Loading...
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include <traceevent/event-parse.h>
16
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
24#include "util/evlist.h"
25#include "util/evsel.h"
26#include <linux/rbtree.h>
27#include "util/symbol.h"
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include "util/parse-options.h"
34#include "util/parse-events.h"
35#include "util/event.h"
36#include "util/session.h"
37#include "util/svghelper.h"
38#include "util/tool.h"
39#include "util/data.h"
40
41#define SUPPORT_OLD_POWER_EVENTS 1
42#define PWR_EVENT_EXIT -1
43
44struct per_pid;
45struct power_event;
46struct wake_event;
47
48struct timechart {
49 struct perf_tool tool;
50 struct per_pid *all_data;
51 struct power_event *power_events;
52 struct wake_event *wake_events;
53 int proc_num;
54 unsigned int numcpus;
55 u64 min_freq, /* Lowest CPU frequency seen */
56 max_freq, /* Highest CPU frequency seen */
57 turbo_frequency,
58 first_time, last_time;
59 bool power_only,
60 tasks_only,
61 with_backtrace,
62 topology;
63};
64
65struct per_pidcomm;
66struct cpu_sample;
67
68/*
69 * Datastructure layout:
70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
71 * Each "pid" entry, has a list of "comm"s.
72 * this is because we want to track different programs different, while
73 * exec will reuse the original pid (by design).
74 * Each comm has a list of samples that will be used to draw
75 * final graph.
76 */
77
78struct per_pid {
79 struct per_pid *next;
80
81 int pid;
82 int ppid;
83
84 u64 start_time;
85 u64 end_time;
86 u64 total_time;
87 int display;
88
89 struct per_pidcomm *all;
90 struct per_pidcomm *current;
91};
92
93
94struct per_pidcomm {
95 struct per_pidcomm *next;
96
97 u64 start_time;
98 u64 end_time;
99 u64 total_time;
100
101 int Y;
102 int display;
103
104 long state;
105 u64 state_since;
106
107 char *comm;
108
109 struct cpu_sample *samples;
110};
111
112struct sample_wrapper {
113 struct sample_wrapper *next;
114
115 u64 timestamp;
116 unsigned char data[0];
117};
118
119#define TYPE_NONE 0
120#define TYPE_RUNNING 1
121#define TYPE_WAITING 2
122#define TYPE_BLOCKED 3
123
124struct cpu_sample {
125 struct cpu_sample *next;
126
127 u64 start_time;
128 u64 end_time;
129 int type;
130 int cpu;
131 const char *backtrace;
132};
133
134#define CSTATE 1
135#define PSTATE 2
136
137struct power_event {
138 struct power_event *next;
139 int type;
140 int state;
141 u64 start_time;
142 u64 end_time;
143 int cpu;
144};
145
146struct wake_event {
147 struct wake_event *next;
148 int waker;
149 int wakee;
150 u64 time;
151 const char *backtrace;
152};
153
154struct process_filter {
155 char *name;
156 int pid;
157 struct process_filter *next;
158};
159
160static struct process_filter *process_filter;
161
162
163static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
164{
165 struct per_pid *cursor = tchart->all_data;
166
167 while (cursor) {
168 if (cursor->pid == pid)
169 return cursor;
170 cursor = cursor->next;
171 }
172 cursor = zalloc(sizeof(*cursor));
173 assert(cursor != NULL);
174 cursor->pid = pid;
175 cursor->next = tchart->all_data;
176 tchart->all_data = cursor;
177 return cursor;
178}
179
180static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(tchart, pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
198 c = zalloc(sizeof(*c));
199 assert(c != NULL);
200 c->comm = strdup(comm);
201 p->current = c;
202 c->next = p->all;
203 p->all = c;
204}
205
206static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
207{
208 struct per_pid *p, *pp;
209 p = find_create_pid(tchart, pid);
210 pp = find_create_pid(tchart, ppid);
211 p->ppid = ppid;
212 if (pp->current && pp->current->comm && !p->current)
213 pid_set_comm(tchart, pid, pp->current->comm);
214
215 p->start_time = timestamp;
216 if (p->current) {
217 p->current->start_time = timestamp;
218 p->current->state_since = timestamp;
219 }
220}
221
222static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
223{
224 struct per_pid *p;
225 p = find_create_pid(tchart, pid);
226 p->end_time = timestamp;
227 if (p->current)
228 p->current->end_time = timestamp;
229}
230
231static void pid_put_sample(struct timechart *tchart, int pid, int type,
232 unsigned int cpu, u64 start, u64 end,
233 const char *backtrace)
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
239 p = find_create_pid(tchart, pid);
240 c = p->current;
241 if (!c) {
242 c = zalloc(sizeof(*c));
243 assert(c != NULL);
244 p->current = c;
245 c->next = p->all;
246 p->all = c;
247 }
248
249 sample = zalloc(sizeof(*sample));
250 assert(sample != NULL);
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
256 sample->backtrace = backtrace;
257 c->samples = sample;
258
259 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260 c->total_time += (end-start);
261 p->total_time += (end-start);
262 }
263
264 if (c->start_time == 0 || c->start_time > start)
265 c->start_time = start;
266 if (p->start_time == 0 || p->start_time > start)
267 p->start_time = start;
268}
269
270#define MAX_CPUS 4096
271
272static u64 cpus_cstate_start_times[MAX_CPUS];
273static int cpus_cstate_state[MAX_CPUS];
274static u64 cpus_pstate_start_times[MAX_CPUS];
275static u64 cpus_pstate_state[MAX_CPUS];
276
277static int process_comm_event(struct perf_tool *tool,
278 union perf_event *event,
279 struct perf_sample *sample __maybe_unused,
280 struct machine *machine __maybe_unused)
281{
282 struct timechart *tchart = container_of(tool, struct timechart, tool);
283 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
284 return 0;
285}
286
287static int process_fork_event(struct perf_tool *tool,
288 union perf_event *event,
289 struct perf_sample *sample __maybe_unused,
290 struct machine *machine __maybe_unused)
291{
292 struct timechart *tchart = container_of(tool, struct timechart, tool);
293 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
294 return 0;
295}
296
297static int process_exit_event(struct perf_tool *tool,
298 union perf_event *event,
299 struct perf_sample *sample __maybe_unused,
300 struct machine *machine __maybe_unused)
301{
302 struct timechart *tchart = container_of(tool, struct timechart, tool);
303 pid_exit(tchart, event->fork.pid, event->fork.time);
304 return 0;
305}
306
307#ifdef SUPPORT_OLD_POWER_EVENTS
308static int use_old_power_events;
309#endif
310
311static void c_state_start(int cpu, u64 timestamp, int state)
312{
313 cpus_cstate_start_times[cpu] = timestamp;
314 cpus_cstate_state[cpu] = state;
315}
316
317static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
318{
319 struct power_event *pwr = zalloc(sizeof(*pwr));
320
321 if (!pwr)
322 return;
323
324 pwr->state = cpus_cstate_state[cpu];
325 pwr->start_time = cpus_cstate_start_times[cpu];
326 pwr->end_time = timestamp;
327 pwr->cpu = cpu;
328 pwr->type = CSTATE;
329 pwr->next = tchart->power_events;
330
331 tchart->power_events = pwr;
332}
333
334static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
335{
336 struct power_event *pwr;
337
338 if (new_freq > 8000000) /* detect invalid data */
339 return;
340
341 pwr = zalloc(sizeof(*pwr));
342 if (!pwr)
343 return;
344
345 pwr->state = cpus_pstate_state[cpu];
346 pwr->start_time = cpus_pstate_start_times[cpu];
347 pwr->end_time = timestamp;
348 pwr->cpu = cpu;
349 pwr->type = PSTATE;
350 pwr->next = tchart->power_events;
351
352 if (!pwr->start_time)
353 pwr->start_time = tchart->first_time;
354
355 tchart->power_events = pwr;
356
357 cpus_pstate_state[cpu] = new_freq;
358 cpus_pstate_start_times[cpu] = timestamp;
359
360 if ((u64)new_freq > tchart->max_freq)
361 tchart->max_freq = new_freq;
362
363 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
364 tchart->min_freq = new_freq;
365
366 if (new_freq == tchart->max_freq - 1000)
367 tchart->turbo_frequency = tchart->max_freq;
368}
369
370static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
371 int waker, int wakee, u8 flags, const char *backtrace)
372{
373 struct per_pid *p;
374 struct wake_event *we = zalloc(sizeof(*we));
375
376 if (!we)
377 return;
378
379 we->time = timestamp;
380 we->waker = waker;
381 we->backtrace = backtrace;
382
383 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
384 we->waker = -1;
385
386 we->wakee = wakee;
387 we->next = tchart->wake_events;
388 tchart->wake_events = we;
389 p = find_create_pid(tchart, we->wakee);
390
391 if (p && p->current && p->current->state == TYPE_NONE) {
392 p->current->state_since = timestamp;
393 p->current->state = TYPE_WAITING;
394 }
395 if (p && p->current && p->current->state == TYPE_BLOCKED) {
396 pid_put_sample(tchart, p->pid, p->current->state, cpu,
397 p->current->state_since, timestamp, NULL);
398 p->current->state_since = timestamp;
399 p->current->state = TYPE_WAITING;
400 }
401}
402
403static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
404 int prev_pid, int next_pid, u64 prev_state,
405 const char *backtrace)
406{
407 struct per_pid *p = NULL, *prev_p;
408
409 prev_p = find_create_pid(tchart, prev_pid);
410
411 p = find_create_pid(tchart, next_pid);
412
413 if (prev_p->current && prev_p->current->state != TYPE_NONE)
414 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
415 prev_p->current->state_since, timestamp,
416 backtrace);
417 if (p && p->current) {
418 if (p->current->state != TYPE_NONE)
419 pid_put_sample(tchart, next_pid, p->current->state, cpu,
420 p->current->state_since, timestamp,
421 backtrace);
422
423 p->current->state_since = timestamp;
424 p->current->state = TYPE_RUNNING;
425 }
426
427 if (prev_p->current) {
428 prev_p->current->state = TYPE_NONE;
429 prev_p->current->state_since = timestamp;
430 if (prev_state & 2)
431 prev_p->current->state = TYPE_BLOCKED;
432 if (prev_state == 0)
433 prev_p->current->state = TYPE_WAITING;
434 }
435}
436
437static const char *cat_backtrace(union perf_event *event,
438 struct perf_sample *sample,
439 struct machine *machine)
440{
441 struct addr_location al;
442 unsigned int i;
443 char *p = NULL;
444 size_t p_len;
445 u8 cpumode = PERF_RECORD_MISC_USER;
446 struct addr_location tal;
447 struct ip_callchain *chain = sample->callchain;
448 FILE *f = open_memstream(&p, &p_len);
449
450 if (!f) {
451 perror("open_memstream error");
452 return NULL;
453 }
454
455 if (!chain)
456 goto exit;
457
458 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
459 fprintf(stderr, "problem processing %d event, skipping it.\n",
460 event->header.type);
461 goto exit;
462 }
463
464 for (i = 0; i < chain->nr; i++) {
465 u64 ip;
466
467 if (callchain_param.order == ORDER_CALLEE)
468 ip = chain->ips[i];
469 else
470 ip = chain->ips[chain->nr - i - 1];
471
472 if (ip >= PERF_CONTEXT_MAX) {
473 switch (ip) {
474 case PERF_CONTEXT_HV:
475 cpumode = PERF_RECORD_MISC_HYPERVISOR;
476 break;
477 case PERF_CONTEXT_KERNEL:
478 cpumode = PERF_RECORD_MISC_KERNEL;
479 break;
480 case PERF_CONTEXT_USER:
481 cpumode = PERF_RECORD_MISC_USER;
482 break;
483 default:
484 pr_debug("invalid callchain context: "
485 "%"PRId64"\n", (s64) ip);
486
487 /*
488 * It seems the callchain is corrupted.
489 * Discard all.
490 */
491 zfree(&p);
492 goto exit;
493 }
494 continue;
495 }
496
497 tal.filtered = 0;
498 thread__find_addr_location(al.thread, machine, cpumode,
499 MAP__FUNCTION, ip, &tal);
500
501 if (tal.sym)
502 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
503 tal.sym->name);
504 else
505 fprintf(f, "..... %016" PRIx64 "\n", ip);
506 }
507
508exit:
509 fclose(f);
510
511 return p;
512}
513
514typedef int (*tracepoint_handler)(struct timechart *tchart,
515 struct perf_evsel *evsel,
516 struct perf_sample *sample,
517 const char *backtrace);
518
519static int process_sample_event(struct perf_tool *tool,
520 union perf_event *event,
521 struct perf_sample *sample,
522 struct perf_evsel *evsel,
523 struct machine *machine)
524{
525 struct timechart *tchart = container_of(tool, struct timechart, tool);
526
527 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
528 if (!tchart->first_time || tchart->first_time > sample->time)
529 tchart->first_time = sample->time;
530 if (tchart->last_time < sample->time)
531 tchart->last_time = sample->time;
532 }
533
534 if (evsel->handler != NULL) {
535 tracepoint_handler f = evsel->handler;
536 return f(tchart, evsel, sample,
537 cat_backtrace(event, sample, machine));
538 }
539
540 return 0;
541}
542
543static int
544process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
545 struct perf_evsel *evsel,
546 struct perf_sample *sample,
547 const char *backtrace __maybe_unused)
548{
549 u32 state = perf_evsel__intval(evsel, sample, "state");
550 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
551
552 if (state == (u32)PWR_EVENT_EXIT)
553 c_state_end(tchart, cpu_id, sample->time);
554 else
555 c_state_start(cpu_id, sample->time, state);
556 return 0;
557}
558
559static int
560process_sample_cpu_frequency(struct timechart *tchart,
561 struct perf_evsel *evsel,
562 struct perf_sample *sample,
563 const char *backtrace __maybe_unused)
564{
565 u32 state = perf_evsel__intval(evsel, sample, "state");
566 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
567
568 p_state_change(tchart, cpu_id, sample->time, state);
569 return 0;
570}
571
572static int
573process_sample_sched_wakeup(struct timechart *tchart,
574 struct perf_evsel *evsel,
575 struct perf_sample *sample,
576 const char *backtrace)
577{
578 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
579 int waker = perf_evsel__intval(evsel, sample, "common_pid");
580 int wakee = perf_evsel__intval(evsel, sample, "pid");
581
582 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
583 return 0;
584}
585
586static int
587process_sample_sched_switch(struct timechart *tchart,
588 struct perf_evsel *evsel,
589 struct perf_sample *sample,
590 const char *backtrace)
591{
592 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
593 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
594 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
595
596 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
597 prev_state, backtrace);
598 return 0;
599}
600
601#ifdef SUPPORT_OLD_POWER_EVENTS
602static int
603process_sample_power_start(struct timechart *tchart __maybe_unused,
604 struct perf_evsel *evsel,
605 struct perf_sample *sample,
606 const char *backtrace __maybe_unused)
607{
608 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
609 u64 value = perf_evsel__intval(evsel, sample, "value");
610
611 c_state_start(cpu_id, sample->time, value);
612 return 0;
613}
614
615static int
616process_sample_power_end(struct timechart *tchart,
617 struct perf_evsel *evsel __maybe_unused,
618 struct perf_sample *sample,
619 const char *backtrace __maybe_unused)
620{
621 c_state_end(tchart, sample->cpu, sample->time);
622 return 0;
623}
624
625static int
626process_sample_power_frequency(struct timechart *tchart,
627 struct perf_evsel *evsel,
628 struct perf_sample *sample,
629 const char *backtrace __maybe_unused)
630{
631 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
632 u64 value = perf_evsel__intval(evsel, sample, "value");
633
634 p_state_change(tchart, cpu_id, sample->time, value);
635 return 0;
636}
637#endif /* SUPPORT_OLD_POWER_EVENTS */
638
639/*
640 * After the last sample we need to wrap up the current C/P state
641 * and close out each CPU for these.
642 */
643static void end_sample_processing(struct timechart *tchart)
644{
645 u64 cpu;
646 struct power_event *pwr;
647
648 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
649 /* C state */
650#if 0
651 pwr = zalloc(sizeof(*pwr));
652 if (!pwr)
653 return;
654
655 pwr->state = cpus_cstate_state[cpu];
656 pwr->start_time = cpus_cstate_start_times[cpu];
657 pwr->end_time = tchart->last_time;
658 pwr->cpu = cpu;
659 pwr->type = CSTATE;
660 pwr->next = tchart->power_events;
661
662 tchart->power_events = pwr;
663#endif
664 /* P state */
665
666 pwr = zalloc(sizeof(*pwr));
667 if (!pwr)
668 return;
669
670 pwr->state = cpus_pstate_state[cpu];
671 pwr->start_time = cpus_pstate_start_times[cpu];
672 pwr->end_time = tchart->last_time;
673 pwr->cpu = cpu;
674 pwr->type = PSTATE;
675 pwr->next = tchart->power_events;
676
677 if (!pwr->start_time)
678 pwr->start_time = tchart->first_time;
679 if (!pwr->state)
680 pwr->state = tchart->min_freq;
681 tchart->power_events = pwr;
682 }
683}
684
685/*
686 * Sort the pid datastructure
687 */
688static void sort_pids(struct timechart *tchart)
689{
690 struct per_pid *new_list, *p, *cursor, *prev;
691 /* sort by ppid first, then by pid, lowest to highest */
692
693 new_list = NULL;
694
695 while (tchart->all_data) {
696 p = tchart->all_data;
697 tchart->all_data = p->next;
698 p->next = NULL;
699
700 if (new_list == NULL) {
701 new_list = p;
702 p->next = NULL;
703 continue;
704 }
705 prev = NULL;
706 cursor = new_list;
707 while (cursor) {
708 if (cursor->ppid > p->ppid ||
709 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
710 /* must insert before */
711 if (prev) {
712 p->next = prev->next;
713 prev->next = p;
714 cursor = NULL;
715 continue;
716 } else {
717 p->next = new_list;
718 new_list = p;
719 cursor = NULL;
720 continue;
721 }
722 }
723
724 prev = cursor;
725 cursor = cursor->next;
726 if (!cursor)
727 prev->next = p;
728 }
729 }
730 tchart->all_data = new_list;
731}
732
733
734static void draw_c_p_states(struct timechart *tchart)
735{
736 struct power_event *pwr;
737 pwr = tchart->power_events;
738
739 /*
740 * two pass drawing so that the P state bars are on top of the C state blocks
741 */
742 while (pwr) {
743 if (pwr->type == CSTATE)
744 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
745 pwr = pwr->next;
746 }
747
748 pwr = tchart->power_events;
749 while (pwr) {
750 if (pwr->type == PSTATE) {
751 if (!pwr->state)
752 pwr->state = tchart->min_freq;
753 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
754 }
755 pwr = pwr->next;
756 }
757}
758
759static void draw_wakeups(struct timechart *tchart)
760{
761 struct wake_event *we;
762 struct per_pid *p;
763 struct per_pidcomm *c;
764
765 we = tchart->wake_events;
766 while (we) {
767 int from = 0, to = 0;
768 char *task_from = NULL, *task_to = NULL;
769
770 /* locate the column of the waker and wakee */
771 p = tchart->all_data;
772 while (p) {
773 if (p->pid == we->waker || p->pid == we->wakee) {
774 c = p->all;
775 while (c) {
776 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
777 if (p->pid == we->waker && !from) {
778 from = c->Y;
779 task_from = strdup(c->comm);
780 }
781 if (p->pid == we->wakee && !to) {
782 to = c->Y;
783 task_to = strdup(c->comm);
784 }
785 }
786 c = c->next;
787 }
788 c = p->all;
789 while (c) {
790 if (p->pid == we->waker && !from) {
791 from = c->Y;
792 task_from = strdup(c->comm);
793 }
794 if (p->pid == we->wakee && !to) {
795 to = c->Y;
796 task_to = strdup(c->comm);
797 }
798 c = c->next;
799 }
800 }
801 p = p->next;
802 }
803
804 if (!task_from) {
805 task_from = malloc(40);
806 sprintf(task_from, "[%i]", we->waker);
807 }
808 if (!task_to) {
809 task_to = malloc(40);
810 sprintf(task_to, "[%i]", we->wakee);
811 }
812
813 if (we->waker == -1)
814 svg_interrupt(we->time, to, we->backtrace);
815 else if (from && to && abs(from - to) == 1)
816 svg_wakeline(we->time, from, to, we->backtrace);
817 else
818 svg_partial_wakeline(we->time, from, task_from, to,
819 task_to, we->backtrace);
820 we = we->next;
821
822 free(task_from);
823 free(task_to);
824 }
825}
826
827static void draw_cpu_usage(struct timechart *tchart)
828{
829 struct per_pid *p;
830 struct per_pidcomm *c;
831 struct cpu_sample *sample;
832 p = tchart->all_data;
833 while (p) {
834 c = p->all;
835 while (c) {
836 sample = c->samples;
837 while (sample) {
838 if (sample->type == TYPE_RUNNING) {
839 svg_process(sample->cpu,
840 sample->start_time,
841 sample->end_time,
842 p->pid,
843 c->comm,
844 sample->backtrace);
845 }
846
847 sample = sample->next;
848 }
849 c = c->next;
850 }
851 p = p->next;
852 }
853}
854
855static void draw_process_bars(struct timechart *tchart)
856{
857 struct per_pid *p;
858 struct per_pidcomm *c;
859 struct cpu_sample *sample;
860 int Y = 0;
861
862 Y = 2 * tchart->numcpus + 2;
863
864 p = tchart->all_data;
865 while (p) {
866 c = p->all;
867 while (c) {
868 if (!c->display) {
869 c->Y = 0;
870 c = c->next;
871 continue;
872 }
873
874 svg_box(Y, c->start_time, c->end_time, "process");
875 sample = c->samples;
876 while (sample) {
877 if (sample->type == TYPE_RUNNING)
878 svg_running(Y, sample->cpu,
879 sample->start_time,
880 sample->end_time,
881 sample->backtrace);
882 if (sample->type == TYPE_BLOCKED)
883 svg_blocked(Y, sample->cpu,
884 sample->start_time,
885 sample->end_time,
886 sample->backtrace);
887 if (sample->type == TYPE_WAITING)
888 svg_waiting(Y, sample->cpu,
889 sample->start_time,
890 sample->end_time,
891 sample->backtrace);
892 sample = sample->next;
893 }
894
895 if (c->comm) {
896 char comm[256];
897 if (c->total_time > 5000000000) /* 5 seconds */
898 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
899 else
900 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
901
902 svg_text(Y, c->start_time, comm);
903 }
904 c->Y = Y;
905 Y++;
906 c = c->next;
907 }
908 p = p->next;
909 }
910}
911
912static void add_process_filter(const char *string)
913{
914 int pid = strtoull(string, NULL, 10);
915 struct process_filter *filt = malloc(sizeof(*filt));
916
917 if (!filt)
918 return;
919
920 filt->name = strdup(string);
921 filt->pid = pid;
922 filt->next = process_filter;
923
924 process_filter = filt;
925}
926
927static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
928{
929 struct process_filter *filt;
930 if (!process_filter)
931 return 1;
932
933 filt = process_filter;
934 while (filt) {
935 if (filt->pid && p->pid == filt->pid)
936 return 1;
937 if (strcmp(filt->name, c->comm) == 0)
938 return 1;
939 filt = filt->next;
940 }
941 return 0;
942}
943
944static int determine_display_tasks_filtered(struct timechart *tchart)
945{
946 struct per_pid *p;
947 struct per_pidcomm *c;
948 int count = 0;
949
950 p = tchart->all_data;
951 while (p) {
952 p->display = 0;
953 if (p->start_time == 1)
954 p->start_time = tchart->first_time;
955
956 /* no exit marker, task kept running to the end */
957 if (p->end_time == 0)
958 p->end_time = tchart->last_time;
959
960 c = p->all;
961
962 while (c) {
963 c->display = 0;
964
965 if (c->start_time == 1)
966 c->start_time = tchart->first_time;
967
968 if (passes_filter(p, c)) {
969 c->display = 1;
970 p->display = 1;
971 count++;
972 }
973
974 if (c->end_time == 0)
975 c->end_time = tchart->last_time;
976
977 c = c->next;
978 }
979 p = p->next;
980 }
981 return count;
982}
983
984static int determine_display_tasks(struct timechart *tchart, u64 threshold)
985{
986 struct per_pid *p;
987 struct per_pidcomm *c;
988 int count = 0;
989
990 if (process_filter)
991 return determine_display_tasks_filtered(tchart);
992
993 p = tchart->all_data;
994 while (p) {
995 p->display = 0;
996 if (p->start_time == 1)
997 p->start_time = tchart->first_time;
998
999 /* no exit marker, task kept running to the end */
1000 if (p->end_time == 0)
1001 p->end_time = tchart->last_time;
1002 if (p->total_time >= threshold)
1003 p->display = 1;
1004
1005 c = p->all;
1006
1007 while (c) {
1008 c->display = 0;
1009
1010 if (c->start_time == 1)
1011 c->start_time = tchart->first_time;
1012
1013 if (c->total_time >= threshold) {
1014 c->display = 1;
1015 count++;
1016 }
1017
1018 if (c->end_time == 0)
1019 c->end_time = tchart->last_time;
1020
1021 c = c->next;
1022 }
1023 p = p->next;
1024 }
1025 return count;
1026}
1027
1028
1029
1030#define TIME_THRESH 10000000
1031
1032static void write_svg_file(struct timechart *tchart, const char *filename)
1033{
1034 u64 i;
1035 int count;
1036 int thresh = TIME_THRESH;
1037
1038 if (tchart->power_only)
1039 tchart->proc_num = 0;
1040
1041 /* We'd like to show at least proc_num tasks;
1042 * be less picky if we have fewer */
1043 do {
1044 count = determine_display_tasks(tchart, thresh);
1045 thresh /= 10;
1046 } while (!process_filter && thresh && count < tchart->proc_num);
1047
1048 if (!tchart->proc_num)
1049 count = 0;
1050
1051 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1052
1053 svg_time_grid();
1054 svg_legenda();
1055
1056 for (i = 0; i < tchart->numcpus; i++)
1057 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1058
1059 draw_cpu_usage(tchart);
1060 if (tchart->proc_num)
1061 draw_process_bars(tchart);
1062 if (!tchart->tasks_only)
1063 draw_c_p_states(tchart);
1064 if (tchart->proc_num)
1065 draw_wakeups(tchart);
1066
1067 svg_close();
1068}
1069
1070static int process_header(struct perf_file_section *section __maybe_unused,
1071 struct perf_header *ph,
1072 int feat,
1073 int fd __maybe_unused,
1074 void *data)
1075{
1076 struct timechart *tchart = data;
1077
1078 switch (feat) {
1079 case HEADER_NRCPUS:
1080 tchart->numcpus = ph->env.nr_cpus_avail;
1081 break;
1082
1083 case HEADER_CPU_TOPOLOGY:
1084 if (!tchart->topology)
1085 break;
1086
1087 if (svg_build_topology_map(ph->env.sibling_cores,
1088 ph->env.nr_sibling_cores,
1089 ph->env.sibling_threads,
1090 ph->env.nr_sibling_threads))
1091 fprintf(stderr, "problem building topology\n");
1092 break;
1093
1094 default:
1095 break;
1096 }
1097
1098 return 0;
1099}
1100
1101static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1102{
1103 const struct perf_evsel_str_handler power_tracepoints[] = {
1104 { "power:cpu_idle", process_sample_cpu_idle },
1105 { "power:cpu_frequency", process_sample_cpu_frequency },
1106 { "sched:sched_wakeup", process_sample_sched_wakeup },
1107 { "sched:sched_switch", process_sample_sched_switch },
1108#ifdef SUPPORT_OLD_POWER_EVENTS
1109 { "power:power_start", process_sample_power_start },
1110 { "power:power_end", process_sample_power_end },
1111 { "power:power_frequency", process_sample_power_frequency },
1112#endif
1113 };
1114 struct perf_data_file file = {
1115 .path = input_name,
1116 .mode = PERF_DATA_MODE_READ,
1117 };
1118
1119 struct perf_session *session = perf_session__new(&file, false,
1120 &tchart->tool);
1121 int ret = -EINVAL;
1122
1123 if (session == NULL)
1124 return -ENOMEM;
1125
1126 (void)perf_header__process_sections(&session->header,
1127 perf_data_file__fd(session->file),
1128 tchart,
1129 process_header);
1130
1131 if (!perf_session__has_traces(session, "timechart record"))
1132 goto out_delete;
1133
1134 if (perf_session__set_tracepoints_handlers(session,
1135 power_tracepoints)) {
1136 pr_err("Initializing session tracepoint handlers failed\n");
1137 goto out_delete;
1138 }
1139
1140 ret = perf_session__process_events(session, &tchart->tool);
1141 if (ret)
1142 goto out_delete;
1143
1144 end_sample_processing(tchart);
1145
1146 sort_pids(tchart);
1147
1148 write_svg_file(tchart, output_name);
1149
1150 pr_info("Written %2.1f seconds of trace to %s.\n",
1151 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1152out_delete:
1153 perf_session__delete(session);
1154 return ret;
1155}
1156
1157static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1158{
1159 unsigned int rec_argc, i, j;
1160 const char **rec_argv;
1161 const char **p;
1162 unsigned int record_elems;
1163
1164 const char * const common_args[] = {
1165 "record", "-a", "-R", "-c", "1",
1166 };
1167 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1168
1169 const char * const backtrace_args[] = {
1170 "-g",
1171 };
1172 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1173
1174 const char * const power_args[] = {
1175 "-e", "power:cpu_frequency",
1176 "-e", "power:cpu_idle",
1177 };
1178 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1179
1180 const char * const old_power_args[] = {
1181#ifdef SUPPORT_OLD_POWER_EVENTS
1182 "-e", "power:power_start",
1183 "-e", "power:power_end",
1184 "-e", "power:power_frequency",
1185#endif
1186 };
1187 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1188
1189 const char * const tasks_args[] = {
1190 "-e", "sched:sched_wakeup",
1191 "-e", "sched:sched_switch",
1192 };
1193 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1194
1195#ifdef SUPPORT_OLD_POWER_EVENTS
1196 if (!is_valid_tracepoint("power:cpu_idle") &&
1197 is_valid_tracepoint("power:power_start")) {
1198 use_old_power_events = 1;
1199 power_args_nr = 0;
1200 } else {
1201 old_power_args_nr = 0;
1202 }
1203#endif
1204
1205 if (tchart->power_only)
1206 tasks_args_nr = 0;
1207
1208 if (tchart->tasks_only) {
1209 power_args_nr = 0;
1210 old_power_args_nr = 0;
1211 }
1212
1213 if (!tchart->with_backtrace)
1214 backtrace_args_no = 0;
1215
1216 record_elems = common_args_nr + tasks_args_nr +
1217 power_args_nr + old_power_args_nr + backtrace_args_no;
1218
1219 rec_argc = record_elems + argc;
1220 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1221
1222 if (rec_argv == NULL)
1223 return -ENOMEM;
1224
1225 p = rec_argv;
1226 for (i = 0; i < common_args_nr; i++)
1227 *p++ = strdup(common_args[i]);
1228
1229 for (i = 0; i < backtrace_args_no; i++)
1230 *p++ = strdup(backtrace_args[i]);
1231
1232 for (i = 0; i < tasks_args_nr; i++)
1233 *p++ = strdup(tasks_args[i]);
1234
1235 for (i = 0; i < power_args_nr; i++)
1236 *p++ = strdup(power_args[i]);
1237
1238 for (i = 0; i < old_power_args_nr; i++)
1239 *p++ = strdup(old_power_args[i]);
1240
1241 for (j = 0; j < (unsigned int)argc; j++)
1242 *p++ = argv[j];
1243
1244 return cmd_record(rec_argc, rec_argv, NULL);
1245}
1246
1247static int
1248parse_process(const struct option *opt __maybe_unused, const char *arg,
1249 int __maybe_unused unset)
1250{
1251 if (arg)
1252 add_process_filter(arg);
1253 return 0;
1254}
1255
1256static int
1257parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1258 int __maybe_unused unset)
1259{
1260 unsigned long duration = strtoul(arg, NULL, 0);
1261
1262 if (svg_highlight || svg_highlight_name)
1263 return -1;
1264
1265 if (duration)
1266 svg_highlight = duration;
1267 else
1268 svg_highlight_name = strdup(arg);
1269
1270 return 0;
1271}
1272
1273int cmd_timechart(int argc, const char **argv,
1274 const char *prefix __maybe_unused)
1275{
1276 struct timechart tchart = {
1277 .tool = {
1278 .comm = process_comm_event,
1279 .fork = process_fork_event,
1280 .exit = process_exit_event,
1281 .sample = process_sample_event,
1282 .ordered_samples = true,
1283 },
1284 .proc_num = 15,
1285 };
1286 const char *output_name = "output.svg";
1287 const struct option timechart_options[] = {
1288 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1289 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1290 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1291 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1292 "highlight tasks. Pass duration in ns or process name.",
1293 parse_highlight),
1294 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1295 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1296 "output processes data only"),
1297 OPT_CALLBACK('p', "process", NULL, "process",
1298 "process selector. Pass a pid or process name.",
1299 parse_process),
1300 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1301 "Look for files with symbols relative to this directory"),
1302 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1303 "min. number of tasks to print"),
1304 OPT_BOOLEAN('t', "topology", &tchart.topology,
1305 "sort CPUs according to topology"),
1306 OPT_END()
1307 };
1308 const char * const timechart_usage[] = {
1309 "perf timechart [<options>] {record}",
1310 NULL
1311 };
1312
1313 const struct option record_options[] = {
1314 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1315 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1316 "output processes data only"),
1317 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1318 OPT_END()
1319 };
1320 const char * const record_usage[] = {
1321 "perf timechart record [<options>]",
1322 NULL
1323 };
1324 argc = parse_options(argc, argv, timechart_options, timechart_usage,
1325 PARSE_OPT_STOP_AT_NON_OPTION);
1326
1327 if (tchart.power_only && tchart.tasks_only) {
1328 pr_err("-P and -T options cannot be used at the same time.\n");
1329 return -1;
1330 }
1331
1332 symbol__init();
1333
1334 if (argc && !strncmp(argv[0], "rec", 3)) {
1335 argc = parse_options(argc, argv, record_options, record_usage,
1336 PARSE_OPT_STOP_AT_NON_OPTION);
1337
1338 if (tchart.power_only && tchart.tasks_only) {
1339 pr_err("-P and -T options cannot be used at the same time.\n");
1340 return -1;
1341 }
1342
1343 return timechart__record(&tchart, argc, argv);
1344 } else if (argc)
1345 usage_with_options(timechart_usage, timechart_options);
1346
1347 setup_pager();
1348
1349 return __cmd_timechart(&tchart, output_name);
1350}
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include "util/evsel.h"
23#include <linux/rbtree.h>
24#include "util/symbol.h"
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
32#include "util/event.h"
33#include "util/session.h"
34#include "util/svghelper.h"
35#include "util/tool.h"
36
37#define SUPPORT_OLD_POWER_EVENTS 1
38#define PWR_EVENT_EXIT -1
39
40
41static const char *input_name;
42static const char *output_name = "output.svg";
43
44static unsigned int numcpus;
45static u64 min_freq; /* Lowest CPU frequency seen */
46static u64 max_freq; /* Highest CPU frequency seen */
47static u64 turbo_frequency;
48
49static u64 first_time, last_time;
50
51static bool power_only;
52
53
54struct per_pid;
55struct per_pidcomm;
56
57struct cpu_sample;
58struct power_event;
59struct wake_event;
60
61struct sample_wrapper;
62
63/*
64 * Datastructure layout:
65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
66 * Each "pid" entry, has a list of "comm"s.
67 * this is because we want to track different programs different, while
68 * exec will reuse the original pid (by design).
69 * Each comm has a list of samples that will be used to draw
70 * final graph.
71 */
72
73struct per_pid {
74 struct per_pid *next;
75
76 int pid;
77 int ppid;
78
79 u64 start_time;
80 u64 end_time;
81 u64 total_time;
82 int display;
83
84 struct per_pidcomm *all;
85 struct per_pidcomm *current;
86};
87
88
89struct per_pidcomm {
90 struct per_pidcomm *next;
91
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
95
96 int Y;
97 int display;
98
99 long state;
100 u64 state_since;
101
102 char *comm;
103
104 struct cpu_sample *samples;
105};
106
107struct sample_wrapper {
108 struct sample_wrapper *next;
109
110 u64 timestamp;
111 unsigned char data[0];
112};
113
114#define TYPE_NONE 0
115#define TYPE_RUNNING 1
116#define TYPE_WAITING 2
117#define TYPE_BLOCKED 3
118
119struct cpu_sample {
120 struct cpu_sample *next;
121
122 u64 start_time;
123 u64 end_time;
124 int type;
125 int cpu;
126};
127
128static struct per_pid *all_data;
129
130#define CSTATE 1
131#define PSTATE 2
132
133struct power_event {
134 struct power_event *next;
135 int type;
136 int state;
137 u64 start_time;
138 u64 end_time;
139 int cpu;
140};
141
142struct wake_event {
143 struct wake_event *next;
144 int waker;
145 int wakee;
146 u64 time;
147};
148
149static struct power_event *power_events;
150static struct wake_event *wake_events;
151
152struct process_filter;
153struct process_filter {
154 char *name;
155 int pid;
156 struct process_filter *next;
157};
158
159static struct process_filter *process_filter;
160
161
162static struct per_pid *find_create_pid(int pid)
163{
164 struct per_pid *cursor = all_data;
165
166 while (cursor) {
167 if (cursor->pid == pid)
168 return cursor;
169 cursor = cursor->next;
170 }
171 cursor = malloc(sizeof(struct per_pid));
172 assert(cursor != NULL);
173 memset(cursor, 0, sizeof(struct per_pid));
174 cursor->pid = pid;
175 cursor->next = all_data;
176 all_data = cursor;
177 return cursor;
178}
179
180static void pid_set_comm(int pid, char *comm)
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
198 c = malloc(sizeof(struct per_pidcomm));
199 assert(c != NULL);
200 memset(c, 0, sizeof(struct per_pidcomm));
201 c->comm = strdup(comm);
202 p->current = c;
203 c->next = p->all;
204 p->all = c;
205}
206
207static void pid_fork(int pid, int ppid, u64 timestamp)
208{
209 struct per_pid *p, *pp;
210 p = find_create_pid(pid);
211 pp = find_create_pid(ppid);
212 p->ppid = ppid;
213 if (pp->current && pp->current->comm && !p->current)
214 pid_set_comm(pid, pp->current->comm);
215
216 p->start_time = timestamp;
217 if (p->current) {
218 p->current->start_time = timestamp;
219 p->current->state_since = timestamp;
220 }
221}
222
223static void pid_exit(int pid, u64 timestamp)
224{
225 struct per_pid *p;
226 p = find_create_pid(pid);
227 p->end_time = timestamp;
228 if (p->current)
229 p->current->end_time = timestamp;
230}
231
232static void
233pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
239 p = find_create_pid(pid);
240 c = p->current;
241 if (!c) {
242 c = malloc(sizeof(struct per_pidcomm));
243 assert(c != NULL);
244 memset(c, 0, sizeof(struct per_pidcomm));
245 p->current = c;
246 c->next = p->all;
247 p->all = c;
248 }
249
250 sample = malloc(sizeof(struct cpu_sample));
251 assert(sample != NULL);
252 memset(sample, 0, sizeof(struct cpu_sample));
253 sample->start_time = start;
254 sample->end_time = end;
255 sample->type = type;
256 sample->next = c->samples;
257 sample->cpu = cpu;
258 c->samples = sample;
259
260 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
261 c->total_time += (end-start);
262 p->total_time += (end-start);
263 }
264
265 if (c->start_time == 0 || c->start_time > start)
266 c->start_time = start;
267 if (p->start_time == 0 || p->start_time > start)
268 p->start_time = start;
269}
270
271#define MAX_CPUS 4096
272
273static u64 cpus_cstate_start_times[MAX_CPUS];
274static int cpus_cstate_state[MAX_CPUS];
275static u64 cpus_pstate_start_times[MAX_CPUS];
276static u64 cpus_pstate_state[MAX_CPUS];
277
278static int process_comm_event(struct perf_tool *tool __used,
279 union perf_event *event,
280 struct perf_sample *sample __used,
281 struct machine *machine __used)
282{
283 pid_set_comm(event->comm.tid, event->comm.comm);
284 return 0;
285}
286
287static int process_fork_event(struct perf_tool *tool __used,
288 union perf_event *event,
289 struct perf_sample *sample __used,
290 struct machine *machine __used)
291{
292 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
293 return 0;
294}
295
296static int process_exit_event(struct perf_tool *tool __used,
297 union perf_event *event,
298 struct perf_sample *sample __used,
299 struct machine *machine __used)
300{
301 pid_exit(event->fork.pid, event->fork.time);
302 return 0;
303}
304
305struct trace_entry {
306 unsigned short type;
307 unsigned char flags;
308 unsigned char preempt_count;
309 int pid;
310 int lock_depth;
311};
312
313#ifdef SUPPORT_OLD_POWER_EVENTS
314static int use_old_power_events;
315struct power_entry_old {
316 struct trace_entry te;
317 u64 type;
318 u64 value;
319 u64 cpu_id;
320};
321#endif
322
323struct power_processor_entry {
324 struct trace_entry te;
325 u32 state;
326 u32 cpu_id;
327};
328
329#define TASK_COMM_LEN 16
330struct wakeup_entry {
331 struct trace_entry te;
332 char comm[TASK_COMM_LEN];
333 int pid;
334 int prio;
335 int success;
336};
337
338/*
339 * trace_flag_type is an enumeration that holds different
340 * states when a trace occurs. These are:
341 * IRQS_OFF - interrupts were disabled
342 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
343 * NEED_RESCED - reschedule is requested
344 * HARDIRQ - inside an interrupt handler
345 * SOFTIRQ - inside a softirq handler
346 */
347enum trace_flag_type {
348 TRACE_FLAG_IRQS_OFF = 0x01,
349 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
350 TRACE_FLAG_NEED_RESCHED = 0x04,
351 TRACE_FLAG_HARDIRQ = 0x08,
352 TRACE_FLAG_SOFTIRQ = 0x10,
353};
354
355
356
357struct sched_switch {
358 struct trace_entry te;
359 char prev_comm[TASK_COMM_LEN];
360 int prev_pid;
361 int prev_prio;
362 long prev_state; /* Arjan weeps. */
363 char next_comm[TASK_COMM_LEN];
364 int next_pid;
365 int next_prio;
366};
367
368static void c_state_start(int cpu, u64 timestamp, int state)
369{
370 cpus_cstate_start_times[cpu] = timestamp;
371 cpus_cstate_state[cpu] = state;
372}
373
374static void c_state_end(int cpu, u64 timestamp)
375{
376 struct power_event *pwr;
377 pwr = malloc(sizeof(struct power_event));
378 if (!pwr)
379 return;
380 memset(pwr, 0, sizeof(struct power_event));
381
382 pwr->state = cpus_cstate_state[cpu];
383 pwr->start_time = cpus_cstate_start_times[cpu];
384 pwr->end_time = timestamp;
385 pwr->cpu = cpu;
386 pwr->type = CSTATE;
387 pwr->next = power_events;
388
389 power_events = pwr;
390}
391
392static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
393{
394 struct power_event *pwr;
395 pwr = malloc(sizeof(struct power_event));
396
397 if (new_freq > 8000000) /* detect invalid data */
398 return;
399
400 if (!pwr)
401 return;
402 memset(pwr, 0, sizeof(struct power_event));
403
404 pwr->state = cpus_pstate_state[cpu];
405 pwr->start_time = cpus_pstate_start_times[cpu];
406 pwr->end_time = timestamp;
407 pwr->cpu = cpu;
408 pwr->type = PSTATE;
409 pwr->next = power_events;
410
411 if (!pwr->start_time)
412 pwr->start_time = first_time;
413
414 power_events = pwr;
415
416 cpus_pstate_state[cpu] = new_freq;
417 cpus_pstate_start_times[cpu] = timestamp;
418
419 if ((u64)new_freq > max_freq)
420 max_freq = new_freq;
421
422 if (new_freq < min_freq || min_freq == 0)
423 min_freq = new_freq;
424
425 if (new_freq == max_freq - 1000)
426 turbo_frequency = max_freq;
427}
428
429static void
430sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
431{
432 struct wake_event *we;
433 struct per_pid *p;
434 struct wakeup_entry *wake = (void *)te;
435
436 we = malloc(sizeof(struct wake_event));
437 if (!we)
438 return;
439
440 memset(we, 0, sizeof(struct wake_event));
441 we->time = timestamp;
442 we->waker = pid;
443
444 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
445 we->waker = -1;
446
447 we->wakee = wake->pid;
448 we->next = wake_events;
449 wake_events = we;
450 p = find_create_pid(we->wakee);
451
452 if (p && p->current && p->current->state == TYPE_NONE) {
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
455 }
456 if (p && p->current && p->current->state == TYPE_BLOCKED) {
457 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_WAITING;
460 }
461}
462
463static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
464{
465 struct per_pid *p = NULL, *prev_p;
466 struct sched_switch *sw = (void *)te;
467
468
469 prev_p = find_create_pid(sw->prev_pid);
470
471 p = find_create_pid(sw->next_pid);
472
473 if (prev_p->current && prev_p->current->state != TYPE_NONE)
474 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
475 if (p && p->current) {
476 if (p->current->state != TYPE_NONE)
477 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
478
479 p->current->state_since = timestamp;
480 p->current->state = TYPE_RUNNING;
481 }
482
483 if (prev_p->current) {
484 prev_p->current->state = TYPE_NONE;
485 prev_p->current->state_since = timestamp;
486 if (sw->prev_state & 2)
487 prev_p->current->state = TYPE_BLOCKED;
488 if (sw->prev_state == 0)
489 prev_p->current->state = TYPE_WAITING;
490 }
491}
492
493
494static int process_sample_event(struct perf_tool *tool __used,
495 union perf_event *event __used,
496 struct perf_sample *sample,
497 struct perf_evsel *evsel,
498 struct machine *machine __used)
499{
500 struct trace_entry *te;
501
502 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
503 if (!first_time || first_time > sample->time)
504 first_time = sample->time;
505 if (last_time < sample->time)
506 last_time = sample->time;
507 }
508
509 te = (void *)sample->raw_data;
510 if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
511 char *event_str;
512#ifdef SUPPORT_OLD_POWER_EVENTS
513 struct power_entry_old *peo;
514 peo = (void *)te;
515#endif
516 /*
517 * FIXME: use evsel, its already mapped from id to perf_evsel,
518 * remove perf_header__find_event infrastructure bits.
519 * Mapping all these "power:cpu_idle" strings to the tracepoint
520 * ID and then just comparing against evsel->attr.config.
521 *
522 * e.g.:
523 *
524 * if (evsel->attr.config == power_cpu_idle_id)
525 */
526 event_str = perf_header__find_event(te->type);
527
528 if (!event_str)
529 return 0;
530
531 if (sample->cpu > numcpus)
532 numcpus = sample->cpu;
533
534 if (strcmp(event_str, "power:cpu_idle") == 0) {
535 struct power_processor_entry *ppe = (void *)te;
536 if (ppe->state == (u32)PWR_EVENT_EXIT)
537 c_state_end(ppe->cpu_id, sample->time);
538 else
539 c_state_start(ppe->cpu_id, sample->time,
540 ppe->state);
541 }
542 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
543 struct power_processor_entry *ppe = (void *)te;
544 p_state_change(ppe->cpu_id, sample->time, ppe->state);
545 }
546
547 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
548 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
549
550 else if (strcmp(event_str, "sched:sched_switch") == 0)
551 sched_switch(sample->cpu, sample->time, te);
552
553#ifdef SUPPORT_OLD_POWER_EVENTS
554 if (use_old_power_events) {
555 if (strcmp(event_str, "power:power_start") == 0)
556 c_state_start(peo->cpu_id, sample->time,
557 peo->value);
558
559 else if (strcmp(event_str, "power:power_end") == 0)
560 c_state_end(sample->cpu, sample->time);
561
562 else if (strcmp(event_str,
563 "power:power_frequency") == 0)
564 p_state_change(peo->cpu_id, sample->time,
565 peo->value);
566 }
567#endif
568 }
569 return 0;
570}
571
572/*
573 * After the last sample we need to wrap up the current C/P state
574 * and close out each CPU for these.
575 */
576static void end_sample_processing(void)
577{
578 u64 cpu;
579 struct power_event *pwr;
580
581 for (cpu = 0; cpu <= numcpus; cpu++) {
582 pwr = malloc(sizeof(struct power_event));
583 if (!pwr)
584 return;
585 memset(pwr, 0, sizeof(struct power_event));
586
587 /* C state */
588#if 0
589 pwr->state = cpus_cstate_state[cpu];
590 pwr->start_time = cpus_cstate_start_times[cpu];
591 pwr->end_time = last_time;
592 pwr->cpu = cpu;
593 pwr->type = CSTATE;
594 pwr->next = power_events;
595
596 power_events = pwr;
597#endif
598 /* P state */
599
600 pwr = malloc(sizeof(struct power_event));
601 if (!pwr)
602 return;
603 memset(pwr, 0, sizeof(struct power_event));
604
605 pwr->state = cpus_pstate_state[cpu];
606 pwr->start_time = cpus_pstate_start_times[cpu];
607 pwr->end_time = last_time;
608 pwr->cpu = cpu;
609 pwr->type = PSTATE;
610 pwr->next = power_events;
611
612 if (!pwr->start_time)
613 pwr->start_time = first_time;
614 if (!pwr->state)
615 pwr->state = min_freq;
616 power_events = pwr;
617 }
618}
619
620/*
621 * Sort the pid datastructure
622 */
623static void sort_pids(void)
624{
625 struct per_pid *new_list, *p, *cursor, *prev;
626 /* sort by ppid first, then by pid, lowest to highest */
627
628 new_list = NULL;
629
630 while (all_data) {
631 p = all_data;
632 all_data = p->next;
633 p->next = NULL;
634
635 if (new_list == NULL) {
636 new_list = p;
637 p->next = NULL;
638 continue;
639 }
640 prev = NULL;
641 cursor = new_list;
642 while (cursor) {
643 if (cursor->ppid > p->ppid ||
644 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
645 /* must insert before */
646 if (prev) {
647 p->next = prev->next;
648 prev->next = p;
649 cursor = NULL;
650 continue;
651 } else {
652 p->next = new_list;
653 new_list = p;
654 cursor = NULL;
655 continue;
656 }
657 }
658
659 prev = cursor;
660 cursor = cursor->next;
661 if (!cursor)
662 prev->next = p;
663 }
664 }
665 all_data = new_list;
666}
667
668
669static void draw_c_p_states(void)
670{
671 struct power_event *pwr;
672 pwr = power_events;
673
674 /*
675 * two pass drawing so that the P state bars are on top of the C state blocks
676 */
677 while (pwr) {
678 if (pwr->type == CSTATE)
679 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
680 pwr = pwr->next;
681 }
682
683 pwr = power_events;
684 while (pwr) {
685 if (pwr->type == PSTATE) {
686 if (!pwr->state)
687 pwr->state = min_freq;
688 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
689 }
690 pwr = pwr->next;
691 }
692}
693
694static void draw_wakeups(void)
695{
696 struct wake_event *we;
697 struct per_pid *p;
698 struct per_pidcomm *c;
699
700 we = wake_events;
701 while (we) {
702 int from = 0, to = 0;
703 char *task_from = NULL, *task_to = NULL;
704
705 /* locate the column of the waker and wakee */
706 p = all_data;
707 while (p) {
708 if (p->pid == we->waker || p->pid == we->wakee) {
709 c = p->all;
710 while (c) {
711 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
712 if (p->pid == we->waker && !from) {
713 from = c->Y;
714 task_from = strdup(c->comm);
715 }
716 if (p->pid == we->wakee && !to) {
717 to = c->Y;
718 task_to = strdup(c->comm);
719 }
720 }
721 c = c->next;
722 }
723 c = p->all;
724 while (c) {
725 if (p->pid == we->waker && !from) {
726 from = c->Y;
727 task_from = strdup(c->comm);
728 }
729 if (p->pid == we->wakee && !to) {
730 to = c->Y;
731 task_to = strdup(c->comm);
732 }
733 c = c->next;
734 }
735 }
736 p = p->next;
737 }
738
739 if (!task_from) {
740 task_from = malloc(40);
741 sprintf(task_from, "[%i]", we->waker);
742 }
743 if (!task_to) {
744 task_to = malloc(40);
745 sprintf(task_to, "[%i]", we->wakee);
746 }
747
748 if (we->waker == -1)
749 svg_interrupt(we->time, to);
750 else if (from && to && abs(from - to) == 1)
751 svg_wakeline(we->time, from, to);
752 else
753 svg_partial_wakeline(we->time, from, task_from, to, task_to);
754 we = we->next;
755
756 free(task_from);
757 free(task_to);
758 }
759}
760
761static void draw_cpu_usage(void)
762{
763 struct per_pid *p;
764 struct per_pidcomm *c;
765 struct cpu_sample *sample;
766 p = all_data;
767 while (p) {
768 c = p->all;
769 while (c) {
770 sample = c->samples;
771 while (sample) {
772 if (sample->type == TYPE_RUNNING)
773 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
774
775 sample = sample->next;
776 }
777 c = c->next;
778 }
779 p = p->next;
780 }
781}
782
783static void draw_process_bars(void)
784{
785 struct per_pid *p;
786 struct per_pidcomm *c;
787 struct cpu_sample *sample;
788 int Y = 0;
789
790 Y = 2 * numcpus + 2;
791
792 p = all_data;
793 while (p) {
794 c = p->all;
795 while (c) {
796 if (!c->display) {
797 c->Y = 0;
798 c = c->next;
799 continue;
800 }
801
802 svg_box(Y, c->start_time, c->end_time, "process");
803 sample = c->samples;
804 while (sample) {
805 if (sample->type == TYPE_RUNNING)
806 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
807 if (sample->type == TYPE_BLOCKED)
808 svg_box(Y, sample->start_time, sample->end_time, "blocked");
809 if (sample->type == TYPE_WAITING)
810 svg_waiting(Y, sample->start_time, sample->end_time);
811 sample = sample->next;
812 }
813
814 if (c->comm) {
815 char comm[256];
816 if (c->total_time > 5000000000) /* 5 seconds */
817 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
818 else
819 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
820
821 svg_text(Y, c->start_time, comm);
822 }
823 c->Y = Y;
824 Y++;
825 c = c->next;
826 }
827 p = p->next;
828 }
829}
830
831static void add_process_filter(const char *string)
832{
833 struct process_filter *filt;
834 int pid;
835
836 pid = strtoull(string, NULL, 10);
837 filt = malloc(sizeof(struct process_filter));
838 if (!filt)
839 return;
840
841 filt->name = strdup(string);
842 filt->pid = pid;
843 filt->next = process_filter;
844
845 process_filter = filt;
846}
847
848static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
849{
850 struct process_filter *filt;
851 if (!process_filter)
852 return 1;
853
854 filt = process_filter;
855 while (filt) {
856 if (filt->pid && p->pid == filt->pid)
857 return 1;
858 if (strcmp(filt->name, c->comm) == 0)
859 return 1;
860 filt = filt->next;
861 }
862 return 0;
863}
864
865static int determine_display_tasks_filtered(void)
866{
867 struct per_pid *p;
868 struct per_pidcomm *c;
869 int count = 0;
870
871 p = all_data;
872 while (p) {
873 p->display = 0;
874 if (p->start_time == 1)
875 p->start_time = first_time;
876
877 /* no exit marker, task kept running to the end */
878 if (p->end_time == 0)
879 p->end_time = last_time;
880
881 c = p->all;
882
883 while (c) {
884 c->display = 0;
885
886 if (c->start_time == 1)
887 c->start_time = first_time;
888
889 if (passes_filter(p, c)) {
890 c->display = 1;
891 p->display = 1;
892 count++;
893 }
894
895 if (c->end_time == 0)
896 c->end_time = last_time;
897
898 c = c->next;
899 }
900 p = p->next;
901 }
902 return count;
903}
904
905static int determine_display_tasks(u64 threshold)
906{
907 struct per_pid *p;
908 struct per_pidcomm *c;
909 int count = 0;
910
911 if (process_filter)
912 return determine_display_tasks_filtered();
913
914 p = all_data;
915 while (p) {
916 p->display = 0;
917 if (p->start_time == 1)
918 p->start_time = first_time;
919
920 /* no exit marker, task kept running to the end */
921 if (p->end_time == 0)
922 p->end_time = last_time;
923 if (p->total_time >= threshold && !power_only)
924 p->display = 1;
925
926 c = p->all;
927
928 while (c) {
929 c->display = 0;
930
931 if (c->start_time == 1)
932 c->start_time = first_time;
933
934 if (c->total_time >= threshold && !power_only) {
935 c->display = 1;
936 count++;
937 }
938
939 if (c->end_time == 0)
940 c->end_time = last_time;
941
942 c = c->next;
943 }
944 p = p->next;
945 }
946 return count;
947}
948
949
950
951#define TIME_THRESH 10000000
952
953static void write_svg_file(const char *filename)
954{
955 u64 i;
956 int count;
957
958 numcpus++;
959
960
961 count = determine_display_tasks(TIME_THRESH);
962
963 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
964 if (count < 15)
965 count = determine_display_tasks(TIME_THRESH / 10);
966
967 open_svg(filename, numcpus, count, first_time, last_time);
968
969 svg_time_grid();
970 svg_legenda();
971
972 for (i = 0; i < numcpus; i++)
973 svg_cpu_box(i, max_freq, turbo_frequency);
974
975 draw_cpu_usage();
976 draw_process_bars();
977 draw_c_p_states();
978 draw_wakeups();
979
980 svg_close();
981}
982
983static struct perf_tool perf_timechart = {
984 .comm = process_comm_event,
985 .fork = process_fork_event,
986 .exit = process_exit_event,
987 .sample = process_sample_event,
988 .ordered_samples = true,
989};
990
991static int __cmd_timechart(void)
992{
993 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
994 0, false, &perf_timechart);
995 int ret = -EINVAL;
996
997 if (session == NULL)
998 return -ENOMEM;
999
1000 if (!perf_session__has_traces(session, "timechart record"))
1001 goto out_delete;
1002
1003 ret = perf_session__process_events(session, &perf_timechart);
1004 if (ret)
1005 goto out_delete;
1006
1007 end_sample_processing();
1008
1009 sort_pids();
1010
1011 write_svg_file(output_name);
1012
1013 pr_info("Written %2.1f seconds of trace to %s.\n",
1014 (last_time - first_time) / 1000000000.0, output_name);
1015out_delete:
1016 perf_session__delete(session);
1017 return ret;
1018}
1019
1020static const char * const timechart_usage[] = {
1021 "perf timechart [<options>] {record}",
1022 NULL
1023};
1024
1025#ifdef SUPPORT_OLD_POWER_EVENTS
1026static const char * const record_old_args[] = {
1027 "record",
1028 "-a",
1029 "-R",
1030 "-f",
1031 "-c", "1",
1032 "-e", "power:power_start",
1033 "-e", "power:power_end",
1034 "-e", "power:power_frequency",
1035 "-e", "sched:sched_wakeup",
1036 "-e", "sched:sched_switch",
1037};
1038#endif
1039
1040static const char * const record_new_args[] = {
1041 "record",
1042 "-a",
1043 "-R",
1044 "-f",
1045 "-c", "1",
1046 "-e", "power:cpu_frequency",
1047 "-e", "power:cpu_idle",
1048 "-e", "sched:sched_wakeup",
1049 "-e", "sched:sched_switch",
1050};
1051
1052static int __cmd_record(int argc, const char **argv)
1053{
1054 unsigned int rec_argc, i, j;
1055 const char **rec_argv;
1056 const char * const *record_args = record_new_args;
1057 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1058
1059#ifdef SUPPORT_OLD_POWER_EVENTS
1060 if (!is_valid_tracepoint("power:cpu_idle") &&
1061 is_valid_tracepoint("power:power_start")) {
1062 use_old_power_events = 1;
1063 record_args = record_old_args;
1064 record_elems = ARRAY_SIZE(record_old_args);
1065 }
1066#endif
1067
1068 rec_argc = record_elems + argc - 1;
1069 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1070
1071 if (rec_argv == NULL)
1072 return -ENOMEM;
1073
1074 for (i = 0; i < record_elems; i++)
1075 rec_argv[i] = strdup(record_args[i]);
1076
1077 for (j = 1; j < (unsigned int)argc; j++, i++)
1078 rec_argv[i] = argv[j];
1079
1080 return cmd_record(i, rec_argv, NULL);
1081}
1082
1083static int
1084parse_process(const struct option *opt __used, const char *arg, int __used unset)
1085{
1086 if (arg)
1087 add_process_filter(arg);
1088 return 0;
1089}
1090
1091static const struct option options[] = {
1092 OPT_STRING('i', "input", &input_name, "file",
1093 "input file name"),
1094 OPT_STRING('o', "output", &output_name, "file",
1095 "output file name"),
1096 OPT_INTEGER('w', "width", &svg_page_width,
1097 "page width"),
1098 OPT_BOOLEAN('P', "power-only", &power_only,
1099 "output power data only"),
1100 OPT_CALLBACK('p', "process", NULL, "process",
1101 "process selector. Pass a pid or process name.",
1102 parse_process),
1103 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104 "Look for files with symbols relative to this directory"),
1105 OPT_END()
1106};
1107
1108
1109int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1110{
1111 argc = parse_options(argc, argv, options, timechart_usage,
1112 PARSE_OPT_STOP_AT_NON_OPTION);
1113
1114 symbol__init();
1115
1116 if (argc && !strncmp(argv[0], "rec", 3))
1117 return __cmd_record(argc, argv);
1118 else if (argc)
1119 usage_with_options(timechart_usage, options);
1120
1121 setup_pager();
1122
1123 return __cmd_timechart();
1124}