Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 *	Generic address resultion entity
  3 *
  4 *	Authors:
  5 *	net_random Alan Cox
  6 *	net_ratelimit Andi Kleen
  7 *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
  8 *
  9 *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
 10 *
 11 *	This program is free software; you can redistribute it and/or
 12 *      modify it under the terms of the GNU General Public License
 13 *      as published by the Free Software Foundation; either version
 14 *      2 of the License, or (at your option) any later version.
 15 */
 16
 17#include <linux/module.h>
 18#include <linux/jiffies.h>
 19#include <linux/kernel.h>
 20#include <linux/ctype.h>
 21#include <linux/inet.h>
 22#include <linux/mm.h>
 23#include <linux/net.h>
 24#include <linux/string.h>
 25#include <linux/types.h>
 26#include <linux/percpu.h>
 27#include <linux/init.h>
 28#include <linux/ratelimit.h>
 29
 30#include <net/sock.h>
 31#include <net/net_ratelimit.h>
 32
 33#include <asm/byteorder.h>
 34#include <asm/uaccess.h>
 35
 36int net_msg_warn __read_mostly = 1;
 37EXPORT_SYMBOL(net_msg_warn);
 38
 39DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
 40/*
 41 * All net warning printk()s should be guarded by this function.
 42 */
 43int net_ratelimit(void)
 44{
 45	return __ratelimit(&net_ratelimit_state);
 46}
 47EXPORT_SYMBOL(net_ratelimit);
 48
 49/*
 50 * Convert an ASCII string to binary IP.
 51 * This is outside of net/ipv4/ because various code that uses IP addresses
 52 * is otherwise not dependent on the TCP/IP stack.
 53 */
 54
 55__be32 in_aton(const char *str)
 56{
 57	unsigned long l;
 58	unsigned int val;
 59	int i;
 60
 61	l = 0;
 62	for (i = 0; i < 4; i++)	{
 63		l <<= 8;
 64		if (*str != '\0') {
 65			val = 0;
 66			while (*str != '\0' && *str != '.' && *str != '\n') {
 67				val *= 10;
 68				val += *str - '0';
 69				str++;
 70			}
 71			l |= val;
 72			if (*str != '\0')
 73				str++;
 74		}
 75	}
 76	return htonl(l);
 77}
 78EXPORT_SYMBOL(in_aton);
 79
 80#define IN6PTON_XDIGIT		0x00010000
 81#define IN6PTON_DIGIT		0x00020000
 82#define IN6PTON_COLON_MASK	0x00700000
 83#define IN6PTON_COLON_1		0x00100000	/* single : requested */
 84#define IN6PTON_COLON_2		0x00200000	/* second : requested */
 85#define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
 86#define IN6PTON_DOT		0x00800000	/* . */
 87#define IN6PTON_DELIM		0x10000000
 88#define IN6PTON_NULL		0x20000000	/* first/tail */
 89#define IN6PTON_UNKNOWN		0x40000000
 90
 91static inline int xdigit2bin(char c, int delim)
 92{
 93	int val;
 94
 95	if (c == delim || c == '\0')
 96		return IN6PTON_DELIM;
 97	if (c == ':')
 98		return IN6PTON_COLON_MASK;
 99	if (c == '.')
100		return IN6PTON_DOT;
101
102	val = hex_to_bin(c);
103	if (val >= 0)
104		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
105
106	if (delim == -1)
107		return IN6PTON_DELIM;
108	return IN6PTON_UNKNOWN;
109}
110
111/**
112 * in4_pton - convert an IPv4 address from literal to binary representation
113 * @src: the start of the IPv4 address string
114 * @srclen: the length of the string, -1 means strlen(src)
115 * @dst: the binary (u8[4] array) representation of the IPv4 address
116 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
117 * @end: A pointer to the end of the parsed string will be placed here
118 *
119 * Return one on success, return zero when any error occurs
120 * and @end will point to the end of the parsed string.
121 *
122 */
123int in4_pton(const char *src, int srclen,
124	     u8 *dst,
125	     int delim, const char **end)
126{
127	const char *s;
128	u8 *d;
129	u8 dbuf[4];
130	int ret = 0;
131	int i;
132	int w = 0;
133
134	if (srclen < 0)
135		srclen = strlen(src);
136	s = src;
137	d = dbuf;
138	i = 0;
139	while(1) {
140		int c;
141		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
142		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
143			goto out;
144		}
145		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
146			if (w == 0)
147				goto out;
148			*d++ = w & 0xff;
149			w = 0;
150			i++;
151			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
152				if (i != 4)
153					goto out;
154				break;
155			}
156			goto cont;
157		}
158		w = (w * 10) + c;
159		if ((w & 0xffff) > 255) {
160			goto out;
161		}
162cont:
163		if (i >= 4)
164			goto out;
165		s++;
166		srclen--;
167	}
168	ret = 1;
169	memcpy(dst, dbuf, sizeof(dbuf));
170out:
171	if (end)
172		*end = s;
173	return ret;
174}
175EXPORT_SYMBOL(in4_pton);
176
177/**
178 * in6_pton - convert an IPv6 address from literal to binary representation
179 * @src: the start of the IPv6 address string
180 * @srclen: the length of the string, -1 means strlen(src)
181 * @dst: the binary (u8[16] array) representation of the IPv6 address
182 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
183 * @end: A pointer to the end of the parsed string will be placed here
184 *
185 * Return one on success, return zero when any error occurs
186 * and @end will point to the end of the parsed string.
187 *
188 */
189int in6_pton(const char *src, int srclen,
190	     u8 *dst,
191	     int delim, const char **end)
192{
193	const char *s, *tok = NULL;
194	u8 *d, *dc = NULL;
195	u8 dbuf[16];
196	int ret = 0;
197	int i;
198	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
199	int w = 0;
200
201	memset(dbuf, 0, sizeof(dbuf));
202
203	s = src;
204	d = dbuf;
205	if (srclen < 0)
206		srclen = strlen(src);
207
208	while (1) {
209		int c;
210
211		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
212		if (!(c & state))
213			goto out;
214		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
215			/* process one 16-bit word */
216			if (!(state & IN6PTON_NULL)) {
217				*d++ = (w >> 8) & 0xff;
218				*d++ = w & 0xff;
219			}
220			w = 0;
221			if (c & IN6PTON_DELIM) {
222				/* We've processed last word */
223				break;
224			}
225			/*
226			 * COLON_1 => XDIGIT
227			 * COLON_2 => XDIGIT|DELIM
228			 * COLON_1_2 => COLON_2
229			 */
230			switch (state & IN6PTON_COLON_MASK) {
231			case IN6PTON_COLON_2:
232				dc = d;
233				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
234				if (dc - dbuf >= sizeof(dbuf))
235					state |= IN6PTON_NULL;
236				break;
237			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
238				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
239				break;
240			case IN6PTON_COLON_1:
241				state = IN6PTON_XDIGIT;
242				break;
243			case IN6PTON_COLON_1_2:
244				state = IN6PTON_COLON_2;
245				break;
246			default:
247				state = 0;
248			}
249			tok = s + 1;
250			goto cont;
251		}
252
253		if (c & IN6PTON_DOT) {
254			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
255			if (ret > 0) {
256				d += 4;
257				break;
258			}
259			goto out;
260		}
261
262		w = (w << 4) | (0xff & c);
263		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
264		if (!(w & 0xf000)) {
265			state |= IN6PTON_XDIGIT;
266		}
267		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
268			state |= IN6PTON_COLON_1_2;
269			state &= ~IN6PTON_DELIM;
270		}
271		if (d + 2 >= dbuf + sizeof(dbuf)) {
272			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
273		}
274cont:
275		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
276		    d + 4 == dbuf + sizeof(dbuf)) {
277			state |= IN6PTON_DOT;
278		}
279		if (d >= dbuf + sizeof(dbuf)) {
280			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
281		}
282		s++;
283		srclen--;
284	}
285
286	i = 15; d--;
287
288	if (dc) {
289		while(d >= dc)
290			dst[i--] = *d--;
291		while(i >= dc - dbuf)
292			dst[i--] = 0;
293		while(i >= 0)
294			dst[i--] = *d--;
295	} else
296		memcpy(dst, dbuf, sizeof(dbuf));
297
298	ret = 1;
299out:
300	if (end)
301		*end = s;
302	return ret;
303}
304EXPORT_SYMBOL(in6_pton);
305
306void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
307			      __be32 from, __be32 to, int pseudohdr)
308{
309	__be32 diff[] = { ~from, to };
310	if (skb->ip_summed != CHECKSUM_PARTIAL) {
311		*sum = csum_fold(csum_partial(diff, sizeof(diff),
312				~csum_unfold(*sum)));
313		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
314			skb->csum = ~csum_partial(diff, sizeof(diff),
315						~skb->csum);
 
316	} else if (pseudohdr)
317		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
318				csum_unfold(*sum)));
 
319}
320EXPORT_SYMBOL(inet_proto_csum_replace4);
321
322void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
323			       const __be32 *from, const __be32 *to,
324			       int pseudohdr)
325{
326	__be32 diff[] = {
327		~from[0], ~from[1], ~from[2], ~from[3],
328		to[0], to[1], to[2], to[3],
329	};
330	if (skb->ip_summed != CHECKSUM_PARTIAL) {
331		*sum = csum_fold(csum_partial(diff, sizeof(diff),
332				 ~csum_unfold(*sum)));
333		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
334			skb->csum = ~csum_partial(diff, sizeof(diff),
335						  ~skb->csum);
336	} else if (pseudohdr)
337		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
338				  csum_unfold(*sum)));
339}
340EXPORT_SYMBOL(inet_proto_csum_replace16);
341
342struct __net_random_once_work {
343	struct work_struct work;
344	struct static_key *key;
345};
346
347static void __net_random_once_deferred(struct work_struct *w)
348{
349	struct __net_random_once_work *work =
350		container_of(w, struct __net_random_once_work, work);
351	BUG_ON(!static_key_enabled(work->key));
352	static_key_slow_dec(work->key);
353	kfree(work);
354}
355
356static void __net_random_once_disable_jump(struct static_key *key)
357{
358	struct __net_random_once_work *w;
359
360	w = kmalloc(sizeof(*w), GFP_ATOMIC);
361	if (!w)
362		return;
363
364	INIT_WORK(&w->work, __net_random_once_deferred);
365	w->key = key;
366	schedule_work(&w->work);
367}
368
369bool __net_get_random_once(void *buf, int nbytes, bool *done,
370			   struct static_key *once_key)
371{
372	static DEFINE_SPINLOCK(lock);
373	unsigned long flags;
374
375	spin_lock_irqsave(&lock, flags);
376	if (*done) {
377		spin_unlock_irqrestore(&lock, flags);
378		return false;
379	}
380
381	get_random_bytes(buf, nbytes);
382	*done = true;
383	spin_unlock_irqrestore(&lock, flags);
384
385	__net_random_once_disable_jump(once_key);
386
387	return true;
388}
389EXPORT_SYMBOL(__net_get_random_once);
v4.10.11
  1/*
  2 *	Generic address resultion entity
  3 *
  4 *	Authors:
  5 *	net_random Alan Cox
  6 *	net_ratelimit Andi Kleen
  7 *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
  8 *
  9 *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
 10 *
 11 *	This program is free software; you can redistribute it and/or
 12 *      modify it under the terms of the GNU General Public License
 13 *      as published by the Free Software Foundation; either version
 14 *      2 of the License, or (at your option) any later version.
 15 */
 16
 17#include <linux/module.h>
 18#include <linux/jiffies.h>
 19#include <linux/kernel.h>
 20#include <linux/ctype.h>
 21#include <linux/inet.h>
 22#include <linux/mm.h>
 23#include <linux/net.h>
 24#include <linux/string.h>
 25#include <linux/types.h>
 26#include <linux/percpu.h>
 27#include <linux/init.h>
 28#include <linux/ratelimit.h>
 29
 30#include <net/sock.h>
 31#include <net/net_ratelimit.h>
 32
 33#include <asm/byteorder.h>
 34#include <linux/uaccess.h>
 
 
 
 35
 36DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
 37/*
 38 * All net warning printk()s should be guarded by this function.
 39 */
 40int net_ratelimit(void)
 41{
 42	return __ratelimit(&net_ratelimit_state);
 43}
 44EXPORT_SYMBOL(net_ratelimit);
 45
 46/*
 47 * Convert an ASCII string to binary IP.
 48 * This is outside of net/ipv4/ because various code that uses IP addresses
 49 * is otherwise not dependent on the TCP/IP stack.
 50 */
 51
 52__be32 in_aton(const char *str)
 53{
 54	unsigned long l;
 55	unsigned int val;
 56	int i;
 57
 58	l = 0;
 59	for (i = 0; i < 4; i++)	{
 60		l <<= 8;
 61		if (*str != '\0') {
 62			val = 0;
 63			while (*str != '\0' && *str != '.' && *str != '\n') {
 64				val *= 10;
 65				val += *str - '0';
 66				str++;
 67			}
 68			l |= val;
 69			if (*str != '\0')
 70				str++;
 71		}
 72	}
 73	return htonl(l);
 74}
 75EXPORT_SYMBOL(in_aton);
 76
 77#define IN6PTON_XDIGIT		0x00010000
 78#define IN6PTON_DIGIT		0x00020000
 79#define IN6PTON_COLON_MASK	0x00700000
 80#define IN6PTON_COLON_1		0x00100000	/* single : requested */
 81#define IN6PTON_COLON_2		0x00200000	/* second : requested */
 82#define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
 83#define IN6PTON_DOT		0x00800000	/* . */
 84#define IN6PTON_DELIM		0x10000000
 85#define IN6PTON_NULL		0x20000000	/* first/tail */
 86#define IN6PTON_UNKNOWN		0x40000000
 87
 88static inline int xdigit2bin(char c, int delim)
 89{
 90	int val;
 91
 92	if (c == delim || c == '\0')
 93		return IN6PTON_DELIM;
 94	if (c == ':')
 95		return IN6PTON_COLON_MASK;
 96	if (c == '.')
 97		return IN6PTON_DOT;
 98
 99	val = hex_to_bin(c);
100	if (val >= 0)
101		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
102
103	if (delim == -1)
104		return IN6PTON_DELIM;
105	return IN6PTON_UNKNOWN;
106}
107
108/**
109 * in4_pton - convert an IPv4 address from literal to binary representation
110 * @src: the start of the IPv4 address string
111 * @srclen: the length of the string, -1 means strlen(src)
112 * @dst: the binary (u8[4] array) representation of the IPv4 address
113 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
114 * @end: A pointer to the end of the parsed string will be placed here
115 *
116 * Return one on success, return zero when any error occurs
117 * and @end will point to the end of the parsed string.
118 *
119 */
120int in4_pton(const char *src, int srclen,
121	     u8 *dst,
122	     int delim, const char **end)
123{
124	const char *s;
125	u8 *d;
126	u8 dbuf[4];
127	int ret = 0;
128	int i;
129	int w = 0;
130
131	if (srclen < 0)
132		srclen = strlen(src);
133	s = src;
134	d = dbuf;
135	i = 0;
136	while (1) {
137		int c;
138		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
139		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
140			goto out;
141		}
142		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
143			if (w == 0)
144				goto out;
145			*d++ = w & 0xff;
146			w = 0;
147			i++;
148			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
149				if (i != 4)
150					goto out;
151				break;
152			}
153			goto cont;
154		}
155		w = (w * 10) + c;
156		if ((w & 0xffff) > 255) {
157			goto out;
158		}
159cont:
160		if (i >= 4)
161			goto out;
162		s++;
163		srclen--;
164	}
165	ret = 1;
166	memcpy(dst, dbuf, sizeof(dbuf));
167out:
168	if (end)
169		*end = s;
170	return ret;
171}
172EXPORT_SYMBOL(in4_pton);
173
174/**
175 * in6_pton - convert an IPv6 address from literal to binary representation
176 * @src: the start of the IPv6 address string
177 * @srclen: the length of the string, -1 means strlen(src)
178 * @dst: the binary (u8[16] array) representation of the IPv6 address
179 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
180 * @end: A pointer to the end of the parsed string will be placed here
181 *
182 * Return one on success, return zero when any error occurs
183 * and @end will point to the end of the parsed string.
184 *
185 */
186int in6_pton(const char *src, int srclen,
187	     u8 *dst,
188	     int delim, const char **end)
189{
190	const char *s, *tok = NULL;
191	u8 *d, *dc = NULL;
192	u8 dbuf[16];
193	int ret = 0;
194	int i;
195	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
196	int w = 0;
197
198	memset(dbuf, 0, sizeof(dbuf));
199
200	s = src;
201	d = dbuf;
202	if (srclen < 0)
203		srclen = strlen(src);
204
205	while (1) {
206		int c;
207
208		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
209		if (!(c & state))
210			goto out;
211		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
212			/* process one 16-bit word */
213			if (!(state & IN6PTON_NULL)) {
214				*d++ = (w >> 8) & 0xff;
215				*d++ = w & 0xff;
216			}
217			w = 0;
218			if (c & IN6PTON_DELIM) {
219				/* We've processed last word */
220				break;
221			}
222			/*
223			 * COLON_1 => XDIGIT
224			 * COLON_2 => XDIGIT|DELIM
225			 * COLON_1_2 => COLON_2
226			 */
227			switch (state & IN6PTON_COLON_MASK) {
228			case IN6PTON_COLON_2:
229				dc = d;
230				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
231				if (dc - dbuf >= sizeof(dbuf))
232					state |= IN6PTON_NULL;
233				break;
234			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
235				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
236				break;
237			case IN6PTON_COLON_1:
238				state = IN6PTON_XDIGIT;
239				break;
240			case IN6PTON_COLON_1_2:
241				state = IN6PTON_COLON_2;
242				break;
243			default:
244				state = 0;
245			}
246			tok = s + 1;
247			goto cont;
248		}
249
250		if (c & IN6PTON_DOT) {
251			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
252			if (ret > 0) {
253				d += 4;
254				break;
255			}
256			goto out;
257		}
258
259		w = (w << 4) | (0xff & c);
260		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
261		if (!(w & 0xf000)) {
262			state |= IN6PTON_XDIGIT;
263		}
264		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
265			state |= IN6PTON_COLON_1_2;
266			state &= ~IN6PTON_DELIM;
267		}
268		if (d + 2 >= dbuf + sizeof(dbuf)) {
269			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
270		}
271cont:
272		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
273		    d + 4 == dbuf + sizeof(dbuf)) {
274			state |= IN6PTON_DOT;
275		}
276		if (d >= dbuf + sizeof(dbuf)) {
277			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
278		}
279		s++;
280		srclen--;
281	}
282
283	i = 15; d--;
284
285	if (dc) {
286		while (d >= dc)
287			dst[i--] = *d--;
288		while (i >= dc - dbuf)
289			dst[i--] = 0;
290		while (i >= 0)
291			dst[i--] = *d--;
292	} else
293		memcpy(dst, dbuf, sizeof(dbuf));
294
295	ret = 1;
296out:
297	if (end)
298		*end = s;
299	return ret;
300}
301EXPORT_SYMBOL(in6_pton);
302
303void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
304			      __be32 from, __be32 to, bool pseudohdr)
305{
 
306	if (skb->ip_summed != CHECKSUM_PARTIAL) {
307		csum_replace4(sum, from, to);
 
308		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
309			skb->csum = ~csum_add(csum_sub(~(skb->csum),
310						       (__force __wsum)from),
311					      (__force __wsum)to);
312	} else if (pseudohdr)
313		*sum = ~csum_fold(csum_add(csum_sub(csum_unfold(*sum),
314						    (__force __wsum)from),
315					   (__force __wsum)to));
316}
317EXPORT_SYMBOL(inet_proto_csum_replace4);
318
319void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
320			       const __be32 *from, const __be32 *to,
321			       bool pseudohdr)
322{
323	__be32 diff[] = {
324		~from[0], ~from[1], ~from[2], ~from[3],
325		to[0], to[1], to[2], to[3],
326	};
327	if (skb->ip_summed != CHECKSUM_PARTIAL) {
328		*sum = csum_fold(csum_partial(diff, sizeof(diff),
329				 ~csum_unfold(*sum)));
330		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
331			skb->csum = ~csum_partial(diff, sizeof(diff),
332						  ~skb->csum);
333	} else if (pseudohdr)
334		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
335				  csum_unfold(*sum)));
336}
337EXPORT_SYMBOL(inet_proto_csum_replace16);
338
339void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb,
340				     __wsum diff, bool pseudohdr)
 
 
 
 
341{
342	if (skb->ip_summed != CHECKSUM_PARTIAL) {
343		*sum = csum_fold(csum_add(diff, ~csum_unfold(*sum)));
344		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
345			skb->csum = ~csum_add(diff, ~skb->csum);
346	} else if (pseudohdr) {
347		*sum = ~csum_fold(csum_add(diff, csum_unfold(*sum)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348	}
 
 
 
 
 
 
 
 
349}
350EXPORT_SYMBOL(inet_proto_csum_replace_by_diff);