Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include <traceevent/event-parse.h>
  16
  17#include "builtin.h"
  18
  19#include "util/util.h"
  20
  21#include "util/color.h"
  22#include <linux/list.h>
  23#include "util/cache.h"
  24#include "util/evlist.h"
  25#include "util/evsel.h"
  26#include <linux/rbtree.h>
  27#include "util/symbol.h"
  28#include "util/callchain.h"
  29#include "util/strlist.h"
  30
  31#include "perf.h"
  32#include "util/header.h"
  33#include "util/parse-options.h"
  34#include "util/parse-events.h"
  35#include "util/event.h"
  36#include "util/session.h"
  37#include "util/svghelper.h"
  38#include "util/tool.h"
  39#include "util/data.h"
  40
  41#define SUPPORT_OLD_POWER_EVENTS 1
  42#define PWR_EVENT_EXIT -1
  43
  44struct per_pid;
  45struct power_event;
  46struct wake_event;
  47
  48struct timechart {
  49	struct perf_tool	tool;
  50	struct per_pid		*all_data;
  51	struct power_event	*power_events;
  52	struct wake_event	*wake_events;
  53	int			proc_num;
  54	unsigned int		numcpus;
  55	u64			min_freq,	/* Lowest CPU frequency seen */
  56				max_freq,	/* Highest CPU frequency seen */
  57				turbo_frequency,
  58				first_time, last_time;
  59	bool			power_only,
  60				tasks_only,
  61				with_backtrace,
  62				topology;
  63};
  64
 
 
 
 
 
 
 
 
 
 
 
  65struct per_pidcomm;
 
  66struct cpu_sample;
 
 
 
 
  67
  68/*
  69 * Datastructure layout:
  70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  71 * Each "pid" entry, has a list of "comm"s.
  72 *	this is because we want to track different programs different, while
  73 *	exec will reuse the original pid (by design).
  74 * Each comm has a list of samples that will be used to draw
  75 * final graph.
  76 */
  77
  78struct per_pid {
  79	struct per_pid *next;
  80
  81	int		pid;
  82	int		ppid;
  83
  84	u64		start_time;
  85	u64		end_time;
  86	u64		total_time;
  87	int		display;
  88
  89	struct per_pidcomm *all;
  90	struct per_pidcomm *current;
  91};
  92
  93
  94struct per_pidcomm {
  95	struct per_pidcomm *next;
  96
  97	u64		start_time;
  98	u64		end_time;
  99	u64		total_time;
 100
 101	int		Y;
 102	int		display;
 103
 104	long		state;
 105	u64		state_since;
 106
 107	char		*comm;
 108
 109	struct cpu_sample *samples;
 110};
 111
 112struct sample_wrapper {
 113	struct sample_wrapper *next;
 114
 115	u64		timestamp;
 116	unsigned char	data[0];
 117};
 118
 119#define TYPE_NONE	0
 120#define TYPE_RUNNING	1
 121#define TYPE_WAITING	2
 122#define TYPE_BLOCKED	3
 123
 124struct cpu_sample {
 125	struct cpu_sample *next;
 126
 127	u64 start_time;
 128	u64 end_time;
 129	int type;
 130	int cpu;
 131	const char *backtrace;
 132};
 133
 
 
 134#define CSTATE 1
 135#define PSTATE 2
 136
 137struct power_event {
 138	struct power_event *next;
 139	int type;
 140	int state;
 141	u64 start_time;
 142	u64 end_time;
 143	int cpu;
 144};
 145
 146struct wake_event {
 147	struct wake_event *next;
 148	int waker;
 149	int wakee;
 150	u64 time;
 151	const char *backtrace;
 152};
 153
 
 
 
 
 154struct process_filter {
 155	char			*name;
 156	int			pid;
 157	struct process_filter	*next;
 158};
 159
 160static struct process_filter *process_filter;
 161
 162
 163static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
 164{
 165	struct per_pid *cursor = tchart->all_data;
 166
 167	while (cursor) {
 168		if (cursor->pid == pid)
 169			return cursor;
 170		cursor = cursor->next;
 171	}
 172	cursor = zalloc(sizeof(*cursor));
 173	assert(cursor != NULL);
 
 174	cursor->pid = pid;
 175	cursor->next = tchart->all_data;
 176	tchart->all_data = cursor;
 177	return cursor;
 178}
 179
 180static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
 181{
 182	struct per_pid *p;
 183	struct per_pidcomm *c;
 184	p = find_create_pid(tchart, pid);
 185	c = p->all;
 186	while (c) {
 187		if (c->comm && strcmp(c->comm, comm) == 0) {
 188			p->current = c;
 189			return;
 190		}
 191		if (!c->comm) {
 192			c->comm = strdup(comm);
 193			p->current = c;
 194			return;
 195		}
 196		c = c->next;
 197	}
 198	c = zalloc(sizeof(*c));
 199	assert(c != NULL);
 
 200	c->comm = strdup(comm);
 201	p->current = c;
 202	c->next = p->all;
 203	p->all = c;
 204}
 205
 206static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
 207{
 208	struct per_pid *p, *pp;
 209	p = find_create_pid(tchart, pid);
 210	pp = find_create_pid(tchart, ppid);
 211	p->ppid = ppid;
 212	if (pp->current && pp->current->comm && !p->current)
 213		pid_set_comm(tchart, pid, pp->current->comm);
 214
 215	p->start_time = timestamp;
 216	if (p->current) {
 217		p->current->start_time = timestamp;
 218		p->current->state_since = timestamp;
 219	}
 220}
 221
 222static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
 223{
 224	struct per_pid *p;
 225	p = find_create_pid(tchart, pid);
 226	p->end_time = timestamp;
 227	if (p->current)
 228		p->current->end_time = timestamp;
 229}
 230
 231static void pid_put_sample(struct timechart *tchart, int pid, int type,
 232			   unsigned int cpu, u64 start, u64 end,
 233			   const char *backtrace)
 234{
 235	struct per_pid *p;
 236	struct per_pidcomm *c;
 237	struct cpu_sample *sample;
 238
 239	p = find_create_pid(tchart, pid);
 240	c = p->current;
 241	if (!c) {
 242		c = zalloc(sizeof(*c));
 243		assert(c != NULL);
 
 244		p->current = c;
 245		c->next = p->all;
 246		p->all = c;
 247	}
 248
 249	sample = zalloc(sizeof(*sample));
 250	assert(sample != NULL);
 
 251	sample->start_time = start;
 252	sample->end_time = end;
 253	sample->type = type;
 254	sample->next = c->samples;
 255	sample->cpu = cpu;
 256	sample->backtrace = backtrace;
 257	c->samples = sample;
 258
 259	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 260		c->total_time += (end-start);
 261		p->total_time += (end-start);
 262	}
 263
 264	if (c->start_time == 0 || c->start_time > start)
 265		c->start_time = start;
 266	if (p->start_time == 0 || p->start_time > start)
 267		p->start_time = start;
 268}
 269
 270#define MAX_CPUS 4096
 271
 272static u64 cpus_cstate_start_times[MAX_CPUS];
 273static int cpus_cstate_state[MAX_CPUS];
 274static u64 cpus_pstate_start_times[MAX_CPUS];
 275static u64 cpus_pstate_state[MAX_CPUS];
 276
 277static int process_comm_event(struct perf_tool *tool,
 278			      union perf_event *event,
 279			      struct perf_sample *sample __maybe_unused,
 280			      struct machine *machine __maybe_unused)
 281{
 282	struct timechart *tchart = container_of(tool, struct timechart, tool);
 283	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
 284	return 0;
 285}
 286
 287static int process_fork_event(struct perf_tool *tool,
 288			      union perf_event *event,
 289			      struct perf_sample *sample __maybe_unused,
 290			      struct machine *machine __maybe_unused)
 291{
 292	struct timechart *tchart = container_of(tool, struct timechart, tool);
 293	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
 294	return 0;
 295}
 296
 297static int process_exit_event(struct perf_tool *tool,
 298			      union perf_event *event,
 299			      struct perf_sample *sample __maybe_unused,
 300			      struct machine *machine __maybe_unused)
 301{
 302	struct timechart *tchart = container_of(tool, struct timechart, tool);
 303	pid_exit(tchart, event->fork.pid, event->fork.time);
 304	return 0;
 305}
 306
 
 
 
 
 
 
 
 
 307#ifdef SUPPORT_OLD_POWER_EVENTS
 308static int use_old_power_events;
 
 
 
 
 
 
 309#endif
 310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311static void c_state_start(int cpu, u64 timestamp, int state)
 312{
 313	cpus_cstate_start_times[cpu] = timestamp;
 314	cpus_cstate_state[cpu] = state;
 315}
 316
 317static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
 318{
 319	struct power_event *pwr = zalloc(sizeof(*pwr));
 320
 321	if (!pwr)
 322		return;
 
 323
 324	pwr->state = cpus_cstate_state[cpu];
 325	pwr->start_time = cpus_cstate_start_times[cpu];
 326	pwr->end_time = timestamp;
 327	pwr->cpu = cpu;
 328	pwr->type = CSTATE;
 329	pwr->next = tchart->power_events;
 330
 331	tchart->power_events = pwr;
 332}
 333
 334static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
 335{
 336	struct power_event *pwr;
 
 337
 338	if (new_freq > 8000000) /* detect invalid data */
 339		return;
 340
 341	pwr = zalloc(sizeof(*pwr));
 342	if (!pwr)
 343		return;
 
 344
 345	pwr->state = cpus_pstate_state[cpu];
 346	pwr->start_time = cpus_pstate_start_times[cpu];
 347	pwr->end_time = timestamp;
 348	pwr->cpu = cpu;
 349	pwr->type = PSTATE;
 350	pwr->next = tchart->power_events;
 351
 352	if (!pwr->start_time)
 353		pwr->start_time = tchart->first_time;
 354
 355	tchart->power_events = pwr;
 356
 357	cpus_pstate_state[cpu] = new_freq;
 358	cpus_pstate_start_times[cpu] = timestamp;
 359
 360	if ((u64)new_freq > tchart->max_freq)
 361		tchart->max_freq = new_freq;
 362
 363	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
 364		tchart->min_freq = new_freq;
 365
 366	if (new_freq == tchart->max_freq - 1000)
 367		tchart->turbo_frequency = tchart->max_freq;
 368}
 369
 370static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
 371			 int waker, int wakee, u8 flags, const char *backtrace)
 372{
 
 373	struct per_pid *p;
 374	struct wake_event *we = zalloc(sizeof(*we));
 375
 
 376	if (!we)
 377		return;
 378
 
 379	we->time = timestamp;
 380	we->waker = waker;
 381	we->backtrace = backtrace;
 382
 383	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
 384		we->waker = -1;
 385
 386	we->wakee = wakee;
 387	we->next = tchart->wake_events;
 388	tchart->wake_events = we;
 389	p = find_create_pid(tchart, we->wakee);
 390
 391	if (p && p->current && p->current->state == TYPE_NONE) {
 392		p->current->state_since = timestamp;
 393		p->current->state = TYPE_WAITING;
 394	}
 395	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 396		pid_put_sample(tchart, p->pid, p->current->state, cpu,
 397			       p->current->state_since, timestamp, NULL);
 398		p->current->state_since = timestamp;
 399		p->current->state = TYPE_WAITING;
 400	}
 401}
 402
 403static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
 404			 int prev_pid, int next_pid, u64 prev_state,
 405			 const char *backtrace)
 406{
 407	struct per_pid *p = NULL, *prev_p;
 
 408
 409	prev_p = find_create_pid(tchart, prev_pid);
 410
 411	p = find_create_pid(tchart, next_pid);
 
 
 412
 413	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 414		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
 415			       prev_p->current->state_since, timestamp,
 416			       backtrace);
 417	if (p && p->current) {
 418		if (p->current->state != TYPE_NONE)
 419			pid_put_sample(tchart, next_pid, p->current->state, cpu,
 420				       p->current->state_since, timestamp,
 421				       backtrace);
 422
 423		p->current->state_since = timestamp;
 424		p->current->state = TYPE_RUNNING;
 425	}
 426
 427	if (prev_p->current) {
 428		prev_p->current->state = TYPE_NONE;
 429		prev_p->current->state_since = timestamp;
 430		if (prev_state & 2)
 431			prev_p->current->state = TYPE_BLOCKED;
 432		if (prev_state == 0)
 433			prev_p->current->state = TYPE_WAITING;
 434	}
 435}
 436
 437static const char *cat_backtrace(union perf_event *event,
 438				 struct perf_sample *sample,
 439				 struct machine *machine)
 440{
 441	struct addr_location al;
 442	unsigned int i;
 443	char *p = NULL;
 444	size_t p_len;
 445	u8 cpumode = PERF_RECORD_MISC_USER;
 446	struct addr_location tal;
 447	struct ip_callchain *chain = sample->callchain;
 448	FILE *f = open_memstream(&p, &p_len);
 449
 450	if (!f) {
 451		perror("open_memstream error");
 452		return NULL;
 453	}
 454
 455	if (!chain)
 456		goto exit;
 457
 458	if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
 459		fprintf(stderr, "problem processing %d event, skipping it.\n",
 460			event->header.type);
 461		goto exit;
 462	}
 463
 464	for (i = 0; i < chain->nr; i++) {
 465		u64 ip;
 466
 467		if (callchain_param.order == ORDER_CALLEE)
 468			ip = chain->ips[i];
 469		else
 470			ip = chain->ips[chain->nr - i - 1];
 471
 472		if (ip >= PERF_CONTEXT_MAX) {
 473			switch (ip) {
 474			case PERF_CONTEXT_HV:
 475				cpumode = PERF_RECORD_MISC_HYPERVISOR;
 476				break;
 477			case PERF_CONTEXT_KERNEL:
 478				cpumode = PERF_RECORD_MISC_KERNEL;
 479				break;
 480			case PERF_CONTEXT_USER:
 481				cpumode = PERF_RECORD_MISC_USER;
 482				break;
 483			default:
 484				pr_debug("invalid callchain context: "
 485					 "%"PRId64"\n", (s64) ip);
 486
 487				/*
 488				 * It seems the callchain is corrupted.
 489				 * Discard all.
 490				 */
 491				zfree(&p);
 492				goto exit;
 493			}
 494			continue;
 495		}
 496
 497		tal.filtered = 0;
 498		thread__find_addr_location(al.thread, machine, cpumode,
 499					   MAP__FUNCTION, ip, &tal);
 500
 501		if (tal.sym)
 502			fprintf(f, "..... %016" PRIx64 " %s\n", ip,
 503				tal.sym->name);
 504		else
 505			fprintf(f, "..... %016" PRIx64 "\n", ip);
 506	}
 507
 508exit:
 509	fclose(f);
 510
 511	return p;
 512}
 513
 514typedef int (*tracepoint_handler)(struct timechart *tchart,
 515				  struct perf_evsel *evsel,
 516				  struct perf_sample *sample,
 517				  const char *backtrace);
 518
 519static int process_sample_event(struct perf_tool *tool,
 520				union perf_event *event,
 521				struct perf_sample *sample,
 522				struct perf_evsel *evsel,
 523				struct machine *machine)
 524{
 525	struct timechart *tchart = container_of(tool, struct timechart, tool);
 526
 527	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 528		if (!tchart->first_time || tchart->first_time > sample->time)
 529			tchart->first_time = sample->time;
 530		if (tchart->last_time < sample->time)
 531			tchart->last_time = sample->time;
 532	}
 533
 534	if (evsel->handler != NULL) {
 535		tracepoint_handler f = evsel->handler;
 536		return f(tchart, evsel, sample,
 537			 cat_backtrace(event, sample, machine));
 538	}
 539
 540	return 0;
 541}
 542
 543static int
 544process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
 545			struct perf_evsel *evsel,
 546			struct perf_sample *sample,
 547			const char *backtrace __maybe_unused)
 548{
 549	u32 state = perf_evsel__intval(evsel, sample, "state");
 550	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 551
 552	if (state == (u32)PWR_EVENT_EXIT)
 553		c_state_end(tchart, cpu_id, sample->time);
 554	else
 555		c_state_start(cpu_id, sample->time, state);
 556	return 0;
 557}
 558
 559static int
 560process_sample_cpu_frequency(struct timechart *tchart,
 561			     struct perf_evsel *evsel,
 562			     struct perf_sample *sample,
 563			     const char *backtrace __maybe_unused)
 564{
 565	u32 state = perf_evsel__intval(evsel, sample, "state");
 566	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 567
 568	p_state_change(tchart, cpu_id, sample->time, state);
 569	return 0;
 570}
 571
 572static int
 573process_sample_sched_wakeup(struct timechart *tchart,
 574			    struct perf_evsel *evsel,
 575			    struct perf_sample *sample,
 576			    const char *backtrace)
 577{
 578	u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
 579	int waker = perf_evsel__intval(evsel, sample, "common_pid");
 580	int wakee = perf_evsel__intval(evsel, sample, "pid");
 581
 582	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
 583	return 0;
 584}
 585
 586static int
 587process_sample_sched_switch(struct timechart *tchart,
 588			    struct perf_evsel *evsel,
 589			    struct perf_sample *sample,
 590			    const char *backtrace)
 591{
 592	int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
 593	int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 594	u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 595
 596	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
 597		     prev_state, backtrace);
 598	return 0;
 599}
 600
 601#ifdef SUPPORT_OLD_POWER_EVENTS
 602static int
 603process_sample_power_start(struct timechart *tchart __maybe_unused,
 604			   struct perf_evsel *evsel,
 605			   struct perf_sample *sample,
 606			   const char *backtrace __maybe_unused)
 607{
 608	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 609	u64 value = perf_evsel__intval(evsel, sample, "value");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610
 611	c_state_start(cpu_id, sample->time, value);
 612	return 0;
 613}
 614
 615static int
 616process_sample_power_end(struct timechart *tchart,
 617			 struct perf_evsel *evsel __maybe_unused,
 618			 struct perf_sample *sample,
 619			 const char *backtrace __maybe_unused)
 620{
 621	c_state_end(tchart, sample->cpu, sample->time);
 622	return 0;
 623}
 624
 625static int
 626process_sample_power_frequency(struct timechart *tchart,
 627			       struct perf_evsel *evsel,
 628			       struct perf_sample *sample,
 629			       const char *backtrace __maybe_unused)
 630{
 631	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
 632	u64 value = perf_evsel__intval(evsel, sample, "value");
 633
 634	p_state_change(tchart, cpu_id, sample->time, value);
 
 
 
 
 
 
 635	return 0;
 636}
 637#endif /* SUPPORT_OLD_POWER_EVENTS */
 638
 639/*
 640 * After the last sample we need to wrap up the current C/P state
 641 * and close out each CPU for these.
 642 */
 643static void end_sample_processing(struct timechart *tchart)
 644{
 645	u64 cpu;
 646	struct power_event *pwr;
 647
 648	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
 649		/* C state */
 650#if 0
 651		pwr = zalloc(sizeof(*pwr));
 652		if (!pwr)
 653			return;
 
 654
 
 
 655		pwr->state = cpus_cstate_state[cpu];
 656		pwr->start_time = cpus_cstate_start_times[cpu];
 657		pwr->end_time = tchart->last_time;
 658		pwr->cpu = cpu;
 659		pwr->type = CSTATE;
 660		pwr->next = tchart->power_events;
 661
 662		tchart->power_events = pwr;
 663#endif
 664		/* P state */
 665
 666		pwr = zalloc(sizeof(*pwr));
 667		if (!pwr)
 668			return;
 
 669
 670		pwr->state = cpus_pstate_state[cpu];
 671		pwr->start_time = cpus_pstate_start_times[cpu];
 672		pwr->end_time = tchart->last_time;
 673		pwr->cpu = cpu;
 674		pwr->type = PSTATE;
 675		pwr->next = tchart->power_events;
 676
 677		if (!pwr->start_time)
 678			pwr->start_time = tchart->first_time;
 679		if (!pwr->state)
 680			pwr->state = tchart->min_freq;
 681		tchart->power_events = pwr;
 682	}
 683}
 684
 685/*
 686 * Sort the pid datastructure
 687 */
 688static void sort_pids(struct timechart *tchart)
 689{
 690	struct per_pid *new_list, *p, *cursor, *prev;
 691	/* sort by ppid first, then by pid, lowest to highest */
 692
 693	new_list = NULL;
 694
 695	while (tchart->all_data) {
 696		p = tchart->all_data;
 697		tchart->all_data = p->next;
 698		p->next = NULL;
 699
 700		if (new_list == NULL) {
 701			new_list = p;
 702			p->next = NULL;
 703			continue;
 704		}
 705		prev = NULL;
 706		cursor = new_list;
 707		while (cursor) {
 708			if (cursor->ppid > p->ppid ||
 709				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 710				/* must insert before */
 711				if (prev) {
 712					p->next = prev->next;
 713					prev->next = p;
 714					cursor = NULL;
 715					continue;
 716				} else {
 717					p->next = new_list;
 718					new_list = p;
 719					cursor = NULL;
 720					continue;
 721				}
 722			}
 723
 724			prev = cursor;
 725			cursor = cursor->next;
 726			if (!cursor)
 727				prev->next = p;
 728		}
 729	}
 730	tchart->all_data = new_list;
 731}
 732
 733
 734static void draw_c_p_states(struct timechart *tchart)
 735{
 736	struct power_event *pwr;
 737	pwr = tchart->power_events;
 738
 739	/*
 740	 * two pass drawing so that the P state bars are on top of the C state blocks
 741	 */
 742	while (pwr) {
 743		if (pwr->type == CSTATE)
 744			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 745		pwr = pwr->next;
 746	}
 747
 748	pwr = tchart->power_events;
 749	while (pwr) {
 750		if (pwr->type == PSTATE) {
 751			if (!pwr->state)
 752				pwr->state = tchart->min_freq;
 753			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 754		}
 755		pwr = pwr->next;
 756	}
 757}
 758
 759static void draw_wakeups(struct timechart *tchart)
 760{
 761	struct wake_event *we;
 762	struct per_pid *p;
 763	struct per_pidcomm *c;
 764
 765	we = tchart->wake_events;
 766	while (we) {
 767		int from = 0, to = 0;
 768		char *task_from = NULL, *task_to = NULL;
 769
 770		/* locate the column of the waker and wakee */
 771		p = tchart->all_data;
 772		while (p) {
 773			if (p->pid == we->waker || p->pid == we->wakee) {
 774				c = p->all;
 775				while (c) {
 776					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 777						if (p->pid == we->waker && !from) {
 778							from = c->Y;
 779							task_from = strdup(c->comm);
 780						}
 781						if (p->pid == we->wakee && !to) {
 782							to = c->Y;
 783							task_to = strdup(c->comm);
 784						}
 785					}
 786					c = c->next;
 787				}
 788				c = p->all;
 789				while (c) {
 790					if (p->pid == we->waker && !from) {
 791						from = c->Y;
 792						task_from = strdup(c->comm);
 793					}
 794					if (p->pid == we->wakee && !to) {
 795						to = c->Y;
 796						task_to = strdup(c->comm);
 797					}
 798					c = c->next;
 799				}
 800			}
 801			p = p->next;
 802		}
 803
 804		if (!task_from) {
 805			task_from = malloc(40);
 806			sprintf(task_from, "[%i]", we->waker);
 807		}
 808		if (!task_to) {
 809			task_to = malloc(40);
 810			sprintf(task_to, "[%i]", we->wakee);
 811		}
 812
 813		if (we->waker == -1)
 814			svg_interrupt(we->time, to, we->backtrace);
 815		else if (from && to && abs(from - to) == 1)
 816			svg_wakeline(we->time, from, to, we->backtrace);
 817		else
 818			svg_partial_wakeline(we->time, from, task_from, to,
 819					     task_to, we->backtrace);
 820		we = we->next;
 821
 822		free(task_from);
 823		free(task_to);
 824	}
 825}
 826
 827static void draw_cpu_usage(struct timechart *tchart)
 828{
 829	struct per_pid *p;
 830	struct per_pidcomm *c;
 831	struct cpu_sample *sample;
 832	p = tchart->all_data;
 833	while (p) {
 834		c = p->all;
 835		while (c) {
 836			sample = c->samples;
 837			while (sample) {
 838				if (sample->type == TYPE_RUNNING) {
 839					svg_process(sample->cpu,
 840						    sample->start_time,
 841						    sample->end_time,
 842						    p->pid,
 843						    c->comm,
 844						    sample->backtrace);
 845				}
 846
 847				sample = sample->next;
 848			}
 849			c = c->next;
 850		}
 851		p = p->next;
 852	}
 853}
 854
 855static void draw_process_bars(struct timechart *tchart)
 856{
 857	struct per_pid *p;
 858	struct per_pidcomm *c;
 859	struct cpu_sample *sample;
 860	int Y = 0;
 861
 862	Y = 2 * tchart->numcpus + 2;
 863
 864	p = tchart->all_data;
 865	while (p) {
 866		c = p->all;
 867		while (c) {
 868			if (!c->display) {
 869				c->Y = 0;
 870				c = c->next;
 871				continue;
 872			}
 873
 874			svg_box(Y, c->start_time, c->end_time, "process");
 875			sample = c->samples;
 876			while (sample) {
 877				if (sample->type == TYPE_RUNNING)
 878					svg_running(Y, sample->cpu,
 879						    sample->start_time,
 880						    sample->end_time,
 881						    sample->backtrace);
 882				if (sample->type == TYPE_BLOCKED)
 883					svg_blocked(Y, sample->cpu,
 884						    sample->start_time,
 885						    sample->end_time,
 886						    sample->backtrace);
 887				if (sample->type == TYPE_WAITING)
 888					svg_waiting(Y, sample->cpu,
 889						    sample->start_time,
 890						    sample->end_time,
 891						    sample->backtrace);
 892				sample = sample->next;
 893			}
 894
 895			if (c->comm) {
 896				char comm[256];
 897				if (c->total_time > 5000000000) /* 5 seconds */
 898					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 899				else
 900					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 901
 902				svg_text(Y, c->start_time, comm);
 903			}
 904			c->Y = Y;
 905			Y++;
 906			c = c->next;
 907		}
 908		p = p->next;
 909	}
 910}
 911
 912static void add_process_filter(const char *string)
 913{
 914	int pid = strtoull(string, NULL, 10);
 915	struct process_filter *filt = malloc(sizeof(*filt));
 916
 
 
 917	if (!filt)
 918		return;
 919
 920	filt->name = strdup(string);
 921	filt->pid  = pid;
 922	filt->next = process_filter;
 923
 924	process_filter = filt;
 925}
 926
 927static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 928{
 929	struct process_filter *filt;
 930	if (!process_filter)
 931		return 1;
 932
 933	filt = process_filter;
 934	while (filt) {
 935		if (filt->pid && p->pid == filt->pid)
 936			return 1;
 937		if (strcmp(filt->name, c->comm) == 0)
 938			return 1;
 939		filt = filt->next;
 940	}
 941	return 0;
 942}
 943
 944static int determine_display_tasks_filtered(struct timechart *tchart)
 945{
 946	struct per_pid *p;
 947	struct per_pidcomm *c;
 948	int count = 0;
 949
 950	p = tchart->all_data;
 951	while (p) {
 952		p->display = 0;
 953		if (p->start_time == 1)
 954			p->start_time = tchart->first_time;
 955
 956		/* no exit marker, task kept running to the end */
 957		if (p->end_time == 0)
 958			p->end_time = tchart->last_time;
 959
 960		c = p->all;
 961
 962		while (c) {
 963			c->display = 0;
 964
 965			if (c->start_time == 1)
 966				c->start_time = tchart->first_time;
 967
 968			if (passes_filter(p, c)) {
 969				c->display = 1;
 970				p->display = 1;
 971				count++;
 972			}
 973
 974			if (c->end_time == 0)
 975				c->end_time = tchart->last_time;
 976
 977			c = c->next;
 978		}
 979		p = p->next;
 980	}
 981	return count;
 982}
 983
 984static int determine_display_tasks(struct timechart *tchart, u64 threshold)
 985{
 986	struct per_pid *p;
 987	struct per_pidcomm *c;
 988	int count = 0;
 989
 990	if (process_filter)
 991		return determine_display_tasks_filtered(tchart);
 992
 993	p = tchart->all_data;
 994	while (p) {
 995		p->display = 0;
 996		if (p->start_time == 1)
 997			p->start_time = tchart->first_time;
 998
 999		/* no exit marker, task kept running to the end */
1000		if (p->end_time == 0)
1001			p->end_time = tchart->last_time;
1002		if (p->total_time >= threshold)
1003			p->display = 1;
1004
1005		c = p->all;
1006
1007		while (c) {
1008			c->display = 0;
1009
1010			if (c->start_time == 1)
1011				c->start_time = tchart->first_time;
1012
1013			if (c->total_time >= threshold) {
1014				c->display = 1;
1015				count++;
1016			}
1017
1018			if (c->end_time == 0)
1019				c->end_time = tchart->last_time;
1020
1021			c = c->next;
1022		}
1023		p = p->next;
1024	}
1025	return count;
1026}
1027
1028
1029
1030#define TIME_THRESH 10000000
1031
1032static void write_svg_file(struct timechart *tchart, const char *filename)
1033{
1034	u64 i;
1035	int count;
1036	int thresh = TIME_THRESH;
1037
1038	if (tchart->power_only)
1039		tchart->proc_num = 0;
1040
1041	/* We'd like to show at least proc_num tasks;
1042	 * be less picky if we have fewer */
1043	do {
1044		count = determine_display_tasks(tchart, thresh);
1045		thresh /= 10;
1046	} while (!process_filter && thresh && count < tchart->proc_num);
1047
1048	if (!tchart->proc_num)
1049		count = 0;
1050
1051	open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
 
 
 
 
1052
1053	svg_time_grid();
1054	svg_legenda();
1055
1056	for (i = 0; i < tchart->numcpus; i++)
1057		svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1058
1059	draw_cpu_usage(tchart);
1060	if (tchart->proc_num)
1061		draw_process_bars(tchart);
1062	if (!tchart->tasks_only)
1063		draw_c_p_states(tchart);
1064	if (tchart->proc_num)
1065		draw_wakeups(tchart);
1066
1067	svg_close();
1068}
1069
1070static int process_header(struct perf_file_section *section __maybe_unused,
1071			  struct perf_header *ph,
1072			  int feat,
1073			  int fd __maybe_unused,
1074			  void *data)
1075{
1076	struct timechart *tchart = data;
1077
1078	switch (feat) {
1079	case HEADER_NRCPUS:
1080		tchart->numcpus = ph->env.nr_cpus_avail;
1081		break;
1082
1083	case HEADER_CPU_TOPOLOGY:
1084		if (!tchart->topology)
1085			break;
1086
1087		if (svg_build_topology_map(ph->env.sibling_cores,
1088					   ph->env.nr_sibling_cores,
1089					   ph->env.sibling_threads,
1090					   ph->env.nr_sibling_threads))
1091			fprintf(stderr, "problem building topology\n");
1092		break;
1093
1094	default:
1095		break;
1096	}
1097
1098	return 0;
1099}
1100
1101static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1102{
1103	const struct perf_evsel_str_handler power_tracepoints[] = {
1104		{ "power:cpu_idle",		process_sample_cpu_idle },
1105		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1106		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1107		{ "sched:sched_switch",		process_sample_sched_switch },
1108#ifdef SUPPORT_OLD_POWER_EVENTS
1109		{ "power:power_start",		process_sample_power_start },
1110		{ "power:power_end",		process_sample_power_end },
1111		{ "power:power_frequency",	process_sample_power_frequency },
1112#endif
1113	};
1114	struct perf_data_file file = {
1115		.path = input_name,
1116		.mode = PERF_DATA_MODE_READ,
1117	};
1118
1119	struct perf_session *session = perf_session__new(&file, false,
1120							 &tchart->tool);
1121	int ret = -EINVAL;
1122
1123	if (session == NULL)
1124		return -ENOMEM;
1125
1126	(void)perf_header__process_sections(&session->header,
1127					    perf_data_file__fd(session->file),
1128					    tchart,
1129					    process_header);
1130
1131	if (!perf_session__has_traces(session, "timechart record"))
1132		goto out_delete;
1133
1134	if (perf_session__set_tracepoints_handlers(session,
1135						   power_tracepoints)) {
1136		pr_err("Initializing session tracepoint handlers failed\n");
1137		goto out_delete;
1138	}
1139
1140	ret = perf_session__process_events(session, &tchart->tool);
1141	if (ret)
1142		goto out_delete;
1143
1144	end_sample_processing(tchart);
1145
1146	sort_pids(tchart);
1147
1148	write_svg_file(tchart, output_name);
1149
1150	pr_info("Written %2.1f seconds of trace to %s.\n",
1151		(tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1152out_delete:
1153	perf_session__delete(session);
1154	return ret;
1155}
1156
1157static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1158{
1159	unsigned int rec_argc, i, j;
1160	const char **rec_argv;
1161	const char **p;
1162	unsigned int record_elems;
1163
1164	const char * const common_args[] = {
1165		"record", "-a", "-R", "-c", "1",
1166	};
1167	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1168
1169	const char * const backtrace_args[] = {
1170		"-g",
1171	};
1172	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1173
1174	const char * const power_args[] = {
1175		"-e", "power:cpu_frequency",
1176		"-e", "power:cpu_idle",
1177	};
1178	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1179
1180	const char * const old_power_args[] = {
1181#ifdef SUPPORT_OLD_POWER_EVENTS
1182		"-e", "power:power_start",
1183		"-e", "power:power_end",
1184		"-e", "power:power_frequency",
 
 
 
 
 
 
 
 
 
1185#endif
1186	};
1187	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1188
1189	const char * const tasks_args[] = {
1190		"-e", "sched:sched_wakeup",
1191		"-e", "sched:sched_switch",
1192	};
1193	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
1194
1195#ifdef SUPPORT_OLD_POWER_EVENTS
1196	if (!is_valid_tracepoint("power:cpu_idle") &&
1197	    is_valid_tracepoint("power:power_start")) {
1198		use_old_power_events = 1;
1199		power_args_nr = 0;
1200	} else {
1201		old_power_args_nr = 0;
1202	}
1203#endif
1204
1205	if (tchart->power_only)
1206		tasks_args_nr = 0;
1207
1208	if (tchart->tasks_only) {
1209		power_args_nr = 0;
1210		old_power_args_nr = 0;
1211	}
1212
1213	if (!tchart->with_backtrace)
1214		backtrace_args_no = 0;
1215
1216	record_elems = common_args_nr + tasks_args_nr +
1217		power_args_nr + old_power_args_nr + backtrace_args_no;
1218
1219	rec_argc = record_elems + argc;
1220	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1221
1222	if (rec_argv == NULL)
1223		return -ENOMEM;
1224
1225	p = rec_argv;
1226	for (i = 0; i < common_args_nr; i++)
1227		*p++ = strdup(common_args[i]);
1228
1229	for (i = 0; i < backtrace_args_no; i++)
1230		*p++ = strdup(backtrace_args[i]);
1231
1232	for (i = 0; i < tasks_args_nr; i++)
1233		*p++ = strdup(tasks_args[i]);
1234
1235	for (i = 0; i < power_args_nr; i++)
1236		*p++ = strdup(power_args[i]);
1237
1238	for (i = 0; i < old_power_args_nr; i++)
1239		*p++ = strdup(old_power_args[i]);
1240
1241	for (j = 0; j < (unsigned int)argc; j++)
1242		*p++ = argv[j];
1243
1244	return cmd_record(rec_argc, rec_argv, NULL);
1245}
1246
1247static int
1248parse_process(const struct option *opt __maybe_unused, const char *arg,
1249	      int __maybe_unused unset)
1250{
1251	if (arg)
1252		add_process_filter(arg);
1253	return 0;
1254}
1255
1256static int
1257parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1258		int __maybe_unused unset)
1259{
1260	unsigned long duration = strtoul(arg, NULL, 0);
1261
1262	if (svg_highlight || svg_highlight_name)
1263		return -1;
1264
1265	if (duration)
1266		svg_highlight = duration;
1267	else
1268		svg_highlight_name = strdup(arg);
1269
1270	return 0;
1271}
1272
1273int cmd_timechart(int argc, const char **argv,
1274		  const char *prefix __maybe_unused)
1275{
1276	struct timechart tchart = {
1277		.tool = {
1278			.comm		 = process_comm_event,
1279			.fork		 = process_fork_event,
1280			.exit		 = process_exit_event,
1281			.sample		 = process_sample_event,
1282			.ordered_samples = true,
1283		},
1284		.proc_num = 15,
1285	};
1286	const char *output_name = "output.svg";
1287	const struct option timechart_options[] = {
1288	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1289	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1290	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1291	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1292		      "highlight tasks. Pass duration in ns or process name.",
1293		       parse_highlight),
1294	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1295	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1296		    "output processes data only"),
1297	OPT_CALLBACK('p', "process", NULL, "process",
1298		      "process selector. Pass a pid or process name.",
1299		       parse_process),
1300	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1301		    "Look for files with symbols relative to this directory"),
1302	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1303		    "min. number of tasks to print"),
1304	OPT_BOOLEAN('t', "topology", &tchart.topology,
1305		    "sort CPUs according to topology"),
1306	OPT_END()
1307	};
1308	const char * const timechart_usage[] = {
1309		"perf timechart [<options>] {record}",
1310		NULL
1311	};
1312
1313	const struct option record_options[] = {
1314	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1315	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1316		    "output processes data only"),
1317	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1318	OPT_END()
1319	};
1320	const char * const record_usage[] = {
1321		"perf timechart record [<options>]",
1322		NULL
1323	};
1324	argc = parse_options(argc, argv, timechart_options, timechart_usage,
1325			PARSE_OPT_STOP_AT_NON_OPTION);
1326
1327	if (tchart.power_only && tchart.tasks_only) {
1328		pr_err("-P and -T options cannot be used at the same time.\n");
1329		return -1;
1330	}
1331
1332	symbol__init();
 
 
 
1333
1334	if (argc && !strncmp(argv[0], "rec", 3)) {
1335		argc = parse_options(argc, argv, record_options, record_usage,
1336				     PARSE_OPT_STOP_AT_NON_OPTION);
1337
1338		if (tchart.power_only && tchart.tasks_only) {
1339			pr_err("-P and -T options cannot be used at the same time.\n");
1340			return -1;
1341		}
1342
1343		return timechart__record(&tchart, argc, argv);
1344	} else if (argc)
1345		usage_with_options(timechart_usage, timechart_options);
 
1346
1347	setup_pager();
1348
1349	return __cmd_timechart(&tchart, output_name);
1350}
v3.5.6
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
 
 
  15#include "builtin.h"
  16
  17#include "util/util.h"
  18
  19#include "util/color.h"
  20#include <linux/list.h>
  21#include "util/cache.h"
 
  22#include "util/evsel.h"
  23#include <linux/rbtree.h>
  24#include "util/symbol.h"
  25#include "util/callchain.h"
  26#include "util/strlist.h"
  27
  28#include "perf.h"
  29#include "util/header.h"
  30#include "util/parse-options.h"
  31#include "util/parse-events.h"
  32#include "util/event.h"
  33#include "util/session.h"
  34#include "util/svghelper.h"
  35#include "util/tool.h"
 
  36
  37#define SUPPORT_OLD_POWER_EVENTS 1
  38#define PWR_EVENT_EXIT -1
  39
 
 
 
  40
  41static const char	*input_name;
  42static const char	*output_name = "output.svg";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43
  44static unsigned int	numcpus;
  45static u64		min_freq;	/* Lowest CPU frequency seen */
  46static u64		max_freq;	/* Highest CPU frequency seen */
  47static u64		turbo_frequency;
  48
  49static u64		first_time, last_time;
  50
  51static bool		power_only;
  52
  53
  54struct per_pid;
  55struct per_pidcomm;
  56
  57struct cpu_sample;
  58struct power_event;
  59struct wake_event;
  60
  61struct sample_wrapper;
  62
  63/*
  64 * Datastructure layout:
  65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  66 * Each "pid" entry, has a list of "comm"s.
  67 *	this is because we want to track different programs different, while
  68 *	exec will reuse the original pid (by design).
  69 * Each comm has a list of samples that will be used to draw
  70 * final graph.
  71 */
  72
  73struct per_pid {
  74	struct per_pid *next;
  75
  76	int		pid;
  77	int		ppid;
  78
  79	u64		start_time;
  80	u64		end_time;
  81	u64		total_time;
  82	int		display;
  83
  84	struct per_pidcomm *all;
  85	struct per_pidcomm *current;
  86};
  87
  88
  89struct per_pidcomm {
  90	struct per_pidcomm *next;
  91
  92	u64		start_time;
  93	u64		end_time;
  94	u64		total_time;
  95
  96	int		Y;
  97	int		display;
  98
  99	long		state;
 100	u64		state_since;
 101
 102	char		*comm;
 103
 104	struct cpu_sample *samples;
 105};
 106
 107struct sample_wrapper {
 108	struct sample_wrapper *next;
 109
 110	u64		timestamp;
 111	unsigned char	data[0];
 112};
 113
 114#define TYPE_NONE	0
 115#define TYPE_RUNNING	1
 116#define TYPE_WAITING	2
 117#define TYPE_BLOCKED	3
 118
 119struct cpu_sample {
 120	struct cpu_sample *next;
 121
 122	u64 start_time;
 123	u64 end_time;
 124	int type;
 125	int cpu;
 
 126};
 127
 128static struct per_pid *all_data;
 129
 130#define CSTATE 1
 131#define PSTATE 2
 132
 133struct power_event {
 134	struct power_event *next;
 135	int type;
 136	int state;
 137	u64 start_time;
 138	u64 end_time;
 139	int cpu;
 140};
 141
 142struct wake_event {
 143	struct wake_event *next;
 144	int waker;
 145	int wakee;
 146	u64 time;
 
 147};
 148
 149static struct power_event    *power_events;
 150static struct wake_event     *wake_events;
 151
 152struct process_filter;
 153struct process_filter {
 154	char			*name;
 155	int			pid;
 156	struct process_filter	*next;
 157};
 158
 159static struct process_filter *process_filter;
 160
 161
 162static struct per_pid *find_create_pid(int pid)
 163{
 164	struct per_pid *cursor = all_data;
 165
 166	while (cursor) {
 167		if (cursor->pid == pid)
 168			return cursor;
 169		cursor = cursor->next;
 170	}
 171	cursor = malloc(sizeof(struct per_pid));
 172	assert(cursor != NULL);
 173	memset(cursor, 0, sizeof(struct per_pid));
 174	cursor->pid = pid;
 175	cursor->next = all_data;
 176	all_data = cursor;
 177	return cursor;
 178}
 179
 180static void pid_set_comm(int pid, char *comm)
 181{
 182	struct per_pid *p;
 183	struct per_pidcomm *c;
 184	p = find_create_pid(pid);
 185	c = p->all;
 186	while (c) {
 187		if (c->comm && strcmp(c->comm, comm) == 0) {
 188			p->current = c;
 189			return;
 190		}
 191		if (!c->comm) {
 192			c->comm = strdup(comm);
 193			p->current = c;
 194			return;
 195		}
 196		c = c->next;
 197	}
 198	c = malloc(sizeof(struct per_pidcomm));
 199	assert(c != NULL);
 200	memset(c, 0, sizeof(struct per_pidcomm));
 201	c->comm = strdup(comm);
 202	p->current = c;
 203	c->next = p->all;
 204	p->all = c;
 205}
 206
 207static void pid_fork(int pid, int ppid, u64 timestamp)
 208{
 209	struct per_pid *p, *pp;
 210	p = find_create_pid(pid);
 211	pp = find_create_pid(ppid);
 212	p->ppid = ppid;
 213	if (pp->current && pp->current->comm && !p->current)
 214		pid_set_comm(pid, pp->current->comm);
 215
 216	p->start_time = timestamp;
 217	if (p->current) {
 218		p->current->start_time = timestamp;
 219		p->current->state_since = timestamp;
 220	}
 221}
 222
 223static void pid_exit(int pid, u64 timestamp)
 224{
 225	struct per_pid *p;
 226	p = find_create_pid(pid);
 227	p->end_time = timestamp;
 228	if (p->current)
 229		p->current->end_time = timestamp;
 230}
 231
 232static void
 233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 
 234{
 235	struct per_pid *p;
 236	struct per_pidcomm *c;
 237	struct cpu_sample *sample;
 238
 239	p = find_create_pid(pid);
 240	c = p->current;
 241	if (!c) {
 242		c = malloc(sizeof(struct per_pidcomm));
 243		assert(c != NULL);
 244		memset(c, 0, sizeof(struct per_pidcomm));
 245		p->current = c;
 246		c->next = p->all;
 247		p->all = c;
 248	}
 249
 250	sample = malloc(sizeof(struct cpu_sample));
 251	assert(sample != NULL);
 252	memset(sample, 0, sizeof(struct cpu_sample));
 253	sample->start_time = start;
 254	sample->end_time = end;
 255	sample->type = type;
 256	sample->next = c->samples;
 257	sample->cpu = cpu;
 
 258	c->samples = sample;
 259
 260	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 261		c->total_time += (end-start);
 262		p->total_time += (end-start);
 263	}
 264
 265	if (c->start_time == 0 || c->start_time > start)
 266		c->start_time = start;
 267	if (p->start_time == 0 || p->start_time > start)
 268		p->start_time = start;
 269}
 270
 271#define MAX_CPUS 4096
 272
 273static u64 cpus_cstate_start_times[MAX_CPUS];
 274static int cpus_cstate_state[MAX_CPUS];
 275static u64 cpus_pstate_start_times[MAX_CPUS];
 276static u64 cpus_pstate_state[MAX_CPUS];
 277
 278static int process_comm_event(struct perf_tool *tool __used,
 279			      union perf_event *event,
 280			      struct perf_sample *sample __used,
 281			      struct machine *machine __used)
 282{
 283	pid_set_comm(event->comm.tid, event->comm.comm);
 
 284	return 0;
 285}
 286
 287static int process_fork_event(struct perf_tool *tool __used,
 288			      union perf_event *event,
 289			      struct perf_sample *sample __used,
 290			      struct machine *machine __used)
 291{
 292	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 
 293	return 0;
 294}
 295
 296static int process_exit_event(struct perf_tool *tool __used,
 297			      union perf_event *event,
 298			      struct perf_sample *sample __used,
 299			      struct machine *machine __used)
 300{
 301	pid_exit(event->fork.pid, event->fork.time);
 
 302	return 0;
 303}
 304
 305struct trace_entry {
 306	unsigned short		type;
 307	unsigned char		flags;
 308	unsigned char		preempt_count;
 309	int			pid;
 310	int			lock_depth;
 311};
 312
 313#ifdef SUPPORT_OLD_POWER_EVENTS
 314static int use_old_power_events;
 315struct power_entry_old {
 316	struct trace_entry te;
 317	u64	type;
 318	u64	value;
 319	u64	cpu_id;
 320};
 321#endif
 322
 323struct power_processor_entry {
 324	struct trace_entry te;
 325	u32	state;
 326	u32	cpu_id;
 327};
 328
 329#define TASK_COMM_LEN 16
 330struct wakeup_entry {
 331	struct trace_entry te;
 332	char comm[TASK_COMM_LEN];
 333	int   pid;
 334	int   prio;
 335	int   success;
 336};
 337
 338/*
 339 * trace_flag_type is an enumeration that holds different
 340 * states when a trace occurs. These are:
 341 *  IRQS_OFF            - interrupts were disabled
 342 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 343 *  NEED_RESCED         - reschedule is requested
 344 *  HARDIRQ             - inside an interrupt handler
 345 *  SOFTIRQ             - inside a softirq handler
 346 */
 347enum trace_flag_type {
 348	TRACE_FLAG_IRQS_OFF		= 0x01,
 349	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 350	TRACE_FLAG_NEED_RESCHED		= 0x04,
 351	TRACE_FLAG_HARDIRQ		= 0x08,
 352	TRACE_FLAG_SOFTIRQ		= 0x10,
 353};
 354
 355
 356
 357struct sched_switch {
 358	struct trace_entry te;
 359	char prev_comm[TASK_COMM_LEN];
 360	int  prev_pid;
 361	int  prev_prio;
 362	long prev_state; /* Arjan weeps. */
 363	char next_comm[TASK_COMM_LEN];
 364	int  next_pid;
 365	int  next_prio;
 366};
 367
 368static void c_state_start(int cpu, u64 timestamp, int state)
 369{
 370	cpus_cstate_start_times[cpu] = timestamp;
 371	cpus_cstate_state[cpu] = state;
 372}
 373
 374static void c_state_end(int cpu, u64 timestamp)
 375{
 376	struct power_event *pwr;
 377	pwr = malloc(sizeof(struct power_event));
 378	if (!pwr)
 379		return;
 380	memset(pwr, 0, sizeof(struct power_event));
 381
 382	pwr->state = cpus_cstate_state[cpu];
 383	pwr->start_time = cpus_cstate_start_times[cpu];
 384	pwr->end_time = timestamp;
 385	pwr->cpu = cpu;
 386	pwr->type = CSTATE;
 387	pwr->next = power_events;
 388
 389	power_events = pwr;
 390}
 391
 392static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 393{
 394	struct power_event *pwr;
 395	pwr = malloc(sizeof(struct power_event));
 396
 397	if (new_freq > 8000000) /* detect invalid data */
 398		return;
 399
 
 400	if (!pwr)
 401		return;
 402	memset(pwr, 0, sizeof(struct power_event));
 403
 404	pwr->state = cpus_pstate_state[cpu];
 405	pwr->start_time = cpus_pstate_start_times[cpu];
 406	pwr->end_time = timestamp;
 407	pwr->cpu = cpu;
 408	pwr->type = PSTATE;
 409	pwr->next = power_events;
 410
 411	if (!pwr->start_time)
 412		pwr->start_time = first_time;
 413
 414	power_events = pwr;
 415
 416	cpus_pstate_state[cpu] = new_freq;
 417	cpus_pstate_start_times[cpu] = timestamp;
 418
 419	if ((u64)new_freq > max_freq)
 420		max_freq = new_freq;
 421
 422	if (new_freq < min_freq || min_freq == 0)
 423		min_freq = new_freq;
 424
 425	if (new_freq == max_freq - 1000)
 426			turbo_frequency = max_freq;
 427}
 428
 429static void
 430sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 431{
 432	struct wake_event *we;
 433	struct per_pid *p;
 434	struct wakeup_entry *wake = (void *)te;
 435
 436	we = malloc(sizeof(struct wake_event));
 437	if (!we)
 438		return;
 439
 440	memset(we, 0, sizeof(struct wake_event));
 441	we->time = timestamp;
 442	we->waker = pid;
 
 443
 444	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 445		we->waker = -1;
 446
 447	we->wakee = wake->pid;
 448	we->next = wake_events;
 449	wake_events = we;
 450	p = find_create_pid(we->wakee);
 451
 452	if (p && p->current && p->current->state == TYPE_NONE) {
 453		p->current->state_since = timestamp;
 454		p->current->state = TYPE_WAITING;
 455	}
 456	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 457		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 458		p->current->state_since = timestamp;
 459		p->current->state = TYPE_WAITING;
 460	}
 461}
 462
 463static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 
 
 464{
 465	struct per_pid *p = NULL, *prev_p;
 466	struct sched_switch *sw = (void *)te;
 467
 
 468
 469	prev_p = find_create_pid(sw->prev_pid);
 470
 471	p = find_create_pid(sw->next_pid);
 472
 473	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 474		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 
 
 475	if (p && p->current) {
 476		if (p->current->state != TYPE_NONE)
 477			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 
 
 478
 479		p->current->state_since = timestamp;
 480		p->current->state = TYPE_RUNNING;
 481	}
 482
 483	if (prev_p->current) {
 484		prev_p->current->state = TYPE_NONE;
 485		prev_p->current->state_since = timestamp;
 486		if (sw->prev_state & 2)
 487			prev_p->current->state = TYPE_BLOCKED;
 488		if (sw->prev_state == 0)
 489			prev_p->current->state = TYPE_WAITING;
 490	}
 491}
 492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493
 494static int process_sample_event(struct perf_tool *tool __used,
 495				union perf_event *event __used,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496				struct perf_sample *sample,
 497				struct perf_evsel *evsel,
 498				struct machine *machine __used)
 499{
 500	struct trace_entry *te;
 501
 502	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 503		if (!first_time || first_time > sample->time)
 504			first_time = sample->time;
 505		if (last_time < sample->time)
 506			last_time = sample->time;
 507	}
 508
 509	te = (void *)sample->raw_data;
 510	if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
 511		char *event_str;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512#ifdef SUPPORT_OLD_POWER_EVENTS
 513		struct power_entry_old *peo;
 514		peo = (void *)te;
 515#endif
 516		/*
 517		 * FIXME: use evsel, its already mapped from id to perf_evsel,
 518		 * remove perf_header__find_event infrastructure bits.
 519		 * Mapping all these "power:cpu_idle" strings to the tracepoint
 520		 * ID and then just comparing against evsel->attr.config.
 521		 *
 522		 * e.g.:
 523		 *
 524		 * if (evsel->attr.config == power_cpu_idle_id)
 525		 */
 526		event_str = perf_header__find_event(te->type);
 527
 528		if (!event_str)
 529			return 0;
 530
 531		if (sample->cpu > numcpus)
 532			numcpus = sample->cpu;
 533
 534		if (strcmp(event_str, "power:cpu_idle") == 0) {
 535			struct power_processor_entry *ppe = (void *)te;
 536			if (ppe->state == (u32)PWR_EVENT_EXIT)
 537				c_state_end(ppe->cpu_id, sample->time);
 538			else
 539				c_state_start(ppe->cpu_id, sample->time,
 540					      ppe->state);
 541		}
 542		else if (strcmp(event_str, "power:cpu_frequency") == 0) {
 543			struct power_processor_entry *ppe = (void *)te;
 544			p_state_change(ppe->cpu_id, sample->time, ppe->state);
 545		}
 546
 547		else if (strcmp(event_str, "sched:sched_wakeup") == 0)
 548			sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 
 549
 550		else if (strcmp(event_str, "sched:sched_switch") == 0)
 551			sched_switch(sample->cpu, sample->time, te);
 
 
 
 
 
 
 
 552
 553#ifdef SUPPORT_OLD_POWER_EVENTS
 554		if (use_old_power_events) {
 555			if (strcmp(event_str, "power:power_start") == 0)
 556				c_state_start(peo->cpu_id, sample->time,
 557					      peo->value);
 558
 559			else if (strcmp(event_str, "power:power_end") == 0)
 560				c_state_end(sample->cpu, sample->time);
 561
 562			else if (strcmp(event_str,
 563					"power:power_frequency") == 0)
 564				p_state_change(peo->cpu_id, sample->time,
 565					       peo->value);
 566		}
 567#endif
 568	}
 569	return 0;
 570}
 
 571
 572/*
 573 * After the last sample we need to wrap up the current C/P state
 574 * and close out each CPU for these.
 575 */
 576static void end_sample_processing(void)
 577{
 578	u64 cpu;
 579	struct power_event *pwr;
 580
 581	for (cpu = 0; cpu <= numcpus; cpu++) {
 582		pwr = malloc(sizeof(struct power_event));
 
 
 583		if (!pwr)
 584			return;
 585		memset(pwr, 0, sizeof(struct power_event));
 586
 587		/* C state */
 588#if 0
 589		pwr->state = cpus_cstate_state[cpu];
 590		pwr->start_time = cpus_cstate_start_times[cpu];
 591		pwr->end_time = last_time;
 592		pwr->cpu = cpu;
 593		pwr->type = CSTATE;
 594		pwr->next = power_events;
 595
 596		power_events = pwr;
 597#endif
 598		/* P state */
 599
 600		pwr = malloc(sizeof(struct power_event));
 601		if (!pwr)
 602			return;
 603		memset(pwr, 0, sizeof(struct power_event));
 604
 605		pwr->state = cpus_pstate_state[cpu];
 606		pwr->start_time = cpus_pstate_start_times[cpu];
 607		pwr->end_time = last_time;
 608		pwr->cpu = cpu;
 609		pwr->type = PSTATE;
 610		pwr->next = power_events;
 611
 612		if (!pwr->start_time)
 613			pwr->start_time = first_time;
 614		if (!pwr->state)
 615			pwr->state = min_freq;
 616		power_events = pwr;
 617	}
 618}
 619
 620/*
 621 * Sort the pid datastructure
 622 */
 623static void sort_pids(void)
 624{
 625	struct per_pid *new_list, *p, *cursor, *prev;
 626	/* sort by ppid first, then by pid, lowest to highest */
 627
 628	new_list = NULL;
 629
 630	while (all_data) {
 631		p = all_data;
 632		all_data = p->next;
 633		p->next = NULL;
 634
 635		if (new_list == NULL) {
 636			new_list = p;
 637			p->next = NULL;
 638			continue;
 639		}
 640		prev = NULL;
 641		cursor = new_list;
 642		while (cursor) {
 643			if (cursor->ppid > p->ppid ||
 644				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 645				/* must insert before */
 646				if (prev) {
 647					p->next = prev->next;
 648					prev->next = p;
 649					cursor = NULL;
 650					continue;
 651				} else {
 652					p->next = new_list;
 653					new_list = p;
 654					cursor = NULL;
 655					continue;
 656				}
 657			}
 658
 659			prev = cursor;
 660			cursor = cursor->next;
 661			if (!cursor)
 662				prev->next = p;
 663		}
 664	}
 665	all_data = new_list;
 666}
 667
 668
 669static void draw_c_p_states(void)
 670{
 671	struct power_event *pwr;
 672	pwr = power_events;
 673
 674	/*
 675	 * two pass drawing so that the P state bars are on top of the C state blocks
 676	 */
 677	while (pwr) {
 678		if (pwr->type == CSTATE)
 679			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 680		pwr = pwr->next;
 681	}
 682
 683	pwr = power_events;
 684	while (pwr) {
 685		if (pwr->type == PSTATE) {
 686			if (!pwr->state)
 687				pwr->state = min_freq;
 688			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 689		}
 690		pwr = pwr->next;
 691	}
 692}
 693
 694static void draw_wakeups(void)
 695{
 696	struct wake_event *we;
 697	struct per_pid *p;
 698	struct per_pidcomm *c;
 699
 700	we = wake_events;
 701	while (we) {
 702		int from = 0, to = 0;
 703		char *task_from = NULL, *task_to = NULL;
 704
 705		/* locate the column of the waker and wakee */
 706		p = all_data;
 707		while (p) {
 708			if (p->pid == we->waker || p->pid == we->wakee) {
 709				c = p->all;
 710				while (c) {
 711					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 712						if (p->pid == we->waker && !from) {
 713							from = c->Y;
 714							task_from = strdup(c->comm);
 715						}
 716						if (p->pid == we->wakee && !to) {
 717							to = c->Y;
 718							task_to = strdup(c->comm);
 719						}
 720					}
 721					c = c->next;
 722				}
 723				c = p->all;
 724				while (c) {
 725					if (p->pid == we->waker && !from) {
 726						from = c->Y;
 727						task_from = strdup(c->comm);
 728					}
 729					if (p->pid == we->wakee && !to) {
 730						to = c->Y;
 731						task_to = strdup(c->comm);
 732					}
 733					c = c->next;
 734				}
 735			}
 736			p = p->next;
 737		}
 738
 739		if (!task_from) {
 740			task_from = malloc(40);
 741			sprintf(task_from, "[%i]", we->waker);
 742		}
 743		if (!task_to) {
 744			task_to = malloc(40);
 745			sprintf(task_to, "[%i]", we->wakee);
 746		}
 747
 748		if (we->waker == -1)
 749			svg_interrupt(we->time, to);
 750		else if (from && to && abs(from - to) == 1)
 751			svg_wakeline(we->time, from, to);
 752		else
 753			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 
 754		we = we->next;
 755
 756		free(task_from);
 757		free(task_to);
 758	}
 759}
 760
 761static void draw_cpu_usage(void)
 762{
 763	struct per_pid *p;
 764	struct per_pidcomm *c;
 765	struct cpu_sample *sample;
 766	p = all_data;
 767	while (p) {
 768		c = p->all;
 769		while (c) {
 770			sample = c->samples;
 771			while (sample) {
 772				if (sample->type == TYPE_RUNNING)
 773					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 
 
 
 
 
 
 774
 775				sample = sample->next;
 776			}
 777			c = c->next;
 778		}
 779		p = p->next;
 780	}
 781}
 782
 783static void draw_process_bars(void)
 784{
 785	struct per_pid *p;
 786	struct per_pidcomm *c;
 787	struct cpu_sample *sample;
 788	int Y = 0;
 789
 790	Y = 2 * numcpus + 2;
 791
 792	p = all_data;
 793	while (p) {
 794		c = p->all;
 795		while (c) {
 796			if (!c->display) {
 797				c->Y = 0;
 798				c = c->next;
 799				continue;
 800			}
 801
 802			svg_box(Y, c->start_time, c->end_time, "process");
 803			sample = c->samples;
 804			while (sample) {
 805				if (sample->type == TYPE_RUNNING)
 806					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 
 
 
 807				if (sample->type == TYPE_BLOCKED)
 808					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 
 
 
 809				if (sample->type == TYPE_WAITING)
 810					svg_waiting(Y, sample->start_time, sample->end_time);
 
 
 
 811				sample = sample->next;
 812			}
 813
 814			if (c->comm) {
 815				char comm[256];
 816				if (c->total_time > 5000000000) /* 5 seconds */
 817					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 818				else
 819					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 820
 821				svg_text(Y, c->start_time, comm);
 822			}
 823			c->Y = Y;
 824			Y++;
 825			c = c->next;
 826		}
 827		p = p->next;
 828	}
 829}
 830
 831static void add_process_filter(const char *string)
 832{
 833	struct process_filter *filt;
 834	int pid;
 835
 836	pid = strtoull(string, NULL, 10);
 837	filt = malloc(sizeof(struct process_filter));
 838	if (!filt)
 839		return;
 840
 841	filt->name = strdup(string);
 842	filt->pid  = pid;
 843	filt->next = process_filter;
 844
 845	process_filter = filt;
 846}
 847
 848static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 849{
 850	struct process_filter *filt;
 851	if (!process_filter)
 852		return 1;
 853
 854	filt = process_filter;
 855	while (filt) {
 856		if (filt->pid && p->pid == filt->pid)
 857			return 1;
 858		if (strcmp(filt->name, c->comm) == 0)
 859			return 1;
 860		filt = filt->next;
 861	}
 862	return 0;
 863}
 864
 865static int determine_display_tasks_filtered(void)
 866{
 867	struct per_pid *p;
 868	struct per_pidcomm *c;
 869	int count = 0;
 870
 871	p = all_data;
 872	while (p) {
 873		p->display = 0;
 874		if (p->start_time == 1)
 875			p->start_time = first_time;
 876
 877		/* no exit marker, task kept running to the end */
 878		if (p->end_time == 0)
 879			p->end_time = last_time;
 880
 881		c = p->all;
 882
 883		while (c) {
 884			c->display = 0;
 885
 886			if (c->start_time == 1)
 887				c->start_time = first_time;
 888
 889			if (passes_filter(p, c)) {
 890				c->display = 1;
 891				p->display = 1;
 892				count++;
 893			}
 894
 895			if (c->end_time == 0)
 896				c->end_time = last_time;
 897
 898			c = c->next;
 899		}
 900		p = p->next;
 901	}
 902	return count;
 903}
 904
 905static int determine_display_tasks(u64 threshold)
 906{
 907	struct per_pid *p;
 908	struct per_pidcomm *c;
 909	int count = 0;
 910
 911	if (process_filter)
 912		return determine_display_tasks_filtered();
 913
 914	p = all_data;
 915	while (p) {
 916		p->display = 0;
 917		if (p->start_time == 1)
 918			p->start_time = first_time;
 919
 920		/* no exit marker, task kept running to the end */
 921		if (p->end_time == 0)
 922			p->end_time = last_time;
 923		if (p->total_time >= threshold && !power_only)
 924			p->display = 1;
 925
 926		c = p->all;
 927
 928		while (c) {
 929			c->display = 0;
 930
 931			if (c->start_time == 1)
 932				c->start_time = first_time;
 933
 934			if (c->total_time >= threshold && !power_only) {
 935				c->display = 1;
 936				count++;
 937			}
 938
 939			if (c->end_time == 0)
 940				c->end_time = last_time;
 941
 942			c = c->next;
 943		}
 944		p = p->next;
 945	}
 946	return count;
 947}
 948
 949
 950
 951#define TIME_THRESH 10000000
 952
 953static void write_svg_file(const char *filename)
 954{
 955	u64 i;
 956	int count;
 
 957
 958	numcpus++;
 
 959
 
 
 
 
 
 
 960
 961	count = determine_display_tasks(TIME_THRESH);
 
 962
 963	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 964	if (count < 15)
 965		count = determine_display_tasks(TIME_THRESH / 10);
 966
 967	open_svg(filename, numcpus, count, first_time, last_time);
 968
 969	svg_time_grid();
 970	svg_legenda();
 971
 972	for (i = 0; i < numcpus; i++)
 973		svg_cpu_box(i, max_freq, turbo_frequency);
 974
 975	draw_cpu_usage();
 976	draw_process_bars();
 977	draw_c_p_states();
 978	draw_wakeups();
 
 
 
 979
 980	svg_close();
 981}
 982
 983static struct perf_tool perf_timechart = {
 984	.comm			= process_comm_event,
 985	.fork			= process_fork_event,
 986	.exit			= process_exit_event,
 987	.sample			= process_sample_event,
 988	.ordered_samples	= true,
 989};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990
 991static int __cmd_timechart(void)
 992{
 993	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 994							 0, false, &perf_timechart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995	int ret = -EINVAL;
 996
 997	if (session == NULL)
 998		return -ENOMEM;
 999
 
 
 
 
 
1000	if (!perf_session__has_traces(session, "timechart record"))
1001		goto out_delete;
1002
1003	ret = perf_session__process_events(session, &perf_timechart);
 
 
 
 
 
 
1004	if (ret)
1005		goto out_delete;
1006
1007	end_sample_processing();
1008
1009	sort_pids();
1010
1011	write_svg_file(output_name);
1012
1013	pr_info("Written %2.1f seconds of trace to %s.\n",
1014		(last_time - first_time) / 1000000000.0, output_name);
1015out_delete:
1016	perf_session__delete(session);
1017	return ret;
1018}
1019
1020static const char * const timechart_usage[] = {
1021	"perf timechart [<options>] {record}",
1022	NULL
1023};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024
 
1025#ifdef SUPPORT_OLD_POWER_EVENTS
1026static const char * const record_old_args[] = {
1027	"record",
1028	"-a",
1029	"-R",
1030	"-f",
1031	"-c", "1",
1032	"-e", "power:power_start",
1033	"-e", "power:power_end",
1034	"-e", "power:power_frequency",
1035	"-e", "sched:sched_wakeup",
1036	"-e", "sched:sched_switch",
1037};
1038#endif
 
 
1039
1040static const char * const record_new_args[] = {
1041	"record",
1042	"-a",
1043	"-R",
1044	"-f",
1045	"-c", "1",
1046	"-e", "power:cpu_frequency",
1047	"-e", "power:cpu_idle",
1048	"-e", "sched:sched_wakeup",
1049	"-e", "sched:sched_switch",
1050};
1051
1052static int __cmd_record(int argc, const char **argv)
1053{
1054	unsigned int rec_argc, i, j;
1055	const char **rec_argv;
1056	const char * const *record_args = record_new_args;
1057	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1058
1059#ifdef SUPPORT_OLD_POWER_EVENTS
1060	if (!is_valid_tracepoint("power:cpu_idle") &&
1061	    is_valid_tracepoint("power:power_start")) {
1062		use_old_power_events = 1;
1063		record_args = record_old_args;
1064		record_elems = ARRAY_SIZE(record_old_args);
 
1065	}
1066#endif
1067
1068	rec_argc = record_elems + argc - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1070
1071	if (rec_argv == NULL)
1072		return -ENOMEM;
1073
1074	for (i = 0; i < record_elems; i++)
1075		rec_argv[i] = strdup(record_args[i]);
 
 
 
 
 
 
 
 
 
 
1076
1077	for (j = 1; j < (unsigned int)argc; j++, i++)
1078		rec_argv[i] = argv[j];
1079
1080	return cmd_record(i, rec_argv, NULL);
 
 
 
1081}
1082
1083static int
1084parse_process(const struct option *opt __used, const char *arg, int __used unset)
 
1085{
1086	if (arg)
1087		add_process_filter(arg);
1088	return 0;
1089}
1090
1091static const struct option options[] = {
1092	OPT_STRING('i', "input", &input_name, "file",
1093		    "input file name"),
1094	OPT_STRING('o', "output", &output_name, "file",
1095		    "output file name"),
1096	OPT_INTEGER('w', "width", &svg_page_width,
1097		    "page width"),
1098	OPT_BOOLEAN('P', "power-only", &power_only,
1099		    "output power data only"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1100	OPT_CALLBACK('p', "process", NULL, "process",
1101		      "process selector. Pass a pid or process name.",
1102		       parse_process),
1103	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104		    "Look for files with symbols relative to this directory"),
 
 
 
 
1105	OPT_END()
1106};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
 
 
 
 
1108
1109int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1110{
1111	argc = parse_options(argc, argv, options, timechart_usage,
1112			PARSE_OPT_STOP_AT_NON_OPTION);
1113
1114	symbol__init();
 
 
 
 
 
 
 
1115
1116	if (argc && !strncmp(argv[0], "rec", 3))
1117		return __cmd_record(argc, argv);
1118	else if (argc)
1119		usage_with_options(timechart_usage, options);
1120
1121	setup_pager();
1122
1123	return __cmd_timechart();
1124}