Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2006 by Ralf Baechle (ralf@linux-mips.org)
  7 */
  8#ifndef __ASM_BARRIER_H
  9#define __ASM_BARRIER_H
 10
 11#include <asm/addrspace.h>
 12
 13/*
 14 * read_barrier_depends - Flush all pending reads that subsequents reads
 15 * depend on.
 16 *
 17 * No data-dependent reads from memory-like regions are ever reordered
 18 * over this barrier.  All reads preceding this primitive are guaranteed
 19 * to access memory (but not necessarily other CPUs' caches) before any
 20 * reads following this primitive that depend on the data return by
 21 * any of the preceding reads.  This primitive is much lighter weight than
 22 * rmb() on most CPUs, and is never heavier weight than is
 23 * rmb().
 24 *
 25 * These ordering constraints are respected by both the local CPU
 26 * and the compiler.
 27 *
 28 * Ordering is not guaranteed by anything other than these primitives,
 29 * not even by data dependencies.  See the documentation for
 30 * memory_barrier() for examples and URLs to more information.
 31 *
 32 * For example, the following code would force ordering (the initial
 33 * value of "a" is zero, "b" is one, and "p" is "&a"):
 34 *
 35 * <programlisting>
 36 *	CPU 0				CPU 1
 37 *
 38 *	b = 2;
 39 *	memory_barrier();
 40 *	p = &b;				q = p;
 41 *					read_barrier_depends();
 42 *					d = *q;
 43 * </programlisting>
 44 *
 45 * because the read of "*q" depends on the read of "p" and these
 46 * two reads are separated by a read_barrier_depends().  However,
 47 * the following code, with the same initial values for "a" and "b":
 48 *
 49 * <programlisting>
 50 *	CPU 0				CPU 1
 51 *
 52 *	a = 2;
 53 *	memory_barrier();
 54 *	b = 3;				y = b;
 55 *					read_barrier_depends();
 56 *					x = a;
 57 * </programlisting>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58 *
 59 * does not enforce ordering, since there is no data dependency between
 60 * the read of "a" and the read of "b".  Therefore, on some CPUs, such
 61 * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
 62 * in cases like this where there are no data dependencies.
 
 
 
 
 
 
 
 
 
 63 */
 
 64
 65#define read_barrier_depends()		do { } while(0)
 66#define smp_read_barrier_depends()	do { } while(0)
 67
 68#ifdef CONFIG_CPU_HAS_SYNC
 69#define __sync()				\
 70	__asm__ __volatile__(			\
 71		".set	push\n\t"		\
 72		".set	noreorder\n\t"		\
 73		".set	mips2\n\t"		\
 74		"sync\n\t"			\
 75		".set	pop"			\
 76		: /* no output */		\
 77		: /* no input */		\
 78		: "memory")
 79#else
 80#define __sync()	do { } while(0)
 81#endif
 82
 83#define __fast_iob()				\
 84	__asm__ __volatile__(			\
 85		".set	push\n\t"		\
 86		".set	noreorder\n\t"		\
 87		"lw	$0,%0\n\t"		\
 88		"nop\n\t"			\
 89		".set	pop"			\
 90		: /* no output */		\
 91		: "m" (*(int *)CKSEG1)		\
 92		: "memory")
 93#ifdef CONFIG_CPU_CAVIUM_OCTEON
 94# define OCTEON_SYNCW_STR	".set push\n.set arch=octeon\nsyncw\nsyncw\n.set pop\n"
 95# define __syncw()	__asm__ __volatile__(OCTEON_SYNCW_STR : : : "memory")
 96
 97# define fast_wmb()	__syncw()
 98# define fast_rmb()	barrier()
 99# define fast_mb()	__sync()
100# define fast_iob()	do { } while (0)
101#else /* ! CONFIG_CPU_CAVIUM_OCTEON */
102# define fast_wmb()	__sync()
103# define fast_rmb()	__sync()
104# define fast_mb()	__sync()
105# ifdef CONFIG_SGI_IP28
106#  define fast_iob()				\
107	__asm__ __volatile__(			\
108		".set	push\n\t"		\
109		".set	noreorder\n\t"		\
110		"lw	$0,%0\n\t"		\
111		"sync\n\t"			\
112		"lw	$0,%0\n\t"		\
113		".set	pop"			\
114		: /* no output */		\
115		: "m" (*(int *)CKSEG1ADDR(0x1fa00004)) \
116		: "memory")
117# else
118#  define fast_iob()				\
119	do {					\
120		__sync();			\
121		__fast_iob();			\
122	} while (0)
123# endif
124#endif /* CONFIG_CPU_CAVIUM_OCTEON */
125
126#ifdef CONFIG_CPU_HAS_WB
127
128#include <asm/wbflush.h>
129
130#define wmb()		fast_wmb()
131#define rmb()		fast_rmb()
132#define mb()		wbflush()
133#define iob()		wbflush()
134
135#else /* !CONFIG_CPU_HAS_WB */
136
137#define wmb()		fast_wmb()
138#define rmb()		fast_rmb()
139#define mb()		fast_mb()
140#define iob()		fast_iob()
141
142#endif /* !CONFIG_CPU_HAS_WB */
143
144#if defined(CONFIG_WEAK_ORDERING) && defined(CONFIG_SMP)
 
 
 
145# ifdef CONFIG_CPU_CAVIUM_OCTEON
146#  define smp_mb()	__sync()
147#  define smp_rmb()	barrier()
148#  define smp_wmb()	__syncw()
149# else
150#  define smp_mb()	__asm__ __volatile__("sync" : : :"memory")
151#  define smp_rmb()	__asm__ __volatile__("sync" : : :"memory")
152#  define smp_wmb()	__asm__ __volatile__("sync" : : :"memory")
153# endif
154#else
155#define smp_mb()	barrier()
156#define smp_rmb()	barrier()
157#define smp_wmb()	barrier()
158#endif
159
160#if defined(CONFIG_WEAK_REORDERING_BEYOND_LLSC) && defined(CONFIG_SMP)
161#define __WEAK_LLSC_MB		"	sync	\n"
162#else
163#define __WEAK_LLSC_MB		"		\n"
164#endif
165
166#define set_mb(var, value) \
167	do { var = value; smp_mb(); } while (0)
168
169#define smp_llsc_mb()	__asm__ __volatile__(__WEAK_LLSC_MB : : :"memory")
170
171#ifdef CONFIG_CPU_CAVIUM_OCTEON
172#define smp_mb__before_llsc() smp_wmb()
 
173/* Cause previous writes to become visible on all CPUs as soon as possible */
174#define nudge_writes() __asm__ __volatile__(".set push\n\t"		\
175					    ".set arch=octeon\n\t"	\
176					    "syncw\n\t"			\
177					    ".set pop" : : : "memory")
178#else
179#define smp_mb__before_llsc() smp_llsc_mb()
 
180#define nudge_writes() mb()
181#endif
182
183#define smp_store_release(p, v)						\
184do {									\
185	compiletime_assert_atomic_type(*p);				\
186	smp_mb();							\
187	ACCESS_ONCE(*p) = (v);						\
188} while (0)
189
190#define smp_load_acquire(p)						\
191({									\
192	typeof(*p) ___p1 = ACCESS_ONCE(*p);				\
193	compiletime_assert_atomic_type(*p);				\
194	smp_mb();							\
195	___p1;								\
196})
197
198#endif /* __ASM_BARRIER_H */
v4.10.11
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2006 by Ralf Baechle (ralf@linux-mips.org)
  7 */
  8#ifndef __ASM_BARRIER_H
  9#define __ASM_BARRIER_H
 10
 11#include <asm/addrspace.h>
 12
 13/*
 14 * Sync types defined by the MIPS architecture (document MD00087 table 6.5)
 15 * These values are used with the sync instruction to perform memory barriers.
 16 * Types of ordering guarantees available through the SYNC instruction:
 17 * - Completion Barriers
 18 * - Ordering Barriers
 19 * As compared to the completion barrier, the ordering barrier is a
 20 * lighter-weight operation as it does not require the specified instructions
 21 * before the SYNC to be already completed. Instead it only requires that those
 22 * specified instructions which are subsequent to the SYNC in the instruction
 23 * stream are never re-ordered for processing ahead of the specified
 24 * instructions which are before the SYNC in the instruction stream.
 25 * This potentially reduces how many cycles the barrier instruction must stall
 26 * before it completes.
 27 * Implementations that do not use any of the non-zero values of stype to define
 28 * different barriers, such as ordering barriers, must make those stype values
 29 * act the same as stype zero.
 30 */
 31
 32/*
 33 * Completion barriers:
 34 * - Every synchronizable specified memory instruction (loads or stores or both)
 35 *   that occurs in the instruction stream before the SYNC instruction must be
 36 *   already globally performed before any synchronizable specified memory
 37 *   instructions that occur after the SYNC are allowed to be performed, with
 38 *   respect to any other processor or coherent I/O module.
 39 *
 40 * - The barrier does not guarantee the order in which instruction fetches are
 41 *   performed.
 42 *
 43 * - A stype value of zero will always be defined such that it performs the most
 44 *   complete set of synchronization operations that are defined.This means
 45 *   stype zero always does a completion barrier that affects both loads and
 46 *   stores preceding the SYNC instruction and both loads and stores that are
 47 *   subsequent to the SYNC instruction. Non-zero values of stype may be defined
 48 *   by the architecture or specific implementations to perform synchronization
 49 *   behaviors that are less complete than that of stype zero. If an
 50 *   implementation does not use one of these non-zero values to define a
 51 *   different synchronization behavior, then that non-zero value of stype must
 52 *   act the same as stype zero completion barrier. This allows software written
 53 *   for an implementation with a lighter-weight barrier to work on another
 54 *   implementation which only implements the stype zero completion barrier.
 55 *
 56 * - A completion barrier is required, potentially in conjunction with SSNOP (in
 57 *   Release 1 of the Architecture) or EHB (in Release 2 of the Architecture),
 58 *   to guarantee that memory reference results are visible across operating
 59 *   mode changes. For example, a completion barrier is required on some
 60 *   implementations on entry to and exit from Debug Mode to guarantee that
 61 *   memory effects are handled correctly.
 62 */
 63
 64/*
 65 * stype 0 - A completion barrier that affects preceding loads and stores and
 66 * subsequent loads and stores.
 67 * Older instructions which must reach the load/store ordering point before the
 68 * SYNC instruction completes: Loads, Stores
 69 * Younger instructions which must reach the load/store ordering point only
 70 * after the SYNC instruction completes: Loads, Stores
 71 * Older instructions which must be globally performed when the SYNC instruction
 72 * completes: Loads, Stores
 73 */
 74#define STYPE_SYNC 0x0
 75
 76/*
 77 * Ordering barriers:
 78 * - Every synchronizable specified memory instruction (loads or stores or both)
 79 *   that occurs in the instruction stream before the SYNC instruction must
 80 *   reach a stage in the load/store datapath after which no instruction
 81 *   re-ordering is possible before any synchronizable specified memory
 82 *   instruction which occurs after the SYNC instruction in the instruction
 83 *   stream reaches the same stage in the load/store datapath.
 84 *
 85 * - If any memory instruction before the SYNC instruction in program order,
 86 *   generates a memory request to the external memory and any memory
 87 *   instruction after the SYNC instruction in program order also generates a
 88 *   memory request to external memory, the memory request belonging to the
 89 *   older instruction must be globally performed before the time the memory
 90 *   request belonging to the younger instruction is globally performed.
 91 *
 92 * - The barrier does not guarantee the order in which instruction fetches are
 93 *   performed.
 94 */
 95
 96/*
 97 * stype 0x10 - An ordering barrier that affects preceding loads and stores and
 98 * subsequent loads and stores.
 99 * Older instructions which must reach the load/store ordering point before the
100 * SYNC instruction completes: Loads, Stores
101 * Younger instructions which must reach the load/store ordering point only
102 * after the SYNC instruction completes: Loads, Stores
103 * Older instructions which must be globally performed when the SYNC instruction
104 * completes: N/A
105 */
106#define STYPE_SYNC_MB 0x10
107
 
 
108
109#ifdef CONFIG_CPU_HAS_SYNC
110#define __sync()				\
111	__asm__ __volatile__(			\
112		".set	push\n\t"		\
113		".set	noreorder\n\t"		\
114		".set	mips2\n\t"		\
115		"sync\n\t"			\
116		".set	pop"			\
117		: /* no output */		\
118		: /* no input */		\
119		: "memory")
120#else
121#define __sync()	do { } while(0)
122#endif
123
124#define __fast_iob()				\
125	__asm__ __volatile__(			\
126		".set	push\n\t"		\
127		".set	noreorder\n\t"		\
128		"lw	$0,%0\n\t"		\
129		"nop\n\t"			\
130		".set	pop"			\
131		: /* no output */		\
132		: "m" (*(int *)CKSEG1)		\
133		: "memory")
134#ifdef CONFIG_CPU_CAVIUM_OCTEON
135# define OCTEON_SYNCW_STR	".set push\n.set arch=octeon\nsyncw\nsyncw\n.set pop\n"
136# define __syncw()	__asm__ __volatile__(OCTEON_SYNCW_STR : : : "memory")
137
138# define fast_wmb()	__syncw()
139# define fast_rmb()	barrier()
140# define fast_mb()	__sync()
141# define fast_iob()	do { } while (0)
142#else /* ! CONFIG_CPU_CAVIUM_OCTEON */
143# define fast_wmb()	__sync()
144# define fast_rmb()	__sync()
145# define fast_mb()	__sync()
146# ifdef CONFIG_SGI_IP28
147#  define fast_iob()				\
148	__asm__ __volatile__(			\
149		".set	push\n\t"		\
150		".set	noreorder\n\t"		\
151		"lw	$0,%0\n\t"		\
152		"sync\n\t"			\
153		"lw	$0,%0\n\t"		\
154		".set	pop"			\
155		: /* no output */		\
156		: "m" (*(int *)CKSEG1ADDR(0x1fa00004)) \
157		: "memory")
158# else
159#  define fast_iob()				\
160	do {					\
161		__sync();			\
162		__fast_iob();			\
163	} while (0)
164# endif
165#endif /* CONFIG_CPU_CAVIUM_OCTEON */
166
167#ifdef CONFIG_CPU_HAS_WB
168
169#include <asm/wbflush.h>
170
 
 
171#define mb()		wbflush()
172#define iob()		wbflush()
173
174#else /* !CONFIG_CPU_HAS_WB */
175
 
 
176#define mb()		fast_mb()
177#define iob()		fast_iob()
178
179#endif /* !CONFIG_CPU_HAS_WB */
180
181#define wmb()		fast_wmb()
182#define rmb()		fast_rmb()
183
184#if defined(CONFIG_WEAK_ORDERING)
185# ifdef CONFIG_CPU_CAVIUM_OCTEON
186#  define __smp_mb()	__sync()
187#  define __smp_rmb()	barrier()
188#  define __smp_wmb()	__syncw()
189# else
190#  define __smp_mb()	__asm__ __volatile__("sync" : : :"memory")
191#  define __smp_rmb()	__asm__ __volatile__("sync" : : :"memory")
192#  define __smp_wmb()	__asm__ __volatile__("sync" : : :"memory")
193# endif
194#else
195#define __smp_mb()	barrier()
196#define __smp_rmb()	barrier()
197#define __smp_wmb()	barrier()
198#endif
199
200#if defined(CONFIG_WEAK_REORDERING_BEYOND_LLSC) && defined(CONFIG_SMP)
201#define __WEAK_LLSC_MB		"	sync	\n"
202#else
203#define __WEAK_LLSC_MB		"		\n"
204#endif
205
 
 
 
206#define smp_llsc_mb()	__asm__ __volatile__(__WEAK_LLSC_MB : : :"memory")
207
208#ifdef CONFIG_CPU_CAVIUM_OCTEON
209#define smp_mb__before_llsc() smp_wmb()
210#define __smp_mb__before_llsc() __smp_wmb()
211/* Cause previous writes to become visible on all CPUs as soon as possible */
212#define nudge_writes() __asm__ __volatile__(".set push\n\t"		\
213					    ".set arch=octeon\n\t"	\
214					    "syncw\n\t"			\
215					    ".set pop" : : : "memory")
216#else
217#define smp_mb__before_llsc() smp_llsc_mb()
218#define __smp_mb__before_llsc() smp_llsc_mb()
219#define nudge_writes() mb()
220#endif
221
222#define __smp_mb__before_atomic()	__smp_mb__before_llsc()
223#define __smp_mb__after_atomic()	smp_llsc_mb()
224
225#include <asm-generic/barrier.h>
 
 
 
 
 
 
 
 
 
 
226
227#endif /* __ASM_BARRIER_H */