Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
  3 *
  4 * Created by:	Nicolas Pitre, March 2012
  5 * Copyright:	(C) 2012-2013  Linaro Limited
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11
 12#include <linux/atomic.h>
 13#include <linux/init.h>
 14#include <linux/kernel.h>
 15#include <linux/module.h>
 16#include <linux/sched.h>
 17#include <linux/interrupt.h>
 18#include <linux/cpu_pm.h>
 19#include <linux/cpu.h>
 20#include <linux/cpumask.h>
 21#include <linux/kthread.h>
 22#include <linux/wait.h>
 23#include <linux/time.h>
 24#include <linux/clockchips.h>
 25#include <linux/hrtimer.h>
 26#include <linux/tick.h>
 27#include <linux/notifier.h>
 28#include <linux/mm.h>
 29#include <linux/mutex.h>
 30#include <linux/smp.h>
 31#include <linux/spinlock.h>
 32#include <linux/string.h>
 33#include <linux/sysfs.h>
 34#include <linux/irqchip/arm-gic.h>
 35#include <linux/moduleparam.h>
 36
 37#include <asm/smp_plat.h>
 38#include <asm/cputype.h>
 39#include <asm/suspend.h>
 40#include <asm/mcpm.h>
 41#include <asm/bL_switcher.h>
 42
 43#define CREATE_TRACE_POINTS
 44#include <trace/events/power_cpu_migrate.h>
 45
 46
 47/*
 48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
 49 * __attribute_const__ and we don't want the compiler to assume any
 50 * constness here as the value _does_ change along some code paths.
 51 */
 52
 53static int read_mpidr(void)
 54{
 55	unsigned int id;
 56	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
 57	return id & MPIDR_HWID_BITMASK;
 58}
 59
 60/*
 61 * Get a global nanosecond time stamp for tracing.
 62 */
 63static s64 get_ns(void)
 64{
 65	struct timespec ts;
 66	getnstimeofday(&ts);
 67	return timespec_to_ns(&ts);
 68}
 69
 70/*
 71 * bL switcher core code.
 72 */
 73
 74static void bL_do_switch(void *_arg)
 75{
 76	unsigned ib_mpidr, ib_cpu, ib_cluster;
 77	long volatile handshake, **handshake_ptr = _arg;
 78
 79	pr_debug("%s\n", __func__);
 80
 81	ib_mpidr = cpu_logical_map(smp_processor_id());
 82	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
 83	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
 84
 85	/* Advertise our handshake location */
 86	if (handshake_ptr) {
 87		handshake = 0;
 88		*handshake_ptr = &handshake;
 89	} else
 90		handshake = -1;
 91
 92	/*
 93	 * Our state has been saved at this point.  Let's release our
 94	 * inbound CPU.
 95	 */
 96	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
 97	sev();
 98
 99	/*
100	 * From this point, we must assume that our counterpart CPU might
101	 * have taken over in its parallel world already, as if execution
102	 * just returned from cpu_suspend().  It is therefore important to
103	 * be very careful not to make any change the other guy is not
104	 * expecting.  This is why we need stack isolation.
105	 *
106	 * Fancy under cover tasks could be performed here.  For now
107	 * we have none.
108	 */
109
110	/*
111	 * Let's wait until our inbound is alive.
112	 */
113	while (!handshake) {
114		wfe();
115		smp_mb();
116	}
117
118	/* Let's put ourself down. */
119	mcpm_cpu_power_down();
120
121	/* should never get here */
122	BUG();
123}
124
125/*
126 * Stack isolation.  To ensure 'current' remains valid, we just use another
127 * piece of our thread's stack space which should be fairly lightly used.
128 * The selected area starts just above the thread_info structure located
129 * at the very bottom of the stack, aligned to a cache line, and indexed
130 * with the cluster number.
131 */
132#define STACK_SIZE 512
133extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
134static int bL_switchpoint(unsigned long _arg)
135{
136	unsigned int mpidr = read_mpidr();
137	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
138	void *stack = current_thread_info() + 1;
139	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
140	stack += clusterid * STACK_SIZE + STACK_SIZE;
141	call_with_stack(bL_do_switch, (void *)_arg, stack);
142	BUG();
143}
144
145/*
146 * Generic switcher interface
147 */
148
149static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
150static int bL_switcher_cpu_pairing[NR_CPUS];
151
152/*
153 * bL_switch_to - Switch to a specific cluster for the current CPU
154 * @new_cluster_id: the ID of the cluster to switch to.
155 *
156 * This function must be called on the CPU to be switched.
157 * Returns 0 on success, else a negative status code.
158 */
159static int bL_switch_to(unsigned int new_cluster_id)
160{
161	unsigned int mpidr, this_cpu, that_cpu;
162	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
163	struct completion inbound_alive;
164	struct tick_device *tdev;
165	enum clock_event_mode tdev_mode;
166	long volatile *handshake_ptr;
167	int ipi_nr, ret;
168
169	this_cpu = smp_processor_id();
170	ob_mpidr = read_mpidr();
171	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
172	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
173	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
174
175	if (new_cluster_id == ob_cluster)
176		return 0;
177
178	that_cpu = bL_switcher_cpu_pairing[this_cpu];
179	ib_mpidr = cpu_logical_map(that_cpu);
180	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
181	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
182
183	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
184		 this_cpu, ob_mpidr, ib_mpidr);
185
186	this_cpu = smp_processor_id();
187
188	/* Close the gate for our entry vectors */
189	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
190	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
191
192	/* Install our "inbound alive" notifier. */
193	init_completion(&inbound_alive);
194	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
195	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
196	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
197
198	/*
199	 * Let's wake up the inbound CPU now in case it requires some delay
200	 * to come online, but leave it gated in our entry vector code.
201	 */
202	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
203	if (ret) {
204		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
205		return ret;
206	}
207
208	/*
209	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
210	 * in a possible WFI, such as in bL_power_down().
211	 */
212	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
213
214	/*
215	 * Wait for the inbound to come up.  This allows for other
216	 * tasks to be scheduled in the mean time.
217	 */
218	wait_for_completion(&inbound_alive);
219	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
220
221	/*
222	 * From this point we are entering the switch critical zone
223	 * and can't take any interrupts anymore.
224	 */
225	local_irq_disable();
226	local_fiq_disable();
227	trace_cpu_migrate_begin(get_ns(), ob_mpidr);
228
229	/* redirect GIC's SGIs to our counterpart */
230	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
231
232	tdev = tick_get_device(this_cpu);
233	if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu)))
234		tdev = NULL;
235	if (tdev) {
236		tdev_mode = tdev->evtdev->mode;
237		clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
238	}
239
240	ret = cpu_pm_enter();
241
242	/* we can not tolerate errors at this point */
243	if (ret)
244		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
245
246	/* Swap the physical CPUs in the logical map for this logical CPU. */
247	cpu_logical_map(this_cpu) = ib_mpidr;
248	cpu_logical_map(that_cpu) = ob_mpidr;
249
250	/* Let's do the actual CPU switch. */
251	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
252	if (ret > 0)
253		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
254
255	/* We are executing on the inbound CPU at this point */
256	mpidr = read_mpidr();
257	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
258	BUG_ON(mpidr != ib_mpidr);
259
260	mcpm_cpu_powered_up();
261
262	ret = cpu_pm_exit();
263
264	if (tdev) {
265		clockevents_set_mode(tdev->evtdev, tdev_mode);
266		clockevents_program_event(tdev->evtdev,
267					  tdev->evtdev->next_event, 1);
268	}
269
270	trace_cpu_migrate_finish(get_ns(), ib_mpidr);
271	local_fiq_enable();
272	local_irq_enable();
273
274	*handshake_ptr = 1;
275	dsb_sev();
276
277	if (ret)
278		pr_err("%s exiting with error %d\n", __func__, ret);
279	return ret;
280}
281
282struct bL_thread {
283	spinlock_t lock;
284	struct task_struct *task;
285	wait_queue_head_t wq;
286	int wanted_cluster;
287	struct completion started;
288	bL_switch_completion_handler completer;
289	void *completer_cookie;
290};
291
292static struct bL_thread bL_threads[NR_CPUS];
293
294static int bL_switcher_thread(void *arg)
295{
296	struct bL_thread *t = arg;
297	struct sched_param param = { .sched_priority = 1 };
298	int cluster;
299	bL_switch_completion_handler completer;
300	void *completer_cookie;
301
302	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
303	complete(&t->started);
304
305	do {
306		if (signal_pending(current))
307			flush_signals(current);
308		wait_event_interruptible(t->wq,
309				t->wanted_cluster != -1 ||
310				kthread_should_stop());
311
312		spin_lock(&t->lock);
313		cluster = t->wanted_cluster;
314		completer = t->completer;
315		completer_cookie = t->completer_cookie;
316		t->wanted_cluster = -1;
317		t->completer = NULL;
318		spin_unlock(&t->lock);
319
320		if (cluster != -1) {
321			bL_switch_to(cluster);
322
323			if (completer)
324				completer(completer_cookie);
325		}
326	} while (!kthread_should_stop());
327
328	return 0;
329}
330
331static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
332{
333	struct task_struct *task;
334
335	task = kthread_create_on_node(bL_switcher_thread, arg,
336				      cpu_to_node(cpu), "kswitcher_%d", cpu);
337	if (!IS_ERR(task)) {
338		kthread_bind(task, cpu);
339		wake_up_process(task);
340	} else
341		pr_err("%s failed for CPU %d\n", __func__, cpu);
342	return task;
343}
344
345/*
346 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
347 *      with completion notification via a callback
348 *
349 * @cpu: the CPU to switch
350 * @new_cluster_id: the ID of the cluster to switch to.
351 * @completer: switch completion callback.  if non-NULL,
352 *	@completer(@completer_cookie) will be called on completion of
353 *	the switch, in non-atomic context.
354 * @completer_cookie: opaque context argument for @completer.
355 *
356 * This function causes a cluster switch on the given CPU by waking up
357 * the appropriate switcher thread.  This function may or may not return
358 * before the switch has occurred.
359 *
360 * If a @completer callback function is supplied, it will be called when
361 * the switch is complete.  This can be used to determine asynchronously
362 * when the switch is complete, regardless of when bL_switch_request()
363 * returns.  When @completer is supplied, no new switch request is permitted
364 * for the affected CPU until after the switch is complete, and @completer
365 * has returned.
366 */
367int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
368			 bL_switch_completion_handler completer,
369			 void *completer_cookie)
370{
371	struct bL_thread *t;
372
373	if (cpu >= ARRAY_SIZE(bL_threads)) {
374		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
375		return -EINVAL;
376	}
377
378	t = &bL_threads[cpu];
379
380	if (IS_ERR(t->task))
381		return PTR_ERR(t->task);
382	if (!t->task)
383		return -ESRCH;
384
385	spin_lock(&t->lock);
386	if (t->completer) {
387		spin_unlock(&t->lock);
388		return -EBUSY;
389	}
390	t->completer = completer;
391	t->completer_cookie = completer_cookie;
392	t->wanted_cluster = new_cluster_id;
393	spin_unlock(&t->lock);
394	wake_up(&t->wq);
395	return 0;
396}
397EXPORT_SYMBOL_GPL(bL_switch_request_cb);
398
399/*
400 * Activation and configuration code.
401 */
402
403static DEFINE_MUTEX(bL_switcher_activation_lock);
404static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
405static unsigned int bL_switcher_active;
406static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
407static cpumask_t bL_switcher_removed_logical_cpus;
408
409int bL_switcher_register_notifier(struct notifier_block *nb)
410{
411	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
412}
413EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
414
415int bL_switcher_unregister_notifier(struct notifier_block *nb)
416{
417	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
418}
419EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
420
421static int bL_activation_notify(unsigned long val)
422{
423	int ret;
424
425	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
426	if (ret & NOTIFY_STOP_MASK)
427		pr_err("%s: notifier chain failed with status 0x%x\n",
428			__func__, ret);
429	return notifier_to_errno(ret);
430}
431
432static void bL_switcher_restore_cpus(void)
433{
434	int i;
435
436	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
437		struct device *cpu_dev = get_cpu_device(i);
438		int ret = device_online(cpu_dev);
439		if (ret)
440			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
441	}
442}
443
444static int bL_switcher_halve_cpus(void)
445{
446	int i, j, cluster_0, gic_id, ret;
447	unsigned int cpu, cluster, mask;
448	cpumask_t available_cpus;
449
450	/* First pass to validate what we have */
451	mask = 0;
452	for_each_online_cpu(i) {
453		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
454		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
455		if (cluster >= 2) {
456			pr_err("%s: only dual cluster systems are supported\n", __func__);
457			return -EINVAL;
458		}
459		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
460			return -EINVAL;
461		mask |= (1 << cluster);
462	}
463	if (mask != 3) {
464		pr_err("%s: no CPU pairing possible\n", __func__);
465		return -EINVAL;
466	}
467
468	/*
469	 * Now let's do the pairing.  We match each CPU with another CPU
470	 * from a different cluster.  To get a uniform scheduling behavior
471	 * without fiddling with CPU topology and compute capacity data,
472	 * we'll use logical CPUs initially belonging to the same cluster.
473	 */
474	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
475	cpumask_copy(&available_cpus, cpu_online_mask);
476	cluster_0 = -1;
477	for_each_cpu(i, &available_cpus) {
478		int match = -1;
479		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
480		if (cluster_0 == -1)
481			cluster_0 = cluster;
482		if (cluster != cluster_0)
483			continue;
484		cpumask_clear_cpu(i, &available_cpus);
485		for_each_cpu(j, &available_cpus) {
486			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
487			/*
488			 * Let's remember the last match to create "odd"
489			 * pairings on purpose in order for other code not
490			 * to assume any relation between physical and
491			 * logical CPU numbers.
492			 */
493			if (cluster != cluster_0)
494				match = j;
495		}
496		if (match != -1) {
497			bL_switcher_cpu_pairing[i] = match;
498			cpumask_clear_cpu(match, &available_cpus);
499			pr_info("CPU%d paired with CPU%d\n", i, match);
500		}
501	}
502
503	/*
504	 * Now we disable the unwanted CPUs i.e. everything that has no
505	 * pairing information (that includes the pairing counterparts).
506	 */
507	cpumask_clear(&bL_switcher_removed_logical_cpus);
508	for_each_online_cpu(i) {
509		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
510		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
511
512		/* Let's take note of the GIC ID for this CPU */
513		gic_id = gic_get_cpu_id(i);
514		if (gic_id < 0) {
515			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
516			bL_switcher_restore_cpus();
517			return -EINVAL;
518		}
519		bL_gic_id[cpu][cluster] = gic_id;
520		pr_info("GIC ID for CPU %u cluster %u is %u\n",
521			cpu, cluster, gic_id);
522
523		if (bL_switcher_cpu_pairing[i] != -1) {
524			bL_switcher_cpu_original_cluster[i] = cluster;
525			continue;
526		}
527
528		ret = device_offline(get_cpu_device(i));
529		if (ret) {
530			bL_switcher_restore_cpus();
531			return ret;
532		}
533		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
534	}
535
536	return 0;
537}
538
539/* Determine the logical CPU a given physical CPU is grouped on. */
540int bL_switcher_get_logical_index(u32 mpidr)
541{
542	int cpu;
543
544	if (!bL_switcher_active)
545		return -EUNATCH;
546
547	mpidr &= MPIDR_HWID_BITMASK;
548	for_each_online_cpu(cpu) {
549		int pairing = bL_switcher_cpu_pairing[cpu];
550		if (pairing == -1)
551			continue;
552		if ((mpidr == cpu_logical_map(cpu)) ||
553		    (mpidr == cpu_logical_map(pairing)))
554			return cpu;
555	}
556	return -EINVAL;
557}
558
559static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
560{
561	trace_cpu_migrate_current(get_ns(), read_mpidr());
562}
563
564int bL_switcher_trace_trigger(void)
565{
566	int ret;
567
568	preempt_disable();
569
570	bL_switcher_trace_trigger_cpu(NULL);
571	ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
572
573	preempt_enable();
574
575	return ret;
576}
577EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
578
579static int bL_switcher_enable(void)
580{
581	int cpu, ret;
582
583	mutex_lock(&bL_switcher_activation_lock);
584	lock_device_hotplug();
585	if (bL_switcher_active) {
586		unlock_device_hotplug();
587		mutex_unlock(&bL_switcher_activation_lock);
588		return 0;
589	}
590
591	pr_info("big.LITTLE switcher initializing\n");
592
593	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
594	if (ret)
595		goto error;
596
597	ret = bL_switcher_halve_cpus();
598	if (ret)
599		goto error;
600
601	bL_switcher_trace_trigger();
602
603	for_each_online_cpu(cpu) {
604		struct bL_thread *t = &bL_threads[cpu];
605		spin_lock_init(&t->lock);
606		init_waitqueue_head(&t->wq);
607		init_completion(&t->started);
608		t->wanted_cluster = -1;
609		t->task = bL_switcher_thread_create(cpu, t);
610	}
611
612	bL_switcher_active = 1;
613	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
614	pr_info("big.LITTLE switcher initialized\n");
615	goto out;
616
617error:
618	pr_warn("big.LITTLE switcher initialization failed\n");
619	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
620
621out:
622	unlock_device_hotplug();
623	mutex_unlock(&bL_switcher_activation_lock);
624	return ret;
625}
626
627#ifdef CONFIG_SYSFS
628
629static void bL_switcher_disable(void)
630{
631	unsigned int cpu, cluster;
632	struct bL_thread *t;
633	struct task_struct *task;
634
635	mutex_lock(&bL_switcher_activation_lock);
636	lock_device_hotplug();
637
638	if (!bL_switcher_active)
639		goto out;
640
641	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
642		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
643		goto out;
644	}
645
646	bL_switcher_active = 0;
647
648	/*
649	 * To deactivate the switcher, we must shut down the switcher
650	 * threads to prevent any other requests from being accepted.
651	 * Then, if the final cluster for given logical CPU is not the
652	 * same as the original one, we'll recreate a switcher thread
653	 * just for the purpose of switching the CPU back without any
654	 * possibility for interference from external requests.
655	 */
656	for_each_online_cpu(cpu) {
657		t = &bL_threads[cpu];
658		task = t->task;
659		t->task = NULL;
660		if (!task || IS_ERR(task))
661			continue;
662		kthread_stop(task);
663		/* no more switch may happen on this CPU at this point */
664		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
665		if (cluster == bL_switcher_cpu_original_cluster[cpu])
666			continue;
667		init_completion(&t->started);
668		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
669		task = bL_switcher_thread_create(cpu, t);
670		if (!IS_ERR(task)) {
671			wait_for_completion(&t->started);
672			kthread_stop(task);
673			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
674			if (cluster == bL_switcher_cpu_original_cluster[cpu])
675				continue;
676		}
677		/* If execution gets here, we're in trouble. */
678		pr_crit("%s: unable to restore original cluster for CPU %d\n",
679			__func__, cpu);
680		pr_crit("%s: CPU %d can't be restored\n",
681			__func__, bL_switcher_cpu_pairing[cpu]);
682		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
683				  &bL_switcher_removed_logical_cpus);
684	}
685
686	bL_switcher_restore_cpus();
687	bL_switcher_trace_trigger();
688
689	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
690
691out:
692	unlock_device_hotplug();
693	mutex_unlock(&bL_switcher_activation_lock);
694}
695
696static ssize_t bL_switcher_active_show(struct kobject *kobj,
697		struct kobj_attribute *attr, char *buf)
698{
699	return sprintf(buf, "%u\n", bL_switcher_active);
700}
701
702static ssize_t bL_switcher_active_store(struct kobject *kobj,
703		struct kobj_attribute *attr, const char *buf, size_t count)
704{
705	int ret;
706
707	switch (buf[0]) {
708	case '0':
709		bL_switcher_disable();
710		ret = 0;
711		break;
712	case '1':
713		ret = bL_switcher_enable();
714		break;
715	default:
716		ret = -EINVAL;
717	}
718
719	return (ret >= 0) ? count : ret;
720}
721
722static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
723		struct kobj_attribute *attr, const char *buf, size_t count)
724{
725	int ret = bL_switcher_trace_trigger();
726
727	return ret ? ret : count;
728}
729
730static struct kobj_attribute bL_switcher_active_attr =
731	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
732
733static struct kobj_attribute bL_switcher_trace_trigger_attr =
734	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
735
736static struct attribute *bL_switcher_attrs[] = {
737	&bL_switcher_active_attr.attr,
738	&bL_switcher_trace_trigger_attr.attr,
739	NULL,
740};
741
742static struct attribute_group bL_switcher_attr_group = {
743	.attrs = bL_switcher_attrs,
744};
745
746static struct kobject *bL_switcher_kobj;
747
748static int __init bL_switcher_sysfs_init(void)
749{
750	int ret;
751
752	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
753	if (!bL_switcher_kobj)
754		return -ENOMEM;
755	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
756	if (ret)
757		kobject_put(bL_switcher_kobj);
758	return ret;
759}
760
761#endif  /* CONFIG_SYSFS */
762
763bool bL_switcher_get_enabled(void)
764{
765	mutex_lock(&bL_switcher_activation_lock);
766
767	return bL_switcher_active;
768}
769EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
770
771void bL_switcher_put_enabled(void)
772{
773	mutex_unlock(&bL_switcher_activation_lock);
774}
775EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
776
777/*
778 * Veto any CPU hotplug operation on those CPUs we've removed
779 * while the switcher is active.
780 * We're just not ready to deal with that given the trickery involved.
781 */
782static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
783					unsigned long action, void *hcpu)
784{
785	if (bL_switcher_active) {
786		int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
787		switch (action & 0xf) {
788		case CPU_UP_PREPARE:
789		case CPU_DOWN_PREPARE:
790			if (pairing == -1)
791				return NOTIFY_BAD;
792		}
793	}
794	return NOTIFY_DONE;
795}
796
797static bool no_bL_switcher;
798core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
799
800static int __init bL_switcher_init(void)
801{
802	int ret;
803
804	if (!mcpm_is_available())
805		return -ENODEV;
806
807	cpu_notifier(bL_switcher_hotplug_callback, 0);
808
 
 
 
 
 
 
 
809	if (!no_bL_switcher) {
810		ret = bL_switcher_enable();
811		if (ret)
812			return ret;
813	}
814
815#ifdef CONFIG_SYSFS
816	ret = bL_switcher_sysfs_init();
817	if (ret)
818		pr_err("%s: unable to create sysfs entry\n", __func__);
819#endif
820
821	return 0;
822}
823
824late_initcall(bL_switcher_init);
v4.10.11
  1/*
  2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
  3 *
  4 * Created by:	Nicolas Pitre, March 2012
  5 * Copyright:	(C) 2012-2013  Linaro Limited
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11
 12#include <linux/atomic.h>
 13#include <linux/init.h>
 14#include <linux/kernel.h>
 15#include <linux/module.h>
 16#include <linux/sched.h>
 17#include <linux/interrupt.h>
 18#include <linux/cpu_pm.h>
 19#include <linux/cpu.h>
 20#include <linux/cpumask.h>
 21#include <linux/kthread.h>
 22#include <linux/wait.h>
 23#include <linux/time.h>
 24#include <linux/clockchips.h>
 25#include <linux/hrtimer.h>
 26#include <linux/tick.h>
 27#include <linux/notifier.h>
 28#include <linux/mm.h>
 29#include <linux/mutex.h>
 30#include <linux/smp.h>
 31#include <linux/spinlock.h>
 32#include <linux/string.h>
 33#include <linux/sysfs.h>
 34#include <linux/irqchip/arm-gic.h>
 35#include <linux/moduleparam.h>
 36
 37#include <asm/smp_plat.h>
 38#include <asm/cputype.h>
 39#include <asm/suspend.h>
 40#include <asm/mcpm.h>
 41#include <asm/bL_switcher.h>
 42
 43#define CREATE_TRACE_POINTS
 44#include <trace/events/power_cpu_migrate.h>
 45
 46
 47/*
 48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
 49 * __attribute_const__ and we don't want the compiler to assume any
 50 * constness here as the value _does_ change along some code paths.
 51 */
 52
 53static int read_mpidr(void)
 54{
 55	unsigned int id;
 56	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
 57	return id & MPIDR_HWID_BITMASK;
 58}
 59
 60/*
 
 
 
 
 
 
 
 
 
 
 61 * bL switcher core code.
 62 */
 63
 64static void bL_do_switch(void *_arg)
 65{
 66	unsigned ib_mpidr, ib_cpu, ib_cluster;
 67	long volatile handshake, **handshake_ptr = _arg;
 68
 69	pr_debug("%s\n", __func__);
 70
 71	ib_mpidr = cpu_logical_map(smp_processor_id());
 72	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
 73	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
 74
 75	/* Advertise our handshake location */
 76	if (handshake_ptr) {
 77		handshake = 0;
 78		*handshake_ptr = &handshake;
 79	} else
 80		handshake = -1;
 81
 82	/*
 83	 * Our state has been saved at this point.  Let's release our
 84	 * inbound CPU.
 85	 */
 86	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
 87	sev();
 88
 89	/*
 90	 * From this point, we must assume that our counterpart CPU might
 91	 * have taken over in its parallel world already, as if execution
 92	 * just returned from cpu_suspend().  It is therefore important to
 93	 * be very careful not to make any change the other guy is not
 94	 * expecting.  This is why we need stack isolation.
 95	 *
 96	 * Fancy under cover tasks could be performed here.  For now
 97	 * we have none.
 98	 */
 99
100	/*
101	 * Let's wait until our inbound is alive.
102	 */
103	while (!handshake) {
104		wfe();
105		smp_mb();
106	}
107
108	/* Let's put ourself down. */
109	mcpm_cpu_power_down();
110
111	/* should never get here */
112	BUG();
113}
114
115/*
116 * Stack isolation.  To ensure 'current' remains valid, we just use another
117 * piece of our thread's stack space which should be fairly lightly used.
118 * The selected area starts just above the thread_info structure located
119 * at the very bottom of the stack, aligned to a cache line, and indexed
120 * with the cluster number.
121 */
122#define STACK_SIZE 512
123extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
124static int bL_switchpoint(unsigned long _arg)
125{
126	unsigned int mpidr = read_mpidr();
127	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
128	void *stack = current_thread_info() + 1;
129	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
130	stack += clusterid * STACK_SIZE + STACK_SIZE;
131	call_with_stack(bL_do_switch, (void *)_arg, stack);
132	BUG();
133}
134
135/*
136 * Generic switcher interface
137 */
138
139static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
140static int bL_switcher_cpu_pairing[NR_CPUS];
141
142/*
143 * bL_switch_to - Switch to a specific cluster for the current CPU
144 * @new_cluster_id: the ID of the cluster to switch to.
145 *
146 * This function must be called on the CPU to be switched.
147 * Returns 0 on success, else a negative status code.
148 */
149static int bL_switch_to(unsigned int new_cluster_id)
150{
151	unsigned int mpidr, this_cpu, that_cpu;
152	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
153	struct completion inbound_alive;
 
 
154	long volatile *handshake_ptr;
155	int ipi_nr, ret;
156
157	this_cpu = smp_processor_id();
158	ob_mpidr = read_mpidr();
159	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
160	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
161	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
162
163	if (new_cluster_id == ob_cluster)
164		return 0;
165
166	that_cpu = bL_switcher_cpu_pairing[this_cpu];
167	ib_mpidr = cpu_logical_map(that_cpu);
168	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
169	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
170
171	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
172		 this_cpu, ob_mpidr, ib_mpidr);
173
174	this_cpu = smp_processor_id();
175
176	/* Close the gate for our entry vectors */
177	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
178	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
179
180	/* Install our "inbound alive" notifier. */
181	init_completion(&inbound_alive);
182	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
183	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
184	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
185
186	/*
187	 * Let's wake up the inbound CPU now in case it requires some delay
188	 * to come online, but leave it gated in our entry vector code.
189	 */
190	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
191	if (ret) {
192		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
193		return ret;
194	}
195
196	/*
197	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
198	 * in a possible WFI, such as in bL_power_down().
199	 */
200	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
201
202	/*
203	 * Wait for the inbound to come up.  This allows for other
204	 * tasks to be scheduled in the mean time.
205	 */
206	wait_for_completion(&inbound_alive);
207	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
208
209	/*
210	 * From this point we are entering the switch critical zone
211	 * and can't take any interrupts anymore.
212	 */
213	local_irq_disable();
214	local_fiq_disable();
215	trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
216
217	/* redirect GIC's SGIs to our counterpart */
218	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
219
220	tick_suspend_local();
 
 
 
 
 
 
221
222	ret = cpu_pm_enter();
223
224	/* we can not tolerate errors at this point */
225	if (ret)
226		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
227
228	/* Swap the physical CPUs in the logical map for this logical CPU. */
229	cpu_logical_map(this_cpu) = ib_mpidr;
230	cpu_logical_map(that_cpu) = ob_mpidr;
231
232	/* Let's do the actual CPU switch. */
233	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
234	if (ret > 0)
235		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
236
237	/* We are executing on the inbound CPU at this point */
238	mpidr = read_mpidr();
239	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
240	BUG_ON(mpidr != ib_mpidr);
241
242	mcpm_cpu_powered_up();
243
244	ret = cpu_pm_exit();
245
246	tick_resume_local();
 
 
 
 
247
248	trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
249	local_fiq_enable();
250	local_irq_enable();
251
252	*handshake_ptr = 1;
253	dsb_sev();
254
255	if (ret)
256		pr_err("%s exiting with error %d\n", __func__, ret);
257	return ret;
258}
259
260struct bL_thread {
261	spinlock_t lock;
262	struct task_struct *task;
263	wait_queue_head_t wq;
264	int wanted_cluster;
265	struct completion started;
266	bL_switch_completion_handler completer;
267	void *completer_cookie;
268};
269
270static struct bL_thread bL_threads[NR_CPUS];
271
272static int bL_switcher_thread(void *arg)
273{
274	struct bL_thread *t = arg;
275	struct sched_param param = { .sched_priority = 1 };
276	int cluster;
277	bL_switch_completion_handler completer;
278	void *completer_cookie;
279
280	sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
281	complete(&t->started);
282
283	do {
284		if (signal_pending(current))
285			flush_signals(current);
286		wait_event_interruptible(t->wq,
287				t->wanted_cluster != -1 ||
288				kthread_should_stop());
289
290		spin_lock(&t->lock);
291		cluster = t->wanted_cluster;
292		completer = t->completer;
293		completer_cookie = t->completer_cookie;
294		t->wanted_cluster = -1;
295		t->completer = NULL;
296		spin_unlock(&t->lock);
297
298		if (cluster != -1) {
299			bL_switch_to(cluster);
300
301			if (completer)
302				completer(completer_cookie);
303		}
304	} while (!kthread_should_stop());
305
306	return 0;
307}
308
309static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
310{
311	struct task_struct *task;
312
313	task = kthread_create_on_node(bL_switcher_thread, arg,
314				      cpu_to_node(cpu), "kswitcher_%d", cpu);
315	if (!IS_ERR(task)) {
316		kthread_bind(task, cpu);
317		wake_up_process(task);
318	} else
319		pr_err("%s failed for CPU %d\n", __func__, cpu);
320	return task;
321}
322
323/*
324 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
325 *      with completion notification via a callback
326 *
327 * @cpu: the CPU to switch
328 * @new_cluster_id: the ID of the cluster to switch to.
329 * @completer: switch completion callback.  if non-NULL,
330 *	@completer(@completer_cookie) will be called on completion of
331 *	the switch, in non-atomic context.
332 * @completer_cookie: opaque context argument for @completer.
333 *
334 * This function causes a cluster switch on the given CPU by waking up
335 * the appropriate switcher thread.  This function may or may not return
336 * before the switch has occurred.
337 *
338 * If a @completer callback function is supplied, it will be called when
339 * the switch is complete.  This can be used to determine asynchronously
340 * when the switch is complete, regardless of when bL_switch_request()
341 * returns.  When @completer is supplied, no new switch request is permitted
342 * for the affected CPU until after the switch is complete, and @completer
343 * has returned.
344 */
345int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
346			 bL_switch_completion_handler completer,
347			 void *completer_cookie)
348{
349	struct bL_thread *t;
350
351	if (cpu >= ARRAY_SIZE(bL_threads)) {
352		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
353		return -EINVAL;
354	}
355
356	t = &bL_threads[cpu];
357
358	if (IS_ERR(t->task))
359		return PTR_ERR(t->task);
360	if (!t->task)
361		return -ESRCH;
362
363	spin_lock(&t->lock);
364	if (t->completer) {
365		spin_unlock(&t->lock);
366		return -EBUSY;
367	}
368	t->completer = completer;
369	t->completer_cookie = completer_cookie;
370	t->wanted_cluster = new_cluster_id;
371	spin_unlock(&t->lock);
372	wake_up(&t->wq);
373	return 0;
374}
375EXPORT_SYMBOL_GPL(bL_switch_request_cb);
376
377/*
378 * Activation and configuration code.
379 */
380
381static DEFINE_MUTEX(bL_switcher_activation_lock);
382static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
383static unsigned int bL_switcher_active;
384static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
385static cpumask_t bL_switcher_removed_logical_cpus;
386
387int bL_switcher_register_notifier(struct notifier_block *nb)
388{
389	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
390}
391EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
392
393int bL_switcher_unregister_notifier(struct notifier_block *nb)
394{
395	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
396}
397EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
398
399static int bL_activation_notify(unsigned long val)
400{
401	int ret;
402
403	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
404	if (ret & NOTIFY_STOP_MASK)
405		pr_err("%s: notifier chain failed with status 0x%x\n",
406			__func__, ret);
407	return notifier_to_errno(ret);
408}
409
410static void bL_switcher_restore_cpus(void)
411{
412	int i;
413
414	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
415		struct device *cpu_dev = get_cpu_device(i);
416		int ret = device_online(cpu_dev);
417		if (ret)
418			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
419	}
420}
421
422static int bL_switcher_halve_cpus(void)
423{
424	int i, j, cluster_0, gic_id, ret;
425	unsigned int cpu, cluster, mask;
426	cpumask_t available_cpus;
427
428	/* First pass to validate what we have */
429	mask = 0;
430	for_each_online_cpu(i) {
431		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
432		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
433		if (cluster >= 2) {
434			pr_err("%s: only dual cluster systems are supported\n", __func__);
435			return -EINVAL;
436		}
437		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
438			return -EINVAL;
439		mask |= (1 << cluster);
440	}
441	if (mask != 3) {
442		pr_err("%s: no CPU pairing possible\n", __func__);
443		return -EINVAL;
444	}
445
446	/*
447	 * Now let's do the pairing.  We match each CPU with another CPU
448	 * from a different cluster.  To get a uniform scheduling behavior
449	 * without fiddling with CPU topology and compute capacity data,
450	 * we'll use logical CPUs initially belonging to the same cluster.
451	 */
452	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
453	cpumask_copy(&available_cpus, cpu_online_mask);
454	cluster_0 = -1;
455	for_each_cpu(i, &available_cpus) {
456		int match = -1;
457		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
458		if (cluster_0 == -1)
459			cluster_0 = cluster;
460		if (cluster != cluster_0)
461			continue;
462		cpumask_clear_cpu(i, &available_cpus);
463		for_each_cpu(j, &available_cpus) {
464			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
465			/*
466			 * Let's remember the last match to create "odd"
467			 * pairings on purpose in order for other code not
468			 * to assume any relation between physical and
469			 * logical CPU numbers.
470			 */
471			if (cluster != cluster_0)
472				match = j;
473		}
474		if (match != -1) {
475			bL_switcher_cpu_pairing[i] = match;
476			cpumask_clear_cpu(match, &available_cpus);
477			pr_info("CPU%d paired with CPU%d\n", i, match);
478		}
479	}
480
481	/*
482	 * Now we disable the unwanted CPUs i.e. everything that has no
483	 * pairing information (that includes the pairing counterparts).
484	 */
485	cpumask_clear(&bL_switcher_removed_logical_cpus);
486	for_each_online_cpu(i) {
487		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
488		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
489
490		/* Let's take note of the GIC ID for this CPU */
491		gic_id = gic_get_cpu_id(i);
492		if (gic_id < 0) {
493			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
494			bL_switcher_restore_cpus();
495			return -EINVAL;
496		}
497		bL_gic_id[cpu][cluster] = gic_id;
498		pr_info("GIC ID for CPU %u cluster %u is %u\n",
499			cpu, cluster, gic_id);
500
501		if (bL_switcher_cpu_pairing[i] != -1) {
502			bL_switcher_cpu_original_cluster[i] = cluster;
503			continue;
504		}
505
506		ret = device_offline(get_cpu_device(i));
507		if (ret) {
508			bL_switcher_restore_cpus();
509			return ret;
510		}
511		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
512	}
513
514	return 0;
515}
516
517/* Determine the logical CPU a given physical CPU is grouped on. */
518int bL_switcher_get_logical_index(u32 mpidr)
519{
520	int cpu;
521
522	if (!bL_switcher_active)
523		return -EUNATCH;
524
525	mpidr &= MPIDR_HWID_BITMASK;
526	for_each_online_cpu(cpu) {
527		int pairing = bL_switcher_cpu_pairing[cpu];
528		if (pairing == -1)
529			continue;
530		if ((mpidr == cpu_logical_map(cpu)) ||
531		    (mpidr == cpu_logical_map(pairing)))
532			return cpu;
533	}
534	return -EINVAL;
535}
536
537static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
538{
539	trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
540}
541
542int bL_switcher_trace_trigger(void)
543{
544	int ret;
545
546	preempt_disable();
547
548	bL_switcher_trace_trigger_cpu(NULL);
549	ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
550
551	preempt_enable();
552
553	return ret;
554}
555EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
556
557static int bL_switcher_enable(void)
558{
559	int cpu, ret;
560
561	mutex_lock(&bL_switcher_activation_lock);
562	lock_device_hotplug();
563	if (bL_switcher_active) {
564		unlock_device_hotplug();
565		mutex_unlock(&bL_switcher_activation_lock);
566		return 0;
567	}
568
569	pr_info("big.LITTLE switcher initializing\n");
570
571	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
572	if (ret)
573		goto error;
574
575	ret = bL_switcher_halve_cpus();
576	if (ret)
577		goto error;
578
579	bL_switcher_trace_trigger();
580
581	for_each_online_cpu(cpu) {
582		struct bL_thread *t = &bL_threads[cpu];
583		spin_lock_init(&t->lock);
584		init_waitqueue_head(&t->wq);
585		init_completion(&t->started);
586		t->wanted_cluster = -1;
587		t->task = bL_switcher_thread_create(cpu, t);
588	}
589
590	bL_switcher_active = 1;
591	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
592	pr_info("big.LITTLE switcher initialized\n");
593	goto out;
594
595error:
596	pr_warn("big.LITTLE switcher initialization failed\n");
597	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
598
599out:
600	unlock_device_hotplug();
601	mutex_unlock(&bL_switcher_activation_lock);
602	return ret;
603}
604
605#ifdef CONFIG_SYSFS
606
607static void bL_switcher_disable(void)
608{
609	unsigned int cpu, cluster;
610	struct bL_thread *t;
611	struct task_struct *task;
612
613	mutex_lock(&bL_switcher_activation_lock);
614	lock_device_hotplug();
615
616	if (!bL_switcher_active)
617		goto out;
618
619	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
620		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
621		goto out;
622	}
623
624	bL_switcher_active = 0;
625
626	/*
627	 * To deactivate the switcher, we must shut down the switcher
628	 * threads to prevent any other requests from being accepted.
629	 * Then, if the final cluster for given logical CPU is not the
630	 * same as the original one, we'll recreate a switcher thread
631	 * just for the purpose of switching the CPU back without any
632	 * possibility for interference from external requests.
633	 */
634	for_each_online_cpu(cpu) {
635		t = &bL_threads[cpu];
636		task = t->task;
637		t->task = NULL;
638		if (!task || IS_ERR(task))
639			continue;
640		kthread_stop(task);
641		/* no more switch may happen on this CPU at this point */
642		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
643		if (cluster == bL_switcher_cpu_original_cluster[cpu])
644			continue;
645		init_completion(&t->started);
646		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
647		task = bL_switcher_thread_create(cpu, t);
648		if (!IS_ERR(task)) {
649			wait_for_completion(&t->started);
650			kthread_stop(task);
651			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
652			if (cluster == bL_switcher_cpu_original_cluster[cpu])
653				continue;
654		}
655		/* If execution gets here, we're in trouble. */
656		pr_crit("%s: unable to restore original cluster for CPU %d\n",
657			__func__, cpu);
658		pr_crit("%s: CPU %d can't be restored\n",
659			__func__, bL_switcher_cpu_pairing[cpu]);
660		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
661				  &bL_switcher_removed_logical_cpus);
662	}
663
664	bL_switcher_restore_cpus();
665	bL_switcher_trace_trigger();
666
667	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
668
669out:
670	unlock_device_hotplug();
671	mutex_unlock(&bL_switcher_activation_lock);
672}
673
674static ssize_t bL_switcher_active_show(struct kobject *kobj,
675		struct kobj_attribute *attr, char *buf)
676{
677	return sprintf(buf, "%u\n", bL_switcher_active);
678}
679
680static ssize_t bL_switcher_active_store(struct kobject *kobj,
681		struct kobj_attribute *attr, const char *buf, size_t count)
682{
683	int ret;
684
685	switch (buf[0]) {
686	case '0':
687		bL_switcher_disable();
688		ret = 0;
689		break;
690	case '1':
691		ret = bL_switcher_enable();
692		break;
693	default:
694		ret = -EINVAL;
695	}
696
697	return (ret >= 0) ? count : ret;
698}
699
700static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
701		struct kobj_attribute *attr, const char *buf, size_t count)
702{
703	int ret = bL_switcher_trace_trigger();
704
705	return ret ? ret : count;
706}
707
708static struct kobj_attribute bL_switcher_active_attr =
709	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
710
711static struct kobj_attribute bL_switcher_trace_trigger_attr =
712	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
713
714static struct attribute *bL_switcher_attrs[] = {
715	&bL_switcher_active_attr.attr,
716	&bL_switcher_trace_trigger_attr.attr,
717	NULL,
718};
719
720static struct attribute_group bL_switcher_attr_group = {
721	.attrs = bL_switcher_attrs,
722};
723
724static struct kobject *bL_switcher_kobj;
725
726static int __init bL_switcher_sysfs_init(void)
727{
728	int ret;
729
730	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
731	if (!bL_switcher_kobj)
732		return -ENOMEM;
733	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
734	if (ret)
735		kobject_put(bL_switcher_kobj);
736	return ret;
737}
738
739#endif  /* CONFIG_SYSFS */
740
741bool bL_switcher_get_enabled(void)
742{
743	mutex_lock(&bL_switcher_activation_lock);
744
745	return bL_switcher_active;
746}
747EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
748
749void bL_switcher_put_enabled(void)
750{
751	mutex_unlock(&bL_switcher_activation_lock);
752}
753EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
754
755/*
756 * Veto any CPU hotplug operation on those CPUs we've removed
757 * while the switcher is active.
758 * We're just not ready to deal with that given the trickery involved.
759 */
760static int bL_switcher_cpu_pre(unsigned int cpu)
 
761{
762	int pairing;
763
764	if (!bL_switcher_active)
765		return 0;
766
767	pairing = bL_switcher_cpu_pairing[cpu];
768
769	if (pairing == -1)
770		return -EINVAL;
771	return 0;
772}
773
774static bool no_bL_switcher;
775core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
776
777static int __init bL_switcher_init(void)
778{
779	int ret;
780
781	if (!mcpm_is_available())
782		return -ENODEV;
783
784	cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare",
785				  bL_switcher_cpu_pre, NULL);
786	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown",
787					NULL, bL_switcher_cpu_pre);
788	if (ret < 0) {
789		cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE);
790		pr_err("bL_switcher: Failed to allocate a hotplug state\n");
791		return ret;
792	}
793	if (!no_bL_switcher) {
794		ret = bL_switcher_enable();
795		if (ret)
796			return ret;
797	}
798
799#ifdef CONFIG_SYSFS
800	ret = bL_switcher_sysfs_init();
801	if (ret)
802		pr_err("%s: unable to create sysfs entry\n", __func__);
803#endif
804
805	return 0;
806}
807
808late_initcall(bL_switcher_init);