Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v3.15
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
 
  18#include <linux/rbtree.h>
  19#include <linux/sched.h>
 
 
  20
  21#define CREATE_TRACE_POINTS
  22#include <trace/events/regmap.h>
  23
  24#include "internal.h"
  25
  26/*
  27 * Sometimes for failures during very early init the trace
  28 * infrastructure isn't available early enough to be used.  For this
  29 * sort of problem defining LOG_DEVICE will add printks for basic
  30 * register I/O on a specific device.
  31 */
  32#undef LOG_DEVICE
  33
  34static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  35			       unsigned int mask, unsigned int val,
  36			       bool *change);
  37
 
 
  38static int _regmap_bus_read(void *context, unsigned int reg,
  39			    unsigned int *val);
  40static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  41				       unsigned int val);
 
 
  42static int _regmap_bus_raw_write(void *context, unsigned int reg,
  43				 unsigned int val);
  44
  45bool regmap_reg_in_ranges(unsigned int reg,
  46			  const struct regmap_range *ranges,
  47			  unsigned int nranges)
  48{
  49	const struct regmap_range *r;
  50	int i;
  51
  52	for (i = 0, r = ranges; i < nranges; i++, r++)
  53		if (regmap_reg_in_range(reg, r))
  54			return true;
  55	return false;
  56}
  57EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  58
  59bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  60			      const struct regmap_access_table *table)
  61{
  62	/* Check "no ranges" first */
  63	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  64		return false;
  65
  66	/* In case zero "yes ranges" are supplied, any reg is OK */
  67	if (!table->n_yes_ranges)
  68		return true;
  69
  70	return regmap_reg_in_ranges(reg, table->yes_ranges,
  71				    table->n_yes_ranges);
  72}
  73EXPORT_SYMBOL_GPL(regmap_check_range_table);
  74
  75bool regmap_writeable(struct regmap *map, unsigned int reg)
  76{
  77	if (map->max_register && reg > map->max_register)
  78		return false;
  79
  80	if (map->writeable_reg)
  81		return map->writeable_reg(map->dev, reg);
  82
  83	if (map->wr_table)
  84		return regmap_check_range_table(map, reg, map->wr_table);
  85
  86	return true;
  87}
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89bool regmap_readable(struct regmap *map, unsigned int reg)
  90{
 
 
 
  91	if (map->max_register && reg > map->max_register)
  92		return false;
  93
  94	if (map->format.format_write)
  95		return false;
  96
  97	if (map->readable_reg)
  98		return map->readable_reg(map->dev, reg);
  99
 100	if (map->rd_table)
 101		return regmap_check_range_table(map, reg, map->rd_table);
 102
 103	return true;
 104}
 105
 106bool regmap_volatile(struct regmap *map, unsigned int reg)
 107{
 108	if (!regmap_readable(map, reg))
 109		return false;
 110
 111	if (map->volatile_reg)
 112		return map->volatile_reg(map->dev, reg);
 113
 114	if (map->volatile_table)
 115		return regmap_check_range_table(map, reg, map->volatile_table);
 116
 117	if (map->cache_ops)
 118		return false;
 119	else
 120		return true;
 121}
 122
 123bool regmap_precious(struct regmap *map, unsigned int reg)
 124{
 125	if (!regmap_readable(map, reg))
 126		return false;
 127
 128	if (map->precious_reg)
 129		return map->precious_reg(map->dev, reg);
 130
 131	if (map->precious_table)
 132		return regmap_check_range_table(map, reg, map->precious_table);
 133
 134	return false;
 135}
 136
 137static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 138	size_t num)
 139{
 140	unsigned int i;
 141
 142	for (i = 0; i < num; i++)
 143		if (!regmap_volatile(map, reg + i))
 144			return false;
 145
 146	return true;
 147}
 148
 149static void regmap_format_2_6_write(struct regmap *map,
 150				     unsigned int reg, unsigned int val)
 151{
 152	u8 *out = map->work_buf;
 153
 154	*out = (reg << 6) | val;
 155}
 156
 157static void regmap_format_4_12_write(struct regmap *map,
 158				     unsigned int reg, unsigned int val)
 159{
 160	__be16 *out = map->work_buf;
 161	*out = cpu_to_be16((reg << 12) | val);
 162}
 163
 164static void regmap_format_7_9_write(struct regmap *map,
 165				    unsigned int reg, unsigned int val)
 166{
 167	__be16 *out = map->work_buf;
 168	*out = cpu_to_be16((reg << 9) | val);
 169}
 170
 171static void regmap_format_10_14_write(struct regmap *map,
 172				    unsigned int reg, unsigned int val)
 173{
 174	u8 *out = map->work_buf;
 175
 176	out[2] = val;
 177	out[1] = (val >> 8) | (reg << 6);
 178	out[0] = reg >> 2;
 179}
 180
 181static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 182{
 183	u8 *b = buf;
 184
 185	b[0] = val << shift;
 186}
 187
 188static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 189{
 190	__be16 *b = buf;
 191
 192	b[0] = cpu_to_be16(val << shift);
 193}
 194
 
 
 
 
 
 
 
 195static void regmap_format_16_native(void *buf, unsigned int val,
 196				    unsigned int shift)
 197{
 198	*(u16 *)buf = val << shift;
 199}
 200
 201static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 202{
 203	u8 *b = buf;
 204
 205	val <<= shift;
 206
 207	b[0] = val >> 16;
 208	b[1] = val >> 8;
 209	b[2] = val;
 210}
 211
 212static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 213{
 214	__be32 *b = buf;
 215
 216	b[0] = cpu_to_be32(val << shift);
 217}
 218
 
 
 
 
 
 
 
 219static void regmap_format_32_native(void *buf, unsigned int val,
 220				    unsigned int shift)
 221{
 222	*(u32 *)buf = val << shift;
 223}
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225static void regmap_parse_inplace_noop(void *buf)
 226{
 227}
 228
 229static unsigned int regmap_parse_8(const void *buf)
 230{
 231	const u8 *b = buf;
 232
 233	return b[0];
 234}
 235
 236static unsigned int regmap_parse_16_be(const void *buf)
 237{
 238	const __be16 *b = buf;
 239
 240	return be16_to_cpu(b[0]);
 241}
 242
 
 
 
 
 
 
 
 243static void regmap_parse_16_be_inplace(void *buf)
 244{
 245	__be16 *b = buf;
 246
 247	b[0] = be16_to_cpu(b[0]);
 248}
 249
 
 
 
 
 
 
 
 250static unsigned int regmap_parse_16_native(const void *buf)
 251{
 252	return *(u16 *)buf;
 253}
 254
 255static unsigned int regmap_parse_24(const void *buf)
 256{
 257	const u8 *b = buf;
 258	unsigned int ret = b[2];
 259	ret |= ((unsigned int)b[1]) << 8;
 260	ret |= ((unsigned int)b[0]) << 16;
 261
 262	return ret;
 263}
 264
 265static unsigned int regmap_parse_32_be(const void *buf)
 266{
 267	const __be32 *b = buf;
 268
 269	return be32_to_cpu(b[0]);
 270}
 271
 
 
 
 
 
 
 
 272static void regmap_parse_32_be_inplace(void *buf)
 273{
 274	__be32 *b = buf;
 275
 276	b[0] = be32_to_cpu(b[0]);
 277}
 278
 
 
 
 
 
 
 
 279static unsigned int regmap_parse_32_native(const void *buf)
 280{
 281	return *(u32 *)buf;
 282}
 283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284static void regmap_lock_mutex(void *__map)
 285{
 286	struct regmap *map = __map;
 287	mutex_lock(&map->mutex);
 288}
 289
 290static void regmap_unlock_mutex(void *__map)
 291{
 292	struct regmap *map = __map;
 293	mutex_unlock(&map->mutex);
 294}
 295
 296static void regmap_lock_spinlock(void *__map)
 297__acquires(&map->spinlock)
 298{
 299	struct regmap *map = __map;
 300	unsigned long flags;
 301
 302	spin_lock_irqsave(&map->spinlock, flags);
 303	map->spinlock_flags = flags;
 304}
 305
 306static void regmap_unlock_spinlock(void *__map)
 307__releases(&map->spinlock)
 308{
 309	struct regmap *map = __map;
 310	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 311}
 312
 313static void dev_get_regmap_release(struct device *dev, void *res)
 314{
 315	/*
 316	 * We don't actually have anything to do here; the goal here
 317	 * is not to manage the regmap but to provide a simple way to
 318	 * get the regmap back given a struct device.
 319	 */
 320}
 321
 322static bool _regmap_range_add(struct regmap *map,
 323			      struct regmap_range_node *data)
 324{
 325	struct rb_root *root = &map->range_tree;
 326	struct rb_node **new = &(root->rb_node), *parent = NULL;
 327
 328	while (*new) {
 329		struct regmap_range_node *this =
 330			container_of(*new, struct regmap_range_node, node);
 331
 332		parent = *new;
 333		if (data->range_max < this->range_min)
 334			new = &((*new)->rb_left);
 335		else if (data->range_min > this->range_max)
 336			new = &((*new)->rb_right);
 337		else
 338			return false;
 339	}
 340
 341	rb_link_node(&data->node, parent, new);
 342	rb_insert_color(&data->node, root);
 343
 344	return true;
 345}
 346
 347static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 348						      unsigned int reg)
 349{
 350	struct rb_node *node = map->range_tree.rb_node;
 351
 352	while (node) {
 353		struct regmap_range_node *this =
 354			container_of(node, struct regmap_range_node, node);
 355
 356		if (reg < this->range_min)
 357			node = node->rb_left;
 358		else if (reg > this->range_max)
 359			node = node->rb_right;
 360		else
 361			return this;
 362	}
 363
 364	return NULL;
 365}
 366
 367static void regmap_range_exit(struct regmap *map)
 368{
 369	struct rb_node *next;
 370	struct regmap_range_node *range_node;
 371
 372	next = rb_first(&map->range_tree);
 373	while (next) {
 374		range_node = rb_entry(next, struct regmap_range_node, node);
 375		next = rb_next(&range_node->node);
 376		rb_erase(&range_node->node, &map->range_tree);
 377		kfree(range_node);
 378	}
 379
 380	kfree(map->selector_work_buf);
 381}
 382
 383int regmap_attach_dev(struct device *dev, struct regmap *map,
 384		      const struct regmap_config *config)
 385{
 386	struct regmap **m;
 387
 388	map->dev = dev;
 389
 390	regmap_debugfs_init(map, config->name);
 391
 392	/* Add a devres resource for dev_get_regmap() */
 393	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 394	if (!m) {
 395		regmap_debugfs_exit(map);
 396		return -ENOMEM;
 397	}
 398	*m = map;
 399	devres_add(dev, m);
 400
 401	return 0;
 402}
 403EXPORT_SYMBOL_GPL(regmap_attach_dev);
 404
 405/**
 406 * regmap_init(): Initialise register map
 407 *
 408 * @dev: Device that will be interacted with
 409 * @bus: Bus-specific callbacks to use with device
 410 * @bus_context: Data passed to bus-specific callbacks
 411 * @config: Configuration for register map
 412 *
 413 * The return value will be an ERR_PTR() on error or a valid pointer to
 414 * a struct regmap.  This function should generally not be called
 415 * directly, it should be called by bus-specific init functions.
 416 */
 417struct regmap *regmap_init(struct device *dev,
 418			   const struct regmap_bus *bus,
 419			   void *bus_context,
 420			   const struct regmap_config *config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421{
 422	struct regmap *map;
 423	int ret = -EINVAL;
 424	enum regmap_endian reg_endian, val_endian;
 425	int i, j;
 426
 427	if (!config)
 428		goto err;
 429
 430	map = kzalloc(sizeof(*map), GFP_KERNEL);
 431	if (map == NULL) {
 432		ret = -ENOMEM;
 433		goto err;
 434	}
 435
 436	if (config->lock && config->unlock) {
 437		map->lock = config->lock;
 438		map->unlock = config->unlock;
 439		map->lock_arg = config->lock_arg;
 440	} else {
 441		if ((bus && bus->fast_io) ||
 442		    config->fast_io) {
 443			spin_lock_init(&map->spinlock);
 444			map->lock = regmap_lock_spinlock;
 445			map->unlock = regmap_unlock_spinlock;
 
 
 446		} else {
 447			mutex_init(&map->mutex);
 448			map->lock = regmap_lock_mutex;
 449			map->unlock = regmap_unlock_mutex;
 
 
 450		}
 451		map->lock_arg = map;
 452	}
 
 
 
 
 
 
 
 
 
 
 453	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 454	map->format.pad_bytes = config->pad_bits / 8;
 455	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 456	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 457			config->val_bits + config->pad_bits, 8);
 458	map->reg_shift = config->pad_bits % 8;
 459	if (config->reg_stride)
 460		map->reg_stride = config->reg_stride;
 461	else
 462		map->reg_stride = 1;
 463	map->use_single_rw = config->use_single_rw;
 464	map->can_multi_write = config->can_multi_write;
 
 
 
 
 
 
 
 
 
 465	map->dev = dev;
 466	map->bus = bus;
 467	map->bus_context = bus_context;
 468	map->max_register = config->max_register;
 469	map->wr_table = config->wr_table;
 470	map->rd_table = config->rd_table;
 471	map->volatile_table = config->volatile_table;
 472	map->precious_table = config->precious_table;
 473	map->writeable_reg = config->writeable_reg;
 474	map->readable_reg = config->readable_reg;
 475	map->volatile_reg = config->volatile_reg;
 476	map->precious_reg = config->precious_reg;
 477	map->cache_type = config->cache_type;
 478	map->name = config->name;
 479
 480	spin_lock_init(&map->async_lock);
 481	INIT_LIST_HEAD(&map->async_list);
 482	INIT_LIST_HEAD(&map->async_free);
 483	init_waitqueue_head(&map->async_waitq);
 484
 485	if (config->read_flag_mask || config->write_flag_mask) {
 486		map->read_flag_mask = config->read_flag_mask;
 487		map->write_flag_mask = config->write_flag_mask;
 488	} else if (bus) {
 489		map->read_flag_mask = bus->read_flag_mask;
 490	}
 491
 492	if (!bus) {
 493		map->reg_read  = config->reg_read;
 494		map->reg_write = config->reg_write;
 495
 496		map->defer_caching = false;
 497		goto skip_format_initialization;
 
 
 
 
 
 
 498	} else {
 499		map->reg_read  = _regmap_bus_read;
 
 500	}
 501
 502	reg_endian = config->reg_format_endian;
 503	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 504		reg_endian = bus->reg_format_endian_default;
 505	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 506		reg_endian = REGMAP_ENDIAN_BIG;
 507
 508	val_endian = config->val_format_endian;
 509	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 510		val_endian = bus->val_format_endian_default;
 511	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 512		val_endian = REGMAP_ENDIAN_BIG;
 513
 514	switch (config->reg_bits + map->reg_shift) {
 515	case 2:
 516		switch (config->val_bits) {
 517		case 6:
 518			map->format.format_write = regmap_format_2_6_write;
 519			break;
 520		default:
 521			goto err_map;
 522		}
 523		break;
 524
 525	case 4:
 526		switch (config->val_bits) {
 527		case 12:
 528			map->format.format_write = regmap_format_4_12_write;
 529			break;
 530		default:
 531			goto err_map;
 532		}
 533		break;
 534
 535	case 7:
 536		switch (config->val_bits) {
 537		case 9:
 538			map->format.format_write = regmap_format_7_9_write;
 539			break;
 540		default:
 541			goto err_map;
 542		}
 543		break;
 544
 545	case 10:
 546		switch (config->val_bits) {
 547		case 14:
 548			map->format.format_write = regmap_format_10_14_write;
 549			break;
 550		default:
 551			goto err_map;
 552		}
 553		break;
 554
 555	case 8:
 556		map->format.format_reg = regmap_format_8;
 557		break;
 558
 559	case 16:
 560		switch (reg_endian) {
 561		case REGMAP_ENDIAN_BIG:
 562			map->format.format_reg = regmap_format_16_be;
 563			break;
 
 
 
 564		case REGMAP_ENDIAN_NATIVE:
 565			map->format.format_reg = regmap_format_16_native;
 566			break;
 567		default:
 568			goto err_map;
 569		}
 570		break;
 571
 572	case 24:
 573		if (reg_endian != REGMAP_ENDIAN_BIG)
 574			goto err_map;
 575		map->format.format_reg = regmap_format_24;
 576		break;
 577
 578	case 32:
 579		switch (reg_endian) {
 580		case REGMAP_ENDIAN_BIG:
 581			map->format.format_reg = regmap_format_32_be;
 582			break;
 
 
 
 583		case REGMAP_ENDIAN_NATIVE:
 584			map->format.format_reg = regmap_format_32_native;
 585			break;
 586		default:
 587			goto err_map;
 588		}
 589		break;
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	default:
 592		goto err_map;
 593	}
 594
 595	if (val_endian == REGMAP_ENDIAN_NATIVE)
 596		map->format.parse_inplace = regmap_parse_inplace_noop;
 597
 598	switch (config->val_bits) {
 599	case 8:
 600		map->format.format_val = regmap_format_8;
 601		map->format.parse_val = regmap_parse_8;
 602		map->format.parse_inplace = regmap_parse_inplace_noop;
 603		break;
 604	case 16:
 605		switch (val_endian) {
 606		case REGMAP_ENDIAN_BIG:
 607			map->format.format_val = regmap_format_16_be;
 608			map->format.parse_val = regmap_parse_16_be;
 609			map->format.parse_inplace = regmap_parse_16_be_inplace;
 610			break;
 
 
 
 
 
 611		case REGMAP_ENDIAN_NATIVE:
 612			map->format.format_val = regmap_format_16_native;
 613			map->format.parse_val = regmap_parse_16_native;
 614			break;
 615		default:
 616			goto err_map;
 617		}
 618		break;
 619	case 24:
 620		if (val_endian != REGMAP_ENDIAN_BIG)
 621			goto err_map;
 622		map->format.format_val = regmap_format_24;
 623		map->format.parse_val = regmap_parse_24;
 624		break;
 625	case 32:
 626		switch (val_endian) {
 627		case REGMAP_ENDIAN_BIG:
 628			map->format.format_val = regmap_format_32_be;
 629			map->format.parse_val = regmap_parse_32_be;
 630			map->format.parse_inplace = regmap_parse_32_be_inplace;
 631			break;
 
 
 
 
 
 632		case REGMAP_ENDIAN_NATIVE:
 633			map->format.format_val = regmap_format_32_native;
 634			map->format.parse_val = regmap_parse_32_native;
 635			break;
 636		default:
 637			goto err_map;
 638		}
 639		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640	}
 641
 642	if (map->format.format_write) {
 643		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 644		    (val_endian != REGMAP_ENDIAN_BIG))
 645			goto err_map;
 646		map->use_single_rw = true;
 647	}
 648
 649	if (!map->format.format_write &&
 650	    !(map->format.format_reg && map->format.format_val))
 651		goto err_map;
 652
 653	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 654	if (map->work_buf == NULL) {
 655		ret = -ENOMEM;
 656		goto err_map;
 657	}
 658
 659	if (map->format.format_write) {
 660		map->defer_caching = false;
 661		map->reg_write = _regmap_bus_formatted_write;
 662	} else if (map->format.format_val) {
 663		map->defer_caching = true;
 664		map->reg_write = _regmap_bus_raw_write;
 665	}
 666
 667skip_format_initialization:
 668
 669	map->range_tree = RB_ROOT;
 670	for (i = 0; i < config->num_ranges; i++) {
 671		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 672		struct regmap_range_node *new;
 673
 674		/* Sanity check */
 675		if (range_cfg->range_max < range_cfg->range_min) {
 676			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 677				range_cfg->range_max, range_cfg->range_min);
 678			goto err_range;
 679		}
 680
 681		if (range_cfg->range_max > map->max_register) {
 682			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 683				range_cfg->range_max, map->max_register);
 684			goto err_range;
 685		}
 686
 687		if (range_cfg->selector_reg > map->max_register) {
 688			dev_err(map->dev,
 689				"Invalid range %d: selector out of map\n", i);
 690			goto err_range;
 691		}
 692
 693		if (range_cfg->window_len == 0) {
 694			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 695				i);
 696			goto err_range;
 697		}
 698
 699		/* Make sure, that this register range has no selector
 700		   or data window within its boundary */
 701		for (j = 0; j < config->num_ranges; j++) {
 702			unsigned sel_reg = config->ranges[j].selector_reg;
 703			unsigned win_min = config->ranges[j].window_start;
 704			unsigned win_max = win_min +
 705					   config->ranges[j].window_len - 1;
 706
 707			/* Allow data window inside its own virtual range */
 708			if (j == i)
 709				continue;
 710
 711			if (range_cfg->range_min <= sel_reg &&
 712			    sel_reg <= range_cfg->range_max) {
 713				dev_err(map->dev,
 714					"Range %d: selector for %d in window\n",
 715					i, j);
 716				goto err_range;
 717			}
 718
 719			if (!(win_max < range_cfg->range_min ||
 720			      win_min > range_cfg->range_max)) {
 721				dev_err(map->dev,
 722					"Range %d: window for %d in window\n",
 723					i, j);
 724				goto err_range;
 725			}
 726		}
 727
 728		new = kzalloc(sizeof(*new), GFP_KERNEL);
 729		if (new == NULL) {
 730			ret = -ENOMEM;
 731			goto err_range;
 732		}
 733
 734		new->map = map;
 735		new->name = range_cfg->name;
 736		new->range_min = range_cfg->range_min;
 737		new->range_max = range_cfg->range_max;
 738		new->selector_reg = range_cfg->selector_reg;
 739		new->selector_mask = range_cfg->selector_mask;
 740		new->selector_shift = range_cfg->selector_shift;
 741		new->window_start = range_cfg->window_start;
 742		new->window_len = range_cfg->window_len;
 743
 744		if (!_regmap_range_add(map, new)) {
 745			dev_err(map->dev, "Failed to add range %d\n", i);
 746			kfree(new);
 747			goto err_range;
 748		}
 749
 750		if (map->selector_work_buf == NULL) {
 751			map->selector_work_buf =
 752				kzalloc(map->format.buf_size, GFP_KERNEL);
 753			if (map->selector_work_buf == NULL) {
 754				ret = -ENOMEM;
 755				goto err_range;
 756			}
 757		}
 758	}
 759
 760	ret = regcache_init(map, config);
 761	if (ret != 0)
 762		goto err_range;
 763
 764	if (dev) {
 765		ret = regmap_attach_dev(dev, map, config);
 766		if (ret != 0)
 767			goto err_regcache;
 768	}
 769
 770	return map;
 771
 772err_regcache:
 773	regcache_exit(map);
 774err_range:
 775	regmap_range_exit(map);
 776	kfree(map->work_buf);
 777err_map:
 778	kfree(map);
 779err:
 780	return ERR_PTR(ret);
 781}
 782EXPORT_SYMBOL_GPL(regmap_init);
 783
 784static void devm_regmap_release(struct device *dev, void *res)
 785{
 786	regmap_exit(*(struct regmap **)res);
 787}
 788
 789/**
 790 * devm_regmap_init(): Initialise managed register map
 791 *
 792 * @dev: Device that will be interacted with
 793 * @bus: Bus-specific callbacks to use with device
 794 * @bus_context: Data passed to bus-specific callbacks
 795 * @config: Configuration for register map
 796 *
 797 * The return value will be an ERR_PTR() on error or a valid pointer
 798 * to a struct regmap.  This function should generally not be called
 799 * directly, it should be called by bus-specific init functions.  The
 800 * map will be automatically freed by the device management code.
 801 */
 802struct regmap *devm_regmap_init(struct device *dev,
 803				const struct regmap_bus *bus,
 804				void *bus_context,
 805				const struct regmap_config *config)
 806{
 807	struct regmap **ptr, *regmap;
 808
 809	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
 810	if (!ptr)
 811		return ERR_PTR(-ENOMEM);
 812
 813	regmap = regmap_init(dev, bus, bus_context, config);
 
 814	if (!IS_ERR(regmap)) {
 815		*ptr = regmap;
 816		devres_add(dev, ptr);
 817	} else {
 818		devres_free(ptr);
 819	}
 820
 821	return regmap;
 822}
 823EXPORT_SYMBOL_GPL(devm_regmap_init);
 824
 825static void regmap_field_init(struct regmap_field *rm_field,
 826	struct regmap *regmap, struct reg_field reg_field)
 827{
 828	int field_bits = reg_field.msb - reg_field.lsb + 1;
 829	rm_field->regmap = regmap;
 830	rm_field->reg = reg_field.reg;
 831	rm_field->shift = reg_field.lsb;
 832	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
 833	rm_field->id_size = reg_field.id_size;
 834	rm_field->id_offset = reg_field.id_offset;
 835}
 836
 837/**
 838 * devm_regmap_field_alloc(): Allocate and initialise a register field
 839 * in a register map.
 840 *
 841 * @dev: Device that will be interacted with
 842 * @regmap: regmap bank in which this register field is located.
 843 * @reg_field: Register field with in the bank.
 844 *
 845 * The return value will be an ERR_PTR() on error or a valid pointer
 846 * to a struct regmap_field. The regmap_field will be automatically freed
 847 * by the device management code.
 848 */
 849struct regmap_field *devm_regmap_field_alloc(struct device *dev,
 850		struct regmap *regmap, struct reg_field reg_field)
 851{
 852	struct regmap_field *rm_field = devm_kzalloc(dev,
 853					sizeof(*rm_field), GFP_KERNEL);
 854	if (!rm_field)
 855		return ERR_PTR(-ENOMEM);
 856
 857	regmap_field_init(rm_field, regmap, reg_field);
 858
 859	return rm_field;
 860
 861}
 862EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
 863
 864/**
 865 * devm_regmap_field_free(): Free register field allocated using
 866 * devm_regmap_field_alloc. Usally drivers need not call this function,
 867 * as the memory allocated via devm will be freed as per device-driver
 868 * life-cyle.
 869 *
 870 * @dev: Device that will be interacted with
 871 * @field: regmap field which should be freed.
 872 */
 873void devm_regmap_field_free(struct device *dev,
 874	struct regmap_field *field)
 875{
 876	devm_kfree(dev, field);
 877}
 878EXPORT_SYMBOL_GPL(devm_regmap_field_free);
 879
 880/**
 881 * regmap_field_alloc(): Allocate and initialise a register field
 882 * in a register map.
 883 *
 884 * @regmap: regmap bank in which this register field is located.
 885 * @reg_field: Register field with in the bank.
 886 *
 887 * The return value will be an ERR_PTR() on error or a valid pointer
 888 * to a struct regmap_field. The regmap_field should be freed by the
 889 * user once its finished working with it using regmap_field_free().
 890 */
 891struct regmap_field *regmap_field_alloc(struct regmap *regmap,
 892		struct reg_field reg_field)
 893{
 894	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
 895
 896	if (!rm_field)
 897		return ERR_PTR(-ENOMEM);
 898
 899	regmap_field_init(rm_field, regmap, reg_field);
 900
 901	return rm_field;
 902}
 903EXPORT_SYMBOL_GPL(regmap_field_alloc);
 904
 905/**
 906 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 907 *
 908 * @field: regmap field which should be freed.
 909 */
 910void regmap_field_free(struct regmap_field *field)
 911{
 912	kfree(field);
 913}
 914EXPORT_SYMBOL_GPL(regmap_field_free);
 915
 916/**
 917 * regmap_reinit_cache(): Reinitialise the current register cache
 918 *
 919 * @map: Register map to operate on.
 920 * @config: New configuration.  Only the cache data will be used.
 921 *
 922 * Discard any existing register cache for the map and initialize a
 923 * new cache.  This can be used to restore the cache to defaults or to
 924 * update the cache configuration to reflect runtime discovery of the
 925 * hardware.
 926 *
 927 * No explicit locking is done here, the user needs to ensure that
 928 * this function will not race with other calls to regmap.
 929 */
 930int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
 931{
 932	regcache_exit(map);
 933	regmap_debugfs_exit(map);
 934
 935	map->max_register = config->max_register;
 936	map->writeable_reg = config->writeable_reg;
 937	map->readable_reg = config->readable_reg;
 938	map->volatile_reg = config->volatile_reg;
 939	map->precious_reg = config->precious_reg;
 940	map->cache_type = config->cache_type;
 941
 942	regmap_debugfs_init(map, config->name);
 943
 944	map->cache_bypass = false;
 945	map->cache_only = false;
 946
 947	return regcache_init(map, config);
 948}
 949EXPORT_SYMBOL_GPL(regmap_reinit_cache);
 950
 951/**
 952 * regmap_exit(): Free a previously allocated register map
 953 */
 954void regmap_exit(struct regmap *map)
 955{
 956	struct regmap_async *async;
 957
 958	regcache_exit(map);
 959	regmap_debugfs_exit(map);
 960	regmap_range_exit(map);
 961	if (map->bus && map->bus->free_context)
 962		map->bus->free_context(map->bus_context);
 963	kfree(map->work_buf);
 964	while (!list_empty(&map->async_free)) {
 965		async = list_first_entry_or_null(&map->async_free,
 966						 struct regmap_async,
 967						 list);
 968		list_del(&async->list);
 969		kfree(async->work_buf);
 970		kfree(async);
 971	}
 972	kfree(map);
 973}
 974EXPORT_SYMBOL_GPL(regmap_exit);
 975
 976static int dev_get_regmap_match(struct device *dev, void *res, void *data)
 977{
 978	struct regmap **r = res;
 979	if (!r || !*r) {
 980		WARN_ON(!r || !*r);
 981		return 0;
 982	}
 983
 984	/* If the user didn't specify a name match any */
 985	if (data)
 986		return (*r)->name == data;
 987	else
 988		return 1;
 989}
 990
 991/**
 992 * dev_get_regmap(): Obtain the regmap (if any) for a device
 993 *
 994 * @dev: Device to retrieve the map for
 995 * @name: Optional name for the register map, usually NULL.
 996 *
 997 * Returns the regmap for the device if one is present, or NULL.  If
 998 * name is specified then it must match the name specified when
 999 * registering the device, if it is NULL then the first regmap found
1000 * will be used.  Devices with multiple register maps are very rare,
1001 * generic code should normally not need to specify a name.
1002 */
1003struct regmap *dev_get_regmap(struct device *dev, const char *name)
1004{
1005	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1006					dev_get_regmap_match, (void *)name);
1007
1008	if (!r)
1009		return NULL;
1010	return *r;
1011}
1012EXPORT_SYMBOL_GPL(dev_get_regmap);
1013
 
 
 
 
 
 
 
 
 
 
 
 
 
1014static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1015			       struct regmap_range_node *range,
1016			       unsigned int val_num)
1017{
1018	void *orig_work_buf;
1019	unsigned int win_offset;
1020	unsigned int win_page;
1021	bool page_chg;
1022	int ret;
1023
1024	win_offset = (*reg - range->range_min) % range->window_len;
1025	win_page = (*reg - range->range_min) / range->window_len;
1026
1027	if (val_num > 1) {
1028		/* Bulk write shouldn't cross range boundary */
1029		if (*reg + val_num - 1 > range->range_max)
1030			return -EINVAL;
1031
1032		/* ... or single page boundary */
1033		if (val_num > range->window_len - win_offset)
1034			return -EINVAL;
1035	}
1036
1037	/* It is possible to have selector register inside data window.
1038	   In that case, selector register is located on every page and
1039	   it needs no page switching, when accessed alone. */
1040	if (val_num > 1 ||
1041	    range->window_start + win_offset != range->selector_reg) {
1042		/* Use separate work_buf during page switching */
1043		orig_work_buf = map->work_buf;
1044		map->work_buf = map->selector_work_buf;
1045
1046		ret = _regmap_update_bits(map, range->selector_reg,
1047					  range->selector_mask,
1048					  win_page << range->selector_shift,
1049					  &page_chg);
1050
1051		map->work_buf = orig_work_buf;
1052
1053		if (ret != 0)
1054			return ret;
1055	}
1056
1057	*reg = range->window_start + win_offset;
1058
1059	return 0;
1060}
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062int _regmap_raw_write(struct regmap *map, unsigned int reg,
1063		      const void *val, size_t val_len)
1064{
1065	struct regmap_range_node *range;
1066	unsigned long flags;
1067	u8 *u8 = map->work_buf;
1068	void *work_val = map->work_buf + map->format.reg_bytes +
1069		map->format.pad_bytes;
1070	void *buf;
1071	int ret = -ENOTSUPP;
1072	size_t len;
1073	int i;
1074
1075	WARN_ON(!map->bus);
1076
1077	/* Check for unwritable registers before we start */
1078	if (map->writeable_reg)
1079		for (i = 0; i < val_len / map->format.val_bytes; i++)
1080			if (!map->writeable_reg(map->dev,
1081						reg + (i * map->reg_stride)))
1082				return -EINVAL;
1083
1084	if (!map->cache_bypass && map->format.parse_val) {
1085		unsigned int ival;
1086		int val_bytes = map->format.val_bytes;
1087		for (i = 0; i < val_len / val_bytes; i++) {
1088			ival = map->format.parse_val(val + (i * val_bytes));
1089			ret = regcache_write(map, reg + (i * map->reg_stride),
 
1090					     ival);
1091			if (ret) {
1092				dev_err(map->dev,
1093					"Error in caching of register: %x ret: %d\n",
1094					reg + i, ret);
1095				return ret;
1096			}
1097		}
1098		if (map->cache_only) {
1099			map->cache_dirty = true;
1100			return 0;
1101		}
1102	}
1103
1104	range = _regmap_range_lookup(map, reg);
1105	if (range) {
1106		int val_num = val_len / map->format.val_bytes;
1107		int win_offset = (reg - range->range_min) % range->window_len;
1108		int win_residue = range->window_len - win_offset;
1109
1110		/* If the write goes beyond the end of the window split it */
1111		while (val_num > win_residue) {
1112			dev_dbg(map->dev, "Writing window %d/%zu\n",
1113				win_residue, val_len / map->format.val_bytes);
1114			ret = _regmap_raw_write(map, reg, val, win_residue *
1115						map->format.val_bytes);
1116			if (ret != 0)
1117				return ret;
1118
1119			reg += win_residue;
1120			val_num -= win_residue;
1121			val += win_residue * map->format.val_bytes;
1122			val_len -= win_residue * map->format.val_bytes;
1123
1124			win_offset = (reg - range->range_min) %
1125				range->window_len;
1126			win_residue = range->window_len - win_offset;
1127		}
1128
1129		ret = _regmap_select_page(map, &reg, range, val_num);
1130		if (ret != 0)
1131			return ret;
1132	}
1133
1134	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1135
1136	u8[0] |= map->write_flag_mask;
1137
1138	/*
1139	 * Essentially all I/O mechanisms will be faster with a single
1140	 * buffer to write.  Since register syncs often generate raw
1141	 * writes of single registers optimise that case.
1142	 */
1143	if (val != work_val && val_len == map->format.val_bytes) {
1144		memcpy(work_val, val, map->format.val_bytes);
1145		val = work_val;
1146	}
1147
1148	if (map->async && map->bus->async_write) {
1149		struct regmap_async *async;
1150
1151		trace_regmap_async_write_start(map->dev, reg, val_len);
1152
1153		spin_lock_irqsave(&map->async_lock, flags);
1154		async = list_first_entry_or_null(&map->async_free,
1155						 struct regmap_async,
1156						 list);
1157		if (async)
1158			list_del(&async->list);
1159		spin_unlock_irqrestore(&map->async_lock, flags);
1160
1161		if (!async) {
1162			async = map->bus->async_alloc();
1163			if (!async)
1164				return -ENOMEM;
1165
1166			async->work_buf = kzalloc(map->format.buf_size,
1167						  GFP_KERNEL | GFP_DMA);
1168			if (!async->work_buf) {
1169				kfree(async);
1170				return -ENOMEM;
1171			}
1172		}
1173
1174		async->map = map;
1175
1176		/* If the caller supplied the value we can use it safely. */
1177		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1178		       map->format.reg_bytes + map->format.val_bytes);
1179
1180		spin_lock_irqsave(&map->async_lock, flags);
1181		list_add_tail(&async->list, &map->async_list);
1182		spin_unlock_irqrestore(&map->async_lock, flags);
1183
1184		if (val != work_val)
1185			ret = map->bus->async_write(map->bus_context,
1186						    async->work_buf,
1187						    map->format.reg_bytes +
1188						    map->format.pad_bytes,
1189						    val, val_len, async);
1190		else
1191			ret = map->bus->async_write(map->bus_context,
1192						    async->work_buf,
1193						    map->format.reg_bytes +
1194						    map->format.pad_bytes +
1195						    val_len, NULL, 0, async);
1196
1197		if (ret != 0) {
1198			dev_err(map->dev, "Failed to schedule write: %d\n",
1199				ret);
1200
1201			spin_lock_irqsave(&map->async_lock, flags);
1202			list_move(&async->list, &map->async_free);
1203			spin_unlock_irqrestore(&map->async_lock, flags);
1204		}
1205
1206		return ret;
1207	}
1208
1209	trace_regmap_hw_write_start(map->dev, reg,
1210				    val_len / map->format.val_bytes);
1211
1212	/* If we're doing a single register write we can probably just
1213	 * send the work_buf directly, otherwise try to do a gather
1214	 * write.
1215	 */
1216	if (val == work_val)
1217		ret = map->bus->write(map->bus_context, map->work_buf,
1218				      map->format.reg_bytes +
1219				      map->format.pad_bytes +
1220				      val_len);
1221	else if (map->bus->gather_write)
1222		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1223					     map->format.reg_bytes +
1224					     map->format.pad_bytes,
1225					     val, val_len);
1226
1227	/* If that didn't work fall back on linearising by hand. */
1228	if (ret == -ENOTSUPP) {
1229		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1230		buf = kzalloc(len, GFP_KERNEL);
1231		if (!buf)
1232			return -ENOMEM;
1233
1234		memcpy(buf, map->work_buf, map->format.reg_bytes);
1235		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1236		       val, val_len);
1237		ret = map->bus->write(map->bus_context, buf, len);
1238
1239		kfree(buf);
 
 
 
 
 
 
1240	}
1241
1242	trace_regmap_hw_write_done(map->dev, reg,
1243				   val_len / map->format.val_bytes);
1244
1245	return ret;
1246}
1247
1248/**
1249 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1250 *
1251 * @map: Map to check.
1252 */
1253bool regmap_can_raw_write(struct regmap *map)
1254{
1255	return map->bus && map->format.format_val && map->format.format_reg;
 
1256}
1257EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1260				       unsigned int val)
1261{
1262	int ret;
1263	struct regmap_range_node *range;
1264	struct regmap *map = context;
1265
1266	WARN_ON(!map->bus || !map->format.format_write);
1267
1268	range = _regmap_range_lookup(map, reg);
1269	if (range) {
1270		ret = _regmap_select_page(map, &reg, range, 1);
1271		if (ret != 0)
1272			return ret;
1273	}
1274
1275	map->format.format_write(map, reg, val);
1276
1277	trace_regmap_hw_write_start(map->dev, reg, 1);
1278
1279	ret = map->bus->write(map->bus_context, map->work_buf,
1280			      map->format.buf_size);
1281
1282	trace_regmap_hw_write_done(map->dev, reg, 1);
1283
1284	return ret;
1285}
1286
 
 
 
 
 
 
 
 
1287static int _regmap_bus_raw_write(void *context, unsigned int reg,
1288				 unsigned int val)
1289{
1290	struct regmap *map = context;
1291
1292	WARN_ON(!map->bus || !map->format.format_val);
1293
1294	map->format.format_val(map->work_buf + map->format.reg_bytes
1295			       + map->format.pad_bytes, val, 0);
1296	return _regmap_raw_write(map, reg,
1297				 map->work_buf +
1298				 map->format.reg_bytes +
1299				 map->format.pad_bytes,
1300				 map->format.val_bytes);
1301}
1302
1303static inline void *_regmap_map_get_context(struct regmap *map)
1304{
1305	return (map->bus) ? map : map->bus_context;
1306}
1307
1308int _regmap_write(struct regmap *map, unsigned int reg,
1309		  unsigned int val)
1310{
1311	int ret;
1312	void *context = _regmap_map_get_context(map);
1313
1314	if (!regmap_writeable(map, reg))
1315		return -EIO;
1316
1317	if (!map->cache_bypass && !map->defer_caching) {
1318		ret = regcache_write(map, reg, val);
1319		if (ret != 0)
1320			return ret;
1321		if (map->cache_only) {
1322			map->cache_dirty = true;
1323			return 0;
1324		}
1325	}
1326
1327#ifdef LOG_DEVICE
1328	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1329		dev_info(map->dev, "%x <= %x\n", reg, val);
1330#endif
1331
1332	trace_regmap_reg_write(map->dev, reg, val);
1333
1334	return map->reg_write(context, reg, val);
1335}
1336
1337/**
1338 * regmap_write(): Write a value to a single register
1339 *
1340 * @map: Register map to write to
1341 * @reg: Register to write to
1342 * @val: Value to be written
1343 *
1344 * A value of zero will be returned on success, a negative errno will
1345 * be returned in error cases.
1346 */
1347int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1348{
1349	int ret;
1350
1351	if (reg % map->reg_stride)
1352		return -EINVAL;
1353
1354	map->lock(map->lock_arg);
1355
1356	ret = _regmap_write(map, reg, val);
1357
1358	map->unlock(map->lock_arg);
1359
1360	return ret;
1361}
1362EXPORT_SYMBOL_GPL(regmap_write);
1363
1364/**
1365 * regmap_write_async(): Write a value to a single register asynchronously
1366 *
1367 * @map: Register map to write to
1368 * @reg: Register to write to
1369 * @val: Value to be written
1370 *
1371 * A value of zero will be returned on success, a negative errno will
1372 * be returned in error cases.
1373 */
1374int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1375{
1376	int ret;
1377
1378	if (reg % map->reg_stride)
1379		return -EINVAL;
1380
1381	map->lock(map->lock_arg);
1382
1383	map->async = true;
1384
1385	ret = _regmap_write(map, reg, val);
1386
1387	map->async = false;
1388
1389	map->unlock(map->lock_arg);
1390
1391	return ret;
1392}
1393EXPORT_SYMBOL_GPL(regmap_write_async);
1394
1395/**
1396 * regmap_raw_write(): Write raw values to one or more registers
1397 *
1398 * @map: Register map to write to
1399 * @reg: Initial register to write to
1400 * @val: Block of data to be written, laid out for direct transmission to the
1401 *       device
1402 * @val_len: Length of data pointed to by val.
1403 *
1404 * This function is intended to be used for things like firmware
1405 * download where a large block of data needs to be transferred to the
1406 * device.  No formatting will be done on the data provided.
1407 *
1408 * A value of zero will be returned on success, a negative errno will
1409 * be returned in error cases.
1410 */
1411int regmap_raw_write(struct regmap *map, unsigned int reg,
1412		     const void *val, size_t val_len)
1413{
1414	int ret;
1415
1416	if (!regmap_can_raw_write(map))
1417		return -EINVAL;
1418	if (val_len % map->format.val_bytes)
1419		return -EINVAL;
 
 
1420
1421	map->lock(map->lock_arg);
1422
1423	ret = _regmap_raw_write(map, reg, val, val_len);
1424
1425	map->unlock(map->lock_arg);
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(regmap_raw_write);
1430
1431/**
1432 * regmap_field_write(): Write a value to a single register field
1433 *
1434 * @field: Register field to write to
1435 * @val: Value to be written
1436 *
1437 * A value of zero will be returned on success, a negative errno will
1438 * be returned in error cases.
1439 */
1440int regmap_field_write(struct regmap_field *field, unsigned int val)
1441{
1442	return regmap_update_bits(field->regmap, field->reg,
1443				field->mask, val << field->shift);
1444}
1445EXPORT_SYMBOL_GPL(regmap_field_write);
1446
1447/**
1448 * regmap_field_update_bits():	Perform a read/modify/write cycle
1449 *                              on the register field
1450 *
1451 * @field: Register field to write to
1452 * @mask: Bitmask to change
1453 * @val: Value to be written
 
 
 
1454 *
1455 * A value of zero will be returned on success, a negative errno will
1456 * be returned in error cases.
1457 */
1458int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
 
 
1459{
1460	mask = (mask << field->shift) & field->mask;
1461
1462	return regmap_update_bits(field->regmap, field->reg,
1463				  mask, val << field->shift);
 
1464}
1465EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1466
1467/**
1468 * regmap_fields_write(): Write a value to a single register field with port ID
1469 *
1470 * @field: Register field to write to
1471 * @id: port ID
1472 * @val: Value to be written
1473 *
1474 * A value of zero will be returned on success, a negative errno will
1475 * be returned in error cases.
1476 */
1477int regmap_fields_write(struct regmap_field *field, unsigned int id,
1478			unsigned int val)
1479{
1480	if (id >= field->id_size)
1481		return -EINVAL;
1482
1483	return regmap_update_bits(field->regmap,
1484				  field->reg + (field->id_offset * id),
1485				  field->mask, val << field->shift);
1486}
1487EXPORT_SYMBOL_GPL(regmap_fields_write);
1488
1489/**
1490 * regmap_fields_update_bits():	Perform a read/modify/write cycle
1491 *                              on the register field
1492 *
1493 * @field: Register field to write to
1494 * @id: port ID
1495 * @mask: Bitmask to change
1496 * @val: Value to be written
 
 
 
1497 *
1498 * A value of zero will be returned on success, a negative errno will
1499 * be returned in error cases.
1500 */
1501int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1502			      unsigned int mask, unsigned int val)
 
1503{
1504	if (id >= field->id_size)
1505		return -EINVAL;
1506
1507	mask = (mask << field->shift) & field->mask;
1508
1509	return regmap_update_bits(field->regmap,
1510				  field->reg + (field->id_offset * id),
1511				  mask, val << field->shift);
 
1512}
1513EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1514
1515/*
1516 * regmap_bulk_write(): Write multiple registers to the device
1517 *
1518 * @map: Register map to write to
1519 * @reg: First register to be write from
1520 * @val: Block of data to be written, in native register size for device
1521 * @val_count: Number of registers to write
1522 *
1523 * This function is intended to be used for writing a large block of
1524 * data to the device either in single transfer or multiple transfer.
1525 *
1526 * A value of zero will be returned on success, a negative errno will
1527 * be returned in error cases.
1528 */
1529int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1530		     size_t val_count)
1531{
1532	int ret = 0, i;
1533	size_t val_bytes = map->format.val_bytes;
 
1534
1535	if (map->bus && !map->format.parse_inplace)
1536		return -EINVAL;
1537	if (reg % map->reg_stride)
1538		return -EINVAL;
1539
1540	/*
1541	 * Some devices don't support bulk write, for
1542	 * them we have a series of single write operations.
 
 
 
 
 
 
 
1543	 */
1544	if (!map->bus || map->use_single_rw) {
1545		map->lock(map->lock_arg);
1546		for (i = 0; i < val_count; i++) {
1547			unsigned int ival;
1548
1549			switch (val_bytes) {
1550			case 1:
1551				ival = *(u8 *)(val + (i * val_bytes));
1552				break;
1553			case 2:
1554				ival = *(u16 *)(val + (i * val_bytes));
1555				break;
1556			case 4:
1557				ival = *(u32 *)(val + (i * val_bytes));
1558				break;
1559#ifdef CONFIG_64BIT
1560			case 8:
1561				ival = *(u64 *)(val + (i * val_bytes));
1562				break;
1563#endif
1564			default:
1565				ret = -EINVAL;
1566				goto out;
1567			}
1568
1569			ret = _regmap_write(map, reg + (i * map->reg_stride),
1570					ival);
 
1571			if (ret != 0)
1572				goto out;
1573		}
1574out:
1575		map->unlock(map->lock_arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576	} else {
1577		void *wval;
1578
1579		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
 
 
 
1580		if (!wval) {
1581			dev_err(map->dev, "Error in memory allocation\n");
1582			return -ENOMEM;
1583		}
1584		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1585			map->format.parse_inplace(wval + i);
1586
1587		map->lock(map->lock_arg);
1588		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1589		map->unlock(map->lock_arg);
1590
1591		kfree(wval);
1592	}
1593	return ret;
1594}
1595EXPORT_SYMBOL_GPL(regmap_bulk_write);
1596
1597/*
1598 * _regmap_raw_multi_reg_write()
1599 *
1600 * the (register,newvalue) pairs in regs have not been formatted, but
1601 * they are all in the same page and have been changed to being page
1602 * relative. The page register has been written if that was neccessary.
1603 */
1604static int _regmap_raw_multi_reg_write(struct regmap *map,
1605				       const struct reg_default *regs,
1606				       size_t num_regs)
1607{
1608	int ret;
1609	void *buf;
1610	int i;
1611	u8 *u8;
1612	size_t val_bytes = map->format.val_bytes;
1613	size_t reg_bytes = map->format.reg_bytes;
1614	size_t pad_bytes = map->format.pad_bytes;
1615	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1616	size_t len = pair_size * num_regs;
1617
 
 
 
1618	buf = kzalloc(len, GFP_KERNEL);
1619	if (!buf)
1620		return -ENOMEM;
1621
1622	/* We have to linearise by hand. */
1623
1624	u8 = buf;
1625
1626	for (i = 0; i < num_regs; i++) {
1627		int reg = regs[i].reg;
1628		int val = regs[i].def;
1629		trace_regmap_hw_write_start(map->dev, reg, 1);
1630		map->format.format_reg(u8, reg, map->reg_shift);
1631		u8 += reg_bytes + pad_bytes;
1632		map->format.format_val(u8, val, 0);
1633		u8 += val_bytes;
1634	}
1635	u8 = buf;
1636	*u8 |= map->write_flag_mask;
1637
1638	ret = map->bus->write(map->bus_context, buf, len);
1639
1640	kfree(buf);
1641
1642	for (i = 0; i < num_regs; i++) {
1643		int reg = regs[i].reg;
1644		trace_regmap_hw_write_done(map->dev, reg, 1);
1645	}
1646	return ret;
1647}
1648
1649static unsigned int _regmap_register_page(struct regmap *map,
1650					  unsigned int reg,
1651					  struct regmap_range_node *range)
1652{
1653	unsigned int win_page = (reg - range->range_min) / range->window_len;
1654
1655	return win_page;
1656}
1657
1658static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1659					       struct reg_default *regs,
1660					       size_t num_regs)
1661{
1662	int ret;
1663	int i, n;
1664	struct reg_default *base;
1665	unsigned int this_page;
 
1666	/*
1667	 * the set of registers are not neccessarily in order, but
1668	 * since the order of write must be preserved this algorithm
1669	 * chops the set each time the page changes
 
1670	 */
1671	base = regs;
1672	for (i = 0, n = 0; i < num_regs; i++, n++) {
1673		unsigned int reg = regs[i].reg;
1674		struct regmap_range_node *range;
1675
1676		range = _regmap_range_lookup(map, reg);
1677		if (range) {
1678			unsigned int win_page = _regmap_register_page(map, reg,
1679								      range);
1680
1681			if (i == 0)
1682				this_page = win_page;
1683			if (win_page != this_page) {
1684				this_page = win_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685				ret = _regmap_raw_multi_reg_write(map, base, n);
1686				if (ret != 0)
1687					return ret;
 
 
 
 
1688				base += n;
1689				n = 0;
1690			}
1691			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1692			if (ret != 0)
1693				return ret;
 
 
 
 
 
 
 
1694		}
 
1695	}
1696	if (n > 0)
1697		return _regmap_raw_multi_reg_write(map, base, n);
1698	return 0;
1699}
1700
1701static int _regmap_multi_reg_write(struct regmap *map,
1702				   const struct reg_default *regs,
1703				   size_t num_regs)
1704{
1705	int i;
1706	int ret;
1707
1708	if (!map->can_multi_write) {
1709		for (i = 0; i < num_regs; i++) {
1710			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1711			if (ret != 0)
1712				return ret;
 
 
 
1713		}
1714		return 0;
1715	}
1716
1717	if (!map->format.parse_inplace)
1718		return -EINVAL;
1719
1720	if (map->writeable_reg)
1721		for (i = 0; i < num_regs; i++) {
1722			int reg = regs[i].reg;
1723			if (!map->writeable_reg(map->dev, reg))
1724				return -EINVAL;
1725			if (reg % map->reg_stride)
1726				return -EINVAL;
1727		}
1728
1729	if (!map->cache_bypass) {
1730		for (i = 0; i < num_regs; i++) {
1731			unsigned int val = regs[i].def;
1732			unsigned int reg = regs[i].reg;
1733			ret = regcache_write(map, reg, val);
1734			if (ret) {
1735				dev_err(map->dev,
1736				"Error in caching of register: %x ret: %d\n",
1737								reg, ret);
1738				return ret;
1739			}
1740		}
1741		if (map->cache_only) {
1742			map->cache_dirty = true;
1743			return 0;
1744		}
1745	}
1746
1747	WARN_ON(!map->bus);
1748
1749	for (i = 0; i < num_regs; i++) {
1750		unsigned int reg = regs[i].reg;
1751		struct regmap_range_node *range;
 
 
 
 
1752		range = _regmap_range_lookup(map, reg);
1753		if (range) {
1754			size_t len = sizeof(struct reg_default)*num_regs;
1755			struct reg_default *base = kmemdup(regs, len,
1756							   GFP_KERNEL);
1757			if (!base)
1758				return -ENOMEM;
1759			ret = _regmap_range_multi_paged_reg_write(map, base,
1760								  num_regs);
1761			kfree(base);
1762
1763			return ret;
1764		}
1765	}
1766	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1767}
1768
1769/*
1770 * regmap_multi_reg_write(): Write multiple registers to the device
1771 *
1772 * where the set of register,value pairs are supplied in any order,
1773 * possibly not all in a single range.
1774 *
1775 * @map: Register map to write to
1776 * @regs: Array of structures containing register,value to be written
1777 * @num_regs: Number of registers to write
1778 *
1779 * The 'normal' block write mode will send ultimately send data on the
1780 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1781 * addressed. However, this alternative block multi write mode will send
1782 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1783 * must of course support the mode.
1784 *
1785 * A value of zero will be returned on success, a negative errno will be
1786 * returned in error cases.
1787 */
1788int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1789			   int num_regs)
1790{
1791	int ret;
1792
1793	map->lock(map->lock_arg);
1794
1795	ret = _regmap_multi_reg_write(map, regs, num_regs);
1796
1797	map->unlock(map->lock_arg);
1798
1799	return ret;
1800}
1801EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1802
1803/*
1804 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1805 *                                    device but not the cache
1806 *
1807 * where the set of register are supplied in any order
1808 *
1809 * @map: Register map to write to
1810 * @regs: Array of structures containing register,value to be written
1811 * @num_regs: Number of registers to write
1812 *
1813 * This function is intended to be used for writing a large block of data
1814 * atomically to the device in single transfer for those I2C client devices
1815 * that implement this alternative block write mode.
1816 *
1817 * A value of zero will be returned on success, a negative errno will
1818 * be returned in error cases.
1819 */
1820int regmap_multi_reg_write_bypassed(struct regmap *map,
1821				    const struct reg_default *regs,
1822				    int num_regs)
1823{
1824	int ret;
1825	bool bypass;
1826
1827	map->lock(map->lock_arg);
1828
1829	bypass = map->cache_bypass;
1830	map->cache_bypass = true;
1831
1832	ret = _regmap_multi_reg_write(map, regs, num_regs);
1833
1834	map->cache_bypass = bypass;
1835
1836	map->unlock(map->lock_arg);
1837
1838	return ret;
1839}
1840EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1841
1842/**
1843 * regmap_raw_write_async(): Write raw values to one or more registers
1844 *                           asynchronously
1845 *
1846 * @map: Register map to write to
1847 * @reg: Initial register to write to
1848 * @val: Block of data to be written, laid out for direct transmission to the
1849 *       device.  Must be valid until regmap_async_complete() is called.
1850 * @val_len: Length of data pointed to by val.
1851 *
1852 * This function is intended to be used for things like firmware
1853 * download where a large block of data needs to be transferred to the
1854 * device.  No formatting will be done on the data provided.
1855 *
1856 * If supported by the underlying bus the write will be scheduled
1857 * asynchronously, helping maximise I/O speed on higher speed buses
1858 * like SPI.  regmap_async_complete() can be called to ensure that all
1859 * asynchrnous writes have been completed.
1860 *
1861 * A value of zero will be returned on success, a negative errno will
1862 * be returned in error cases.
1863 */
1864int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1865			   const void *val, size_t val_len)
1866{
1867	int ret;
1868
1869	if (val_len % map->format.val_bytes)
1870		return -EINVAL;
1871	if (reg % map->reg_stride)
1872		return -EINVAL;
1873
1874	map->lock(map->lock_arg);
1875
1876	map->async = true;
1877
1878	ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880	map->async = false;
1881
1882	map->unlock(map->lock_arg);
1883
1884	return ret;
1885}
1886EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1887
1888static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1889			    unsigned int val_len)
1890{
1891	struct regmap_range_node *range;
1892	u8 *u8 = map->work_buf;
1893	int ret;
1894
1895	WARN_ON(!map->bus);
1896
 
 
 
1897	range = _regmap_range_lookup(map, reg);
1898	if (range) {
1899		ret = _regmap_select_page(map, &reg, range,
1900					  val_len / map->format.val_bytes);
1901		if (ret != 0)
1902			return ret;
1903	}
1904
1905	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1906
1907	/*
1908	 * Some buses or devices flag reads by setting the high bits in the
1909	 * register addresss; since it's always the high bits for all
1910	 * current formats we can do this here rather than in
1911	 * formatting.  This may break if we get interesting formats.
1912	 */
1913	u8[0] |= map->read_flag_mask;
1914
1915	trace_regmap_hw_read_start(map->dev, reg,
1916				   val_len / map->format.val_bytes);
1917
1918	ret = map->bus->read(map->bus_context, map->work_buf,
1919			     map->format.reg_bytes + map->format.pad_bytes,
1920			     val, val_len);
1921
1922	trace_regmap_hw_read_done(map->dev, reg,
1923				  val_len / map->format.val_bytes);
1924
1925	return ret;
1926}
1927
 
 
 
 
 
 
 
 
1928static int _regmap_bus_read(void *context, unsigned int reg,
1929			    unsigned int *val)
1930{
1931	int ret;
1932	struct regmap *map = context;
1933
1934	if (!map->format.parse_val)
1935		return -EINVAL;
1936
1937	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1938	if (ret == 0)
1939		*val = map->format.parse_val(map->work_buf);
1940
1941	return ret;
1942}
1943
1944static int _regmap_read(struct regmap *map, unsigned int reg,
1945			unsigned int *val)
1946{
1947	int ret;
1948	void *context = _regmap_map_get_context(map);
1949
1950	WARN_ON(!map->reg_read);
1951
1952	if (!map->cache_bypass) {
1953		ret = regcache_read(map, reg, val);
1954		if (ret == 0)
1955			return 0;
1956	}
1957
1958	if (map->cache_only)
1959		return -EBUSY;
1960
1961	if (!regmap_readable(map, reg))
1962		return -EIO;
1963
1964	ret = map->reg_read(context, reg, val);
1965	if (ret == 0) {
1966#ifdef LOG_DEVICE
1967		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1968			dev_info(map->dev, "%x => %x\n", reg, *val);
1969#endif
1970
1971		trace_regmap_reg_read(map->dev, reg, *val);
1972
1973		if (!map->cache_bypass)
1974			regcache_write(map, reg, *val);
1975	}
1976
1977	return ret;
1978}
1979
1980/**
1981 * regmap_read(): Read a value from a single register
1982 *
1983 * @map: Register map to read from
1984 * @reg: Register to be read from
1985 * @val: Pointer to store read value
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1991{
1992	int ret;
1993
1994	if (reg % map->reg_stride)
1995		return -EINVAL;
1996
1997	map->lock(map->lock_arg);
1998
1999	ret = _regmap_read(map, reg, val);
2000
2001	map->unlock(map->lock_arg);
2002
2003	return ret;
2004}
2005EXPORT_SYMBOL_GPL(regmap_read);
2006
2007/**
2008 * regmap_raw_read(): Read raw data from the device
2009 *
2010 * @map: Register map to read from
2011 * @reg: First register to be read from
2012 * @val: Pointer to store read value
2013 * @val_len: Size of data to read
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2019		    size_t val_len)
2020{
2021	size_t val_bytes = map->format.val_bytes;
2022	size_t val_count = val_len / val_bytes;
2023	unsigned int v;
2024	int ret, i;
2025
2026	if (!map->bus)
2027		return -EINVAL;
2028	if (val_len % map->format.val_bytes)
2029		return -EINVAL;
2030	if (reg % map->reg_stride)
 
 
2031		return -EINVAL;
2032
2033	map->lock(map->lock_arg);
2034
2035	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2036	    map->cache_type == REGCACHE_NONE) {
 
 
 
 
 
 
 
 
 
2037		/* Physical block read if there's no cache involved */
2038		ret = _regmap_raw_read(map, reg, val, val_len);
2039
2040	} else {
2041		/* Otherwise go word by word for the cache; should be low
2042		 * cost as we expect to hit the cache.
2043		 */
2044		for (i = 0; i < val_count; i++) {
2045			ret = _regmap_read(map, reg + (i * map->reg_stride),
2046					   &v);
2047			if (ret != 0)
2048				goto out;
2049
2050			map->format.format_val(val + (i * val_bytes), v, 0);
2051		}
2052	}
2053
2054 out:
2055	map->unlock(map->lock_arg);
2056
2057	return ret;
2058}
2059EXPORT_SYMBOL_GPL(regmap_raw_read);
2060
2061/**
2062 * regmap_field_read(): Read a value to a single register field
2063 *
2064 * @field: Register field to read from
2065 * @val: Pointer to store read value
2066 *
2067 * A value of zero will be returned on success, a negative errno will
2068 * be returned in error cases.
2069 */
2070int regmap_field_read(struct regmap_field *field, unsigned int *val)
2071{
2072	int ret;
2073	unsigned int reg_val;
2074	ret = regmap_read(field->regmap, field->reg, &reg_val);
2075	if (ret != 0)
2076		return ret;
2077
2078	reg_val &= field->mask;
2079	reg_val >>= field->shift;
2080	*val = reg_val;
2081
2082	return ret;
2083}
2084EXPORT_SYMBOL_GPL(regmap_field_read);
2085
2086/**
2087 * regmap_fields_read(): Read a value to a single register field with port ID
2088 *
2089 * @field: Register field to read from
2090 * @id: port ID
2091 * @val: Pointer to store read value
2092 *
2093 * A value of zero will be returned on success, a negative errno will
2094 * be returned in error cases.
2095 */
2096int regmap_fields_read(struct regmap_field *field, unsigned int id,
2097		       unsigned int *val)
2098{
2099	int ret;
2100	unsigned int reg_val;
2101
2102	if (id >= field->id_size)
2103		return -EINVAL;
2104
2105	ret = regmap_read(field->regmap,
2106			  field->reg + (field->id_offset * id),
2107			  &reg_val);
2108	if (ret != 0)
2109		return ret;
2110
2111	reg_val &= field->mask;
2112	reg_val >>= field->shift;
2113	*val = reg_val;
2114
2115	return ret;
2116}
2117EXPORT_SYMBOL_GPL(regmap_fields_read);
2118
2119/**
2120 * regmap_bulk_read(): Read multiple registers from the device
2121 *
2122 * @map: Register map to read from
2123 * @reg: First register to be read from
2124 * @val: Pointer to store read value, in native register size for device
2125 * @val_count: Number of registers to read
2126 *
2127 * A value of zero will be returned on success, a negative errno will
2128 * be returned in error cases.
2129 */
2130int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2131		     size_t val_count)
2132{
2133	int ret, i;
2134	size_t val_bytes = map->format.val_bytes;
2135	bool vol = regmap_volatile_range(map, reg, val_count);
2136
2137	if (reg % map->reg_stride)
2138		return -EINVAL;
2139
2140	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2141		/*
2142		 * Some devices does not support bulk read, for
2143		 * them we have a series of single read operations.
2144		 */
2145		if (map->use_single_rw) {
2146			for (i = 0; i < val_count; i++) {
2147				ret = regmap_raw_read(map,
2148						reg + (i * map->reg_stride),
2149						val + (i * val_bytes),
2150						val_bytes);
2151				if (ret != 0)
2152					return ret;
2153			}
2154		} else {
2155			ret = regmap_raw_read(map, reg, val,
2156					      val_bytes * val_count);
2157			if (ret != 0)
2158				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159		}
2160
2161		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2162			map->format.parse_inplace(val + i);
2163	} else {
2164		for (i = 0; i < val_count; i++) {
2165			unsigned int ival;
2166			ret = regmap_read(map, reg + (i * map->reg_stride),
2167					  &ival);
2168			if (ret != 0)
2169				return ret;
2170			memcpy(val + (i * val_bytes), &ival, val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171		}
2172	}
2173
2174	return 0;
2175}
2176EXPORT_SYMBOL_GPL(regmap_bulk_read);
2177
2178static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2179			       unsigned int mask, unsigned int val,
2180			       bool *change)
2181{
2182	int ret;
2183	unsigned int tmp, orig;
2184
2185	ret = _regmap_read(map, reg, &orig);
2186	if (ret != 0)
2187		return ret;
2188
2189	tmp = orig & ~mask;
2190	tmp |= val & mask;
2191
2192	if (tmp != orig) {
2193		ret = _regmap_write(map, reg, tmp);
2194		if (change)
2195			*change = true;
2196	} else {
2197		if (change)
2198			*change = false;
2199	}
2200
2201	return ret;
2202}
2203
2204/**
2205 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2206 *
2207 * @map: Register map to update
2208 * @reg: Register to update
2209 * @mask: Bitmask to change
2210 * @val: New value for bitmask
2211 *
2212 * Returns zero for success, a negative number on error.
2213 */
2214int regmap_update_bits(struct regmap *map, unsigned int reg,
2215		       unsigned int mask, unsigned int val)
2216{
2217	int ret;
2218
2219	map->lock(map->lock_arg);
2220	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2221	map->unlock(map->lock_arg);
2222
2223	return ret;
2224}
2225EXPORT_SYMBOL_GPL(regmap_update_bits);
2226
2227/**
2228 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2229 *                           map asynchronously
2230 *
2231 * @map: Register map to update
2232 * @reg: Register to update
2233 * @mask: Bitmask to change
2234 * @val: New value for bitmask
2235 *
2236 * With most buses the read must be done synchronously so this is most
2237 * useful for devices with a cache which do not need to interact with
2238 * the hardware to determine the current register value.
2239 *
2240 * Returns zero for success, a negative number on error.
2241 */
2242int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2243			     unsigned int mask, unsigned int val)
2244{
2245	int ret;
2246
2247	map->lock(map->lock_arg);
2248
2249	map->async = true;
2250
2251	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2252
2253	map->async = false;
2254
2255	map->unlock(map->lock_arg);
2256
2257	return ret;
2258}
2259EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2260
2261/**
2262 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2263 *                           register map and report if updated
2264 *
2265 * @map: Register map to update
2266 * @reg: Register to update
2267 * @mask: Bitmask to change
2268 * @val: New value for bitmask
2269 * @change: Boolean indicating if a write was done
2270 *
2271 * Returns zero for success, a negative number on error.
2272 */
2273int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2274			     unsigned int mask, unsigned int val,
2275			     bool *change)
2276{
2277	int ret;
2278
2279	map->lock(map->lock_arg);
2280	ret = _regmap_update_bits(map, reg, mask, val, change);
2281	map->unlock(map->lock_arg);
2282	return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2285
2286/**
2287 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2288 *                                 register map asynchronously and report if
2289 *                                 updated
2290 *
2291 * @map: Register map to update
2292 * @reg: Register to update
2293 * @mask: Bitmask to change
2294 * @val: New value for bitmask
2295 * @change: Boolean indicating if a write was done
 
 
2296 *
 
2297 * With most buses the read must be done synchronously so this is most
2298 * useful for devices with a cache which do not need to interact with
2299 * the hardware to determine the current register value.
2300 *
2301 * Returns zero for success, a negative number on error.
2302 */
2303int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2304				   unsigned int mask, unsigned int val,
2305				   bool *change)
2306{
2307	int ret;
2308
2309	map->lock(map->lock_arg);
2310
2311	map->async = true;
2312
2313	ret = _regmap_update_bits(map, reg, mask, val, change);
2314
2315	map->async = false;
2316
2317	map->unlock(map->lock_arg);
2318
2319	return ret;
2320}
2321EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2322
2323void regmap_async_complete_cb(struct regmap_async *async, int ret)
2324{
2325	struct regmap *map = async->map;
2326	bool wake;
2327
2328	trace_regmap_async_io_complete(map->dev);
2329
2330	spin_lock(&map->async_lock);
2331	list_move(&async->list, &map->async_free);
2332	wake = list_empty(&map->async_list);
2333
2334	if (ret != 0)
2335		map->async_ret = ret;
2336
2337	spin_unlock(&map->async_lock);
2338
2339	if (wake)
2340		wake_up(&map->async_waitq);
2341}
2342EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2343
2344static int regmap_async_is_done(struct regmap *map)
2345{
2346	unsigned long flags;
2347	int ret;
2348
2349	spin_lock_irqsave(&map->async_lock, flags);
2350	ret = list_empty(&map->async_list);
2351	spin_unlock_irqrestore(&map->async_lock, flags);
2352
2353	return ret;
2354}
2355
2356/**
2357 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2358 *
2359 * @map: Map to operate on.
2360 *
2361 * Blocks until any pending asynchronous I/O has completed.  Returns
2362 * an error code for any failed I/O operations.
2363 */
2364int regmap_async_complete(struct regmap *map)
2365{
2366	unsigned long flags;
2367	int ret;
2368
2369	/* Nothing to do with no async support */
2370	if (!map->bus || !map->bus->async_write)
2371		return 0;
2372
2373	trace_regmap_async_complete_start(map->dev);
2374
2375	wait_event(map->async_waitq, regmap_async_is_done(map));
2376
2377	spin_lock_irqsave(&map->async_lock, flags);
2378	ret = map->async_ret;
2379	map->async_ret = 0;
2380	spin_unlock_irqrestore(&map->async_lock, flags);
2381
2382	trace_regmap_async_complete_done(map->dev);
2383
2384	return ret;
2385}
2386EXPORT_SYMBOL_GPL(regmap_async_complete);
2387
2388/**
2389 * regmap_register_patch: Register and apply register updates to be applied
2390 *                        on device initialistion
2391 *
2392 * @map: Register map to apply updates to.
2393 * @regs: Values to update.
2394 * @num_regs: Number of entries in regs.
2395 *
2396 * Register a set of register updates to be applied to the device
2397 * whenever the device registers are synchronised with the cache and
2398 * apply them immediately.  Typically this is used to apply
2399 * corrections to be applied to the device defaults on startup, such
2400 * as the updates some vendors provide to undocumented registers.
2401 *
2402 * The caller must ensure that this function cannot be called
2403 * concurrently with either itself or regcache_sync().
2404 */
2405int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2406			  int num_regs)
2407{
2408	struct reg_default *p;
2409	int ret;
2410	bool bypass;
2411
2412	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2413	    num_regs))
2414		return 0;
2415
2416	p = krealloc(map->patch,
2417		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2418		     GFP_KERNEL);
2419	if (p) {
2420		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2421		map->patch = p;
2422		map->patch_regs += num_regs;
2423	} else {
2424		return -ENOMEM;
2425	}
2426
2427	map->lock(map->lock_arg);
2428
2429	bypass = map->cache_bypass;
2430
2431	map->cache_bypass = true;
2432	map->async = true;
2433
2434	ret = _regmap_multi_reg_write(map, regs, num_regs);
2435	if (ret != 0)
2436		goto out;
2437
2438out:
2439	map->async = false;
2440	map->cache_bypass = bypass;
2441
2442	map->unlock(map->lock_arg);
2443
2444	regmap_async_complete(map);
2445
2446	return ret;
2447}
2448EXPORT_SYMBOL_GPL(regmap_register_patch);
2449
2450/*
2451 * regmap_get_val_bytes(): Report the size of a register value
2452 *
2453 * Report the size of a register value, mainly intended to for use by
2454 * generic infrastructure built on top of regmap.
2455 */
2456int regmap_get_val_bytes(struct regmap *map)
2457{
2458	if (map->format.format_write)
2459		return -EINVAL;
2460
2461	return map->format.val_bytes;
2462}
2463EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464
2465int regmap_parse_val(struct regmap *map, const void *buf,
2466			unsigned int *val)
2467{
2468	if (!map->format.parse_val)
2469		return -EINVAL;
2470
2471	*val = map->format.parse_val(buf);
2472
2473	return 0;
2474}
2475EXPORT_SYMBOL_GPL(regmap_parse_val);
2476
2477static int __init regmap_initcall(void)
2478{
2479	regmap_debugfs_initcall();
2480
2481	return 0;
2482}
2483postcore_initcall(regmap_initcall);
v4.10.11
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27#include "internal.h"
  28
  29/*
  30 * Sometimes for failures during very early init the trace
  31 * infrastructure isn't available early enough to be used.  For this
  32 * sort of problem defining LOG_DEVICE will add printks for basic
  33 * register I/O on a specific device.
  34 */
  35#undef LOG_DEVICE
  36
  37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  38			       unsigned int mask, unsigned int val,
  39			       bool *change, bool force_write);
  40
  41static int _regmap_bus_reg_read(void *context, unsigned int reg,
  42				unsigned int *val);
  43static int _regmap_bus_read(void *context, unsigned int reg,
  44			    unsigned int *val);
  45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  46				       unsigned int val);
  47static int _regmap_bus_reg_write(void *context, unsigned int reg,
  48				 unsigned int val);
  49static int _regmap_bus_raw_write(void *context, unsigned int reg,
  50				 unsigned int val);
  51
  52bool regmap_reg_in_ranges(unsigned int reg,
  53			  const struct regmap_range *ranges,
  54			  unsigned int nranges)
  55{
  56	const struct regmap_range *r;
  57	int i;
  58
  59	for (i = 0, r = ranges; i < nranges; i++, r++)
  60		if (regmap_reg_in_range(reg, r))
  61			return true;
  62	return false;
  63}
  64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  65
  66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  67			      const struct regmap_access_table *table)
  68{
  69	/* Check "no ranges" first */
  70	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  71		return false;
  72
  73	/* In case zero "yes ranges" are supplied, any reg is OK */
  74	if (!table->n_yes_ranges)
  75		return true;
  76
  77	return regmap_reg_in_ranges(reg, table->yes_ranges,
  78				    table->n_yes_ranges);
  79}
  80EXPORT_SYMBOL_GPL(regmap_check_range_table);
  81
  82bool regmap_writeable(struct regmap *map, unsigned int reg)
  83{
  84	if (map->max_register && reg > map->max_register)
  85		return false;
  86
  87	if (map->writeable_reg)
  88		return map->writeable_reg(map->dev, reg);
  89
  90	if (map->wr_table)
  91		return regmap_check_range_table(map, reg, map->wr_table);
  92
  93	return true;
  94}
  95
  96bool regmap_cached(struct regmap *map, unsigned int reg)
  97{
  98	int ret;
  99	unsigned int val;
 100
 101	if (map->cache == REGCACHE_NONE)
 102		return false;
 103
 104	if (!map->cache_ops)
 105		return false;
 106
 107	if (map->max_register && reg > map->max_register)
 108		return false;
 109
 110	map->lock(map->lock_arg);
 111	ret = regcache_read(map, reg, &val);
 112	map->unlock(map->lock_arg);
 113	if (ret)
 114		return false;
 115
 116	return true;
 117}
 118
 119bool regmap_readable(struct regmap *map, unsigned int reg)
 120{
 121	if (!map->reg_read)
 122		return false;
 123
 124	if (map->max_register && reg > map->max_register)
 125		return false;
 126
 127	if (map->format.format_write)
 128		return false;
 129
 130	if (map->readable_reg)
 131		return map->readable_reg(map->dev, reg);
 132
 133	if (map->rd_table)
 134		return regmap_check_range_table(map, reg, map->rd_table);
 135
 136	return true;
 137}
 138
 139bool regmap_volatile(struct regmap *map, unsigned int reg)
 140{
 141	if (!map->format.format_write && !regmap_readable(map, reg))
 142		return false;
 143
 144	if (map->volatile_reg)
 145		return map->volatile_reg(map->dev, reg);
 146
 147	if (map->volatile_table)
 148		return regmap_check_range_table(map, reg, map->volatile_table);
 149
 150	if (map->cache_ops)
 151		return false;
 152	else
 153		return true;
 154}
 155
 156bool regmap_precious(struct regmap *map, unsigned int reg)
 157{
 158	if (!regmap_readable(map, reg))
 159		return false;
 160
 161	if (map->precious_reg)
 162		return map->precious_reg(map->dev, reg);
 163
 164	if (map->precious_table)
 165		return regmap_check_range_table(map, reg, map->precious_table);
 166
 167	return false;
 168}
 169
 170static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 171	size_t num)
 172{
 173	unsigned int i;
 174
 175	for (i = 0; i < num; i++)
 176		if (!regmap_volatile(map, reg + i))
 177			return false;
 178
 179	return true;
 180}
 181
 182static void regmap_format_2_6_write(struct regmap *map,
 183				     unsigned int reg, unsigned int val)
 184{
 185	u8 *out = map->work_buf;
 186
 187	*out = (reg << 6) | val;
 188}
 189
 190static void regmap_format_4_12_write(struct regmap *map,
 191				     unsigned int reg, unsigned int val)
 192{
 193	__be16 *out = map->work_buf;
 194	*out = cpu_to_be16((reg << 12) | val);
 195}
 196
 197static void regmap_format_7_9_write(struct regmap *map,
 198				    unsigned int reg, unsigned int val)
 199{
 200	__be16 *out = map->work_buf;
 201	*out = cpu_to_be16((reg << 9) | val);
 202}
 203
 204static void regmap_format_10_14_write(struct regmap *map,
 205				    unsigned int reg, unsigned int val)
 206{
 207	u8 *out = map->work_buf;
 208
 209	out[2] = val;
 210	out[1] = (val >> 8) | (reg << 6);
 211	out[0] = reg >> 2;
 212}
 213
 214static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 215{
 216	u8 *b = buf;
 217
 218	b[0] = val << shift;
 219}
 220
 221static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 222{
 223	__be16 *b = buf;
 224
 225	b[0] = cpu_to_be16(val << shift);
 226}
 227
 228static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 229{
 230	__le16 *b = buf;
 231
 232	b[0] = cpu_to_le16(val << shift);
 233}
 234
 235static void regmap_format_16_native(void *buf, unsigned int val,
 236				    unsigned int shift)
 237{
 238	*(u16 *)buf = val << shift;
 239}
 240
 241static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 242{
 243	u8 *b = buf;
 244
 245	val <<= shift;
 246
 247	b[0] = val >> 16;
 248	b[1] = val >> 8;
 249	b[2] = val;
 250}
 251
 252static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 253{
 254	__be32 *b = buf;
 255
 256	b[0] = cpu_to_be32(val << shift);
 257}
 258
 259static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 260{
 261	__le32 *b = buf;
 262
 263	b[0] = cpu_to_le32(val << shift);
 264}
 265
 266static void regmap_format_32_native(void *buf, unsigned int val,
 267				    unsigned int shift)
 268{
 269	*(u32 *)buf = val << shift;
 270}
 271
 272#ifdef CONFIG_64BIT
 273static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	__be64 *b = buf;
 276
 277	b[0] = cpu_to_be64((u64)val << shift);
 278}
 279
 280static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 281{
 282	__le64 *b = buf;
 283
 284	b[0] = cpu_to_le64((u64)val << shift);
 285}
 286
 287static void regmap_format_64_native(void *buf, unsigned int val,
 288				    unsigned int shift)
 289{
 290	*(u64 *)buf = (u64)val << shift;
 291}
 292#endif
 293
 294static void regmap_parse_inplace_noop(void *buf)
 295{
 296}
 297
 298static unsigned int regmap_parse_8(const void *buf)
 299{
 300	const u8 *b = buf;
 301
 302	return b[0];
 303}
 304
 305static unsigned int regmap_parse_16_be(const void *buf)
 306{
 307	const __be16 *b = buf;
 308
 309	return be16_to_cpu(b[0]);
 310}
 311
 312static unsigned int regmap_parse_16_le(const void *buf)
 313{
 314	const __le16 *b = buf;
 315
 316	return le16_to_cpu(b[0]);
 317}
 318
 319static void regmap_parse_16_be_inplace(void *buf)
 320{
 321	__be16 *b = buf;
 322
 323	b[0] = be16_to_cpu(b[0]);
 324}
 325
 326static void regmap_parse_16_le_inplace(void *buf)
 327{
 328	__le16 *b = buf;
 329
 330	b[0] = le16_to_cpu(b[0]);
 331}
 332
 333static unsigned int regmap_parse_16_native(const void *buf)
 334{
 335	return *(u16 *)buf;
 336}
 337
 338static unsigned int regmap_parse_24(const void *buf)
 339{
 340	const u8 *b = buf;
 341	unsigned int ret = b[2];
 342	ret |= ((unsigned int)b[1]) << 8;
 343	ret |= ((unsigned int)b[0]) << 16;
 344
 345	return ret;
 346}
 347
 348static unsigned int regmap_parse_32_be(const void *buf)
 349{
 350	const __be32 *b = buf;
 351
 352	return be32_to_cpu(b[0]);
 353}
 354
 355static unsigned int regmap_parse_32_le(const void *buf)
 356{
 357	const __le32 *b = buf;
 358
 359	return le32_to_cpu(b[0]);
 360}
 361
 362static void regmap_parse_32_be_inplace(void *buf)
 363{
 364	__be32 *b = buf;
 365
 366	b[0] = be32_to_cpu(b[0]);
 367}
 368
 369static void regmap_parse_32_le_inplace(void *buf)
 370{
 371	__le32 *b = buf;
 372
 373	b[0] = le32_to_cpu(b[0]);
 374}
 375
 376static unsigned int regmap_parse_32_native(const void *buf)
 377{
 378	return *(u32 *)buf;
 379}
 380
 381#ifdef CONFIG_64BIT
 382static unsigned int regmap_parse_64_be(const void *buf)
 383{
 384	const __be64 *b = buf;
 385
 386	return be64_to_cpu(b[0]);
 387}
 388
 389static unsigned int regmap_parse_64_le(const void *buf)
 390{
 391	const __le64 *b = buf;
 392
 393	return le64_to_cpu(b[0]);
 394}
 395
 396static void regmap_parse_64_be_inplace(void *buf)
 397{
 398	__be64 *b = buf;
 399
 400	b[0] = be64_to_cpu(b[0]);
 401}
 402
 403static void regmap_parse_64_le_inplace(void *buf)
 404{
 405	__le64 *b = buf;
 406
 407	b[0] = le64_to_cpu(b[0]);
 408}
 409
 410static unsigned int regmap_parse_64_native(const void *buf)
 411{
 412	return *(u64 *)buf;
 413}
 414#endif
 415
 416static void regmap_lock_mutex(void *__map)
 417{
 418	struct regmap *map = __map;
 419	mutex_lock(&map->mutex);
 420}
 421
 422static void regmap_unlock_mutex(void *__map)
 423{
 424	struct regmap *map = __map;
 425	mutex_unlock(&map->mutex);
 426}
 427
 428static void regmap_lock_spinlock(void *__map)
 429__acquires(&map->spinlock)
 430{
 431	struct regmap *map = __map;
 432	unsigned long flags;
 433
 434	spin_lock_irqsave(&map->spinlock, flags);
 435	map->spinlock_flags = flags;
 436}
 437
 438static void regmap_unlock_spinlock(void *__map)
 439__releases(&map->spinlock)
 440{
 441	struct regmap *map = __map;
 442	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 443}
 444
 445static void dev_get_regmap_release(struct device *dev, void *res)
 446{
 447	/*
 448	 * We don't actually have anything to do here; the goal here
 449	 * is not to manage the regmap but to provide a simple way to
 450	 * get the regmap back given a struct device.
 451	 */
 452}
 453
 454static bool _regmap_range_add(struct regmap *map,
 455			      struct regmap_range_node *data)
 456{
 457	struct rb_root *root = &map->range_tree;
 458	struct rb_node **new = &(root->rb_node), *parent = NULL;
 459
 460	while (*new) {
 461		struct regmap_range_node *this =
 462			container_of(*new, struct regmap_range_node, node);
 463
 464		parent = *new;
 465		if (data->range_max < this->range_min)
 466			new = &((*new)->rb_left);
 467		else if (data->range_min > this->range_max)
 468			new = &((*new)->rb_right);
 469		else
 470			return false;
 471	}
 472
 473	rb_link_node(&data->node, parent, new);
 474	rb_insert_color(&data->node, root);
 475
 476	return true;
 477}
 478
 479static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 480						      unsigned int reg)
 481{
 482	struct rb_node *node = map->range_tree.rb_node;
 483
 484	while (node) {
 485		struct regmap_range_node *this =
 486			container_of(node, struct regmap_range_node, node);
 487
 488		if (reg < this->range_min)
 489			node = node->rb_left;
 490		else if (reg > this->range_max)
 491			node = node->rb_right;
 492		else
 493			return this;
 494	}
 495
 496	return NULL;
 497}
 498
 499static void regmap_range_exit(struct regmap *map)
 500{
 501	struct rb_node *next;
 502	struct regmap_range_node *range_node;
 503
 504	next = rb_first(&map->range_tree);
 505	while (next) {
 506		range_node = rb_entry(next, struct regmap_range_node, node);
 507		next = rb_next(&range_node->node);
 508		rb_erase(&range_node->node, &map->range_tree);
 509		kfree(range_node);
 510	}
 511
 512	kfree(map->selector_work_buf);
 513}
 514
 515int regmap_attach_dev(struct device *dev, struct regmap *map,
 516		      const struct regmap_config *config)
 517{
 518	struct regmap **m;
 519
 520	map->dev = dev;
 521
 522	regmap_debugfs_init(map, config->name);
 523
 524	/* Add a devres resource for dev_get_regmap() */
 525	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 526	if (!m) {
 527		regmap_debugfs_exit(map);
 528		return -ENOMEM;
 529	}
 530	*m = map;
 531	devres_add(dev, m);
 532
 533	return 0;
 534}
 535EXPORT_SYMBOL_GPL(regmap_attach_dev);
 536
 537static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 538					const struct regmap_config *config)
 539{
 540	enum regmap_endian endian;
 541
 542	/* Retrieve the endianness specification from the regmap config */
 543	endian = config->reg_format_endian;
 544
 545	/* If the regmap config specified a non-default value, use that */
 546	if (endian != REGMAP_ENDIAN_DEFAULT)
 547		return endian;
 548
 549	/* Retrieve the endianness specification from the bus config */
 550	if (bus && bus->reg_format_endian_default)
 551		endian = bus->reg_format_endian_default;
 552
 553	/* If the bus specified a non-default value, use that */
 554	if (endian != REGMAP_ENDIAN_DEFAULT)
 555		return endian;
 556
 557	/* Use this if no other value was found */
 558	return REGMAP_ENDIAN_BIG;
 559}
 560
 561enum regmap_endian regmap_get_val_endian(struct device *dev,
 562					 const struct regmap_bus *bus,
 563					 const struct regmap_config *config)
 564{
 565	struct device_node *np;
 566	enum regmap_endian endian;
 567
 568	/* Retrieve the endianness specification from the regmap config */
 569	endian = config->val_format_endian;
 570
 571	/* If the regmap config specified a non-default value, use that */
 572	if (endian != REGMAP_ENDIAN_DEFAULT)
 573		return endian;
 574
 575	/* If the dev and dev->of_node exist try to get endianness from DT */
 576	if (dev && dev->of_node) {
 577		np = dev->of_node;
 578
 579		/* Parse the device's DT node for an endianness specification */
 580		if (of_property_read_bool(np, "big-endian"))
 581			endian = REGMAP_ENDIAN_BIG;
 582		else if (of_property_read_bool(np, "little-endian"))
 583			endian = REGMAP_ENDIAN_LITTLE;
 584		else if (of_property_read_bool(np, "native-endian"))
 585			endian = REGMAP_ENDIAN_NATIVE;
 586
 587		/* If the endianness was specified in DT, use that */
 588		if (endian != REGMAP_ENDIAN_DEFAULT)
 589			return endian;
 590	}
 591
 592	/* Retrieve the endianness specification from the bus config */
 593	if (bus && bus->val_format_endian_default)
 594		endian = bus->val_format_endian_default;
 595
 596	/* If the bus specified a non-default value, use that */
 597	if (endian != REGMAP_ENDIAN_DEFAULT)
 598		return endian;
 599
 600	/* Use this if no other value was found */
 601	return REGMAP_ENDIAN_BIG;
 602}
 603EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 604
 605struct regmap *__regmap_init(struct device *dev,
 606			     const struct regmap_bus *bus,
 607			     void *bus_context,
 608			     const struct regmap_config *config,
 609			     struct lock_class_key *lock_key,
 610			     const char *lock_name)
 611{
 612	struct regmap *map;
 613	int ret = -EINVAL;
 614	enum regmap_endian reg_endian, val_endian;
 615	int i, j;
 616
 617	if (!config)
 618		goto err;
 619
 620	map = kzalloc(sizeof(*map), GFP_KERNEL);
 621	if (map == NULL) {
 622		ret = -ENOMEM;
 623		goto err;
 624	}
 625
 626	if (config->lock && config->unlock) {
 627		map->lock = config->lock;
 628		map->unlock = config->unlock;
 629		map->lock_arg = config->lock_arg;
 630	} else {
 631		if ((bus && bus->fast_io) ||
 632		    config->fast_io) {
 633			spin_lock_init(&map->spinlock);
 634			map->lock = regmap_lock_spinlock;
 635			map->unlock = regmap_unlock_spinlock;
 636			lockdep_set_class_and_name(&map->spinlock,
 637						   lock_key, lock_name);
 638		} else {
 639			mutex_init(&map->mutex);
 640			map->lock = regmap_lock_mutex;
 641			map->unlock = regmap_unlock_mutex;
 642			lockdep_set_class_and_name(&map->mutex,
 643						   lock_key, lock_name);
 644		}
 645		map->lock_arg = map;
 646	}
 647
 648	/*
 649	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 650	 * scratch buffers with sleeping allocations.
 651	 */
 652	if ((bus && bus->fast_io) || config->fast_io)
 653		map->alloc_flags = GFP_ATOMIC;
 654	else
 655		map->alloc_flags = GFP_KERNEL;
 656
 657	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 658	map->format.pad_bytes = config->pad_bits / 8;
 659	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 660	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 661			config->val_bits + config->pad_bits, 8);
 662	map->reg_shift = config->pad_bits % 8;
 663	if (config->reg_stride)
 664		map->reg_stride = config->reg_stride;
 665	else
 666		map->reg_stride = 1;
 667	if (is_power_of_2(map->reg_stride))
 668		map->reg_stride_order = ilog2(map->reg_stride);
 669	else
 670		map->reg_stride_order = -1;
 671	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 672	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 673	map->can_multi_write = config->can_multi_write && bus && bus->write;
 674	if (bus) {
 675		map->max_raw_read = bus->max_raw_read;
 676		map->max_raw_write = bus->max_raw_write;
 677	}
 678	map->dev = dev;
 679	map->bus = bus;
 680	map->bus_context = bus_context;
 681	map->max_register = config->max_register;
 682	map->wr_table = config->wr_table;
 683	map->rd_table = config->rd_table;
 684	map->volatile_table = config->volatile_table;
 685	map->precious_table = config->precious_table;
 686	map->writeable_reg = config->writeable_reg;
 687	map->readable_reg = config->readable_reg;
 688	map->volatile_reg = config->volatile_reg;
 689	map->precious_reg = config->precious_reg;
 690	map->cache_type = config->cache_type;
 691	map->name = config->name;
 692
 693	spin_lock_init(&map->async_lock);
 694	INIT_LIST_HEAD(&map->async_list);
 695	INIT_LIST_HEAD(&map->async_free);
 696	init_waitqueue_head(&map->async_waitq);
 697
 698	if (config->read_flag_mask || config->write_flag_mask) {
 699		map->read_flag_mask = config->read_flag_mask;
 700		map->write_flag_mask = config->write_flag_mask;
 701	} else if (bus) {
 702		map->read_flag_mask = bus->read_flag_mask;
 703	}
 704
 705	if (!bus) {
 706		map->reg_read  = config->reg_read;
 707		map->reg_write = config->reg_write;
 708
 709		map->defer_caching = false;
 710		goto skip_format_initialization;
 711	} else if (!bus->read || !bus->write) {
 712		map->reg_read = _regmap_bus_reg_read;
 713		map->reg_write = _regmap_bus_reg_write;
 714
 715		map->defer_caching = false;
 716		goto skip_format_initialization;
 717	} else {
 718		map->reg_read  = _regmap_bus_read;
 719		map->reg_update_bits = bus->reg_update_bits;
 720	}
 721
 722	reg_endian = regmap_get_reg_endian(bus, config);
 723	val_endian = regmap_get_val_endian(dev, bus, config);
 
 
 
 
 
 
 
 
 
 724
 725	switch (config->reg_bits + map->reg_shift) {
 726	case 2:
 727		switch (config->val_bits) {
 728		case 6:
 729			map->format.format_write = regmap_format_2_6_write;
 730			break;
 731		default:
 732			goto err_map;
 733		}
 734		break;
 735
 736	case 4:
 737		switch (config->val_bits) {
 738		case 12:
 739			map->format.format_write = regmap_format_4_12_write;
 740			break;
 741		default:
 742			goto err_map;
 743		}
 744		break;
 745
 746	case 7:
 747		switch (config->val_bits) {
 748		case 9:
 749			map->format.format_write = regmap_format_7_9_write;
 750			break;
 751		default:
 752			goto err_map;
 753		}
 754		break;
 755
 756	case 10:
 757		switch (config->val_bits) {
 758		case 14:
 759			map->format.format_write = regmap_format_10_14_write;
 760			break;
 761		default:
 762			goto err_map;
 763		}
 764		break;
 765
 766	case 8:
 767		map->format.format_reg = regmap_format_8;
 768		break;
 769
 770	case 16:
 771		switch (reg_endian) {
 772		case REGMAP_ENDIAN_BIG:
 773			map->format.format_reg = regmap_format_16_be;
 774			break;
 775		case REGMAP_ENDIAN_LITTLE:
 776			map->format.format_reg = regmap_format_16_le;
 777			break;
 778		case REGMAP_ENDIAN_NATIVE:
 779			map->format.format_reg = regmap_format_16_native;
 780			break;
 781		default:
 782			goto err_map;
 783		}
 784		break;
 785
 786	case 24:
 787		if (reg_endian != REGMAP_ENDIAN_BIG)
 788			goto err_map;
 789		map->format.format_reg = regmap_format_24;
 790		break;
 791
 792	case 32:
 793		switch (reg_endian) {
 794		case REGMAP_ENDIAN_BIG:
 795			map->format.format_reg = regmap_format_32_be;
 796			break;
 797		case REGMAP_ENDIAN_LITTLE:
 798			map->format.format_reg = regmap_format_32_le;
 799			break;
 800		case REGMAP_ENDIAN_NATIVE:
 801			map->format.format_reg = regmap_format_32_native;
 802			break;
 803		default:
 804			goto err_map;
 805		}
 806		break;
 807
 808#ifdef CONFIG_64BIT
 809	case 64:
 810		switch (reg_endian) {
 811		case REGMAP_ENDIAN_BIG:
 812			map->format.format_reg = regmap_format_64_be;
 813			break;
 814		case REGMAP_ENDIAN_LITTLE:
 815			map->format.format_reg = regmap_format_64_le;
 816			break;
 817		case REGMAP_ENDIAN_NATIVE:
 818			map->format.format_reg = regmap_format_64_native;
 819			break;
 820		default:
 821			goto err_map;
 822		}
 823		break;
 824#endif
 825
 826	default:
 827		goto err_map;
 828	}
 829
 830	if (val_endian == REGMAP_ENDIAN_NATIVE)
 831		map->format.parse_inplace = regmap_parse_inplace_noop;
 832
 833	switch (config->val_bits) {
 834	case 8:
 835		map->format.format_val = regmap_format_8;
 836		map->format.parse_val = regmap_parse_8;
 837		map->format.parse_inplace = regmap_parse_inplace_noop;
 838		break;
 839	case 16:
 840		switch (val_endian) {
 841		case REGMAP_ENDIAN_BIG:
 842			map->format.format_val = regmap_format_16_be;
 843			map->format.parse_val = regmap_parse_16_be;
 844			map->format.parse_inplace = regmap_parse_16_be_inplace;
 845			break;
 846		case REGMAP_ENDIAN_LITTLE:
 847			map->format.format_val = regmap_format_16_le;
 848			map->format.parse_val = regmap_parse_16_le;
 849			map->format.parse_inplace = regmap_parse_16_le_inplace;
 850			break;
 851		case REGMAP_ENDIAN_NATIVE:
 852			map->format.format_val = regmap_format_16_native;
 853			map->format.parse_val = regmap_parse_16_native;
 854			break;
 855		default:
 856			goto err_map;
 857		}
 858		break;
 859	case 24:
 860		if (val_endian != REGMAP_ENDIAN_BIG)
 861			goto err_map;
 862		map->format.format_val = regmap_format_24;
 863		map->format.parse_val = regmap_parse_24;
 864		break;
 865	case 32:
 866		switch (val_endian) {
 867		case REGMAP_ENDIAN_BIG:
 868			map->format.format_val = regmap_format_32_be;
 869			map->format.parse_val = regmap_parse_32_be;
 870			map->format.parse_inplace = regmap_parse_32_be_inplace;
 871			break;
 872		case REGMAP_ENDIAN_LITTLE:
 873			map->format.format_val = regmap_format_32_le;
 874			map->format.parse_val = regmap_parse_32_le;
 875			map->format.parse_inplace = regmap_parse_32_le_inplace;
 876			break;
 877		case REGMAP_ENDIAN_NATIVE:
 878			map->format.format_val = regmap_format_32_native;
 879			map->format.parse_val = regmap_parse_32_native;
 880			break;
 881		default:
 882			goto err_map;
 883		}
 884		break;
 885#ifdef CONFIG_64BIT
 886	case 64:
 887		switch (val_endian) {
 888		case REGMAP_ENDIAN_BIG:
 889			map->format.format_val = regmap_format_64_be;
 890			map->format.parse_val = regmap_parse_64_be;
 891			map->format.parse_inplace = regmap_parse_64_be_inplace;
 892			break;
 893		case REGMAP_ENDIAN_LITTLE:
 894			map->format.format_val = regmap_format_64_le;
 895			map->format.parse_val = regmap_parse_64_le;
 896			map->format.parse_inplace = regmap_parse_64_le_inplace;
 897			break;
 898		case REGMAP_ENDIAN_NATIVE:
 899			map->format.format_val = regmap_format_64_native;
 900			map->format.parse_val = regmap_parse_64_native;
 901			break;
 902		default:
 903			goto err_map;
 904		}
 905		break;
 906#endif
 907	}
 908
 909	if (map->format.format_write) {
 910		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 911		    (val_endian != REGMAP_ENDIAN_BIG))
 912			goto err_map;
 913		map->use_single_write = true;
 914	}
 915
 916	if (!map->format.format_write &&
 917	    !(map->format.format_reg && map->format.format_val))
 918		goto err_map;
 919
 920	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 921	if (map->work_buf == NULL) {
 922		ret = -ENOMEM;
 923		goto err_map;
 924	}
 925
 926	if (map->format.format_write) {
 927		map->defer_caching = false;
 928		map->reg_write = _regmap_bus_formatted_write;
 929	} else if (map->format.format_val) {
 930		map->defer_caching = true;
 931		map->reg_write = _regmap_bus_raw_write;
 932	}
 933
 934skip_format_initialization:
 935
 936	map->range_tree = RB_ROOT;
 937	for (i = 0; i < config->num_ranges; i++) {
 938		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 939		struct regmap_range_node *new;
 940
 941		/* Sanity check */
 942		if (range_cfg->range_max < range_cfg->range_min) {
 943			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 944				range_cfg->range_max, range_cfg->range_min);
 945			goto err_range;
 946		}
 947
 948		if (range_cfg->range_max > map->max_register) {
 949			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 950				range_cfg->range_max, map->max_register);
 951			goto err_range;
 952		}
 953
 954		if (range_cfg->selector_reg > map->max_register) {
 955			dev_err(map->dev,
 956				"Invalid range %d: selector out of map\n", i);
 957			goto err_range;
 958		}
 959
 960		if (range_cfg->window_len == 0) {
 961			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 962				i);
 963			goto err_range;
 964		}
 965
 966		/* Make sure, that this register range has no selector
 967		   or data window within its boundary */
 968		for (j = 0; j < config->num_ranges; j++) {
 969			unsigned sel_reg = config->ranges[j].selector_reg;
 970			unsigned win_min = config->ranges[j].window_start;
 971			unsigned win_max = win_min +
 972					   config->ranges[j].window_len - 1;
 973
 974			/* Allow data window inside its own virtual range */
 975			if (j == i)
 976				continue;
 977
 978			if (range_cfg->range_min <= sel_reg &&
 979			    sel_reg <= range_cfg->range_max) {
 980				dev_err(map->dev,
 981					"Range %d: selector for %d in window\n",
 982					i, j);
 983				goto err_range;
 984			}
 985
 986			if (!(win_max < range_cfg->range_min ||
 987			      win_min > range_cfg->range_max)) {
 988				dev_err(map->dev,
 989					"Range %d: window for %d in window\n",
 990					i, j);
 991				goto err_range;
 992			}
 993		}
 994
 995		new = kzalloc(sizeof(*new), GFP_KERNEL);
 996		if (new == NULL) {
 997			ret = -ENOMEM;
 998			goto err_range;
 999		}
1000
1001		new->map = map;
1002		new->name = range_cfg->name;
1003		new->range_min = range_cfg->range_min;
1004		new->range_max = range_cfg->range_max;
1005		new->selector_reg = range_cfg->selector_reg;
1006		new->selector_mask = range_cfg->selector_mask;
1007		new->selector_shift = range_cfg->selector_shift;
1008		new->window_start = range_cfg->window_start;
1009		new->window_len = range_cfg->window_len;
1010
1011		if (!_regmap_range_add(map, new)) {
1012			dev_err(map->dev, "Failed to add range %d\n", i);
1013			kfree(new);
1014			goto err_range;
1015		}
1016
1017		if (map->selector_work_buf == NULL) {
1018			map->selector_work_buf =
1019				kzalloc(map->format.buf_size, GFP_KERNEL);
1020			if (map->selector_work_buf == NULL) {
1021				ret = -ENOMEM;
1022				goto err_range;
1023			}
1024		}
1025	}
1026
1027	ret = regcache_init(map, config);
1028	if (ret != 0)
1029		goto err_range;
1030
1031	if (dev) {
1032		ret = regmap_attach_dev(dev, map, config);
1033		if (ret != 0)
1034			goto err_regcache;
1035	}
1036
1037	return map;
1038
1039err_regcache:
1040	regcache_exit(map);
1041err_range:
1042	regmap_range_exit(map);
1043	kfree(map->work_buf);
1044err_map:
1045	kfree(map);
1046err:
1047	return ERR_PTR(ret);
1048}
1049EXPORT_SYMBOL_GPL(__regmap_init);
1050
1051static void devm_regmap_release(struct device *dev, void *res)
1052{
1053	regmap_exit(*(struct regmap **)res);
1054}
1055
1056struct regmap *__devm_regmap_init(struct device *dev,
1057				  const struct regmap_bus *bus,
1058				  void *bus_context,
1059				  const struct regmap_config *config,
1060				  struct lock_class_key *lock_key,
1061				  const char *lock_name)
 
 
 
 
 
 
 
 
 
 
 
1062{
1063	struct regmap **ptr, *regmap;
1064
1065	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066	if (!ptr)
1067		return ERR_PTR(-ENOMEM);
1068
1069	regmap = __regmap_init(dev, bus, bus_context, config,
1070			       lock_key, lock_name);
1071	if (!IS_ERR(regmap)) {
1072		*ptr = regmap;
1073		devres_add(dev, ptr);
1074	} else {
1075		devres_free(ptr);
1076	}
1077
1078	return regmap;
1079}
1080EXPORT_SYMBOL_GPL(__devm_regmap_init);
1081
1082static void regmap_field_init(struct regmap_field *rm_field,
1083	struct regmap *regmap, struct reg_field reg_field)
1084{
 
1085	rm_field->regmap = regmap;
1086	rm_field->reg = reg_field.reg;
1087	rm_field->shift = reg_field.lsb;
1088	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089	rm_field->id_size = reg_field.id_size;
1090	rm_field->id_offset = reg_field.id_offset;
1091}
1092
1093/**
1094 * devm_regmap_field_alloc(): Allocate and initialise a register field
1095 * in a register map.
1096 *
1097 * @dev: Device that will be interacted with
1098 * @regmap: regmap bank in which this register field is located.
1099 * @reg_field: Register field with in the bank.
1100 *
1101 * The return value will be an ERR_PTR() on error or a valid pointer
1102 * to a struct regmap_field. The regmap_field will be automatically freed
1103 * by the device management code.
1104 */
1105struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1106		struct regmap *regmap, struct reg_field reg_field)
1107{
1108	struct regmap_field *rm_field = devm_kzalloc(dev,
1109					sizeof(*rm_field), GFP_KERNEL);
1110	if (!rm_field)
1111		return ERR_PTR(-ENOMEM);
1112
1113	regmap_field_init(rm_field, regmap, reg_field);
1114
1115	return rm_field;
1116
1117}
1118EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1119
1120/**
1121 * devm_regmap_field_free(): Free register field allocated using
1122 * devm_regmap_field_alloc. Usally drivers need not call this function,
1123 * as the memory allocated via devm will be freed as per device-driver
1124 * life-cyle.
1125 *
1126 * @dev: Device that will be interacted with
1127 * @field: regmap field which should be freed.
1128 */
1129void devm_regmap_field_free(struct device *dev,
1130	struct regmap_field *field)
1131{
1132	devm_kfree(dev, field);
1133}
1134EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1135
1136/**
1137 * regmap_field_alloc(): Allocate and initialise a register field
1138 * in a register map.
1139 *
1140 * @regmap: regmap bank in which this register field is located.
1141 * @reg_field: Register field with in the bank.
1142 *
1143 * The return value will be an ERR_PTR() on error or a valid pointer
1144 * to a struct regmap_field. The regmap_field should be freed by the
1145 * user once its finished working with it using regmap_field_free().
1146 */
1147struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148		struct reg_field reg_field)
1149{
1150	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151
1152	if (!rm_field)
1153		return ERR_PTR(-ENOMEM);
1154
1155	regmap_field_init(rm_field, regmap, reg_field);
1156
1157	return rm_field;
1158}
1159EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160
1161/**
1162 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1163 *
1164 * @field: regmap field which should be freed.
1165 */
1166void regmap_field_free(struct regmap_field *field)
1167{
1168	kfree(field);
1169}
1170EXPORT_SYMBOL_GPL(regmap_field_free);
1171
1172/**
1173 * regmap_reinit_cache(): Reinitialise the current register cache
1174 *
1175 * @map: Register map to operate on.
1176 * @config: New configuration.  Only the cache data will be used.
1177 *
1178 * Discard any existing register cache for the map and initialize a
1179 * new cache.  This can be used to restore the cache to defaults or to
1180 * update the cache configuration to reflect runtime discovery of the
1181 * hardware.
1182 *
1183 * No explicit locking is done here, the user needs to ensure that
1184 * this function will not race with other calls to regmap.
1185 */
1186int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1187{
1188	regcache_exit(map);
1189	regmap_debugfs_exit(map);
1190
1191	map->max_register = config->max_register;
1192	map->writeable_reg = config->writeable_reg;
1193	map->readable_reg = config->readable_reg;
1194	map->volatile_reg = config->volatile_reg;
1195	map->precious_reg = config->precious_reg;
1196	map->cache_type = config->cache_type;
1197
1198	regmap_debugfs_init(map, config->name);
1199
1200	map->cache_bypass = false;
1201	map->cache_only = false;
1202
1203	return regcache_init(map, config);
1204}
1205EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1206
1207/**
1208 * regmap_exit(): Free a previously allocated register map
1209 */
1210void regmap_exit(struct regmap *map)
1211{
1212	struct regmap_async *async;
1213
1214	regcache_exit(map);
1215	regmap_debugfs_exit(map);
1216	regmap_range_exit(map);
1217	if (map->bus && map->bus->free_context)
1218		map->bus->free_context(map->bus_context);
1219	kfree(map->work_buf);
1220	while (!list_empty(&map->async_free)) {
1221		async = list_first_entry_or_null(&map->async_free,
1222						 struct regmap_async,
1223						 list);
1224		list_del(&async->list);
1225		kfree(async->work_buf);
1226		kfree(async);
1227	}
1228	kfree(map);
1229}
1230EXPORT_SYMBOL_GPL(regmap_exit);
1231
1232static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1233{
1234	struct regmap **r = res;
1235	if (!r || !*r) {
1236		WARN_ON(!r || !*r);
1237		return 0;
1238	}
1239
1240	/* If the user didn't specify a name match any */
1241	if (data)
1242		return (*r)->name == data;
1243	else
1244		return 1;
1245}
1246
1247/**
1248 * dev_get_regmap(): Obtain the regmap (if any) for a device
1249 *
1250 * @dev: Device to retrieve the map for
1251 * @name: Optional name for the register map, usually NULL.
1252 *
1253 * Returns the regmap for the device if one is present, or NULL.  If
1254 * name is specified then it must match the name specified when
1255 * registering the device, if it is NULL then the first regmap found
1256 * will be used.  Devices with multiple register maps are very rare,
1257 * generic code should normally not need to specify a name.
1258 */
1259struct regmap *dev_get_regmap(struct device *dev, const char *name)
1260{
1261	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1262					dev_get_regmap_match, (void *)name);
1263
1264	if (!r)
1265		return NULL;
1266	return *r;
1267}
1268EXPORT_SYMBOL_GPL(dev_get_regmap);
1269
1270/**
1271 * regmap_get_device(): Obtain the device from a regmap
1272 *
1273 * @map: Register map to operate on.
1274 *
1275 * Returns the underlying device that the regmap has been created for.
1276 */
1277struct device *regmap_get_device(struct regmap *map)
1278{
1279	return map->dev;
1280}
1281EXPORT_SYMBOL_GPL(regmap_get_device);
1282
1283static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1284			       struct regmap_range_node *range,
1285			       unsigned int val_num)
1286{
1287	void *orig_work_buf;
1288	unsigned int win_offset;
1289	unsigned int win_page;
1290	bool page_chg;
1291	int ret;
1292
1293	win_offset = (*reg - range->range_min) % range->window_len;
1294	win_page = (*reg - range->range_min) / range->window_len;
1295
1296	if (val_num > 1) {
1297		/* Bulk write shouldn't cross range boundary */
1298		if (*reg + val_num - 1 > range->range_max)
1299			return -EINVAL;
1300
1301		/* ... or single page boundary */
1302		if (val_num > range->window_len - win_offset)
1303			return -EINVAL;
1304	}
1305
1306	/* It is possible to have selector register inside data window.
1307	   In that case, selector register is located on every page and
1308	   it needs no page switching, when accessed alone. */
1309	if (val_num > 1 ||
1310	    range->window_start + win_offset != range->selector_reg) {
1311		/* Use separate work_buf during page switching */
1312		orig_work_buf = map->work_buf;
1313		map->work_buf = map->selector_work_buf;
1314
1315		ret = _regmap_update_bits(map, range->selector_reg,
1316					  range->selector_mask,
1317					  win_page << range->selector_shift,
1318					  &page_chg, false);
1319
1320		map->work_buf = orig_work_buf;
1321
1322		if (ret != 0)
1323			return ret;
1324	}
1325
1326	*reg = range->window_start + win_offset;
1327
1328	return 0;
1329}
1330
1331static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1332					  unsigned long mask)
1333{
1334	u8 *buf;
1335	int i;
1336
1337	if (!mask || !map->work_buf)
1338		return;
1339
1340	buf = map->work_buf;
1341
1342	for (i = 0; i < max_bytes; i++)
1343		buf[i] |= (mask >> (8 * i)) & 0xff;
1344}
1345
1346int _regmap_raw_write(struct regmap *map, unsigned int reg,
1347		      const void *val, size_t val_len)
1348{
1349	struct regmap_range_node *range;
1350	unsigned long flags;
 
1351	void *work_val = map->work_buf + map->format.reg_bytes +
1352		map->format.pad_bytes;
1353	void *buf;
1354	int ret = -ENOTSUPP;
1355	size_t len;
1356	int i;
1357
1358	WARN_ON(!map->bus);
1359
1360	/* Check for unwritable registers before we start */
1361	if (map->writeable_reg)
1362		for (i = 0; i < val_len / map->format.val_bytes; i++)
1363			if (!map->writeable_reg(map->dev,
1364					       reg + regmap_get_offset(map, i)))
1365				return -EINVAL;
1366
1367	if (!map->cache_bypass && map->format.parse_val) {
1368		unsigned int ival;
1369		int val_bytes = map->format.val_bytes;
1370		for (i = 0; i < val_len / val_bytes; i++) {
1371			ival = map->format.parse_val(val + (i * val_bytes));
1372			ret = regcache_write(map,
1373					     reg + regmap_get_offset(map, i),
1374					     ival);
1375			if (ret) {
1376				dev_err(map->dev,
1377					"Error in caching of register: %x ret: %d\n",
1378					reg + i, ret);
1379				return ret;
1380			}
1381		}
1382		if (map->cache_only) {
1383			map->cache_dirty = true;
1384			return 0;
1385		}
1386	}
1387
1388	range = _regmap_range_lookup(map, reg);
1389	if (range) {
1390		int val_num = val_len / map->format.val_bytes;
1391		int win_offset = (reg - range->range_min) % range->window_len;
1392		int win_residue = range->window_len - win_offset;
1393
1394		/* If the write goes beyond the end of the window split it */
1395		while (val_num > win_residue) {
1396			dev_dbg(map->dev, "Writing window %d/%zu\n",
1397				win_residue, val_len / map->format.val_bytes);
1398			ret = _regmap_raw_write(map, reg, val, win_residue *
1399						map->format.val_bytes);
1400			if (ret != 0)
1401				return ret;
1402
1403			reg += win_residue;
1404			val_num -= win_residue;
1405			val += win_residue * map->format.val_bytes;
1406			val_len -= win_residue * map->format.val_bytes;
1407
1408			win_offset = (reg - range->range_min) %
1409				range->window_len;
1410			win_residue = range->window_len - win_offset;
1411		}
1412
1413		ret = _regmap_select_page(map, &reg, range, val_num);
1414		if (ret != 0)
1415			return ret;
1416	}
1417
1418	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1419	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1420				      map->write_flag_mask);
1421
1422	/*
1423	 * Essentially all I/O mechanisms will be faster with a single
1424	 * buffer to write.  Since register syncs often generate raw
1425	 * writes of single registers optimise that case.
1426	 */
1427	if (val != work_val && val_len == map->format.val_bytes) {
1428		memcpy(work_val, val, map->format.val_bytes);
1429		val = work_val;
1430	}
1431
1432	if (map->async && map->bus->async_write) {
1433		struct regmap_async *async;
1434
1435		trace_regmap_async_write_start(map, reg, val_len);
1436
1437		spin_lock_irqsave(&map->async_lock, flags);
1438		async = list_first_entry_or_null(&map->async_free,
1439						 struct regmap_async,
1440						 list);
1441		if (async)
1442			list_del(&async->list);
1443		spin_unlock_irqrestore(&map->async_lock, flags);
1444
1445		if (!async) {
1446			async = map->bus->async_alloc();
1447			if (!async)
1448				return -ENOMEM;
1449
1450			async->work_buf = kzalloc(map->format.buf_size,
1451						  GFP_KERNEL | GFP_DMA);
1452			if (!async->work_buf) {
1453				kfree(async);
1454				return -ENOMEM;
1455			}
1456		}
1457
1458		async->map = map;
1459
1460		/* If the caller supplied the value we can use it safely. */
1461		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1462		       map->format.reg_bytes + map->format.val_bytes);
1463
1464		spin_lock_irqsave(&map->async_lock, flags);
1465		list_add_tail(&async->list, &map->async_list);
1466		spin_unlock_irqrestore(&map->async_lock, flags);
1467
1468		if (val != work_val)
1469			ret = map->bus->async_write(map->bus_context,
1470						    async->work_buf,
1471						    map->format.reg_bytes +
1472						    map->format.pad_bytes,
1473						    val, val_len, async);
1474		else
1475			ret = map->bus->async_write(map->bus_context,
1476						    async->work_buf,
1477						    map->format.reg_bytes +
1478						    map->format.pad_bytes +
1479						    val_len, NULL, 0, async);
1480
1481		if (ret != 0) {
1482			dev_err(map->dev, "Failed to schedule write: %d\n",
1483				ret);
1484
1485			spin_lock_irqsave(&map->async_lock, flags);
1486			list_move(&async->list, &map->async_free);
1487			spin_unlock_irqrestore(&map->async_lock, flags);
1488		}
1489
1490		return ret;
1491	}
1492
1493	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
 
1494
1495	/* If we're doing a single register write we can probably just
1496	 * send the work_buf directly, otherwise try to do a gather
1497	 * write.
1498	 */
1499	if (val == work_val)
1500		ret = map->bus->write(map->bus_context, map->work_buf,
1501				      map->format.reg_bytes +
1502				      map->format.pad_bytes +
1503				      val_len);
1504	else if (map->bus->gather_write)
1505		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1506					     map->format.reg_bytes +
1507					     map->format.pad_bytes,
1508					     val, val_len);
1509
1510	/* If that didn't work fall back on linearising by hand. */
1511	if (ret == -ENOTSUPP) {
1512		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1513		buf = kzalloc(len, GFP_KERNEL);
1514		if (!buf)
1515			return -ENOMEM;
1516
1517		memcpy(buf, map->work_buf, map->format.reg_bytes);
1518		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1519		       val, val_len);
1520		ret = map->bus->write(map->bus_context, buf, len);
1521
1522		kfree(buf);
1523	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1524		/* regcache_drop_region() takes lock that we already have,
1525		 * thus call map->cache_ops->drop() directly
1526		 */
1527		if (map->cache_ops && map->cache_ops->drop)
1528			map->cache_ops->drop(map, reg, reg + 1);
1529	}
1530
1531	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
 
1532
1533	return ret;
1534}
1535
1536/**
1537 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1538 *
1539 * @map: Map to check.
1540 */
1541bool regmap_can_raw_write(struct regmap *map)
1542{
1543	return map->bus && map->bus->write && map->format.format_val &&
1544		map->format.format_reg;
1545}
1546EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1547
1548/**
1549 * regmap_get_raw_read_max - Get the maximum size we can read
1550 *
1551 * @map: Map to check.
1552 */
1553size_t regmap_get_raw_read_max(struct regmap *map)
1554{
1555	return map->max_raw_read;
1556}
1557EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1558
1559/**
1560 * regmap_get_raw_write_max - Get the maximum size we can read
1561 *
1562 * @map: Map to check.
1563 */
1564size_t regmap_get_raw_write_max(struct regmap *map)
1565{
1566	return map->max_raw_write;
1567}
1568EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1569
1570static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1571				       unsigned int val)
1572{
1573	int ret;
1574	struct regmap_range_node *range;
1575	struct regmap *map = context;
1576
1577	WARN_ON(!map->bus || !map->format.format_write);
1578
1579	range = _regmap_range_lookup(map, reg);
1580	if (range) {
1581		ret = _regmap_select_page(map, &reg, range, 1);
1582		if (ret != 0)
1583			return ret;
1584	}
1585
1586	map->format.format_write(map, reg, val);
1587
1588	trace_regmap_hw_write_start(map, reg, 1);
1589
1590	ret = map->bus->write(map->bus_context, map->work_buf,
1591			      map->format.buf_size);
1592
1593	trace_regmap_hw_write_done(map, reg, 1);
1594
1595	return ret;
1596}
1597
1598static int _regmap_bus_reg_write(void *context, unsigned int reg,
1599				 unsigned int val)
1600{
1601	struct regmap *map = context;
1602
1603	return map->bus->reg_write(map->bus_context, reg, val);
1604}
1605
1606static int _regmap_bus_raw_write(void *context, unsigned int reg,
1607				 unsigned int val)
1608{
1609	struct regmap *map = context;
1610
1611	WARN_ON(!map->bus || !map->format.format_val);
1612
1613	map->format.format_val(map->work_buf + map->format.reg_bytes
1614			       + map->format.pad_bytes, val, 0);
1615	return _regmap_raw_write(map, reg,
1616				 map->work_buf +
1617				 map->format.reg_bytes +
1618				 map->format.pad_bytes,
1619				 map->format.val_bytes);
1620}
1621
1622static inline void *_regmap_map_get_context(struct regmap *map)
1623{
1624	return (map->bus) ? map : map->bus_context;
1625}
1626
1627int _regmap_write(struct regmap *map, unsigned int reg,
1628		  unsigned int val)
1629{
1630	int ret;
1631	void *context = _regmap_map_get_context(map);
1632
1633	if (!regmap_writeable(map, reg))
1634		return -EIO;
1635
1636	if (!map->cache_bypass && !map->defer_caching) {
1637		ret = regcache_write(map, reg, val);
1638		if (ret != 0)
1639			return ret;
1640		if (map->cache_only) {
1641			map->cache_dirty = true;
1642			return 0;
1643		}
1644	}
1645
1646#ifdef LOG_DEVICE
1647	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1648		dev_info(map->dev, "%x <= %x\n", reg, val);
1649#endif
1650
1651	trace_regmap_reg_write(map, reg, val);
1652
1653	return map->reg_write(context, reg, val);
1654}
1655
1656/**
1657 * regmap_write(): Write a value to a single register
1658 *
1659 * @map: Register map to write to
1660 * @reg: Register to write to
1661 * @val: Value to be written
1662 *
1663 * A value of zero will be returned on success, a negative errno will
1664 * be returned in error cases.
1665 */
1666int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1667{
1668	int ret;
1669
1670	if (!IS_ALIGNED(reg, map->reg_stride))
1671		return -EINVAL;
1672
1673	map->lock(map->lock_arg);
1674
1675	ret = _regmap_write(map, reg, val);
1676
1677	map->unlock(map->lock_arg);
1678
1679	return ret;
1680}
1681EXPORT_SYMBOL_GPL(regmap_write);
1682
1683/**
1684 * regmap_write_async(): Write a value to a single register asynchronously
1685 *
1686 * @map: Register map to write to
1687 * @reg: Register to write to
1688 * @val: Value to be written
1689 *
1690 * A value of zero will be returned on success, a negative errno will
1691 * be returned in error cases.
1692 */
1693int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1694{
1695	int ret;
1696
1697	if (!IS_ALIGNED(reg, map->reg_stride))
1698		return -EINVAL;
1699
1700	map->lock(map->lock_arg);
1701
1702	map->async = true;
1703
1704	ret = _regmap_write(map, reg, val);
1705
1706	map->async = false;
1707
1708	map->unlock(map->lock_arg);
1709
1710	return ret;
1711}
1712EXPORT_SYMBOL_GPL(regmap_write_async);
1713
1714/**
1715 * regmap_raw_write(): Write raw values to one or more registers
1716 *
1717 * @map: Register map to write to
1718 * @reg: Initial register to write to
1719 * @val: Block of data to be written, laid out for direct transmission to the
1720 *       device
1721 * @val_len: Length of data pointed to by val.
1722 *
1723 * This function is intended to be used for things like firmware
1724 * download where a large block of data needs to be transferred to the
1725 * device.  No formatting will be done on the data provided.
1726 *
1727 * A value of zero will be returned on success, a negative errno will
1728 * be returned in error cases.
1729 */
1730int regmap_raw_write(struct regmap *map, unsigned int reg,
1731		     const void *val, size_t val_len)
1732{
1733	int ret;
1734
1735	if (!regmap_can_raw_write(map))
1736		return -EINVAL;
1737	if (val_len % map->format.val_bytes)
1738		return -EINVAL;
1739	if (map->max_raw_write && map->max_raw_write > val_len)
1740		return -E2BIG;
1741
1742	map->lock(map->lock_arg);
1743
1744	ret = _regmap_raw_write(map, reg, val, val_len);
1745
1746	map->unlock(map->lock_arg);
1747
1748	return ret;
1749}
1750EXPORT_SYMBOL_GPL(regmap_raw_write);
1751
1752/**
1753 * regmap_field_update_bits_base():
1754 *	Perform a read/modify/write cycle on the register field
1755 *	with change, async, force option
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756 *
1757 * @field: Register field to write to
1758 * @mask: Bitmask to change
1759 * @val: Value to be written
1760 * @change: Boolean indicating if a write was done
1761 * @async: Boolean indicating asynchronously
1762 * @force: Boolean indicating use force update
1763 *
1764 * A value of zero will be returned on success, a negative errno will
1765 * be returned in error cases.
1766 */
1767int regmap_field_update_bits_base(struct regmap_field *field,
1768				  unsigned int mask, unsigned int val,
1769				  bool *change, bool async, bool force)
1770{
1771	mask = (mask << field->shift) & field->mask;
1772
1773	return regmap_update_bits_base(field->regmap, field->reg,
1774				       mask, val << field->shift,
1775				       change, async, force);
1776}
1777EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1778
1779/**
1780 * regmap_fields_update_bits_base():
1781 *	Perform a read/modify/write cycle on the register field
1782 *	with change, async, force option
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783 *
1784 * @field: Register field to write to
1785 * @id: port ID
1786 * @mask: Bitmask to change
1787 * @val: Value to be written
1788 * @change: Boolean indicating if a write was done
1789 * @async: Boolean indicating asynchronously
1790 * @force: Boolean indicating use force update
1791 *
1792 * A value of zero will be returned on success, a negative errno will
1793 * be returned in error cases.
1794 */
1795int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1796				   unsigned int mask, unsigned int val,
1797				   bool *change, bool async, bool force)
1798{
1799	if (id >= field->id_size)
1800		return -EINVAL;
1801
1802	mask = (mask << field->shift) & field->mask;
1803
1804	return regmap_update_bits_base(field->regmap,
1805				       field->reg + (field->id_offset * id),
1806				       mask, val << field->shift,
1807				       change, async, force);
1808}
1809EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1810
1811/*
1812 * regmap_bulk_write(): Write multiple registers to the device
1813 *
1814 * @map: Register map to write to
1815 * @reg: First register to be write from
1816 * @val: Block of data to be written, in native register size for device
1817 * @val_count: Number of registers to write
1818 *
1819 * This function is intended to be used for writing a large block of
1820 * data to the device either in single transfer or multiple transfer.
1821 *
1822 * A value of zero will be returned on success, a negative errno will
1823 * be returned in error cases.
1824 */
1825int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1826		     size_t val_count)
1827{
1828	int ret = 0, i;
1829	size_t val_bytes = map->format.val_bytes;
1830	size_t total_size = val_bytes * val_count;
1831
1832	if (!IS_ALIGNED(reg, map->reg_stride))
 
 
1833		return -EINVAL;
1834
1835	/*
1836	 * Some devices don't support bulk write, for
1837	 * them we have a series of single write operations in the first two if
1838	 * blocks.
1839	 *
1840	 * The first if block is used for memory mapped io. It does not allow
1841	 * val_bytes of 3 for example.
1842	 * The second one is for busses that do not provide raw I/O.
1843	 * The third one is used for busses which do not have these limitations
1844	 * and can write arbitrary value lengths.
1845	 */
1846	if (!map->bus) {
1847		map->lock(map->lock_arg);
1848		for (i = 0; i < val_count; i++) {
1849			unsigned int ival;
1850
1851			switch (val_bytes) {
1852			case 1:
1853				ival = *(u8 *)(val + (i * val_bytes));
1854				break;
1855			case 2:
1856				ival = *(u16 *)(val + (i * val_bytes));
1857				break;
1858			case 4:
1859				ival = *(u32 *)(val + (i * val_bytes));
1860				break;
1861#ifdef CONFIG_64BIT
1862			case 8:
1863				ival = *(u64 *)(val + (i * val_bytes));
1864				break;
1865#endif
1866			default:
1867				ret = -EINVAL;
1868				goto out;
1869			}
1870
1871			ret = _regmap_write(map,
1872					    reg + regmap_get_offset(map, i),
1873					    ival);
1874			if (ret != 0)
1875				goto out;
1876		}
1877out:
1878		map->unlock(map->lock_arg);
1879	} else if (map->bus && !map->format.parse_inplace) {
1880		const u8 *u8 = val;
1881		const u16 *u16 = val;
1882		const u32 *u32 = val;
1883		unsigned int ival;
1884
1885		for (i = 0; i < val_count; i++) {
1886			switch (map->format.val_bytes) {
1887			case 4:
1888				ival = u32[i];
1889				break;
1890			case 2:
1891				ival = u16[i];
1892				break;
1893			case 1:
1894				ival = u8[i];
1895				break;
1896			default:
1897				return -EINVAL;
1898			}
1899
1900			ret = regmap_write(map, reg + (i * map->reg_stride),
1901					   ival);
1902			if (ret)
1903				return ret;
1904		}
1905	} else if (map->use_single_write ||
1906		   (map->max_raw_write && map->max_raw_write < total_size)) {
1907		int chunk_stride = map->reg_stride;
1908		size_t chunk_size = val_bytes;
1909		size_t chunk_count = val_count;
1910
1911		if (!map->use_single_write) {
1912			chunk_size = map->max_raw_write;
1913			if (chunk_size % val_bytes)
1914				chunk_size -= chunk_size % val_bytes;
1915			chunk_count = total_size / chunk_size;
1916			chunk_stride *= chunk_size / val_bytes;
1917		}
1918
1919		map->lock(map->lock_arg);
1920		/* Write as many bytes as possible with chunk_size */
1921		for (i = 0; i < chunk_count; i++) {
1922			ret = _regmap_raw_write(map,
1923						reg + (i * chunk_stride),
1924						val + (i * chunk_size),
1925						chunk_size);
1926			if (ret)
1927				break;
1928		}
1929
1930		/* Write remaining bytes */
1931		if (!ret && chunk_size * i < total_size) {
1932			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1933						val + (i * chunk_size),
1934						total_size - i * chunk_size);
1935		}
1936		map->unlock(map->lock_arg);
1937	} else {
1938		void *wval;
1939
1940		if (!val_count)
1941			return -EINVAL;
1942
1943		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1944		if (!wval) {
1945			dev_err(map->dev, "Error in memory allocation\n");
1946			return -ENOMEM;
1947		}
1948		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1949			map->format.parse_inplace(wval + i);
1950
1951		map->lock(map->lock_arg);
1952		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1953		map->unlock(map->lock_arg);
1954
1955		kfree(wval);
1956	}
1957	return ret;
1958}
1959EXPORT_SYMBOL_GPL(regmap_bulk_write);
1960
1961/*
1962 * _regmap_raw_multi_reg_write()
1963 *
1964 * the (register,newvalue) pairs in regs have not been formatted, but
1965 * they are all in the same page and have been changed to being page
1966 * relative. The page register has been written if that was necessary.
1967 */
1968static int _regmap_raw_multi_reg_write(struct regmap *map,
1969				       const struct reg_sequence *regs,
1970				       size_t num_regs)
1971{
1972	int ret;
1973	void *buf;
1974	int i;
1975	u8 *u8;
1976	size_t val_bytes = map->format.val_bytes;
1977	size_t reg_bytes = map->format.reg_bytes;
1978	size_t pad_bytes = map->format.pad_bytes;
1979	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1980	size_t len = pair_size * num_regs;
1981
1982	if (!len)
1983		return -EINVAL;
1984
1985	buf = kzalloc(len, GFP_KERNEL);
1986	if (!buf)
1987		return -ENOMEM;
1988
1989	/* We have to linearise by hand. */
1990
1991	u8 = buf;
1992
1993	for (i = 0; i < num_regs; i++) {
1994		unsigned int reg = regs[i].reg;
1995		unsigned int val = regs[i].def;
1996		trace_regmap_hw_write_start(map, reg, 1);
1997		map->format.format_reg(u8, reg, map->reg_shift);
1998		u8 += reg_bytes + pad_bytes;
1999		map->format.format_val(u8, val, 0);
2000		u8 += val_bytes;
2001	}
2002	u8 = buf;
2003	*u8 |= map->write_flag_mask;
2004
2005	ret = map->bus->write(map->bus_context, buf, len);
2006
2007	kfree(buf);
2008
2009	for (i = 0; i < num_regs; i++) {
2010		int reg = regs[i].reg;
2011		trace_regmap_hw_write_done(map, reg, 1);
2012	}
2013	return ret;
2014}
2015
2016static unsigned int _regmap_register_page(struct regmap *map,
2017					  unsigned int reg,
2018					  struct regmap_range_node *range)
2019{
2020	unsigned int win_page = (reg - range->range_min) / range->window_len;
2021
2022	return win_page;
2023}
2024
2025static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2026					       struct reg_sequence *regs,
2027					       size_t num_regs)
2028{
2029	int ret;
2030	int i, n;
2031	struct reg_sequence *base;
2032	unsigned int this_page = 0;
2033	unsigned int page_change = 0;
2034	/*
2035	 * the set of registers are not neccessarily in order, but
2036	 * since the order of write must be preserved this algorithm
2037	 * chops the set each time the page changes. This also applies
2038	 * if there is a delay required at any point in the sequence.
2039	 */
2040	base = regs;
2041	for (i = 0, n = 0; i < num_regs; i++, n++) {
2042		unsigned int reg = regs[i].reg;
2043		struct regmap_range_node *range;
2044
2045		range = _regmap_range_lookup(map, reg);
2046		if (range) {
2047			unsigned int win_page = _regmap_register_page(map, reg,
2048								      range);
2049
2050			if (i == 0)
2051				this_page = win_page;
2052			if (win_page != this_page) {
2053				this_page = win_page;
2054				page_change = 1;
2055			}
2056		}
2057
2058		/* If we have both a page change and a delay make sure to
2059		 * write the regs and apply the delay before we change the
2060		 * page.
2061		 */
2062
2063		if (page_change || regs[i].delay_us) {
2064
2065				/* For situations where the first write requires
2066				 * a delay we need to make sure we don't call
2067				 * raw_multi_reg_write with n=0
2068				 * This can't occur with page breaks as we
2069				 * never write on the first iteration
2070				 */
2071				if (regs[i].delay_us && i == 0)
2072					n = 1;
2073
2074				ret = _regmap_raw_multi_reg_write(map, base, n);
2075				if (ret != 0)
2076					return ret;
2077
2078				if (regs[i].delay_us)
2079					udelay(regs[i].delay_us);
2080
2081				base += n;
2082				n = 0;
2083
2084				if (page_change) {
2085					ret = _regmap_select_page(map,
2086								  &base[n].reg,
2087								  range, 1);
2088					if (ret != 0)
2089						return ret;
2090
2091					page_change = 0;
2092				}
2093
2094		}
2095
2096	}
2097	if (n > 0)
2098		return _regmap_raw_multi_reg_write(map, base, n);
2099	return 0;
2100}
2101
2102static int _regmap_multi_reg_write(struct regmap *map,
2103				   const struct reg_sequence *regs,
2104				   size_t num_regs)
2105{
2106	int i;
2107	int ret;
2108
2109	if (!map->can_multi_write) {
2110		for (i = 0; i < num_regs; i++) {
2111			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2112			if (ret != 0)
2113				return ret;
2114
2115			if (regs[i].delay_us)
2116				udelay(regs[i].delay_us);
2117		}
2118		return 0;
2119	}
2120
2121	if (!map->format.parse_inplace)
2122		return -EINVAL;
2123
2124	if (map->writeable_reg)
2125		for (i = 0; i < num_regs; i++) {
2126			int reg = regs[i].reg;
2127			if (!map->writeable_reg(map->dev, reg))
2128				return -EINVAL;
2129			if (!IS_ALIGNED(reg, map->reg_stride))
2130				return -EINVAL;
2131		}
2132
2133	if (!map->cache_bypass) {
2134		for (i = 0; i < num_regs; i++) {
2135			unsigned int val = regs[i].def;
2136			unsigned int reg = regs[i].reg;
2137			ret = regcache_write(map, reg, val);
2138			if (ret) {
2139				dev_err(map->dev,
2140				"Error in caching of register: %x ret: %d\n",
2141								reg, ret);
2142				return ret;
2143			}
2144		}
2145		if (map->cache_only) {
2146			map->cache_dirty = true;
2147			return 0;
2148		}
2149	}
2150
2151	WARN_ON(!map->bus);
2152
2153	for (i = 0; i < num_regs; i++) {
2154		unsigned int reg = regs[i].reg;
2155		struct regmap_range_node *range;
2156
2157		/* Coalesce all the writes between a page break or a delay
2158		 * in a sequence
2159		 */
2160		range = _regmap_range_lookup(map, reg);
2161		if (range || regs[i].delay_us) {
2162			size_t len = sizeof(struct reg_sequence)*num_regs;
2163			struct reg_sequence *base = kmemdup(regs, len,
2164							   GFP_KERNEL);
2165			if (!base)
2166				return -ENOMEM;
2167			ret = _regmap_range_multi_paged_reg_write(map, base,
2168								  num_regs);
2169			kfree(base);
2170
2171			return ret;
2172		}
2173	}
2174	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2175}
2176
2177/*
2178 * regmap_multi_reg_write(): Write multiple registers to the device
2179 *
2180 * where the set of register,value pairs are supplied in any order,
2181 * possibly not all in a single range.
2182 *
2183 * @map: Register map to write to
2184 * @regs: Array of structures containing register,value to be written
2185 * @num_regs: Number of registers to write
2186 *
2187 * The 'normal' block write mode will send ultimately send data on the
2188 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2189 * addressed. However, this alternative block multi write mode will send
2190 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2191 * must of course support the mode.
2192 *
2193 * A value of zero will be returned on success, a negative errno will be
2194 * returned in error cases.
2195 */
2196int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2197			   int num_regs)
2198{
2199	int ret;
2200
2201	map->lock(map->lock_arg);
2202
2203	ret = _regmap_multi_reg_write(map, regs, num_regs);
2204
2205	map->unlock(map->lock_arg);
2206
2207	return ret;
2208}
2209EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2210
2211/*
2212 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2213 *                                    device but not the cache
2214 *
2215 * where the set of register are supplied in any order
2216 *
2217 * @map: Register map to write to
2218 * @regs: Array of structures containing register,value to be written
2219 * @num_regs: Number of registers to write
2220 *
2221 * This function is intended to be used for writing a large block of data
2222 * atomically to the device in single transfer for those I2C client devices
2223 * that implement this alternative block write mode.
2224 *
2225 * A value of zero will be returned on success, a negative errno will
2226 * be returned in error cases.
2227 */
2228int regmap_multi_reg_write_bypassed(struct regmap *map,
2229				    const struct reg_sequence *regs,
2230				    int num_regs)
2231{
2232	int ret;
2233	bool bypass;
2234
2235	map->lock(map->lock_arg);
2236
2237	bypass = map->cache_bypass;
2238	map->cache_bypass = true;
2239
2240	ret = _regmap_multi_reg_write(map, regs, num_regs);
2241
2242	map->cache_bypass = bypass;
2243
2244	map->unlock(map->lock_arg);
2245
2246	return ret;
2247}
2248EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2249
2250/**
2251 * regmap_raw_write_async(): Write raw values to one or more registers
2252 *                           asynchronously
2253 *
2254 * @map: Register map to write to
2255 * @reg: Initial register to write to
2256 * @val: Block of data to be written, laid out for direct transmission to the
2257 *       device.  Must be valid until regmap_async_complete() is called.
2258 * @val_len: Length of data pointed to by val.
2259 *
2260 * This function is intended to be used for things like firmware
2261 * download where a large block of data needs to be transferred to the
2262 * device.  No formatting will be done on the data provided.
2263 *
2264 * If supported by the underlying bus the write will be scheduled
2265 * asynchronously, helping maximise I/O speed on higher speed buses
2266 * like SPI.  regmap_async_complete() can be called to ensure that all
2267 * asynchrnous writes have been completed.
2268 *
2269 * A value of zero will be returned on success, a negative errno will
2270 * be returned in error cases.
2271 */
2272int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2273			   const void *val, size_t val_len)
2274{
2275	int ret;
2276
2277	if (val_len % map->format.val_bytes)
2278		return -EINVAL;
2279	if (!IS_ALIGNED(reg, map->reg_stride))
2280		return -EINVAL;
2281
2282	map->lock(map->lock_arg);
2283
2284	map->async = true;
2285
2286	ret = _regmap_raw_write(map, reg, val, val_len);
2287
2288	map->async = false;
2289
2290	map->unlock(map->lock_arg);
2291
2292	return ret;
2293}
2294EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2295
2296static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2297			    unsigned int val_len)
2298{
2299	struct regmap_range_node *range;
 
2300	int ret;
2301
2302	WARN_ON(!map->bus);
2303
2304	if (!map->bus || !map->bus->read)
2305		return -EINVAL;
2306
2307	range = _regmap_range_lookup(map, reg);
2308	if (range) {
2309		ret = _regmap_select_page(map, &reg, range,
2310					  val_len / map->format.val_bytes);
2311		if (ret != 0)
2312			return ret;
2313	}
2314
2315	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2316	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2317				      map->read_flag_mask);
2318	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
 
 
 
 
 
 
 
 
2319
2320	ret = map->bus->read(map->bus_context, map->work_buf,
2321			     map->format.reg_bytes + map->format.pad_bytes,
2322			     val, val_len);
2323
2324	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
 
2325
2326	return ret;
2327}
2328
2329static int _regmap_bus_reg_read(void *context, unsigned int reg,
2330				unsigned int *val)
2331{
2332	struct regmap *map = context;
2333
2334	return map->bus->reg_read(map->bus_context, reg, val);
2335}
2336
2337static int _regmap_bus_read(void *context, unsigned int reg,
2338			    unsigned int *val)
2339{
2340	int ret;
2341	struct regmap *map = context;
2342
2343	if (!map->format.parse_val)
2344		return -EINVAL;
2345
2346	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2347	if (ret == 0)
2348		*val = map->format.parse_val(map->work_buf);
2349
2350	return ret;
2351}
2352
2353static int _regmap_read(struct regmap *map, unsigned int reg,
2354			unsigned int *val)
2355{
2356	int ret;
2357	void *context = _regmap_map_get_context(map);
2358
 
 
2359	if (!map->cache_bypass) {
2360		ret = regcache_read(map, reg, val);
2361		if (ret == 0)
2362			return 0;
2363	}
2364
2365	if (map->cache_only)
2366		return -EBUSY;
2367
2368	if (!regmap_readable(map, reg))
2369		return -EIO;
2370
2371	ret = map->reg_read(context, reg, val);
2372	if (ret == 0) {
2373#ifdef LOG_DEVICE
2374		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2375			dev_info(map->dev, "%x => %x\n", reg, *val);
2376#endif
2377
2378		trace_regmap_reg_read(map, reg, *val);
2379
2380		if (!map->cache_bypass)
2381			regcache_write(map, reg, *val);
2382	}
2383
2384	return ret;
2385}
2386
2387/**
2388 * regmap_read(): Read a value from a single register
2389 *
2390 * @map: Register map to read from
2391 * @reg: Register to be read from
2392 * @val: Pointer to store read value
2393 *
2394 * A value of zero will be returned on success, a negative errno will
2395 * be returned in error cases.
2396 */
2397int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2398{
2399	int ret;
2400
2401	if (!IS_ALIGNED(reg, map->reg_stride))
2402		return -EINVAL;
2403
2404	map->lock(map->lock_arg);
2405
2406	ret = _regmap_read(map, reg, val);
2407
2408	map->unlock(map->lock_arg);
2409
2410	return ret;
2411}
2412EXPORT_SYMBOL_GPL(regmap_read);
2413
2414/**
2415 * regmap_raw_read(): Read raw data from the device
2416 *
2417 * @map: Register map to read from
2418 * @reg: First register to be read from
2419 * @val: Pointer to store read value
2420 * @val_len: Size of data to read
2421 *
2422 * A value of zero will be returned on success, a negative errno will
2423 * be returned in error cases.
2424 */
2425int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2426		    size_t val_len)
2427{
2428	size_t val_bytes = map->format.val_bytes;
2429	size_t val_count = val_len / val_bytes;
2430	unsigned int v;
2431	int ret, i;
2432
2433	if (!map->bus)
2434		return -EINVAL;
2435	if (val_len % map->format.val_bytes)
2436		return -EINVAL;
2437	if (!IS_ALIGNED(reg, map->reg_stride))
2438		return -EINVAL;
2439	if (val_count == 0)
2440		return -EINVAL;
2441
2442	map->lock(map->lock_arg);
2443
2444	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2445	    map->cache_type == REGCACHE_NONE) {
2446		if (!map->bus->read) {
2447			ret = -ENOTSUPP;
2448			goto out;
2449		}
2450		if (map->max_raw_read && map->max_raw_read < val_len) {
2451			ret = -E2BIG;
2452			goto out;
2453		}
2454
2455		/* Physical block read if there's no cache involved */
2456		ret = _regmap_raw_read(map, reg, val, val_len);
2457
2458	} else {
2459		/* Otherwise go word by word for the cache; should be low
2460		 * cost as we expect to hit the cache.
2461		 */
2462		for (i = 0; i < val_count; i++) {
2463			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2464					   &v);
2465			if (ret != 0)
2466				goto out;
2467
2468			map->format.format_val(val + (i * val_bytes), v, 0);
2469		}
2470	}
2471
2472 out:
2473	map->unlock(map->lock_arg);
2474
2475	return ret;
2476}
2477EXPORT_SYMBOL_GPL(regmap_raw_read);
2478
2479/**
2480 * regmap_field_read(): Read a value to a single register field
2481 *
2482 * @field: Register field to read from
2483 * @val: Pointer to store read value
2484 *
2485 * A value of zero will be returned on success, a negative errno will
2486 * be returned in error cases.
2487 */
2488int regmap_field_read(struct regmap_field *field, unsigned int *val)
2489{
2490	int ret;
2491	unsigned int reg_val;
2492	ret = regmap_read(field->regmap, field->reg, &reg_val);
2493	if (ret != 0)
2494		return ret;
2495
2496	reg_val &= field->mask;
2497	reg_val >>= field->shift;
2498	*val = reg_val;
2499
2500	return ret;
2501}
2502EXPORT_SYMBOL_GPL(regmap_field_read);
2503
2504/**
2505 * regmap_fields_read(): Read a value to a single register field with port ID
2506 *
2507 * @field: Register field to read from
2508 * @id: port ID
2509 * @val: Pointer to store read value
2510 *
2511 * A value of zero will be returned on success, a negative errno will
2512 * be returned in error cases.
2513 */
2514int regmap_fields_read(struct regmap_field *field, unsigned int id,
2515		       unsigned int *val)
2516{
2517	int ret;
2518	unsigned int reg_val;
2519
2520	if (id >= field->id_size)
2521		return -EINVAL;
2522
2523	ret = regmap_read(field->regmap,
2524			  field->reg + (field->id_offset * id),
2525			  &reg_val);
2526	if (ret != 0)
2527		return ret;
2528
2529	reg_val &= field->mask;
2530	reg_val >>= field->shift;
2531	*val = reg_val;
2532
2533	return ret;
2534}
2535EXPORT_SYMBOL_GPL(regmap_fields_read);
2536
2537/**
2538 * regmap_bulk_read(): Read multiple registers from the device
2539 *
2540 * @map: Register map to read from
2541 * @reg: First register to be read from
2542 * @val: Pointer to store read value, in native register size for device
2543 * @val_count: Number of registers to read
2544 *
2545 * A value of zero will be returned on success, a negative errno will
2546 * be returned in error cases.
2547 */
2548int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2549		     size_t val_count)
2550{
2551	int ret, i;
2552	size_t val_bytes = map->format.val_bytes;
2553	bool vol = regmap_volatile_range(map, reg, val_count);
2554
2555	if (!IS_ALIGNED(reg, map->reg_stride))
2556		return -EINVAL;
2557
2558	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2559		/*
2560		 * Some devices does not support bulk read, for
2561		 * them we have a series of single read operations.
2562		 */
2563		size_t total_size = val_bytes * val_count;
2564
2565		if (!map->use_single_read &&
2566		    (!map->max_raw_read || map->max_raw_read > total_size)) {
 
 
 
 
 
 
2567			ret = regmap_raw_read(map, reg, val,
2568					      val_bytes * val_count);
2569			if (ret != 0)
2570				return ret;
2571		} else {
2572			/*
2573			 * Some devices do not support bulk read or do not
2574			 * support large bulk reads, for them we have a series
2575			 * of read operations.
2576			 */
2577			int chunk_stride = map->reg_stride;
2578			size_t chunk_size = val_bytes;
2579			size_t chunk_count = val_count;
2580
2581			if (!map->use_single_read) {
2582				chunk_size = map->max_raw_read;
2583				if (chunk_size % val_bytes)
2584					chunk_size -= chunk_size % val_bytes;
2585				chunk_count = total_size / chunk_size;
2586				chunk_stride *= chunk_size / val_bytes;
2587			}
2588
2589			/* Read bytes that fit into a multiple of chunk_size */
2590			for (i = 0; i < chunk_count; i++) {
2591				ret = regmap_raw_read(map,
2592						      reg + (i * chunk_stride),
2593						      val + (i * chunk_size),
2594						      chunk_size);
2595				if (ret != 0)
2596					return ret;
2597			}
2598
2599			/* Read remaining bytes */
2600			if (chunk_size * i < total_size) {
2601				ret = regmap_raw_read(map,
2602						      reg + (i * chunk_stride),
2603						      val + (i * chunk_size),
2604						      total_size - i * chunk_size);
2605				if (ret != 0)
2606					return ret;
2607			}
2608		}
2609
2610		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2611			map->format.parse_inplace(val + i);
2612	} else {
2613		for (i = 0; i < val_count; i++) {
2614			unsigned int ival;
2615			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2616					  &ival);
2617			if (ret != 0)
2618				return ret;
2619
2620			if (map->format.format_val) {
2621				map->format.format_val(val + (i * val_bytes), ival, 0);
2622			} else {
2623				/* Devices providing read and write
2624				 * operations can use the bulk I/O
2625				 * functions if they define a val_bytes,
2626				 * we assume that the values are native
2627				 * endian.
2628				 */
2629#ifdef CONFIG_64BIT
2630				u64 *u64 = val;
2631#endif
2632				u32 *u32 = val;
2633				u16 *u16 = val;
2634				u8 *u8 = val;
2635
2636				switch (map->format.val_bytes) {
2637#ifdef CONFIG_64BIT
2638				case 8:
2639					u64[i] = ival;
2640					break;
2641#endif
2642				case 4:
2643					u32[i] = ival;
2644					break;
2645				case 2:
2646					u16[i] = ival;
2647					break;
2648				case 1:
2649					u8[i] = ival;
2650					break;
2651				default:
2652					return -EINVAL;
2653				}
2654			}
2655		}
2656	}
2657
2658	return 0;
2659}
2660EXPORT_SYMBOL_GPL(regmap_bulk_read);
2661
2662static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2663			       unsigned int mask, unsigned int val,
2664			       bool *change, bool force_write)
2665{
2666	int ret;
2667	unsigned int tmp, orig;
2668
2669	if (change)
2670		*change = false;
 
 
 
 
2671
2672	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2673		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2674		if (ret == 0 && change)
2675			*change = true;
2676	} else {
2677		ret = _regmap_read(map, reg, &orig);
2678		if (ret != 0)
2679			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2680
2681		tmp = orig & ~mask;
2682		tmp |= val & mask;
 
2683
2684		if (force_write || (tmp != orig)) {
2685			ret = _regmap_write(map, reg, tmp);
2686			if (ret == 0 && change)
2687				*change = true;
2688		}
2689	}
 
 
 
 
 
 
 
 
 
 
 
2690
 
 
 
2691	return ret;
2692}
 
2693
2694/**
2695 * regmap_update_bits_base:
2696 *	Perform a read/modify/write cycle on the
2697 *	register map with change, async, force option
2698 *
2699 * @map: Register map to update
2700 * @reg: Register to update
2701 * @mask: Bitmask to change
2702 * @val: New value for bitmask
2703 * @change: Boolean indicating if a write was done
2704 * @async: Boolean indicating asynchronously
2705 * @force: Boolean indicating use force update
2706 *
2707 * if async was true,
2708 * With most buses the read must be done synchronously so this is most
2709 * useful for devices with a cache which do not need to interact with
2710 * the hardware to determine the current register value.
2711 *
2712 * Returns zero for success, a negative number on error.
2713 */
2714int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2715			    unsigned int mask, unsigned int val,
2716			    bool *change, bool async, bool force)
2717{
2718	int ret;
2719
2720	map->lock(map->lock_arg);
2721
2722	map->async = async;
2723
2724	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2725
2726	map->async = false;
2727
2728	map->unlock(map->lock_arg);
2729
2730	return ret;
2731}
2732EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2733
2734void regmap_async_complete_cb(struct regmap_async *async, int ret)
2735{
2736	struct regmap *map = async->map;
2737	bool wake;
2738
2739	trace_regmap_async_io_complete(map);
2740
2741	spin_lock(&map->async_lock);
2742	list_move(&async->list, &map->async_free);
2743	wake = list_empty(&map->async_list);
2744
2745	if (ret != 0)
2746		map->async_ret = ret;
2747
2748	spin_unlock(&map->async_lock);
2749
2750	if (wake)
2751		wake_up(&map->async_waitq);
2752}
2753EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2754
2755static int regmap_async_is_done(struct regmap *map)
2756{
2757	unsigned long flags;
2758	int ret;
2759
2760	spin_lock_irqsave(&map->async_lock, flags);
2761	ret = list_empty(&map->async_list);
2762	spin_unlock_irqrestore(&map->async_lock, flags);
2763
2764	return ret;
2765}
2766
2767/**
2768 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2769 *
2770 * @map: Map to operate on.
2771 *
2772 * Blocks until any pending asynchronous I/O has completed.  Returns
2773 * an error code for any failed I/O operations.
2774 */
2775int regmap_async_complete(struct regmap *map)
2776{
2777	unsigned long flags;
2778	int ret;
2779
2780	/* Nothing to do with no async support */
2781	if (!map->bus || !map->bus->async_write)
2782		return 0;
2783
2784	trace_regmap_async_complete_start(map);
2785
2786	wait_event(map->async_waitq, regmap_async_is_done(map));
2787
2788	spin_lock_irqsave(&map->async_lock, flags);
2789	ret = map->async_ret;
2790	map->async_ret = 0;
2791	spin_unlock_irqrestore(&map->async_lock, flags);
2792
2793	trace_regmap_async_complete_done(map);
2794
2795	return ret;
2796}
2797EXPORT_SYMBOL_GPL(regmap_async_complete);
2798
2799/**
2800 * regmap_register_patch: Register and apply register updates to be applied
2801 *                        on device initialistion
2802 *
2803 * @map: Register map to apply updates to.
2804 * @regs: Values to update.
2805 * @num_regs: Number of entries in regs.
2806 *
2807 * Register a set of register updates to be applied to the device
2808 * whenever the device registers are synchronised with the cache and
2809 * apply them immediately.  Typically this is used to apply
2810 * corrections to be applied to the device defaults on startup, such
2811 * as the updates some vendors provide to undocumented registers.
2812 *
2813 * The caller must ensure that this function cannot be called
2814 * concurrently with either itself or regcache_sync().
2815 */
2816int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2817			  int num_regs)
2818{
2819	struct reg_sequence *p;
2820	int ret;
2821	bool bypass;
2822
2823	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2824	    num_regs))
2825		return 0;
2826
2827	p = krealloc(map->patch,
2828		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2829		     GFP_KERNEL);
2830	if (p) {
2831		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2832		map->patch = p;
2833		map->patch_regs += num_regs;
2834	} else {
2835		return -ENOMEM;
2836	}
2837
2838	map->lock(map->lock_arg);
2839
2840	bypass = map->cache_bypass;
2841
2842	map->cache_bypass = true;
2843	map->async = true;
2844
2845	ret = _regmap_multi_reg_write(map, regs, num_regs);
 
 
2846
 
2847	map->async = false;
2848	map->cache_bypass = bypass;
2849
2850	map->unlock(map->lock_arg);
2851
2852	regmap_async_complete(map);
2853
2854	return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_register_patch);
2857
2858/*
2859 * regmap_get_val_bytes(): Report the size of a register value
2860 *
2861 * Report the size of a register value, mainly intended to for use by
2862 * generic infrastructure built on top of regmap.
2863 */
2864int regmap_get_val_bytes(struct regmap *map)
2865{
2866	if (map->format.format_write)
2867		return -EINVAL;
2868
2869	return map->format.val_bytes;
2870}
2871EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2872
2873/**
2874 * regmap_get_max_register(): Report the max register value
2875 *
2876 * Report the max register value, mainly intended to for use by
2877 * generic infrastructure built on top of regmap.
2878 */
2879int regmap_get_max_register(struct regmap *map)
2880{
2881	return map->max_register ? map->max_register : -EINVAL;
2882}
2883EXPORT_SYMBOL_GPL(regmap_get_max_register);
2884
2885/**
2886 * regmap_get_reg_stride(): Report the register address stride
2887 *
2888 * Report the register address stride, mainly intended to for use by
2889 * generic infrastructure built on top of regmap.
2890 */
2891int regmap_get_reg_stride(struct regmap *map)
2892{
2893	return map->reg_stride;
2894}
2895EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2896
2897int regmap_parse_val(struct regmap *map, const void *buf,
2898			unsigned int *val)
2899{
2900	if (!map->format.parse_val)
2901		return -EINVAL;
2902
2903	*val = map->format.parse_val(buf);
2904
2905	return 0;
2906}
2907EXPORT_SYMBOL_GPL(regmap_parse_val);
2908
2909static int __init regmap_initcall(void)
2910{
2911	regmap_debugfs_initcall();
2912
2913	return 0;
2914}
2915postcore_initcall(regmap_initcall);