Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * This allocator is designed for use with zram. Thus, the allocator is
  16 * supposed to work well under low memory conditions. In particular, it
  17 * never attempts higher order page allocation which is very likely to
  18 * fail under memory pressure. On the other hand, if we just use single
  19 * (0-order) pages, it would suffer from very high fragmentation --
  20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
  21 * This was one of the major issues with its predecessor (xvmalloc).
  22 *
  23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
  24 * and links them together using various 'struct page' fields. These linked
  25 * pages act as a single higher-order page i.e. an object can span 0-order
  26 * page boundaries. The code refers to these linked pages as a single entity
  27 * called zspage.
  28 *
  29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
  30 * since this satisfies the requirements of all its current users (in the
  31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
  32 * uncompressed form). For allocation requests larger than this size, failure
  33 * is returned (see zs_malloc).
  34 *
  35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
  36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
  37 * location of the allocated object. The reason for this indirection is that
  38 * zsmalloc does not keep zspages permanently mapped since that would cause
  39 * issues on 32-bit systems where the VA region for kernel space mappings
  40 * is very small. So, before using the allocating memory, the object has to
  41 * be mapped using zs_map_object() to get a usable pointer and subsequently
  42 * unmapped using zs_unmap_object().
  43 *
  44 * Following is how we use various fields and flags of underlying
  45 * struct page(s) to form a zspage.
  46 *
  47 * Usage of struct page fields:
  48 *	page->first_page: points to the first component (0-order) page
  49 *	page->index (union with page->freelist): offset of the first object
  50 *		starting in this page. For the first page, this is
  51 *		always 0, so we use this field (aka freelist) to point
  52 *		to the first free object in zspage.
  53 *	page->lru: links together all component pages (except the first page)
  54 *		of a zspage
  55 *
  56 *	For _first_ page only:
  57 *
  58 *	page->private (union with page->first_page): refers to the
  59 *		component page after the first page
  60 *	page->freelist: points to the first free object in zspage.
  61 *		Free objects are linked together using in-place
  62 *		metadata.
  63 *	page->objects: maximum number of objects we can store in this
  64 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
  65 *	page->lru: links together first pages of various zspages.
  66 *		Basically forming list of zspages in a fullness group.
  67 *	page->mapping: class index and fullness group of the zspage
  68 *
  69 * Usage of struct page flags:
  70 *	PG_private: identifies the first component page
  71 *	PG_private2: identifies the last component page
 
  72 *
  73 */
  74
  75#ifdef CONFIG_ZSMALLOC_DEBUG
  76#define DEBUG
  77#endif
  78
  79#include <linux/module.h>
  80#include <linux/kernel.h>
 
  81#include <linux/bitops.h>
  82#include <linux/errno.h>
  83#include <linux/highmem.h>
  84#include <linux/string.h>
  85#include <linux/slab.h>
  86#include <asm/tlbflush.h>
  87#include <asm/pgtable.h>
  88#include <linux/cpumask.h>
  89#include <linux/cpu.h>
  90#include <linux/vmalloc.h>
  91#include <linux/hardirq.h>
  92#include <linux/spinlock.h>
  93#include <linux/types.h>
 
  94#include <linux/zsmalloc.h>
 
 
 
 
 
 
  95
  96/*
  97 * This must be power of 2 and greater than of equal to sizeof(link_free).
  98 * These two conditions ensure that any 'struct link_free' itself doesn't
  99 * span more than 1 page which avoids complex case of mapping 2 pages simply
 100 * to restore link_free pointer values.
 101 */
 102#define ZS_ALIGN		8
 103
 104/*
 105 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 106 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 107 */
 108#define ZS_MAX_ZSPAGE_ORDER 2
 109#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
 110
 
 
 111/*
 112 * Object location (<PFN>, <obj_idx>) is encoded as
 113 * as single (unsigned long) handle value.
 114 *
 115 * Note that object index <obj_idx> is relative to system
 116 * page <PFN> it is stored in, so for each sub-page belonging
 117 * to a zspage, obj_idx starts with 0.
 118 *
 119 * This is made more complicated by various memory models and PAE.
 120 */
 121
 122#ifndef MAX_PHYSMEM_BITS
 123#ifdef CONFIG_HIGHMEM64G
 124#define MAX_PHYSMEM_BITS 36
 125#else /* !CONFIG_HIGHMEM64G */
 126/*
 127 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 128 * be PAGE_SHIFT
 129 */
 130#define MAX_PHYSMEM_BITS BITS_PER_LONG
 131#endif
 132#endif
 133#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
 134#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 136
 137#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 138/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 139#define ZS_MIN_ALLOC_SIZE \
 140	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 
 141#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 142
 143/*
 144 * On systems with 4K page size, this gives 254 size classes! There is a
 145 * trader-off here:
 146 *  - Large number of size classes is potentially wasteful as free page are
 147 *    spread across these classes
 148 *  - Small number of size classes causes large internal fragmentation
 149 *  - Probably its better to use specific size classes (empirically
 150 *    determined). NOTE: all those class sizes must be set as multiple of
 151 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 152 *
 153 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 154 *  (reason above)
 155 */
 156#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
 157#define ZS_SIZE_CLASSES		((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
 158					ZS_SIZE_CLASS_DELTA + 1)
 159
 160/*
 161 * We do not maintain any list for completely empty or full pages
 162 */
 163enum fullness_group {
 164	ZS_ALMOST_FULL,
 165	ZS_ALMOST_EMPTY,
 166	_ZS_NR_FULLNESS_GROUPS,
 
 
 
 167
 168	ZS_EMPTY,
 169	ZS_FULL
 
 
 
 
 
 
 170};
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172/*
 173 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 174 *	n <= N / f, where
 175 * n = number of allocated objects
 176 * N = total number of objects zspage can store
 177 * f = 1/fullness_threshold_frac
 178 *
 179 * Similarly, we assign zspage to:
 180 *	ZS_ALMOST_FULL	when n > N / f
 181 *	ZS_EMPTY	when n == 0
 182 *	ZS_FULL		when n == N
 183 *
 184 * (see: fix_fullness_group())
 185 */
 186static const int fullness_threshold_frac = 4;
 187
 188struct size_class {
 
 
 189	/*
 190	 * Size of objects stored in this class. Must be multiple
 191	 * of ZS_ALIGN.
 192	 */
 193	int size;
 194	unsigned int index;
 195
 196	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 197	int pages_per_zspage;
 198
 199	spinlock_t lock;
 
 
 200
 201	/* stats */
 202	u64 pages_allocated;
 
 
 
 203
 204	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
 205};
 
 
 
 
 
 
 
 206
 207/*
 208 * Placed within free objects to form a singly linked list.
 209 * For every zspage, first_page->freelist gives head of this list.
 210 *
 211 * This must be power of 2 and less than or equal to ZS_ALIGN
 212 */
 213struct link_free {
 214	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
 215	void *next;
 
 
 
 
 
 
 
 
 
 216};
 217
 218struct zs_pool {
 219	struct size_class size_class[ZS_SIZE_CLASSES];
 
 
 
 
 
 
 220
 221	gfp_t flags;	/* allocation flags used when growing pool */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222};
 223
 224/*
 225 * A zspage's class index and fullness group
 226 * are encoded in its (first)page->mapping
 227 */
 228#define CLASS_IDX_BITS	28
 229#define FULLNESS_BITS	4
 230#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
 231#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232
 233struct mapping_area {
 234#ifdef CONFIG_PGTABLE_MAPPING
 235	struct vm_struct *vm; /* vm area for mapping object that span pages */
 236#else
 237	char *vm_buf; /* copy buffer for objects that span pages */
 238#endif
 239	char *vm_addr; /* address of kmap_atomic()'ed pages */
 240	enum zs_mapmode vm_mm; /* mapping mode */
 241};
 242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243
 244/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 245static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 246
 
 
 
 
 
 247static int is_first_page(struct page *page)
 248{
 249	return PagePrivate(page);
 250}
 251
 252static int is_last_page(struct page *page)
 
 253{
 254	return PagePrivate2(page);
 255}
 256
 257static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258				enum fullness_group *fullness)
 259{
 260	unsigned long m;
 261	BUG_ON(!is_first_page(page));
 262
 263	m = (unsigned long)page->mapping;
 264	*fullness = m & FULLNESS_MASK;
 265	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
 266}
 267
 268static void set_zspage_mapping(struct page *page, unsigned int class_idx,
 
 269				enum fullness_group fullness)
 270{
 271	unsigned long m;
 272	BUG_ON(!is_first_page(page));
 273
 274	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
 275			(fullness & FULLNESS_MASK);
 276	page->mapping = (struct address_space *)m;
 277}
 278
 279/*
 280 * zsmalloc divides the pool into various size classes where each
 281 * class maintains a list of zspages where each zspage is divided
 282 * into equal sized chunks. Each allocation falls into one of these
 283 * classes depending on its size. This function returns index of the
 284 * size class which has chunk size big enough to hold the give size.
 285 */
 286static int get_size_class_index(int size)
 287{
 288	int idx = 0;
 289
 290	if (likely(size > ZS_MIN_ALLOC_SIZE))
 291		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 292				ZS_SIZE_CLASS_DELTA);
 293
 294	return idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295}
 
 
 296
 297/*
 298 * For each size class, zspages are divided into different groups
 299 * depending on how "full" they are. This was done so that we could
 300 * easily find empty or nearly empty zspages when we try to shrink
 301 * the pool (not yet implemented). This function returns fullness
 302 * status of the given page.
 303 */
 304static enum fullness_group get_fullness_group(struct page *page)
 
 305{
 306	int inuse, max_objects;
 307	enum fullness_group fg;
 308	BUG_ON(!is_first_page(page));
 309
 310	inuse = page->inuse;
 311	max_objects = page->objects;
 312
 313	if (inuse == 0)
 314		fg = ZS_EMPTY;
 315	else if (inuse == max_objects)
 316		fg = ZS_FULL;
 317	else if (inuse <= max_objects / fullness_threshold_frac)
 318		fg = ZS_ALMOST_EMPTY;
 319	else
 320		fg = ZS_ALMOST_FULL;
 321
 322	return fg;
 323}
 324
 325/*
 326 * Each size class maintains various freelists and zspages are assigned
 327 * to one of these freelists based on the number of live objects they
 328 * have. This functions inserts the given zspage into the freelist
 329 * identified by <class, fullness_group>.
 330 */
 331static void insert_zspage(struct page *page, struct size_class *class,
 
 332				enum fullness_group fullness)
 333{
 334	struct page **head;
 335
 336	BUG_ON(!is_first_page(page));
 337
 338	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 339		return;
 340
 341	head = &class->fullness_list[fullness];
 342	if (*head)
 343		list_add_tail(&page->lru, &(*head)->lru);
 344
 345	*head = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 346}
 347
 348/*
 349 * This function removes the given zspage from the freelist identified
 350 * by <class, fullness_group>.
 351 */
 352static void remove_zspage(struct page *page, struct size_class *class,
 
 353				enum fullness_group fullness)
 354{
 355	struct page **head;
 356
 357	BUG_ON(!is_first_page(page));
 358
 359	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 360		return;
 361
 362	head = &class->fullness_list[fullness];
 363	BUG_ON(!*head);
 364	if (list_empty(&(*head)->lru))
 365		*head = NULL;
 366	else if (*head == page)
 367		*head = (struct page *)list_entry((*head)->lru.next,
 368					struct page, lru);
 369
 370	list_del_init(&page->lru);
 371}
 372
 373/*
 374 * Each size class maintains zspages in different fullness groups depending
 375 * on the number of live objects they contain. When allocating or freeing
 376 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 377 * to ALMOST_EMPTY when freeing an object. This function checks if such
 378 * a status change has occurred for the given page and accordingly moves the
 379 * page from the freelist of the old fullness group to that of the new
 380 * fullness group.
 381 */
 382static enum fullness_group fix_fullness_group(struct zs_pool *pool,
 383						struct page *page)
 384{
 385	int class_idx;
 386	struct size_class *class;
 387	enum fullness_group currfg, newfg;
 388
 389	BUG_ON(!is_first_page(page));
 390
 391	get_zspage_mapping(page, &class_idx, &currfg);
 392	newfg = get_fullness_group(page);
 393	if (newfg == currfg)
 394		goto out;
 395
 396	class = &pool->size_class[class_idx];
 397	remove_zspage(page, class, currfg);
 398	insert_zspage(page, class, newfg);
 399	set_zspage_mapping(page, class_idx, newfg);
 
 
 400
 401out:
 402	return newfg;
 403}
 404
 405/*
 406 * We have to decide on how many pages to link together
 407 * to form a zspage for each size class. This is important
 408 * to reduce wastage due to unusable space left at end of
 409 * each zspage which is given as:
 410 *	wastage = Zp - Zp % size_class
 
 411 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 412 *
 413 * For example, for size class of 3/8 * PAGE_SIZE, we should
 414 * link together 3 PAGE_SIZE sized pages to form a zspage
 415 * since then we can perfectly fit in 8 such objects.
 416 */
 417static int get_pages_per_zspage(int class_size)
 418{
 419	int i, max_usedpc = 0;
 420	/* zspage order which gives maximum used size per KB */
 421	int max_usedpc_order = 1;
 422
 423	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 424		int zspage_size;
 425		int waste, usedpc;
 426
 427		zspage_size = i * PAGE_SIZE;
 428		waste = zspage_size % class_size;
 429		usedpc = (zspage_size - waste) * 100 / zspage_size;
 430
 431		if (usedpc > max_usedpc) {
 432			max_usedpc = usedpc;
 433			max_usedpc_order = i;
 434		}
 435	}
 436
 437	return max_usedpc_order;
 438}
 439
 440/*
 441 * A single 'zspage' is composed of many system pages which are
 442 * linked together using fields in struct page. This function finds
 443 * the first/head page, given any component page of a zspage.
 444 */
 445static struct page *get_first_page(struct page *page)
 446{
 447	if (is_first_page(page))
 448		return page;
 449	else
 450		return page->first_page;
 451}
 452
 453static struct page *get_next_page(struct page *page)
 454{
 455	struct page *next;
 
 456
 457	if (is_last_page(page))
 458		next = NULL;
 459	else if (is_first_page(page))
 460		next = (struct page *)page_private(page);
 461	else
 462		next = list_entry(page->lru.next, struct page, lru);
 463
 464	return next;
 
 
 
 
 
 
 
 
 
 
 465}
 466
 467/*
 468 * Encode <page, obj_idx> as a single handle value.
 469 * On hardware platforms with physical memory starting at 0x0 the pfn
 470 * could be 0 so we ensure that the handle will never be 0 by adjusting the
 471 * encoded obj_idx value before encoding.
 472 */
 473static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
 474{
 475	unsigned long handle;
 476
 477	if (!page) {
 478		BUG_ON(obj_idx);
 479		return NULL;
 480	}
 481
 482	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
 483	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
 484
 485	return (void *)handle;
 
 
 486}
 487
 488/*
 489 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 490 * decoded obj_idx back to its original value since it was adjusted in
 491 * obj_location_to_handle().
 492 */
 493static void obj_handle_to_location(unsigned long handle, struct page **page,
 494				unsigned long *obj_idx)
 495{
 496	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
 497	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
 
 
 
 498}
 499
 500static unsigned long obj_idx_to_offset(struct page *page,
 501				unsigned long obj_idx, int class_size)
 502{
 503	unsigned long off = 0;
 
 504
 505	if (!is_first_page(page))
 506		off = page->index;
 
 
 507
 508	return off + obj_idx * class_size;
 
 
 
 
 
 
 
 509}
 510
 511static void reset_page(struct page *page)
 512{
 513	clear_bit(PG_private, &page->flags);
 514	clear_bit(PG_private_2, &page->flags);
 
 515	set_page_private(page, 0);
 516	page->mapping = NULL;
 517	page->freelist = NULL;
 518	page_mapcount_reset(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519}
 520
 521static void free_zspage(struct page *first_page)
 522{
 523	struct page *nextp, *tmp, *head_extra;
 524
 525	BUG_ON(!is_first_page(first_page));
 526	BUG_ON(first_page->inuse);
 
 
 
 
 
 527
 528	head_extra = (struct page *)page_private(first_page);
 
 
 
 
 529
 530	reset_page(first_page);
 531	__free_page(first_page);
 532
 533	/* zspage with only 1 system page */
 534	if (!head_extra)
 535		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536
 537	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
 538		list_del(&nextp->lru);
 539		reset_page(nextp);
 540		__free_page(nextp);
 
 
 
 
 
 
 
 
 
 
 541	}
 542	reset_page(head_extra);
 543	__free_page(head_extra);
 
 544}
 545
 546/* Initialize a newly allocated zspage */
 547static void init_zspage(struct page *first_page, struct size_class *class)
 548{
 
 549	unsigned long off = 0;
 550	struct page *page = first_page;
 551
 552	BUG_ON(!is_first_page(first_page));
 553	while (page) {
 554		struct page *next_page;
 555		struct link_free *link;
 556		unsigned int i, objs_on_page;
 557
 558		/*
 559		 * page->index stores offset of first object starting
 560		 * in the page. For the first page, this is always 0,
 561		 * so we use first_page->index (aka ->freelist) to store
 562		 * head of corresponding zspage's freelist.
 563		 */
 564		if (page != first_page)
 565			page->index = off;
 566
 567		link = (struct link_free *)kmap_atomic(page) +
 568						off / sizeof(*link);
 569		objs_on_page = (PAGE_SIZE - off) / class->size;
 570
 571		for (i = 1; i <= objs_on_page; i++) {
 572			off += class->size;
 573			if (off < PAGE_SIZE) {
 574				link->next = obj_location_to_handle(page, i);
 575				link += class->size / sizeof(*link);
 576			}
 577		}
 578
 579		/*
 580		 * We now come to the last (full or partial) object on this
 581		 * page, which must point to the first object on the next
 582		 * page (if present)
 583		 */
 584		next_page = get_next_page(page);
 585		link->next = obj_location_to_handle(next_page, 0);
 586		kunmap_atomic(link);
 
 
 
 
 
 
 
 
 587		page = next_page;
 588		off = (off + class->size) % PAGE_SIZE;
 589	}
 
 
 590}
 591
 592/*
 593 * Allocate a zspage for the given size class
 594 */
 595static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
 596{
 597	int i, error;
 598	struct page *first_page = NULL, *uninitialized_var(prev_page);
 
 
 599
 600	/*
 601	 * Allocate individual pages and link them together as:
 602	 * 1. first page->private = first sub-page
 603	 * 2. all sub-pages are linked together using page->lru
 604	 * 3. each sub-page is linked to the first page using page->first_page
 605	 *
 606	 * For each size class, First/Head pages are linked together using
 607	 * page->lru. Also, we set PG_private to identify the first page
 608	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
 609	 * identify the last page.
 610	 */
 611	error = -ENOMEM;
 612	for (i = 0; i < class->pages_per_zspage; i++) {
 613		struct page *page;
 614
 615		page = alloc_page(flags);
 616		if (!page)
 617			goto cleanup;
 618
 619		INIT_LIST_HEAD(&page->lru);
 620		if (i == 0) {	/* first page */
 621			SetPagePrivate(page);
 622			set_page_private(page, 0);
 623			first_page = page;
 624			first_page->inuse = 0;
 
 
 625		}
 626		if (i == 1)
 627			set_page_private(first_page, (unsigned long)page);
 628		if (i >= 1)
 629			page->first_page = first_page;
 630		if (i >= 2)
 631			list_add(&page->lru, &prev_page->lru);
 632		if (i == class->pages_per_zspage - 1)	/* last page */
 633			SetPagePrivate2(page);
 634		prev_page = page;
 635	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636
 637	init_zspage(first_page, class);
 
 
 
 
 
 638
 639	first_page->freelist = obj_location_to_handle(first_page, 0);
 640	/* Maximum number of objects we can store in this zspage */
 641	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
 642
 643	error = 0; /* Success */
 644
 645cleanup:
 646	if (unlikely(error) && first_page) {
 647		free_zspage(first_page);
 648		first_page = NULL;
 
 
 649	}
 650
 651	return first_page;
 
 
 
 652}
 653
 654static struct page *find_get_zspage(struct size_class *class)
 655{
 656	int i;
 657	struct page *page;
 658
 659	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
 660		page = class->fullness_list[i];
 661		if (page)
 
 662			break;
 663	}
 664
 665	return page;
 666}
 667
 668#ifdef CONFIG_PGTABLE_MAPPING
 669static inline int __zs_cpu_up(struct mapping_area *area)
 670{
 671	/*
 672	 * Make sure we don't leak memory if a cpu UP notification
 673	 * and zs_init() race and both call zs_cpu_up() on the same cpu
 674	 */
 675	if (area->vm)
 676		return 0;
 677	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
 678	if (!area->vm)
 679		return -ENOMEM;
 680	return 0;
 681}
 682
 683static inline void __zs_cpu_down(struct mapping_area *area)
 684{
 685	if (area->vm)
 686		free_vm_area(area->vm);
 687	area->vm = NULL;
 688}
 689
 690static inline void *__zs_map_object(struct mapping_area *area,
 691				struct page *pages[2], int off, int size)
 692{
 693	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages));
 694	area->vm_addr = area->vm->addr;
 695	return area->vm_addr + off;
 696}
 697
 698static inline void __zs_unmap_object(struct mapping_area *area,
 699				struct page *pages[2], int off, int size)
 700{
 701	unsigned long addr = (unsigned long)area->vm_addr;
 702
 703	unmap_kernel_range(addr, PAGE_SIZE * 2);
 704}
 705
 706#else /* CONFIG_PGTABLE_MAPPING */
 707
 708static inline int __zs_cpu_up(struct mapping_area *area)
 709{
 710	/*
 711	 * Make sure we don't leak memory if a cpu UP notification
 712	 * and zs_init() race and both call zs_cpu_up() on the same cpu
 713	 */
 714	if (area->vm_buf)
 715		return 0;
 716	area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
 717	if (!area->vm_buf)
 718		return -ENOMEM;
 719	return 0;
 720}
 721
 722static inline void __zs_cpu_down(struct mapping_area *area)
 723{
 724	if (area->vm_buf)
 725		free_page((unsigned long)area->vm_buf);
 726	area->vm_buf = NULL;
 727}
 728
 729static void *__zs_map_object(struct mapping_area *area,
 730			struct page *pages[2], int off, int size)
 731{
 732	int sizes[2];
 733	void *addr;
 734	char *buf = area->vm_buf;
 735
 736	/* disable page faults to match kmap_atomic() return conditions */
 737	pagefault_disable();
 738
 739	/* no read fastpath */
 740	if (area->vm_mm == ZS_MM_WO)
 741		goto out;
 742
 743	sizes[0] = PAGE_SIZE - off;
 744	sizes[1] = size - sizes[0];
 745
 746	/* copy object to per-cpu buffer */
 747	addr = kmap_atomic(pages[0]);
 748	memcpy(buf, addr + off, sizes[0]);
 749	kunmap_atomic(addr);
 750	addr = kmap_atomic(pages[1]);
 751	memcpy(buf + sizes[0], addr, sizes[1]);
 752	kunmap_atomic(addr);
 753out:
 754	return area->vm_buf;
 755}
 756
 757static void __zs_unmap_object(struct mapping_area *area,
 758			struct page *pages[2], int off, int size)
 759{
 760	int sizes[2];
 761	void *addr;
 762	char *buf = area->vm_buf;
 763
 764	/* no write fastpath */
 765	if (area->vm_mm == ZS_MM_RO)
 766		goto out;
 767
 
 
 
 
 
 768	sizes[0] = PAGE_SIZE - off;
 769	sizes[1] = size - sizes[0];
 770
 771	/* copy per-cpu buffer to object */
 772	addr = kmap_atomic(pages[0]);
 773	memcpy(addr + off, buf, sizes[0]);
 774	kunmap_atomic(addr);
 775	addr = kmap_atomic(pages[1]);
 776	memcpy(addr, buf + sizes[0], sizes[1]);
 777	kunmap_atomic(addr);
 778
 779out:
 780	/* enable page faults to match kunmap_atomic() return conditions */
 781	pagefault_enable();
 782}
 783
 784#endif /* CONFIG_PGTABLE_MAPPING */
 785
 786static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
 787				void *pcpu)
 788{
 789	int ret, cpu = (long)pcpu;
 790	struct mapping_area *area;
 791
 792	switch (action) {
 793	case CPU_UP_PREPARE:
 794		area = &per_cpu(zs_map_area, cpu);
 795		ret = __zs_cpu_up(area);
 796		if (ret)
 797			return notifier_from_errno(ret);
 798		break;
 799	case CPU_DEAD:
 800	case CPU_UP_CANCELED:
 801		area = &per_cpu(zs_map_area, cpu);
 802		__zs_cpu_down(area);
 803		break;
 804	}
 805
 806	return NOTIFY_OK;
 807}
 808
 809static struct notifier_block zs_cpu_nb = {
 810	.notifier_call = zs_cpu_notifier
 811};
 812
 813static void zs_exit(void)
 814{
 815	int cpu;
 816
 817	cpu_notifier_register_begin();
 
 
 
 
 
 
 
 818
 819	for_each_online_cpu(cpu)
 820		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
 821	__unregister_cpu_notifier(&zs_cpu_nb);
 822
 823	cpu_notifier_register_done();
 824}
 825
 826static int zs_init(void)
 
 827{
 828	int cpu, ret;
 
 
 829
 830	cpu_notifier_register_begin();
 831
 832	__register_cpu_notifier(&zs_cpu_nb);
 833	for_each_online_cpu(cpu) {
 834		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
 835		if (notifier_to_errno(ret)) {
 836			cpu_notifier_register_done();
 837			goto fail;
 838		}
 839	}
 840
 841	cpu_notifier_register_done();
 
 
 
 842
 843	return 0;
 844fail:
 845	zs_exit();
 846	return notifier_to_errno(ret);
 847}
 
 848
 849/**
 850 * zs_create_pool - Creates an allocation pool to work from.
 851 * @flags: allocation flags used to allocate pool metadata
 
 852 *
 853 * This function must be called before anything when using
 854 * the zsmalloc allocator.
 
 855 *
 856 * On success, a pointer to the newly created pool is returned,
 857 * otherwise NULL.
 
 
 858 */
 859struct zs_pool *zs_create_pool(gfp_t flags)
 
 860{
 861	int i, ovhd_size;
 862	struct zs_pool *pool;
 
 
 863
 864	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
 865	pool = kzalloc(ovhd_size, GFP_KERNEL);
 866	if (!pool)
 867		return NULL;
 
 
 868
 869	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 870		int size;
 871		struct size_class *class;
 
 
 
 872
 873		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
 874		if (size > ZS_MAX_ALLOC_SIZE)
 875			size = ZS_MAX_ALLOC_SIZE;
 876
 877		class = &pool->size_class[i];
 878		class->size = size;
 879		class->index = i;
 880		spin_lock_init(&class->lock);
 881		class->pages_per_zspage = get_pages_per_zspage(size);
 
 882
 
 
 
 
 
 
 
 
 
 
 
 883	}
 884
 885	pool->flags = flags;
 
 
 
 886
 887	return pool;
 
 
 
 
 
 888}
 889EXPORT_SYMBOL_GPL(zs_create_pool);
 890
 891void zs_destroy_pool(struct zs_pool *pool)
 892{
 893	int i;
 
 
 
 894
 895	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 896		int fg;
 897		struct size_class *class = &pool->size_class[i];
 
 898
 899		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
 900			if (class->fullness_list[fg]) {
 901				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
 902					class->size, fg);
 903			}
 904		}
 
 
 
 
 
 
 
 
 
 
 
 
 905	}
 906	kfree(pool);
 
 
 
 907}
 908EXPORT_SYMBOL_GPL(zs_destroy_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910/**
 911 * zs_malloc - Allocate block of given size from pool.
 912 * @pool: pool to allocate from
 913 * @size: size of block to allocate
 
 914 *
 915 * On success, handle to the allocated object is returned,
 916 * otherwise 0.
 917 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 918 */
 919unsigned long zs_malloc(struct zs_pool *pool, size_t size)
 920{
 921	unsigned long obj;
 922	struct link_free *link;
 923	int class_idx;
 924	struct size_class *class;
 925
 926	struct page *first_page, *m_page;
 927	unsigned long m_objidx, m_offset;
 928
 929	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
 930		return 0;
 931
 932	class_idx = get_size_class_index(size);
 933	class = &pool->size_class[class_idx];
 934	BUG_ON(class_idx != class->index);
 935
 936	spin_lock(&class->lock);
 937	first_page = find_get_zspage(class);
 
 938
 939	if (!first_page) {
 
 
 
 
 
 
 940		spin_unlock(&class->lock);
 941		first_page = alloc_zspage(class, pool->flags);
 942		if (unlikely(!first_page))
 943			return 0;
 944
 945		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
 946		spin_lock(&class->lock);
 947		class->pages_allocated += class->pages_per_zspage;
 948	}
 949
 950	obj = (unsigned long)first_page->freelist;
 951	obj_handle_to_location(obj, &m_page, &m_objidx);
 952	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
 953
 954	link = (struct link_free *)kmap_atomic(m_page) +
 955					m_offset / sizeof(*link);
 956	first_page->freelist = link->next;
 957	memset(link, POISON_INUSE, sizeof(*link));
 958	kunmap_atomic(link);
 959
 960	first_page->inuse++;
 961	/* Now move the zspage to another fullness group, if required */
 962	fix_fullness_group(pool, first_page);
 963	spin_unlock(&class->lock);
 964
 965	return obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966}
 967EXPORT_SYMBOL_GPL(zs_malloc);
 968
 969void zs_free(struct zs_pool *pool, unsigned long obj)
 970{
 971	struct link_free *link;
 972	struct page *first_page, *f_page;
 973	unsigned long f_objidx, f_offset;
 
 
 
 
 
 
 
 
 974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975	int class_idx;
 976	struct size_class *class;
 977	enum fullness_group fullness;
 
 978
 979	if (unlikely(!obj))
 980		return;
 981
 982	obj_handle_to_location(obj, &f_page, &f_objidx);
 983	first_page = get_first_page(f_page);
 
 
 
 
 984
 985	get_zspage_mapping(first_page, &class_idx, &fullness);
 986	class = &pool->size_class[class_idx];
 987	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
 988
 989	spin_lock(&class->lock);
 
 
 
 
 
 
 990
 991	/* Insert this object in containing zspage's freelist */
 992	link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
 993							+ f_offset);
 994	link->next = first_page->freelist;
 995	kunmap_atomic(link);
 996	first_page->freelist = (void *)obj;
 997
 998	first_page->inuse--;
 999	fullness = fix_fullness_group(pool, first_page);
 
 
 
1000
1001	if (fullness == ZS_EMPTY)
1002		class->pages_allocated -= class->pages_per_zspage;
 
 
 
 
 
 
 
1003
1004	spin_unlock(&class->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005
1006	if (fullness == ZS_EMPTY)
1007		free_zspage(first_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008}
1009EXPORT_SYMBOL_GPL(zs_free);
1010
1011/**
1012 * zs_map_object - get address of allocated object from handle.
1013 * @pool: pool from which the object was allocated
1014 * @handle: handle returned from zs_malloc
1015 *
1016 * Before using an object allocated from zs_malloc, it must be mapped using
1017 * this function. When done with the object, it must be unmapped using
1018 * zs_unmap_object.
1019 *
1020 * Only one object can be mapped per cpu at a time. There is no protection
1021 * against nested mappings.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022 *
1023 * This function returns with preemption and page faults disabled.
1024 */
1025void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1026			enum zs_mapmode mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027{
1028	struct page *page;
1029	unsigned long obj_idx, off;
 
1030
1031	unsigned int class_idx;
1032	enum fullness_group fg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	struct size_class *class;
1034	struct mapping_area *area;
1035	struct page *pages[2];
 
 
 
 
 
 
 
 
 
1036
1037	BUG_ON(!handle);
1038
1039	/*
1040	 * Because we use per-cpu mapping areas shared among the
1041	 * pools/users, we can't allow mapping in interrupt context
1042	 * because it can corrupt another users mappings.
1043	 */
1044	BUG_ON(in_interrupt());
 
 
 
1045
1046	obj_handle_to_location(handle, &page, &obj_idx);
1047	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1048	class = &pool->size_class[class_idx];
1049	off = obj_idx_to_offset(page, obj_idx, class->size);
 
1050
1051	area = &get_cpu_var(zs_map_area);
1052	area->vm_mm = mm;
1053	if (off + class->size <= PAGE_SIZE) {
1054		/* this object is contained entirely within a page */
1055		area->vm_addr = kmap_atomic(page);
1056		return area->vm_addr + off;
1057	}
1058
1059	/* this object spans two pages */
1060	pages[0] = page;
1061	pages[1] = get_next_page(page);
1062	BUG_ON(!pages[1]);
 
 
 
 
 
 
 
1063
1064	return __zs_map_object(area, pages, off, class->size);
1065}
1066EXPORT_SYMBOL_GPL(zs_map_object);
1067
1068void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
 
1069{
1070	struct page *page;
1071	unsigned long obj_idx, off;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	unsigned int class_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074	enum fullness_group fg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075	struct size_class *class;
1076	struct mapping_area *area;
 
 
 
 
 
 
 
 
 
 
1077
1078	BUG_ON(!handle);
 
 
 
1079
1080	obj_handle_to_location(handle, &page, &obj_idx);
1081	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1082	class = &pool->size_class[class_idx];
1083	off = obj_idx_to_offset(page, obj_idx, class->size);
1084
1085	area = &__get_cpu_var(zs_map_area);
1086	if (off + class->size <= PAGE_SIZE)
1087		kunmap_atomic(area->vm_addr);
1088	else {
1089		struct page *pages[2];
 
 
 
 
 
 
 
1090
1091		pages[0] = page;
1092		pages[1] = get_next_page(page);
1093		BUG_ON(!pages[1]);
 
1094
1095		__zs_unmap_object(area, pages, off, class->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096	}
1097	put_cpu_var(zs_map_area);
 
 
 
 
1098}
1099EXPORT_SYMBOL_GPL(zs_unmap_object);
1100
1101u64 zs_get_total_size_bytes(struct zs_pool *pool)
1102{
1103	int i;
1104	u64 npages = 0;
 
 
 
 
 
 
 
 
 
1105
1106	for (i = 0; i < ZS_SIZE_CLASSES; i++)
1107		npages += pool->size_class[i].pages_allocated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108
1109	return npages << PAGE_SHIFT;
1110}
1111EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
1112
1113module_init(zs_init);
1114module_exit(zs_exit);
1115
1116MODULE_LICENSE("Dual BSD/GPL");
1117MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
v4.10.11
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->freelist(index): links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->units: first object offset in a subpage of zspage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_private2: identifies the last component page
  28 *	PG_owner_priv_1: indentifies the huge component page
  29 *
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 
 
  33
  34#include <linux/module.h>
  35#include <linux/kernel.h>
  36#include <linux/sched.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
  42#include <asm/tlbflush.h>
  43#include <asm/pgtable.h>
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/types.h>
  50#include <linux/debugfs.h>
  51#include <linux/zsmalloc.h>
  52#include <linux/zpool.h>
  53#include <linux/mount.h>
  54#include <linux/migrate.h>
  55#include <linux/pagemap.h>
  56
  57#define ZSPAGE_MAGIC	0x58
  58
  59/*
  60 * This must be power of 2 and greater than of equal to sizeof(link_free).
  61 * These two conditions ensure that any 'struct link_free' itself doesn't
  62 * span more than 1 page which avoids complex case of mapping 2 pages simply
  63 * to restore link_free pointer values.
  64 */
  65#define ZS_ALIGN		8
  66
  67/*
  68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  70 */
  71#define ZS_MAX_ZSPAGE_ORDER 2
  72#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  73
  74#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  75
  76/*
  77 * Object location (<PFN>, <obj_idx>) is encoded as
  78 * as single (unsigned long) handle value.
  79 *
  80 * Note that object index <obj_idx> starts from 0.
 
 
  81 *
  82 * This is made more complicated by various memory models and PAE.
  83 */
  84
  85#ifndef MAX_PHYSMEM_BITS
  86#ifdef CONFIG_HIGHMEM64G
  87#define MAX_PHYSMEM_BITS 36
  88#else /* !CONFIG_HIGHMEM64G */
  89/*
  90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  91 * be PAGE_SHIFT
  92 */
  93#define MAX_PHYSMEM_BITS BITS_PER_LONG
  94#endif
  95#endif
  96#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
  97
  98/*
  99 * Memory for allocating for handle keeps object position by
 100 * encoding <page, obj_idx> and the encoded value has a room
 101 * in least bit(ie, look at obj_to_location).
 102 * We use the bit to synchronize between object access by
 103 * user and migration.
 104 */
 105#define HANDLE_PIN_BIT	0
 106
 107/*
 108 * Head in allocated object should have OBJ_ALLOCATED_TAG
 109 * to identify the object was allocated or not.
 110 * It's okay to add the status bit in the least bit because
 111 * header keeps handle which is 4byte-aligned address so we
 112 * have room for two bit at least.
 113 */
 114#define OBJ_ALLOCATED_TAG 1
 115#define OBJ_TAG_BITS 1
 116#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 117#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 118
 119#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 120/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 121#define ZS_MIN_ALLOC_SIZE \
 122	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 123/* each chunk includes extra space to keep handle */
 124#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 125
 126/*
 127 * On systems with 4K page size, this gives 255 size classes! There is a
 128 * trader-off here:
 129 *  - Large number of size classes is potentially wasteful as free page are
 130 *    spread across these classes
 131 *  - Small number of size classes causes large internal fragmentation
 132 *  - Probably its better to use specific size classes (empirically
 133 *    determined). NOTE: all those class sizes must be set as multiple of
 134 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 135 *
 136 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 137 *  (reason above)
 138 */
 139#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 
 
 140
 
 
 
 141enum fullness_group {
 142	ZS_EMPTY,
 143	ZS_ALMOST_EMPTY,
 144	ZS_ALMOST_FULL,
 145	ZS_FULL,
 146	NR_ZS_FULLNESS,
 147};
 148
 149enum zs_stat_type {
 150	CLASS_EMPTY,
 151	CLASS_ALMOST_EMPTY,
 152	CLASS_ALMOST_FULL,
 153	CLASS_FULL,
 154	OBJ_ALLOCATED,
 155	OBJ_USED,
 156	NR_ZS_STAT_TYPE,
 157};
 158
 159struct zs_size_stat {
 160	unsigned long objs[NR_ZS_STAT_TYPE];
 161};
 162
 163#ifdef CONFIG_ZSMALLOC_STAT
 164static struct dentry *zs_stat_root;
 165#endif
 166
 167#ifdef CONFIG_COMPACTION
 168static struct vfsmount *zsmalloc_mnt;
 169#endif
 170
 171/*
 172 * number of size_classes
 173 */
 174static int zs_size_classes;
 175
 176/*
 177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 178 *	n <= N / f, where
 179 * n = number of allocated objects
 180 * N = total number of objects zspage can store
 181 * f = fullness_threshold_frac
 182 *
 183 * Similarly, we assign zspage to:
 184 *	ZS_ALMOST_FULL	when n > N / f
 185 *	ZS_EMPTY	when n == 0
 186 *	ZS_FULL		when n == N
 187 *
 188 * (see: fix_fullness_group())
 189 */
 190static const int fullness_threshold_frac = 4;
 191
 192struct size_class {
 193	spinlock_t lock;
 194	struct list_head fullness_list[NR_ZS_FULLNESS];
 195	/*
 196	 * Size of objects stored in this class. Must be multiple
 197	 * of ZS_ALIGN.
 198	 */
 199	int size;
 200	int objs_per_zspage;
 
 201	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 202	int pages_per_zspage;
 203
 204	unsigned int index;
 205	struct zs_size_stat stats;
 206};
 207
 208/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 209static void SetPageHugeObject(struct page *page)
 210{
 211	SetPageOwnerPriv1(page);
 212}
 213
 214static void ClearPageHugeObject(struct page *page)
 215{
 216	ClearPageOwnerPriv1(page);
 217}
 218
 219static int PageHugeObject(struct page *page)
 220{
 221	return PageOwnerPriv1(page);
 222}
 223
 224/*
 225 * Placed within free objects to form a singly linked list.
 226 * For every zspage, zspage->freeobj gives head of this list.
 227 *
 228 * This must be power of 2 and less than or equal to ZS_ALIGN
 229 */
 230struct link_free {
 231	union {
 232		/*
 233		 * Free object index;
 234		 * It's valid for non-allocated object
 235		 */
 236		unsigned long next;
 237		/*
 238		 * Handle of allocated object.
 239		 */
 240		unsigned long handle;
 241	};
 242};
 243
 244struct zs_pool {
 245	const char *name;
 246
 247	struct size_class **size_class;
 248	struct kmem_cache *handle_cachep;
 249	struct kmem_cache *zspage_cachep;
 250
 251	atomic_long_t pages_allocated;
 252
 253	struct zs_pool_stats stats;
 254
 255	/* Compact classes */
 256	struct shrinker shrinker;
 257	/*
 258	 * To signify that register_shrinker() was successful
 259	 * and unregister_shrinker() will not Oops.
 260	 */
 261	bool shrinker_enabled;
 262#ifdef CONFIG_ZSMALLOC_STAT
 263	struct dentry *stat_dentry;
 264#endif
 265#ifdef CONFIG_COMPACTION
 266	struct inode *inode;
 267	struct work_struct free_work;
 268#endif
 269};
 270
 271/*
 272 * A zspage's class index and fullness group
 273 * are encoded in its (first)page->mapping
 274 */
 275#define FULLNESS_BITS	2
 276#define CLASS_BITS	8
 277#define ISOLATED_BITS	3
 278#define MAGIC_VAL_BITS	8
 279
 280struct zspage {
 281	struct {
 282		unsigned int fullness:FULLNESS_BITS;
 283		unsigned int class:CLASS_BITS;
 284		unsigned int isolated:ISOLATED_BITS;
 285		unsigned int magic:MAGIC_VAL_BITS;
 286	};
 287	unsigned int inuse;
 288	unsigned int freeobj;
 289	struct page *first_page;
 290	struct list_head list; /* fullness list */
 291#ifdef CONFIG_COMPACTION
 292	rwlock_t lock;
 293#endif
 294};
 295
 296struct mapping_area {
 297#ifdef CONFIG_PGTABLE_MAPPING
 298	struct vm_struct *vm; /* vm area for mapping object that span pages */
 299#else
 300	char *vm_buf; /* copy buffer for objects that span pages */
 301#endif
 302	char *vm_addr; /* address of kmap_atomic()'ed pages */
 303	enum zs_mapmode vm_mm; /* mapping mode */
 304};
 305
 306#ifdef CONFIG_COMPACTION
 307static int zs_register_migration(struct zs_pool *pool);
 308static void zs_unregister_migration(struct zs_pool *pool);
 309static void migrate_lock_init(struct zspage *zspage);
 310static void migrate_read_lock(struct zspage *zspage);
 311static void migrate_read_unlock(struct zspage *zspage);
 312static void kick_deferred_free(struct zs_pool *pool);
 313static void init_deferred_free(struct zs_pool *pool);
 314static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 315#else
 316static int zsmalloc_mount(void) { return 0; }
 317static void zsmalloc_unmount(void) {}
 318static int zs_register_migration(struct zs_pool *pool) { return 0; }
 319static void zs_unregister_migration(struct zs_pool *pool) {}
 320static void migrate_lock_init(struct zspage *zspage) {}
 321static void migrate_read_lock(struct zspage *zspage) {}
 322static void migrate_read_unlock(struct zspage *zspage) {}
 323static void kick_deferred_free(struct zs_pool *pool) {}
 324static void init_deferred_free(struct zs_pool *pool) {}
 325static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 326#endif
 327
 328static int create_cache(struct zs_pool *pool)
 329{
 330	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 331					0, 0, NULL);
 332	if (!pool->handle_cachep)
 333		return 1;
 334
 335	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 336					0, 0, NULL);
 337	if (!pool->zspage_cachep) {
 338		kmem_cache_destroy(pool->handle_cachep);
 339		pool->handle_cachep = NULL;
 340		return 1;
 341	}
 342
 343	return 0;
 344}
 345
 346static void destroy_cache(struct zs_pool *pool)
 347{
 348	kmem_cache_destroy(pool->handle_cachep);
 349	kmem_cache_destroy(pool->zspage_cachep);
 350}
 351
 352static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 353{
 354	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 355			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 356}
 357
 358static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 359{
 360	kmem_cache_free(pool->handle_cachep, (void *)handle);
 361}
 362
 363static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 364{
 365	return kmem_cache_alloc(pool->zspage_cachep,
 366			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 367};
 368
 369static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 370{
 371	kmem_cache_free(pool->zspage_cachep, zspage);
 372}
 373
 374static void record_obj(unsigned long handle, unsigned long obj)
 375{
 376	/*
 377	 * lsb of @obj represents handle lock while other bits
 378	 * represent object value the handle is pointing so
 379	 * updating shouldn't do store tearing.
 380	 */
 381	WRITE_ONCE(*(unsigned long *)handle, obj);
 382}
 383
 384/* zpool driver */
 385
 386#ifdef CONFIG_ZPOOL
 387
 388static void *zs_zpool_create(const char *name, gfp_t gfp,
 389			     const struct zpool_ops *zpool_ops,
 390			     struct zpool *zpool)
 391{
 392	/*
 393	 * Ignore global gfp flags: zs_malloc() may be invoked from
 394	 * different contexts and its caller must provide a valid
 395	 * gfp mask.
 396	 */
 397	return zs_create_pool(name);
 398}
 399
 400static void zs_zpool_destroy(void *pool)
 401{
 402	zs_destroy_pool(pool);
 403}
 404
 405static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 406			unsigned long *handle)
 407{
 408	*handle = zs_malloc(pool, size, gfp);
 409	return *handle ? 0 : -1;
 410}
 411static void zs_zpool_free(void *pool, unsigned long handle)
 412{
 413	zs_free(pool, handle);
 414}
 415
 416static int zs_zpool_shrink(void *pool, unsigned int pages,
 417			unsigned int *reclaimed)
 418{
 419	return -EINVAL;
 420}
 421
 422static void *zs_zpool_map(void *pool, unsigned long handle,
 423			enum zpool_mapmode mm)
 424{
 425	enum zs_mapmode zs_mm;
 426
 427	switch (mm) {
 428	case ZPOOL_MM_RO:
 429		zs_mm = ZS_MM_RO;
 430		break;
 431	case ZPOOL_MM_WO:
 432		zs_mm = ZS_MM_WO;
 433		break;
 434	case ZPOOL_MM_RW: /* fallthru */
 435	default:
 436		zs_mm = ZS_MM_RW;
 437		break;
 438	}
 439
 440	return zs_map_object(pool, handle, zs_mm);
 441}
 442static void zs_zpool_unmap(void *pool, unsigned long handle)
 443{
 444	zs_unmap_object(pool, handle);
 445}
 446
 447static u64 zs_zpool_total_size(void *pool)
 448{
 449	return zs_get_total_pages(pool) << PAGE_SHIFT;
 450}
 451
 452static struct zpool_driver zs_zpool_driver = {
 453	.type =		"zsmalloc",
 454	.owner =	THIS_MODULE,
 455	.create =	zs_zpool_create,
 456	.destroy =	zs_zpool_destroy,
 457	.malloc =	zs_zpool_malloc,
 458	.free =		zs_zpool_free,
 459	.shrink =	zs_zpool_shrink,
 460	.map =		zs_zpool_map,
 461	.unmap =	zs_zpool_unmap,
 462	.total_size =	zs_zpool_total_size,
 463};
 464
 465MODULE_ALIAS("zpool-zsmalloc");
 466#endif /* CONFIG_ZPOOL */
 467
 468/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 469static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 470
 471static bool is_zspage_isolated(struct zspage *zspage)
 472{
 473	return zspage->isolated;
 474}
 475
 476static int is_first_page(struct page *page)
 477{
 478	return PagePrivate(page);
 479}
 480
 481/* Protected by class->lock */
 482static inline int get_zspage_inuse(struct zspage *zspage)
 483{
 484	return zspage->inuse;
 485}
 486
 487static inline void set_zspage_inuse(struct zspage *zspage, int val)
 488{
 489	zspage->inuse = val;
 490}
 491
 492static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 493{
 494	zspage->inuse += val;
 495}
 496
 497static inline struct page *get_first_page(struct zspage *zspage)
 498{
 499	struct page *first_page = zspage->first_page;
 500
 501	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 502	return first_page;
 503}
 504
 505static inline int get_first_obj_offset(struct page *page)
 506{
 507	return page->units;
 508}
 509
 510static inline void set_first_obj_offset(struct page *page, int offset)
 511{
 512	page->units = offset;
 513}
 514
 515static inline unsigned int get_freeobj(struct zspage *zspage)
 516{
 517	return zspage->freeobj;
 518}
 519
 520static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 521{
 522	zspage->freeobj = obj;
 523}
 524
 525static void get_zspage_mapping(struct zspage *zspage,
 526				unsigned int *class_idx,
 527				enum fullness_group *fullness)
 528{
 529	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 
 530
 531	*fullness = zspage->fullness;
 532	*class_idx = zspage->class;
 
 533}
 534
 535static void set_zspage_mapping(struct zspage *zspage,
 536				unsigned int class_idx,
 537				enum fullness_group fullness)
 538{
 539	zspage->class = class_idx;
 540	zspage->fullness = fullness;
 
 
 
 
 541}
 542
 543/*
 544 * zsmalloc divides the pool into various size classes where each
 545 * class maintains a list of zspages where each zspage is divided
 546 * into equal sized chunks. Each allocation falls into one of these
 547 * classes depending on its size. This function returns index of the
 548 * size class which has chunk size big enough to hold the give size.
 549 */
 550static int get_size_class_index(int size)
 551{
 552	int idx = 0;
 553
 554	if (likely(size > ZS_MIN_ALLOC_SIZE))
 555		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 556				ZS_SIZE_CLASS_DELTA);
 557
 558	return min(zs_size_classes - 1, idx);
 559}
 560
 561static inline void zs_stat_inc(struct size_class *class,
 562				enum zs_stat_type type, unsigned long cnt)
 563{
 564	class->stats.objs[type] += cnt;
 565}
 566
 567static inline void zs_stat_dec(struct size_class *class,
 568				enum zs_stat_type type, unsigned long cnt)
 569{
 570	class->stats.objs[type] -= cnt;
 571}
 572
 573static inline unsigned long zs_stat_get(struct size_class *class,
 574				enum zs_stat_type type)
 575{
 576	return class->stats.objs[type];
 577}
 578
 579#ifdef CONFIG_ZSMALLOC_STAT
 580
 581static void __init zs_stat_init(void)
 582{
 583	if (!debugfs_initialized()) {
 584		pr_warn("debugfs not available, stat dir not created\n");
 585		return;
 586	}
 587
 588	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 589	if (!zs_stat_root)
 590		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
 591}
 592
 593static void __exit zs_stat_exit(void)
 594{
 595	debugfs_remove_recursive(zs_stat_root);
 596}
 597
 598static unsigned long zs_can_compact(struct size_class *class);
 599
 600static int zs_stats_size_show(struct seq_file *s, void *v)
 601{
 602	int i;
 603	struct zs_pool *pool = s->private;
 604	struct size_class *class;
 605	int objs_per_zspage;
 606	unsigned long class_almost_full, class_almost_empty;
 607	unsigned long obj_allocated, obj_used, pages_used, freeable;
 608	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 609	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 610	unsigned long total_freeable = 0;
 611
 612	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 613			"class", "size", "almost_full", "almost_empty",
 614			"obj_allocated", "obj_used", "pages_used",
 615			"pages_per_zspage", "freeable");
 616
 617	for (i = 0; i < zs_size_classes; i++) {
 618		class = pool->size_class[i];
 619
 620		if (class->index != i)
 621			continue;
 622
 623		spin_lock(&class->lock);
 624		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 625		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 626		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 627		obj_used = zs_stat_get(class, OBJ_USED);
 628		freeable = zs_can_compact(class);
 629		spin_unlock(&class->lock);
 630
 631		objs_per_zspage = class->objs_per_zspage;
 632		pages_used = obj_allocated / objs_per_zspage *
 633				class->pages_per_zspage;
 634
 635		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 636				" %10lu %10lu %16d %8lu\n",
 637			i, class->size, class_almost_full, class_almost_empty,
 638			obj_allocated, obj_used, pages_used,
 639			class->pages_per_zspage, freeable);
 640
 641		total_class_almost_full += class_almost_full;
 642		total_class_almost_empty += class_almost_empty;
 643		total_objs += obj_allocated;
 644		total_used_objs += obj_used;
 645		total_pages += pages_used;
 646		total_freeable += freeable;
 647	}
 648
 649	seq_puts(s, "\n");
 650	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 651			"Total", "", total_class_almost_full,
 652			total_class_almost_empty, total_objs,
 653			total_used_objs, total_pages, "", total_freeable);
 654
 655	return 0;
 656}
 657
 658static int zs_stats_size_open(struct inode *inode, struct file *file)
 659{
 660	return single_open(file, zs_stats_size_show, inode->i_private);
 661}
 662
 663static const struct file_operations zs_stat_size_ops = {
 664	.open           = zs_stats_size_open,
 665	.read           = seq_read,
 666	.llseek         = seq_lseek,
 667	.release        = single_release,
 668};
 669
 670static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 671{
 672	struct dentry *entry;
 673
 674	if (!zs_stat_root) {
 675		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 676		return;
 677	}
 678
 679	entry = debugfs_create_dir(name, zs_stat_root);
 680	if (!entry) {
 681		pr_warn("debugfs dir <%s> creation failed\n", name);
 682		return;
 683	}
 684	pool->stat_dentry = entry;
 685
 686	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
 687			pool->stat_dentry, pool, &zs_stat_size_ops);
 688	if (!entry) {
 689		pr_warn("%s: debugfs file entry <%s> creation failed\n",
 690				name, "classes");
 691		debugfs_remove_recursive(pool->stat_dentry);
 692		pool->stat_dentry = NULL;
 693	}
 694}
 695
 696static void zs_pool_stat_destroy(struct zs_pool *pool)
 697{
 698	debugfs_remove_recursive(pool->stat_dentry);
 699}
 700
 701#else /* CONFIG_ZSMALLOC_STAT */
 702static void __init zs_stat_init(void)
 703{
 704}
 705
 706static void __exit zs_stat_exit(void)
 707{
 708}
 709
 710static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 711{
 712}
 713
 714static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 715{
 716}
 717#endif
 718
 719
 720/*
 721 * For each size class, zspages are divided into different groups
 722 * depending on how "full" they are. This was done so that we could
 723 * easily find empty or nearly empty zspages when we try to shrink
 724 * the pool (not yet implemented). This function returns fullness
 725 * status of the given page.
 726 */
 727static enum fullness_group get_fullness_group(struct size_class *class,
 728						struct zspage *zspage)
 729{
 730	int inuse, objs_per_zspage;
 731	enum fullness_group fg;
 
 732
 733	inuse = get_zspage_inuse(zspage);
 734	objs_per_zspage = class->objs_per_zspage;
 735
 736	if (inuse == 0)
 737		fg = ZS_EMPTY;
 738	else if (inuse == objs_per_zspage)
 739		fg = ZS_FULL;
 740	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 741		fg = ZS_ALMOST_EMPTY;
 742	else
 743		fg = ZS_ALMOST_FULL;
 744
 745	return fg;
 746}
 747
 748/*
 749 * Each size class maintains various freelists and zspages are assigned
 750 * to one of these freelists based on the number of live objects they
 751 * have. This functions inserts the given zspage into the freelist
 752 * identified by <class, fullness_group>.
 753 */
 754static void insert_zspage(struct size_class *class,
 755				struct zspage *zspage,
 756				enum fullness_group fullness)
 757{
 758	struct zspage *head;
 
 
 
 
 
 
 
 
 
 759
 760	zs_stat_inc(class, fullness, 1);
 761	head = list_first_entry_or_null(&class->fullness_list[fullness],
 762					struct zspage, list);
 763	/*
 764	 * We want to see more ZS_FULL pages and less almost empty/full.
 765	 * Put pages with higher ->inuse first.
 766	 */
 767	if (head) {
 768		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
 769			list_add(&zspage->list, &head->list);
 770			return;
 771		}
 772	}
 773	list_add(&zspage->list, &class->fullness_list[fullness]);
 774}
 775
 776/*
 777 * This function removes the given zspage from the freelist identified
 778 * by <class, fullness_group>.
 779 */
 780static void remove_zspage(struct size_class *class,
 781				struct zspage *zspage,
 782				enum fullness_group fullness)
 783{
 784	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 785	VM_BUG_ON(is_zspage_isolated(zspage));
 
 
 
 
 786
 787	list_del_init(&zspage->list);
 788	zs_stat_dec(class, fullness, 1);
 
 
 
 
 
 
 
 789}
 790
 791/*
 792 * Each size class maintains zspages in different fullness groups depending
 793 * on the number of live objects they contain. When allocating or freeing
 794 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 795 * to ALMOST_EMPTY when freeing an object. This function checks if such
 796 * a status change has occurred for the given page and accordingly moves the
 797 * page from the freelist of the old fullness group to that of the new
 798 * fullness group.
 799 */
 800static enum fullness_group fix_fullness_group(struct size_class *class,
 801						struct zspage *zspage)
 802{
 803	int class_idx;
 
 804	enum fullness_group currfg, newfg;
 805
 806	get_zspage_mapping(zspage, &class_idx, &currfg);
 807	newfg = get_fullness_group(class, zspage);
 
 
 808	if (newfg == currfg)
 809		goto out;
 810
 811	if (!is_zspage_isolated(zspage)) {
 812		remove_zspage(class, zspage, currfg);
 813		insert_zspage(class, zspage, newfg);
 814	}
 815
 816	set_zspage_mapping(zspage, class_idx, newfg);
 817
 818out:
 819	return newfg;
 820}
 821
 822/*
 823 * We have to decide on how many pages to link together
 824 * to form a zspage for each size class. This is important
 825 * to reduce wastage due to unusable space left at end of
 826 * each zspage which is given as:
 827 *     wastage = Zp % class_size
 828 *     usage = Zp - wastage
 829 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 830 *
 831 * For example, for size class of 3/8 * PAGE_SIZE, we should
 832 * link together 3 PAGE_SIZE sized pages to form a zspage
 833 * since then we can perfectly fit in 8 such objects.
 834 */
 835static int get_pages_per_zspage(int class_size)
 836{
 837	int i, max_usedpc = 0;
 838	/* zspage order which gives maximum used size per KB */
 839	int max_usedpc_order = 1;
 840
 841	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 842		int zspage_size;
 843		int waste, usedpc;
 844
 845		zspage_size = i * PAGE_SIZE;
 846		waste = zspage_size % class_size;
 847		usedpc = (zspage_size - waste) * 100 / zspage_size;
 848
 849		if (usedpc > max_usedpc) {
 850			max_usedpc = usedpc;
 851			max_usedpc_order = i;
 852		}
 853	}
 854
 855	return max_usedpc_order;
 856}
 857
 858static struct zspage *get_zspage(struct page *page)
 
 
 
 
 
 859{
 860	struct zspage *zspage = (struct zspage *)page->private;
 861
 862	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 863	return zspage;
 864}
 865
 866static struct page *get_next_page(struct page *page)
 867{
 868	if (unlikely(PageHugeObject(page)))
 869		return NULL;
 870
 871	return page->freelist;
 872}
 
 
 
 
 873
 874/**
 875 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 876 * @page: page object resides in zspage
 877 * @obj_idx: object index
 878 */
 879static void obj_to_location(unsigned long obj, struct page **page,
 880				unsigned int *obj_idx)
 881{
 882	obj >>= OBJ_TAG_BITS;
 883	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 884	*obj_idx = (obj & OBJ_INDEX_MASK);
 885}
 886
 887/**
 888 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 889 * @page: page object resides in zspage
 890 * @obj_idx: object index
 
 891 */
 892static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 893{
 894	unsigned long obj;
 895
 896	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 897	obj |= obj_idx & OBJ_INDEX_MASK;
 898	obj <<= OBJ_TAG_BITS;
 
 899
 900	return obj;
 901}
 902
 903static unsigned long handle_to_obj(unsigned long handle)
 904{
 905	return *(unsigned long *)handle;
 906}
 907
 908static unsigned long obj_to_head(struct page *page, void *obj)
 
 
 
 
 
 
 909{
 910	if (unlikely(PageHugeObject(page))) {
 911		VM_BUG_ON_PAGE(!is_first_page(page), page);
 912		return page->index;
 913	} else
 914		return *(unsigned long *)obj;
 915}
 916
 917static inline int testpin_tag(unsigned long handle)
 
 918{
 919	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 920}
 921
 922static inline int trypin_tag(unsigned long handle)
 923{
 924	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 925}
 926
 927static void pin_tag(unsigned long handle)
 928{
 929	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 930}
 931
 932static void unpin_tag(unsigned long handle)
 933{
 934	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 935}
 936
 937static void reset_page(struct page *page)
 938{
 939	__ClearPageMovable(page);
 940	ClearPagePrivate(page);
 941	ClearPagePrivate2(page);
 942	set_page_private(page, 0);
 
 
 943	page_mapcount_reset(page);
 944	ClearPageHugeObject(page);
 945	page->freelist = NULL;
 946}
 947
 948/*
 949 * To prevent zspage destroy during migration, zspage freeing should
 950 * hold locks of all pages in the zspage.
 951 */
 952void lock_zspage(struct zspage *zspage)
 953{
 954	struct page *page = get_first_page(zspage);
 955
 956	do {
 957		lock_page(page);
 958	} while ((page = get_next_page(page)) != NULL);
 959}
 960
 961int trylock_zspage(struct zspage *zspage)
 962{
 963	struct page *cursor, *fail;
 964
 965	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 966					get_next_page(cursor)) {
 967		if (!trylock_page(cursor)) {
 968			fail = cursor;
 969			goto unlock;
 970		}
 971	}
 972
 973	return 1;
 974unlock:
 975	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 976					get_next_page(cursor))
 977		unlock_page(cursor);
 978
 979	return 0;
 980}
 981
 982static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 983				struct zspage *zspage)
 984{
 985	struct page *page, *next;
 986	enum fullness_group fg;
 987	unsigned int class_idx;
 988
 989	get_zspage_mapping(zspage, &class_idx, &fg);
 990
 991	assert_spin_locked(&class->lock);
 992
 993	VM_BUG_ON(get_zspage_inuse(zspage));
 994	VM_BUG_ON(fg != ZS_EMPTY);
 995
 996	next = page = get_first_page(zspage);
 997	do {
 998		VM_BUG_ON_PAGE(!PageLocked(page), page);
 999		next = get_next_page(page);
1000		reset_page(page);
1001		unlock_page(page);
1002		dec_zone_page_state(page, NR_ZSPAGES);
1003		put_page(page);
1004		page = next;
1005	} while (page != NULL);
1006
1007	cache_free_zspage(pool, zspage);
1008
1009	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1010	atomic_long_sub(class->pages_per_zspage,
1011					&pool->pages_allocated);
1012}
1013
1014static void free_zspage(struct zs_pool *pool, struct size_class *class,
1015				struct zspage *zspage)
1016{
1017	VM_BUG_ON(get_zspage_inuse(zspage));
1018	VM_BUG_ON(list_empty(&zspage->list));
1019
1020	if (!trylock_zspage(zspage)) {
1021		kick_deferred_free(pool);
1022		return;
1023	}
1024
1025	remove_zspage(class, zspage, ZS_EMPTY);
1026	__free_zspage(pool, class, zspage);
1027}
1028
1029/* Initialize a newly allocated zspage */
1030static void init_zspage(struct size_class *class, struct zspage *zspage)
1031{
1032	unsigned int freeobj = 1;
1033	unsigned long off = 0;
1034	struct page *page = get_first_page(zspage);
1035
 
1036	while (page) {
1037		struct page *next_page;
1038		struct link_free *link;
1039		void *vaddr;
1040
1041		set_first_obj_offset(page, off);
 
 
 
 
 
 
 
1042
1043		vaddr = kmap_atomic(page);
1044		link = (struct link_free *)vaddr + off / sizeof(*link);
1045
1046		while ((off += class->size) < PAGE_SIZE) {
1047			link->next = freeobj++ << OBJ_TAG_BITS;
1048			link += class->size / sizeof(*link);
 
 
 
 
1049		}
1050
1051		/*
1052		 * We now come to the last (full or partial) object on this
1053		 * page, which must point to the first object on the next
1054		 * page (if present)
1055		 */
1056		next_page = get_next_page(page);
1057		if (next_page) {
1058			link->next = freeobj++ << OBJ_TAG_BITS;
1059		} else {
1060			/*
1061			 * Reset OBJ_TAG_BITS bit to last link to tell
1062			 * whether it's allocated object or not.
1063			 */
1064			link->next = -1 << OBJ_TAG_BITS;
1065		}
1066		kunmap_atomic(vaddr);
1067		page = next_page;
1068		off %= PAGE_SIZE;
1069	}
1070
1071	set_freeobj(zspage, 0);
1072}
1073
1074static void create_page_chain(struct size_class *class, struct zspage *zspage,
1075				struct page *pages[])
 
 
1076{
1077	int i;
1078	struct page *page;
1079	struct page *prev_page = NULL;
1080	int nr_pages = class->pages_per_zspage;
1081
1082	/*
1083	 * Allocate individual pages and link them together as:
1084	 * 1. all pages are linked together using page->freelist
1085	 * 2. each sub-page point to zspage using page->private
 
1086	 *
1087	 * we set PG_private to identify the first page (i.e. no other sub-page
1088	 * has this flag set) and PG_private_2 to identify the last page.
 
 
1089	 */
1090	for (i = 0; i < nr_pages; i++) {
1091		page = pages[i];
1092		set_page_private(page, (unsigned long)zspage);
1093		page->freelist = NULL;
1094		if (i == 0) {
1095			zspage->first_page = page;
 
 
 
 
1096			SetPagePrivate(page);
1097			if (unlikely(class->objs_per_zspage == 1 &&
1098					class->pages_per_zspage == 1))
1099				SetPageHugeObject(page);
1100		} else {
1101			prev_page->freelist = page;
1102		}
1103		if (i == nr_pages - 1)
 
 
 
 
 
 
1104			SetPagePrivate2(page);
1105		prev_page = page;
1106	}
1107}
1108
1109/*
1110 * Allocate a zspage for the given size class
1111 */
1112static struct zspage *alloc_zspage(struct zs_pool *pool,
1113					struct size_class *class,
1114					gfp_t gfp)
1115{
1116	int i;
1117	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1118	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1119
1120	if (!zspage)
1121		return NULL;
1122
1123	memset(zspage, 0, sizeof(struct zspage));
1124	zspage->magic = ZSPAGE_MAGIC;
1125	migrate_lock_init(zspage);
1126
1127	for (i = 0; i < class->pages_per_zspage; i++) {
1128		struct page *page;
1129
1130		page = alloc_page(gfp);
1131		if (!page) {
1132			while (--i >= 0) {
1133				dec_zone_page_state(pages[i], NR_ZSPAGES);
1134				__free_page(pages[i]);
1135			}
1136			cache_free_zspage(pool, zspage);
1137			return NULL;
1138		}
1139
1140		inc_zone_page_state(page, NR_ZSPAGES);
1141		pages[i] = page;
1142	}
1143
1144	create_page_chain(class, zspage, pages);
1145	init_zspage(class, zspage);
1146
1147	return zspage;
1148}
1149
1150static struct zspage *find_get_zspage(struct size_class *class)
1151{
1152	int i;
1153	struct zspage *zspage;
1154
1155	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1156		zspage = list_first_entry_or_null(&class->fullness_list[i],
1157				struct zspage, list);
1158		if (zspage)
1159			break;
1160	}
1161
1162	return zspage;
1163}
1164
1165#ifdef CONFIG_PGTABLE_MAPPING
1166static inline int __zs_cpu_up(struct mapping_area *area)
1167{
1168	/*
1169	 * Make sure we don't leak memory if a cpu UP notification
1170	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1171	 */
1172	if (area->vm)
1173		return 0;
1174	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1175	if (!area->vm)
1176		return -ENOMEM;
1177	return 0;
1178}
1179
1180static inline void __zs_cpu_down(struct mapping_area *area)
1181{
1182	if (area->vm)
1183		free_vm_area(area->vm);
1184	area->vm = NULL;
1185}
1186
1187static inline void *__zs_map_object(struct mapping_area *area,
1188				struct page *pages[2], int off, int size)
1189{
1190	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1191	area->vm_addr = area->vm->addr;
1192	return area->vm_addr + off;
1193}
1194
1195static inline void __zs_unmap_object(struct mapping_area *area,
1196				struct page *pages[2], int off, int size)
1197{
1198	unsigned long addr = (unsigned long)area->vm_addr;
1199
1200	unmap_kernel_range(addr, PAGE_SIZE * 2);
1201}
1202
1203#else /* CONFIG_PGTABLE_MAPPING */
1204
1205static inline int __zs_cpu_up(struct mapping_area *area)
1206{
1207	/*
1208	 * Make sure we don't leak memory if a cpu UP notification
1209	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1210	 */
1211	if (area->vm_buf)
1212		return 0;
1213	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1214	if (!area->vm_buf)
1215		return -ENOMEM;
1216	return 0;
1217}
1218
1219static inline void __zs_cpu_down(struct mapping_area *area)
1220{
1221	kfree(area->vm_buf);
 
1222	area->vm_buf = NULL;
1223}
1224
1225static void *__zs_map_object(struct mapping_area *area,
1226			struct page *pages[2], int off, int size)
1227{
1228	int sizes[2];
1229	void *addr;
1230	char *buf = area->vm_buf;
1231
1232	/* disable page faults to match kmap_atomic() return conditions */
1233	pagefault_disable();
1234
1235	/* no read fastpath */
1236	if (area->vm_mm == ZS_MM_WO)
1237		goto out;
1238
1239	sizes[0] = PAGE_SIZE - off;
1240	sizes[1] = size - sizes[0];
1241
1242	/* copy object to per-cpu buffer */
1243	addr = kmap_atomic(pages[0]);
1244	memcpy(buf, addr + off, sizes[0]);
1245	kunmap_atomic(addr);
1246	addr = kmap_atomic(pages[1]);
1247	memcpy(buf + sizes[0], addr, sizes[1]);
1248	kunmap_atomic(addr);
1249out:
1250	return area->vm_buf;
1251}
1252
1253static void __zs_unmap_object(struct mapping_area *area,
1254			struct page *pages[2], int off, int size)
1255{
1256	int sizes[2];
1257	void *addr;
1258	char *buf;
1259
1260	/* no write fastpath */
1261	if (area->vm_mm == ZS_MM_RO)
1262		goto out;
1263
1264	buf = area->vm_buf;
1265	buf = buf + ZS_HANDLE_SIZE;
1266	size -= ZS_HANDLE_SIZE;
1267	off += ZS_HANDLE_SIZE;
1268
1269	sizes[0] = PAGE_SIZE - off;
1270	sizes[1] = size - sizes[0];
1271
1272	/* copy per-cpu buffer to object */
1273	addr = kmap_atomic(pages[0]);
1274	memcpy(addr + off, buf, sizes[0]);
1275	kunmap_atomic(addr);
1276	addr = kmap_atomic(pages[1]);
1277	memcpy(addr, buf + sizes[0], sizes[1]);
1278	kunmap_atomic(addr);
1279
1280out:
1281	/* enable page faults to match kunmap_atomic() return conditions */
1282	pagefault_enable();
1283}
1284
1285#endif /* CONFIG_PGTABLE_MAPPING */
1286
1287static int zs_cpu_prepare(unsigned int cpu)
 
1288{
 
1289	struct mapping_area *area;
1290
1291	area = &per_cpu(zs_map_area, cpu);
1292	return __zs_cpu_up(area);
 
 
 
 
 
 
 
 
 
 
 
 
 
1293}
1294
1295static int zs_cpu_dead(unsigned int cpu)
 
 
 
 
1296{
1297	struct mapping_area *area;
1298
1299	area = &per_cpu(zs_map_area, cpu);
1300	__zs_cpu_down(area);
1301	return 0;
1302}
1303
1304static void __init init_zs_size_classes(void)
1305{
1306	int nr;
1307
1308	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1309	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1310		nr += 1;
1311
1312	zs_size_classes = nr;
1313}
1314
1315static bool can_merge(struct size_class *prev, int pages_per_zspage,
1316					int objs_per_zspage)
1317{
1318	if (prev->pages_per_zspage == pages_per_zspage &&
1319		prev->objs_per_zspage == objs_per_zspage)
1320		return true;
1321
1322	return false;
1323}
 
 
 
 
 
 
 
 
1324
1325static bool zspage_full(struct size_class *class, struct zspage *zspage)
1326{
1327	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1328}
1329
1330unsigned long zs_get_total_pages(struct zs_pool *pool)
1331{
1332	return atomic_long_read(&pool->pages_allocated);
 
1333}
1334EXPORT_SYMBOL_GPL(zs_get_total_pages);
1335
1336/**
1337 * zs_map_object - get address of allocated object from handle.
1338 * @pool: pool from which the object was allocated
1339 * @handle: handle returned from zs_malloc
1340 *
1341 * Before using an object allocated from zs_malloc, it must be mapped using
1342 * this function. When done with the object, it must be unmapped using
1343 * zs_unmap_object.
1344 *
1345 * Only one object can be mapped per cpu at a time. There is no protection
1346 * against nested mappings.
1347 *
1348 * This function returns with preemption and page faults disabled.
1349 */
1350void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1351			enum zs_mapmode mm)
1352{
1353	struct zspage *zspage;
1354	struct page *page;
1355	unsigned long obj, off;
1356	unsigned int obj_idx;
1357
1358	unsigned int class_idx;
1359	enum fullness_group fg;
1360	struct size_class *class;
1361	struct mapping_area *area;
1362	struct page *pages[2];
1363	void *ret;
1364
1365	/*
1366	 * Because we use per-cpu mapping areas shared among the
1367	 * pools/users, we can't allow mapping in interrupt context
1368	 * because it can corrupt another users mappings.
1369	 */
1370	WARN_ON_ONCE(in_interrupt());
1371
1372	/* From now on, migration cannot move the object */
1373	pin_tag(handle);
 
1374
1375	obj = handle_to_obj(handle);
1376	obj_to_location(obj, &page, &obj_idx);
1377	zspage = get_zspage(page);
1378
1379	/* migration cannot move any subpage in this zspage */
1380	migrate_read_lock(zspage);
1381
1382	get_zspage_mapping(zspage, &class_idx, &fg);
1383	class = pool->size_class[class_idx];
1384	off = (class->size * obj_idx) & ~PAGE_MASK;
1385
1386	area = &get_cpu_var(zs_map_area);
1387	area->vm_mm = mm;
1388	if (off + class->size <= PAGE_SIZE) {
1389		/* this object is contained entirely within a page */
1390		area->vm_addr = kmap_atomic(page);
1391		ret = area->vm_addr + off;
1392		goto out;
1393	}
1394
1395	/* this object spans two pages */
1396	pages[0] = page;
1397	pages[1] = get_next_page(page);
1398	BUG_ON(!pages[1]);
1399
1400	ret = __zs_map_object(area, pages, off, class->size);
1401out:
1402	if (likely(!PageHugeObject(page)))
1403		ret += ZS_HANDLE_SIZE;
1404
1405	return ret;
1406}
1407EXPORT_SYMBOL_GPL(zs_map_object);
1408
1409void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1410{
1411	struct zspage *zspage;
1412	struct page *page;
1413	unsigned long obj, off;
1414	unsigned int obj_idx;
1415
1416	unsigned int class_idx;
1417	enum fullness_group fg;
1418	struct size_class *class;
1419	struct mapping_area *area;
1420
1421	obj = handle_to_obj(handle);
1422	obj_to_location(obj, &page, &obj_idx);
1423	zspage = get_zspage(page);
1424	get_zspage_mapping(zspage, &class_idx, &fg);
1425	class = pool->size_class[class_idx];
1426	off = (class->size * obj_idx) & ~PAGE_MASK;
1427
1428	area = this_cpu_ptr(&zs_map_area);
1429	if (off + class->size <= PAGE_SIZE)
1430		kunmap_atomic(area->vm_addr);
1431	else {
1432		struct page *pages[2];
1433
1434		pages[0] = page;
1435		pages[1] = get_next_page(page);
1436		BUG_ON(!pages[1]);
1437
1438		__zs_unmap_object(area, pages, off, class->size);
1439	}
1440	put_cpu_var(zs_map_area);
1441
1442	migrate_read_unlock(zspage);
1443	unpin_tag(handle);
1444}
1445EXPORT_SYMBOL_GPL(zs_unmap_object);
1446
1447static unsigned long obj_malloc(struct size_class *class,
1448				struct zspage *zspage, unsigned long handle)
1449{
1450	int i, nr_page, offset;
1451	unsigned long obj;
1452	struct link_free *link;
1453
1454	struct page *m_page;
1455	unsigned long m_offset;
1456	void *vaddr;
1457
1458	handle |= OBJ_ALLOCATED_TAG;
1459	obj = get_freeobj(zspage);
1460
1461	offset = obj * class->size;
1462	nr_page = offset >> PAGE_SHIFT;
1463	m_offset = offset & ~PAGE_MASK;
1464	m_page = get_first_page(zspage);
1465
1466	for (i = 0; i < nr_page; i++)
1467		m_page = get_next_page(m_page);
1468
1469	vaddr = kmap_atomic(m_page);
1470	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1471	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1472	if (likely(!PageHugeObject(m_page)))
1473		/* record handle in the header of allocated chunk */
1474		link->handle = handle;
1475	else
1476		/* record handle to page->index */
1477		zspage->first_page->index = handle;
1478
1479	kunmap_atomic(vaddr);
1480	mod_zspage_inuse(zspage, 1);
1481	zs_stat_inc(class, OBJ_USED, 1);
1482
1483	obj = location_to_obj(m_page, obj);
1484
1485	return obj;
1486}
1487
1488
1489/**
1490 * zs_malloc - Allocate block of given size from pool.
1491 * @pool: pool to allocate from
1492 * @size: size of block to allocate
1493 * @gfp: gfp flags when allocating object
1494 *
1495 * On success, handle to the allocated object is returned,
1496 * otherwise 0.
1497 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1498 */
1499unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1500{
1501	unsigned long handle, obj;
 
 
1502	struct size_class *class;
1503	enum fullness_group newfg;
1504	struct zspage *zspage;
 
1505
1506	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1507		return 0;
1508
1509	handle = cache_alloc_handle(pool, gfp);
1510	if (!handle)
1511		return 0;
1512
1513	/* extra space in chunk to keep the handle */
1514	size += ZS_HANDLE_SIZE;
1515	class = pool->size_class[get_size_class_index(size)];
1516
1517	spin_lock(&class->lock);
1518	zspage = find_get_zspage(class);
1519	if (likely(zspage)) {
1520		obj = obj_malloc(class, zspage, handle);
1521		/* Now move the zspage to another fullness group, if required */
1522		fix_fullness_group(class, zspage);
1523		record_obj(handle, obj);
1524		spin_unlock(&class->lock);
 
 
 
1525
1526		return handle;
 
 
1527	}
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
1529	spin_unlock(&class->lock);
1530
1531	zspage = alloc_zspage(pool, class, gfp);
1532	if (!zspage) {
1533		cache_free_handle(pool, handle);
1534		return 0;
1535	}
1536
1537	spin_lock(&class->lock);
1538	obj = obj_malloc(class, zspage, handle);
1539	newfg = get_fullness_group(class, zspage);
1540	insert_zspage(class, zspage, newfg);
1541	set_zspage_mapping(zspage, class->index, newfg);
1542	record_obj(handle, obj);
1543	atomic_long_add(class->pages_per_zspage,
1544				&pool->pages_allocated);
1545	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1546
1547	/* We completely set up zspage so mark them as movable */
1548	SetZsPageMovable(pool, zspage);
1549	spin_unlock(&class->lock);
1550
1551	return handle;
1552}
1553EXPORT_SYMBOL_GPL(zs_malloc);
1554
1555static void obj_free(struct size_class *class, unsigned long obj)
1556{
1557	struct link_free *link;
1558	struct zspage *zspage;
1559	struct page *f_page;
1560	unsigned long f_offset;
1561	unsigned int f_objidx;
1562	void *vaddr;
1563
1564	obj &= ~OBJ_ALLOCATED_TAG;
1565	obj_to_location(obj, &f_page, &f_objidx);
1566	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1567	zspage = get_zspage(f_page);
1568
1569	vaddr = kmap_atomic(f_page);
1570
1571	/* Insert this object in containing zspage's freelist */
1572	link = (struct link_free *)(vaddr + f_offset);
1573	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1574	kunmap_atomic(vaddr);
1575	set_freeobj(zspage, f_objidx);
1576	mod_zspage_inuse(zspage, -1);
1577	zs_stat_dec(class, OBJ_USED, 1);
1578}
1579
1580void zs_free(struct zs_pool *pool, unsigned long handle)
1581{
1582	struct zspage *zspage;
1583	struct page *f_page;
1584	unsigned long obj;
1585	unsigned int f_objidx;
1586	int class_idx;
1587	struct size_class *class;
1588	enum fullness_group fullness;
1589	bool isolated;
1590
1591	if (unlikely(!handle))
1592		return;
1593
1594	pin_tag(handle);
1595	obj = handle_to_obj(handle);
1596	obj_to_location(obj, &f_page, &f_objidx);
1597	zspage = get_zspage(f_page);
1598
1599	migrate_read_lock(zspage);
1600
1601	get_zspage_mapping(zspage, &class_idx, &fullness);
1602	class = pool->size_class[class_idx];
 
1603
1604	spin_lock(&class->lock);
1605	obj_free(class, obj);
1606	fullness = fix_fullness_group(class, zspage);
1607	if (fullness != ZS_EMPTY) {
1608		migrate_read_unlock(zspage);
1609		goto out;
1610	}
1611
1612	isolated = is_zspage_isolated(zspage);
1613	migrate_read_unlock(zspage);
1614	/* If zspage is isolated, zs_page_putback will free the zspage */
1615	if (likely(!isolated))
1616		free_zspage(pool, class, zspage);
1617out:
1618
1619	spin_unlock(&class->lock);
1620	unpin_tag(handle);
1621	cache_free_handle(pool, handle);
1622}
1623EXPORT_SYMBOL_GPL(zs_free);
1624
1625static void zs_object_copy(struct size_class *class, unsigned long dst,
1626				unsigned long src)
1627{
1628	struct page *s_page, *d_page;
1629	unsigned int s_objidx, d_objidx;
1630	unsigned long s_off, d_off;
1631	void *s_addr, *d_addr;
1632	int s_size, d_size, size;
1633	int written = 0;
1634
1635	s_size = d_size = class->size;
1636
1637	obj_to_location(src, &s_page, &s_objidx);
1638	obj_to_location(dst, &d_page, &d_objidx);
1639
1640	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1641	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1642
1643	if (s_off + class->size > PAGE_SIZE)
1644		s_size = PAGE_SIZE - s_off;
1645
1646	if (d_off + class->size > PAGE_SIZE)
1647		d_size = PAGE_SIZE - d_off;
1648
1649	s_addr = kmap_atomic(s_page);
1650	d_addr = kmap_atomic(d_page);
1651
1652	while (1) {
1653		size = min(s_size, d_size);
1654		memcpy(d_addr + d_off, s_addr + s_off, size);
1655		written += size;
1656
1657		if (written == class->size)
1658			break;
1659
1660		s_off += size;
1661		s_size -= size;
1662		d_off += size;
1663		d_size -= size;
1664
1665		if (s_off >= PAGE_SIZE) {
1666			kunmap_atomic(d_addr);
1667			kunmap_atomic(s_addr);
1668			s_page = get_next_page(s_page);
1669			s_addr = kmap_atomic(s_page);
1670			d_addr = kmap_atomic(d_page);
1671			s_size = class->size - written;
1672			s_off = 0;
1673		}
1674
1675		if (d_off >= PAGE_SIZE) {
1676			kunmap_atomic(d_addr);
1677			d_page = get_next_page(d_page);
1678			d_addr = kmap_atomic(d_page);
1679			d_size = class->size - written;
1680			d_off = 0;
1681		}
1682	}
1683
1684	kunmap_atomic(d_addr);
1685	kunmap_atomic(s_addr);
1686}
 
1687
1688/*
1689 * Find alloced object in zspage from index object and
1690 * return handle.
1691 */
1692static unsigned long find_alloced_obj(struct size_class *class,
1693					struct page *page, int *obj_idx)
1694{
1695	unsigned long head;
1696	int offset = 0;
1697	int index = *obj_idx;
1698	unsigned long handle = 0;
1699	void *addr = kmap_atomic(page);
1700
1701	offset = get_first_obj_offset(page);
1702	offset += class->size * index;
1703
1704	while (offset < PAGE_SIZE) {
1705		head = obj_to_head(page, addr + offset);
1706		if (head & OBJ_ALLOCATED_TAG) {
1707			handle = head & ~OBJ_ALLOCATED_TAG;
1708			if (trypin_tag(handle))
1709				break;
1710			handle = 0;
1711		}
1712
1713		offset += class->size;
1714		index++;
1715	}
1716
1717	kunmap_atomic(addr);
1718
1719	*obj_idx = index;
1720
1721	return handle;
1722}
1723
1724struct zs_compact_control {
1725	/* Source spage for migration which could be a subpage of zspage */
1726	struct page *s_page;
1727	/* Destination page for migration which should be a first page
1728	 * of zspage. */
1729	struct page *d_page;
1730	 /* Starting object index within @s_page which used for live object
1731	  * in the subpage. */
1732	int obj_idx;
1733};
1734
1735static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1736				struct zs_compact_control *cc)
1737{
1738	unsigned long used_obj, free_obj;
1739	unsigned long handle;
1740	struct page *s_page = cc->s_page;
1741	struct page *d_page = cc->d_page;
1742	int obj_idx = cc->obj_idx;
1743	int ret = 0;
1744
1745	while (1) {
1746		handle = find_alloced_obj(class, s_page, &obj_idx);
1747		if (!handle) {
1748			s_page = get_next_page(s_page);
1749			if (!s_page)
1750				break;
1751			obj_idx = 0;
1752			continue;
1753		}
1754
1755		/* Stop if there is no more space */
1756		if (zspage_full(class, get_zspage(d_page))) {
1757			unpin_tag(handle);
1758			ret = -ENOMEM;
1759			break;
1760		}
1761
1762		used_obj = handle_to_obj(handle);
1763		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1764		zs_object_copy(class, free_obj, used_obj);
1765		obj_idx++;
1766		/*
1767		 * record_obj updates handle's value to free_obj and it will
1768		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1769		 * breaks synchronization using pin_tag(e,g, zs_free) so
1770		 * let's keep the lock bit.
1771		 */
1772		free_obj |= BIT(HANDLE_PIN_BIT);
1773		record_obj(handle, free_obj);
1774		unpin_tag(handle);
1775		obj_free(class, used_obj);
1776	}
1777
1778	/* Remember last position in this iteration */
1779	cc->s_page = s_page;
1780	cc->obj_idx = obj_idx;
1781
1782	return ret;
1783}
1784
1785static struct zspage *isolate_zspage(struct size_class *class, bool source)
1786{
1787	int i;
1788	struct zspage *zspage;
1789	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1790
1791	if (!source) {
1792		fg[0] = ZS_ALMOST_FULL;
1793		fg[1] = ZS_ALMOST_EMPTY;
1794	}
1795
1796	for (i = 0; i < 2; i++) {
1797		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1798							struct zspage, list);
1799		if (zspage) {
1800			VM_BUG_ON(is_zspage_isolated(zspage));
1801			remove_zspage(class, zspage, fg[i]);
1802			return zspage;
1803		}
1804	}
1805
1806	return zspage;
1807}
1808
1809/*
1810 * putback_zspage - add @zspage into right class's fullness list
1811 * @class: destination class
1812 * @zspage: target page
1813 *
1814 * Return @zspage's fullness_group
1815 */
1816static enum fullness_group putback_zspage(struct size_class *class,
1817			struct zspage *zspage)
1818{
1819	enum fullness_group fullness;
1820
1821	VM_BUG_ON(is_zspage_isolated(zspage));
1822
1823	fullness = get_fullness_group(class, zspage);
1824	insert_zspage(class, zspage, fullness);
1825	set_zspage_mapping(zspage, class->index, fullness);
1826
1827	return fullness;
1828}
1829
1830#ifdef CONFIG_COMPACTION
1831static struct dentry *zs_mount(struct file_system_type *fs_type,
1832				int flags, const char *dev_name, void *data)
1833{
1834	static const struct dentry_operations ops = {
1835		.d_dname = simple_dname,
1836	};
1837
1838	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1839}
1840
1841static struct file_system_type zsmalloc_fs = {
1842	.name		= "zsmalloc",
1843	.mount		= zs_mount,
1844	.kill_sb	= kill_anon_super,
1845};
1846
1847static int zsmalloc_mount(void)
1848{
1849	int ret = 0;
1850
1851	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1852	if (IS_ERR(zsmalloc_mnt))
1853		ret = PTR_ERR(zsmalloc_mnt);
1854
1855	return ret;
1856}
1857
1858static void zsmalloc_unmount(void)
1859{
1860	kern_unmount(zsmalloc_mnt);
1861}
1862
1863static void migrate_lock_init(struct zspage *zspage)
1864{
1865	rwlock_init(&zspage->lock);
1866}
1867
1868static void migrate_read_lock(struct zspage *zspage)
1869{
1870	read_lock(&zspage->lock);
1871}
1872
1873static void migrate_read_unlock(struct zspage *zspage)
1874{
1875	read_unlock(&zspage->lock);
1876}
1877
1878static void migrate_write_lock(struct zspage *zspage)
1879{
1880	write_lock(&zspage->lock);
1881}
1882
1883static void migrate_write_unlock(struct zspage *zspage)
1884{
1885	write_unlock(&zspage->lock);
1886}
1887
1888/* Number of isolated subpage for *page migration* in this zspage */
1889static void inc_zspage_isolation(struct zspage *zspage)
1890{
1891	zspage->isolated++;
1892}
1893
1894static void dec_zspage_isolation(struct zspage *zspage)
1895{
1896	zspage->isolated--;
1897}
1898
1899static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1900				struct page *newpage, struct page *oldpage)
1901{
1902	struct page *page;
1903	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1904	int idx = 0;
1905
1906	page = get_first_page(zspage);
1907	do {
1908		if (page == oldpage)
1909			pages[idx] = newpage;
1910		else
1911			pages[idx] = page;
1912		idx++;
1913	} while ((page = get_next_page(page)) != NULL);
1914
1915	create_page_chain(class, zspage, pages);
1916	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1917	if (unlikely(PageHugeObject(oldpage)))
1918		newpage->index = oldpage->index;
1919	__SetPageMovable(newpage, page_mapping(oldpage));
1920}
1921
1922bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1923{
1924	struct zs_pool *pool;
1925	struct size_class *class;
1926	int class_idx;
1927	enum fullness_group fullness;
1928	struct zspage *zspage;
1929	struct address_space *mapping;
1930
1931	/*
1932	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1933	 * lock_zspage in free_zspage.
1934	 */
1935	VM_BUG_ON_PAGE(!PageMovable(page), page);
1936	VM_BUG_ON_PAGE(PageIsolated(page), page);
1937
1938	zspage = get_zspage(page);
1939
1940	/*
1941	 * Without class lock, fullness could be stale while class_idx is okay
1942	 * because class_idx is constant unless page is freed so we should get
1943	 * fullness again under class lock.
1944	 */
1945	get_zspage_mapping(zspage, &class_idx, &fullness);
1946	mapping = page_mapping(page);
1947	pool = mapping->private_data;
1948	class = pool->size_class[class_idx];
1949
1950	spin_lock(&class->lock);
1951	if (get_zspage_inuse(zspage) == 0) {
1952		spin_unlock(&class->lock);
1953		return false;
1954	}
1955
1956	/* zspage is isolated for object migration */
1957	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1958		spin_unlock(&class->lock);
1959		return false;
 
 
1960	}
1961
1962	/*
1963	 * If this is first time isolation for the zspage, isolate zspage from
1964	 * size_class to prevent further object allocation from the zspage.
1965	 */
1966	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1967		get_zspage_mapping(zspage, &class_idx, &fullness);
1968		remove_zspage(class, zspage, fullness);
1969	}
1970
1971	inc_zspage_isolation(zspage);
1972	spin_unlock(&class->lock);
1973
1974	return true;
1975}
 
1976
1977int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1978		struct page *page, enum migrate_mode mode)
1979{
1980	struct zs_pool *pool;
1981	struct size_class *class;
1982	int class_idx;
1983	enum fullness_group fullness;
1984	struct zspage *zspage;
1985	struct page *dummy;
1986	void *s_addr, *d_addr, *addr;
1987	int offset, pos;
1988	unsigned long handle, head;
1989	unsigned long old_obj, new_obj;
1990	unsigned int obj_idx;
1991	int ret = -EAGAIN;
1992
1993	VM_BUG_ON_PAGE(!PageMovable(page), page);
1994	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1995
1996	zspage = get_zspage(page);
1997
1998	/* Concurrent compactor cannot migrate any subpage in zspage */
1999	migrate_write_lock(zspage);
2000	get_zspage_mapping(zspage, &class_idx, &fullness);
2001	pool = mapping->private_data;
2002	class = pool->size_class[class_idx];
2003	offset = get_first_obj_offset(page);
2004
2005	spin_lock(&class->lock);
2006	if (!get_zspage_inuse(zspage)) {
2007		ret = -EBUSY;
2008		goto unlock_class;
2009	}
2010
2011	pos = offset;
2012	s_addr = kmap_atomic(page);
2013	while (pos < PAGE_SIZE) {
2014		head = obj_to_head(page, s_addr + pos);
2015		if (head & OBJ_ALLOCATED_TAG) {
2016			handle = head & ~OBJ_ALLOCATED_TAG;
2017			if (!trypin_tag(handle))
2018				goto unpin_objects;
2019		}
2020		pos += class->size;
2021	}
2022
2023	/*
2024	 * Here, any user cannot access all objects in the zspage so let's move.
2025	 */
2026	d_addr = kmap_atomic(newpage);
2027	memcpy(d_addr, s_addr, PAGE_SIZE);
2028	kunmap_atomic(d_addr);
2029
2030	for (addr = s_addr + offset; addr < s_addr + pos;
2031					addr += class->size) {
2032		head = obj_to_head(page, addr);
2033		if (head & OBJ_ALLOCATED_TAG) {
2034			handle = head & ~OBJ_ALLOCATED_TAG;
2035			if (!testpin_tag(handle))
2036				BUG();
2037
2038			old_obj = handle_to_obj(handle);
2039			obj_to_location(old_obj, &dummy, &obj_idx);
2040			new_obj = (unsigned long)location_to_obj(newpage,
2041								obj_idx);
2042			new_obj |= BIT(HANDLE_PIN_BIT);
2043			record_obj(handle, new_obj);
2044		}
2045	}
2046
2047	replace_sub_page(class, zspage, newpage, page);
2048	get_page(newpage);
2049
2050	dec_zspage_isolation(zspage);
2051
2052	/*
2053	 * Page migration is done so let's putback isolated zspage to
2054	 * the list if @page is final isolated subpage in the zspage.
2055	 */
2056	if (!is_zspage_isolated(zspage))
2057		putback_zspage(class, zspage);
2058
2059	reset_page(page);
2060	put_page(page);
2061	page = newpage;
2062
2063	ret = MIGRATEPAGE_SUCCESS;
2064unpin_objects:
2065	for (addr = s_addr + offset; addr < s_addr + pos;
2066						addr += class->size) {
2067		head = obj_to_head(page, addr);
2068		if (head & OBJ_ALLOCATED_TAG) {
2069			handle = head & ~OBJ_ALLOCATED_TAG;
2070			if (!testpin_tag(handle))
2071				BUG();
2072			unpin_tag(handle);
2073		}
2074	}
2075	kunmap_atomic(s_addr);
2076unlock_class:
2077	spin_unlock(&class->lock);
2078	migrate_write_unlock(zspage);
2079
2080	return ret;
2081}
2082
2083void zs_page_putback(struct page *page)
2084{
2085	struct zs_pool *pool;
2086	struct size_class *class;
2087	int class_idx;
2088	enum fullness_group fg;
2089	struct address_space *mapping;
2090	struct zspage *zspage;
2091
2092	VM_BUG_ON_PAGE(!PageMovable(page), page);
2093	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2094
2095	zspage = get_zspage(page);
2096	get_zspage_mapping(zspage, &class_idx, &fg);
2097	mapping = page_mapping(page);
2098	pool = mapping->private_data;
2099	class = pool->size_class[class_idx];
2100
2101	spin_lock(&class->lock);
2102	dec_zspage_isolation(zspage);
2103	if (!is_zspage_isolated(zspage)) {
2104		fg = putback_zspage(class, zspage);
2105		/*
2106		 * Due to page_lock, we cannot free zspage immediately
2107		 * so let's defer.
2108		 */
2109		if (fg == ZS_EMPTY)
2110			schedule_work(&pool->free_work);
2111	}
2112	spin_unlock(&class->lock);
2113}
2114
2115const struct address_space_operations zsmalloc_aops = {
2116	.isolate_page = zs_page_isolate,
2117	.migratepage = zs_page_migrate,
2118	.putback_page = zs_page_putback,
2119};
2120
2121static int zs_register_migration(struct zs_pool *pool)
2122{
2123	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2124	if (IS_ERR(pool->inode)) {
2125		pool->inode = NULL;
2126		return 1;
2127	}
2128
2129	pool->inode->i_mapping->private_data = pool;
2130	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2131	return 0;
2132}
2133
2134static void zs_unregister_migration(struct zs_pool *pool)
2135{
2136	flush_work(&pool->free_work);
2137	iput(pool->inode);
2138}
2139
2140/*
2141 * Caller should hold page_lock of all pages in the zspage
2142 * In here, we cannot use zspage meta data.
2143 */
2144static void async_free_zspage(struct work_struct *work)
2145{
2146	int i;
2147	struct size_class *class;
2148	unsigned int class_idx;
2149	enum fullness_group fullness;
2150	struct zspage *zspage, *tmp;
2151	LIST_HEAD(free_pages);
2152	struct zs_pool *pool = container_of(work, struct zs_pool,
2153					free_work);
2154
2155	for (i = 0; i < zs_size_classes; i++) {
2156		class = pool->size_class[i];
2157		if (class->index != i)
2158			continue;
2159
2160		spin_lock(&class->lock);
2161		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2162		spin_unlock(&class->lock);
2163	}
2164
 
 
 
 
2165
2166	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2167		list_del(&zspage->list);
2168		lock_zspage(zspage);
2169
2170		get_zspage_mapping(zspage, &class_idx, &fullness);
2171		VM_BUG_ON(fullness != ZS_EMPTY);
2172		class = pool->size_class[class_idx];
2173		spin_lock(&class->lock);
2174		__free_zspage(pool, pool->size_class[class_idx], zspage);
2175		spin_unlock(&class->lock);
2176	}
2177};
2178
2179static void kick_deferred_free(struct zs_pool *pool)
2180{
2181	schedule_work(&pool->free_work);
2182}
2183
2184static void init_deferred_free(struct zs_pool *pool)
2185{
2186	INIT_WORK(&pool->free_work, async_free_zspage);
2187}
2188
2189static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2190{
2191	struct page *page = get_first_page(zspage);
2192
2193	do {
2194		WARN_ON(!trylock_page(page));
2195		__SetPageMovable(page, pool->inode->i_mapping);
2196		unlock_page(page);
2197	} while ((page = get_next_page(page)) != NULL);
2198}
2199#endif
2200
2201/*
2202 *
2203 * Based on the number of unused allocated objects calculate
2204 * and return the number of pages that we can free.
2205 */
2206static unsigned long zs_can_compact(struct size_class *class)
2207{
2208	unsigned long obj_wasted;
2209	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2210	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2211
2212	if (obj_allocated <= obj_used)
2213		return 0;
2214
2215	obj_wasted = obj_allocated - obj_used;
2216	obj_wasted /= class->objs_per_zspage;
2217
2218	return obj_wasted * class->pages_per_zspage;
2219}
2220
2221static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2222{
2223	struct zs_compact_control cc;
2224	struct zspage *src_zspage;
2225	struct zspage *dst_zspage = NULL;
2226
2227	spin_lock(&class->lock);
2228	while ((src_zspage = isolate_zspage(class, true))) {
2229
2230		if (!zs_can_compact(class))
2231			break;
2232
2233		cc.obj_idx = 0;
2234		cc.s_page = get_first_page(src_zspage);
2235
2236		while ((dst_zspage = isolate_zspage(class, false))) {
2237			cc.d_page = get_first_page(dst_zspage);
2238			/*
2239			 * If there is no more space in dst_page, resched
2240			 * and see if anyone had allocated another zspage.
2241			 */
2242			if (!migrate_zspage(pool, class, &cc))
2243				break;
2244
2245			putback_zspage(class, dst_zspage);
2246		}
2247
2248		/* Stop if we couldn't find slot */
2249		if (dst_zspage == NULL)
2250			break;
2251
2252		putback_zspage(class, dst_zspage);
2253		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2254			free_zspage(pool, class, src_zspage);
2255			pool->stats.pages_compacted += class->pages_per_zspage;
2256		}
2257		spin_unlock(&class->lock);
2258		cond_resched();
2259		spin_lock(&class->lock);
2260	}
2261
2262	if (src_zspage)
2263		putback_zspage(class, src_zspage);
2264
2265	spin_unlock(&class->lock);
2266}
 
2267
2268unsigned long zs_compact(struct zs_pool *pool)
2269{
2270	int i;
2271	struct size_class *class;
2272
2273	for (i = zs_size_classes - 1; i >= 0; i--) {
2274		class = pool->size_class[i];
2275		if (!class)
2276			continue;
2277		if (class->index != i)
2278			continue;
2279		__zs_compact(pool, class);
2280	}
2281
2282	return pool->stats.pages_compacted;
2283}
2284EXPORT_SYMBOL_GPL(zs_compact);
2285
2286void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2287{
2288	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2289}
2290EXPORT_SYMBOL_GPL(zs_pool_stats);
2291
2292static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2293		struct shrink_control *sc)
2294{
2295	unsigned long pages_freed;
2296	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2297			shrinker);
2298
2299	pages_freed = pool->stats.pages_compacted;
2300	/*
2301	 * Compact classes and calculate compaction delta.
2302	 * Can run concurrently with a manually triggered
2303	 * (by user) compaction.
2304	 */
2305	pages_freed = zs_compact(pool) - pages_freed;
2306
2307	return pages_freed ? pages_freed : SHRINK_STOP;
2308}
2309
2310static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2311		struct shrink_control *sc)
2312{
2313	int i;
2314	struct size_class *class;
2315	unsigned long pages_to_free = 0;
2316	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2317			shrinker);
2318
2319	for (i = zs_size_classes - 1; i >= 0; i--) {
2320		class = pool->size_class[i];
2321		if (!class)
2322			continue;
2323		if (class->index != i)
2324			continue;
2325
2326		pages_to_free += zs_can_compact(class);
2327	}
2328
2329	return pages_to_free;
2330}
2331
2332static void zs_unregister_shrinker(struct zs_pool *pool)
2333{
2334	if (pool->shrinker_enabled) {
2335		unregister_shrinker(&pool->shrinker);
2336		pool->shrinker_enabled = false;
2337	}
2338}
2339
2340static int zs_register_shrinker(struct zs_pool *pool)
2341{
2342	pool->shrinker.scan_objects = zs_shrinker_scan;
2343	pool->shrinker.count_objects = zs_shrinker_count;
2344	pool->shrinker.batch = 0;
2345	pool->shrinker.seeks = DEFAULT_SEEKS;
2346
2347	return register_shrinker(&pool->shrinker);
2348}
2349
2350/**
2351 * zs_create_pool - Creates an allocation pool to work from.
2352 * @name: pool name to be created
2353 *
2354 * This function must be called before anything when using
2355 * the zsmalloc allocator.
2356 *
2357 * On success, a pointer to the newly created pool is returned,
2358 * otherwise NULL.
2359 */
2360struct zs_pool *zs_create_pool(const char *name)
2361{
2362	int i;
2363	struct zs_pool *pool;
2364	struct size_class *prev_class = NULL;
2365
2366	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2367	if (!pool)
2368		return NULL;
2369
2370	init_deferred_free(pool);
2371	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2372			GFP_KERNEL);
2373	if (!pool->size_class) {
2374		kfree(pool);
2375		return NULL;
2376	}
2377
2378	pool->name = kstrdup(name, GFP_KERNEL);
2379	if (!pool->name)
2380		goto err;
2381
2382	if (create_cache(pool))
2383		goto err;
2384
2385	/*
2386	 * Iterate reversly, because, size of size_class that we want to use
2387	 * for merging should be larger or equal to current size.
2388	 */
2389	for (i = zs_size_classes - 1; i >= 0; i--) {
2390		int size;
2391		int pages_per_zspage;
2392		int objs_per_zspage;
2393		struct size_class *class;
2394		int fullness = 0;
2395
2396		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2397		if (size > ZS_MAX_ALLOC_SIZE)
2398			size = ZS_MAX_ALLOC_SIZE;
2399		pages_per_zspage = get_pages_per_zspage(size);
2400		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2401
2402		/*
2403		 * size_class is used for normal zsmalloc operation such
2404		 * as alloc/free for that size. Although it is natural that we
2405		 * have one size_class for each size, there is a chance that we
2406		 * can get more memory utilization if we use one size_class for
2407		 * many different sizes whose size_class have same
2408		 * characteristics. So, we makes size_class point to
2409		 * previous size_class if possible.
2410		 */
2411		if (prev_class) {
2412			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2413				pool->size_class[i] = prev_class;
2414				continue;
2415			}
2416		}
2417
2418		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2419		if (!class)
2420			goto err;
2421
2422		class->size = size;
2423		class->index = i;
2424		class->pages_per_zspage = pages_per_zspage;
2425		class->objs_per_zspage = objs_per_zspage;
2426		spin_lock_init(&class->lock);
2427		pool->size_class[i] = class;
2428		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2429							fullness++)
2430			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2431
2432		prev_class = class;
2433	}
2434
2435	/* debug only, don't abort if it fails */
2436	zs_pool_stat_create(pool, name);
2437
2438	if (zs_register_migration(pool))
2439		goto err;
2440
2441	/*
2442	 * Not critical, we still can use the pool
2443	 * and user can trigger compaction manually.
2444	 */
2445	if (zs_register_shrinker(pool) == 0)
2446		pool->shrinker_enabled = true;
2447	return pool;
2448
2449err:
2450	zs_destroy_pool(pool);
2451	return NULL;
2452}
2453EXPORT_SYMBOL_GPL(zs_create_pool);
2454
2455void zs_destroy_pool(struct zs_pool *pool)
2456{
2457	int i;
2458
2459	zs_unregister_shrinker(pool);
2460	zs_unregister_migration(pool);
2461	zs_pool_stat_destroy(pool);
2462
2463	for (i = 0; i < zs_size_classes; i++) {
2464		int fg;
2465		struct size_class *class = pool->size_class[i];
2466
2467		if (!class)
2468			continue;
2469
2470		if (class->index != i)
2471			continue;
2472
2473		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2474			if (!list_empty(&class->fullness_list[fg])) {
2475				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2476					class->size, fg);
2477			}
2478		}
2479		kfree(class);
2480	}
2481
2482	destroy_cache(pool);
2483	kfree(pool->size_class);
2484	kfree(pool->name);
2485	kfree(pool);
2486}
2487EXPORT_SYMBOL_GPL(zs_destroy_pool);
2488
2489static int __init zs_init(void)
2490{
2491	int ret;
2492
2493	ret = zsmalloc_mount();
2494	if (ret)
2495		goto out;
2496
2497	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2498				zs_cpu_prepare, zs_cpu_dead);
2499	if (ret)
2500		goto hp_setup_fail;
2501
2502	init_zs_size_classes();
2503
2504#ifdef CONFIG_ZPOOL
2505	zpool_register_driver(&zs_zpool_driver);
2506#endif
2507
2508	zs_stat_init();
2509
2510	return 0;
2511
2512hp_setup_fail:
2513	zsmalloc_unmount();
2514out:
2515	return ret;
2516}
2517
2518static void __exit zs_exit(void)
2519{
2520#ifdef CONFIG_ZPOOL
2521	zpool_unregister_driver(&zs_zpool_driver);
2522#endif
2523	zsmalloc_unmount();
2524	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2525
2526	zs_stat_exit();
2527}
 
2528
2529module_init(zs_init);
2530module_exit(zs_exit);
2531
2532MODULE_LICENSE("Dual BSD/GPL");
2533MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");