49 const struct regmap_range *r;
50 int i;
51
52 for (i = 0, r = ranges; i < nranges; i++, r++)
53 if (regmap_reg_in_range(reg, r))
54 return true;
55 return false;
56}
57EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
58
59bool regmap_check_range_table(struct regmap *map, unsigned int reg,
60 const struct regmap_access_table *table)
61{
62 /* Check "no ranges" first */
63 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
64 return false;
65
66 /* In case zero "yes ranges" are supplied, any reg is OK */
67 if (!table->n_yes_ranges)
68 return true;
69
70 return regmap_reg_in_ranges(reg, table->yes_ranges,
71 table->n_yes_ranges);
72}
73EXPORT_SYMBOL_GPL(regmap_check_range_table);
74
75bool regmap_writeable(struct regmap *map, unsigned int reg)
76{
77 if (map->max_register && reg > map->max_register)
78 return false;
79
80 if (map->writeable_reg)
81 return map->writeable_reg(map->dev, reg);
82
83 if (map->wr_table)
84 return regmap_check_range_table(map, reg, map->wr_table);
85
86 return true;
87}
88
89bool regmap_readable(struct regmap *map, unsigned int reg)
90{
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->format.format_write)
95 return false;
96
97 if (map->readable_reg)
98 return map->readable_reg(map->dev, reg);
99
100 if (map->rd_table)
101 return regmap_check_range_table(map, reg, map->rd_table);
102
103 return true;
104}
105
106bool regmap_volatile(struct regmap *map, unsigned int reg)
107{
108 if (!regmap_readable(map, reg))
109 return false;
110
111 if (map->volatile_reg)
112 return map->volatile_reg(map->dev, reg);
113
114 if (map->volatile_table)
115 return regmap_check_range_table(map, reg, map->volatile_table);
116
117 if (map->cache_ops)
118 return false;
119 else
120 return true;
121}
122
123bool regmap_precious(struct regmap *map, unsigned int reg)
124{
125 if (!regmap_readable(map, reg))
126 return false;
127
128 if (map->precious_reg)
129 return map->precious_reg(map->dev, reg);
130
131 if (map->precious_table)
132 return regmap_check_range_table(map, reg, map->precious_table);
133
134 return false;
135}
136
137static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
138 size_t num)
139{
140 unsigned int i;
141
142 for (i = 0; i < num; i++)
143 if (!regmap_volatile(map, reg + i))
144 return false;
145
146 return true;
147}
148
149static void regmap_format_2_6_write(struct regmap *map,
150 unsigned int reg, unsigned int val)
151{
152 u8 *out = map->work_buf;
153
154 *out = (reg << 6) | val;
155}
156
157static void regmap_format_4_12_write(struct regmap *map,
158 unsigned int reg, unsigned int val)
159{
160 __be16 *out = map->work_buf;
161 *out = cpu_to_be16((reg << 12) | val);
162}
163
164static void regmap_format_7_9_write(struct regmap *map,
165 unsigned int reg, unsigned int val)
166{
167 __be16 *out = map->work_buf;
168 *out = cpu_to_be16((reg << 9) | val);
169}
170
171static void regmap_format_10_14_write(struct regmap *map,
172 unsigned int reg, unsigned int val)
173{
174 u8 *out = map->work_buf;
175
176 out[2] = val;
177 out[1] = (val >> 8) | (reg << 6);
178 out[0] = reg >> 2;
179}
180
181static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182{
183 u8 *b = buf;
184
185 b[0] = val << shift;
186}
187
188static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189{
190 __be16 *b = buf;
191
192 b[0] = cpu_to_be16(val << shift);
193}
194
195static void regmap_format_16_native(void *buf, unsigned int val,
196 unsigned int shift)
197{
198 *(u16 *)buf = val << shift;
199}
200
201static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202{
203 u8 *b = buf;
204
205 val <<= shift;
206
207 b[0] = val >> 16;
208 b[1] = val >> 8;
209 b[2] = val;
210}
211
212static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213{
214 __be32 *b = buf;
215
216 b[0] = cpu_to_be32(val << shift);
217}
218
219static void regmap_format_32_native(void *buf, unsigned int val,
220 unsigned int shift)
221{
222 *(u32 *)buf = val << shift;
223}
224
225static void regmap_parse_inplace_noop(void *buf)
226{
227}
228
229static unsigned int regmap_parse_8(const void *buf)
230{
231 const u8 *b = buf;
232
233 return b[0];
234}
235
236static unsigned int regmap_parse_16_be(const void *buf)
237{
238 const __be16 *b = buf;
239
240 return be16_to_cpu(b[0]);
241}
242
243static void regmap_parse_16_be_inplace(void *buf)
244{
245 __be16 *b = buf;
246
247 b[0] = be16_to_cpu(b[0]);
248}
249
250static unsigned int regmap_parse_16_native(const void *buf)
251{
252 return *(u16 *)buf;
253}
254
255static unsigned int regmap_parse_24(const void *buf)
256{
257 const u8 *b = buf;
258 unsigned int ret = b[2];
259 ret |= ((unsigned int)b[1]) << 8;
260 ret |= ((unsigned int)b[0]) << 16;
261
262 return ret;
263}
264
265static unsigned int regmap_parse_32_be(const void *buf)
266{
267 const __be32 *b = buf;
268
269 return be32_to_cpu(b[0]);
270}
271
272static void regmap_parse_32_be_inplace(void *buf)
273{
274 __be32 *b = buf;
275
276 b[0] = be32_to_cpu(b[0]);
277}
278
279static unsigned int regmap_parse_32_native(const void *buf)
280{
281 return *(u32 *)buf;
282}
283
284static void regmap_lock_mutex(void *__map)
285{
286 struct regmap *map = __map;
287 mutex_lock(&map->mutex);
288}
289
290static void regmap_unlock_mutex(void *__map)
291{
292 struct regmap *map = __map;
293 mutex_unlock(&map->mutex);
294}
295
296static void regmap_lock_spinlock(void *__map)
297__acquires(&map->spinlock)
298{
299 struct regmap *map = __map;
300 unsigned long flags;
301
302 spin_lock_irqsave(&map->spinlock, flags);
303 map->spinlock_flags = flags;
304}
305
306static void regmap_unlock_spinlock(void *__map)
307__releases(&map->spinlock)
308{
309 struct regmap *map = __map;
310 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311}
312
313static void dev_get_regmap_release(struct device *dev, void *res)
314{
315 /*
316 * We don't actually have anything to do here; the goal here
317 * is not to manage the regmap but to provide a simple way to
318 * get the regmap back given a struct device.
319 */
320}
321
322static bool _regmap_range_add(struct regmap *map,
323 struct regmap_range_node *data)
324{
325 struct rb_root *root = &map->range_tree;
326 struct rb_node **new = &(root->rb_node), *parent = NULL;
327
328 while (*new) {
329 struct regmap_range_node *this =
330 container_of(*new, struct regmap_range_node, node);
331
332 parent = *new;
333 if (data->range_max < this->range_min)
334 new = &((*new)->rb_left);
335 else if (data->range_min > this->range_max)
336 new = &((*new)->rb_right);
337 else
338 return false;
339 }
340
341 rb_link_node(&data->node, parent, new);
342 rb_insert_color(&data->node, root);
343
344 return true;
345}
346
347static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
348 unsigned int reg)
349{
350 struct rb_node *node = map->range_tree.rb_node;
351
352 while (node) {
353 struct regmap_range_node *this =
354 container_of(node, struct regmap_range_node, node);
355
356 if (reg < this->range_min)
357 node = node->rb_left;
358 else if (reg > this->range_max)
359 node = node->rb_right;
360 else
361 return this;
362 }
363
364 return NULL;
365}
366
367static void regmap_range_exit(struct regmap *map)
368{
369 struct rb_node *next;
370 struct regmap_range_node *range_node;
371
372 next = rb_first(&map->range_tree);
373 while (next) {
374 range_node = rb_entry(next, struct regmap_range_node, node);
375 next = rb_next(&range_node->node);
376 rb_erase(&range_node->node, &map->range_tree);
377 kfree(range_node);
378 }
379
380 kfree(map->selector_work_buf);
381}
382
383int regmap_attach_dev(struct device *dev, struct regmap *map,
384 const struct regmap_config *config)
385{
386 struct regmap **m;
387
388 map->dev = dev;
389
390 regmap_debugfs_init(map, config->name);
391
392 /* Add a devres resource for dev_get_regmap() */
393 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
394 if (!m) {
395 regmap_debugfs_exit(map);
396 return -ENOMEM;
397 }
398 *m = map;
399 devres_add(dev, m);
400
401 return 0;
402}
403EXPORT_SYMBOL_GPL(regmap_attach_dev);
404
405/**
406 * regmap_init(): Initialise register map
407 *
408 * @dev: Device that will be interacted with
409 * @bus: Bus-specific callbacks to use with device
410 * @bus_context: Data passed to bus-specific callbacks
411 * @config: Configuration for register map
412 *
413 * The return value will be an ERR_PTR() on error or a valid pointer to
414 * a struct regmap. This function should generally not be called
415 * directly, it should be called by bus-specific init functions.
416 */
417struct regmap *regmap_init(struct device *dev,
418 const struct regmap_bus *bus,
419 void *bus_context,
420 const struct regmap_config *config)
421{
422 struct regmap *map;
423 int ret = -EINVAL;
424 enum regmap_endian reg_endian, val_endian;
425 int i, j;
426
427 if (!config)
428 goto err;
429
430 map = kzalloc(sizeof(*map), GFP_KERNEL);
431 if (map == NULL) {
432 ret = -ENOMEM;
433 goto err;
434 }
435
436 if (config->lock && config->unlock) {
437 map->lock = config->lock;
438 map->unlock = config->unlock;
439 map->lock_arg = config->lock_arg;
440 } else {
441 if ((bus && bus->fast_io) ||
442 config->fast_io) {
443 spin_lock_init(&map->spinlock);
444 map->lock = regmap_lock_spinlock;
445 map->unlock = regmap_unlock_spinlock;
446 } else {
447 mutex_init(&map->mutex);
448 map->lock = regmap_lock_mutex;
449 map->unlock = regmap_unlock_mutex;
450 }
451 map->lock_arg = map;
452 }
453 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
454 map->format.pad_bytes = config->pad_bits / 8;
455 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
456 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
457 config->val_bits + config->pad_bits, 8);
458 map->reg_shift = config->pad_bits % 8;
459 if (config->reg_stride)
460 map->reg_stride = config->reg_stride;
461 else
462 map->reg_stride = 1;
463 map->use_single_rw = config->use_single_rw;
464 map->can_multi_write = config->can_multi_write;
465 map->dev = dev;
466 map->bus = bus;
467 map->bus_context = bus_context;
468 map->max_register = config->max_register;
469 map->wr_table = config->wr_table;
470 map->rd_table = config->rd_table;
471 map->volatile_table = config->volatile_table;
472 map->precious_table = config->precious_table;
473 map->writeable_reg = config->writeable_reg;
474 map->readable_reg = config->readable_reg;
475 map->volatile_reg = config->volatile_reg;
476 map->precious_reg = config->precious_reg;
477 map->cache_type = config->cache_type;
478 map->name = config->name;
479
480 spin_lock_init(&map->async_lock);
481 INIT_LIST_HEAD(&map->async_list);
482 INIT_LIST_HEAD(&map->async_free);
483 init_waitqueue_head(&map->async_waitq);
484
485 if (config->read_flag_mask || config->write_flag_mask) {
486 map->read_flag_mask = config->read_flag_mask;
487 map->write_flag_mask = config->write_flag_mask;
488 } else if (bus) {
489 map->read_flag_mask = bus->read_flag_mask;
490 }
491
492 if (!bus) {
493 map->reg_read = config->reg_read;
494 map->reg_write = config->reg_write;
495
496 map->defer_caching = false;
497 goto skip_format_initialization;
498 } else {
499 map->reg_read = _regmap_bus_read;
500 }
501
502 reg_endian = config->reg_format_endian;
503 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
504 reg_endian = bus->reg_format_endian_default;
505 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
506 reg_endian = REGMAP_ENDIAN_BIG;
507
508 val_endian = config->val_format_endian;
509 if (val_endian == REGMAP_ENDIAN_DEFAULT)
510 val_endian = bus->val_format_endian_default;
511 if (val_endian == REGMAP_ENDIAN_DEFAULT)
512 val_endian = REGMAP_ENDIAN_BIG;
513
514 switch (config->reg_bits + map->reg_shift) {
515 case 2:
516 switch (config->val_bits) {
517 case 6:
518 map->format.format_write = regmap_format_2_6_write;
519 break;
520 default:
521 goto err_map;
522 }
523 break;
524
525 case 4:
526 switch (config->val_bits) {
527 case 12:
528 map->format.format_write = regmap_format_4_12_write;
529 break;
530 default:
531 goto err_map;
532 }
533 break;
534
535 case 7:
536 switch (config->val_bits) {
537 case 9:
538 map->format.format_write = regmap_format_7_9_write;
539 break;
540 default:
541 goto err_map;
542 }
543 break;
544
545 case 10:
546 switch (config->val_bits) {
547 case 14:
548 map->format.format_write = regmap_format_10_14_write;
549 break;
550 default:
551 goto err_map;
552 }
553 break;
554
555 case 8:
556 map->format.format_reg = regmap_format_8;
557 break;
558
559 case 16:
560 switch (reg_endian) {
561 case REGMAP_ENDIAN_BIG:
562 map->format.format_reg = regmap_format_16_be;
563 break;
564 case REGMAP_ENDIAN_NATIVE:
565 map->format.format_reg = regmap_format_16_native;
566 break;
567 default:
568 goto err_map;
569 }
570 break;
571
572 case 24:
573 if (reg_endian != REGMAP_ENDIAN_BIG)
574 goto err_map;
575 map->format.format_reg = regmap_format_24;
576 break;
577
578 case 32:
579 switch (reg_endian) {
580 case REGMAP_ENDIAN_BIG:
581 map->format.format_reg = regmap_format_32_be;
582 break;
583 case REGMAP_ENDIAN_NATIVE:
584 map->format.format_reg = regmap_format_32_native;
585 break;
586 default:
587 goto err_map;
588 }
589 break;
590
591 default:
592 goto err_map;
593 }
594
595 if (val_endian == REGMAP_ENDIAN_NATIVE)
596 map->format.parse_inplace = regmap_parse_inplace_noop;
597
598 switch (config->val_bits) {
599 case 8:
600 map->format.format_val = regmap_format_8;
601 map->format.parse_val = regmap_parse_8;
602 map->format.parse_inplace = regmap_parse_inplace_noop;
603 break;
604 case 16:
605 switch (val_endian) {
606 case REGMAP_ENDIAN_BIG:
607 map->format.format_val = regmap_format_16_be;
608 map->format.parse_val = regmap_parse_16_be;
609 map->format.parse_inplace = regmap_parse_16_be_inplace;
610 break;
611 case REGMAP_ENDIAN_NATIVE:
612 map->format.format_val = regmap_format_16_native;
613 map->format.parse_val = regmap_parse_16_native;
614 break;
615 default:
616 goto err_map;
617 }
618 break;
619 case 24:
620 if (val_endian != REGMAP_ENDIAN_BIG)
621 goto err_map;
622 map->format.format_val = regmap_format_24;
623 map->format.parse_val = regmap_parse_24;
624 break;
625 case 32:
626 switch (val_endian) {
627 case REGMAP_ENDIAN_BIG:
628 map->format.format_val = regmap_format_32_be;
629 map->format.parse_val = regmap_parse_32_be;
630 map->format.parse_inplace = regmap_parse_32_be_inplace;
631 break;
632 case REGMAP_ENDIAN_NATIVE:
633 map->format.format_val = regmap_format_32_native;
634 map->format.parse_val = regmap_parse_32_native;
635 break;
636 default:
637 goto err_map;
638 }
639 break;
640 }
641
642 if (map->format.format_write) {
643 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
644 (val_endian != REGMAP_ENDIAN_BIG))
645 goto err_map;
646 map->use_single_rw = true;
647 }
648
649 if (!map->format.format_write &&
650 !(map->format.format_reg && map->format.format_val))
651 goto err_map;
652
653 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
654 if (map->work_buf == NULL) {
655 ret = -ENOMEM;
656 goto err_map;
657 }
658
659 if (map->format.format_write) {
660 map->defer_caching = false;
661 map->reg_write = _regmap_bus_formatted_write;
662 } else if (map->format.format_val) {
663 map->defer_caching = true;
664 map->reg_write = _regmap_bus_raw_write;
665 }
666
667skip_format_initialization:
668
669 map->range_tree = RB_ROOT;
670 for (i = 0; i < config->num_ranges; i++) {
671 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
672 struct regmap_range_node *new;
673
674 /* Sanity check */
675 if (range_cfg->range_max < range_cfg->range_min) {
676 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
677 range_cfg->range_max, range_cfg->range_min);
678 goto err_range;
679 }
680
681 if (range_cfg->range_max > map->max_register) {
682 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
683 range_cfg->range_max, map->max_register);
684 goto err_range;
685 }
686
687 if (range_cfg->selector_reg > map->max_register) {
688 dev_err(map->dev,
689 "Invalid range %d: selector out of map\n", i);
690 goto err_range;
691 }
692
693 if (range_cfg->window_len == 0) {
694 dev_err(map->dev, "Invalid range %d: window_len 0\n",
695 i);
696 goto err_range;
697 }
698
699 /* Make sure, that this register range has no selector
700 or data window within its boundary */
701 for (j = 0; j < config->num_ranges; j++) {
702 unsigned sel_reg = config->ranges[j].selector_reg;
703 unsigned win_min = config->ranges[j].window_start;
704 unsigned win_max = win_min +
705 config->ranges[j].window_len - 1;
706
707 /* Allow data window inside its own virtual range */
708 if (j == i)
709 continue;
710
711 if (range_cfg->range_min <= sel_reg &&
712 sel_reg <= range_cfg->range_max) {
713 dev_err(map->dev,
714 "Range %d: selector for %d in window\n",
715 i, j);
716 goto err_range;
717 }
718
719 if (!(win_max < range_cfg->range_min ||
720 win_min > range_cfg->range_max)) {
721 dev_err(map->dev,
722 "Range %d: window for %d in window\n",
723 i, j);
724 goto err_range;
725 }
726 }
727
728 new = kzalloc(sizeof(*new), GFP_KERNEL);
729 if (new == NULL) {
730 ret = -ENOMEM;
731 goto err_range;
732 }
733
734 new->map = map;
735 new->name = range_cfg->name;
736 new->range_min = range_cfg->range_min;
737 new->range_max = range_cfg->range_max;
738 new->selector_reg = range_cfg->selector_reg;
739 new->selector_mask = range_cfg->selector_mask;
740 new->selector_shift = range_cfg->selector_shift;
741 new->window_start = range_cfg->window_start;
742 new->window_len = range_cfg->window_len;
743
744 if (!_regmap_range_add(map, new)) {
745 dev_err(map->dev, "Failed to add range %d\n", i);
746 kfree(new);
747 goto err_range;
748 }
749
750 if (map->selector_work_buf == NULL) {
751 map->selector_work_buf =
752 kzalloc(map->format.buf_size, GFP_KERNEL);
753 if (map->selector_work_buf == NULL) {
754 ret = -ENOMEM;
755 goto err_range;
756 }
757 }
758 }
759
760 ret = regcache_init(map, config);
761 if (ret != 0)
762 goto err_range;
763
764 if (dev) {
765 ret = regmap_attach_dev(dev, map, config);
766 if (ret != 0)
767 goto err_regcache;
768 }
769
770 return map;
771
772err_regcache:
773 regcache_exit(map);
774err_range:
775 regmap_range_exit(map);
776 kfree(map->work_buf);
777err_map:
778 kfree(map);
779err:
780 return ERR_PTR(ret);
781}
782EXPORT_SYMBOL_GPL(regmap_init);
783
784static void devm_regmap_release(struct device *dev, void *res)
785{
786 regmap_exit(*(struct regmap **)res);
787}
788
789/**
790 * devm_regmap_init(): Initialise managed register map
791 *
792 * @dev: Device that will be interacted with
793 * @bus: Bus-specific callbacks to use with device
794 * @bus_context: Data passed to bus-specific callbacks
795 * @config: Configuration for register map
796 *
797 * The return value will be an ERR_PTR() on error or a valid pointer
798 * to a struct regmap. This function should generally not be called
799 * directly, it should be called by bus-specific init functions. The
800 * map will be automatically freed by the device management code.
801 */
802struct regmap *devm_regmap_init(struct device *dev,
803 const struct regmap_bus *bus,
804 void *bus_context,
805 const struct regmap_config *config)
806{
807 struct regmap **ptr, *regmap;
808
809 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
810 if (!ptr)
811 return ERR_PTR(-ENOMEM);
812
813 regmap = regmap_init(dev, bus, bus_context, config);
814 if (!IS_ERR(regmap)) {
815 *ptr = regmap;
816 devres_add(dev, ptr);
817 } else {
818 devres_free(ptr);
819 }
820
821 return regmap;
822}
823EXPORT_SYMBOL_GPL(devm_regmap_init);
824
825static void regmap_field_init(struct regmap_field *rm_field,
826 struct regmap *regmap, struct reg_field reg_field)
827{
828 int field_bits = reg_field.msb - reg_field.lsb + 1;
829 rm_field->regmap = regmap;
830 rm_field->reg = reg_field.reg;
831 rm_field->shift = reg_field.lsb;
832 rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
833 rm_field->id_size = reg_field.id_size;
834 rm_field->id_offset = reg_field.id_offset;
835}
836
837/**
838 * devm_regmap_field_alloc(): Allocate and initialise a register field
839 * in a register map.
840 *
841 * @dev: Device that will be interacted with
842 * @regmap: regmap bank in which this register field is located.
843 * @reg_field: Register field with in the bank.
844 *
845 * The return value will be an ERR_PTR() on error or a valid pointer
846 * to a struct regmap_field. The regmap_field will be automatically freed
847 * by the device management code.
848 */
849struct regmap_field *devm_regmap_field_alloc(struct device *dev,
850 struct regmap *regmap, struct reg_field reg_field)
851{
852 struct regmap_field *rm_field = devm_kzalloc(dev,
853 sizeof(*rm_field), GFP_KERNEL);
854 if (!rm_field)
855 return ERR_PTR(-ENOMEM);
856
857 regmap_field_init(rm_field, regmap, reg_field);
858
859 return rm_field;
860
861}
862EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
863
864/**
865 * devm_regmap_field_free(): Free register field allocated using
866 * devm_regmap_field_alloc. Usally drivers need not call this function,
867 * as the memory allocated via devm will be freed as per device-driver
868 * life-cyle.
869 *
870 * @dev: Device that will be interacted with
871 * @field: regmap field which should be freed.
872 */
873void devm_regmap_field_free(struct device *dev,
874 struct regmap_field *field)
875{
876 devm_kfree(dev, field);
877}
878EXPORT_SYMBOL_GPL(devm_regmap_field_free);
879
880/**
881 * regmap_field_alloc(): Allocate and initialise a register field
882 * in a register map.
883 *
884 * @regmap: regmap bank in which this register field is located.
885 * @reg_field: Register field with in the bank.
886 *
887 * The return value will be an ERR_PTR() on error or a valid pointer
888 * to a struct regmap_field. The regmap_field should be freed by the
889 * user once its finished working with it using regmap_field_free().
890 */
891struct regmap_field *regmap_field_alloc(struct regmap *regmap,
892 struct reg_field reg_field)
893{
894 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
895
896 if (!rm_field)
897 return ERR_PTR(-ENOMEM);
898
899 regmap_field_init(rm_field, regmap, reg_field);
900
901 return rm_field;
902}
903EXPORT_SYMBOL_GPL(regmap_field_alloc);
904
905/**
906 * regmap_field_free(): Free register field allocated using regmap_field_alloc
907 *
908 * @field: regmap field which should be freed.
909 */
910void regmap_field_free(struct regmap_field *field)
911{
912 kfree(field);
913}
914EXPORT_SYMBOL_GPL(regmap_field_free);
915
916/**
917 * regmap_reinit_cache(): Reinitialise the current register cache
918 *
919 * @map: Register map to operate on.
920 * @config: New configuration. Only the cache data will be used.
921 *
922 * Discard any existing register cache for the map and initialize a
923 * new cache. This can be used to restore the cache to defaults or to
924 * update the cache configuration to reflect runtime discovery of the
925 * hardware.
926 *
927 * No explicit locking is done here, the user needs to ensure that
928 * this function will not race with other calls to regmap.
929 */
930int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
931{
932 regcache_exit(map);
933 regmap_debugfs_exit(map);
934
935 map->max_register = config->max_register;
936 map->writeable_reg = config->writeable_reg;
937 map->readable_reg = config->readable_reg;
938 map->volatile_reg = config->volatile_reg;
939 map->precious_reg = config->precious_reg;
940 map->cache_type = config->cache_type;
941
942 regmap_debugfs_init(map, config->name);
943
944 map->cache_bypass = false;
945 map->cache_only = false;
946
947 return regcache_init(map, config);
948}
949EXPORT_SYMBOL_GPL(regmap_reinit_cache);
950
951/**
952 * regmap_exit(): Free a previously allocated register map
953 */
954void regmap_exit(struct regmap *map)
955{
956 struct regmap_async *async;
957
958 regcache_exit(map);
959 regmap_debugfs_exit(map);
960 regmap_range_exit(map);
961 if (map->bus && map->bus->free_context)
962 map->bus->free_context(map->bus_context);
963 kfree(map->work_buf);
964 while (!list_empty(&map->async_free)) {
965 async = list_first_entry_or_null(&map->async_free,
966 struct regmap_async,
967 list);
968 list_del(&async->list);
969 kfree(async->work_buf);
970 kfree(async);
971 }
972 kfree(map);
973}
974EXPORT_SYMBOL_GPL(regmap_exit);
975
976static int dev_get_regmap_match(struct device *dev, void *res, void *data)
977{
978 struct regmap **r = res;
979 if (!r || !*r) {
980 WARN_ON(!r || !*r);
981 return 0;
982 }
983
984 /* If the user didn't specify a name match any */
985 if (data)
986 return (*r)->name == data;
987 else
988 return 1;
989}
990
991/**
992 * dev_get_regmap(): Obtain the regmap (if any) for a device
993 *
994 * @dev: Device to retrieve the map for
995 * @name: Optional name for the register map, usually NULL.
996 *
997 * Returns the regmap for the device if one is present, or NULL. If
998 * name is specified then it must match the name specified when
999 * registering the device, if it is NULL then the first regmap found
1000 * will be used. Devices with multiple register maps are very rare,
1001 * generic code should normally not need to specify a name.
1002 */
1003struct regmap *dev_get_regmap(struct device *dev, const char *name)
1004{
1005 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1006 dev_get_regmap_match, (void *)name);
1007
1008 if (!r)
1009 return NULL;
1010 return *r;
1011}
1012EXPORT_SYMBOL_GPL(dev_get_regmap);
1013
1014static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1015 struct regmap_range_node *range,
1016 unsigned int val_num)
1017{
1018 void *orig_work_buf;
1019 unsigned int win_offset;
1020 unsigned int win_page;
1021 bool page_chg;
1022 int ret;
1023
1024 win_offset = (*reg - range->range_min) % range->window_len;
1025 win_page = (*reg - range->range_min) / range->window_len;
1026
1027 if (val_num > 1) {
1028 /* Bulk write shouldn't cross range boundary */
1029 if (*reg + val_num - 1 > range->range_max)
1030 return -EINVAL;
1031
1032 /* ... or single page boundary */
1033 if (val_num > range->window_len - win_offset)
1034 return -EINVAL;
1035 }
1036
1037 /* It is possible to have selector register inside data window.
1038 In that case, selector register is located on every page and
1039 it needs no page switching, when accessed alone. */
1040 if (val_num > 1 ||
1041 range->window_start + win_offset != range->selector_reg) {
1042 /* Use separate work_buf during page switching */
1043 orig_work_buf = map->work_buf;
1044 map->work_buf = map->selector_work_buf;
1045
1046 ret = _regmap_update_bits(map, range->selector_reg,
1047 range->selector_mask,
1048 win_page << range->selector_shift,
1049 &page_chg);
1050
1051 map->work_buf = orig_work_buf;
1052
1053 if (ret != 0)
1054 return ret;
1055 }
1056
1057 *reg = range->window_start + win_offset;
1058
1059 return 0;
1060}
1061
1062int _regmap_raw_write(struct regmap *map, unsigned int reg,
1063 const void *val, size_t val_len)
1064{
1065 struct regmap_range_node *range;
1066 unsigned long flags;
1067 u8 *u8 = map->work_buf;
1068 void *work_val = map->work_buf + map->format.reg_bytes +
1069 map->format.pad_bytes;
1070 void *buf;
1071 int ret = -ENOTSUPP;
1072 size_t len;
1073 int i;
1074
1075 WARN_ON(!map->bus);
1076
1077 /* Check for unwritable registers before we start */
1078 if (map->writeable_reg)
1079 for (i = 0; i < val_len / map->format.val_bytes; i++)
1080 if (!map->writeable_reg(map->dev,
1081 reg + (i * map->reg_stride)))
1082 return -EINVAL;
1083
1084 if (!map->cache_bypass && map->format.parse_val) {
1085 unsigned int ival;
1086 int val_bytes = map->format.val_bytes;
1087 for (i = 0; i < val_len / val_bytes; i++) {
1088 ival = map->format.parse_val(val + (i * val_bytes));
1089 ret = regcache_write(map, reg + (i * map->reg_stride),
1090 ival);
1091 if (ret) {
1092 dev_err(map->dev,
1093 "Error in caching of register: %x ret: %d\n",
1094 reg + i, ret);
1095 return ret;
1096 }
1097 }
1098 if (map->cache_only) {
1099 map->cache_dirty = true;
1100 return 0;
1101 }
1102 }
1103
1104 range = _regmap_range_lookup(map, reg);
1105 if (range) {
1106 int val_num = val_len / map->format.val_bytes;
1107 int win_offset = (reg - range->range_min) % range->window_len;
1108 int win_residue = range->window_len - win_offset;
1109
1110 /* If the write goes beyond the end of the window split it */
1111 while (val_num > win_residue) {
1112 dev_dbg(map->dev, "Writing window %d/%zu\n",
1113 win_residue, val_len / map->format.val_bytes);
1114 ret = _regmap_raw_write(map, reg, val, win_residue *
1115 map->format.val_bytes);
1116 if (ret != 0)
1117 return ret;
1118
1119 reg += win_residue;
1120 val_num -= win_residue;
1121 val += win_residue * map->format.val_bytes;
1122 val_len -= win_residue * map->format.val_bytes;
1123
1124 win_offset = (reg - range->range_min) %
1125 range->window_len;
1126 win_residue = range->window_len - win_offset;
1127 }
1128
1129 ret = _regmap_select_page(map, ®, range, val_num);
1130 if (ret != 0)
1131 return ret;
1132 }
1133
1134 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1135
1136 u8[0] |= map->write_flag_mask;
1137
1138 /*
1139 * Essentially all I/O mechanisms will be faster with a single
1140 * buffer to write. Since register syncs often generate raw
1141 * writes of single registers optimise that case.
1142 */
1143 if (val != work_val && val_len == map->format.val_bytes) {
1144 memcpy(work_val, val, map->format.val_bytes);
1145 val = work_val;
1146 }
1147
1148 if (map->async && map->bus->async_write) {
1149 struct regmap_async *async;
1150
1151 trace_regmap_async_write_start(map->dev, reg, val_len);
1152
1153 spin_lock_irqsave(&map->async_lock, flags);
1154 async = list_first_entry_or_null(&map->async_free,
1155 struct regmap_async,
1156 list);
1157 if (async)
1158 list_del(&async->list);
1159 spin_unlock_irqrestore(&map->async_lock, flags);
1160
1161 if (!async) {
1162 async = map->bus->async_alloc();
1163 if (!async)
1164 return -ENOMEM;
1165
1166 async->work_buf = kzalloc(map->format.buf_size,
1167 GFP_KERNEL | GFP_DMA);
1168 if (!async->work_buf) {
1169 kfree(async);
1170 return -ENOMEM;
1171 }
1172 }
1173
1174 async->map = map;
1175
1176 /* If the caller supplied the value we can use it safely. */
1177 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1178 map->format.reg_bytes + map->format.val_bytes);
1179
1180 spin_lock_irqsave(&map->async_lock, flags);
1181 list_add_tail(&async->list, &map->async_list);
1182 spin_unlock_irqrestore(&map->async_lock, flags);
1183
1184 if (val != work_val)
1185 ret = map->bus->async_write(map->bus_context,
1186 async->work_buf,
1187 map->format.reg_bytes +
1188 map->format.pad_bytes,
1189 val, val_len, async);
1190 else
1191 ret = map->bus->async_write(map->bus_context,
1192 async->work_buf,
1193 map->format.reg_bytes +
1194 map->format.pad_bytes +
1195 val_len, NULL, 0, async);
1196
1197 if (ret != 0) {
1198 dev_err(map->dev, "Failed to schedule write: %d\n",
1199 ret);
1200
1201 spin_lock_irqsave(&map->async_lock, flags);
1202 list_move(&async->list, &map->async_free);
1203 spin_unlock_irqrestore(&map->async_lock, flags);
1204 }
1205
1206 return ret;
1207 }
1208
1209 trace_regmap_hw_write_start(map->dev, reg,
1210 val_len / map->format.val_bytes);
1211
1212 /* If we're doing a single register write we can probably just
1213 * send the work_buf directly, otherwise try to do a gather
1214 * write.
1215 */
1216 if (val == work_val)
1217 ret = map->bus->write(map->bus_context, map->work_buf,
1218 map->format.reg_bytes +
1219 map->format.pad_bytes +
1220 val_len);
1221 else if (map->bus->gather_write)
1222 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1223 map->format.reg_bytes +
1224 map->format.pad_bytes,
1225 val, val_len);
1226
1227 /* If that didn't work fall back on linearising by hand. */
1228 if (ret == -ENOTSUPP) {
1229 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1230 buf = kzalloc(len, GFP_KERNEL);
1231 if (!buf)
1232 return -ENOMEM;
1233
1234 memcpy(buf, map->work_buf, map->format.reg_bytes);
1235 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1236 val, val_len);
1237 ret = map->bus->write(map->bus_context, buf, len);
1238
1239 kfree(buf);
1240 }
1241
1242 trace_regmap_hw_write_done(map->dev, reg,
1243 val_len / map->format.val_bytes);
1244
1245 return ret;
1246}
1247
1248/**
1249 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1250 *
1251 * @map: Map to check.
1252 */
1253bool regmap_can_raw_write(struct regmap *map)
1254{
1255 return map->bus && map->format.format_val && map->format.format_reg;
1256}
1257EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1258
1259static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1260 unsigned int val)
1261{
1262 int ret;
1263 struct regmap_range_node *range;
1264 struct regmap *map = context;
1265
1266 WARN_ON(!map->bus || !map->format.format_write);
1267
1268 range = _regmap_range_lookup(map, reg);
1269 if (range) {
1270 ret = _regmap_select_page(map, ®, range, 1);
1271 if (ret != 0)
1272 return ret;
1273 }
1274
1275 map->format.format_write(map, reg, val);
1276
1277 trace_regmap_hw_write_start(map->dev, reg, 1);
1278
1279 ret = map->bus->write(map->bus_context, map->work_buf,
1280 map->format.buf_size);
1281
1282 trace_regmap_hw_write_done(map->dev, reg, 1);
1283
1284 return ret;
1285}
1286
1287static int _regmap_bus_raw_write(void *context, unsigned int reg,
1288 unsigned int val)
1289{
1290 struct regmap *map = context;
1291
1292 WARN_ON(!map->bus || !map->format.format_val);
1293
1294 map->format.format_val(map->work_buf + map->format.reg_bytes
1295 + map->format.pad_bytes, val, 0);
1296 return _regmap_raw_write(map, reg,
1297 map->work_buf +
1298 map->format.reg_bytes +
1299 map->format.pad_bytes,
1300 map->format.val_bytes);
1301}
1302
1303static inline void *_regmap_map_get_context(struct regmap *map)
1304{
1305 return (map->bus) ? map : map->bus_context;
1306}
1307
1308int _regmap_write(struct regmap *map, unsigned int reg,
1309 unsigned int val)
1310{
1311 int ret;
1312 void *context = _regmap_map_get_context(map);
1313
1314 if (!regmap_writeable(map, reg))
1315 return -EIO;
1316
1317 if (!map->cache_bypass && !map->defer_caching) {
1318 ret = regcache_write(map, reg, val);
1319 if (ret != 0)
1320 return ret;
1321 if (map->cache_only) {
1322 map->cache_dirty = true;
1323 return 0;
1324 }
1325 }
1326
1327#ifdef LOG_DEVICE
1328 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1329 dev_info(map->dev, "%x <= %x\n", reg, val);
1330#endif
1331
1332 trace_regmap_reg_write(map->dev, reg, val);
1333
1334 return map->reg_write(context, reg, val);
1335}
1336
1337/**
1338 * regmap_write(): Write a value to a single register
1339 *
1340 * @map: Register map to write to
1341 * @reg: Register to write to
1342 * @val: Value to be written
1343 *
1344 * A value of zero will be returned on success, a negative errno will
1345 * be returned in error cases.
1346 */
1347int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1348{
1349 int ret;
1350
1351 if (reg % map->reg_stride)
1352 return -EINVAL;
1353
1354 map->lock(map->lock_arg);
1355
1356 ret = _regmap_write(map, reg, val);
1357
1358 map->unlock(map->lock_arg);
1359
1360 return ret;
1361}
1362EXPORT_SYMBOL_GPL(regmap_write);
1363
1364/**
1365 * regmap_write_async(): Write a value to a single register asynchronously
1366 *
1367 * @map: Register map to write to
1368 * @reg: Register to write to
1369 * @val: Value to be written
1370 *
1371 * A value of zero will be returned on success, a negative errno will
1372 * be returned in error cases.
1373 */
1374int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1375{
1376 int ret;
1377
1378 if (reg % map->reg_stride)
1379 return -EINVAL;
1380
1381 map->lock(map->lock_arg);
1382
1383 map->async = true;
1384
1385 ret = _regmap_write(map, reg, val);
1386
1387 map->async = false;
1388
1389 map->unlock(map->lock_arg);
1390
1391 return ret;
1392}
1393EXPORT_SYMBOL_GPL(regmap_write_async);
1394
1395/**
1396 * regmap_raw_write(): Write raw values to one or more registers
1397 *
1398 * @map: Register map to write to
1399 * @reg: Initial register to write to
1400 * @val: Block of data to be written, laid out for direct transmission to the
1401 * device
1402 * @val_len: Length of data pointed to by val.
1403 *
1404 * This function is intended to be used for things like firmware
1405 * download where a large block of data needs to be transferred to the
1406 * device. No formatting will be done on the data provided.
1407 *
1408 * A value of zero will be returned on success, a negative errno will
1409 * be returned in error cases.
1410 */
1411int regmap_raw_write(struct regmap *map, unsigned int reg,
1412 const void *val, size_t val_len)
1413{
1414 int ret;
1415
1416 if (!regmap_can_raw_write(map))
1417 return -EINVAL;
1418 if (val_len % map->format.val_bytes)
1419 return -EINVAL;
1420
1421 map->lock(map->lock_arg);
1422
1423 ret = _regmap_raw_write(map, reg, val, val_len);
1424
1425 map->unlock(map->lock_arg);
1426
1427 return ret;
1428}
1429EXPORT_SYMBOL_GPL(regmap_raw_write);
1430
1431/**
1432 * regmap_field_write(): Write a value to a single register field
1433 *
1434 * @field: Register field to write to
1435 * @val: Value to be written
1436 *
1437 * A value of zero will be returned on success, a negative errno will
1438 * be returned in error cases.
1439 */
1440int regmap_field_write(struct regmap_field *field, unsigned int val)
1441{
1442 return regmap_update_bits(field->regmap, field->reg,
1443 field->mask, val << field->shift);
1444}
1445EXPORT_SYMBOL_GPL(regmap_field_write);
1446
1447/**
1448 * regmap_field_update_bits(): Perform a read/modify/write cycle
1449 * on the register field
1450 *
1451 * @field: Register field to write to
1452 * @mask: Bitmask to change
1453 * @val: Value to be written
1454 *
1455 * A value of zero will be returned on success, a negative errno will
1456 * be returned in error cases.
1457 */
1458int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1459{
1460 mask = (mask << field->shift) & field->mask;
1461
1462 return regmap_update_bits(field->regmap, field->reg,
1463 mask, val << field->shift);
1464}
1465EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1466
1467/**
1468 * regmap_fields_write(): Write a value to a single register field with port ID
1469 *
1470 * @field: Register field to write to
1471 * @id: port ID
1472 * @val: Value to be written
1473 *
1474 * A value of zero will be returned on success, a negative errno will
1475 * be returned in error cases.
1476 */
1477int regmap_fields_write(struct regmap_field *field, unsigned int id,
1478 unsigned int val)
1479{
1480 if (id >= field->id_size)
1481 return -EINVAL;
1482
1483 return regmap_update_bits(field->regmap,
1484 field->reg + (field->id_offset * id),
1485 field->mask, val << field->shift);
1486}
1487EXPORT_SYMBOL_GPL(regmap_fields_write);
1488
1489/**
1490 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1491 * on the register field
1492 *
1493 * @field: Register field to write to
1494 * @id: port ID
1495 * @mask: Bitmask to change
1496 * @val: Value to be written
1497 *
1498 * A value of zero will be returned on success, a negative errno will
1499 * be returned in error cases.
1500 */
1501int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1502 unsigned int mask, unsigned int val)
1503{
1504 if (id >= field->id_size)
1505 return -EINVAL;
1506
1507 mask = (mask << field->shift) & field->mask;
1508
1509 return regmap_update_bits(field->regmap,
1510 field->reg + (field->id_offset * id),
1511 mask, val << field->shift);
1512}
1513EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1514
1515/*
1516 * regmap_bulk_write(): Write multiple registers to the device
1517 *
1518 * @map: Register map to write to
1519 * @reg: First register to be write from
1520 * @val: Block of data to be written, in native register size for device
1521 * @val_count: Number of registers to write
1522 *
1523 * This function is intended to be used for writing a large block of
1524 * data to the device either in single transfer or multiple transfer.
1525 *
1526 * A value of zero will be returned on success, a negative errno will
1527 * be returned in error cases.
1528 */
1529int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1530 size_t val_count)
1531{
1532 int ret = 0, i;
1533 size_t val_bytes = map->format.val_bytes;
1534
1535 if (map->bus && !map->format.parse_inplace)
1536 return -EINVAL;
1537 if (reg % map->reg_stride)
1538 return -EINVAL;
1539
1540 /*
1541 * Some devices don't support bulk write, for
1542 * them we have a series of single write operations.
1543 */
1544 if (!map->bus || map->use_single_rw) {
1545 map->lock(map->lock_arg);
1546 for (i = 0; i < val_count; i++) {
1547 unsigned int ival;
1548
1549 switch (val_bytes) {
1550 case 1:
1551 ival = *(u8 *)(val + (i * val_bytes));
1552 break;
1553 case 2:
1554 ival = *(u16 *)(val + (i * val_bytes));
1555 break;
1556 case 4:
1557 ival = *(u32 *)(val + (i * val_bytes));
1558 break;
1559#ifdef CONFIG_64BIT
1560 case 8:
1561 ival = *(u64 *)(val + (i * val_bytes));
1562 break;
1563#endif
1564 default:
1565 ret = -EINVAL;
1566 goto out;
1567 }
1568
1569 ret = _regmap_write(map, reg + (i * map->reg_stride),
1570 ival);
1571 if (ret != 0)
1572 goto out;
1573 }
1574out:
1575 map->unlock(map->lock_arg);
1576 } else {
1577 void *wval;
1578
1579 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1580 if (!wval) {
1581 dev_err(map->dev, "Error in memory allocation\n");
1582 return -ENOMEM;
1583 }
1584 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1585 map->format.parse_inplace(wval + i);
1586
1587 map->lock(map->lock_arg);
1588 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1589 map->unlock(map->lock_arg);
1590
1591 kfree(wval);
1592 }
1593 return ret;
1594}
1595EXPORT_SYMBOL_GPL(regmap_bulk_write);
1596
1597/*
1598 * _regmap_raw_multi_reg_write()
1599 *
1600 * the (register,newvalue) pairs in regs have not been formatted, but
1601 * they are all in the same page and have been changed to being page
1602 * relative. The page register has been written if that was neccessary.
1603 */
1604static int _regmap_raw_multi_reg_write(struct regmap *map,
1605 const struct reg_default *regs,
1606 size_t num_regs)
1607{
1608 int ret;
1609 void *buf;
1610 int i;
1611 u8 *u8;
1612 size_t val_bytes = map->format.val_bytes;
1613 size_t reg_bytes = map->format.reg_bytes;
1614 size_t pad_bytes = map->format.pad_bytes;
1615 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1616 size_t len = pair_size * num_regs;
1617
1618 buf = kzalloc(len, GFP_KERNEL);
1619 if (!buf)
1620 return -ENOMEM;
1621
1622 /* We have to linearise by hand. */
1623
1624 u8 = buf;
1625
1626 for (i = 0; i < num_regs; i++) {
1627 int reg = regs[i].reg;
1628 int val = regs[i].def;
1629 trace_regmap_hw_write_start(map->dev, reg, 1);
1630 map->format.format_reg(u8, reg, map->reg_shift);
1631 u8 += reg_bytes + pad_bytes;
1632 map->format.format_val(u8, val, 0);
1633 u8 += val_bytes;
1634 }
1635 u8 = buf;
1636 *u8 |= map->write_flag_mask;
1637
1638 ret = map->bus->write(map->bus_context, buf, len);
1639
1640 kfree(buf);
1641
1642 for (i = 0; i < num_regs; i++) {
1643 int reg = regs[i].reg;
1644 trace_regmap_hw_write_done(map->dev, reg, 1);
1645 }
1646 return ret;
1647}
1648
1649static unsigned int _regmap_register_page(struct regmap *map,
1650 unsigned int reg,
1651 struct regmap_range_node *range)
1652{
1653 unsigned int win_page = (reg - range->range_min) / range->window_len;
1654
1655 return win_page;
1656}
1657
1658static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1659 struct reg_default *regs,
1660 size_t num_regs)
1661{
1662 int ret;
1663 int i, n;
1664 struct reg_default *base;
1665 unsigned int this_page;
1666 /*
1667 * the set of registers are not neccessarily in order, but
1668 * since the order of write must be preserved this algorithm
1669 * chops the set each time the page changes
1670 */
1671 base = regs;
1672 for (i = 0, n = 0; i < num_regs; i++, n++) {
1673 unsigned int reg = regs[i].reg;
1674 struct regmap_range_node *range;
1675
1676 range = _regmap_range_lookup(map, reg);
1677 if (range) {
1678 unsigned int win_page = _regmap_register_page(map, reg,
1679 range);
1680
1681 if (i == 0)
1682 this_page = win_page;
1683 if (win_page != this_page) {
1684 this_page = win_page;
1685 ret = _regmap_raw_multi_reg_write(map, base, n);
1686 if (ret != 0)
1687 return ret;
1688 base += n;
1689 n = 0;
1690 }
1691 ret = _regmap_select_page(map, &base[n].reg, range, 1);
1692 if (ret != 0)
1693 return ret;
1694 }
1695 }
1696 if (n > 0)
1697 return _regmap_raw_multi_reg_write(map, base, n);
1698 return 0;
1699}
1700
1701static int _regmap_multi_reg_write(struct regmap *map,
1702 const struct reg_default *regs,
1703 size_t num_regs)
1704{
1705 int i;
1706 int ret;
1707
1708 if (!map->can_multi_write) {
1709 for (i = 0; i < num_regs; i++) {
1710 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1711 if (ret != 0)
1712 return ret;
1713 }
1714 return 0;
1715 }
1716
1717 if (!map->format.parse_inplace)
1718 return -EINVAL;
1719
1720 if (map->writeable_reg)
1721 for (i = 0; i < num_regs; i++) {
1722 int reg = regs[i].reg;
1723 if (!map->writeable_reg(map->dev, reg))
1724 return -EINVAL;
1725 if (reg % map->reg_stride)
1726 return -EINVAL;
1727 }
1728
1729 if (!map->cache_bypass) {
1730 for (i = 0; i < num_regs; i++) {
1731 unsigned int val = regs[i].def;
1732 unsigned int reg = regs[i].reg;
1733 ret = regcache_write(map, reg, val);
1734 if (ret) {
1735 dev_err(map->dev,
1736 "Error in caching of register: %x ret: %d\n",
1737 reg, ret);
1738 return ret;
1739 }
1740 }
1741 if (map->cache_only) {
1742 map->cache_dirty = true;
1743 return 0;
1744 }
1745 }
1746
1747 WARN_ON(!map->bus);
1748
1749 for (i = 0; i < num_regs; i++) {
1750 unsigned int reg = regs[i].reg;
1751 struct regmap_range_node *range;
1752 range = _regmap_range_lookup(map, reg);
1753 if (range) {
1754 size_t len = sizeof(struct reg_default)*num_regs;
1755 struct reg_default *base = kmemdup(regs, len,
1756 GFP_KERNEL);
1757 if (!base)
1758 return -ENOMEM;
1759 ret = _regmap_range_multi_paged_reg_write(map, base,
1760 num_regs);
1761 kfree(base);
1762
1763 return ret;
1764 }
1765 }
1766 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1767}
1768
1769/*
1770 * regmap_multi_reg_write(): Write multiple registers to the device
1771 *
1772 * where the set of register,value pairs are supplied in any order,
1773 * possibly not all in a single range.
1774 *
1775 * @map: Register map to write to
1776 * @regs: Array of structures containing register,value to be written
1777 * @num_regs: Number of registers to write
1778 *
1779 * The 'normal' block write mode will send ultimately send data on the
1780 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1781 * addressed. However, this alternative block multi write mode will send
1782 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1783 * must of course support the mode.
1784 *
1785 * A value of zero will be returned on success, a negative errno will be
1786 * returned in error cases.
1787 */
1788int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1789 int num_regs)
1790{
1791 int ret;
1792
1793 map->lock(map->lock_arg);
1794
1795 ret = _regmap_multi_reg_write(map, regs, num_regs);
1796
1797 map->unlock(map->lock_arg);
1798
1799 return ret;
1800}
1801EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1802
1803/*
1804 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1805 * device but not the cache
1806 *
1807 * where the set of register are supplied in any order
1808 *
1809 * @map: Register map to write to
1810 * @regs: Array of structures containing register,value to be written
1811 * @num_regs: Number of registers to write
1812 *
1813 * This function is intended to be used for writing a large block of data
1814 * atomically to the device in single transfer for those I2C client devices
1815 * that implement this alternative block write mode.
1816 *
1817 * A value of zero will be returned on success, a negative errno will
1818 * be returned in error cases.
1819 */
1820int regmap_multi_reg_write_bypassed(struct regmap *map,
1821 const struct reg_default *regs,
1822 int num_regs)
1823{
1824 int ret;
1825 bool bypass;
1826
1827 map->lock(map->lock_arg);
1828
1829 bypass = map->cache_bypass;
1830 map->cache_bypass = true;
1831
1832 ret = _regmap_multi_reg_write(map, regs, num_regs);
1833
1834 map->cache_bypass = bypass;
1835
1836 map->unlock(map->lock_arg);
1837
1838 return ret;
1839}
1840EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1841
1842/**
1843 * regmap_raw_write_async(): Write raw values to one or more registers
1844 * asynchronously
1845 *
1846 * @map: Register map to write to
1847 * @reg: Initial register to write to
1848 * @val: Block of data to be written, laid out for direct transmission to the
1849 * device. Must be valid until regmap_async_complete() is called.
1850 * @val_len: Length of data pointed to by val.
1851 *
1852 * This function is intended to be used for things like firmware
1853 * download where a large block of data needs to be transferred to the
1854 * device. No formatting will be done on the data provided.
1855 *
1856 * If supported by the underlying bus the write will be scheduled
1857 * asynchronously, helping maximise I/O speed on higher speed buses
1858 * like SPI. regmap_async_complete() can be called to ensure that all
1859 * asynchrnous writes have been completed.
1860 *
1861 * A value of zero will be returned on success, a negative errno will
1862 * be returned in error cases.
1863 */
1864int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1865 const void *val, size_t val_len)
1866{
1867 int ret;
1868
1869 if (val_len % map->format.val_bytes)
1870 return -EINVAL;
1871 if (reg % map->reg_stride)
1872 return -EINVAL;
1873
1874 map->lock(map->lock_arg);
1875
1876 map->async = true;
1877
1878 ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880 map->async = false;
1881
1882 map->unlock(map->lock_arg);
1883
1884 return ret;
1885}
1886EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1887
1888static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1889 unsigned int val_len)
1890{
1891 struct regmap_range_node *range;
1892 u8 *u8 = map->work_buf;
1893 int ret;
1894
1895 WARN_ON(!map->bus);
1896
1897 range = _regmap_range_lookup(map, reg);
1898 if (range) {
1899 ret = _regmap_select_page(map, ®, range,
1900 val_len / map->format.val_bytes);
1901 if (ret != 0)
1902 return ret;
1903 }
1904
1905 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1906
1907 /*
1908 * Some buses or devices flag reads by setting the high bits in the
1909 * register addresss; since it's always the high bits for all
1910 * current formats we can do this here rather than in
1911 * formatting. This may break if we get interesting formats.
1912 */
1913 u8[0] |= map->read_flag_mask;
1914
1915 trace_regmap_hw_read_start(map->dev, reg,
1916 val_len / map->format.val_bytes);
1917
1918 ret = map->bus->read(map->bus_context, map->work_buf,
1919 map->format.reg_bytes + map->format.pad_bytes,
1920 val, val_len);
1921
1922 trace_regmap_hw_read_done(map->dev, reg,
1923 val_len / map->format.val_bytes);
1924
1925 return ret;
1926}
1927
1928static int _regmap_bus_read(void *context, unsigned int reg,
1929 unsigned int *val)
1930{
1931 int ret;
1932 struct regmap *map = context;
1933
1934 if (!map->format.parse_val)
1935 return -EINVAL;
1936
1937 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1938 if (ret == 0)
1939 *val = map->format.parse_val(map->work_buf);
1940
1941 return ret;
1942}
1943
1944static int _regmap_read(struct regmap *map, unsigned int reg,
1945 unsigned int *val)
1946{
1947 int ret;
1948 void *context = _regmap_map_get_context(map);
1949
1950 WARN_ON(!map->reg_read);
1951
1952 if (!map->cache_bypass) {
1953 ret = regcache_read(map, reg, val);
1954 if (ret == 0)
1955 return 0;
1956 }
1957
1958 if (map->cache_only)
1959 return -EBUSY;
1960
1961 if (!regmap_readable(map, reg))
1962 return -EIO;
1963
1964 ret = map->reg_read(context, reg, val);
1965 if (ret == 0) {
1966#ifdef LOG_DEVICE
1967 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1968 dev_info(map->dev, "%x => %x\n", reg, *val);
1969#endif
1970
1971 trace_regmap_reg_read(map->dev, reg, *val);
1972
1973 if (!map->cache_bypass)
1974 regcache_write(map, reg, *val);
1975 }
1976
1977 return ret;
1978}
1979
1980/**
1981 * regmap_read(): Read a value from a single register
1982 *
1983 * @map: Register map to read from
1984 * @reg: Register to be read from
1985 * @val: Pointer to store read value
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1991{
1992 int ret;
1993
1994 if (reg % map->reg_stride)
1995 return -EINVAL;
1996
1997 map->lock(map->lock_arg);
1998
1999 ret = _regmap_read(map, reg, val);
2000
2001 map->unlock(map->lock_arg);
2002
2003 return ret;
2004}
2005EXPORT_SYMBOL_GPL(regmap_read);
2006
2007/**
2008 * regmap_raw_read(): Read raw data from the device
2009 *
2010 * @map: Register map to read from
2011 * @reg: First register to be read from
2012 * @val: Pointer to store read value
2013 * @val_len: Size of data to read
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2019 size_t val_len)
2020{
2021 size_t val_bytes = map->format.val_bytes;
2022 size_t val_count = val_len / val_bytes;
2023 unsigned int v;
2024 int ret, i;
2025
2026 if (!map->bus)
2027 return -EINVAL;
2028 if (val_len % map->format.val_bytes)
2029 return -EINVAL;
2030 if (reg % map->reg_stride)
2031 return -EINVAL;
2032
2033 map->lock(map->lock_arg);
2034
2035 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2036 map->cache_type == REGCACHE_NONE) {
2037 /* Physical block read if there's no cache involved */
2038 ret = _regmap_raw_read(map, reg, val, val_len);
2039
2040 } else {
2041 /* Otherwise go word by word for the cache; should be low
2042 * cost as we expect to hit the cache.
2043 */
2044 for (i = 0; i < val_count; i++) {
2045 ret = _regmap_read(map, reg + (i * map->reg_stride),
2046 &v);
2047 if (ret != 0)
2048 goto out;
2049
2050 map->format.format_val(val + (i * val_bytes), v, 0);
2051 }
2052 }
2053
2054 out:
2055 map->unlock(map->lock_arg);
2056
2057 return ret;
2058}
2059EXPORT_SYMBOL_GPL(regmap_raw_read);
2060
2061/**
2062 * regmap_field_read(): Read a value to a single register field
2063 *
2064 * @field: Register field to read from
2065 * @val: Pointer to store read value
2066 *
2067 * A value of zero will be returned on success, a negative errno will
2068 * be returned in error cases.
2069 */
2070int regmap_field_read(struct regmap_field *field, unsigned int *val)
2071{
2072 int ret;
2073 unsigned int reg_val;
2074 ret = regmap_read(field->regmap, field->reg, ®_val);
2075 if (ret != 0)
2076 return ret;
2077
2078 reg_val &= field->mask;
2079 reg_val >>= field->shift;
2080 *val = reg_val;
2081
2082 return ret;
2083}
2084EXPORT_SYMBOL_GPL(regmap_field_read);
2085
2086/**
2087 * regmap_fields_read(): Read a value to a single register field with port ID
2088 *
2089 * @field: Register field to read from
2090 * @id: port ID
2091 * @val: Pointer to store read value
2092 *
2093 * A value of zero will be returned on success, a negative errno will
2094 * be returned in error cases.
2095 */
2096int regmap_fields_read(struct regmap_field *field, unsigned int id,
2097 unsigned int *val)
2098{
2099 int ret;
2100 unsigned int reg_val;
2101
2102 if (id >= field->id_size)
2103 return -EINVAL;
2104
2105 ret = regmap_read(field->regmap,
2106 field->reg + (field->id_offset * id),
2107 ®_val);
2108 if (ret != 0)
2109 return ret;
2110
2111 reg_val &= field->mask;
2112 reg_val >>= field->shift;
2113 *val = reg_val;
2114
2115 return ret;
2116}
2117EXPORT_SYMBOL_GPL(regmap_fields_read);
2118
2119/**
2120 * regmap_bulk_read(): Read multiple registers from the device
2121 *
2122 * @map: Register map to read from
2123 * @reg: First register to be read from
2124 * @val: Pointer to store read value, in native register size for device
2125 * @val_count: Number of registers to read
2126 *
2127 * A value of zero will be returned on success, a negative errno will
2128 * be returned in error cases.
2129 */
2130int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2131 size_t val_count)
2132{
2133 int ret, i;
2134 size_t val_bytes = map->format.val_bytes;
2135 bool vol = regmap_volatile_range(map, reg, val_count);
2136
2137 if (reg % map->reg_stride)
2138 return -EINVAL;
2139
2140 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2141 /*
2142 * Some devices does not support bulk read, for
2143 * them we have a series of single read operations.
2144 */
2145 if (map->use_single_rw) {
2146 for (i = 0; i < val_count; i++) {
2147 ret = regmap_raw_read(map,
2148 reg + (i * map->reg_stride),
2149 val + (i * val_bytes),
2150 val_bytes);
2151 if (ret != 0)
2152 return ret;
2153 }
2154 } else {
2155 ret = regmap_raw_read(map, reg, val,
2156 val_bytes * val_count);
2157 if (ret != 0)
2158 return ret;
2159 }
2160
2161 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2162 map->format.parse_inplace(val + i);
2163 } else {
2164 for (i = 0; i < val_count; i++) {
2165 unsigned int ival;
2166 ret = regmap_read(map, reg + (i * map->reg_stride),
2167 &ival);
2168 if (ret != 0)
2169 return ret;
2170 memcpy(val + (i * val_bytes), &ival, val_bytes);
2171 }
2172 }
2173
2174 return 0;
2175}
2176EXPORT_SYMBOL_GPL(regmap_bulk_read);
2177
2178static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2179 unsigned int mask, unsigned int val,
2180 bool *change)
2181{
2182 int ret;
2183 unsigned int tmp, orig;
2184
2185 ret = _regmap_read(map, reg, &orig);
2186 if (ret != 0)
2187 return ret;
2188
2189 tmp = orig & ~mask;
2190 tmp |= val & mask;
2191
2192 if (tmp != orig) {
2193 ret = _regmap_write(map, reg, tmp);
2194 if (change)
2195 *change = true;
2196 } else {
2197 if (change)
2198 *change = false;
2199 }
2200
2201 return ret;
2202}
2203
2204/**
2205 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2206 *
2207 * @map: Register map to update
2208 * @reg: Register to update
2209 * @mask: Bitmask to change
2210 * @val: New value for bitmask
2211 *
2212 * Returns zero for success, a negative number on error.
2213 */
2214int regmap_update_bits(struct regmap *map, unsigned int reg,
2215 unsigned int mask, unsigned int val)
2216{
2217 int ret;
2218
2219 map->lock(map->lock_arg);
2220 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2221 map->unlock(map->lock_arg);
2222
2223 return ret;
2224}
2225EXPORT_SYMBOL_GPL(regmap_update_bits);
2226
2227/**
2228 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2229 * map asynchronously
2230 *
2231 * @map: Register map to update
2232 * @reg: Register to update
2233 * @mask: Bitmask to change
2234 * @val: New value for bitmask
2235 *
2236 * With most buses the read must be done synchronously so this is most
2237 * useful for devices with a cache which do not need to interact with
2238 * the hardware to determine the current register value.
2239 *
2240 * Returns zero for success, a negative number on error.
2241 */
2242int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2243 unsigned int mask, unsigned int val)
2244{
2245 int ret;
2246
2247 map->lock(map->lock_arg);
2248
2249 map->async = true;
2250
2251 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2252
2253 map->async = false;
2254
2255 map->unlock(map->lock_arg);
2256
2257 return ret;
2258}
2259EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2260
2261/**
2262 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2263 * register map and report if updated
2264 *
2265 * @map: Register map to update
2266 * @reg: Register to update
2267 * @mask: Bitmask to change
2268 * @val: New value for bitmask
2269 * @change: Boolean indicating if a write was done
2270 *
2271 * Returns zero for success, a negative number on error.
2272 */
2273int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2274 unsigned int mask, unsigned int val,
2275 bool *change)
2276{
2277 int ret;
2278
2279 map->lock(map->lock_arg);
2280 ret = _regmap_update_bits(map, reg, mask, val, change);
2281 map->unlock(map->lock_arg);
2282 return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2285
2286/**
2287 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2288 * register map asynchronously and report if
2289 * updated
2290 *
2291 * @map: Register map to update
2292 * @reg: Register to update
2293 * @mask: Bitmask to change
2294 * @val: New value for bitmask
2295 * @change: Boolean indicating if a write was done
2296 *
2297 * With most buses the read must be done synchronously so this is most
2298 * useful for devices with a cache which do not need to interact with
2299 * the hardware to determine the current register value.
2300 *
2301 * Returns zero for success, a negative number on error.
2302 */
2303int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2304 unsigned int mask, unsigned int val,
2305 bool *change)
2306{
2307 int ret;
2308
2309 map->lock(map->lock_arg);
2310
2311 map->async = true;
2312
2313 ret = _regmap_update_bits(map, reg, mask, val, change);
2314
2315 map->async = false;
2316
2317 map->unlock(map->lock_arg);
2318
2319 return ret;
2320}
2321EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2322
2323void regmap_async_complete_cb(struct regmap_async *async, int ret)
2324{
2325 struct regmap *map = async->map;
2326 bool wake;
2327
2328 trace_regmap_async_io_complete(map->dev);
2329
2330 spin_lock(&map->async_lock);
2331 list_move(&async->list, &map->async_free);
2332 wake = list_empty(&map->async_list);
2333
2334 if (ret != 0)
2335 map->async_ret = ret;
2336
2337 spin_unlock(&map->async_lock);
2338
2339 if (wake)
2340 wake_up(&map->async_waitq);
2341}
2342EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2343
2344static int regmap_async_is_done(struct regmap *map)
2345{
2346 unsigned long flags;
2347 int ret;
2348
2349 spin_lock_irqsave(&map->async_lock, flags);
2350 ret = list_empty(&map->async_list);
2351 spin_unlock_irqrestore(&map->async_lock, flags);
2352
2353 return ret;
2354}
2355
2356/**
2357 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2358 *
2359 * @map: Map to operate on.
2360 *
2361 * Blocks until any pending asynchronous I/O has completed. Returns
2362 * an error code for any failed I/O operations.
2363 */
2364int regmap_async_complete(struct regmap *map)
2365{
2366 unsigned long flags;
2367 int ret;
2368
2369 /* Nothing to do with no async support */
2370 if (!map->bus || !map->bus->async_write)
2371 return 0;
2372
2373 trace_regmap_async_complete_start(map->dev);
2374
2375 wait_event(map->async_waitq, regmap_async_is_done(map));
2376
2377 spin_lock_irqsave(&map->async_lock, flags);
2378 ret = map->async_ret;
2379 map->async_ret = 0;
2380 spin_unlock_irqrestore(&map->async_lock, flags);
2381
2382 trace_regmap_async_complete_done(map->dev);
2383
2384 return ret;
2385}
2386EXPORT_SYMBOL_GPL(regmap_async_complete);
2387
2388/**
2389 * regmap_register_patch: Register and apply register updates to be applied
2390 * on device initialistion
2391 *
2392 * @map: Register map to apply updates to.
2393 * @regs: Values to update.
2394 * @num_regs: Number of entries in regs.
2395 *
2396 * Register a set of register updates to be applied to the device
2397 * whenever the device registers are synchronised with the cache and
2398 * apply them immediately. Typically this is used to apply
2399 * corrections to be applied to the device defaults on startup, such
2400 * as the updates some vendors provide to undocumented registers.
2401 *
2402 * The caller must ensure that this function cannot be called
2403 * concurrently with either itself or regcache_sync().
2404 */
2405int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2406 int num_regs)
2407{
2408 struct reg_default *p;
2409 int ret;
2410 bool bypass;
2411
2412 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2413 num_regs))
2414 return 0;
2415
2416 p = krealloc(map->patch,
2417 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2418 GFP_KERNEL);
2419 if (p) {
2420 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2421 map->patch = p;
2422 map->patch_regs += num_regs;
2423 } else {
2424 return -ENOMEM;
2425 }
2426
2427 map->lock(map->lock_arg);
2428
2429 bypass = map->cache_bypass;
2430
2431 map->cache_bypass = true;
2432 map->async = true;
2433
2434 ret = _regmap_multi_reg_write(map, regs, num_regs);
2435 if (ret != 0)
2436 goto out;
2437
2438out:
2439 map->async = false;
2440 map->cache_bypass = bypass;
2441
2442 map->unlock(map->lock_arg);
2443
2444 regmap_async_complete(map);
2445
2446 return ret;
2447}
2448EXPORT_SYMBOL_GPL(regmap_register_patch);
2449
2450/*
2451 * regmap_get_val_bytes(): Report the size of a register value
2452 *
2453 * Report the size of a register value, mainly intended to for use by
2454 * generic infrastructure built on top of regmap.
2455 */
2456int regmap_get_val_bytes(struct regmap *map)
2457{
2458 if (map->format.format_write)
2459 return -EINVAL;
2460
2461 return map->format.val_bytes;
2462}
2463EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2464
2465int regmap_parse_val(struct regmap *map, const void *buf,
2466 unsigned int *val)
2467{
2468 if (!map->format.parse_val)
2469 return -EINVAL;
2470
2471 *val = map->format.parse_val(buf);
2472
2473 return 0;
2474}
2475EXPORT_SYMBOL_GPL(regmap_parse_val);
2476
2477static int __init regmap_initcall(void)
2478{
2479 regmap_debugfs_initcall();
2480
2481 return 0;
2482}
2483postcore_initcall(regmap_initcall);
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/mutex.h>
17#include <linux/err.h>
18#include <linux/of.h>
19#include <linux/rbtree.h>
20#include <linux/sched.h>
21#include <linux/delay.h>
22#include <linux/log2.h>
23
24#define CREATE_TRACE_POINTS
25#include "trace.h"
26
27#include "internal.h"
28
29/*
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
34 */
35#undef LOG_DEVICE
36
37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 unsigned int mask, unsigned int val,
39 bool *change, bool force_write);
40
41static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 unsigned int *val);
43static int _regmap_bus_read(void *context, unsigned int reg,
44 unsigned int *val);
45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 unsigned int val);
47static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 unsigned int val);
49static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 unsigned int val);
51
52bool regmap_reg_in_ranges(unsigned int reg,
53 const struct regmap_range *ranges,
54 unsigned int nranges)
55{
56 const struct regmap_range *r;
57 int i;
58
59 for (i = 0, r = ranges; i < nranges; i++, r++)
60 if (regmap_reg_in_range(reg, r))
61 return true;
62 return false;
63}
64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65
66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 const struct regmap_access_table *table)
68{
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 return false;
72
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table->n_yes_ranges)
75 return true;
76
77 return regmap_reg_in_ranges(reg, table->yes_ranges,
78 table->n_yes_ranges);
79}
80EXPORT_SYMBOL_GPL(regmap_check_range_table);
81
82bool regmap_writeable(struct regmap *map, unsigned int reg)
83{
84 if (map->max_register && reg > map->max_register)
85 return false;
86
87 if (map->writeable_reg)
88 return map->writeable_reg(map->dev, reg);
89
90 if (map->wr_table)
91 return regmap_check_range_table(map, reg, map->wr_table);
92
93 return true;
94}
95
96bool regmap_cached(struct regmap *map, unsigned int reg)
97{
98 int ret;
99 unsigned int val;
100
101 if (map->cache == REGCACHE_NONE)
102 return false;
103
104 if (!map->cache_ops)
105 return false;
106
107 if (map->max_register && reg > map->max_register)
108 return false;
109
110 map->lock(map->lock_arg);
111 ret = regcache_read(map, reg, &val);
112 map->unlock(map->lock_arg);
113 if (ret)
114 return false;
115
116 return true;
117}
118
119bool regmap_readable(struct regmap *map, unsigned int reg)
120{
121 if (!map->reg_read)
122 return false;
123
124 if (map->max_register && reg > map->max_register)
125 return false;
126
127 if (map->format.format_write)
128 return false;
129
130 if (map->readable_reg)
131 return map->readable_reg(map->dev, reg);
132
133 if (map->rd_table)
134 return regmap_check_range_table(map, reg, map->rd_table);
135
136 return true;
137}
138
139bool regmap_volatile(struct regmap *map, unsigned int reg)
140{
141 if (!map->format.format_write && !regmap_readable(map, reg))
142 return false;
143
144 if (map->volatile_reg)
145 return map->volatile_reg(map->dev, reg);
146
147 if (map->volatile_table)
148 return regmap_check_range_table(map, reg, map->volatile_table);
149
150 if (map->cache_ops)
151 return false;
152 else
153 return true;
154}
155
156bool regmap_precious(struct regmap *map, unsigned int reg)
157{
158 if (!regmap_readable(map, reg))
159 return false;
160
161 if (map->precious_reg)
162 return map->precious_reg(map->dev, reg);
163
164 if (map->precious_table)
165 return regmap_check_range_table(map, reg, map->precious_table);
166
167 return false;
168}
169
170static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
171 size_t num)
172{
173 unsigned int i;
174
175 for (i = 0; i < num; i++)
176 if (!regmap_volatile(map, reg + i))
177 return false;
178
179 return true;
180}
181
182static void regmap_format_2_6_write(struct regmap *map,
183 unsigned int reg, unsigned int val)
184{
185 u8 *out = map->work_buf;
186
187 *out = (reg << 6) | val;
188}
189
190static void regmap_format_4_12_write(struct regmap *map,
191 unsigned int reg, unsigned int val)
192{
193 __be16 *out = map->work_buf;
194 *out = cpu_to_be16((reg << 12) | val);
195}
196
197static void regmap_format_7_9_write(struct regmap *map,
198 unsigned int reg, unsigned int val)
199{
200 __be16 *out = map->work_buf;
201 *out = cpu_to_be16((reg << 9) | val);
202}
203
204static void regmap_format_10_14_write(struct regmap *map,
205 unsigned int reg, unsigned int val)
206{
207 u8 *out = map->work_buf;
208
209 out[2] = val;
210 out[1] = (val >> 8) | (reg << 6);
211 out[0] = reg >> 2;
212}
213
214static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
215{
216 u8 *b = buf;
217
218 b[0] = val << shift;
219}
220
221static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
222{
223 __be16 *b = buf;
224
225 b[0] = cpu_to_be16(val << shift);
226}
227
228static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
229{
230 __le16 *b = buf;
231
232 b[0] = cpu_to_le16(val << shift);
233}
234
235static void regmap_format_16_native(void *buf, unsigned int val,
236 unsigned int shift)
237{
238 *(u16 *)buf = val << shift;
239}
240
241static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
242{
243 u8 *b = buf;
244
245 val <<= shift;
246
247 b[0] = val >> 16;
248 b[1] = val >> 8;
249 b[2] = val;
250}
251
252static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
253{
254 __be32 *b = buf;
255
256 b[0] = cpu_to_be32(val << shift);
257}
258
259static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
260{
261 __le32 *b = buf;
262
263 b[0] = cpu_to_le32(val << shift);
264}
265
266static void regmap_format_32_native(void *buf, unsigned int val,
267 unsigned int shift)
268{
269 *(u32 *)buf = val << shift;
270}
271
272#ifdef CONFIG_64BIT
273static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
274{
275 __be64 *b = buf;
276
277 b[0] = cpu_to_be64((u64)val << shift);
278}
279
280static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
281{
282 __le64 *b = buf;
283
284 b[0] = cpu_to_le64((u64)val << shift);
285}
286
287static void regmap_format_64_native(void *buf, unsigned int val,
288 unsigned int shift)
289{
290 *(u64 *)buf = (u64)val << shift;
291}
292#endif
293
294static void regmap_parse_inplace_noop(void *buf)
295{
296}
297
298static unsigned int regmap_parse_8(const void *buf)
299{
300 const u8 *b = buf;
301
302 return b[0];
303}
304
305static unsigned int regmap_parse_16_be(const void *buf)
306{
307 const __be16 *b = buf;
308
309 return be16_to_cpu(b[0]);
310}
311
312static unsigned int regmap_parse_16_le(const void *buf)
313{
314 const __le16 *b = buf;
315
316 return le16_to_cpu(b[0]);
317}
318
319static void regmap_parse_16_be_inplace(void *buf)
320{
321 __be16 *b = buf;
322
323 b[0] = be16_to_cpu(b[0]);
324}
325
326static void regmap_parse_16_le_inplace(void *buf)
327{
328 __le16 *b = buf;
329
330 b[0] = le16_to_cpu(b[0]);
331}
332
333static unsigned int regmap_parse_16_native(const void *buf)
334{
335 return *(u16 *)buf;
336}
337
338static unsigned int regmap_parse_24(const void *buf)
339{
340 const u8 *b = buf;
341 unsigned int ret = b[2];
342 ret |= ((unsigned int)b[1]) << 8;
343 ret |= ((unsigned int)b[0]) << 16;
344
345 return ret;
346}
347
348static unsigned int regmap_parse_32_be(const void *buf)
349{
350 const __be32 *b = buf;
351
352 return be32_to_cpu(b[0]);
353}
354
355static unsigned int regmap_parse_32_le(const void *buf)
356{
357 const __le32 *b = buf;
358
359 return le32_to_cpu(b[0]);
360}
361
362static void regmap_parse_32_be_inplace(void *buf)
363{
364 __be32 *b = buf;
365
366 b[0] = be32_to_cpu(b[0]);
367}
368
369static void regmap_parse_32_le_inplace(void *buf)
370{
371 __le32 *b = buf;
372
373 b[0] = le32_to_cpu(b[0]);
374}
375
376static unsigned int regmap_parse_32_native(const void *buf)
377{
378 return *(u32 *)buf;
379}
380
381#ifdef CONFIG_64BIT
382static unsigned int regmap_parse_64_be(const void *buf)
383{
384 const __be64 *b = buf;
385
386 return be64_to_cpu(b[0]);
387}
388
389static unsigned int regmap_parse_64_le(const void *buf)
390{
391 const __le64 *b = buf;
392
393 return le64_to_cpu(b[0]);
394}
395
396static void regmap_parse_64_be_inplace(void *buf)
397{
398 __be64 *b = buf;
399
400 b[0] = be64_to_cpu(b[0]);
401}
402
403static void regmap_parse_64_le_inplace(void *buf)
404{
405 __le64 *b = buf;
406
407 b[0] = le64_to_cpu(b[0]);
408}
409
410static unsigned int regmap_parse_64_native(const void *buf)
411{
412 return *(u64 *)buf;
413}
414#endif
415
416static void regmap_lock_mutex(void *__map)
417{
418 struct regmap *map = __map;
419 mutex_lock(&map->mutex);
420}
421
422static void regmap_unlock_mutex(void *__map)
423{
424 struct regmap *map = __map;
425 mutex_unlock(&map->mutex);
426}
427
428static void regmap_lock_spinlock(void *__map)
429__acquires(&map->spinlock)
430{
431 struct regmap *map = __map;
432 unsigned long flags;
433
434 spin_lock_irqsave(&map->spinlock, flags);
435 map->spinlock_flags = flags;
436}
437
438static void regmap_unlock_spinlock(void *__map)
439__releases(&map->spinlock)
440{
441 struct regmap *map = __map;
442 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
443}
444
445static void dev_get_regmap_release(struct device *dev, void *res)
446{
447 /*
448 * We don't actually have anything to do here; the goal here
449 * is not to manage the regmap but to provide a simple way to
450 * get the regmap back given a struct device.
451 */
452}
453
454static bool _regmap_range_add(struct regmap *map,
455 struct regmap_range_node *data)
456{
457 struct rb_root *root = &map->range_tree;
458 struct rb_node **new = &(root->rb_node), *parent = NULL;
459
460 while (*new) {
461 struct regmap_range_node *this =
462 container_of(*new, struct regmap_range_node, node);
463
464 parent = *new;
465 if (data->range_max < this->range_min)
466 new = &((*new)->rb_left);
467 else if (data->range_min > this->range_max)
468 new = &((*new)->rb_right);
469 else
470 return false;
471 }
472
473 rb_link_node(&data->node, parent, new);
474 rb_insert_color(&data->node, root);
475
476 return true;
477}
478
479static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
480 unsigned int reg)
481{
482 struct rb_node *node = map->range_tree.rb_node;
483
484 while (node) {
485 struct regmap_range_node *this =
486 container_of(node, struct regmap_range_node, node);
487
488 if (reg < this->range_min)
489 node = node->rb_left;
490 else if (reg > this->range_max)
491 node = node->rb_right;
492 else
493 return this;
494 }
495
496 return NULL;
497}
498
499static void regmap_range_exit(struct regmap *map)
500{
501 struct rb_node *next;
502 struct regmap_range_node *range_node;
503
504 next = rb_first(&map->range_tree);
505 while (next) {
506 range_node = rb_entry(next, struct regmap_range_node, node);
507 next = rb_next(&range_node->node);
508 rb_erase(&range_node->node, &map->range_tree);
509 kfree(range_node);
510 }
511
512 kfree(map->selector_work_buf);
513}
514
515int regmap_attach_dev(struct device *dev, struct regmap *map,
516 const struct regmap_config *config)
517{
518 struct regmap **m;
519
520 map->dev = dev;
521
522 regmap_debugfs_init(map, config->name);
523
524 /* Add a devres resource for dev_get_regmap() */
525 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
526 if (!m) {
527 regmap_debugfs_exit(map);
528 return -ENOMEM;
529 }
530 *m = map;
531 devres_add(dev, m);
532
533 return 0;
534}
535EXPORT_SYMBOL_GPL(regmap_attach_dev);
536
537static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
538 const struct regmap_config *config)
539{
540 enum regmap_endian endian;
541
542 /* Retrieve the endianness specification from the regmap config */
543 endian = config->reg_format_endian;
544
545 /* If the regmap config specified a non-default value, use that */
546 if (endian != REGMAP_ENDIAN_DEFAULT)
547 return endian;
548
549 /* Retrieve the endianness specification from the bus config */
550 if (bus && bus->reg_format_endian_default)
551 endian = bus->reg_format_endian_default;
552
553 /* If the bus specified a non-default value, use that */
554 if (endian != REGMAP_ENDIAN_DEFAULT)
555 return endian;
556
557 /* Use this if no other value was found */
558 return REGMAP_ENDIAN_BIG;
559}
560
561enum regmap_endian regmap_get_val_endian(struct device *dev,
562 const struct regmap_bus *bus,
563 const struct regmap_config *config)
564{
565 struct device_node *np;
566 enum regmap_endian endian;
567
568 /* Retrieve the endianness specification from the regmap config */
569 endian = config->val_format_endian;
570
571 /* If the regmap config specified a non-default value, use that */
572 if (endian != REGMAP_ENDIAN_DEFAULT)
573 return endian;
574
575 /* If the dev and dev->of_node exist try to get endianness from DT */
576 if (dev && dev->of_node) {
577 np = dev->of_node;
578
579 /* Parse the device's DT node for an endianness specification */
580 if (of_property_read_bool(np, "big-endian"))
581 endian = REGMAP_ENDIAN_BIG;
582 else if (of_property_read_bool(np, "little-endian"))
583 endian = REGMAP_ENDIAN_LITTLE;
584 else if (of_property_read_bool(np, "native-endian"))
585 endian = REGMAP_ENDIAN_NATIVE;
586
587 /* If the endianness was specified in DT, use that */
588 if (endian != REGMAP_ENDIAN_DEFAULT)
589 return endian;
590 }
591
592 /* Retrieve the endianness specification from the bus config */
593 if (bus && bus->val_format_endian_default)
594 endian = bus->val_format_endian_default;
595
596 /* If the bus specified a non-default value, use that */
597 if (endian != REGMAP_ENDIAN_DEFAULT)
598 return endian;
599
600 /* Use this if no other value was found */
601 return REGMAP_ENDIAN_BIG;
602}
603EXPORT_SYMBOL_GPL(regmap_get_val_endian);
604
605struct regmap *__regmap_init(struct device *dev,
606 const struct regmap_bus *bus,
607 void *bus_context,
608 const struct regmap_config *config,
609 struct lock_class_key *lock_key,
610 const char *lock_name)
611{
612 struct regmap *map;
613 int ret = -EINVAL;
614 enum regmap_endian reg_endian, val_endian;
615 int i, j;
616
617 if (!config)
618 goto err;
619
620 map = kzalloc(sizeof(*map), GFP_KERNEL);
621 if (map == NULL) {
622 ret = -ENOMEM;
623 goto err;
624 }
625
626 if (config->lock && config->unlock) {
627 map->lock = config->lock;
628 map->unlock = config->unlock;
629 map->lock_arg = config->lock_arg;
630 } else {
631 if ((bus && bus->fast_io) ||
632 config->fast_io) {
633 spin_lock_init(&map->spinlock);
634 map->lock = regmap_lock_spinlock;
635 map->unlock = regmap_unlock_spinlock;
636 lockdep_set_class_and_name(&map->spinlock,
637 lock_key, lock_name);
638 } else {
639 mutex_init(&map->mutex);
640 map->lock = regmap_lock_mutex;
641 map->unlock = regmap_unlock_mutex;
642 lockdep_set_class_and_name(&map->mutex,
643 lock_key, lock_name);
644 }
645 map->lock_arg = map;
646 }
647
648 /*
649 * When we write in fast-paths with regmap_bulk_write() don't allocate
650 * scratch buffers with sleeping allocations.
651 */
652 if ((bus && bus->fast_io) || config->fast_io)
653 map->alloc_flags = GFP_ATOMIC;
654 else
655 map->alloc_flags = GFP_KERNEL;
656
657 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
658 map->format.pad_bytes = config->pad_bits / 8;
659 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
660 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
661 config->val_bits + config->pad_bits, 8);
662 map->reg_shift = config->pad_bits % 8;
663 if (config->reg_stride)
664 map->reg_stride = config->reg_stride;
665 else
666 map->reg_stride = 1;
667 if (is_power_of_2(map->reg_stride))
668 map->reg_stride_order = ilog2(map->reg_stride);
669 else
670 map->reg_stride_order = -1;
671 map->use_single_read = config->use_single_rw || !bus || !bus->read;
672 map->use_single_write = config->use_single_rw || !bus || !bus->write;
673 map->can_multi_write = config->can_multi_write && bus && bus->write;
674 if (bus) {
675 map->max_raw_read = bus->max_raw_read;
676 map->max_raw_write = bus->max_raw_write;
677 }
678 map->dev = dev;
679 map->bus = bus;
680 map->bus_context = bus_context;
681 map->max_register = config->max_register;
682 map->wr_table = config->wr_table;
683 map->rd_table = config->rd_table;
684 map->volatile_table = config->volatile_table;
685 map->precious_table = config->precious_table;
686 map->writeable_reg = config->writeable_reg;
687 map->readable_reg = config->readable_reg;
688 map->volatile_reg = config->volatile_reg;
689 map->precious_reg = config->precious_reg;
690 map->cache_type = config->cache_type;
691 map->name = config->name;
692
693 spin_lock_init(&map->async_lock);
694 INIT_LIST_HEAD(&map->async_list);
695 INIT_LIST_HEAD(&map->async_free);
696 init_waitqueue_head(&map->async_waitq);
697
698 if (config->read_flag_mask || config->write_flag_mask) {
699 map->read_flag_mask = config->read_flag_mask;
700 map->write_flag_mask = config->write_flag_mask;
701 } else if (bus) {
702 map->read_flag_mask = bus->read_flag_mask;
703 }
704
705 if (!bus) {
706 map->reg_read = config->reg_read;
707 map->reg_write = config->reg_write;
708
709 map->defer_caching = false;
710 goto skip_format_initialization;
711 } else if (!bus->read || !bus->write) {
712 map->reg_read = _regmap_bus_reg_read;
713 map->reg_write = _regmap_bus_reg_write;
714
715 map->defer_caching = false;
716 goto skip_format_initialization;
717 } else {
718 map->reg_read = _regmap_bus_read;
719 map->reg_update_bits = bus->reg_update_bits;
720 }
721
722 reg_endian = regmap_get_reg_endian(bus, config);
723 val_endian = regmap_get_val_endian(dev, bus, config);
724
725 switch (config->reg_bits + map->reg_shift) {
726 case 2:
727 switch (config->val_bits) {
728 case 6:
729 map->format.format_write = regmap_format_2_6_write;
730 break;
731 default:
732 goto err_map;
733 }
734 break;
735
736 case 4:
737 switch (config->val_bits) {
738 case 12:
739 map->format.format_write = regmap_format_4_12_write;
740 break;
741 default:
742 goto err_map;
743 }
744 break;
745
746 case 7:
747 switch (config->val_bits) {
748 case 9:
749 map->format.format_write = regmap_format_7_9_write;
750 break;
751 default:
752 goto err_map;
753 }
754 break;
755
756 case 10:
757 switch (config->val_bits) {
758 case 14:
759 map->format.format_write = regmap_format_10_14_write;
760 break;
761 default:
762 goto err_map;
763 }
764 break;
765
766 case 8:
767 map->format.format_reg = regmap_format_8;
768 break;
769
770 case 16:
771 switch (reg_endian) {
772 case REGMAP_ENDIAN_BIG:
773 map->format.format_reg = regmap_format_16_be;
774 break;
775 case REGMAP_ENDIAN_LITTLE:
776 map->format.format_reg = regmap_format_16_le;
777 break;
778 case REGMAP_ENDIAN_NATIVE:
779 map->format.format_reg = regmap_format_16_native;
780 break;
781 default:
782 goto err_map;
783 }
784 break;
785
786 case 24:
787 if (reg_endian != REGMAP_ENDIAN_BIG)
788 goto err_map;
789 map->format.format_reg = regmap_format_24;
790 break;
791
792 case 32:
793 switch (reg_endian) {
794 case REGMAP_ENDIAN_BIG:
795 map->format.format_reg = regmap_format_32_be;
796 break;
797 case REGMAP_ENDIAN_LITTLE:
798 map->format.format_reg = regmap_format_32_le;
799 break;
800 case REGMAP_ENDIAN_NATIVE:
801 map->format.format_reg = regmap_format_32_native;
802 break;
803 default:
804 goto err_map;
805 }
806 break;
807
808#ifdef CONFIG_64BIT
809 case 64:
810 switch (reg_endian) {
811 case REGMAP_ENDIAN_BIG:
812 map->format.format_reg = regmap_format_64_be;
813 break;
814 case REGMAP_ENDIAN_LITTLE:
815 map->format.format_reg = regmap_format_64_le;
816 break;
817 case REGMAP_ENDIAN_NATIVE:
818 map->format.format_reg = regmap_format_64_native;
819 break;
820 default:
821 goto err_map;
822 }
823 break;
824#endif
825
826 default:
827 goto err_map;
828 }
829
830 if (val_endian == REGMAP_ENDIAN_NATIVE)
831 map->format.parse_inplace = regmap_parse_inplace_noop;
832
833 switch (config->val_bits) {
834 case 8:
835 map->format.format_val = regmap_format_8;
836 map->format.parse_val = regmap_parse_8;
837 map->format.parse_inplace = regmap_parse_inplace_noop;
838 break;
839 case 16:
840 switch (val_endian) {
841 case REGMAP_ENDIAN_BIG:
842 map->format.format_val = regmap_format_16_be;
843 map->format.parse_val = regmap_parse_16_be;
844 map->format.parse_inplace = regmap_parse_16_be_inplace;
845 break;
846 case REGMAP_ENDIAN_LITTLE:
847 map->format.format_val = regmap_format_16_le;
848 map->format.parse_val = regmap_parse_16_le;
849 map->format.parse_inplace = regmap_parse_16_le_inplace;
850 break;
851 case REGMAP_ENDIAN_NATIVE:
852 map->format.format_val = regmap_format_16_native;
853 map->format.parse_val = regmap_parse_16_native;
854 break;
855 default:
856 goto err_map;
857 }
858 break;
859 case 24:
860 if (val_endian != REGMAP_ENDIAN_BIG)
861 goto err_map;
862 map->format.format_val = regmap_format_24;
863 map->format.parse_val = regmap_parse_24;
864 break;
865 case 32:
866 switch (val_endian) {
867 case REGMAP_ENDIAN_BIG:
868 map->format.format_val = regmap_format_32_be;
869 map->format.parse_val = regmap_parse_32_be;
870 map->format.parse_inplace = regmap_parse_32_be_inplace;
871 break;
872 case REGMAP_ENDIAN_LITTLE:
873 map->format.format_val = regmap_format_32_le;
874 map->format.parse_val = regmap_parse_32_le;
875 map->format.parse_inplace = regmap_parse_32_le_inplace;
876 break;
877 case REGMAP_ENDIAN_NATIVE:
878 map->format.format_val = regmap_format_32_native;
879 map->format.parse_val = regmap_parse_32_native;
880 break;
881 default:
882 goto err_map;
883 }
884 break;
885#ifdef CONFIG_64BIT
886 case 64:
887 switch (val_endian) {
888 case REGMAP_ENDIAN_BIG:
889 map->format.format_val = regmap_format_64_be;
890 map->format.parse_val = regmap_parse_64_be;
891 map->format.parse_inplace = regmap_parse_64_be_inplace;
892 break;
893 case REGMAP_ENDIAN_LITTLE:
894 map->format.format_val = regmap_format_64_le;
895 map->format.parse_val = regmap_parse_64_le;
896 map->format.parse_inplace = regmap_parse_64_le_inplace;
897 break;
898 case REGMAP_ENDIAN_NATIVE:
899 map->format.format_val = regmap_format_64_native;
900 map->format.parse_val = regmap_parse_64_native;
901 break;
902 default:
903 goto err_map;
904 }
905 break;
906#endif
907 }
908
909 if (map->format.format_write) {
910 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
911 (val_endian != REGMAP_ENDIAN_BIG))
912 goto err_map;
913 map->use_single_write = true;
914 }
915
916 if (!map->format.format_write &&
917 !(map->format.format_reg && map->format.format_val))
918 goto err_map;
919
920 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
921 if (map->work_buf == NULL) {
922 ret = -ENOMEM;
923 goto err_map;
924 }
925
926 if (map->format.format_write) {
927 map->defer_caching = false;
928 map->reg_write = _regmap_bus_formatted_write;
929 } else if (map->format.format_val) {
930 map->defer_caching = true;
931 map->reg_write = _regmap_bus_raw_write;
932 }
933
934skip_format_initialization:
935
936 map->range_tree = RB_ROOT;
937 for (i = 0; i < config->num_ranges; i++) {
938 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
939 struct regmap_range_node *new;
940
941 /* Sanity check */
942 if (range_cfg->range_max < range_cfg->range_min) {
943 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
944 range_cfg->range_max, range_cfg->range_min);
945 goto err_range;
946 }
947
948 if (range_cfg->range_max > map->max_register) {
949 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
950 range_cfg->range_max, map->max_register);
951 goto err_range;
952 }
953
954 if (range_cfg->selector_reg > map->max_register) {
955 dev_err(map->dev,
956 "Invalid range %d: selector out of map\n", i);
957 goto err_range;
958 }
959
960 if (range_cfg->window_len == 0) {
961 dev_err(map->dev, "Invalid range %d: window_len 0\n",
962 i);
963 goto err_range;
964 }
965
966 /* Make sure, that this register range has no selector
967 or data window within its boundary */
968 for (j = 0; j < config->num_ranges; j++) {
969 unsigned sel_reg = config->ranges[j].selector_reg;
970 unsigned win_min = config->ranges[j].window_start;
971 unsigned win_max = win_min +
972 config->ranges[j].window_len - 1;
973
974 /* Allow data window inside its own virtual range */
975 if (j == i)
976 continue;
977
978 if (range_cfg->range_min <= sel_reg &&
979 sel_reg <= range_cfg->range_max) {
980 dev_err(map->dev,
981 "Range %d: selector for %d in window\n",
982 i, j);
983 goto err_range;
984 }
985
986 if (!(win_max < range_cfg->range_min ||
987 win_min > range_cfg->range_max)) {
988 dev_err(map->dev,
989 "Range %d: window for %d in window\n",
990 i, j);
991 goto err_range;
992 }
993 }
994
995 new = kzalloc(sizeof(*new), GFP_KERNEL);
996 if (new == NULL) {
997 ret = -ENOMEM;
998 goto err_range;
999 }
1000
1001 new->map = map;
1002 new->name = range_cfg->name;
1003 new->range_min = range_cfg->range_min;
1004 new->range_max = range_cfg->range_max;
1005 new->selector_reg = range_cfg->selector_reg;
1006 new->selector_mask = range_cfg->selector_mask;
1007 new->selector_shift = range_cfg->selector_shift;
1008 new->window_start = range_cfg->window_start;
1009 new->window_len = range_cfg->window_len;
1010
1011 if (!_regmap_range_add(map, new)) {
1012 dev_err(map->dev, "Failed to add range %d\n", i);
1013 kfree(new);
1014 goto err_range;
1015 }
1016
1017 if (map->selector_work_buf == NULL) {
1018 map->selector_work_buf =
1019 kzalloc(map->format.buf_size, GFP_KERNEL);
1020 if (map->selector_work_buf == NULL) {
1021 ret = -ENOMEM;
1022 goto err_range;
1023 }
1024 }
1025 }
1026
1027 ret = regcache_init(map, config);
1028 if (ret != 0)
1029 goto err_range;
1030
1031 if (dev) {
1032 ret = regmap_attach_dev(dev, map, config);
1033 if (ret != 0)
1034 goto err_regcache;
1035 }
1036
1037 return map;
1038
1039err_regcache:
1040 regcache_exit(map);
1041err_range:
1042 regmap_range_exit(map);
1043 kfree(map->work_buf);
1044err_map:
1045 kfree(map);
1046err:
1047 return ERR_PTR(ret);
1048}
1049EXPORT_SYMBOL_GPL(__regmap_init);
1050
1051static void devm_regmap_release(struct device *dev, void *res)
1052{
1053 regmap_exit(*(struct regmap **)res);
1054}
1055
1056struct regmap *__devm_regmap_init(struct device *dev,
1057 const struct regmap_bus *bus,
1058 void *bus_context,
1059 const struct regmap_config *config,
1060 struct lock_class_key *lock_key,
1061 const char *lock_name)
1062{
1063 struct regmap **ptr, *regmap;
1064
1065 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066 if (!ptr)
1067 return ERR_PTR(-ENOMEM);
1068
1069 regmap = __regmap_init(dev, bus, bus_context, config,
1070 lock_key, lock_name);
1071 if (!IS_ERR(regmap)) {
1072 *ptr = regmap;
1073 devres_add(dev, ptr);
1074 } else {
1075 devres_free(ptr);
1076 }
1077
1078 return regmap;
1079}
1080EXPORT_SYMBOL_GPL(__devm_regmap_init);
1081
1082static void regmap_field_init(struct regmap_field *rm_field,
1083 struct regmap *regmap, struct reg_field reg_field)
1084{
1085 rm_field->regmap = regmap;
1086 rm_field->reg = reg_field.reg;
1087 rm_field->shift = reg_field.lsb;
1088 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089 rm_field->id_size = reg_field.id_size;
1090 rm_field->id_offset = reg_field.id_offset;
1091}
1092
1093/**
1094 * devm_regmap_field_alloc(): Allocate and initialise a register field
1095 * in a register map.
1096 *
1097 * @dev: Device that will be interacted with
1098 * @regmap: regmap bank in which this register field is located.
1099 * @reg_field: Register field with in the bank.
1100 *
1101 * The return value will be an ERR_PTR() on error or a valid pointer
1102 * to a struct regmap_field. The regmap_field will be automatically freed
1103 * by the device management code.
1104 */
1105struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1106 struct regmap *regmap, struct reg_field reg_field)
1107{
1108 struct regmap_field *rm_field = devm_kzalloc(dev,
1109 sizeof(*rm_field), GFP_KERNEL);
1110 if (!rm_field)
1111 return ERR_PTR(-ENOMEM);
1112
1113 regmap_field_init(rm_field, regmap, reg_field);
1114
1115 return rm_field;
1116
1117}
1118EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1119
1120/**
1121 * devm_regmap_field_free(): Free register field allocated using
1122 * devm_regmap_field_alloc. Usally drivers need not call this function,
1123 * as the memory allocated via devm will be freed as per device-driver
1124 * life-cyle.
1125 *
1126 * @dev: Device that will be interacted with
1127 * @field: regmap field which should be freed.
1128 */
1129void devm_regmap_field_free(struct device *dev,
1130 struct regmap_field *field)
1131{
1132 devm_kfree(dev, field);
1133}
1134EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1135
1136/**
1137 * regmap_field_alloc(): Allocate and initialise a register field
1138 * in a register map.
1139 *
1140 * @regmap: regmap bank in which this register field is located.
1141 * @reg_field: Register field with in the bank.
1142 *
1143 * The return value will be an ERR_PTR() on error or a valid pointer
1144 * to a struct regmap_field. The regmap_field should be freed by the
1145 * user once its finished working with it using regmap_field_free().
1146 */
1147struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148 struct reg_field reg_field)
1149{
1150 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151
1152 if (!rm_field)
1153 return ERR_PTR(-ENOMEM);
1154
1155 regmap_field_init(rm_field, regmap, reg_field);
1156
1157 return rm_field;
1158}
1159EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160
1161/**
1162 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1163 *
1164 * @field: regmap field which should be freed.
1165 */
1166void regmap_field_free(struct regmap_field *field)
1167{
1168 kfree(field);
1169}
1170EXPORT_SYMBOL_GPL(regmap_field_free);
1171
1172/**
1173 * regmap_reinit_cache(): Reinitialise the current register cache
1174 *
1175 * @map: Register map to operate on.
1176 * @config: New configuration. Only the cache data will be used.
1177 *
1178 * Discard any existing register cache for the map and initialize a
1179 * new cache. This can be used to restore the cache to defaults or to
1180 * update the cache configuration to reflect runtime discovery of the
1181 * hardware.
1182 *
1183 * No explicit locking is done here, the user needs to ensure that
1184 * this function will not race with other calls to regmap.
1185 */
1186int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1187{
1188 regcache_exit(map);
1189 regmap_debugfs_exit(map);
1190
1191 map->max_register = config->max_register;
1192 map->writeable_reg = config->writeable_reg;
1193 map->readable_reg = config->readable_reg;
1194 map->volatile_reg = config->volatile_reg;
1195 map->precious_reg = config->precious_reg;
1196 map->cache_type = config->cache_type;
1197
1198 regmap_debugfs_init(map, config->name);
1199
1200 map->cache_bypass = false;
1201 map->cache_only = false;
1202
1203 return regcache_init(map, config);
1204}
1205EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1206
1207/**
1208 * regmap_exit(): Free a previously allocated register map
1209 */
1210void regmap_exit(struct regmap *map)
1211{
1212 struct regmap_async *async;
1213
1214 regcache_exit(map);
1215 regmap_debugfs_exit(map);
1216 regmap_range_exit(map);
1217 if (map->bus && map->bus->free_context)
1218 map->bus->free_context(map->bus_context);
1219 kfree(map->work_buf);
1220 while (!list_empty(&map->async_free)) {
1221 async = list_first_entry_or_null(&map->async_free,
1222 struct regmap_async,
1223 list);
1224 list_del(&async->list);
1225 kfree(async->work_buf);
1226 kfree(async);
1227 }
1228 kfree(map);
1229}
1230EXPORT_SYMBOL_GPL(regmap_exit);
1231
1232static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1233{
1234 struct regmap **r = res;
1235 if (!r || !*r) {
1236 WARN_ON(!r || !*r);
1237 return 0;
1238 }
1239
1240 /* If the user didn't specify a name match any */
1241 if (data)
1242 return (*r)->name == data;
1243 else
1244 return 1;
1245}
1246
1247/**
1248 * dev_get_regmap(): Obtain the regmap (if any) for a device
1249 *
1250 * @dev: Device to retrieve the map for
1251 * @name: Optional name for the register map, usually NULL.
1252 *
1253 * Returns the regmap for the device if one is present, or NULL. If
1254 * name is specified then it must match the name specified when
1255 * registering the device, if it is NULL then the first regmap found
1256 * will be used. Devices with multiple register maps are very rare,
1257 * generic code should normally not need to specify a name.
1258 */
1259struct regmap *dev_get_regmap(struct device *dev, const char *name)
1260{
1261 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1262 dev_get_regmap_match, (void *)name);
1263
1264 if (!r)
1265 return NULL;
1266 return *r;
1267}
1268EXPORT_SYMBOL_GPL(dev_get_regmap);
1269
1270/**
1271 * regmap_get_device(): Obtain the device from a regmap
1272 *
1273 * @map: Register map to operate on.
1274 *
1275 * Returns the underlying device that the regmap has been created for.
1276 */
1277struct device *regmap_get_device(struct regmap *map)
1278{
1279 return map->dev;
1280}
1281EXPORT_SYMBOL_GPL(regmap_get_device);
1282
1283static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1284 struct regmap_range_node *range,
1285 unsigned int val_num)
1286{
1287 void *orig_work_buf;
1288 unsigned int win_offset;
1289 unsigned int win_page;
1290 bool page_chg;
1291 int ret;
1292
1293 win_offset = (*reg - range->range_min) % range->window_len;
1294 win_page = (*reg - range->range_min) / range->window_len;
1295
1296 if (val_num > 1) {
1297 /* Bulk write shouldn't cross range boundary */
1298 if (*reg + val_num - 1 > range->range_max)
1299 return -EINVAL;
1300
1301 /* ... or single page boundary */
1302 if (val_num > range->window_len - win_offset)
1303 return -EINVAL;
1304 }
1305
1306 /* It is possible to have selector register inside data window.
1307 In that case, selector register is located on every page and
1308 it needs no page switching, when accessed alone. */
1309 if (val_num > 1 ||
1310 range->window_start + win_offset != range->selector_reg) {
1311 /* Use separate work_buf during page switching */
1312 orig_work_buf = map->work_buf;
1313 map->work_buf = map->selector_work_buf;
1314
1315 ret = _regmap_update_bits(map, range->selector_reg,
1316 range->selector_mask,
1317 win_page << range->selector_shift,
1318 &page_chg, false);
1319
1320 map->work_buf = orig_work_buf;
1321
1322 if (ret != 0)
1323 return ret;
1324 }
1325
1326 *reg = range->window_start + win_offset;
1327
1328 return 0;
1329}
1330
1331static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1332 unsigned long mask)
1333{
1334 u8 *buf;
1335 int i;
1336
1337 if (!mask || !map->work_buf)
1338 return;
1339
1340 buf = map->work_buf;
1341
1342 for (i = 0; i < max_bytes; i++)
1343 buf[i] |= (mask >> (8 * i)) & 0xff;
1344}
1345
1346int _regmap_raw_write(struct regmap *map, unsigned int reg,
1347 const void *val, size_t val_len)
1348{
1349 struct regmap_range_node *range;
1350 unsigned long flags;
1351 void *work_val = map->work_buf + map->format.reg_bytes +
1352 map->format.pad_bytes;
1353 void *buf;
1354 int ret = -ENOTSUPP;
1355 size_t len;
1356 int i;
1357
1358 WARN_ON(!map->bus);
1359
1360 /* Check for unwritable registers before we start */
1361 if (map->writeable_reg)
1362 for (i = 0; i < val_len / map->format.val_bytes; i++)
1363 if (!map->writeable_reg(map->dev,
1364 reg + regmap_get_offset(map, i)))
1365 return -EINVAL;
1366
1367 if (!map->cache_bypass && map->format.parse_val) {
1368 unsigned int ival;
1369 int val_bytes = map->format.val_bytes;
1370 for (i = 0; i < val_len / val_bytes; i++) {
1371 ival = map->format.parse_val(val + (i * val_bytes));
1372 ret = regcache_write(map,
1373 reg + regmap_get_offset(map, i),
1374 ival);
1375 if (ret) {
1376 dev_err(map->dev,
1377 "Error in caching of register: %x ret: %d\n",
1378 reg + i, ret);
1379 return ret;
1380 }
1381 }
1382 if (map->cache_only) {
1383 map->cache_dirty = true;
1384 return 0;
1385 }
1386 }
1387
1388 range = _regmap_range_lookup(map, reg);
1389 if (range) {
1390 int val_num = val_len / map->format.val_bytes;
1391 int win_offset = (reg - range->range_min) % range->window_len;
1392 int win_residue = range->window_len - win_offset;
1393
1394 /* If the write goes beyond the end of the window split it */
1395 while (val_num > win_residue) {
1396 dev_dbg(map->dev, "Writing window %d/%zu\n",
1397 win_residue, val_len / map->format.val_bytes);
1398 ret = _regmap_raw_write(map, reg, val, win_residue *
1399 map->format.val_bytes);
1400 if (ret != 0)
1401 return ret;
1402
1403 reg += win_residue;
1404 val_num -= win_residue;
1405 val += win_residue * map->format.val_bytes;
1406 val_len -= win_residue * map->format.val_bytes;
1407
1408 win_offset = (reg - range->range_min) %
1409 range->window_len;
1410 win_residue = range->window_len - win_offset;
1411 }
1412
1413 ret = _regmap_select_page(map, ®, range, val_num);
1414 if (ret != 0)
1415 return ret;
1416 }
1417
1418 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1419 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1420 map->write_flag_mask);
1421
1422 /*
1423 * Essentially all I/O mechanisms will be faster with a single
1424 * buffer to write. Since register syncs often generate raw
1425 * writes of single registers optimise that case.
1426 */
1427 if (val != work_val && val_len == map->format.val_bytes) {
1428 memcpy(work_val, val, map->format.val_bytes);
1429 val = work_val;
1430 }
1431
1432 if (map->async && map->bus->async_write) {
1433 struct regmap_async *async;
1434
1435 trace_regmap_async_write_start(map, reg, val_len);
1436
1437 spin_lock_irqsave(&map->async_lock, flags);
1438 async = list_first_entry_or_null(&map->async_free,
1439 struct regmap_async,
1440 list);
1441 if (async)
1442 list_del(&async->list);
1443 spin_unlock_irqrestore(&map->async_lock, flags);
1444
1445 if (!async) {
1446 async = map->bus->async_alloc();
1447 if (!async)
1448 return -ENOMEM;
1449
1450 async->work_buf = kzalloc(map->format.buf_size,
1451 GFP_KERNEL | GFP_DMA);
1452 if (!async->work_buf) {
1453 kfree(async);
1454 return -ENOMEM;
1455 }
1456 }
1457
1458 async->map = map;
1459
1460 /* If the caller supplied the value we can use it safely. */
1461 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1462 map->format.reg_bytes + map->format.val_bytes);
1463
1464 spin_lock_irqsave(&map->async_lock, flags);
1465 list_add_tail(&async->list, &map->async_list);
1466 spin_unlock_irqrestore(&map->async_lock, flags);
1467
1468 if (val != work_val)
1469 ret = map->bus->async_write(map->bus_context,
1470 async->work_buf,
1471 map->format.reg_bytes +
1472 map->format.pad_bytes,
1473 val, val_len, async);
1474 else
1475 ret = map->bus->async_write(map->bus_context,
1476 async->work_buf,
1477 map->format.reg_bytes +
1478 map->format.pad_bytes +
1479 val_len, NULL, 0, async);
1480
1481 if (ret != 0) {
1482 dev_err(map->dev, "Failed to schedule write: %d\n",
1483 ret);
1484
1485 spin_lock_irqsave(&map->async_lock, flags);
1486 list_move(&async->list, &map->async_free);
1487 spin_unlock_irqrestore(&map->async_lock, flags);
1488 }
1489
1490 return ret;
1491 }
1492
1493 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1494
1495 /* If we're doing a single register write we can probably just
1496 * send the work_buf directly, otherwise try to do a gather
1497 * write.
1498 */
1499 if (val == work_val)
1500 ret = map->bus->write(map->bus_context, map->work_buf,
1501 map->format.reg_bytes +
1502 map->format.pad_bytes +
1503 val_len);
1504 else if (map->bus->gather_write)
1505 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1506 map->format.reg_bytes +
1507 map->format.pad_bytes,
1508 val, val_len);
1509
1510 /* If that didn't work fall back on linearising by hand. */
1511 if (ret == -ENOTSUPP) {
1512 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1513 buf = kzalloc(len, GFP_KERNEL);
1514 if (!buf)
1515 return -ENOMEM;
1516
1517 memcpy(buf, map->work_buf, map->format.reg_bytes);
1518 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1519 val, val_len);
1520 ret = map->bus->write(map->bus_context, buf, len);
1521
1522 kfree(buf);
1523 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1524 /* regcache_drop_region() takes lock that we already have,
1525 * thus call map->cache_ops->drop() directly
1526 */
1527 if (map->cache_ops && map->cache_ops->drop)
1528 map->cache_ops->drop(map, reg, reg + 1);
1529 }
1530
1531 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1532
1533 return ret;
1534}
1535
1536/**
1537 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1538 *
1539 * @map: Map to check.
1540 */
1541bool regmap_can_raw_write(struct regmap *map)
1542{
1543 return map->bus && map->bus->write && map->format.format_val &&
1544 map->format.format_reg;
1545}
1546EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1547
1548/**
1549 * regmap_get_raw_read_max - Get the maximum size we can read
1550 *
1551 * @map: Map to check.
1552 */
1553size_t regmap_get_raw_read_max(struct regmap *map)
1554{
1555 return map->max_raw_read;
1556}
1557EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1558
1559/**
1560 * regmap_get_raw_write_max - Get the maximum size we can read
1561 *
1562 * @map: Map to check.
1563 */
1564size_t regmap_get_raw_write_max(struct regmap *map)
1565{
1566 return map->max_raw_write;
1567}
1568EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1569
1570static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1571 unsigned int val)
1572{
1573 int ret;
1574 struct regmap_range_node *range;
1575 struct regmap *map = context;
1576
1577 WARN_ON(!map->bus || !map->format.format_write);
1578
1579 range = _regmap_range_lookup(map, reg);
1580 if (range) {
1581 ret = _regmap_select_page(map, ®, range, 1);
1582 if (ret != 0)
1583 return ret;
1584 }
1585
1586 map->format.format_write(map, reg, val);
1587
1588 trace_regmap_hw_write_start(map, reg, 1);
1589
1590 ret = map->bus->write(map->bus_context, map->work_buf,
1591 map->format.buf_size);
1592
1593 trace_regmap_hw_write_done(map, reg, 1);
1594
1595 return ret;
1596}
1597
1598static int _regmap_bus_reg_write(void *context, unsigned int reg,
1599 unsigned int val)
1600{
1601 struct regmap *map = context;
1602
1603 return map->bus->reg_write(map->bus_context, reg, val);
1604}
1605
1606static int _regmap_bus_raw_write(void *context, unsigned int reg,
1607 unsigned int val)
1608{
1609 struct regmap *map = context;
1610
1611 WARN_ON(!map->bus || !map->format.format_val);
1612
1613 map->format.format_val(map->work_buf + map->format.reg_bytes
1614 + map->format.pad_bytes, val, 0);
1615 return _regmap_raw_write(map, reg,
1616 map->work_buf +
1617 map->format.reg_bytes +
1618 map->format.pad_bytes,
1619 map->format.val_bytes);
1620}
1621
1622static inline void *_regmap_map_get_context(struct regmap *map)
1623{
1624 return (map->bus) ? map : map->bus_context;
1625}
1626
1627int _regmap_write(struct regmap *map, unsigned int reg,
1628 unsigned int val)
1629{
1630 int ret;
1631 void *context = _regmap_map_get_context(map);
1632
1633 if (!regmap_writeable(map, reg))
1634 return -EIO;
1635
1636 if (!map->cache_bypass && !map->defer_caching) {
1637 ret = regcache_write(map, reg, val);
1638 if (ret != 0)
1639 return ret;
1640 if (map->cache_only) {
1641 map->cache_dirty = true;
1642 return 0;
1643 }
1644 }
1645
1646#ifdef LOG_DEVICE
1647 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1648 dev_info(map->dev, "%x <= %x\n", reg, val);
1649#endif
1650
1651 trace_regmap_reg_write(map, reg, val);
1652
1653 return map->reg_write(context, reg, val);
1654}
1655
1656/**
1657 * regmap_write(): Write a value to a single register
1658 *
1659 * @map: Register map to write to
1660 * @reg: Register to write to
1661 * @val: Value to be written
1662 *
1663 * A value of zero will be returned on success, a negative errno will
1664 * be returned in error cases.
1665 */
1666int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1667{
1668 int ret;
1669
1670 if (!IS_ALIGNED(reg, map->reg_stride))
1671 return -EINVAL;
1672
1673 map->lock(map->lock_arg);
1674
1675 ret = _regmap_write(map, reg, val);
1676
1677 map->unlock(map->lock_arg);
1678
1679 return ret;
1680}
1681EXPORT_SYMBOL_GPL(regmap_write);
1682
1683/**
1684 * regmap_write_async(): Write a value to a single register asynchronously
1685 *
1686 * @map: Register map to write to
1687 * @reg: Register to write to
1688 * @val: Value to be written
1689 *
1690 * A value of zero will be returned on success, a negative errno will
1691 * be returned in error cases.
1692 */
1693int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1694{
1695 int ret;
1696
1697 if (!IS_ALIGNED(reg, map->reg_stride))
1698 return -EINVAL;
1699
1700 map->lock(map->lock_arg);
1701
1702 map->async = true;
1703
1704 ret = _regmap_write(map, reg, val);
1705
1706 map->async = false;
1707
1708 map->unlock(map->lock_arg);
1709
1710 return ret;
1711}
1712EXPORT_SYMBOL_GPL(regmap_write_async);
1713
1714/**
1715 * regmap_raw_write(): Write raw values to one or more registers
1716 *
1717 * @map: Register map to write to
1718 * @reg: Initial register to write to
1719 * @val: Block of data to be written, laid out for direct transmission to the
1720 * device
1721 * @val_len: Length of data pointed to by val.
1722 *
1723 * This function is intended to be used for things like firmware
1724 * download where a large block of data needs to be transferred to the
1725 * device. No formatting will be done on the data provided.
1726 *
1727 * A value of zero will be returned on success, a negative errno will
1728 * be returned in error cases.
1729 */
1730int regmap_raw_write(struct regmap *map, unsigned int reg,
1731 const void *val, size_t val_len)
1732{
1733 int ret;
1734
1735 if (!regmap_can_raw_write(map))
1736 return -EINVAL;
1737 if (val_len % map->format.val_bytes)
1738 return -EINVAL;
1739 if (map->max_raw_write && map->max_raw_write > val_len)
1740 return -E2BIG;
1741
1742 map->lock(map->lock_arg);
1743
1744 ret = _regmap_raw_write(map, reg, val, val_len);
1745
1746 map->unlock(map->lock_arg);
1747
1748 return ret;
1749}
1750EXPORT_SYMBOL_GPL(regmap_raw_write);
1751
1752/**
1753 * regmap_field_update_bits_base():
1754 * Perform a read/modify/write cycle on the register field
1755 * with change, async, force option
1756 *
1757 * @field: Register field to write to
1758 * @mask: Bitmask to change
1759 * @val: Value to be written
1760 * @change: Boolean indicating if a write was done
1761 * @async: Boolean indicating asynchronously
1762 * @force: Boolean indicating use force update
1763 *
1764 * A value of zero will be returned on success, a negative errno will
1765 * be returned in error cases.
1766 */
1767int regmap_field_update_bits_base(struct regmap_field *field,
1768 unsigned int mask, unsigned int val,
1769 bool *change, bool async, bool force)
1770{
1771 mask = (mask << field->shift) & field->mask;
1772
1773 return regmap_update_bits_base(field->regmap, field->reg,
1774 mask, val << field->shift,
1775 change, async, force);
1776}
1777EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1778
1779/**
1780 * regmap_fields_update_bits_base():
1781 * Perform a read/modify/write cycle on the register field
1782 * with change, async, force option
1783 *
1784 * @field: Register field to write to
1785 * @id: port ID
1786 * @mask: Bitmask to change
1787 * @val: Value to be written
1788 * @change: Boolean indicating if a write was done
1789 * @async: Boolean indicating asynchronously
1790 * @force: Boolean indicating use force update
1791 *
1792 * A value of zero will be returned on success, a negative errno will
1793 * be returned in error cases.
1794 */
1795int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1796 unsigned int mask, unsigned int val,
1797 bool *change, bool async, bool force)
1798{
1799 if (id >= field->id_size)
1800 return -EINVAL;
1801
1802 mask = (mask << field->shift) & field->mask;
1803
1804 return regmap_update_bits_base(field->regmap,
1805 field->reg + (field->id_offset * id),
1806 mask, val << field->shift,
1807 change, async, force);
1808}
1809EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1810
1811/*
1812 * regmap_bulk_write(): Write multiple registers to the device
1813 *
1814 * @map: Register map to write to
1815 * @reg: First register to be write from
1816 * @val: Block of data to be written, in native register size for device
1817 * @val_count: Number of registers to write
1818 *
1819 * This function is intended to be used for writing a large block of
1820 * data to the device either in single transfer or multiple transfer.
1821 *
1822 * A value of zero will be returned on success, a negative errno will
1823 * be returned in error cases.
1824 */
1825int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1826 size_t val_count)
1827{
1828 int ret = 0, i;
1829 size_t val_bytes = map->format.val_bytes;
1830 size_t total_size = val_bytes * val_count;
1831
1832 if (!IS_ALIGNED(reg, map->reg_stride))
1833 return -EINVAL;
1834
1835 /*
1836 * Some devices don't support bulk write, for
1837 * them we have a series of single write operations in the first two if
1838 * blocks.
1839 *
1840 * The first if block is used for memory mapped io. It does not allow
1841 * val_bytes of 3 for example.
1842 * The second one is for busses that do not provide raw I/O.
1843 * The third one is used for busses which do not have these limitations
1844 * and can write arbitrary value lengths.
1845 */
1846 if (!map->bus) {
1847 map->lock(map->lock_arg);
1848 for (i = 0; i < val_count; i++) {
1849 unsigned int ival;
1850
1851 switch (val_bytes) {
1852 case 1:
1853 ival = *(u8 *)(val + (i * val_bytes));
1854 break;
1855 case 2:
1856 ival = *(u16 *)(val + (i * val_bytes));
1857 break;
1858 case 4:
1859 ival = *(u32 *)(val + (i * val_bytes));
1860 break;
1861#ifdef CONFIG_64BIT
1862 case 8:
1863 ival = *(u64 *)(val + (i * val_bytes));
1864 break;
1865#endif
1866 default:
1867 ret = -EINVAL;
1868 goto out;
1869 }
1870
1871 ret = _regmap_write(map,
1872 reg + regmap_get_offset(map, i),
1873 ival);
1874 if (ret != 0)
1875 goto out;
1876 }
1877out:
1878 map->unlock(map->lock_arg);
1879 } else if (map->bus && !map->format.parse_inplace) {
1880 const u8 *u8 = val;
1881 const u16 *u16 = val;
1882 const u32 *u32 = val;
1883 unsigned int ival;
1884
1885 for (i = 0; i < val_count; i++) {
1886 switch (map->format.val_bytes) {
1887 case 4:
1888 ival = u32[i];
1889 break;
1890 case 2:
1891 ival = u16[i];
1892 break;
1893 case 1:
1894 ival = u8[i];
1895 break;
1896 default:
1897 return -EINVAL;
1898 }
1899
1900 ret = regmap_write(map, reg + (i * map->reg_stride),
1901 ival);
1902 if (ret)
1903 return ret;
1904 }
1905 } else if (map->use_single_write ||
1906 (map->max_raw_write && map->max_raw_write < total_size)) {
1907 int chunk_stride = map->reg_stride;
1908 size_t chunk_size = val_bytes;
1909 size_t chunk_count = val_count;
1910
1911 if (!map->use_single_write) {
1912 chunk_size = map->max_raw_write;
1913 if (chunk_size % val_bytes)
1914 chunk_size -= chunk_size % val_bytes;
1915 chunk_count = total_size / chunk_size;
1916 chunk_stride *= chunk_size / val_bytes;
1917 }
1918
1919 map->lock(map->lock_arg);
1920 /* Write as many bytes as possible with chunk_size */
1921 for (i = 0; i < chunk_count; i++) {
1922 ret = _regmap_raw_write(map,
1923 reg + (i * chunk_stride),
1924 val + (i * chunk_size),
1925 chunk_size);
1926 if (ret)
1927 break;
1928 }
1929
1930 /* Write remaining bytes */
1931 if (!ret && chunk_size * i < total_size) {
1932 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1933 val + (i * chunk_size),
1934 total_size - i * chunk_size);
1935 }
1936 map->unlock(map->lock_arg);
1937 } else {
1938 void *wval;
1939
1940 if (!val_count)
1941 return -EINVAL;
1942
1943 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1944 if (!wval) {
1945 dev_err(map->dev, "Error in memory allocation\n");
1946 return -ENOMEM;
1947 }
1948 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1949 map->format.parse_inplace(wval + i);
1950
1951 map->lock(map->lock_arg);
1952 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1953 map->unlock(map->lock_arg);
1954
1955 kfree(wval);
1956 }
1957 return ret;
1958}
1959EXPORT_SYMBOL_GPL(regmap_bulk_write);
1960
1961/*
1962 * _regmap_raw_multi_reg_write()
1963 *
1964 * the (register,newvalue) pairs in regs have not been formatted, but
1965 * they are all in the same page and have been changed to being page
1966 * relative. The page register has been written if that was necessary.
1967 */
1968static int _regmap_raw_multi_reg_write(struct regmap *map,
1969 const struct reg_sequence *regs,
1970 size_t num_regs)
1971{
1972 int ret;
1973 void *buf;
1974 int i;
1975 u8 *u8;
1976 size_t val_bytes = map->format.val_bytes;
1977 size_t reg_bytes = map->format.reg_bytes;
1978 size_t pad_bytes = map->format.pad_bytes;
1979 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1980 size_t len = pair_size * num_regs;
1981
1982 if (!len)
1983 return -EINVAL;
1984
1985 buf = kzalloc(len, GFP_KERNEL);
1986 if (!buf)
1987 return -ENOMEM;
1988
1989 /* We have to linearise by hand. */
1990
1991 u8 = buf;
1992
1993 for (i = 0; i < num_regs; i++) {
1994 unsigned int reg = regs[i].reg;
1995 unsigned int val = regs[i].def;
1996 trace_regmap_hw_write_start(map, reg, 1);
1997 map->format.format_reg(u8, reg, map->reg_shift);
1998 u8 += reg_bytes + pad_bytes;
1999 map->format.format_val(u8, val, 0);
2000 u8 += val_bytes;
2001 }
2002 u8 = buf;
2003 *u8 |= map->write_flag_mask;
2004
2005 ret = map->bus->write(map->bus_context, buf, len);
2006
2007 kfree(buf);
2008
2009 for (i = 0; i < num_regs; i++) {
2010 int reg = regs[i].reg;
2011 trace_regmap_hw_write_done(map, reg, 1);
2012 }
2013 return ret;
2014}
2015
2016static unsigned int _regmap_register_page(struct regmap *map,
2017 unsigned int reg,
2018 struct regmap_range_node *range)
2019{
2020 unsigned int win_page = (reg - range->range_min) / range->window_len;
2021
2022 return win_page;
2023}
2024
2025static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2026 struct reg_sequence *regs,
2027 size_t num_regs)
2028{
2029 int ret;
2030 int i, n;
2031 struct reg_sequence *base;
2032 unsigned int this_page = 0;
2033 unsigned int page_change = 0;
2034 /*
2035 * the set of registers are not neccessarily in order, but
2036 * since the order of write must be preserved this algorithm
2037 * chops the set each time the page changes. This also applies
2038 * if there is a delay required at any point in the sequence.
2039 */
2040 base = regs;
2041 for (i = 0, n = 0; i < num_regs; i++, n++) {
2042 unsigned int reg = regs[i].reg;
2043 struct regmap_range_node *range;
2044
2045 range = _regmap_range_lookup(map, reg);
2046 if (range) {
2047 unsigned int win_page = _regmap_register_page(map, reg,
2048 range);
2049
2050 if (i == 0)
2051 this_page = win_page;
2052 if (win_page != this_page) {
2053 this_page = win_page;
2054 page_change = 1;
2055 }
2056 }
2057
2058 /* If we have both a page change and a delay make sure to
2059 * write the regs and apply the delay before we change the
2060 * page.
2061 */
2062
2063 if (page_change || regs[i].delay_us) {
2064
2065 /* For situations where the first write requires
2066 * a delay we need to make sure we don't call
2067 * raw_multi_reg_write with n=0
2068 * This can't occur with page breaks as we
2069 * never write on the first iteration
2070 */
2071 if (regs[i].delay_us && i == 0)
2072 n = 1;
2073
2074 ret = _regmap_raw_multi_reg_write(map, base, n);
2075 if (ret != 0)
2076 return ret;
2077
2078 if (regs[i].delay_us)
2079 udelay(regs[i].delay_us);
2080
2081 base += n;
2082 n = 0;
2083
2084 if (page_change) {
2085 ret = _regmap_select_page(map,
2086 &base[n].reg,
2087 range, 1);
2088 if (ret != 0)
2089 return ret;
2090
2091 page_change = 0;
2092 }
2093
2094 }
2095
2096 }
2097 if (n > 0)
2098 return _regmap_raw_multi_reg_write(map, base, n);
2099 return 0;
2100}
2101
2102static int _regmap_multi_reg_write(struct regmap *map,
2103 const struct reg_sequence *regs,
2104 size_t num_regs)
2105{
2106 int i;
2107 int ret;
2108
2109 if (!map->can_multi_write) {
2110 for (i = 0; i < num_regs; i++) {
2111 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2112 if (ret != 0)
2113 return ret;
2114
2115 if (regs[i].delay_us)
2116 udelay(regs[i].delay_us);
2117 }
2118 return 0;
2119 }
2120
2121 if (!map->format.parse_inplace)
2122 return -EINVAL;
2123
2124 if (map->writeable_reg)
2125 for (i = 0; i < num_regs; i++) {
2126 int reg = regs[i].reg;
2127 if (!map->writeable_reg(map->dev, reg))
2128 return -EINVAL;
2129 if (!IS_ALIGNED(reg, map->reg_stride))
2130 return -EINVAL;
2131 }
2132
2133 if (!map->cache_bypass) {
2134 for (i = 0; i < num_regs; i++) {
2135 unsigned int val = regs[i].def;
2136 unsigned int reg = regs[i].reg;
2137 ret = regcache_write(map, reg, val);
2138 if (ret) {
2139 dev_err(map->dev,
2140 "Error in caching of register: %x ret: %d\n",
2141 reg, ret);
2142 return ret;
2143 }
2144 }
2145 if (map->cache_only) {
2146 map->cache_dirty = true;
2147 return 0;
2148 }
2149 }
2150
2151 WARN_ON(!map->bus);
2152
2153 for (i = 0; i < num_regs; i++) {
2154 unsigned int reg = regs[i].reg;
2155 struct regmap_range_node *range;
2156
2157 /* Coalesce all the writes between a page break or a delay
2158 * in a sequence
2159 */
2160 range = _regmap_range_lookup(map, reg);
2161 if (range || regs[i].delay_us) {
2162 size_t len = sizeof(struct reg_sequence)*num_regs;
2163 struct reg_sequence *base = kmemdup(regs, len,
2164 GFP_KERNEL);
2165 if (!base)
2166 return -ENOMEM;
2167 ret = _regmap_range_multi_paged_reg_write(map, base,
2168 num_regs);
2169 kfree(base);
2170
2171 return ret;
2172 }
2173 }
2174 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2175}
2176
2177/*
2178 * regmap_multi_reg_write(): Write multiple registers to the device
2179 *
2180 * where the set of register,value pairs are supplied in any order,
2181 * possibly not all in a single range.
2182 *
2183 * @map: Register map to write to
2184 * @regs: Array of structures containing register,value to be written
2185 * @num_regs: Number of registers to write
2186 *
2187 * The 'normal' block write mode will send ultimately send data on the
2188 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2189 * addressed. However, this alternative block multi write mode will send
2190 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2191 * must of course support the mode.
2192 *
2193 * A value of zero will be returned on success, a negative errno will be
2194 * returned in error cases.
2195 */
2196int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2197 int num_regs)
2198{
2199 int ret;
2200
2201 map->lock(map->lock_arg);
2202
2203 ret = _regmap_multi_reg_write(map, regs, num_regs);
2204
2205 map->unlock(map->lock_arg);
2206
2207 return ret;
2208}
2209EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2210
2211/*
2212 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2213 * device but not the cache
2214 *
2215 * where the set of register are supplied in any order
2216 *
2217 * @map: Register map to write to
2218 * @regs: Array of structures containing register,value to be written
2219 * @num_regs: Number of registers to write
2220 *
2221 * This function is intended to be used for writing a large block of data
2222 * atomically to the device in single transfer for those I2C client devices
2223 * that implement this alternative block write mode.
2224 *
2225 * A value of zero will be returned on success, a negative errno will
2226 * be returned in error cases.
2227 */
2228int regmap_multi_reg_write_bypassed(struct regmap *map,
2229 const struct reg_sequence *regs,
2230 int num_regs)
2231{
2232 int ret;
2233 bool bypass;
2234
2235 map->lock(map->lock_arg);
2236
2237 bypass = map->cache_bypass;
2238 map->cache_bypass = true;
2239
2240 ret = _regmap_multi_reg_write(map, regs, num_regs);
2241
2242 map->cache_bypass = bypass;
2243
2244 map->unlock(map->lock_arg);
2245
2246 return ret;
2247}
2248EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2249
2250/**
2251 * regmap_raw_write_async(): Write raw values to one or more registers
2252 * asynchronously
2253 *
2254 * @map: Register map to write to
2255 * @reg: Initial register to write to
2256 * @val: Block of data to be written, laid out for direct transmission to the
2257 * device. Must be valid until regmap_async_complete() is called.
2258 * @val_len: Length of data pointed to by val.
2259 *
2260 * This function is intended to be used for things like firmware
2261 * download where a large block of data needs to be transferred to the
2262 * device. No formatting will be done on the data provided.
2263 *
2264 * If supported by the underlying bus the write will be scheduled
2265 * asynchronously, helping maximise I/O speed on higher speed buses
2266 * like SPI. regmap_async_complete() can be called to ensure that all
2267 * asynchrnous writes have been completed.
2268 *
2269 * A value of zero will be returned on success, a negative errno will
2270 * be returned in error cases.
2271 */
2272int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2273 const void *val, size_t val_len)
2274{
2275 int ret;
2276
2277 if (val_len % map->format.val_bytes)
2278 return -EINVAL;
2279 if (!IS_ALIGNED(reg, map->reg_stride))
2280 return -EINVAL;
2281
2282 map->lock(map->lock_arg);
2283
2284 map->async = true;
2285
2286 ret = _regmap_raw_write(map, reg, val, val_len);
2287
2288 map->async = false;
2289
2290 map->unlock(map->lock_arg);
2291
2292 return ret;
2293}
2294EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2295
2296static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2297 unsigned int val_len)
2298{
2299 struct regmap_range_node *range;
2300 int ret;
2301
2302 WARN_ON(!map->bus);
2303
2304 if (!map->bus || !map->bus->read)
2305 return -EINVAL;
2306
2307 range = _regmap_range_lookup(map, reg);
2308 if (range) {
2309 ret = _regmap_select_page(map, ®, range,
2310 val_len / map->format.val_bytes);
2311 if (ret != 0)
2312 return ret;
2313 }
2314
2315 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2316 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2317 map->read_flag_mask);
2318 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2319
2320 ret = map->bus->read(map->bus_context, map->work_buf,
2321 map->format.reg_bytes + map->format.pad_bytes,
2322 val, val_len);
2323
2324 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2325
2326 return ret;
2327}
2328
2329static int _regmap_bus_reg_read(void *context, unsigned int reg,
2330 unsigned int *val)
2331{
2332 struct regmap *map = context;
2333
2334 return map->bus->reg_read(map->bus_context, reg, val);
2335}
2336
2337static int _regmap_bus_read(void *context, unsigned int reg,
2338 unsigned int *val)
2339{
2340 int ret;
2341 struct regmap *map = context;
2342
2343 if (!map->format.parse_val)
2344 return -EINVAL;
2345
2346 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2347 if (ret == 0)
2348 *val = map->format.parse_val(map->work_buf);
2349
2350 return ret;
2351}
2352
2353static int _regmap_read(struct regmap *map, unsigned int reg,
2354 unsigned int *val)
2355{
2356 int ret;
2357 void *context = _regmap_map_get_context(map);
2358
2359 if (!map->cache_bypass) {
2360 ret = regcache_read(map, reg, val);
2361 if (ret == 0)
2362 return 0;
2363 }
2364
2365 if (map->cache_only)
2366 return -EBUSY;
2367
2368 if (!regmap_readable(map, reg))
2369 return -EIO;
2370
2371 ret = map->reg_read(context, reg, val);
2372 if (ret == 0) {
2373#ifdef LOG_DEVICE
2374 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2375 dev_info(map->dev, "%x => %x\n", reg, *val);
2376#endif
2377
2378 trace_regmap_reg_read(map, reg, *val);
2379
2380 if (!map->cache_bypass)
2381 regcache_write(map, reg, *val);
2382 }
2383
2384 return ret;
2385}
2386
2387/**
2388 * regmap_read(): Read a value from a single register
2389 *
2390 * @map: Register map to read from
2391 * @reg: Register to be read from
2392 * @val: Pointer to store read value
2393 *
2394 * A value of zero will be returned on success, a negative errno will
2395 * be returned in error cases.
2396 */
2397int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2398{
2399 int ret;
2400
2401 if (!IS_ALIGNED(reg, map->reg_stride))
2402 return -EINVAL;
2403
2404 map->lock(map->lock_arg);
2405
2406 ret = _regmap_read(map, reg, val);
2407
2408 map->unlock(map->lock_arg);
2409
2410 return ret;
2411}
2412EXPORT_SYMBOL_GPL(regmap_read);
2413
2414/**
2415 * regmap_raw_read(): Read raw data from the device
2416 *
2417 * @map: Register map to read from
2418 * @reg: First register to be read from
2419 * @val: Pointer to store read value
2420 * @val_len: Size of data to read
2421 *
2422 * A value of zero will be returned on success, a negative errno will
2423 * be returned in error cases.
2424 */
2425int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2426 size_t val_len)
2427{
2428 size_t val_bytes = map->format.val_bytes;
2429 size_t val_count = val_len / val_bytes;
2430 unsigned int v;
2431 int ret, i;
2432
2433 if (!map->bus)
2434 return -EINVAL;
2435 if (val_len % map->format.val_bytes)
2436 return -EINVAL;
2437 if (!IS_ALIGNED(reg, map->reg_stride))
2438 return -EINVAL;
2439 if (val_count == 0)
2440 return -EINVAL;
2441
2442 map->lock(map->lock_arg);
2443
2444 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2445 map->cache_type == REGCACHE_NONE) {
2446 if (!map->bus->read) {
2447 ret = -ENOTSUPP;
2448 goto out;
2449 }
2450 if (map->max_raw_read && map->max_raw_read < val_len) {
2451 ret = -E2BIG;
2452 goto out;
2453 }
2454
2455 /* Physical block read if there's no cache involved */
2456 ret = _regmap_raw_read(map, reg, val, val_len);
2457
2458 } else {
2459 /* Otherwise go word by word for the cache; should be low
2460 * cost as we expect to hit the cache.
2461 */
2462 for (i = 0; i < val_count; i++) {
2463 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2464 &v);
2465 if (ret != 0)
2466 goto out;
2467
2468 map->format.format_val(val + (i * val_bytes), v, 0);
2469 }
2470 }
2471
2472 out:
2473 map->unlock(map->lock_arg);
2474
2475 return ret;
2476}
2477EXPORT_SYMBOL_GPL(regmap_raw_read);
2478
2479/**
2480 * regmap_field_read(): Read a value to a single register field
2481 *
2482 * @field: Register field to read from
2483 * @val: Pointer to store read value
2484 *
2485 * A value of zero will be returned on success, a negative errno will
2486 * be returned in error cases.
2487 */
2488int regmap_field_read(struct regmap_field *field, unsigned int *val)
2489{
2490 int ret;
2491 unsigned int reg_val;
2492 ret = regmap_read(field->regmap, field->reg, ®_val);
2493 if (ret != 0)
2494 return ret;
2495
2496 reg_val &= field->mask;
2497 reg_val >>= field->shift;
2498 *val = reg_val;
2499
2500 return ret;
2501}
2502EXPORT_SYMBOL_GPL(regmap_field_read);
2503
2504/**
2505 * regmap_fields_read(): Read a value to a single register field with port ID
2506 *
2507 * @field: Register field to read from
2508 * @id: port ID
2509 * @val: Pointer to store read value
2510 *
2511 * A value of zero will be returned on success, a negative errno will
2512 * be returned in error cases.
2513 */
2514int regmap_fields_read(struct regmap_field *field, unsigned int id,
2515 unsigned int *val)
2516{
2517 int ret;
2518 unsigned int reg_val;
2519
2520 if (id >= field->id_size)
2521 return -EINVAL;
2522
2523 ret = regmap_read(field->regmap,
2524 field->reg + (field->id_offset * id),
2525 ®_val);
2526 if (ret != 0)
2527 return ret;
2528
2529 reg_val &= field->mask;
2530 reg_val >>= field->shift;
2531 *val = reg_val;
2532
2533 return ret;
2534}
2535EXPORT_SYMBOL_GPL(regmap_fields_read);
2536
2537/**
2538 * regmap_bulk_read(): Read multiple registers from the device
2539 *
2540 * @map: Register map to read from
2541 * @reg: First register to be read from
2542 * @val: Pointer to store read value, in native register size for device
2543 * @val_count: Number of registers to read
2544 *
2545 * A value of zero will be returned on success, a negative errno will
2546 * be returned in error cases.
2547 */
2548int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2549 size_t val_count)
2550{
2551 int ret, i;
2552 size_t val_bytes = map->format.val_bytes;
2553 bool vol = regmap_volatile_range(map, reg, val_count);
2554
2555 if (!IS_ALIGNED(reg, map->reg_stride))
2556 return -EINVAL;
2557
2558 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2559 /*
2560 * Some devices does not support bulk read, for
2561 * them we have a series of single read operations.
2562 */
2563 size_t total_size = val_bytes * val_count;
2564
2565 if (!map->use_single_read &&
2566 (!map->max_raw_read || map->max_raw_read > total_size)) {
2567 ret = regmap_raw_read(map, reg, val,
2568 val_bytes * val_count);
2569 if (ret != 0)
2570 return ret;
2571 } else {
2572 /*
2573 * Some devices do not support bulk read or do not
2574 * support large bulk reads, for them we have a series
2575 * of read operations.
2576 */
2577 int chunk_stride = map->reg_stride;
2578 size_t chunk_size = val_bytes;
2579 size_t chunk_count = val_count;
2580
2581 if (!map->use_single_read) {
2582 chunk_size = map->max_raw_read;
2583 if (chunk_size % val_bytes)
2584 chunk_size -= chunk_size % val_bytes;
2585 chunk_count = total_size / chunk_size;
2586 chunk_stride *= chunk_size / val_bytes;
2587 }
2588
2589 /* Read bytes that fit into a multiple of chunk_size */
2590 for (i = 0; i < chunk_count; i++) {
2591 ret = regmap_raw_read(map,
2592 reg + (i * chunk_stride),
2593 val + (i * chunk_size),
2594 chunk_size);
2595 if (ret != 0)
2596 return ret;
2597 }
2598
2599 /* Read remaining bytes */
2600 if (chunk_size * i < total_size) {
2601 ret = regmap_raw_read(map,
2602 reg + (i * chunk_stride),
2603 val + (i * chunk_size),
2604 total_size - i * chunk_size);
2605 if (ret != 0)
2606 return ret;
2607 }
2608 }
2609
2610 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2611 map->format.parse_inplace(val + i);
2612 } else {
2613 for (i = 0; i < val_count; i++) {
2614 unsigned int ival;
2615 ret = regmap_read(map, reg + regmap_get_offset(map, i),
2616 &ival);
2617 if (ret != 0)
2618 return ret;
2619
2620 if (map->format.format_val) {
2621 map->format.format_val(val + (i * val_bytes), ival, 0);
2622 } else {
2623 /* Devices providing read and write
2624 * operations can use the bulk I/O
2625 * functions if they define a val_bytes,
2626 * we assume that the values are native
2627 * endian.
2628 */
2629#ifdef CONFIG_64BIT
2630 u64 *u64 = val;
2631#endif
2632 u32 *u32 = val;
2633 u16 *u16 = val;
2634 u8 *u8 = val;
2635
2636 switch (map->format.val_bytes) {
2637#ifdef CONFIG_64BIT
2638 case 8:
2639 u64[i] = ival;
2640 break;
2641#endif
2642 case 4:
2643 u32[i] = ival;
2644 break;
2645 case 2:
2646 u16[i] = ival;
2647 break;
2648 case 1:
2649 u8[i] = ival;
2650 break;
2651 default:
2652 return -EINVAL;
2653 }
2654 }
2655 }
2656 }
2657
2658 return 0;
2659}
2660EXPORT_SYMBOL_GPL(regmap_bulk_read);
2661
2662static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2663 unsigned int mask, unsigned int val,
2664 bool *change, bool force_write)
2665{
2666 int ret;
2667 unsigned int tmp, orig;
2668
2669 if (change)
2670 *change = false;
2671
2672 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2673 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2674 if (ret == 0 && change)
2675 *change = true;
2676 } else {
2677 ret = _regmap_read(map, reg, &orig);
2678 if (ret != 0)
2679 return ret;
2680
2681 tmp = orig & ~mask;
2682 tmp |= val & mask;
2683
2684 if (force_write || (tmp != orig)) {
2685 ret = _regmap_write(map, reg, tmp);
2686 if (ret == 0 && change)
2687 *change = true;
2688 }
2689 }
2690
2691 return ret;
2692}
2693
2694/**
2695 * regmap_update_bits_base:
2696 * Perform a read/modify/write cycle on the
2697 * register map with change, async, force option
2698 *
2699 * @map: Register map to update
2700 * @reg: Register to update
2701 * @mask: Bitmask to change
2702 * @val: New value for bitmask
2703 * @change: Boolean indicating if a write was done
2704 * @async: Boolean indicating asynchronously
2705 * @force: Boolean indicating use force update
2706 *
2707 * if async was true,
2708 * With most buses the read must be done synchronously so this is most
2709 * useful for devices with a cache which do not need to interact with
2710 * the hardware to determine the current register value.
2711 *
2712 * Returns zero for success, a negative number on error.
2713 */
2714int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2715 unsigned int mask, unsigned int val,
2716 bool *change, bool async, bool force)
2717{
2718 int ret;
2719
2720 map->lock(map->lock_arg);
2721
2722 map->async = async;
2723
2724 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2725
2726 map->async = false;
2727
2728 map->unlock(map->lock_arg);
2729
2730 return ret;
2731}
2732EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2733
2734void regmap_async_complete_cb(struct regmap_async *async, int ret)
2735{
2736 struct regmap *map = async->map;
2737 bool wake;
2738
2739 trace_regmap_async_io_complete(map);
2740
2741 spin_lock(&map->async_lock);
2742 list_move(&async->list, &map->async_free);
2743 wake = list_empty(&map->async_list);
2744
2745 if (ret != 0)
2746 map->async_ret = ret;
2747
2748 spin_unlock(&map->async_lock);
2749
2750 if (wake)
2751 wake_up(&map->async_waitq);
2752}
2753EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2754
2755static int regmap_async_is_done(struct regmap *map)
2756{
2757 unsigned long flags;
2758 int ret;
2759
2760 spin_lock_irqsave(&map->async_lock, flags);
2761 ret = list_empty(&map->async_list);
2762 spin_unlock_irqrestore(&map->async_lock, flags);
2763
2764 return ret;
2765}
2766
2767/**
2768 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2769 *
2770 * @map: Map to operate on.
2771 *
2772 * Blocks until any pending asynchronous I/O has completed. Returns
2773 * an error code for any failed I/O operations.
2774 */
2775int regmap_async_complete(struct regmap *map)
2776{
2777 unsigned long flags;
2778 int ret;
2779
2780 /* Nothing to do with no async support */
2781 if (!map->bus || !map->bus->async_write)
2782 return 0;
2783
2784 trace_regmap_async_complete_start(map);
2785
2786 wait_event(map->async_waitq, regmap_async_is_done(map));
2787
2788 spin_lock_irqsave(&map->async_lock, flags);
2789 ret = map->async_ret;
2790 map->async_ret = 0;
2791 spin_unlock_irqrestore(&map->async_lock, flags);
2792
2793 trace_regmap_async_complete_done(map);
2794
2795 return ret;
2796}
2797EXPORT_SYMBOL_GPL(regmap_async_complete);
2798
2799/**
2800 * regmap_register_patch: Register and apply register updates to be applied
2801 * on device initialistion
2802 *
2803 * @map: Register map to apply updates to.
2804 * @regs: Values to update.
2805 * @num_regs: Number of entries in regs.
2806 *
2807 * Register a set of register updates to be applied to the device
2808 * whenever the device registers are synchronised with the cache and
2809 * apply them immediately. Typically this is used to apply
2810 * corrections to be applied to the device defaults on startup, such
2811 * as the updates some vendors provide to undocumented registers.
2812 *
2813 * The caller must ensure that this function cannot be called
2814 * concurrently with either itself or regcache_sync().
2815 */
2816int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2817 int num_regs)
2818{
2819 struct reg_sequence *p;
2820 int ret;
2821 bool bypass;
2822
2823 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2824 num_regs))
2825 return 0;
2826
2827 p = krealloc(map->patch,
2828 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2829 GFP_KERNEL);
2830 if (p) {
2831 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2832 map->patch = p;
2833 map->patch_regs += num_regs;
2834 } else {
2835 return -ENOMEM;
2836 }
2837
2838 map->lock(map->lock_arg);
2839
2840 bypass = map->cache_bypass;
2841
2842 map->cache_bypass = true;
2843 map->async = true;
2844
2845 ret = _regmap_multi_reg_write(map, regs, num_regs);
2846
2847 map->async = false;
2848 map->cache_bypass = bypass;
2849
2850 map->unlock(map->lock_arg);
2851
2852 regmap_async_complete(map);
2853
2854 return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_register_patch);
2857
2858/*
2859 * regmap_get_val_bytes(): Report the size of a register value
2860 *
2861 * Report the size of a register value, mainly intended to for use by
2862 * generic infrastructure built on top of regmap.
2863 */
2864int regmap_get_val_bytes(struct regmap *map)
2865{
2866 if (map->format.format_write)
2867 return -EINVAL;
2868
2869 return map->format.val_bytes;
2870}
2871EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2872
2873/**
2874 * regmap_get_max_register(): Report the max register value
2875 *
2876 * Report the max register value, mainly intended to for use by
2877 * generic infrastructure built on top of regmap.
2878 */
2879int regmap_get_max_register(struct regmap *map)
2880{
2881 return map->max_register ? map->max_register : -EINVAL;
2882}
2883EXPORT_SYMBOL_GPL(regmap_get_max_register);
2884
2885/**
2886 * regmap_get_reg_stride(): Report the register address stride
2887 *
2888 * Report the register address stride, mainly intended to for use by
2889 * generic infrastructure built on top of regmap.
2890 */
2891int regmap_get_reg_stride(struct regmap *map)
2892{
2893 return map->reg_stride;
2894}
2895EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2896
2897int regmap_parse_val(struct regmap *map, const void *buf,
2898 unsigned int *val)
2899{
2900 if (!map->format.parse_val)
2901 return -EINVAL;
2902
2903 *val = map->format.parse_val(buf);
2904
2905 return 0;
2906}
2907EXPORT_SYMBOL_GPL(regmap_parse_val);
2908
2909static int __init regmap_initcall(void)
2910{
2911 regmap_debugfs_initcall();
2912
2913 return 0;
2914}
2915postcore_initcall(regmap_initcall);