Loading...
1/*
2 * regmap based irq_chip
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/export.h>
14#include <linux/device.h>
15#include <linux/regmap.h>
16#include <linux/irq.h>
17#include <linux/interrupt.h>
18#include <linux/irqdomain.h>
19#include <linux/pm_runtime.h>
20#include <linux/slab.h>
21
22#include "internal.h"
23
24struct regmap_irq_chip_data {
25 struct mutex lock;
26 struct irq_chip irq_chip;
27
28 struct regmap *map;
29 const struct regmap_irq_chip *chip;
30
31 int irq_base;
32 struct irq_domain *domain;
33
34 int irq;
35 int wake_count;
36
37 void *status_reg_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42
43 unsigned int irq_reg_stride;
44};
45
46static inline const
47struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
48 int irq)
49{
50 return &data->chip->irqs[irq];
51}
52
53static void regmap_irq_lock(struct irq_data *data)
54{
55 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
56
57 mutex_lock(&d->lock);
58}
59
60static void regmap_irq_sync_unlock(struct irq_data *data)
61{
62 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
63 struct regmap *map = d->map;
64 int i, ret;
65 u32 reg;
66
67 if (d->chip->runtime_pm) {
68 ret = pm_runtime_get_sync(map->dev);
69 if (ret < 0)
70 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
71 ret);
72 }
73
74 /*
75 * If there's been a change in the mask write it back to the
76 * hardware. We rely on the use of the regmap core cache to
77 * suppress pointless writes.
78 */
79 for (i = 0; i < d->chip->num_regs; i++) {
80 reg = d->chip->mask_base +
81 (i * map->reg_stride * d->irq_reg_stride);
82 if (d->chip->mask_invert)
83 ret = regmap_update_bits(d->map, reg,
84 d->mask_buf_def[i], ~d->mask_buf[i]);
85 else
86 ret = regmap_update_bits(d->map, reg,
87 d->mask_buf_def[i], d->mask_buf[i]);
88 if (ret != 0)
89 dev_err(d->map->dev, "Failed to sync masks in %x\n",
90 reg);
91
92 reg = d->chip->wake_base +
93 (i * map->reg_stride * d->irq_reg_stride);
94 if (d->wake_buf) {
95 if (d->chip->wake_invert)
96 ret = regmap_update_bits(d->map, reg,
97 d->mask_buf_def[i],
98 ~d->wake_buf[i]);
99 else
100 ret = regmap_update_bits(d->map, reg,
101 d->mask_buf_def[i],
102 d->wake_buf[i]);
103 if (ret != 0)
104 dev_err(d->map->dev,
105 "Failed to sync wakes in %x: %d\n",
106 reg, ret);
107 }
108
109 if (!d->chip->init_ack_masked)
110 continue;
111 /*
112 * Ack all the masked interrupts uncondictionly,
113 * OR if there is masked interrupt which hasn't been Acked,
114 * it'll be ignored in irq handler, then may introduce irq storm
115 */
116 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
117 reg = d->chip->ack_base +
118 (i * map->reg_stride * d->irq_reg_stride);
119 ret = regmap_write(map, reg, d->mask_buf[i]);
120 if (ret != 0)
121 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
122 reg, ret);
123 }
124 }
125
126 if (d->chip->runtime_pm)
127 pm_runtime_put(map->dev);
128
129 /* If we've changed our wakeup count propagate it to the parent */
130 if (d->wake_count < 0)
131 for (i = d->wake_count; i < 0; i++)
132 irq_set_irq_wake(d->irq, 0);
133 else if (d->wake_count > 0)
134 for (i = 0; i < d->wake_count; i++)
135 irq_set_irq_wake(d->irq, 1);
136
137 d->wake_count = 0;
138
139 mutex_unlock(&d->lock);
140}
141
142static void regmap_irq_enable(struct irq_data *data)
143{
144 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
145 struct regmap *map = d->map;
146 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
147
148 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
149}
150
151static void regmap_irq_disable(struct irq_data *data)
152{
153 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
154 struct regmap *map = d->map;
155 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
156
157 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
158}
159
160static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
161{
162 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
163 struct regmap *map = d->map;
164 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
165
166 if (on) {
167 if (d->wake_buf)
168 d->wake_buf[irq_data->reg_offset / map->reg_stride]
169 &= ~irq_data->mask;
170 d->wake_count++;
171 } else {
172 if (d->wake_buf)
173 d->wake_buf[irq_data->reg_offset / map->reg_stride]
174 |= irq_data->mask;
175 d->wake_count--;
176 }
177
178 return 0;
179}
180
181static const struct irq_chip regmap_irq_chip = {
182 .irq_bus_lock = regmap_irq_lock,
183 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
184 .irq_disable = regmap_irq_disable,
185 .irq_enable = regmap_irq_enable,
186 .irq_set_wake = regmap_irq_set_wake,
187};
188
189static irqreturn_t regmap_irq_thread(int irq, void *d)
190{
191 struct regmap_irq_chip_data *data = d;
192 const struct regmap_irq_chip *chip = data->chip;
193 struct regmap *map = data->map;
194 int ret, i;
195 bool handled = false;
196 u32 reg;
197
198 if (chip->runtime_pm) {
199 ret = pm_runtime_get_sync(map->dev);
200 if (ret < 0) {
201 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
202 ret);
203 pm_runtime_put(map->dev);
204 return IRQ_NONE;
205 }
206 }
207
208 /*
209 * Read in the statuses, using a single bulk read if possible
210 * in order to reduce the I/O overheads.
211 */
212 if (!map->use_single_rw && map->reg_stride == 1 &&
213 data->irq_reg_stride == 1) {
214 u8 *buf8 = data->status_reg_buf;
215 u16 *buf16 = data->status_reg_buf;
216 u32 *buf32 = data->status_reg_buf;
217
218 BUG_ON(!data->status_reg_buf);
219
220 ret = regmap_bulk_read(map, chip->status_base,
221 data->status_reg_buf,
222 chip->num_regs);
223 if (ret != 0) {
224 dev_err(map->dev, "Failed to read IRQ status: %d\n",
225 ret);
226 return IRQ_NONE;
227 }
228
229 for (i = 0; i < data->chip->num_regs; i++) {
230 switch (map->format.val_bytes) {
231 case 1:
232 data->status_buf[i] = buf8[i];
233 break;
234 case 2:
235 data->status_buf[i] = buf16[i];
236 break;
237 case 4:
238 data->status_buf[i] = buf32[i];
239 break;
240 default:
241 BUG();
242 return IRQ_NONE;
243 }
244 }
245
246 } else {
247 for (i = 0; i < data->chip->num_regs; i++) {
248 ret = regmap_read(map, chip->status_base +
249 (i * map->reg_stride
250 * data->irq_reg_stride),
251 &data->status_buf[i]);
252
253 if (ret != 0) {
254 dev_err(map->dev,
255 "Failed to read IRQ status: %d\n",
256 ret);
257 if (chip->runtime_pm)
258 pm_runtime_put(map->dev);
259 return IRQ_NONE;
260 }
261 }
262 }
263
264 /*
265 * Ignore masked IRQs and ack if we need to; we ack early so
266 * there is no race between handling and acknowleding the
267 * interrupt. We assume that typically few of the interrupts
268 * will fire simultaneously so don't worry about overhead from
269 * doing a write per register.
270 */
271 for (i = 0; i < data->chip->num_regs; i++) {
272 data->status_buf[i] &= ~data->mask_buf[i];
273
274 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
275 reg = chip->ack_base +
276 (i * map->reg_stride * data->irq_reg_stride);
277 ret = regmap_write(map, reg, data->status_buf[i]);
278 if (ret != 0)
279 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
280 reg, ret);
281 }
282 }
283
284 for (i = 0; i < chip->num_irqs; i++) {
285 if (data->status_buf[chip->irqs[i].reg_offset /
286 map->reg_stride] & chip->irqs[i].mask) {
287 handle_nested_irq(irq_find_mapping(data->domain, i));
288 handled = true;
289 }
290 }
291
292 if (chip->runtime_pm)
293 pm_runtime_put(map->dev);
294
295 if (handled)
296 return IRQ_HANDLED;
297 else
298 return IRQ_NONE;
299}
300
301static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
302 irq_hw_number_t hw)
303{
304 struct regmap_irq_chip_data *data = h->host_data;
305
306 irq_set_chip_data(virq, data);
307 irq_set_chip(virq, &data->irq_chip);
308 irq_set_nested_thread(virq, 1);
309
310 /* ARM needs us to explicitly flag the IRQ as valid
311 * and will set them noprobe when we do so. */
312#ifdef CONFIG_ARM
313 set_irq_flags(virq, IRQF_VALID);
314#else
315 irq_set_noprobe(virq);
316#endif
317
318 return 0;
319}
320
321static struct irq_domain_ops regmap_domain_ops = {
322 .map = regmap_irq_map,
323 .xlate = irq_domain_xlate_twocell,
324};
325
326/**
327 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
328 *
329 * map: The regmap for the device.
330 * irq: The IRQ the device uses to signal interrupts
331 * irq_flags: The IRQF_ flags to use for the primary interrupt.
332 * chip: Configuration for the interrupt controller.
333 * data: Runtime data structure for the controller, allocated on success
334 *
335 * Returns 0 on success or an errno on failure.
336 *
337 * In order for this to be efficient the chip really should use a
338 * register cache. The chip driver is responsible for restoring the
339 * register values used by the IRQ controller over suspend and resume.
340 */
341int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
342 int irq_base, const struct regmap_irq_chip *chip,
343 struct regmap_irq_chip_data **data)
344{
345 struct regmap_irq_chip_data *d;
346 int i;
347 int ret = -ENOMEM;
348 u32 reg;
349
350 for (i = 0; i < chip->num_irqs; i++) {
351 if (chip->irqs[i].reg_offset % map->reg_stride)
352 return -EINVAL;
353 if (chip->irqs[i].reg_offset / map->reg_stride >=
354 chip->num_regs)
355 return -EINVAL;
356 }
357
358 if (irq_base) {
359 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
360 if (irq_base < 0) {
361 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
362 irq_base);
363 return irq_base;
364 }
365 }
366
367 d = kzalloc(sizeof(*d), GFP_KERNEL);
368 if (!d)
369 return -ENOMEM;
370
371 d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
372 GFP_KERNEL);
373 if (!d->status_buf)
374 goto err_alloc;
375
376 d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
377 GFP_KERNEL);
378 if (!d->mask_buf)
379 goto err_alloc;
380
381 d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
382 GFP_KERNEL);
383 if (!d->mask_buf_def)
384 goto err_alloc;
385
386 if (chip->wake_base) {
387 d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
388 GFP_KERNEL);
389 if (!d->wake_buf)
390 goto err_alloc;
391 }
392
393 d->irq_chip = regmap_irq_chip;
394 d->irq_chip.name = chip->name;
395 d->irq = irq;
396 d->map = map;
397 d->chip = chip;
398 d->irq_base = irq_base;
399
400 if (chip->irq_reg_stride)
401 d->irq_reg_stride = chip->irq_reg_stride;
402 else
403 d->irq_reg_stride = 1;
404
405 if (!map->use_single_rw && map->reg_stride == 1 &&
406 d->irq_reg_stride == 1) {
407 d->status_reg_buf = kmalloc(map->format.val_bytes *
408 chip->num_regs, GFP_KERNEL);
409 if (!d->status_reg_buf)
410 goto err_alloc;
411 }
412
413 mutex_init(&d->lock);
414
415 for (i = 0; i < chip->num_irqs; i++)
416 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
417 |= chip->irqs[i].mask;
418
419 /* Mask all the interrupts by default */
420 for (i = 0; i < chip->num_regs; i++) {
421 d->mask_buf[i] = d->mask_buf_def[i];
422 reg = chip->mask_base +
423 (i * map->reg_stride * d->irq_reg_stride);
424 if (chip->mask_invert)
425 ret = regmap_update_bits(map, reg,
426 d->mask_buf[i], ~d->mask_buf[i]);
427 else
428 ret = regmap_update_bits(map, reg,
429 d->mask_buf[i], d->mask_buf[i]);
430 if (ret != 0) {
431 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
432 reg, ret);
433 goto err_alloc;
434 }
435
436 if (!chip->init_ack_masked)
437 continue;
438
439 /* Ack masked but set interrupts */
440 reg = chip->status_base +
441 (i * map->reg_stride * d->irq_reg_stride);
442 ret = regmap_read(map, reg, &d->status_buf[i]);
443 if (ret != 0) {
444 dev_err(map->dev, "Failed to read IRQ status: %d\n",
445 ret);
446 goto err_alloc;
447 }
448
449 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
450 reg = chip->ack_base +
451 (i * map->reg_stride * d->irq_reg_stride);
452 ret = regmap_write(map, reg,
453 d->status_buf[i] & d->mask_buf[i]);
454 if (ret != 0) {
455 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
456 reg, ret);
457 goto err_alloc;
458 }
459 }
460 }
461
462 /* Wake is disabled by default */
463 if (d->wake_buf) {
464 for (i = 0; i < chip->num_regs; i++) {
465 d->wake_buf[i] = d->mask_buf_def[i];
466 reg = chip->wake_base +
467 (i * map->reg_stride * d->irq_reg_stride);
468
469 if (chip->wake_invert)
470 ret = regmap_update_bits(map, reg,
471 d->mask_buf_def[i],
472 0);
473 else
474 ret = regmap_update_bits(map, reg,
475 d->mask_buf_def[i],
476 d->wake_buf[i]);
477 if (ret != 0) {
478 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
479 reg, ret);
480 goto err_alloc;
481 }
482 }
483 }
484
485 if (irq_base)
486 d->domain = irq_domain_add_legacy(map->dev->of_node,
487 chip->num_irqs, irq_base, 0,
488 ®map_domain_ops, d);
489 else
490 d->domain = irq_domain_add_linear(map->dev->of_node,
491 chip->num_irqs,
492 ®map_domain_ops, d);
493 if (!d->domain) {
494 dev_err(map->dev, "Failed to create IRQ domain\n");
495 ret = -ENOMEM;
496 goto err_alloc;
497 }
498
499 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
500 chip->name, d);
501 if (ret != 0) {
502 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
503 irq, chip->name, ret);
504 goto err_domain;
505 }
506
507 *data = d;
508
509 return 0;
510
511err_domain:
512 /* Should really dispose of the domain but... */
513err_alloc:
514 kfree(d->wake_buf);
515 kfree(d->mask_buf_def);
516 kfree(d->mask_buf);
517 kfree(d->status_buf);
518 kfree(d->status_reg_buf);
519 kfree(d);
520 return ret;
521}
522EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
523
524/**
525 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
526 *
527 * @irq: Primary IRQ for the device
528 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
529 */
530void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
531{
532 if (!d)
533 return;
534
535 free_irq(irq, d);
536 irq_domain_remove(d->domain);
537 kfree(d->wake_buf);
538 kfree(d->mask_buf_def);
539 kfree(d->mask_buf);
540 kfree(d->status_reg_buf);
541 kfree(d->status_buf);
542 kfree(d);
543}
544EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
545
546/**
547 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
548 *
549 * Useful for drivers to request their own IRQs.
550 *
551 * @data: regmap_irq controller to operate on.
552 */
553int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
554{
555 WARN_ON(!data->irq_base);
556 return data->irq_base;
557}
558EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
559
560/**
561 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
562 *
563 * Useful for drivers to request their own IRQs.
564 *
565 * @data: regmap_irq controller to operate on.
566 * @irq: index of the interrupt requested in the chip IRQs
567 */
568int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
569{
570 /* Handle holes in the IRQ list */
571 if (!data->chip->irqs[irq].mask)
572 return -EINVAL;
573
574 return irq_create_mapping(data->domain, irq);
575}
576EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
577
578/**
579 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
580 *
581 * Useful for drivers to request their own IRQs and for integration
582 * with subsystems. For ease of integration NULL is accepted as a
583 * domain, allowing devices to just call this even if no domain is
584 * allocated.
585 *
586 * @data: regmap_irq controller to operate on.
587 */
588struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
589{
590 if (data)
591 return data->domain;
592 else
593 return NULL;
594}
595EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1/*
2 * regmap based irq_chip
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/export.h>
15#include <linux/interrupt.h>
16#include <linux/irq.h>
17#include <linux/irqdomain.h>
18#include <linux/pm_runtime.h>
19#include <linux/regmap.h>
20#include <linux/slab.h>
21
22#include "internal.h"
23
24struct regmap_irq_chip_data {
25 struct mutex lock;
26 struct irq_chip irq_chip;
27
28 struct regmap *map;
29 const struct regmap_irq_chip *chip;
30
31 int irq_base;
32 struct irq_domain *domain;
33
34 int irq;
35 int wake_count;
36
37 void *status_reg_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
44
45 unsigned int irq_reg_stride;
46 unsigned int type_reg_stride;
47};
48
49static inline const
50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 int irq)
52{
53 return &data->chip->irqs[irq];
54}
55
56static void regmap_irq_lock(struct irq_data *data)
57{
58 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59
60 mutex_lock(&d->lock);
61}
62
63static void regmap_irq_sync_unlock(struct irq_data *data)
64{
65 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
66 struct regmap *map = d->map;
67 int i, ret;
68 u32 reg;
69 u32 unmask_offset;
70
71 if (d->chip->runtime_pm) {
72 ret = pm_runtime_get_sync(map->dev);
73 if (ret < 0)
74 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
75 ret);
76 }
77
78 /*
79 * If there's been a change in the mask write it back to the
80 * hardware. We rely on the use of the regmap core cache to
81 * suppress pointless writes.
82 */
83 for (i = 0; i < d->chip->num_regs; i++) {
84 reg = d->chip->mask_base +
85 (i * map->reg_stride * d->irq_reg_stride);
86 if (d->chip->mask_invert) {
87 ret = regmap_update_bits(d->map, reg,
88 d->mask_buf_def[i], ~d->mask_buf[i]);
89 } else if (d->chip->unmask_base) {
90 /* set mask with mask_base register */
91 ret = regmap_update_bits(d->map, reg,
92 d->mask_buf_def[i], ~d->mask_buf[i]);
93 if (ret < 0)
94 dev_err(d->map->dev,
95 "Failed to sync unmasks in %x\n",
96 reg);
97 unmask_offset = d->chip->unmask_base -
98 d->chip->mask_base;
99 /* clear mask with unmask_base register */
100 ret = regmap_update_bits(d->map,
101 reg + unmask_offset,
102 d->mask_buf_def[i],
103 d->mask_buf[i]);
104 } else {
105 ret = regmap_update_bits(d->map, reg,
106 d->mask_buf_def[i], d->mask_buf[i]);
107 }
108 if (ret != 0)
109 dev_err(d->map->dev, "Failed to sync masks in %x\n",
110 reg);
111
112 reg = d->chip->wake_base +
113 (i * map->reg_stride * d->irq_reg_stride);
114 if (d->wake_buf) {
115 if (d->chip->wake_invert)
116 ret = regmap_update_bits(d->map, reg,
117 d->mask_buf_def[i],
118 ~d->wake_buf[i]);
119 else
120 ret = regmap_update_bits(d->map, reg,
121 d->mask_buf_def[i],
122 d->wake_buf[i]);
123 if (ret != 0)
124 dev_err(d->map->dev,
125 "Failed to sync wakes in %x: %d\n",
126 reg, ret);
127 }
128
129 if (!d->chip->init_ack_masked)
130 continue;
131 /*
132 * Ack all the masked interrupts unconditionally,
133 * OR if there is masked interrupt which hasn't been Acked,
134 * it'll be ignored in irq handler, then may introduce irq storm
135 */
136 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
137 reg = d->chip->ack_base +
138 (i * map->reg_stride * d->irq_reg_stride);
139 /* some chips ack by write 0 */
140 if (d->chip->ack_invert)
141 ret = regmap_write(map, reg, ~d->mask_buf[i]);
142 else
143 ret = regmap_write(map, reg, d->mask_buf[i]);
144 if (ret != 0)
145 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
146 reg, ret);
147 }
148 }
149
150 for (i = 0; i < d->chip->num_type_reg; i++) {
151 if (!d->type_buf_def[i])
152 continue;
153 reg = d->chip->type_base +
154 (i * map->reg_stride * d->type_reg_stride);
155 if (d->chip->type_invert)
156 ret = regmap_update_bits(d->map, reg,
157 d->type_buf_def[i], ~d->type_buf[i]);
158 else
159 ret = regmap_update_bits(d->map, reg,
160 d->type_buf_def[i], d->type_buf[i]);
161 if (ret != 0)
162 dev_err(d->map->dev, "Failed to sync type in %x\n",
163 reg);
164 }
165
166 if (d->chip->runtime_pm)
167 pm_runtime_put(map->dev);
168
169 /* If we've changed our wakeup count propagate it to the parent */
170 if (d->wake_count < 0)
171 for (i = d->wake_count; i < 0; i++)
172 irq_set_irq_wake(d->irq, 0);
173 else if (d->wake_count > 0)
174 for (i = 0; i < d->wake_count; i++)
175 irq_set_irq_wake(d->irq, 1);
176
177 d->wake_count = 0;
178
179 mutex_unlock(&d->lock);
180}
181
182static void regmap_irq_enable(struct irq_data *data)
183{
184 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
185 struct regmap *map = d->map;
186 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
187
188 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
189}
190
191static void regmap_irq_disable(struct irq_data *data)
192{
193 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
194 struct regmap *map = d->map;
195 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
196
197 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
198}
199
200static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
201{
202 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
203 struct regmap *map = d->map;
204 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
205 int reg = irq_data->type_reg_offset / map->reg_stride;
206
207 if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
208 return 0;
209
210 d->type_buf[reg] &= ~(irq_data->type_falling_mask |
211 irq_data->type_rising_mask);
212 switch (type) {
213 case IRQ_TYPE_EDGE_FALLING:
214 d->type_buf[reg] |= irq_data->type_falling_mask;
215 break;
216
217 case IRQ_TYPE_EDGE_RISING:
218 d->type_buf[reg] |= irq_data->type_rising_mask;
219 break;
220
221 case IRQ_TYPE_EDGE_BOTH:
222 d->type_buf[reg] |= (irq_data->type_falling_mask |
223 irq_data->type_rising_mask);
224 break;
225
226 default:
227 return -EINVAL;
228 }
229 return 0;
230}
231
232static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
233{
234 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
235 struct regmap *map = d->map;
236 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
237
238 if (on) {
239 if (d->wake_buf)
240 d->wake_buf[irq_data->reg_offset / map->reg_stride]
241 &= ~irq_data->mask;
242 d->wake_count++;
243 } else {
244 if (d->wake_buf)
245 d->wake_buf[irq_data->reg_offset / map->reg_stride]
246 |= irq_data->mask;
247 d->wake_count--;
248 }
249
250 return 0;
251}
252
253static const struct irq_chip regmap_irq_chip = {
254 .irq_bus_lock = regmap_irq_lock,
255 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
256 .irq_disable = regmap_irq_disable,
257 .irq_enable = regmap_irq_enable,
258 .irq_set_type = regmap_irq_set_type,
259 .irq_set_wake = regmap_irq_set_wake,
260};
261
262static irqreturn_t regmap_irq_thread(int irq, void *d)
263{
264 struct regmap_irq_chip_data *data = d;
265 const struct regmap_irq_chip *chip = data->chip;
266 struct regmap *map = data->map;
267 int ret, i;
268 bool handled = false;
269 u32 reg;
270
271 if (chip->handle_pre_irq)
272 chip->handle_pre_irq(chip->irq_drv_data);
273
274 if (chip->runtime_pm) {
275 ret = pm_runtime_get_sync(map->dev);
276 if (ret < 0) {
277 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
278 ret);
279 pm_runtime_put(map->dev);
280 goto exit;
281 }
282 }
283
284 /*
285 * Read in the statuses, using a single bulk read if possible
286 * in order to reduce the I/O overheads.
287 */
288 if (!map->use_single_read && map->reg_stride == 1 &&
289 data->irq_reg_stride == 1) {
290 u8 *buf8 = data->status_reg_buf;
291 u16 *buf16 = data->status_reg_buf;
292 u32 *buf32 = data->status_reg_buf;
293
294 BUG_ON(!data->status_reg_buf);
295
296 ret = regmap_bulk_read(map, chip->status_base,
297 data->status_reg_buf,
298 chip->num_regs);
299 if (ret != 0) {
300 dev_err(map->dev, "Failed to read IRQ status: %d\n",
301 ret);
302 goto exit;
303 }
304
305 for (i = 0; i < data->chip->num_regs; i++) {
306 switch (map->format.val_bytes) {
307 case 1:
308 data->status_buf[i] = buf8[i];
309 break;
310 case 2:
311 data->status_buf[i] = buf16[i];
312 break;
313 case 4:
314 data->status_buf[i] = buf32[i];
315 break;
316 default:
317 BUG();
318 goto exit;
319 }
320 }
321
322 } else {
323 for (i = 0; i < data->chip->num_regs; i++) {
324 ret = regmap_read(map, chip->status_base +
325 (i * map->reg_stride
326 * data->irq_reg_stride),
327 &data->status_buf[i]);
328
329 if (ret != 0) {
330 dev_err(map->dev,
331 "Failed to read IRQ status: %d\n",
332 ret);
333 if (chip->runtime_pm)
334 pm_runtime_put(map->dev);
335 goto exit;
336 }
337 }
338 }
339
340 /*
341 * Ignore masked IRQs and ack if we need to; we ack early so
342 * there is no race between handling and acknowleding the
343 * interrupt. We assume that typically few of the interrupts
344 * will fire simultaneously so don't worry about overhead from
345 * doing a write per register.
346 */
347 for (i = 0; i < data->chip->num_regs; i++) {
348 data->status_buf[i] &= ~data->mask_buf[i];
349
350 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
351 reg = chip->ack_base +
352 (i * map->reg_stride * data->irq_reg_stride);
353 ret = regmap_write(map, reg, data->status_buf[i]);
354 if (ret != 0)
355 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
356 reg, ret);
357 }
358 }
359
360 for (i = 0; i < chip->num_irqs; i++) {
361 if (data->status_buf[chip->irqs[i].reg_offset /
362 map->reg_stride] & chip->irqs[i].mask) {
363 handle_nested_irq(irq_find_mapping(data->domain, i));
364 handled = true;
365 }
366 }
367
368 if (chip->runtime_pm)
369 pm_runtime_put(map->dev);
370
371exit:
372 if (chip->handle_post_irq)
373 chip->handle_post_irq(chip->irq_drv_data);
374
375 if (handled)
376 return IRQ_HANDLED;
377 else
378 return IRQ_NONE;
379}
380
381static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
382 irq_hw_number_t hw)
383{
384 struct regmap_irq_chip_data *data = h->host_data;
385
386 irq_set_chip_data(virq, data);
387 irq_set_chip(virq, &data->irq_chip);
388 irq_set_nested_thread(virq, 1);
389 irq_set_parent(virq, data->irq);
390 irq_set_noprobe(virq);
391
392 return 0;
393}
394
395static const struct irq_domain_ops regmap_domain_ops = {
396 .map = regmap_irq_map,
397 .xlate = irq_domain_xlate_twocell,
398};
399
400/**
401 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
402 *
403 * map: The regmap for the device.
404 * irq: The IRQ the device uses to signal interrupts
405 * irq_flags: The IRQF_ flags to use for the primary interrupt.
406 * chip: Configuration for the interrupt controller.
407 * data: Runtime data structure for the controller, allocated on success
408 *
409 * Returns 0 on success or an errno on failure.
410 *
411 * In order for this to be efficient the chip really should use a
412 * register cache. The chip driver is responsible for restoring the
413 * register values used by the IRQ controller over suspend and resume.
414 */
415int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
416 int irq_base, const struct regmap_irq_chip *chip,
417 struct regmap_irq_chip_data **data)
418{
419 struct regmap_irq_chip_data *d;
420 int i;
421 int ret = -ENOMEM;
422 u32 reg;
423 u32 unmask_offset;
424
425 if (chip->num_regs <= 0)
426 return -EINVAL;
427
428 for (i = 0; i < chip->num_irqs; i++) {
429 if (chip->irqs[i].reg_offset % map->reg_stride)
430 return -EINVAL;
431 if (chip->irqs[i].reg_offset / map->reg_stride >=
432 chip->num_regs)
433 return -EINVAL;
434 }
435
436 if (irq_base) {
437 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
438 if (irq_base < 0) {
439 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
440 irq_base);
441 return irq_base;
442 }
443 }
444
445 d = kzalloc(sizeof(*d), GFP_KERNEL);
446 if (!d)
447 return -ENOMEM;
448
449 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
450 GFP_KERNEL);
451 if (!d->status_buf)
452 goto err_alloc;
453
454 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
455 GFP_KERNEL);
456 if (!d->mask_buf)
457 goto err_alloc;
458
459 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
460 GFP_KERNEL);
461 if (!d->mask_buf_def)
462 goto err_alloc;
463
464 if (chip->wake_base) {
465 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466 GFP_KERNEL);
467 if (!d->wake_buf)
468 goto err_alloc;
469 }
470
471 if (chip->num_type_reg) {
472 d->type_buf_def = kcalloc(chip->num_type_reg,
473 sizeof(unsigned int), GFP_KERNEL);
474 if (!d->type_buf_def)
475 goto err_alloc;
476
477 d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
478 GFP_KERNEL);
479 if (!d->type_buf)
480 goto err_alloc;
481 }
482
483 d->irq_chip = regmap_irq_chip;
484 d->irq_chip.name = chip->name;
485 d->irq = irq;
486 d->map = map;
487 d->chip = chip;
488 d->irq_base = irq_base;
489
490 if (chip->irq_reg_stride)
491 d->irq_reg_stride = chip->irq_reg_stride;
492 else
493 d->irq_reg_stride = 1;
494
495 if (chip->type_reg_stride)
496 d->type_reg_stride = chip->type_reg_stride;
497 else
498 d->type_reg_stride = 1;
499
500 if (!map->use_single_read && map->reg_stride == 1 &&
501 d->irq_reg_stride == 1) {
502 d->status_reg_buf = kmalloc_array(chip->num_regs,
503 map->format.val_bytes,
504 GFP_KERNEL);
505 if (!d->status_reg_buf)
506 goto err_alloc;
507 }
508
509 mutex_init(&d->lock);
510
511 for (i = 0; i < chip->num_irqs; i++)
512 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
513 |= chip->irqs[i].mask;
514
515 /* Mask all the interrupts by default */
516 for (i = 0; i < chip->num_regs; i++) {
517 d->mask_buf[i] = d->mask_buf_def[i];
518 reg = chip->mask_base +
519 (i * map->reg_stride * d->irq_reg_stride);
520 if (chip->mask_invert)
521 ret = regmap_update_bits(map, reg,
522 d->mask_buf[i], ~d->mask_buf[i]);
523 else if (d->chip->unmask_base) {
524 unmask_offset = d->chip->unmask_base -
525 d->chip->mask_base;
526 ret = regmap_update_bits(d->map,
527 reg + unmask_offset,
528 d->mask_buf[i],
529 d->mask_buf[i]);
530 } else
531 ret = regmap_update_bits(map, reg,
532 d->mask_buf[i], d->mask_buf[i]);
533 if (ret != 0) {
534 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
535 reg, ret);
536 goto err_alloc;
537 }
538
539 if (!chip->init_ack_masked)
540 continue;
541
542 /* Ack masked but set interrupts */
543 reg = chip->status_base +
544 (i * map->reg_stride * d->irq_reg_stride);
545 ret = regmap_read(map, reg, &d->status_buf[i]);
546 if (ret != 0) {
547 dev_err(map->dev, "Failed to read IRQ status: %d\n",
548 ret);
549 goto err_alloc;
550 }
551
552 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
553 reg = chip->ack_base +
554 (i * map->reg_stride * d->irq_reg_stride);
555 if (chip->ack_invert)
556 ret = regmap_write(map, reg,
557 ~(d->status_buf[i] & d->mask_buf[i]));
558 else
559 ret = regmap_write(map, reg,
560 d->status_buf[i] & d->mask_buf[i]);
561 if (ret != 0) {
562 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
563 reg, ret);
564 goto err_alloc;
565 }
566 }
567 }
568
569 /* Wake is disabled by default */
570 if (d->wake_buf) {
571 for (i = 0; i < chip->num_regs; i++) {
572 d->wake_buf[i] = d->mask_buf_def[i];
573 reg = chip->wake_base +
574 (i * map->reg_stride * d->irq_reg_stride);
575
576 if (chip->wake_invert)
577 ret = regmap_update_bits(map, reg,
578 d->mask_buf_def[i],
579 0);
580 else
581 ret = regmap_update_bits(map, reg,
582 d->mask_buf_def[i],
583 d->wake_buf[i]);
584 if (ret != 0) {
585 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
586 reg, ret);
587 goto err_alloc;
588 }
589 }
590 }
591
592 if (chip->num_type_reg) {
593 for (i = 0; i < chip->num_irqs; i++) {
594 reg = chip->irqs[i].type_reg_offset / map->reg_stride;
595 d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
596 chip->irqs[i].type_falling_mask;
597 }
598 for (i = 0; i < chip->num_type_reg; ++i) {
599 if (!d->type_buf_def[i])
600 continue;
601
602 reg = chip->type_base +
603 (i * map->reg_stride * d->type_reg_stride);
604 if (chip->type_invert)
605 ret = regmap_update_bits(map, reg,
606 d->type_buf_def[i], 0xFF);
607 else
608 ret = regmap_update_bits(map, reg,
609 d->type_buf_def[i], 0x0);
610 if (ret != 0) {
611 dev_err(map->dev,
612 "Failed to set type in 0x%x: %x\n",
613 reg, ret);
614 goto err_alloc;
615 }
616 }
617 }
618
619 if (irq_base)
620 d->domain = irq_domain_add_legacy(map->dev->of_node,
621 chip->num_irqs, irq_base, 0,
622 ®map_domain_ops, d);
623 else
624 d->domain = irq_domain_add_linear(map->dev->of_node,
625 chip->num_irqs,
626 ®map_domain_ops, d);
627 if (!d->domain) {
628 dev_err(map->dev, "Failed to create IRQ domain\n");
629 ret = -ENOMEM;
630 goto err_alloc;
631 }
632
633 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
634 irq_flags | IRQF_ONESHOT,
635 chip->name, d);
636 if (ret != 0) {
637 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
638 irq, chip->name, ret);
639 goto err_domain;
640 }
641
642 *data = d;
643
644 return 0;
645
646err_domain:
647 /* Should really dispose of the domain but... */
648err_alloc:
649 kfree(d->type_buf);
650 kfree(d->type_buf_def);
651 kfree(d->wake_buf);
652 kfree(d->mask_buf_def);
653 kfree(d->mask_buf);
654 kfree(d->status_buf);
655 kfree(d->status_reg_buf);
656 kfree(d);
657 return ret;
658}
659EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
660
661/**
662 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
663 *
664 * @irq: Primary IRQ for the device
665 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
666 *
667 * This function also dispose all mapped irq on chip.
668 */
669void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
670{
671 unsigned int virq;
672 int hwirq;
673
674 if (!d)
675 return;
676
677 free_irq(irq, d);
678
679 /* Dispose all virtual irq from irq domain before removing it */
680 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
681 /* Ignore hwirq if holes in the IRQ list */
682 if (!d->chip->irqs[hwirq].mask)
683 continue;
684
685 /*
686 * Find the virtual irq of hwirq on chip and if it is
687 * there then dispose it
688 */
689 virq = irq_find_mapping(d->domain, hwirq);
690 if (virq)
691 irq_dispose_mapping(virq);
692 }
693
694 irq_domain_remove(d->domain);
695 kfree(d->type_buf);
696 kfree(d->type_buf_def);
697 kfree(d->wake_buf);
698 kfree(d->mask_buf_def);
699 kfree(d->mask_buf);
700 kfree(d->status_reg_buf);
701 kfree(d->status_buf);
702 kfree(d);
703}
704EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
705
706static void devm_regmap_irq_chip_release(struct device *dev, void *res)
707{
708 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
709
710 regmap_del_irq_chip(d->irq, d);
711}
712
713static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
714
715{
716 struct regmap_irq_chip_data **r = res;
717
718 if (!r || !*r) {
719 WARN_ON(!r || !*r);
720 return 0;
721 }
722 return *r == data;
723}
724
725/**
726 * devm_regmap_add_irq_chip(): Resource manager regmap_add_irq_chip()
727 *
728 * @dev: The device pointer on which irq_chip belongs to.
729 * @map: The regmap for the device.
730 * @irq: The IRQ the device uses to signal interrupts
731 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
732 * @chip: Configuration for the interrupt controller.
733 * @data: Runtime data structure for the controller, allocated on success
734 *
735 * Returns 0 on success or an errno on failure.
736 *
737 * The regmap_irq_chip data automatically be released when the device is
738 * unbound.
739 */
740int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
741 int irq_flags, int irq_base,
742 const struct regmap_irq_chip *chip,
743 struct regmap_irq_chip_data **data)
744{
745 struct regmap_irq_chip_data **ptr, *d;
746 int ret;
747
748 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
749 GFP_KERNEL);
750 if (!ptr)
751 return -ENOMEM;
752
753 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
754 chip, &d);
755 if (ret < 0) {
756 devres_free(ptr);
757 return ret;
758 }
759
760 *ptr = d;
761 devres_add(dev, ptr);
762 *data = d;
763 return 0;
764}
765EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
766
767/**
768 * devm_regmap_del_irq_chip(): Resource managed regmap_del_irq_chip()
769 *
770 * @dev: Device for which which resource was allocated.
771 * @irq: Primary IRQ for the device
772 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
773 */
774void devm_regmap_del_irq_chip(struct device *dev, int irq,
775 struct regmap_irq_chip_data *data)
776{
777 int rc;
778
779 WARN_ON(irq != data->irq);
780 rc = devres_release(dev, devm_regmap_irq_chip_release,
781 devm_regmap_irq_chip_match, data);
782
783 if (rc != 0)
784 WARN_ON(rc);
785}
786EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
787
788/**
789 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
790 *
791 * Useful for drivers to request their own IRQs.
792 *
793 * @data: regmap_irq controller to operate on.
794 */
795int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
796{
797 WARN_ON(!data->irq_base);
798 return data->irq_base;
799}
800EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
801
802/**
803 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
804 *
805 * Useful for drivers to request their own IRQs.
806 *
807 * @data: regmap_irq controller to operate on.
808 * @irq: index of the interrupt requested in the chip IRQs
809 */
810int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
811{
812 /* Handle holes in the IRQ list */
813 if (!data->chip->irqs[irq].mask)
814 return -EINVAL;
815
816 return irq_create_mapping(data->domain, irq);
817}
818EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
819
820/**
821 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
822 *
823 * Useful for drivers to request their own IRQs and for integration
824 * with subsystems. For ease of integration NULL is accepted as a
825 * domain, allowing devices to just call this even if no domain is
826 * allocated.
827 *
828 * @data: regmap_irq controller to operate on.
829 */
830struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
831{
832 if (data)
833 return data->domain;
834 else
835 return NULL;
836}
837EXPORT_SYMBOL_GPL(regmap_irq_get_domain);