Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *		Pedro Roque	:	Fast Retransmit/Recovery.
  24 *					Two receive queues.
  25 *					Retransmit queue handled by TCP.
  26 *					Better retransmit timer handling.
  27 *					New congestion avoidance.
  28 *					Header prediction.
  29 *					Variable renaming.
  30 *
  31 *		Eric		:	Fast Retransmit.
  32 *		Randy Scott	:	MSS option defines.
  33 *		Eric Schenk	:	Fixes to slow start algorithm.
  34 *		Eric Schenk	:	Yet another double ACK bug.
  35 *		Eric Schenk	:	Delayed ACK bug fixes.
  36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  37 *		David S. Miller	:	Don't allow zero congestion window.
  38 *		Eric Schenk	:	Fix retransmitter so that it sends
  39 *					next packet on ack of previous packet.
  40 *		Andi Kleen	:	Moved open_request checking here
  41 *					and process RSTs for open_requests.
  42 *		Andi Kleen	:	Better prune_queue, and other fixes.
  43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  44 *					timestamps.
  45 *		Andrey Savochkin:	Check sequence numbers correctly when
  46 *					removing SACKs due to in sequence incoming
  47 *					data segments.
  48 *		Andi Kleen:		Make sure we never ack data there is not
  49 *					enough room for. Also make this condition
  50 *					a fatal error if it might still happen.
  51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  52 *					connections with MSS<min(MTU,ann. MSS)
  53 *					work without delayed acks.
  54 *		Andi Kleen:		Process packets with PSH set in the
  55 *					fast path.
  56 *		J Hadi Salim:		ECN support
  57 *	 	Andrei Gurtov,
  58 *		Pasi Sarolahti,
  59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  60 *					engine. Lots of bugs are found.
  61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <net/dst.h>
  72#include <net/tcp.h>
  73#include <net/inet_common.h>
  74#include <linux/ipsec.h>
  75#include <asm/unaligned.h>
  76#include <net/netdma.h>
  77
  78int sysctl_tcp_timestamps __read_mostly = 1;
  79int sysctl_tcp_window_scaling __read_mostly = 1;
  80int sysctl_tcp_sack __read_mostly = 1;
  81int sysctl_tcp_fack __read_mostly = 1;
  82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  83EXPORT_SYMBOL(sysctl_tcp_reordering);
 
 
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 1;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88
  89/* rfc5961 challenge ack rate limiting */
  90int sysctl_tcp_challenge_ack_limit = 100;
  91
  92int sysctl_tcp_stdurg __read_mostly;
  93int sysctl_tcp_rfc1337 __read_mostly;
  94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  95int sysctl_tcp_frto __read_mostly = 2;
 
 
  96
  97int sysctl_tcp_thin_dupack __read_mostly;
  98
  99int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 100int sysctl_tcp_early_retrans __read_mostly = 3;
 
 101
 102#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 103#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 104#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 105#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 106#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 107#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 108#define FLAG_ECE		0x40 /* ECE in this ACK				*/
 109#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 110#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
 111#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 112#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
 
 113#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 114#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 115
 116#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 117#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 118#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 119#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 
 120
 121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 123
 124/* Adapt the MSS value used to make delayed ack decision to the
 125 * real world.
 126 */
 127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 128{
 129	struct inet_connection_sock *icsk = inet_csk(sk);
 130	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 131	unsigned int len;
 132
 133	icsk->icsk_ack.last_seg_size = 0;
 134
 135	/* skb->len may jitter because of SACKs, even if peer
 136	 * sends good full-sized frames.
 137	 */
 138	len = skb_shinfo(skb)->gso_size ? : skb->len;
 139	if (len >= icsk->icsk_ack.rcv_mss) {
 140		icsk->icsk_ack.rcv_mss = len;
 141	} else {
 142		/* Otherwise, we make more careful check taking into account,
 143		 * that SACKs block is variable.
 144		 *
 145		 * "len" is invariant segment length, including TCP header.
 146		 */
 147		len += skb->data - skb_transport_header(skb);
 148		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 149		    /* If PSH is not set, packet should be
 150		     * full sized, provided peer TCP is not badly broken.
 151		     * This observation (if it is correct 8)) allows
 152		     * to handle super-low mtu links fairly.
 153		     */
 154		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 155		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 156			/* Subtract also invariant (if peer is RFC compliant),
 157			 * tcp header plus fixed timestamp option length.
 158			 * Resulting "len" is MSS free of SACK jitter.
 159			 */
 160			len -= tcp_sk(sk)->tcp_header_len;
 161			icsk->icsk_ack.last_seg_size = len;
 162			if (len == lss) {
 163				icsk->icsk_ack.rcv_mss = len;
 164				return;
 165			}
 166		}
 167		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 168			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 169		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 170	}
 171}
 172
 173static void tcp_incr_quickack(struct sock *sk)
 174{
 175	struct inet_connection_sock *icsk = inet_csk(sk);
 176	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 177
 178	if (quickacks == 0)
 179		quickacks = 2;
 180	if (quickacks > icsk->icsk_ack.quick)
 181		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 182}
 183
 184static void tcp_enter_quickack_mode(struct sock *sk)
 185{
 186	struct inet_connection_sock *icsk = inet_csk(sk);
 187	tcp_incr_quickack(sk);
 188	icsk->icsk_ack.pingpong = 0;
 189	icsk->icsk_ack.ato = TCP_ATO_MIN;
 190}
 191
 192/* Send ACKs quickly, if "quick" count is not exhausted
 193 * and the session is not interactive.
 194 */
 195
 196static inline bool tcp_in_quickack_mode(const struct sock *sk)
 197{
 198	const struct inet_connection_sock *icsk = inet_csk(sk);
 199
 200	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
 201}
 202
 203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
 204{
 205	if (tp->ecn_flags & TCP_ECN_OK)
 206		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 207}
 208
 209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 210{
 211	if (tcp_hdr(skb)->cwr)
 212		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 213}
 214
 215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
 216{
 217	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 218}
 219
 220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 221{
 222	if (!(tp->ecn_flags & TCP_ECN_OK))
 223		return;
 224
 225	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 226	case INET_ECN_NOT_ECT:
 227		/* Funny extension: if ECT is not set on a segment,
 228		 * and we already seen ECT on a previous segment,
 229		 * it is probably a retransmit.
 230		 */
 231		if (tp->ecn_flags & TCP_ECN_SEEN)
 232			tcp_enter_quickack_mode((struct sock *)tp);
 233		break;
 234	case INET_ECN_CE:
 235		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 236			/* Better not delay acks, sender can have a very low cwnd */
 237			tcp_enter_quickack_mode((struct sock *)tp);
 238			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 239		}
 240		/* fallinto */
 241	default:
 242		tp->ecn_flags |= TCP_ECN_SEEN;
 243	}
 244}
 245
 246static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 247{
 248	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 249		tp->ecn_flags &= ~TCP_ECN_OK;
 250}
 251
 252static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 253{
 254	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 255		tp->ecn_flags &= ~TCP_ECN_OK;
 256}
 257
 258static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 259{
 260	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 261		return true;
 262	return false;
 263}
 264
 265/* Buffer size and advertised window tuning.
 266 *
 267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 268 */
 269
 270static void tcp_sndbuf_expand(struct sock *sk)
 271{
 272	const struct tcp_sock *tp = tcp_sk(sk);
 273	int sndmem, per_mss;
 274	u32 nr_segs;
 275
 276	/* Worst case is non GSO/TSO : each frame consumes one skb
 277	 * and skb->head is kmalloced using power of two area of memory
 278	 */
 279	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 280		  MAX_TCP_HEADER +
 281		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 282
 283	per_mss = roundup_pow_of_two(per_mss) +
 284		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 285
 286	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 287	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 288
 289	/* Fast Recovery (RFC 5681 3.2) :
 290	 * Cubic needs 1.7 factor, rounded to 2 to include
 291	 * extra cushion (application might react slowly to POLLOUT)
 292	 */
 293	sndmem = 2 * nr_segs * per_mss;
 294
 
 295	if (sk->sk_sndbuf < sndmem)
 296		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 297}
 298
 299/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 300 *
 301 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 302 * forward and advertised in receiver window (tp->rcv_wnd) and
 303 * "application buffer", required to isolate scheduling/application
 304 * latencies from network.
 305 * window_clamp is maximal advertised window. It can be less than
 306 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 307 * is reserved for "application" buffer. The less window_clamp is
 308 * the smoother our behaviour from viewpoint of network, but the lower
 309 * throughput and the higher sensitivity of the connection to losses. 8)
 310 *
 311 * rcv_ssthresh is more strict window_clamp used at "slow start"
 312 * phase to predict further behaviour of this connection.
 313 * It is used for two goals:
 314 * - to enforce header prediction at sender, even when application
 315 *   requires some significant "application buffer". It is check #1.
 316 * - to prevent pruning of receive queue because of misprediction
 317 *   of receiver window. Check #2.
 318 *
 319 * The scheme does not work when sender sends good segments opening
 320 * window and then starts to feed us spaghetti. But it should work
 321 * in common situations. Otherwise, we have to rely on queue collapsing.
 322 */
 323
 324/* Slow part of check#2. */
 325static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 326{
 327	struct tcp_sock *tp = tcp_sk(sk);
 328	/* Optimize this! */
 329	int truesize = tcp_win_from_space(skb->truesize) >> 1;
 330	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 331
 332	while (tp->rcv_ssthresh <= window) {
 333		if (truesize <= skb->len)
 334			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 335
 336		truesize >>= 1;
 337		window >>= 1;
 338	}
 339	return 0;
 340}
 341
 342static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 343{
 344	struct tcp_sock *tp = tcp_sk(sk);
 345
 346	/* Check #1 */
 347	if (tp->rcv_ssthresh < tp->window_clamp &&
 348	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 349	    !sk_under_memory_pressure(sk)) {
 350		int incr;
 351
 352		/* Check #2. Increase window, if skb with such overhead
 353		 * will fit to rcvbuf in future.
 354		 */
 355		if (tcp_win_from_space(skb->truesize) <= skb->len)
 356			incr = 2 * tp->advmss;
 357		else
 358			incr = __tcp_grow_window(sk, skb);
 359
 360		if (incr) {
 361			incr = max_t(int, incr, 2 * skb->len);
 362			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 363					       tp->window_clamp);
 364			inet_csk(sk)->icsk_ack.quick |= 1;
 365		}
 366	}
 367}
 368
 369/* 3. Tuning rcvbuf, when connection enters established state. */
 
 370static void tcp_fixup_rcvbuf(struct sock *sk)
 371{
 372	u32 mss = tcp_sk(sk)->advmss;
 
 373	int rcvmem;
 374
 375	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 376		 tcp_default_init_rwnd(mss);
 377
 378	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 379	 * Allow enough cushion so that sender is not limited by our window
 380	 */
 381	if (sysctl_tcp_moderate_rcvbuf)
 382		rcvmem <<= 2;
 
 
 
 
 
 
 383
 384	if (sk->sk_rcvbuf < rcvmem)
 385		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 386}
 387
 388/* 4. Try to fixup all. It is made immediately after connection enters
 389 *    established state.
 390 */
 391void tcp_init_buffer_space(struct sock *sk)
 392{
 393	struct tcp_sock *tp = tcp_sk(sk);
 394	int maxwin;
 395
 396	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 397		tcp_fixup_rcvbuf(sk);
 398	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 399		tcp_sndbuf_expand(sk);
 400
 401	tp->rcvq_space.space = tp->rcv_wnd;
 402	tp->rcvq_space.time = tcp_time_stamp;
 403	tp->rcvq_space.seq = tp->copied_seq;
 404
 405	maxwin = tcp_full_space(sk);
 406
 407	if (tp->window_clamp >= maxwin) {
 408		tp->window_clamp = maxwin;
 409
 410		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 411			tp->window_clamp = max(maxwin -
 412					       (maxwin >> sysctl_tcp_app_win),
 413					       4 * tp->advmss);
 414	}
 415
 416	/* Force reservation of one segment. */
 417	if (sysctl_tcp_app_win &&
 418	    tp->window_clamp > 2 * tp->advmss &&
 419	    tp->window_clamp + tp->advmss > maxwin)
 420		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 421
 422	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 423	tp->snd_cwnd_stamp = tcp_time_stamp;
 424}
 425
 426/* 5. Recalculate window clamp after socket hit its memory bounds. */
 427static void tcp_clamp_window(struct sock *sk)
 428{
 429	struct tcp_sock *tp = tcp_sk(sk);
 430	struct inet_connection_sock *icsk = inet_csk(sk);
 431
 432	icsk->icsk_ack.quick = 0;
 433
 434	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 435	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 436	    !sk_under_memory_pressure(sk) &&
 437	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 438		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 439				    sysctl_tcp_rmem[2]);
 440	}
 441	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 442		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 443}
 444
 445/* Initialize RCV_MSS value.
 446 * RCV_MSS is an our guess about MSS used by the peer.
 447 * We haven't any direct information about the MSS.
 448 * It's better to underestimate the RCV_MSS rather than overestimate.
 449 * Overestimations make us ACKing less frequently than needed.
 450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 451 */
 452void tcp_initialize_rcv_mss(struct sock *sk)
 453{
 454	const struct tcp_sock *tp = tcp_sk(sk);
 455	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 456
 457	hint = min(hint, tp->rcv_wnd / 2);
 458	hint = min(hint, TCP_MSS_DEFAULT);
 459	hint = max(hint, TCP_MIN_MSS);
 460
 461	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 462}
 463EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 464
 465/* Receiver "autotuning" code.
 466 *
 467 * The algorithm for RTT estimation w/o timestamps is based on
 468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 469 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 470 *
 471 * More detail on this code can be found at
 472 * <http://staff.psc.edu/jheffner/>,
 473 * though this reference is out of date.  A new paper
 474 * is pending.
 475 */
 476static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 477{
 478	u32 new_sample = tp->rcv_rtt_est.rtt;
 479	long m = sample;
 480
 481	if (m == 0)
 482		m = 1;
 483
 484	if (new_sample != 0) {
 485		/* If we sample in larger samples in the non-timestamp
 486		 * case, we could grossly overestimate the RTT especially
 487		 * with chatty applications or bulk transfer apps which
 488		 * are stalled on filesystem I/O.
 489		 *
 490		 * Also, since we are only going for a minimum in the
 491		 * non-timestamp case, we do not smooth things out
 492		 * else with timestamps disabled convergence takes too
 493		 * long.
 494		 */
 495		if (!win_dep) {
 496			m -= (new_sample >> 3);
 497			new_sample += m;
 498		} else {
 499			m <<= 3;
 500			if (m < new_sample)
 501				new_sample = m;
 502		}
 503	} else {
 504		/* No previous measure. */
 505		new_sample = m << 3;
 506	}
 507
 508	if (tp->rcv_rtt_est.rtt != new_sample)
 509		tp->rcv_rtt_est.rtt = new_sample;
 510}
 511
 512static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 513{
 514	if (tp->rcv_rtt_est.time == 0)
 515		goto new_measure;
 516	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 517		return;
 518	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 519
 520new_measure:
 521	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 522	tp->rcv_rtt_est.time = tcp_time_stamp;
 523}
 524
 525static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 526					  const struct sk_buff *skb)
 527{
 528	struct tcp_sock *tp = tcp_sk(sk);
 529	if (tp->rx_opt.rcv_tsecr &&
 530	    (TCP_SKB_CB(skb)->end_seq -
 531	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 532		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 533}
 534
 535/*
 536 * This function should be called every time data is copied to user space.
 537 * It calculates the appropriate TCP receive buffer space.
 538 */
 539void tcp_rcv_space_adjust(struct sock *sk)
 540{
 541	struct tcp_sock *tp = tcp_sk(sk);
 542	int time;
 543	int copied;
 
 
 
 544
 545	time = tcp_time_stamp - tp->rcvq_space.time;
 546	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 547		return;
 548
 549	/* Number of bytes copied to user in last RTT */
 550	copied = tp->copied_seq - tp->rcvq_space.seq;
 551	if (copied <= tp->rcvq_space.space)
 552		goto new_measure;
 553
 554	/* A bit of theory :
 555	 * copied = bytes received in previous RTT, our base window
 556	 * To cope with packet losses, we need a 2x factor
 557	 * To cope with slow start, and sender growing its cwin by 100 %
 558	 * every RTT, we need a 4x factor, because the ACK we are sending
 559	 * now is for the next RTT, not the current one :
 560	 * <prev RTT . ><current RTT .. ><next RTT .... >
 561	 */
 562
 563	if (sysctl_tcp_moderate_rcvbuf &&
 564	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 565		int rcvwin, rcvmem, rcvbuf;
 566
 567		/* minimal window to cope with packet losses, assuming
 568		 * steady state. Add some cushion because of small variations.
 569		 */
 570		rcvwin = (copied << 1) + 16 * tp->advmss;
 571
 572		/* If rate increased by 25%,
 573		 *	assume slow start, rcvwin = 3 * copied
 574		 * If rate increased by 50%,
 575		 *	assume sender can use 2x growth, rcvwin = 4 * copied
 576		 */
 577		if (copied >=
 578		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
 579			if (copied >=
 580			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
 581				rcvwin <<= 1;
 582			else
 583				rcvwin += (rcvwin >> 1);
 584		}
 585
 586		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 587		while (tcp_win_from_space(rcvmem) < tp->advmss)
 588			rcvmem += 128;
 589
 590		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
 591		if (rcvbuf > sk->sk_rcvbuf) {
 592			sk->sk_rcvbuf = rcvbuf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593
 594			/* Make the window clamp follow along.  */
 595			tp->window_clamp = rcvwin;
 
 596		}
 597	}
 598	tp->rcvq_space.space = copied;
 599
 600new_measure:
 601	tp->rcvq_space.seq = tp->copied_seq;
 602	tp->rcvq_space.time = tcp_time_stamp;
 603}
 604
 605/* There is something which you must keep in mind when you analyze the
 606 * behavior of the tp->ato delayed ack timeout interval.  When a
 607 * connection starts up, we want to ack as quickly as possible.  The
 608 * problem is that "good" TCP's do slow start at the beginning of data
 609 * transmission.  The means that until we send the first few ACK's the
 610 * sender will sit on his end and only queue most of his data, because
 611 * he can only send snd_cwnd unacked packets at any given time.  For
 612 * each ACK we send, he increments snd_cwnd and transmits more of his
 613 * queue.  -DaveM
 614 */
 615static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 616{
 617	struct tcp_sock *tp = tcp_sk(sk);
 618	struct inet_connection_sock *icsk = inet_csk(sk);
 619	u32 now;
 620
 621	inet_csk_schedule_ack(sk);
 622
 623	tcp_measure_rcv_mss(sk, skb);
 624
 625	tcp_rcv_rtt_measure(tp);
 626
 627	now = tcp_time_stamp;
 628
 629	if (!icsk->icsk_ack.ato) {
 630		/* The _first_ data packet received, initialize
 631		 * delayed ACK engine.
 632		 */
 633		tcp_incr_quickack(sk);
 634		icsk->icsk_ack.ato = TCP_ATO_MIN;
 635	} else {
 636		int m = now - icsk->icsk_ack.lrcvtime;
 637
 638		if (m <= TCP_ATO_MIN / 2) {
 639			/* The fastest case is the first. */
 640			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 641		} else if (m < icsk->icsk_ack.ato) {
 642			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 643			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 644				icsk->icsk_ack.ato = icsk->icsk_rto;
 645		} else if (m > icsk->icsk_rto) {
 646			/* Too long gap. Apparently sender failed to
 647			 * restart window, so that we send ACKs quickly.
 648			 */
 649			tcp_incr_quickack(sk);
 650			sk_mem_reclaim(sk);
 651		}
 652	}
 653	icsk->icsk_ack.lrcvtime = now;
 654
 655	TCP_ECN_check_ce(tp, skb);
 656
 657	if (skb->len >= 128)
 658		tcp_grow_window(sk, skb);
 659}
 660
 661/* Called to compute a smoothed rtt estimate. The data fed to this
 662 * routine either comes from timestamps, or from segments that were
 663 * known _not_ to have been retransmitted [see Karn/Partridge
 664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 665 * piece by Van Jacobson.
 666 * NOTE: the next three routines used to be one big routine.
 667 * To save cycles in the RFC 1323 implementation it was better to break
 668 * it up into three procedures. -- erics
 669 */
 670static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 671{
 672	struct tcp_sock *tp = tcp_sk(sk);
 673	long m = mrtt_us; /* RTT */
 674	u32 srtt = tp->srtt_us;
 675
 676	/*	The following amusing code comes from Jacobson's
 677	 *	article in SIGCOMM '88.  Note that rtt and mdev
 678	 *	are scaled versions of rtt and mean deviation.
 679	 *	This is designed to be as fast as possible
 680	 *	m stands for "measurement".
 681	 *
 682	 *	On a 1990 paper the rto value is changed to:
 683	 *	RTO = rtt + 4 * mdev
 684	 *
 685	 * Funny. This algorithm seems to be very broken.
 686	 * These formulae increase RTO, when it should be decreased, increase
 687	 * too slowly, when it should be increased quickly, decrease too quickly
 688	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 689	 * does not matter how to _calculate_ it. Seems, it was trap
 690	 * that VJ failed to avoid. 8)
 691	 */
 692	if (srtt != 0) {
 693		m -= (srtt >> 3);	/* m is now error in rtt est */
 694		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 
 
 695		if (m < 0) {
 696			m = -m;		/* m is now abs(error) */
 697			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 698			/* This is similar to one of Eifel findings.
 699			 * Eifel blocks mdev updates when rtt decreases.
 700			 * This solution is a bit different: we use finer gain
 701			 * for mdev in this case (alpha*beta).
 702			 * Like Eifel it also prevents growth of rto,
 703			 * but also it limits too fast rto decreases,
 704			 * happening in pure Eifel.
 705			 */
 706			if (m > 0)
 707				m >>= 3;
 708		} else {
 709			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 710		}
 711		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 712		if (tp->mdev_us > tp->mdev_max_us) {
 713			tp->mdev_max_us = tp->mdev_us;
 714			if (tp->mdev_max_us > tp->rttvar_us)
 715				tp->rttvar_us = tp->mdev_max_us;
 716		}
 717		if (after(tp->snd_una, tp->rtt_seq)) {
 718			if (tp->mdev_max_us < tp->rttvar_us)
 719				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 720			tp->rtt_seq = tp->snd_nxt;
 721			tp->mdev_max_us = tcp_rto_min_us(sk);
 722		}
 723	} else {
 724		/* no previous measure. */
 725		srtt = m << 3;		/* take the measured time to be rtt */
 726		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 727		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 728		tp->mdev_max_us = tp->rttvar_us;
 729		tp->rtt_seq = tp->snd_nxt;
 730	}
 731	tp->srtt_us = max(1U, srtt);
 732}
 733
 734/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
 735 * Note: TCP stack does not yet implement pacing.
 736 * FQ packet scheduler can be used to implement cheap but effective
 737 * TCP pacing, to smooth the burst on large writes when packets
 738 * in flight is significantly lower than cwnd (or rwin)
 739 */
 740static void tcp_update_pacing_rate(struct sock *sk)
 741{
 742	const struct tcp_sock *tp = tcp_sk(sk);
 743	u64 rate;
 744
 745	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 746	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
 747
 748	rate *= max(tp->snd_cwnd, tp->packets_out);
 749
 750	if (likely(tp->srtt_us))
 751		do_div(rate, tp->srtt_us);
 752
 753	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
 754	 * without any lock. We want to make sure compiler wont store
 755	 * intermediate values in this location.
 756	 */
 757	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
 758						sk->sk_max_pacing_rate);
 759}
 760
 761/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 762 * routine referred to above.
 763 */
 764static void tcp_set_rto(struct sock *sk)
 765{
 766	const struct tcp_sock *tp = tcp_sk(sk);
 767	/* Old crap is replaced with new one. 8)
 768	 *
 769	 * More seriously:
 770	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 771	 *    It cannot be less due to utterly erratic ACK generation made
 772	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 773	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 774	 *    is invisible. Actually, Linux-2.4 also generates erratic
 775	 *    ACKs in some circumstances.
 776	 */
 777	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 778
 779	/* 2. Fixups made earlier cannot be right.
 780	 *    If we do not estimate RTO correctly without them,
 781	 *    all the algo is pure shit and should be replaced
 782	 *    with correct one. It is exactly, which we pretend to do.
 783	 */
 784
 785	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 786	 * guarantees that rto is higher.
 787	 */
 788	tcp_bound_rto(sk);
 789}
 790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 792{
 793	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 794
 795	if (!cwnd)
 796		cwnd = TCP_INIT_CWND;
 797	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 798}
 799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800/*
 801 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 802 * disables it when reordering is detected
 803 */
 804void tcp_disable_fack(struct tcp_sock *tp)
 805{
 806	/* RFC3517 uses different metric in lost marker => reset on change */
 807	if (tcp_is_fack(tp))
 808		tp->lost_skb_hint = NULL;
 809	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 810}
 811
 812/* Take a notice that peer is sending D-SACKs */
 813static void tcp_dsack_seen(struct tcp_sock *tp)
 814{
 815	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 816}
 817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818static void tcp_update_reordering(struct sock *sk, const int metric,
 819				  const int ts)
 820{
 821	struct tcp_sock *tp = tcp_sk(sk);
 822	if (metric > tp->reordering) {
 823		int mib_idx;
 824
 825		tp->reordering = min(TCP_MAX_REORDERING, metric);
 826
 827		/* This exciting event is worth to be remembered. 8) */
 828		if (ts)
 829			mib_idx = LINUX_MIB_TCPTSREORDER;
 830		else if (tcp_is_reno(tp))
 831			mib_idx = LINUX_MIB_TCPRENOREORDER;
 832		else if (tcp_is_fack(tp))
 833			mib_idx = LINUX_MIB_TCPFACKREORDER;
 834		else
 835			mib_idx = LINUX_MIB_TCPSACKREORDER;
 836
 837		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 838#if FASTRETRANS_DEBUG > 1
 839		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 840			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 841			 tp->reordering,
 842			 tp->fackets_out,
 843			 tp->sacked_out,
 844			 tp->undo_marker ? tp->undo_retrans : 0);
 845#endif
 846		tcp_disable_fack(tp);
 847	}
 848
 849	if (metric > 0)
 850		tcp_disable_early_retrans(tp);
 851}
 852
 853/* This must be called before lost_out is incremented */
 854static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 855{
 856	if ((tp->retransmit_skb_hint == NULL) ||
 857	    before(TCP_SKB_CB(skb)->seq,
 858		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 859		tp->retransmit_skb_hint = skb;
 860
 861	if (!tp->lost_out ||
 862	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 863		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 864}
 865
 866static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 867{
 868	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 869		tcp_verify_retransmit_hint(tp, skb);
 870
 871		tp->lost_out += tcp_skb_pcount(skb);
 872		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 873	}
 874}
 875
 876static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
 877					    struct sk_buff *skb)
 878{
 879	tcp_verify_retransmit_hint(tp, skb);
 880
 881	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 882		tp->lost_out += tcp_skb_pcount(skb);
 883		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 884	}
 885}
 886
 887/* This procedure tags the retransmission queue when SACKs arrive.
 888 *
 889 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 890 * Packets in queue with these bits set are counted in variables
 891 * sacked_out, retrans_out and lost_out, correspondingly.
 892 *
 893 * Valid combinations are:
 894 * Tag  InFlight	Description
 895 * 0	1		- orig segment is in flight.
 896 * S	0		- nothing flies, orig reached receiver.
 897 * L	0		- nothing flies, orig lost by net.
 898 * R	2		- both orig and retransmit are in flight.
 899 * L|R	1		- orig is lost, retransmit is in flight.
 900 * S|R  1		- orig reached receiver, retrans is still in flight.
 901 * (L|S|R is logically valid, it could occur when L|R is sacked,
 902 *  but it is equivalent to plain S and code short-curcuits it to S.
 903 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 904 *
 905 * These 6 states form finite state machine, controlled by the following events:
 906 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 907 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 908 * 3. Loss detection event of two flavors:
 909 *	A. Scoreboard estimator decided the packet is lost.
 910 *	   A'. Reno "three dupacks" marks head of queue lost.
 911 *	   A''. Its FACK modification, head until snd.fack is lost.
 912 *	B. SACK arrives sacking SND.NXT at the moment, when the
 913 *	   segment was retransmitted.
 914 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 915 *
 916 * It is pleasant to note, that state diagram turns out to be commutative,
 917 * so that we are allowed not to be bothered by order of our actions,
 918 * when multiple events arrive simultaneously. (see the function below).
 919 *
 920 * Reordering detection.
 921 * --------------------
 922 * Reordering metric is maximal distance, which a packet can be displaced
 923 * in packet stream. With SACKs we can estimate it:
 924 *
 925 * 1. SACK fills old hole and the corresponding segment was not
 926 *    ever retransmitted -> reordering. Alas, we cannot use it
 927 *    when segment was retransmitted.
 928 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 929 *    for retransmitted and already SACKed segment -> reordering..
 930 * Both of these heuristics are not used in Loss state, when we cannot
 931 * account for retransmits accurately.
 932 *
 933 * SACK block validation.
 934 * ----------------------
 935 *
 936 * SACK block range validation checks that the received SACK block fits to
 937 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 938 * Note that SND.UNA is not included to the range though being valid because
 939 * it means that the receiver is rather inconsistent with itself reporting
 940 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 941 * perfectly valid, however, in light of RFC2018 which explicitly states
 942 * that "SACK block MUST reflect the newest segment.  Even if the newest
 943 * segment is going to be discarded ...", not that it looks very clever
 944 * in case of head skb. Due to potentional receiver driven attacks, we
 945 * choose to avoid immediate execution of a walk in write queue due to
 946 * reneging and defer head skb's loss recovery to standard loss recovery
 947 * procedure that will eventually trigger (nothing forbids us doing this).
 948 *
 949 * Implements also blockage to start_seq wrap-around. Problem lies in the
 950 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 951 * there's no guarantee that it will be before snd_nxt (n). The problem
 952 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 953 * wrap (s_w):
 954 *
 955 *         <- outs wnd ->                          <- wrapzone ->
 956 *         u     e      n                         u_w   e_w  s n_w
 957 *         |     |      |                          |     |   |  |
 958 * |<------------+------+----- TCP seqno space --------------+---------->|
 959 * ...-- <2^31 ->|                                           |<--------...
 960 * ...---- >2^31 ------>|                                    |<--------...
 961 *
 962 * Current code wouldn't be vulnerable but it's better still to discard such
 963 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 964 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
 965 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
 966 * equal to the ideal case (infinite seqno space without wrap caused issues).
 967 *
 968 * With D-SACK the lower bound is extended to cover sequence space below
 969 * SND.UNA down to undo_marker, which is the last point of interest. Yet
 970 * again, D-SACK block must not to go across snd_una (for the same reason as
 971 * for the normal SACK blocks, explained above). But there all simplicity
 972 * ends, TCP might receive valid D-SACKs below that. As long as they reside
 973 * fully below undo_marker they do not affect behavior in anyway and can
 974 * therefore be safely ignored. In rare cases (which are more or less
 975 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
 976 * fragmentation and packet reordering past skb's retransmission. To consider
 977 * them correctly, the acceptable range must be extended even more though
 978 * the exact amount is rather hard to quantify. However, tp->max_window can
 979 * be used as an exaggerated estimate.
 980 */
 981static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
 982				   u32 start_seq, u32 end_seq)
 983{
 984	/* Too far in future, or reversed (interpretation is ambiguous) */
 985	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
 986		return false;
 987
 988	/* Nasty start_seq wrap-around check (see comments above) */
 989	if (!before(start_seq, tp->snd_nxt))
 990		return false;
 991
 992	/* In outstanding window? ...This is valid exit for D-SACKs too.
 993	 * start_seq == snd_una is non-sensical (see comments above)
 994	 */
 995	if (after(start_seq, tp->snd_una))
 996		return true;
 997
 998	if (!is_dsack || !tp->undo_marker)
 999		return false;
1000
1001	/* ...Then it's D-SACK, and must reside below snd_una completely */
1002	if (after(end_seq, tp->snd_una))
1003		return false;
1004
1005	if (!before(start_seq, tp->undo_marker))
1006		return true;
1007
1008	/* Too old */
1009	if (!after(end_seq, tp->undo_marker))
1010		return false;
1011
1012	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1013	 *   start_seq < undo_marker and end_seq >= undo_marker.
1014	 */
1015	return !before(start_seq, end_seq - tp->max_window);
1016}
1017
1018/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1019 * Event "B". Later note: FACK people cheated me again 8), we have to account
1020 * for reordering! Ugly, but should help.
1021 *
1022 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1023 * less than what is now known to be received by the other end (derived from
1024 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1025 * retransmitted skbs to avoid some costly processing per ACKs.
1026 */
1027static void tcp_mark_lost_retrans(struct sock *sk)
1028{
1029	const struct inet_connection_sock *icsk = inet_csk(sk);
1030	struct tcp_sock *tp = tcp_sk(sk);
1031	struct sk_buff *skb;
1032	int cnt = 0;
1033	u32 new_low_seq = tp->snd_nxt;
1034	u32 received_upto = tcp_highest_sack_seq(tp);
1035
1036	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1037	    !after(received_upto, tp->lost_retrans_low) ||
1038	    icsk->icsk_ca_state != TCP_CA_Recovery)
1039		return;
1040
1041	tcp_for_write_queue(skb, sk) {
1042		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1043
1044		if (skb == tcp_send_head(sk))
1045			break;
1046		if (cnt == tp->retrans_out)
1047			break;
1048		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1049			continue;
1050
1051		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1052			continue;
1053
1054		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1055		 * constraint here (see above) but figuring out that at
1056		 * least tp->reordering SACK blocks reside between ack_seq
1057		 * and received_upto is not easy task to do cheaply with
1058		 * the available datastructures.
1059		 *
1060		 * Whether FACK should check here for tp->reordering segs
1061		 * in-between one could argue for either way (it would be
1062		 * rather simple to implement as we could count fack_count
1063		 * during the walk and do tp->fackets_out - fack_count).
1064		 */
1065		if (after(received_upto, ack_seq)) {
1066			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1067			tp->retrans_out -= tcp_skb_pcount(skb);
1068
1069			tcp_skb_mark_lost_uncond_verify(tp, skb);
1070			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1071		} else {
1072			if (before(ack_seq, new_low_seq))
1073				new_low_seq = ack_seq;
1074			cnt += tcp_skb_pcount(skb);
1075		}
1076	}
1077
1078	if (tp->retrans_out)
1079		tp->lost_retrans_low = new_low_seq;
1080}
1081
1082static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1083			    struct tcp_sack_block_wire *sp, int num_sacks,
1084			    u32 prior_snd_una)
1085{
1086	struct tcp_sock *tp = tcp_sk(sk);
1087	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1088	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1089	bool dup_sack = false;
1090
1091	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1092		dup_sack = true;
1093		tcp_dsack_seen(tp);
1094		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1095	} else if (num_sacks > 1) {
1096		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1097		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1098
1099		if (!after(end_seq_0, end_seq_1) &&
1100		    !before(start_seq_0, start_seq_1)) {
1101			dup_sack = true;
1102			tcp_dsack_seen(tp);
1103			NET_INC_STATS_BH(sock_net(sk),
1104					LINUX_MIB_TCPDSACKOFORECV);
1105		}
1106	}
1107
1108	/* D-SACK for already forgotten data... Do dumb counting. */
1109	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1110	    !after(end_seq_0, prior_snd_una) &&
1111	    after(end_seq_0, tp->undo_marker))
1112		tp->undo_retrans--;
1113
1114	return dup_sack;
1115}
1116
1117struct tcp_sacktag_state {
1118	int	reord;
1119	int	fack_count;
1120	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1121	int	flag;
1122};
1123
1124/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1125 * the incoming SACK may not exactly match but we can find smaller MSS
1126 * aligned portion of it that matches. Therefore we might need to fragment
1127 * which may fail and creates some hassle (caller must handle error case
1128 * returns).
1129 *
1130 * FIXME: this could be merged to shift decision code
1131 */
1132static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1133				  u32 start_seq, u32 end_seq)
1134{
1135	int err;
1136	bool in_sack;
1137	unsigned int pkt_len;
1138	unsigned int mss;
1139
1140	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1141		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1142
1143	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1144	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1145		mss = tcp_skb_mss(skb);
1146		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1147
1148		if (!in_sack) {
1149			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1150			if (pkt_len < mss)
1151				pkt_len = mss;
1152		} else {
1153			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1154			if (pkt_len < mss)
1155				return -EINVAL;
1156		}
1157
1158		/* Round if necessary so that SACKs cover only full MSSes
1159		 * and/or the remaining small portion (if present)
1160		 */
1161		if (pkt_len > mss) {
1162			unsigned int new_len = (pkt_len / mss) * mss;
1163			if (!in_sack && new_len < pkt_len) {
1164				new_len += mss;
1165				if (new_len > skb->len)
1166					return 0;
1167			}
1168			pkt_len = new_len;
1169		}
1170		err = tcp_fragment(sk, skb, pkt_len, mss);
1171		if (err < 0)
1172			return err;
1173	}
1174
1175	return in_sack;
1176}
1177
1178/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1179static u8 tcp_sacktag_one(struct sock *sk,
1180			  struct tcp_sacktag_state *state, u8 sacked,
1181			  u32 start_seq, u32 end_seq,
1182			  int dup_sack, int pcount,
1183			  const struct skb_mstamp *xmit_time)
1184{
1185	struct tcp_sock *tp = tcp_sk(sk);
1186	int fack_count = state->fack_count;
1187
1188	/* Account D-SACK for retransmitted packet. */
1189	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1190		if (tp->undo_marker && tp->undo_retrans &&
1191		    after(end_seq, tp->undo_marker))
1192			tp->undo_retrans--;
1193		if (sacked & TCPCB_SACKED_ACKED)
1194			state->reord = min(fack_count, state->reord);
1195	}
1196
1197	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1198	if (!after(end_seq, tp->snd_una))
1199		return sacked;
1200
1201	if (!(sacked & TCPCB_SACKED_ACKED)) {
1202		if (sacked & TCPCB_SACKED_RETRANS) {
1203			/* If the segment is not tagged as lost,
1204			 * we do not clear RETRANS, believing
1205			 * that retransmission is still in flight.
1206			 */
1207			if (sacked & TCPCB_LOST) {
1208				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1209				tp->lost_out -= pcount;
1210				tp->retrans_out -= pcount;
1211			}
1212		} else {
1213			if (!(sacked & TCPCB_RETRANS)) {
1214				/* New sack for not retransmitted frame,
1215				 * which was in hole. It is reordering.
1216				 */
1217				if (before(start_seq,
1218					   tcp_highest_sack_seq(tp)))
1219					state->reord = min(fack_count,
1220							   state->reord);
1221				if (!after(end_seq, tp->high_seq))
1222					state->flag |= FLAG_ORIG_SACK_ACKED;
1223				/* Pick the earliest sequence sacked for RTT */
1224				if (state->rtt_us < 0) {
1225					struct skb_mstamp now;
1226
1227					skb_mstamp_get(&now);
1228					state->rtt_us = skb_mstamp_us_delta(&now,
1229								xmit_time);
1230				}
1231			}
1232
1233			if (sacked & TCPCB_LOST) {
1234				sacked &= ~TCPCB_LOST;
1235				tp->lost_out -= pcount;
1236			}
1237		}
1238
1239		sacked |= TCPCB_SACKED_ACKED;
1240		state->flag |= FLAG_DATA_SACKED;
1241		tp->sacked_out += pcount;
1242
1243		fack_count += pcount;
1244
1245		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1246		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1247		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1248			tp->lost_cnt_hint += pcount;
1249
1250		if (fack_count > tp->fackets_out)
1251			tp->fackets_out = fack_count;
1252	}
1253
1254	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1255	 * frames and clear it. undo_retrans is decreased above, L|R frames
1256	 * are accounted above as well.
1257	 */
1258	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259		sacked &= ~TCPCB_SACKED_RETRANS;
1260		tp->retrans_out -= pcount;
1261	}
1262
1263	return sacked;
1264}
1265
1266/* Shift newly-SACKed bytes from this skb to the immediately previous
1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268 */
1269static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1270			    struct tcp_sacktag_state *state,
1271			    unsigned int pcount, int shifted, int mss,
1272			    bool dup_sack)
1273{
1274	struct tcp_sock *tp = tcp_sk(sk);
1275	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1276	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1277	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1278
1279	BUG_ON(!pcount);
1280
1281	/* Adjust counters and hints for the newly sacked sequence
1282	 * range but discard the return value since prev is already
1283	 * marked. We must tag the range first because the seq
1284	 * advancement below implicitly advances
1285	 * tcp_highest_sack_seq() when skb is highest_sack.
1286	 */
1287	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288			start_seq, end_seq, dup_sack, pcount,
1289			&skb->skb_mstamp);
1290
1291	if (skb == tp->lost_skb_hint)
1292		tp->lost_cnt_hint += pcount;
1293
1294	TCP_SKB_CB(prev)->end_seq += shifted;
1295	TCP_SKB_CB(skb)->seq += shifted;
1296
1297	skb_shinfo(prev)->gso_segs += pcount;
1298	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1299	skb_shinfo(skb)->gso_segs -= pcount;
1300
1301	/* When we're adding to gso_segs == 1, gso_size will be zero,
1302	 * in theory this shouldn't be necessary but as long as DSACK
1303	 * code can come after this skb later on it's better to keep
1304	 * setting gso_size to something.
1305	 */
1306	if (!skb_shinfo(prev)->gso_size) {
1307		skb_shinfo(prev)->gso_size = mss;
1308		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1309	}
1310
1311	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1312	if (skb_shinfo(skb)->gso_segs <= 1) {
1313		skb_shinfo(skb)->gso_size = 0;
1314		skb_shinfo(skb)->gso_type = 0;
1315	}
1316
1317	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1318	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1319
1320	if (skb->len > 0) {
1321		BUG_ON(!tcp_skb_pcount(skb));
1322		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1323		return false;
1324	}
1325
1326	/* Whole SKB was eaten :-) */
1327
1328	if (skb == tp->retransmit_skb_hint)
1329		tp->retransmit_skb_hint = prev;
 
 
1330	if (skb == tp->lost_skb_hint) {
1331		tp->lost_skb_hint = prev;
1332		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1333	}
1334
1335	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1336	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1337		TCP_SKB_CB(prev)->end_seq++;
1338
1339	if (skb == tcp_highest_sack(sk))
1340		tcp_advance_highest_sack(sk, skb);
1341
1342	tcp_unlink_write_queue(skb, sk);
1343	sk_wmem_free_skb(sk, skb);
1344
1345	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1346
1347	return true;
1348}
1349
1350/* I wish gso_size would have a bit more sane initialization than
1351 * something-or-zero which complicates things
1352 */
1353static int tcp_skb_seglen(const struct sk_buff *skb)
1354{
1355	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1356}
1357
1358/* Shifting pages past head area doesn't work */
1359static int skb_can_shift(const struct sk_buff *skb)
1360{
1361	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1362}
1363
1364/* Try collapsing SACK blocks spanning across multiple skbs to a single
1365 * skb.
1366 */
1367static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1368					  struct tcp_sacktag_state *state,
1369					  u32 start_seq, u32 end_seq,
1370					  bool dup_sack)
1371{
1372	struct tcp_sock *tp = tcp_sk(sk);
1373	struct sk_buff *prev;
1374	int mss;
1375	int pcount = 0;
1376	int len;
1377	int in_sack;
1378
1379	if (!sk_can_gso(sk))
1380		goto fallback;
1381
1382	/* Normally R but no L won't result in plain S */
1383	if (!dup_sack &&
1384	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1385		goto fallback;
1386	if (!skb_can_shift(skb))
1387		goto fallback;
1388	/* This frame is about to be dropped (was ACKed). */
1389	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1390		goto fallback;
1391
1392	/* Can only happen with delayed DSACK + discard craziness */
1393	if (unlikely(skb == tcp_write_queue_head(sk)))
1394		goto fallback;
1395	prev = tcp_write_queue_prev(sk, skb);
1396
1397	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1398		goto fallback;
1399
1400	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402
1403	if (in_sack) {
1404		len = skb->len;
1405		pcount = tcp_skb_pcount(skb);
1406		mss = tcp_skb_seglen(skb);
1407
1408		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1409		 * drop this restriction as unnecessary
1410		 */
1411		if (mss != tcp_skb_seglen(prev))
1412			goto fallback;
1413	} else {
1414		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415			goto noop;
1416		/* CHECKME: This is non-MSS split case only?, this will
1417		 * cause skipped skbs due to advancing loop btw, original
1418		 * has that feature too
1419		 */
1420		if (tcp_skb_pcount(skb) <= 1)
1421			goto noop;
1422
1423		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424		if (!in_sack) {
1425			/* TODO: head merge to next could be attempted here
1426			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427			 * though it might not be worth of the additional hassle
1428			 *
1429			 * ...we can probably just fallback to what was done
1430			 * previously. We could try merging non-SACKed ones
1431			 * as well but it probably isn't going to buy off
1432			 * because later SACKs might again split them, and
1433			 * it would make skb timestamp tracking considerably
1434			 * harder problem.
1435			 */
1436			goto fallback;
1437		}
1438
1439		len = end_seq - TCP_SKB_CB(skb)->seq;
1440		BUG_ON(len < 0);
1441		BUG_ON(len > skb->len);
1442
1443		/* MSS boundaries should be honoured or else pcount will
1444		 * severely break even though it makes things bit trickier.
1445		 * Optimize common case to avoid most of the divides
1446		 */
1447		mss = tcp_skb_mss(skb);
1448
1449		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1450		 * drop this restriction as unnecessary
1451		 */
1452		if (mss != tcp_skb_seglen(prev))
1453			goto fallback;
1454
1455		if (len == mss) {
1456			pcount = 1;
1457		} else if (len < mss) {
1458			goto noop;
1459		} else {
1460			pcount = len / mss;
1461			len = pcount * mss;
1462		}
1463	}
1464
1465	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467		goto fallback;
1468
1469	if (!skb_shift(prev, skb, len))
1470		goto fallback;
1471	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1472		goto out;
1473
1474	/* Hole filled allows collapsing with the next as well, this is very
1475	 * useful when hole on every nth skb pattern happens
1476	 */
1477	if (prev == tcp_write_queue_tail(sk))
1478		goto out;
1479	skb = tcp_write_queue_next(sk, prev);
1480
1481	if (!skb_can_shift(skb) ||
1482	    (skb == tcp_send_head(sk)) ||
1483	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484	    (mss != tcp_skb_seglen(skb)))
1485		goto out;
1486
1487	len = skb->len;
1488	if (skb_shift(prev, skb, len)) {
1489		pcount += tcp_skb_pcount(skb);
1490		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1491	}
1492
1493out:
1494	state->fack_count += pcount;
1495	return prev;
1496
1497noop:
1498	return skb;
1499
1500fallback:
1501	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502	return NULL;
1503}
1504
1505static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506					struct tcp_sack_block *next_dup,
1507					struct tcp_sacktag_state *state,
1508					u32 start_seq, u32 end_seq,
1509					bool dup_sack_in)
1510{
1511	struct tcp_sock *tp = tcp_sk(sk);
1512	struct sk_buff *tmp;
1513
1514	tcp_for_write_queue_from(skb, sk) {
1515		int in_sack = 0;
1516		bool dup_sack = dup_sack_in;
1517
1518		if (skb == tcp_send_head(sk))
1519			break;
1520
1521		/* queue is in-order => we can short-circuit the walk early */
1522		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1523			break;
1524
1525		if ((next_dup != NULL) &&
1526		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1527			in_sack = tcp_match_skb_to_sack(sk, skb,
1528							next_dup->start_seq,
1529							next_dup->end_seq);
1530			if (in_sack > 0)
1531				dup_sack = true;
1532		}
1533
1534		/* skb reference here is a bit tricky to get right, since
1535		 * shifting can eat and free both this skb and the next,
1536		 * so not even _safe variant of the loop is enough.
1537		 */
1538		if (in_sack <= 0) {
1539			tmp = tcp_shift_skb_data(sk, skb, state,
1540						 start_seq, end_seq, dup_sack);
1541			if (tmp != NULL) {
1542				if (tmp != skb) {
1543					skb = tmp;
1544					continue;
1545				}
1546
1547				in_sack = 0;
1548			} else {
1549				in_sack = tcp_match_skb_to_sack(sk, skb,
1550								start_seq,
1551								end_seq);
1552			}
1553		}
1554
1555		if (unlikely(in_sack < 0))
1556			break;
1557
1558		if (in_sack) {
1559			TCP_SKB_CB(skb)->sacked =
1560				tcp_sacktag_one(sk,
1561						state,
1562						TCP_SKB_CB(skb)->sacked,
1563						TCP_SKB_CB(skb)->seq,
1564						TCP_SKB_CB(skb)->end_seq,
1565						dup_sack,
1566						tcp_skb_pcount(skb),
1567						&skb->skb_mstamp);
1568
1569			if (!before(TCP_SKB_CB(skb)->seq,
1570				    tcp_highest_sack_seq(tp)))
1571				tcp_advance_highest_sack(sk, skb);
1572		}
1573
1574		state->fack_count += tcp_skb_pcount(skb);
1575	}
1576	return skb;
1577}
1578
1579/* Avoid all extra work that is being done by sacktag while walking in
1580 * a normal way
1581 */
1582static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1583					struct tcp_sacktag_state *state,
1584					u32 skip_to_seq)
1585{
1586	tcp_for_write_queue_from(skb, sk) {
1587		if (skb == tcp_send_head(sk))
1588			break;
1589
1590		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1591			break;
1592
1593		state->fack_count += tcp_skb_pcount(skb);
1594	}
1595	return skb;
1596}
1597
1598static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1599						struct sock *sk,
1600						struct tcp_sack_block *next_dup,
1601						struct tcp_sacktag_state *state,
1602						u32 skip_to_seq)
1603{
1604	if (next_dup == NULL)
1605		return skb;
1606
1607	if (before(next_dup->start_seq, skip_to_seq)) {
1608		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1609		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1610				       next_dup->start_seq, next_dup->end_seq,
1611				       1);
1612	}
1613
1614	return skb;
1615}
1616
1617static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1618{
1619	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1620}
1621
1622static int
1623tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1624			u32 prior_snd_una, long *sack_rtt_us)
1625{
 
1626	struct tcp_sock *tp = tcp_sk(sk);
1627	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1628				    TCP_SKB_CB(ack_skb)->sacked);
1629	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1630	struct tcp_sack_block sp[TCP_NUM_SACKS];
1631	struct tcp_sack_block *cache;
1632	struct tcp_sacktag_state state;
1633	struct sk_buff *skb;
1634	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1635	int used_sacks;
1636	bool found_dup_sack = false;
1637	int i, j;
1638	int first_sack_index;
1639
1640	state.flag = 0;
1641	state.reord = tp->packets_out;
1642	state.rtt_us = -1L;
1643
1644	if (!tp->sacked_out) {
1645		if (WARN_ON(tp->fackets_out))
1646			tp->fackets_out = 0;
1647		tcp_highest_sack_reset(sk);
1648	}
1649
1650	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1651					 num_sacks, prior_snd_una);
1652	if (found_dup_sack)
1653		state.flag |= FLAG_DSACKING_ACK;
1654
1655	/* Eliminate too old ACKs, but take into
1656	 * account more or less fresh ones, they can
1657	 * contain valid SACK info.
1658	 */
1659	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1660		return 0;
1661
1662	if (!tp->packets_out)
1663		goto out;
1664
1665	used_sacks = 0;
1666	first_sack_index = 0;
1667	for (i = 0; i < num_sacks; i++) {
1668		bool dup_sack = !i && found_dup_sack;
1669
1670		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1671		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1672
1673		if (!tcp_is_sackblock_valid(tp, dup_sack,
1674					    sp[used_sacks].start_seq,
1675					    sp[used_sacks].end_seq)) {
1676			int mib_idx;
1677
1678			if (dup_sack) {
1679				if (!tp->undo_marker)
1680					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1681				else
1682					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1683			} else {
1684				/* Don't count olds caused by ACK reordering */
1685				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1686				    !after(sp[used_sacks].end_seq, tp->snd_una))
1687					continue;
1688				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1689			}
1690
1691			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1692			if (i == 0)
1693				first_sack_index = -1;
1694			continue;
1695		}
1696
1697		/* Ignore very old stuff early */
1698		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1699			continue;
1700
1701		used_sacks++;
1702	}
1703
1704	/* order SACK blocks to allow in order walk of the retrans queue */
1705	for (i = used_sacks - 1; i > 0; i--) {
1706		for (j = 0; j < i; j++) {
1707			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1708				swap(sp[j], sp[j + 1]);
1709
1710				/* Track where the first SACK block goes to */
1711				if (j == first_sack_index)
1712					first_sack_index = j + 1;
1713			}
1714		}
1715	}
1716
1717	skb = tcp_write_queue_head(sk);
1718	state.fack_count = 0;
1719	i = 0;
1720
1721	if (!tp->sacked_out) {
1722		/* It's already past, so skip checking against it */
1723		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1724	} else {
1725		cache = tp->recv_sack_cache;
1726		/* Skip empty blocks in at head of the cache */
1727		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1728		       !cache->end_seq)
1729			cache++;
1730	}
1731
1732	while (i < used_sacks) {
1733		u32 start_seq = sp[i].start_seq;
1734		u32 end_seq = sp[i].end_seq;
1735		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1736		struct tcp_sack_block *next_dup = NULL;
1737
1738		if (found_dup_sack && ((i + 1) == first_sack_index))
1739			next_dup = &sp[i + 1];
1740
1741		/* Skip too early cached blocks */
1742		while (tcp_sack_cache_ok(tp, cache) &&
1743		       !before(start_seq, cache->end_seq))
1744			cache++;
1745
1746		/* Can skip some work by looking recv_sack_cache? */
1747		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1748		    after(end_seq, cache->start_seq)) {
1749
1750			/* Head todo? */
1751			if (before(start_seq, cache->start_seq)) {
1752				skb = tcp_sacktag_skip(skb, sk, &state,
1753						       start_seq);
1754				skb = tcp_sacktag_walk(skb, sk, next_dup,
1755						       &state,
1756						       start_seq,
1757						       cache->start_seq,
1758						       dup_sack);
1759			}
1760
1761			/* Rest of the block already fully processed? */
1762			if (!after(end_seq, cache->end_seq))
1763				goto advance_sp;
1764
1765			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1766						       &state,
1767						       cache->end_seq);
1768
1769			/* ...tail remains todo... */
1770			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1771				/* ...but better entrypoint exists! */
1772				skb = tcp_highest_sack(sk);
1773				if (skb == NULL)
1774					break;
1775				state.fack_count = tp->fackets_out;
1776				cache++;
1777				goto walk;
1778			}
1779
1780			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1781			/* Check overlap against next cached too (past this one already) */
1782			cache++;
1783			continue;
1784		}
1785
1786		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1787			skb = tcp_highest_sack(sk);
1788			if (skb == NULL)
1789				break;
1790			state.fack_count = tp->fackets_out;
1791		}
1792		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1793
1794walk:
1795		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1796				       start_seq, end_seq, dup_sack);
1797
1798advance_sp:
 
 
 
 
 
 
1799		i++;
1800	}
1801
1802	/* Clear the head of the cache sack blocks so we can skip it next time */
1803	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1804		tp->recv_sack_cache[i].start_seq = 0;
1805		tp->recv_sack_cache[i].end_seq = 0;
1806	}
1807	for (j = 0; j < used_sacks; j++)
1808		tp->recv_sack_cache[i++] = sp[j];
1809
1810	tcp_mark_lost_retrans(sk);
1811
1812	tcp_verify_left_out(tp);
1813
1814	if ((state.reord < tp->fackets_out) &&
1815	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
 
1816		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1817
1818out:
1819
1820#if FASTRETRANS_DEBUG > 0
1821	WARN_ON((int)tp->sacked_out < 0);
1822	WARN_ON((int)tp->lost_out < 0);
1823	WARN_ON((int)tp->retrans_out < 0);
1824	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1825#endif
1826	*sack_rtt_us = state.rtt_us;
1827	return state.flag;
1828}
1829
1830/* Limits sacked_out so that sum with lost_out isn't ever larger than
1831 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1832 */
1833static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1834{
1835	u32 holes;
1836
1837	holes = max(tp->lost_out, 1U);
1838	holes = min(holes, tp->packets_out);
1839
1840	if ((tp->sacked_out + holes) > tp->packets_out) {
1841		tp->sacked_out = tp->packets_out - holes;
1842		return true;
1843	}
1844	return false;
1845}
1846
1847/* If we receive more dupacks than we expected counting segments
1848 * in assumption of absent reordering, interpret this as reordering.
1849 * The only another reason could be bug in receiver TCP.
1850 */
1851static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1852{
1853	struct tcp_sock *tp = tcp_sk(sk);
1854	if (tcp_limit_reno_sacked(tp))
1855		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1856}
1857
1858/* Emulate SACKs for SACKless connection: account for a new dupack. */
1859
1860static void tcp_add_reno_sack(struct sock *sk)
1861{
1862	struct tcp_sock *tp = tcp_sk(sk);
1863	tp->sacked_out++;
1864	tcp_check_reno_reordering(sk, 0);
1865	tcp_verify_left_out(tp);
1866}
1867
1868/* Account for ACK, ACKing some data in Reno Recovery phase. */
1869
1870static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1871{
1872	struct tcp_sock *tp = tcp_sk(sk);
1873
1874	if (acked > 0) {
1875		/* One ACK acked hole. The rest eat duplicate ACKs. */
1876		if (acked - 1 >= tp->sacked_out)
1877			tp->sacked_out = 0;
1878		else
1879			tp->sacked_out -= acked - 1;
1880	}
1881	tcp_check_reno_reordering(sk, acked);
1882	tcp_verify_left_out(tp);
1883}
1884
1885static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1886{
1887	tp->sacked_out = 0;
1888}
1889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1891{
1892	tp->retrans_out = 0;
1893	tp->lost_out = 0;
1894
1895	tp->undo_marker = 0;
1896	tp->undo_retrans = 0;
1897}
1898
1899void tcp_clear_retrans(struct tcp_sock *tp)
1900{
1901	tcp_clear_retrans_partial(tp);
1902
1903	tp->fackets_out = 0;
1904	tp->sacked_out = 0;
1905}
1906
1907/* Enter Loss state. If "how" is not zero, forget all SACK information
1908 * and reset tags completely, otherwise preserve SACKs. If receiver
1909 * dropped its ofo queue, we will know this due to reneging detection.
1910 */
1911void tcp_enter_loss(struct sock *sk, int how)
1912{
1913	const struct inet_connection_sock *icsk = inet_csk(sk);
1914	struct tcp_sock *tp = tcp_sk(sk);
1915	struct sk_buff *skb;
1916	bool new_recovery = false;
1917
1918	/* Reduce ssthresh if it has not yet been made inside this window. */
1919	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1920	    !after(tp->high_seq, tp->snd_una) ||
1921	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1922		new_recovery = true;
1923		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1924		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1925		tcp_ca_event(sk, CA_EVENT_LOSS);
1926	}
1927	tp->snd_cwnd	   = 1;
1928	tp->snd_cwnd_cnt   = 0;
1929	tp->snd_cwnd_stamp = tcp_time_stamp;
1930
 
1931	tcp_clear_retrans_partial(tp);
1932
1933	if (tcp_is_reno(tp))
1934		tcp_reset_reno_sack(tp);
1935
1936	tp->undo_marker = tp->snd_una;
1937	if (how) {
 
 
 
1938		tp->sacked_out = 0;
1939		tp->fackets_out = 0;
1940	}
1941	tcp_clear_all_retrans_hints(tp);
1942
1943	tcp_for_write_queue(skb, sk) {
1944		if (skb == tcp_send_head(sk))
1945			break;
1946
1947		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1948			tp->undo_marker = 0;
1949
1950		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1952			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954			tp->lost_out += tcp_skb_pcount(skb);
1955			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1956		}
1957	}
1958	tcp_verify_left_out(tp);
1959
1960	/* Timeout in disordered state after receiving substantial DUPACKs
1961	 * suggests that the degree of reordering is over-estimated.
1962	 */
1963	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1964	    tp->sacked_out >= sysctl_tcp_reordering)
1965		tp->reordering = min_t(unsigned int, tp->reordering,
1966				       sysctl_tcp_reordering);
1967	tcp_set_ca_state(sk, TCP_CA_Loss);
1968	tp->high_seq = tp->snd_nxt;
1969	TCP_ECN_queue_cwr(tp);
1970
1971	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1972	 * loss recovery is underway except recurring timeout(s) on
1973	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1974	 */
1975	tp->frto = sysctl_tcp_frto &&
1976		   (new_recovery || icsk->icsk_retransmits) &&
1977		   !inet_csk(sk)->icsk_mtup.probe_size;
1978}
1979
1980/* If ACK arrived pointing to a remembered SACK, it means that our
1981 * remembered SACKs do not reflect real state of receiver i.e.
1982 * receiver _host_ is heavily congested (or buggy).
1983 *
1984 * Do processing similar to RTO timeout.
1985 */
1986static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1987{
1988	if (flag & FLAG_SACK_RENEGING) {
1989		struct inet_connection_sock *icsk = inet_csk(sk);
1990		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1991
1992		tcp_enter_loss(sk, 1);
1993		icsk->icsk_retransmits++;
1994		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1995		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1996					  icsk->icsk_rto, TCP_RTO_MAX);
1997		return true;
1998	}
1999	return false;
2000}
2001
2002static inline int tcp_fackets_out(const struct tcp_sock *tp)
2003{
2004	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2005}
2006
2007/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2008 * counter when SACK is enabled (without SACK, sacked_out is used for
2009 * that purpose).
2010 *
2011 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2012 * segments up to the highest received SACK block so far and holes in
2013 * between them.
2014 *
2015 * With reordering, holes may still be in flight, so RFC3517 recovery
2016 * uses pure sacked_out (total number of SACKed segments) even though
2017 * it violates the RFC that uses duplicate ACKs, often these are equal
2018 * but when e.g. out-of-window ACKs or packet duplication occurs,
2019 * they differ. Since neither occurs due to loss, TCP should really
2020 * ignore them.
2021 */
2022static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2023{
2024	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2025}
2026
2027static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2028{
2029	struct tcp_sock *tp = tcp_sk(sk);
2030	unsigned long delay;
2031
2032	/* Delay early retransmit and entering fast recovery for
2033	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2034	 * available, or RTO is scheduled to fire first.
2035	 */
2036	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2037	    (flag & FLAG_ECE) || !tp->srtt_us)
2038		return false;
2039
2040	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2041		    msecs_to_jiffies(2));
2042
2043	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2044		return false;
2045
2046	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2047				  TCP_RTO_MAX);
2048	return true;
2049}
2050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051/* Linux NewReno/SACK/FACK/ECN state machine.
2052 * --------------------------------------
2053 *
2054 * "Open"	Normal state, no dubious events, fast path.
2055 * "Disorder"   In all the respects it is "Open",
2056 *		but requires a bit more attention. It is entered when
2057 *		we see some SACKs or dupacks. It is split of "Open"
2058 *		mainly to move some processing from fast path to slow one.
2059 * "CWR"	CWND was reduced due to some Congestion Notification event.
2060 *		It can be ECN, ICMP source quench, local device congestion.
2061 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2062 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2063 *
2064 * tcp_fastretrans_alert() is entered:
2065 * - each incoming ACK, if state is not "Open"
2066 * - when arrived ACK is unusual, namely:
2067 *	* SACK
2068 *	* Duplicate ACK.
2069 *	* ECN ECE.
2070 *
2071 * Counting packets in flight is pretty simple.
2072 *
2073 *	in_flight = packets_out - left_out + retrans_out
2074 *
2075 *	packets_out is SND.NXT-SND.UNA counted in packets.
2076 *
2077 *	retrans_out is number of retransmitted segments.
2078 *
2079 *	left_out is number of segments left network, but not ACKed yet.
2080 *
2081 *		left_out = sacked_out + lost_out
2082 *
2083 *     sacked_out: Packets, which arrived to receiver out of order
2084 *		   and hence not ACKed. With SACKs this number is simply
2085 *		   amount of SACKed data. Even without SACKs
2086 *		   it is easy to give pretty reliable estimate of this number,
2087 *		   counting duplicate ACKs.
2088 *
2089 *       lost_out: Packets lost by network. TCP has no explicit
2090 *		   "loss notification" feedback from network (for now).
2091 *		   It means that this number can be only _guessed_.
2092 *		   Actually, it is the heuristics to predict lossage that
2093 *		   distinguishes different algorithms.
2094 *
2095 *	F.e. after RTO, when all the queue is considered as lost,
2096 *	lost_out = packets_out and in_flight = retrans_out.
2097 *
2098 *		Essentially, we have now two algorithms counting
2099 *		lost packets.
2100 *
2101 *		FACK: It is the simplest heuristics. As soon as we decided
2102 *		that something is lost, we decide that _all_ not SACKed
2103 *		packets until the most forward SACK are lost. I.e.
2104 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2105 *		It is absolutely correct estimate, if network does not reorder
2106 *		packets. And it loses any connection to reality when reordering
2107 *		takes place. We use FACK by default until reordering
2108 *		is suspected on the path to this destination.
2109 *
2110 *		NewReno: when Recovery is entered, we assume that one segment
2111 *		is lost (classic Reno). While we are in Recovery and
2112 *		a partial ACK arrives, we assume that one more packet
2113 *		is lost (NewReno). This heuristics are the same in NewReno
2114 *		and SACK.
2115 *
2116 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2117 *  deflation etc. CWND is real congestion window, never inflated, changes
2118 *  only according to classic VJ rules.
2119 *
2120 * Really tricky (and requiring careful tuning) part of algorithm
2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2122 * The first determines the moment _when_ we should reduce CWND and,
2123 * hence, slow down forward transmission. In fact, it determines the moment
2124 * when we decide that hole is caused by loss, rather than by a reorder.
2125 *
2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2127 * holes, caused by lost packets.
2128 *
2129 * And the most logically complicated part of algorithm is undo
2130 * heuristics. We detect false retransmits due to both too early
2131 * fast retransmit (reordering) and underestimated RTO, analyzing
2132 * timestamps and D-SACKs. When we detect that some segments were
2133 * retransmitted by mistake and CWND reduction was wrong, we undo
2134 * window reduction and abort recovery phase. This logic is hidden
2135 * inside several functions named tcp_try_undo_<something>.
2136 */
2137
2138/* This function decides, when we should leave Disordered state
2139 * and enter Recovery phase, reducing congestion window.
2140 *
2141 * Main question: may we further continue forward transmission
2142 * with the same cwnd?
2143 */
2144static bool tcp_time_to_recover(struct sock *sk, int flag)
2145{
2146	struct tcp_sock *tp = tcp_sk(sk);
2147	__u32 packets_out;
2148
 
 
 
 
2149	/* Trick#1: The loss is proven. */
2150	if (tp->lost_out)
2151		return true;
2152
2153	/* Not-A-Trick#2 : Classic rule... */
2154	if (tcp_dupack_heuristics(tp) > tp->reordering)
2155		return true;
2156
 
 
 
 
 
 
2157	/* Trick#4: It is still not OK... But will it be useful to delay
2158	 * recovery more?
2159	 */
2160	packets_out = tp->packets_out;
2161	if (packets_out <= tp->reordering &&
2162	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2163	    !tcp_may_send_now(sk)) {
2164		/* We have nothing to send. This connection is limited
2165		 * either by receiver window or by application.
2166		 */
2167		return true;
2168	}
2169
2170	/* If a thin stream is detected, retransmit after first
2171	 * received dupack. Employ only if SACK is supported in order
2172	 * to avoid possible corner-case series of spurious retransmissions
2173	 * Use only if there are no unsent data.
2174	 */
2175	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2176	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2177	    tcp_is_sack(tp) && !tcp_send_head(sk))
2178		return true;
2179
2180	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2181	 * retransmissions due to small network reorderings, we implement
2182	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2183	 * interval if appropriate.
2184	 */
2185	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2186	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2187	    !tcp_may_send_now(sk))
2188		return !tcp_pause_early_retransmit(sk, flag);
2189
2190	return false;
2191}
2192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2193/* Detect loss in event "A" above by marking head of queue up as lost.
2194 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2195 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2196 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2197 * the maximum SACKed segments to pass before reaching this limit.
2198 */
2199static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2200{
2201	struct tcp_sock *tp = tcp_sk(sk);
2202	struct sk_buff *skb;
2203	int cnt, oldcnt;
2204	int err;
2205	unsigned int mss;
2206	/* Use SACK to deduce losses of new sequences sent during recovery */
2207	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2208
2209	WARN_ON(packets > tp->packets_out);
2210	if (tp->lost_skb_hint) {
2211		skb = tp->lost_skb_hint;
2212		cnt = tp->lost_cnt_hint;
2213		/* Head already handled? */
2214		if (mark_head && skb != tcp_write_queue_head(sk))
2215			return;
2216	} else {
2217		skb = tcp_write_queue_head(sk);
2218		cnt = 0;
2219	}
2220
2221	tcp_for_write_queue_from(skb, sk) {
2222		if (skb == tcp_send_head(sk))
2223			break;
2224		/* TODO: do this better */
2225		/* this is not the most efficient way to do this... */
2226		tp->lost_skb_hint = skb;
2227		tp->lost_cnt_hint = cnt;
2228
2229		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2230			break;
2231
2232		oldcnt = cnt;
2233		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2234		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2235			cnt += tcp_skb_pcount(skb);
2236
2237		if (cnt > packets) {
2238			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2239			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2240			    (oldcnt >= packets))
2241				break;
2242
2243			mss = skb_shinfo(skb)->gso_size;
2244			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2245			if (err < 0)
2246				break;
2247			cnt = packets;
2248		}
2249
2250		tcp_skb_mark_lost(tp, skb);
2251
2252		if (mark_head)
2253			break;
2254	}
2255	tcp_verify_left_out(tp);
2256}
2257
2258/* Account newly detected lost packet(s) */
2259
2260static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2261{
2262	struct tcp_sock *tp = tcp_sk(sk);
2263
2264	if (tcp_is_reno(tp)) {
2265		tcp_mark_head_lost(sk, 1, 1);
2266	} else if (tcp_is_fack(tp)) {
2267		int lost = tp->fackets_out - tp->reordering;
2268		if (lost <= 0)
2269			lost = 1;
2270		tcp_mark_head_lost(sk, lost, 0);
2271	} else {
2272		int sacked_upto = tp->sacked_out - tp->reordering;
2273		if (sacked_upto >= 0)
2274			tcp_mark_head_lost(sk, sacked_upto, 0);
2275		else if (fast_rexmit)
2276			tcp_mark_head_lost(sk, 1, 1);
2277	}
 
 
2278}
2279
2280/* CWND moderation, preventing bursts due to too big ACKs
2281 * in dubious situations.
2282 */
2283static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2284{
2285	tp->snd_cwnd = min(tp->snd_cwnd,
2286			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2287	tp->snd_cwnd_stamp = tcp_time_stamp;
2288}
2289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2290/* Nothing was retransmitted or returned timestamp is less
2291 * than timestamp of the first retransmission.
2292 */
2293static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2294{
2295	return !tp->retrans_stamp ||
2296		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2297		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2298}
2299
2300/* Undo procedures. */
2301
2302#if FASTRETRANS_DEBUG > 1
2303static void DBGUNDO(struct sock *sk, const char *msg)
2304{
2305	struct tcp_sock *tp = tcp_sk(sk);
2306	struct inet_sock *inet = inet_sk(sk);
2307
2308	if (sk->sk_family == AF_INET) {
2309		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2310			 msg,
2311			 &inet->inet_daddr, ntohs(inet->inet_dport),
2312			 tp->snd_cwnd, tcp_left_out(tp),
2313			 tp->snd_ssthresh, tp->prior_ssthresh,
2314			 tp->packets_out);
2315	}
2316#if IS_ENABLED(CONFIG_IPV6)
2317	else if (sk->sk_family == AF_INET6) {
2318		struct ipv6_pinfo *np = inet6_sk(sk);
2319		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2320			 msg,
2321			 &np->daddr, ntohs(inet->inet_dport),
2322			 tp->snd_cwnd, tcp_left_out(tp),
2323			 tp->snd_ssthresh, tp->prior_ssthresh,
2324			 tp->packets_out);
2325	}
2326#endif
2327}
2328#else
2329#define DBGUNDO(x...) do { } while (0)
2330#endif
2331
2332static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2333{
2334	struct tcp_sock *tp = tcp_sk(sk);
2335
2336	if (unmark_loss) {
2337		struct sk_buff *skb;
2338
2339		tcp_for_write_queue(skb, sk) {
2340			if (skb == tcp_send_head(sk))
2341				break;
2342			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2343		}
2344		tp->lost_out = 0;
2345		tcp_clear_all_retrans_hints(tp);
2346	}
2347
2348	if (tp->prior_ssthresh) {
2349		const struct inet_connection_sock *icsk = inet_csk(sk);
2350
2351		if (icsk->icsk_ca_ops->undo_cwnd)
2352			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2353		else
2354			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2355
2356		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2357			tp->snd_ssthresh = tp->prior_ssthresh;
2358			TCP_ECN_withdraw_cwr(tp);
2359		}
2360	} else {
2361		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2362	}
2363	tp->snd_cwnd_stamp = tcp_time_stamp;
2364	tp->undo_marker = 0;
2365}
2366
2367static inline bool tcp_may_undo(const struct tcp_sock *tp)
2368{
2369	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2370}
2371
2372/* People celebrate: "We love our President!" */
2373static bool tcp_try_undo_recovery(struct sock *sk)
2374{
2375	struct tcp_sock *tp = tcp_sk(sk);
2376
2377	if (tcp_may_undo(tp)) {
2378		int mib_idx;
2379
2380		/* Happy end! We did not retransmit anything
2381		 * or our original transmission succeeded.
2382		 */
2383		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2384		tcp_undo_cwnd_reduction(sk, false);
2385		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2386			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2387		else
2388			mib_idx = LINUX_MIB_TCPFULLUNDO;
2389
2390		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 
2391	}
2392	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2393		/* Hold old state until something *above* high_seq
2394		 * is ACKed. For Reno it is MUST to prevent false
2395		 * fast retransmits (RFC2582). SACK TCP is safe. */
2396		tcp_moderate_cwnd(tp);
2397		return true;
2398	}
2399	tcp_set_ca_state(sk, TCP_CA_Open);
2400	return false;
2401}
2402
2403/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2404static bool tcp_try_undo_dsack(struct sock *sk)
2405{
2406	struct tcp_sock *tp = tcp_sk(sk);
2407
2408	if (tp->undo_marker && !tp->undo_retrans) {
2409		DBGUNDO(sk, "D-SACK");
2410		tcp_undo_cwnd_reduction(sk, false);
 
2411		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2412		return true;
2413	}
2414	return false;
2415}
2416
2417/* We can clear retrans_stamp when there are no retransmissions in the
2418 * window. It would seem that it is trivially available for us in
2419 * tp->retrans_out, however, that kind of assumptions doesn't consider
2420 * what will happen if errors occur when sending retransmission for the
2421 * second time. ...It could the that such segment has only
2422 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2423 * the head skb is enough except for some reneging corner cases that
2424 * are not worth the effort.
2425 *
2426 * Main reason for all this complexity is the fact that connection dying
2427 * time now depends on the validity of the retrans_stamp, in particular,
2428 * that successive retransmissions of a segment must not advance
2429 * retrans_stamp under any conditions.
2430 */
2431static bool tcp_any_retrans_done(const struct sock *sk)
2432{
2433	const struct tcp_sock *tp = tcp_sk(sk);
2434	struct sk_buff *skb;
2435
2436	if (tp->retrans_out)
2437		return true;
2438
2439	skb = tcp_write_queue_head(sk);
2440	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2441		return true;
2442
2443	return false;
2444}
2445
2446/* Undo during loss recovery after partial ACK or using F-RTO. */
2447static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
 
2448{
2449	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
2450
2451	if (frto_undo || tcp_may_undo(tp)) {
2452		tcp_undo_cwnd_reduction(sk, true);
2453
2454		DBGUNDO(sk, "partial loss");
2455		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2456		if (frto_undo)
2457			NET_INC_STATS_BH(sock_net(sk),
2458					 LINUX_MIB_TCPSPURIOUSRTOS);
2459		inet_csk(sk)->icsk_retransmits = 0;
2460		if (frto_undo || tcp_is_sack(tp))
2461			tcp_set_ca_state(sk, TCP_CA_Open);
2462		return true;
2463	}
2464	return false;
2465}
2466
2467/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2468 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2469 * It computes the number of packets to send (sndcnt) based on packets newly
2470 * delivered:
2471 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2472 *	cwnd reductions across a full RTT.
2473 *   2) If packets in flight is lower than ssthresh (such as due to excess
2474 *	losses and/or application stalls), do not perform any further cwnd
2475 *	reductions, but instead slow start up to ssthresh.
2476 */
2477static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2478{
2479	struct tcp_sock *tp = tcp_sk(sk);
2480
2481	tp->high_seq = tp->snd_nxt;
2482	tp->tlp_high_seq = 0;
2483	tp->snd_cwnd_cnt = 0;
2484	tp->prior_cwnd = tp->snd_cwnd;
2485	tp->prr_delivered = 0;
2486	tp->prr_out = 0;
2487	if (set_ssthresh)
2488		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2489	TCP_ECN_queue_cwr(tp);
2490}
2491
2492static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2493			       int fast_rexmit)
2494{
2495	struct tcp_sock *tp = tcp_sk(sk);
2496	int sndcnt = 0;
2497	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2498	int newly_acked_sacked = prior_unsacked -
2499				 (tp->packets_out - tp->sacked_out);
2500
2501	tp->prr_delivered += newly_acked_sacked;
2502	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2503		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2504			       tp->prior_cwnd - 1;
2505		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2506	} else {
2507		sndcnt = min_t(int, delta,
2508			       max_t(int, tp->prr_delivered - tp->prr_out,
2509				     newly_acked_sacked) + 1);
2510	}
2511
2512	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2513	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2514}
2515
2516static inline void tcp_end_cwnd_reduction(struct sock *sk)
2517{
2518	struct tcp_sock *tp = tcp_sk(sk);
2519
2520	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2521	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2522	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2523		tp->snd_cwnd = tp->snd_ssthresh;
2524		tp->snd_cwnd_stamp = tcp_time_stamp;
 
 
 
 
 
2525	}
2526	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2527}
2528
2529/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2530void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2531{
2532	struct tcp_sock *tp = tcp_sk(sk);
2533
2534	tp->prior_ssthresh = 0;
2535	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2536		tp->undo_marker = 0;
2537		tcp_init_cwnd_reduction(sk, set_ssthresh);
2538		tcp_set_ca_state(sk, TCP_CA_CWR);
2539	}
2540}
2541
2542static void tcp_try_keep_open(struct sock *sk)
2543{
2544	struct tcp_sock *tp = tcp_sk(sk);
2545	int state = TCP_CA_Open;
2546
2547	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2548		state = TCP_CA_Disorder;
2549
2550	if (inet_csk(sk)->icsk_ca_state != state) {
2551		tcp_set_ca_state(sk, state);
2552		tp->high_seq = tp->snd_nxt;
2553	}
2554}
2555
2556static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2557{
2558	struct tcp_sock *tp = tcp_sk(sk);
2559
2560	tcp_verify_left_out(tp);
2561
2562	if (!tcp_any_retrans_done(sk))
2563		tp->retrans_stamp = 0;
2564
2565	if (flag & FLAG_ECE)
2566		tcp_enter_cwr(sk, 1);
2567
2568	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2569		tcp_try_keep_open(sk);
 
 
2570	} else {
2571		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2572	}
2573}
2574
2575static void tcp_mtup_probe_failed(struct sock *sk)
2576{
2577	struct inet_connection_sock *icsk = inet_csk(sk);
2578
2579	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2580	icsk->icsk_mtup.probe_size = 0;
2581}
2582
2583static void tcp_mtup_probe_success(struct sock *sk)
2584{
2585	struct tcp_sock *tp = tcp_sk(sk);
2586	struct inet_connection_sock *icsk = inet_csk(sk);
2587
2588	/* FIXME: breaks with very large cwnd */
2589	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2590	tp->snd_cwnd = tp->snd_cwnd *
2591		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2592		       icsk->icsk_mtup.probe_size;
2593	tp->snd_cwnd_cnt = 0;
2594	tp->snd_cwnd_stamp = tcp_time_stamp;
2595	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2596
2597	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2598	icsk->icsk_mtup.probe_size = 0;
2599	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2600}
2601
2602/* Do a simple retransmit without using the backoff mechanisms in
2603 * tcp_timer. This is used for path mtu discovery.
2604 * The socket is already locked here.
2605 */
2606void tcp_simple_retransmit(struct sock *sk)
2607{
2608	const struct inet_connection_sock *icsk = inet_csk(sk);
2609	struct tcp_sock *tp = tcp_sk(sk);
2610	struct sk_buff *skb;
2611	unsigned int mss = tcp_current_mss(sk);
2612	u32 prior_lost = tp->lost_out;
2613
2614	tcp_for_write_queue(skb, sk) {
2615		if (skb == tcp_send_head(sk))
2616			break;
2617		if (tcp_skb_seglen(skb) > mss &&
2618		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2619			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2620				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2621				tp->retrans_out -= tcp_skb_pcount(skb);
2622			}
2623			tcp_skb_mark_lost_uncond_verify(tp, skb);
2624		}
2625	}
2626
2627	tcp_clear_retrans_hints_partial(tp);
2628
2629	if (prior_lost == tp->lost_out)
2630		return;
2631
2632	if (tcp_is_reno(tp))
2633		tcp_limit_reno_sacked(tp);
2634
2635	tcp_verify_left_out(tp);
2636
2637	/* Don't muck with the congestion window here.
2638	 * Reason is that we do not increase amount of _data_
2639	 * in network, but units changed and effective
2640	 * cwnd/ssthresh really reduced now.
2641	 */
2642	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2643		tp->high_seq = tp->snd_nxt;
2644		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2645		tp->prior_ssthresh = 0;
2646		tp->undo_marker = 0;
2647		tcp_set_ca_state(sk, TCP_CA_Loss);
2648	}
2649	tcp_xmit_retransmit_queue(sk);
2650}
2651EXPORT_SYMBOL(tcp_simple_retransmit);
2652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2654{
2655	struct tcp_sock *tp = tcp_sk(sk);
2656	int mib_idx;
2657
2658	if (tcp_is_reno(tp))
2659		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2660	else
2661		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2662
2663	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2664
 
2665	tp->prior_ssthresh = 0;
2666	tp->undo_marker = tp->snd_una;
2667	tp->undo_retrans = tp->retrans_out;
2668
2669	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2670		if (!ece_ack)
2671			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2672		tcp_init_cwnd_reduction(sk, true);
2673	}
2674	tcp_set_ca_state(sk, TCP_CA_Recovery);
2675}
2676
2677/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2678 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2679 */
2680static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2681{
2682	struct inet_connection_sock *icsk = inet_csk(sk);
2683	struct tcp_sock *tp = tcp_sk(sk);
2684	bool recovered = !before(tp->snd_una, tp->high_seq);
2685
2686	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2687		/* Step 3.b. A timeout is spurious if not all data are
2688		 * lost, i.e., never-retransmitted data are (s)acked.
2689		 */
2690		if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2691			return;
2692
2693		if (after(tp->snd_nxt, tp->high_seq) &&
2694		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2695			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2696		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2697			tp->high_seq = tp->snd_nxt;
2698			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2699						  TCP_NAGLE_OFF);
2700			if (after(tp->snd_nxt, tp->high_seq))
2701				return; /* Step 2.b */
2702			tp->frto = 0;
2703		}
2704	}
2705
2706	if (recovered) {
2707		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2708		icsk->icsk_retransmits = 0;
2709		tcp_try_undo_recovery(sk);
2710		return;
2711	}
2712	if (flag & FLAG_DATA_ACKED)
2713		icsk->icsk_retransmits = 0;
2714	if (tcp_is_reno(tp)) {
2715		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2716		 * delivered. Lower inflight to clock out (re)tranmissions.
2717		 */
2718		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2719			tcp_add_reno_sack(sk);
2720		else if (flag & FLAG_SND_UNA_ADVANCED)
2721			tcp_reset_reno_sack(tp);
2722	}
2723	if (tcp_try_undo_loss(sk, false))
2724		return;
2725	tcp_xmit_retransmit_queue(sk);
2726}
2727
2728/* Undo during fast recovery after partial ACK. */
2729static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2730				 const int prior_unsacked)
2731{
2732	struct tcp_sock *tp = tcp_sk(sk);
2733
2734	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2735		/* Plain luck! Hole if filled with delayed
2736		 * packet, rather than with a retransmit.
2737		 */
2738		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2739
2740		/* We are getting evidence that the reordering degree is higher
2741		 * than we realized. If there are no retransmits out then we
2742		 * can undo. Otherwise we clock out new packets but do not
2743		 * mark more packets lost or retransmit more.
2744		 */
2745		if (tp->retrans_out) {
2746			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2747			return true;
2748		}
2749
2750		if (!tcp_any_retrans_done(sk))
2751			tp->retrans_stamp = 0;
2752
2753		DBGUNDO(sk, "partial recovery");
2754		tcp_undo_cwnd_reduction(sk, true);
2755		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2756		tcp_try_keep_open(sk);
2757		return true;
2758	}
2759	return false;
2760}
2761
2762/* Process an event, which can update packets-in-flight not trivially.
2763 * Main goal of this function is to calculate new estimate for left_out,
2764 * taking into account both packets sitting in receiver's buffer and
2765 * packets lost by network.
2766 *
2767 * Besides that it does CWND reduction, when packet loss is detected
2768 * and changes state of machine.
2769 *
2770 * It does _not_ decide what to send, it is made in function
2771 * tcp_xmit_retransmit_queue().
2772 */
2773static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2774				  const int prior_unsacked,
2775				  bool is_dupack, int flag)
2776{
2777	struct inet_connection_sock *icsk = inet_csk(sk);
2778	struct tcp_sock *tp = tcp_sk(sk);
2779	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2780				    (tcp_fackets_out(tp) > tp->reordering));
 
2781	int fast_rexmit = 0;
2782
2783	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2784		tp->sacked_out = 0;
2785	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2786		tp->fackets_out = 0;
2787
2788	/* Now state machine starts.
2789	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2790	if (flag & FLAG_ECE)
2791		tp->prior_ssthresh = 0;
2792
2793	/* B. In all the states check for reneging SACKs. */
2794	if (tcp_check_sack_reneging(sk, flag))
2795		return;
2796
2797	/* C. Check consistency of the current state. */
2798	tcp_verify_left_out(tp);
2799
2800	/* D. Check state exit conditions. State can be terminated
2801	 *    when high_seq is ACKed. */
2802	if (icsk->icsk_ca_state == TCP_CA_Open) {
2803		WARN_ON(tp->retrans_out != 0);
2804		tp->retrans_stamp = 0;
2805	} else if (!before(tp->snd_una, tp->high_seq)) {
2806		switch (icsk->icsk_ca_state) {
 
 
 
 
 
 
2807		case TCP_CA_CWR:
2808			/* CWR is to be held something *above* high_seq
2809			 * is ACKed for CWR bit to reach receiver. */
2810			if (tp->snd_una != tp->high_seq) {
2811				tcp_end_cwnd_reduction(sk);
2812				tcp_set_ca_state(sk, TCP_CA_Open);
2813			}
2814			break;
2815
2816		case TCP_CA_Recovery:
2817			if (tcp_is_reno(tp))
2818				tcp_reset_reno_sack(tp);
2819			if (tcp_try_undo_recovery(sk))
2820				return;
2821			tcp_end_cwnd_reduction(sk);
2822			break;
2823		}
2824	}
2825
2826	/* E. Process state. */
2827	switch (icsk->icsk_ca_state) {
2828	case TCP_CA_Recovery:
2829		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2830			if (tcp_is_reno(tp) && is_dupack)
2831				tcp_add_reno_sack(sk);
2832		} else {
2833			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2834				return;
2835			/* Partial ACK arrived. Force fast retransmit. */
2836			do_lost = tcp_is_reno(tp) ||
2837				  tcp_fackets_out(tp) > tp->reordering;
2838		}
2839		if (tcp_try_undo_dsack(sk)) {
2840			tcp_try_keep_open(sk);
2841			return;
2842		}
2843		break;
2844	case TCP_CA_Loss:
2845		tcp_process_loss(sk, flag, is_dupack);
 
 
 
 
 
 
 
 
2846		if (icsk->icsk_ca_state != TCP_CA_Open)
2847			return;
2848		/* Fall through to processing in Open state. */
2849	default:
2850		if (tcp_is_reno(tp)) {
2851			if (flag & FLAG_SND_UNA_ADVANCED)
2852				tcp_reset_reno_sack(tp);
2853			if (is_dupack)
2854				tcp_add_reno_sack(sk);
2855		}
 
2856
2857		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2858			tcp_try_undo_dsack(sk);
2859
2860		if (!tcp_time_to_recover(sk, flag)) {
2861			tcp_try_to_open(sk, flag, prior_unsacked);
2862			return;
2863		}
2864
2865		/* MTU probe failure: don't reduce cwnd */
2866		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2867		    icsk->icsk_mtup.probe_size &&
2868		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2869			tcp_mtup_probe_failed(sk);
2870			/* Restores the reduction we did in tcp_mtup_probe() */
2871			tp->snd_cwnd++;
2872			tcp_simple_retransmit(sk);
2873			return;
2874		}
2875
2876		/* Otherwise enter Recovery state */
2877		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2878		fast_rexmit = 1;
2879	}
2880
2881	if (do_lost)
2882		tcp_update_scoreboard(sk, fast_rexmit);
2883	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
 
2884	tcp_xmit_retransmit_queue(sk);
2885}
2886
2887static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2888				      long seq_rtt_us, long sack_rtt_us)
2889{
2890	const struct tcp_sock *tp = tcp_sk(sk);
2891
2892	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2893	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2894	 * Karn's algorithm forbids taking RTT if some retransmitted data
2895	 * is acked (RFC6298).
2896	 */
2897	if (flag & FLAG_RETRANS_DATA_ACKED)
2898		seq_rtt_us = -1L;
2899
2900	if (seq_rtt_us < 0)
2901		seq_rtt_us = sack_rtt_us;
2902
 
 
 
 
 
2903	/* RTTM Rule: A TSecr value received in a segment is used to
2904	 * update the averaged RTT measurement only if the segment
2905	 * acknowledges some new data, i.e., only if it advances the
2906	 * left edge of the send window.
 
2907	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
 
 
 
 
 
 
 
 
2908	 */
2909	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2910	    flag & FLAG_ACKED)
2911		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2912
2913	if (seq_rtt_us < 0)
2914		return false;
2915
2916	tcp_rtt_estimator(sk, seq_rtt_us);
2917	tcp_set_rto(sk);
2918
2919	/* RFC6298: only reset backoff on valid RTT measurement. */
2920	inet_csk(sk)->icsk_backoff = 0;
2921	return true;
2922}
2923
2924/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2925static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2926{
2927	struct tcp_sock *tp = tcp_sk(sk);
2928	long seq_rtt_us = -1L;
 
 
 
 
 
 
 
 
 
2929
2930	if (synack_stamp && !tp->total_retrans)
2931		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2932
2933	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2934	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2935	 */
2936	if (!tp->srtt_us)
2937		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
 
 
 
 
2938}
2939
2940static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight)
2941{
2942	const struct inet_connection_sock *icsk = inet_csk(sk);
2943	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight);
2944	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2945}
2946
2947/* Restart timer after forward progress on connection.
2948 * RFC2988 recommends to restart timer to now+rto.
2949 */
2950void tcp_rearm_rto(struct sock *sk)
2951{
2952	const struct inet_connection_sock *icsk = inet_csk(sk);
2953	struct tcp_sock *tp = tcp_sk(sk);
2954
2955	/* If the retrans timer is currently being used by Fast Open
2956	 * for SYN-ACK retrans purpose, stay put.
2957	 */
2958	if (tp->fastopen_rsk)
2959		return;
2960
2961	if (!tp->packets_out) {
2962		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2963	} else {
2964		u32 rto = inet_csk(sk)->icsk_rto;
2965		/* Offset the time elapsed after installing regular RTO */
2966		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2967		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2968			struct sk_buff *skb = tcp_write_queue_head(sk);
2969			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2970			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2971			/* delta may not be positive if the socket is locked
2972			 * when the retrans timer fires and is rescheduled.
2973			 */
2974			if (delta > 0)
2975				rto = delta;
2976		}
2977		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2978					  TCP_RTO_MAX);
2979	}
 
2980}
2981
2982/* This function is called when the delayed ER timer fires. TCP enters
2983 * fast recovery and performs fast-retransmit.
2984 */
2985void tcp_resume_early_retransmit(struct sock *sk)
2986{
2987	struct tcp_sock *tp = tcp_sk(sk);
2988
2989	tcp_rearm_rto(sk);
2990
2991	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2992	if (!tp->do_early_retrans)
2993		return;
2994
2995	tcp_enter_recovery(sk, false);
2996	tcp_update_scoreboard(sk, 1);
2997	tcp_xmit_retransmit_queue(sk);
2998}
2999
3000/* If we get here, the whole TSO packet has not been acked. */
3001static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3002{
3003	struct tcp_sock *tp = tcp_sk(sk);
3004	u32 packets_acked;
3005
3006	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3007
3008	packets_acked = tcp_skb_pcount(skb);
3009	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3010		return 0;
3011	packets_acked -= tcp_skb_pcount(skb);
3012
3013	if (packets_acked) {
3014		BUG_ON(tcp_skb_pcount(skb) == 0);
3015		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3016	}
3017
3018	return packets_acked;
3019}
3020
3021/* Remove acknowledged frames from the retransmission queue. If our packet
3022 * is before the ack sequence we can discard it as it's confirmed to have
3023 * arrived at the other end.
3024 */
3025static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3026			       u32 prior_snd_una, long sack_rtt_us)
3027{
3028	const struct inet_connection_sock *icsk = inet_csk(sk);
3029	struct skb_mstamp first_ackt, last_ackt, now;
3030	struct tcp_sock *tp = tcp_sk(sk);
3031	u32 prior_sacked = tp->sacked_out;
3032	u32 reord = tp->packets_out;
3033	bool fully_acked = true;
3034	long ca_seq_rtt_us = -1L;
3035	long seq_rtt_us = -1L;
3036	struct sk_buff *skb;
3037	u32 pkts_acked = 0;
3038	bool rtt_update;
3039	int flag = 0;
3040
3041	first_ackt.v64 = 0;
 
 
 
 
3042
3043	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3044		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3045		u8 sacked = scb->sacked;
3046		u32 acked_pcount;
 
3047
3048		/* Determine how many packets and what bytes were acked, tso and else */
3049		if (after(scb->end_seq, tp->snd_una)) {
3050			if (tcp_skb_pcount(skb) == 1 ||
3051			    !after(tp->snd_una, scb->seq))
3052				break;
3053
3054			acked_pcount = tcp_tso_acked(sk, skb);
3055			if (!acked_pcount)
3056				break;
3057
3058			fully_acked = false;
3059		} else {
3060			acked_pcount = tcp_skb_pcount(skb);
3061		}
3062
3063		if (sacked & TCPCB_RETRANS) {
3064			if (sacked & TCPCB_SACKED_RETRANS)
3065				tp->retrans_out -= acked_pcount;
3066			flag |= FLAG_RETRANS_DATA_ACKED;
 
 
 
 
3067		} else {
3068			last_ackt = skb->skb_mstamp;
3069			WARN_ON_ONCE(last_ackt.v64 == 0);
3070			if (!first_ackt.v64)
3071				first_ackt = last_ackt;
3072
3073			if (!(sacked & TCPCB_SACKED_ACKED))
3074				reord = min(pkts_acked, reord);
3075			if (!after(scb->end_seq, tp->high_seq))
3076				flag |= FLAG_ORIG_SACK_ACKED;
3077		}
3078
3079		if (sacked & TCPCB_SACKED_ACKED)
3080			tp->sacked_out -= acked_pcount;
3081		if (sacked & TCPCB_LOST)
3082			tp->lost_out -= acked_pcount;
3083
3084		tp->packets_out -= acked_pcount;
3085		pkts_acked += acked_pcount;
3086
3087		/* Initial outgoing SYN's get put onto the write_queue
3088		 * just like anything else we transmit.  It is not
3089		 * true data, and if we misinform our callers that
3090		 * this ACK acks real data, we will erroneously exit
3091		 * connection startup slow start one packet too
3092		 * quickly.  This is severely frowned upon behavior.
3093		 */
3094		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3095			flag |= FLAG_DATA_ACKED;
3096		} else {
3097			flag |= FLAG_SYN_ACKED;
3098			tp->retrans_stamp = 0;
3099		}
3100
3101		if (!fully_acked)
3102			break;
3103
3104		tcp_unlink_write_queue(skb, sk);
3105		sk_wmem_free_skb(sk, skb);
 
3106		if (skb == tp->retransmit_skb_hint)
3107			tp->retransmit_skb_hint = NULL;
3108		if (skb == tp->lost_skb_hint)
3109			tp->lost_skb_hint = NULL;
3110	}
3111
3112	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3113		tp->snd_up = tp->snd_una;
3114
3115	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3116		flag |= FLAG_SACK_RENEGING;
3117
3118	skb_mstamp_get(&now);
3119	if (first_ackt.v64) {
3120		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3121		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3122	}
3123
3124	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3125
3126	if (flag & FLAG_ACKED) {
3127		const struct tcp_congestion_ops *ca_ops
3128			= inet_csk(sk)->icsk_ca_ops;
3129
3130		tcp_rearm_rto(sk);
3131		if (unlikely(icsk->icsk_mtup.probe_size &&
3132			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3133			tcp_mtup_probe_success(sk);
3134		}
3135
 
 
 
3136		if (tcp_is_reno(tp)) {
3137			tcp_remove_reno_sacks(sk, pkts_acked);
3138		} else {
3139			int delta;
3140
3141			/* Non-retransmitted hole got filled? That's reordering */
3142			if (reord < prior_fackets)
3143				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3144
3145			delta = tcp_is_fack(tp) ? pkts_acked :
3146						  prior_sacked - tp->sacked_out;
3147			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3148		}
3149
3150		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3151
3152		if (ca_ops->pkts_acked)
3153			ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3154
3155	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3156		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3157		/* Do not re-arm RTO if the sack RTT is measured from data sent
3158		 * after when the head was last (re)transmitted. Otherwise the
3159		 * timeout may continue to extend in loss recovery.
3160		 */
3161		tcp_rearm_rto(sk);
 
 
 
 
 
 
 
3162	}
3163
3164#if FASTRETRANS_DEBUG > 0
3165	WARN_ON((int)tp->sacked_out < 0);
3166	WARN_ON((int)tp->lost_out < 0);
3167	WARN_ON((int)tp->retrans_out < 0);
3168	if (!tp->packets_out && tcp_is_sack(tp)) {
3169		icsk = inet_csk(sk);
3170		if (tp->lost_out) {
3171			pr_debug("Leak l=%u %d\n",
3172				 tp->lost_out, icsk->icsk_ca_state);
3173			tp->lost_out = 0;
3174		}
3175		if (tp->sacked_out) {
3176			pr_debug("Leak s=%u %d\n",
3177				 tp->sacked_out, icsk->icsk_ca_state);
3178			tp->sacked_out = 0;
3179		}
3180		if (tp->retrans_out) {
3181			pr_debug("Leak r=%u %d\n",
3182				 tp->retrans_out, icsk->icsk_ca_state);
3183			tp->retrans_out = 0;
3184		}
3185	}
3186#endif
3187	return flag;
3188}
3189
3190static void tcp_ack_probe(struct sock *sk)
3191{
3192	const struct tcp_sock *tp = tcp_sk(sk);
3193	struct inet_connection_sock *icsk = inet_csk(sk);
3194
3195	/* Was it a usable window open? */
3196
3197	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3198		icsk->icsk_backoff = 0;
3199		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3200		/* Socket must be waked up by subsequent tcp_data_snd_check().
3201		 * This function is not for random using!
3202		 */
3203	} else {
3204		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3205					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3206					  TCP_RTO_MAX);
3207	}
3208}
3209
3210static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3211{
3212	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3213		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3214}
3215
3216/* Decide wheather to run the increase function of congestion control. */
3217static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3218{
3219	if (tcp_in_cwnd_reduction(sk))
3220		return false;
3221
3222	/* If reordering is high then always grow cwnd whenever data is
3223	 * delivered regardless of its ordering. Otherwise stay conservative
3224	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3225	 * new SACK or ECE mark may first advance cwnd here and later reduce
3226	 * cwnd in tcp_fastretrans_alert() based on more states.
3227	 */
3228	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3229		return flag & FLAG_FORWARD_PROGRESS;
3230
3231	return flag & FLAG_DATA_ACKED;
3232}
3233
3234/* Check that window update is acceptable.
3235 * The function assumes that snd_una<=ack<=snd_next.
3236 */
3237static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3238					const u32 ack, const u32 ack_seq,
3239					const u32 nwin)
3240{
3241	return	after(ack, tp->snd_una) ||
3242		after(ack_seq, tp->snd_wl1) ||
3243		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3244}
3245
3246/* Update our send window.
3247 *
3248 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3249 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3250 */
3251static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3252				 u32 ack_seq)
3253{
3254	struct tcp_sock *tp = tcp_sk(sk);
3255	int flag = 0;
3256	u32 nwin = ntohs(tcp_hdr(skb)->window);
3257
3258	if (likely(!tcp_hdr(skb)->syn))
3259		nwin <<= tp->rx_opt.snd_wscale;
3260
3261	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3262		flag |= FLAG_WIN_UPDATE;
3263		tcp_update_wl(tp, ack_seq);
3264
3265		if (tp->snd_wnd != nwin) {
3266			tp->snd_wnd = nwin;
3267
3268			/* Note, it is the only place, where
3269			 * fast path is recovered for sending TCP.
3270			 */
3271			tp->pred_flags = 0;
3272			tcp_fast_path_check(sk);
3273
3274			if (nwin > tp->max_window) {
3275				tp->max_window = nwin;
3276				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3277			}
3278		}
3279	}
3280
3281	tp->snd_una = ack;
3282
3283	return flag;
3284}
3285
3286/* RFC 5961 7 [ACK Throttling] */
3287static void tcp_send_challenge_ack(struct sock *sk)
 
 
3288{
3289	/* unprotected vars, we dont care of overwrites */
3290	static u32 challenge_timestamp;
3291	static unsigned int challenge_count;
3292	u32 now = jiffies / HZ;
3293
3294	if (now != challenge_timestamp) {
3295		challenge_timestamp = now;
3296		challenge_count = 0;
3297	}
3298	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3299		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3300		tcp_send_ack(sk);
3301	}
3302}
3303
3304static void tcp_store_ts_recent(struct tcp_sock *tp)
 
 
 
3305{
3306	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3307	tp->rx_opt.ts_recent_stamp = get_seconds();
3308}
3309
3310static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3311{
3312	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3313		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3314		 * extra check below makes sure this can only happen
3315		 * for pure ACK frames.  -DaveM
3316		 *
3317		 * Not only, also it occurs for expired timestamps.
3318		 */
3319
3320		if (tcp_paws_check(&tp->rx_opt, 0))
3321			tcp_store_ts_recent(tp);
3322	}
3323}
3324
3325/* This routine deals with acks during a TLP episode.
3326 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3327 */
3328static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3329{
3330	struct tcp_sock *tp = tcp_sk(sk);
3331	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3332			     !(flag & (FLAG_SND_UNA_ADVANCED |
3333				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3334
3335	/* Mark the end of TLP episode on receiving TLP dupack or when
3336	 * ack is after tlp_high_seq.
3337	 */
3338	if (is_tlp_dupack) {
3339		tp->tlp_high_seq = 0;
3340		return;
 
 
 
 
 
 
 
3341	}
3342
3343	if (after(ack, tp->tlp_high_seq)) {
3344		tp->tlp_high_seq = 0;
3345		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3346		if (!(flag & FLAG_DSACKING_ACK)) {
3347			tcp_init_cwnd_reduction(sk, true);
3348			tcp_set_ca_state(sk, TCP_CA_CWR);
3349			tcp_end_cwnd_reduction(sk);
3350			tcp_try_keep_open(sk);
3351			NET_INC_STATS_BH(sock_net(sk),
3352					 LINUX_MIB_TCPLOSSPROBERECOVERY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353		}
 
 
 
3354	}
 
3355}
3356
3357/* This routine deals with incoming acks, but not outgoing ones. */
3358static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3359{
3360	struct inet_connection_sock *icsk = inet_csk(sk);
3361	struct tcp_sock *tp = tcp_sk(sk);
3362	u32 prior_snd_una = tp->snd_una;
3363	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3364	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3365	bool is_dupack = false;
3366	u32 prior_in_flight;
3367	u32 prior_fackets;
3368	int prior_packets = tp->packets_out;
3369	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3370	int acked = 0; /* Number of packets newly acked */
3371	long sack_rtt_us = -1L;
3372
3373	/* If the ack is older than previous acks
3374	 * then we can probably ignore it.
3375	 */
3376	if (before(ack, prior_snd_una)) {
3377		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3378		if (before(ack, prior_snd_una - tp->max_window)) {
3379			tcp_send_challenge_ack(sk);
3380			return -1;
3381		}
3382		goto old_ack;
3383	}
3384
3385	/* If the ack includes data we haven't sent yet, discard
3386	 * this segment (RFC793 Section 3.9).
3387	 */
3388	if (after(ack, tp->snd_nxt))
3389		goto invalid_ack;
3390
3391	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3392	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3393		tcp_rearm_rto(sk);
3394
3395	if (after(ack, prior_snd_una))
3396		flag |= FLAG_SND_UNA_ADVANCED;
3397
 
 
 
 
 
 
 
 
 
3398	prior_fackets = tp->fackets_out;
3399	prior_in_flight = tcp_packets_in_flight(tp);
3400
3401	/* ts_recent update must be made after we are sure that the packet
3402	 * is in window.
3403	 */
3404	if (flag & FLAG_UPDATE_TS_RECENT)
3405		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3406
3407	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3408		/* Window is constant, pure forward advance.
3409		 * No more checks are required.
3410		 * Note, we use the fact that SND.UNA>=SND.WL2.
3411		 */
3412		tcp_update_wl(tp, ack_seq);
3413		tp->snd_una = ack;
3414		flag |= FLAG_WIN_UPDATE;
3415
3416		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3417
3418		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3419	} else {
3420		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3421			flag |= FLAG_DATA;
3422		else
3423			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3424
3425		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3426
3427		if (TCP_SKB_CB(skb)->sacked)
3428			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3429							&sack_rtt_us);
3430
3431		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3432			flag |= FLAG_ECE;
3433
3434		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3435	}
3436
3437	/* We passed data and got it acked, remove any soft error
3438	 * log. Something worked...
3439	 */
3440	sk->sk_err_soft = 0;
3441	icsk->icsk_probes_out = 0;
3442	tp->rcv_tstamp = tcp_time_stamp;
 
3443	if (!prior_packets)
3444		goto no_queue;
3445
3446	/* See if we can take anything off of the retransmit queue. */
3447	acked = tp->packets_out;
3448	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3449				    sack_rtt_us);
3450	acked -= tp->packets_out;
3451
3452	/* Advance cwnd if state allows */
3453	if (tcp_may_raise_cwnd(sk, flag))
3454		tcp_cong_avoid(sk, ack, acked, prior_in_flight);
 
3455
3456	if (tcp_ack_is_dubious(sk, flag)) {
 
 
 
 
3457		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3458		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3459				      is_dupack, flag);
 
 
 
3460	}
3461	if (tp->tlp_high_seq)
3462		tcp_process_tlp_ack(sk, ack, flag);
3463
3464	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3465		struct dst_entry *dst = __sk_dst_get(sk);
3466		if (dst)
3467			dst_confirm(dst);
3468	}
3469
3470	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3471		tcp_schedule_loss_probe(sk);
3472	tcp_update_pacing_rate(sk);
3473	return 1;
3474
3475no_queue:
3476	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3477	if (flag & FLAG_DSACKING_ACK)
3478		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3479				      is_dupack, flag);
3480	/* If this ack opens up a zero window, clear backoff.  It was
3481	 * being used to time the probes, and is probably far higher than
3482	 * it needs to be for normal retransmission.
3483	 */
3484	if (tcp_send_head(sk))
3485		tcp_ack_probe(sk);
3486
3487	if (tp->tlp_high_seq)
3488		tcp_process_tlp_ack(sk, ack, flag);
3489	return 1;
3490
3491invalid_ack:
3492	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3493	return -1;
3494
3495old_ack:
3496	/* If data was SACKed, tag it and see if we should send more data.
3497	 * If data was DSACKed, see if we can undo a cwnd reduction.
3498	 */
3499	if (TCP_SKB_CB(skb)->sacked) {
3500		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3501						&sack_rtt_us);
3502		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3503				      is_dupack, flag);
3504	}
3505
3506	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3507	return 0;
3508}
3509
3510/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3511 * But, this can also be called on packets in the established flow when
3512 * the fast version below fails.
3513 */
3514void tcp_parse_options(const struct sk_buff *skb,
3515		       struct tcp_options_received *opt_rx, int estab,
3516		       struct tcp_fastopen_cookie *foc)
3517{
3518	const unsigned char *ptr;
3519	const struct tcphdr *th = tcp_hdr(skb);
3520	int length = (th->doff * 4) - sizeof(struct tcphdr);
3521
3522	ptr = (const unsigned char *)(th + 1);
3523	opt_rx->saw_tstamp = 0;
3524
3525	while (length > 0) {
3526		int opcode = *ptr++;
3527		int opsize;
3528
3529		switch (opcode) {
3530		case TCPOPT_EOL:
3531			return;
3532		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3533			length--;
3534			continue;
3535		default:
3536			opsize = *ptr++;
3537			if (opsize < 2) /* "silly options" */
3538				return;
3539			if (opsize > length)
3540				return;	/* don't parse partial options */
3541			switch (opcode) {
3542			case TCPOPT_MSS:
3543				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3544					u16 in_mss = get_unaligned_be16(ptr);
3545					if (in_mss) {
3546						if (opt_rx->user_mss &&
3547						    opt_rx->user_mss < in_mss)
3548							in_mss = opt_rx->user_mss;
3549						opt_rx->mss_clamp = in_mss;
3550					}
3551				}
3552				break;
3553			case TCPOPT_WINDOW:
3554				if (opsize == TCPOLEN_WINDOW && th->syn &&
3555				    !estab && sysctl_tcp_window_scaling) {
3556					__u8 snd_wscale = *(__u8 *)ptr;
3557					opt_rx->wscale_ok = 1;
3558					if (snd_wscale > 14) {
3559						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3560								     __func__,
3561								     snd_wscale);
3562						snd_wscale = 14;
3563					}
3564					opt_rx->snd_wscale = snd_wscale;
3565				}
3566				break;
3567			case TCPOPT_TIMESTAMP:
3568				if ((opsize == TCPOLEN_TIMESTAMP) &&
3569				    ((estab && opt_rx->tstamp_ok) ||
3570				     (!estab && sysctl_tcp_timestamps))) {
3571					opt_rx->saw_tstamp = 1;
3572					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3573					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3574				}
3575				break;
3576			case TCPOPT_SACK_PERM:
3577				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3578				    !estab && sysctl_tcp_sack) {
3579					opt_rx->sack_ok = TCP_SACK_SEEN;
3580					tcp_sack_reset(opt_rx);
3581				}
3582				break;
3583
3584			case TCPOPT_SACK:
3585				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3586				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3587				   opt_rx->sack_ok) {
3588					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3589				}
3590				break;
3591#ifdef CONFIG_TCP_MD5SIG
3592			case TCPOPT_MD5SIG:
3593				/*
3594				 * The MD5 Hash has already been
3595				 * checked (see tcp_v{4,6}_do_rcv()).
3596				 */
3597				break;
3598#endif
3599			case TCPOPT_EXP:
3600				/* Fast Open option shares code 254 using a
3601				 * 16 bits magic number. It's valid only in
3602				 * SYN or SYN-ACK with an even size.
3603				 */
3604				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3605				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3606				    foc == NULL || !th->syn || (opsize & 1))
 
 
 
 
 
 
 
 
 
 
 
 
3607					break;
3608				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3609				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3610				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3611					memcpy(foc->val, ptr + 2, foc->len);
3612				else if (foc->len != 0)
3613					foc->len = -1;
3614				break;
3615
3616			}
 
3617			ptr += opsize-2;
3618			length -= opsize;
3619		}
3620	}
3621}
3622EXPORT_SYMBOL(tcp_parse_options);
3623
3624static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3625{
3626	const __be32 *ptr = (const __be32 *)(th + 1);
3627
3628	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3629			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3630		tp->rx_opt.saw_tstamp = 1;
3631		++ptr;
3632		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3633		++ptr;
3634		if (*ptr)
3635			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3636		else
3637			tp->rx_opt.rcv_tsecr = 0;
3638		return true;
3639	}
3640	return false;
3641}
3642
3643/* Fast parse options. This hopes to only see timestamps.
3644 * If it is wrong it falls back on tcp_parse_options().
3645 */
3646static bool tcp_fast_parse_options(const struct sk_buff *skb,
3647				   const struct tcphdr *th, struct tcp_sock *tp)
 
3648{
3649	/* In the spirit of fast parsing, compare doff directly to constant
3650	 * values.  Because equality is used, short doff can be ignored here.
3651	 */
3652	if (th->doff == (sizeof(*th) / 4)) {
3653		tp->rx_opt.saw_tstamp = 0;
3654		return false;
3655	} else if (tp->rx_opt.tstamp_ok &&
3656		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3657		if (tcp_parse_aligned_timestamp(tp, th))
3658			return true;
3659	}
3660
3661	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3662	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3663		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3664
3665	return true;
3666}
3667
3668#ifdef CONFIG_TCP_MD5SIG
3669/*
3670 * Parse MD5 Signature option
3671 */
3672const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3673{
3674	int length = (th->doff << 2) - sizeof(*th);
3675	const u8 *ptr = (const u8 *)(th + 1);
3676
3677	/* If the TCP option is too short, we can short cut */
3678	if (length < TCPOLEN_MD5SIG)
3679		return NULL;
3680
3681	while (length > 0) {
3682		int opcode = *ptr++;
3683		int opsize;
3684
3685		switch (opcode) {
3686		case TCPOPT_EOL:
3687			return NULL;
3688		case TCPOPT_NOP:
3689			length--;
3690			continue;
3691		default:
3692			opsize = *ptr++;
3693			if (opsize < 2 || opsize > length)
3694				return NULL;
3695			if (opcode == TCPOPT_MD5SIG)
3696				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3697		}
3698		ptr += opsize - 2;
3699		length -= opsize;
3700	}
3701	return NULL;
3702}
3703EXPORT_SYMBOL(tcp_parse_md5sig_option);
3704#endif
3705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3706/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3707 *
3708 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3709 * it can pass through stack. So, the following predicate verifies that
3710 * this segment is not used for anything but congestion avoidance or
3711 * fast retransmit. Moreover, we even are able to eliminate most of such
3712 * second order effects, if we apply some small "replay" window (~RTO)
3713 * to timestamp space.
3714 *
3715 * All these measures still do not guarantee that we reject wrapped ACKs
3716 * on networks with high bandwidth, when sequence space is recycled fastly,
3717 * but it guarantees that such events will be very rare and do not affect
3718 * connection seriously. This doesn't look nice, but alas, PAWS is really
3719 * buggy extension.
3720 *
3721 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3722 * states that events when retransmit arrives after original data are rare.
3723 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3724 * the biggest problem on large power networks even with minor reordering.
3725 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3726 * up to bandwidth of 18Gigabit/sec. 8) ]
3727 */
3728
3729static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3730{
3731	const struct tcp_sock *tp = tcp_sk(sk);
3732	const struct tcphdr *th = tcp_hdr(skb);
3733	u32 seq = TCP_SKB_CB(skb)->seq;
3734	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3735
3736	return (/* 1. Pure ACK with correct sequence number. */
3737		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3738
3739		/* 2. ... and duplicate ACK. */
3740		ack == tp->snd_una &&
3741
3742		/* 3. ... and does not update window. */
3743		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3744
3745		/* 4. ... and sits in replay window. */
3746		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3747}
3748
3749static inline bool tcp_paws_discard(const struct sock *sk,
3750				   const struct sk_buff *skb)
3751{
3752	const struct tcp_sock *tp = tcp_sk(sk);
3753
3754	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3755	       !tcp_disordered_ack(sk, skb);
3756}
3757
3758/* Check segment sequence number for validity.
3759 *
3760 * Segment controls are considered valid, if the segment
3761 * fits to the window after truncation to the window. Acceptability
3762 * of data (and SYN, FIN, of course) is checked separately.
3763 * See tcp_data_queue(), for example.
3764 *
3765 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3766 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3767 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3768 * (borrowed from freebsd)
3769 */
3770
3771static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3772{
3773	return	!before(end_seq, tp->rcv_wup) &&
3774		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3775}
3776
3777/* When we get a reset we do this. */
3778void tcp_reset(struct sock *sk)
3779{
3780	/* We want the right error as BSD sees it (and indeed as we do). */
3781	switch (sk->sk_state) {
3782	case TCP_SYN_SENT:
3783		sk->sk_err = ECONNREFUSED;
3784		break;
3785	case TCP_CLOSE_WAIT:
3786		sk->sk_err = EPIPE;
3787		break;
3788	case TCP_CLOSE:
3789		return;
3790	default:
3791		sk->sk_err = ECONNRESET;
3792	}
3793	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3794	smp_wmb();
3795
3796	if (!sock_flag(sk, SOCK_DEAD))
3797		sk->sk_error_report(sk);
3798
3799	tcp_done(sk);
3800}
3801
3802/*
3803 * 	Process the FIN bit. This now behaves as it is supposed to work
3804 *	and the FIN takes effect when it is validly part of sequence
3805 *	space. Not before when we get holes.
3806 *
3807 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3808 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3809 *	TIME-WAIT)
3810 *
3811 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3812 *	close and we go into CLOSING (and later onto TIME-WAIT)
3813 *
3814 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3815 */
3816static void tcp_fin(struct sock *sk)
3817{
3818	struct tcp_sock *tp = tcp_sk(sk);
3819	const struct dst_entry *dst;
3820
3821	inet_csk_schedule_ack(sk);
3822
3823	sk->sk_shutdown |= RCV_SHUTDOWN;
3824	sock_set_flag(sk, SOCK_DONE);
3825
3826	switch (sk->sk_state) {
3827	case TCP_SYN_RECV:
3828	case TCP_ESTABLISHED:
3829		/* Move to CLOSE_WAIT */
3830		tcp_set_state(sk, TCP_CLOSE_WAIT);
3831		dst = __sk_dst_get(sk);
3832		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3833			inet_csk(sk)->icsk_ack.pingpong = 1;
3834		break;
3835
3836	case TCP_CLOSE_WAIT:
3837	case TCP_CLOSING:
3838		/* Received a retransmission of the FIN, do
3839		 * nothing.
3840		 */
3841		break;
3842	case TCP_LAST_ACK:
3843		/* RFC793: Remain in the LAST-ACK state. */
3844		break;
3845
3846	case TCP_FIN_WAIT1:
3847		/* This case occurs when a simultaneous close
3848		 * happens, we must ack the received FIN and
3849		 * enter the CLOSING state.
3850		 */
3851		tcp_send_ack(sk);
3852		tcp_set_state(sk, TCP_CLOSING);
3853		break;
3854	case TCP_FIN_WAIT2:
3855		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3856		tcp_send_ack(sk);
3857		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3858		break;
3859	default:
3860		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3861		 * cases we should never reach this piece of code.
3862		 */
3863		pr_err("%s: Impossible, sk->sk_state=%d\n",
3864		       __func__, sk->sk_state);
3865		break;
3866	}
3867
3868	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3869	 * Probably, we should reset in this case. For now drop them.
3870	 */
3871	__skb_queue_purge(&tp->out_of_order_queue);
3872	if (tcp_is_sack(tp))
3873		tcp_sack_reset(&tp->rx_opt);
3874	sk_mem_reclaim(sk);
3875
3876	if (!sock_flag(sk, SOCK_DEAD)) {
3877		sk->sk_state_change(sk);
3878
3879		/* Do not send POLL_HUP for half duplex close. */
3880		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3881		    sk->sk_state == TCP_CLOSE)
3882			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3883		else
3884			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3885	}
3886}
3887
3888static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3889				  u32 end_seq)
3890{
3891	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3892		if (before(seq, sp->start_seq))
3893			sp->start_seq = seq;
3894		if (after(end_seq, sp->end_seq))
3895			sp->end_seq = end_seq;
3896		return true;
3897	}
3898	return false;
3899}
3900
3901static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3902{
3903	struct tcp_sock *tp = tcp_sk(sk);
3904
3905	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3906		int mib_idx;
3907
3908		if (before(seq, tp->rcv_nxt))
3909			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3910		else
3911			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3912
3913		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3914
3915		tp->rx_opt.dsack = 1;
3916		tp->duplicate_sack[0].start_seq = seq;
3917		tp->duplicate_sack[0].end_seq = end_seq;
3918	}
3919}
3920
3921static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3922{
3923	struct tcp_sock *tp = tcp_sk(sk);
3924
3925	if (!tp->rx_opt.dsack)
3926		tcp_dsack_set(sk, seq, end_seq);
3927	else
3928		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3929}
3930
3931static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3932{
3933	struct tcp_sock *tp = tcp_sk(sk);
3934
3935	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3936	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3937		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3938		tcp_enter_quickack_mode(sk);
3939
3940		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3941			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3942
3943			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3944				end_seq = tp->rcv_nxt;
3945			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3946		}
3947	}
3948
3949	tcp_send_ack(sk);
3950}
3951
3952/* These routines update the SACK block as out-of-order packets arrive or
3953 * in-order packets close up the sequence space.
3954 */
3955static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3956{
3957	int this_sack;
3958	struct tcp_sack_block *sp = &tp->selective_acks[0];
3959	struct tcp_sack_block *swalk = sp + 1;
3960
3961	/* See if the recent change to the first SACK eats into
3962	 * or hits the sequence space of other SACK blocks, if so coalesce.
3963	 */
3964	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3965		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3966			int i;
3967
3968			/* Zap SWALK, by moving every further SACK up by one slot.
3969			 * Decrease num_sacks.
3970			 */
3971			tp->rx_opt.num_sacks--;
3972			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3973				sp[i] = sp[i + 1];
3974			continue;
3975		}
3976		this_sack++, swalk++;
3977	}
3978}
3979
3980static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3981{
3982	struct tcp_sock *tp = tcp_sk(sk);
3983	struct tcp_sack_block *sp = &tp->selective_acks[0];
3984	int cur_sacks = tp->rx_opt.num_sacks;
3985	int this_sack;
3986
3987	if (!cur_sacks)
3988		goto new_sack;
3989
3990	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3991		if (tcp_sack_extend(sp, seq, end_seq)) {
3992			/* Rotate this_sack to the first one. */
3993			for (; this_sack > 0; this_sack--, sp--)
3994				swap(*sp, *(sp - 1));
3995			if (cur_sacks > 1)
3996				tcp_sack_maybe_coalesce(tp);
3997			return;
3998		}
3999	}
4000
4001	/* Could not find an adjacent existing SACK, build a new one,
4002	 * put it at the front, and shift everyone else down.  We
4003	 * always know there is at least one SACK present already here.
4004	 *
4005	 * If the sack array is full, forget about the last one.
4006	 */
4007	if (this_sack >= TCP_NUM_SACKS) {
4008		this_sack--;
4009		tp->rx_opt.num_sacks--;
4010		sp--;
4011	}
4012	for (; this_sack > 0; this_sack--, sp--)
4013		*sp = *(sp - 1);
4014
4015new_sack:
4016	/* Build the new head SACK, and we're done. */
4017	sp->start_seq = seq;
4018	sp->end_seq = end_seq;
4019	tp->rx_opt.num_sacks++;
4020}
4021
4022/* RCV.NXT advances, some SACKs should be eaten. */
4023
4024static void tcp_sack_remove(struct tcp_sock *tp)
4025{
4026	struct tcp_sack_block *sp = &tp->selective_acks[0];
4027	int num_sacks = tp->rx_opt.num_sacks;
4028	int this_sack;
4029
4030	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4031	if (skb_queue_empty(&tp->out_of_order_queue)) {
4032		tp->rx_opt.num_sacks = 0;
4033		return;
4034	}
4035
4036	for (this_sack = 0; this_sack < num_sacks;) {
4037		/* Check if the start of the sack is covered by RCV.NXT. */
4038		if (!before(tp->rcv_nxt, sp->start_seq)) {
4039			int i;
4040
4041			/* RCV.NXT must cover all the block! */
4042			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4043
4044			/* Zap this SACK, by moving forward any other SACKS. */
4045			for (i = this_sack+1; i < num_sacks; i++)
4046				tp->selective_acks[i-1] = tp->selective_acks[i];
4047			num_sacks--;
4048			continue;
4049		}
4050		this_sack++;
4051		sp++;
4052	}
4053	tp->rx_opt.num_sacks = num_sacks;
4054}
4055
4056/* This one checks to see if we can put data from the
4057 * out_of_order queue into the receive_queue.
4058 */
4059static void tcp_ofo_queue(struct sock *sk)
4060{
4061	struct tcp_sock *tp = tcp_sk(sk);
4062	__u32 dsack_high = tp->rcv_nxt;
4063	struct sk_buff *skb;
4064
4065	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4066		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4067			break;
4068
4069		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4070			__u32 dsack = dsack_high;
4071			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4072				dsack_high = TCP_SKB_CB(skb)->end_seq;
4073			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4074		}
4075
4076		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4077			SOCK_DEBUG(sk, "ofo packet was already received\n");
4078			__skb_unlink(skb, &tp->out_of_order_queue);
4079			__kfree_skb(skb);
4080			continue;
4081		}
4082		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4083			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4084			   TCP_SKB_CB(skb)->end_seq);
4085
4086		__skb_unlink(skb, &tp->out_of_order_queue);
4087		__skb_queue_tail(&sk->sk_receive_queue, skb);
4088		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4089		if (tcp_hdr(skb)->fin)
4090			tcp_fin(sk);
4091	}
4092}
4093
4094static bool tcp_prune_ofo_queue(struct sock *sk);
4095static int tcp_prune_queue(struct sock *sk);
4096
4097static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4098				 unsigned int size)
4099{
4100	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4101	    !sk_rmem_schedule(sk, skb, size)) {
4102
4103		if (tcp_prune_queue(sk) < 0)
4104			return -1;
4105
4106		if (!sk_rmem_schedule(sk, skb, size)) {
4107			if (!tcp_prune_ofo_queue(sk))
4108				return -1;
4109
4110			if (!sk_rmem_schedule(sk, skb, size))
4111				return -1;
4112		}
4113	}
4114	return 0;
4115}
4116
4117/**
4118 * tcp_try_coalesce - try to merge skb to prior one
4119 * @sk: socket
4120 * @to: prior buffer
4121 * @from: buffer to add in queue
4122 * @fragstolen: pointer to boolean
4123 *
4124 * Before queueing skb @from after @to, try to merge them
4125 * to reduce overall memory use and queue lengths, if cost is small.
4126 * Packets in ofo or receive queues can stay a long time.
4127 * Better try to coalesce them right now to avoid future collapses.
4128 * Returns true if caller should free @from instead of queueing it
4129 */
4130static bool tcp_try_coalesce(struct sock *sk,
4131			     struct sk_buff *to,
4132			     struct sk_buff *from,
4133			     bool *fragstolen)
4134{
4135	int delta;
4136
4137	*fragstolen = false;
4138
4139	if (tcp_hdr(from)->fin)
4140		return false;
4141
4142	/* Its possible this segment overlaps with prior segment in queue */
4143	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4144		return false;
4145
4146	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4147		return false;
4148
4149	atomic_add(delta, &sk->sk_rmem_alloc);
4150	sk_mem_charge(sk, delta);
4151	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4152	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4153	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4154	return true;
4155}
4156
4157static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4158{
4159	struct tcp_sock *tp = tcp_sk(sk);
4160	struct sk_buff *skb1;
4161	u32 seq, end_seq;
4162
4163	TCP_ECN_check_ce(tp, skb);
4164
4165	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4166		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4167		__kfree_skb(skb);
4168		return;
4169	}
4170
4171	/* Disable header prediction. */
4172	tp->pred_flags = 0;
4173	inet_csk_schedule_ack(sk);
4174
4175	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4176	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4177		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4178
4179	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4180	if (!skb1) {
4181		/* Initial out of order segment, build 1 SACK. */
4182		if (tcp_is_sack(tp)) {
4183			tp->rx_opt.num_sacks = 1;
4184			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4185			tp->selective_acks[0].end_seq =
4186						TCP_SKB_CB(skb)->end_seq;
4187		}
4188		__skb_queue_head(&tp->out_of_order_queue, skb);
4189		goto end;
4190	}
4191
4192	seq = TCP_SKB_CB(skb)->seq;
4193	end_seq = TCP_SKB_CB(skb)->end_seq;
4194
4195	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4196		bool fragstolen;
4197
4198		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4199			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4200		} else {
4201			tcp_grow_window(sk, skb);
4202			kfree_skb_partial(skb, fragstolen);
4203			skb = NULL;
4204		}
4205
4206		if (!tp->rx_opt.num_sacks ||
4207		    tp->selective_acks[0].end_seq != seq)
4208			goto add_sack;
4209
4210		/* Common case: data arrive in order after hole. */
4211		tp->selective_acks[0].end_seq = end_seq;
4212		goto end;
4213	}
4214
4215	/* Find place to insert this segment. */
4216	while (1) {
4217		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4218			break;
4219		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4220			skb1 = NULL;
4221			break;
4222		}
4223		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4224	}
4225
4226	/* Do skb overlap to previous one? */
4227	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4228		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4229			/* All the bits are present. Drop. */
4230			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4231			__kfree_skb(skb);
4232			skb = NULL;
4233			tcp_dsack_set(sk, seq, end_seq);
4234			goto add_sack;
4235		}
4236		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4237			/* Partial overlap. */
4238			tcp_dsack_set(sk, seq,
4239				      TCP_SKB_CB(skb1)->end_seq);
4240		} else {
4241			if (skb_queue_is_first(&tp->out_of_order_queue,
4242					       skb1))
4243				skb1 = NULL;
4244			else
4245				skb1 = skb_queue_prev(
4246					&tp->out_of_order_queue,
4247					skb1);
4248		}
4249	}
4250	if (!skb1)
4251		__skb_queue_head(&tp->out_of_order_queue, skb);
4252	else
4253		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4254
4255	/* And clean segments covered by new one as whole. */
4256	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4257		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4258
4259		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4260			break;
4261		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4262			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4263					 end_seq);
4264			break;
4265		}
4266		__skb_unlink(skb1, &tp->out_of_order_queue);
4267		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4268				 TCP_SKB_CB(skb1)->end_seq);
4269		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4270		__kfree_skb(skb1);
4271	}
4272
4273add_sack:
4274	if (tcp_is_sack(tp))
4275		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4276end:
4277	if (skb) {
4278		tcp_grow_window(sk, skb);
4279		skb_set_owner_r(skb, sk);
4280	}
4281}
4282
4283static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4284		  bool *fragstolen)
4285{
4286	int eaten;
4287	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4288
4289	__skb_pull(skb, hdrlen);
4290	eaten = (tail &&
4291		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4292	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4293	if (!eaten) {
4294		__skb_queue_tail(&sk->sk_receive_queue, skb);
4295		skb_set_owner_r(skb, sk);
4296	}
4297	return eaten;
4298}
4299
4300int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4301{
4302	struct sk_buff *skb = NULL;
4303	struct tcphdr *th;
4304	bool fragstolen;
4305
4306	if (size == 0)
4307		return 0;
4308
4309	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4310	if (!skb)
4311		goto err;
4312
4313	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4314		goto err_free;
4315
4316	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4317	skb_reset_transport_header(skb);
4318	memset(th, 0, sizeof(*th));
4319
4320	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4321		goto err_free;
4322
4323	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4324	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4325	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4326
4327	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4328		WARN_ON_ONCE(fragstolen); /* should not happen */
4329		__kfree_skb(skb);
4330	}
4331	return size;
4332
4333err_free:
4334	kfree_skb(skb);
4335err:
4336	return -ENOMEM;
4337}
4338
4339static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4340{
4341	const struct tcphdr *th = tcp_hdr(skb);
4342	struct tcp_sock *tp = tcp_sk(sk);
4343	int eaten = -1;
4344	bool fragstolen = false;
4345
4346	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4347		goto drop;
4348
4349	skb_dst_drop(skb);
4350	__skb_pull(skb, th->doff * 4);
4351
4352	TCP_ECN_accept_cwr(tp, skb);
4353
4354	tp->rx_opt.dsack = 0;
4355
4356	/*  Queue data for delivery to the user.
4357	 *  Packets in sequence go to the receive queue.
4358	 *  Out of sequence packets to the out_of_order_queue.
4359	 */
4360	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4361		if (tcp_receive_window(tp) == 0)
4362			goto out_of_window;
4363
4364		/* Ok. In sequence. In window. */
4365		if (tp->ucopy.task == current &&
4366		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4367		    sock_owned_by_user(sk) && !tp->urg_data) {
4368			int chunk = min_t(unsigned int, skb->len,
4369					  tp->ucopy.len);
4370
4371			__set_current_state(TASK_RUNNING);
4372
4373			local_bh_enable();
4374			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4375				tp->ucopy.len -= chunk;
4376				tp->copied_seq += chunk;
4377				eaten = (chunk == skb->len);
4378				tcp_rcv_space_adjust(sk);
4379			}
4380			local_bh_disable();
4381		}
4382
4383		if (eaten <= 0) {
4384queue_and_out:
4385			if (eaten < 0 &&
4386			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4387				goto drop;
4388
4389			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4390		}
4391		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4392		if (skb->len)
4393			tcp_event_data_recv(sk, skb);
4394		if (th->fin)
4395			tcp_fin(sk);
4396
4397		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4398			tcp_ofo_queue(sk);
4399
4400			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4401			 * gap in queue is filled.
4402			 */
4403			if (skb_queue_empty(&tp->out_of_order_queue))
4404				inet_csk(sk)->icsk_ack.pingpong = 0;
4405		}
4406
4407		if (tp->rx_opt.num_sacks)
4408			tcp_sack_remove(tp);
4409
4410		tcp_fast_path_check(sk);
4411
4412		if (eaten > 0)
4413			kfree_skb_partial(skb, fragstolen);
4414		if (!sock_flag(sk, SOCK_DEAD))
4415			sk->sk_data_ready(sk);
4416		return;
4417	}
4418
4419	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4420		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4421		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4422		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4423
4424out_of_window:
4425		tcp_enter_quickack_mode(sk);
4426		inet_csk_schedule_ack(sk);
4427drop:
4428		__kfree_skb(skb);
4429		return;
4430	}
4431
4432	/* Out of window. F.e. zero window probe. */
4433	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4434		goto out_of_window;
4435
4436	tcp_enter_quickack_mode(sk);
4437
4438	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4439		/* Partial packet, seq < rcv_next < end_seq */
4440		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4441			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4442			   TCP_SKB_CB(skb)->end_seq);
4443
4444		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4445
4446		/* If window is closed, drop tail of packet. But after
4447		 * remembering D-SACK for its head made in previous line.
4448		 */
4449		if (!tcp_receive_window(tp))
4450			goto out_of_window;
4451		goto queue_and_out;
4452	}
4453
4454	tcp_data_queue_ofo(sk, skb);
4455}
4456
4457static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4458					struct sk_buff_head *list)
4459{
4460	struct sk_buff *next = NULL;
4461
4462	if (!skb_queue_is_last(list, skb))
4463		next = skb_queue_next(list, skb);
4464
4465	__skb_unlink(skb, list);
4466	__kfree_skb(skb);
4467	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4468
4469	return next;
4470}
4471
4472/* Collapse contiguous sequence of skbs head..tail with
4473 * sequence numbers start..end.
4474 *
4475 * If tail is NULL, this means until the end of the list.
4476 *
4477 * Segments with FIN/SYN are not collapsed (only because this
4478 * simplifies code)
4479 */
4480static void
4481tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4482	     struct sk_buff *head, struct sk_buff *tail,
4483	     u32 start, u32 end)
4484{
4485	struct sk_buff *skb, *n;
4486	bool end_of_skbs;
4487
4488	/* First, check that queue is collapsible and find
4489	 * the point where collapsing can be useful. */
4490	skb = head;
4491restart:
4492	end_of_skbs = true;
4493	skb_queue_walk_from_safe(list, skb, n) {
4494		if (skb == tail)
4495			break;
4496		/* No new bits? It is possible on ofo queue. */
4497		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4498			skb = tcp_collapse_one(sk, skb, list);
4499			if (!skb)
4500				break;
4501			goto restart;
4502		}
4503
4504		/* The first skb to collapse is:
4505		 * - not SYN/FIN and
4506		 * - bloated or contains data before "start" or
4507		 *   overlaps to the next one.
4508		 */
4509		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4510		    (tcp_win_from_space(skb->truesize) > skb->len ||
4511		     before(TCP_SKB_CB(skb)->seq, start))) {
4512			end_of_skbs = false;
4513			break;
4514		}
4515
4516		if (!skb_queue_is_last(list, skb)) {
4517			struct sk_buff *next = skb_queue_next(list, skb);
4518			if (next != tail &&
4519			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4520				end_of_skbs = false;
4521				break;
4522			}
4523		}
4524
4525		/* Decided to skip this, advance start seq. */
4526		start = TCP_SKB_CB(skb)->end_seq;
4527	}
4528	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4529		return;
4530
4531	while (before(start, end)) {
4532		struct sk_buff *nskb;
4533		unsigned int header = skb_headroom(skb);
4534		int copy = SKB_MAX_ORDER(header, 0);
4535
4536		/* Too big header? This can happen with IPv6. */
4537		if (copy < 0)
4538			return;
4539		if (end - start < copy)
4540			copy = end - start;
4541		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4542		if (!nskb)
4543			return;
4544
4545		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4546		skb_set_network_header(nskb, (skb_network_header(skb) -
4547					      skb->head));
4548		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4549						skb->head));
4550		skb_reserve(nskb, header);
4551		memcpy(nskb->head, skb->head, header);
4552		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4553		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4554		__skb_queue_before(list, skb, nskb);
4555		skb_set_owner_r(nskb, sk);
4556
4557		/* Copy data, releasing collapsed skbs. */
4558		while (copy > 0) {
4559			int offset = start - TCP_SKB_CB(skb)->seq;
4560			int size = TCP_SKB_CB(skb)->end_seq - start;
4561
4562			BUG_ON(offset < 0);
4563			if (size > 0) {
4564				size = min(copy, size);
4565				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4566					BUG();
4567				TCP_SKB_CB(nskb)->end_seq += size;
4568				copy -= size;
4569				start += size;
4570			}
4571			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4572				skb = tcp_collapse_one(sk, skb, list);
4573				if (!skb ||
4574				    skb == tail ||
4575				    tcp_hdr(skb)->syn ||
4576				    tcp_hdr(skb)->fin)
4577					return;
4578			}
4579		}
4580	}
4581}
4582
4583/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4584 * and tcp_collapse() them until all the queue is collapsed.
4585 */
4586static void tcp_collapse_ofo_queue(struct sock *sk)
4587{
4588	struct tcp_sock *tp = tcp_sk(sk);
4589	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4590	struct sk_buff *head;
4591	u32 start, end;
4592
4593	if (skb == NULL)
4594		return;
4595
4596	start = TCP_SKB_CB(skb)->seq;
4597	end = TCP_SKB_CB(skb)->end_seq;
4598	head = skb;
4599
4600	for (;;) {
4601		struct sk_buff *next = NULL;
4602
4603		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4604			next = skb_queue_next(&tp->out_of_order_queue, skb);
4605		skb = next;
4606
4607		/* Segment is terminated when we see gap or when
4608		 * we are at the end of all the queue. */
4609		if (!skb ||
4610		    after(TCP_SKB_CB(skb)->seq, end) ||
4611		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4612			tcp_collapse(sk, &tp->out_of_order_queue,
4613				     head, skb, start, end);
4614			head = skb;
4615			if (!skb)
4616				break;
4617			/* Start new segment */
4618			start = TCP_SKB_CB(skb)->seq;
4619			end = TCP_SKB_CB(skb)->end_seq;
4620		} else {
4621			if (before(TCP_SKB_CB(skb)->seq, start))
4622				start = TCP_SKB_CB(skb)->seq;
4623			if (after(TCP_SKB_CB(skb)->end_seq, end))
4624				end = TCP_SKB_CB(skb)->end_seq;
4625		}
4626	}
4627}
4628
4629/*
4630 * Purge the out-of-order queue.
4631 * Return true if queue was pruned.
4632 */
4633static bool tcp_prune_ofo_queue(struct sock *sk)
4634{
4635	struct tcp_sock *tp = tcp_sk(sk);
4636	bool res = false;
4637
4638	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4639		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4640		__skb_queue_purge(&tp->out_of_order_queue);
4641
4642		/* Reset SACK state.  A conforming SACK implementation will
4643		 * do the same at a timeout based retransmit.  When a connection
4644		 * is in a sad state like this, we care only about integrity
4645		 * of the connection not performance.
4646		 */
4647		if (tp->rx_opt.sack_ok)
4648			tcp_sack_reset(&tp->rx_opt);
4649		sk_mem_reclaim(sk);
4650		res = true;
4651	}
4652	return res;
4653}
4654
4655/* Reduce allocated memory if we can, trying to get
4656 * the socket within its memory limits again.
4657 *
4658 * Return less than zero if we should start dropping frames
4659 * until the socket owning process reads some of the data
4660 * to stabilize the situation.
4661 */
4662static int tcp_prune_queue(struct sock *sk)
4663{
4664	struct tcp_sock *tp = tcp_sk(sk);
4665
4666	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4667
4668	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4669
4670	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4671		tcp_clamp_window(sk);
4672	else if (sk_under_memory_pressure(sk))
4673		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4674
4675	tcp_collapse_ofo_queue(sk);
4676	if (!skb_queue_empty(&sk->sk_receive_queue))
4677		tcp_collapse(sk, &sk->sk_receive_queue,
4678			     skb_peek(&sk->sk_receive_queue),
4679			     NULL,
4680			     tp->copied_seq, tp->rcv_nxt);
4681	sk_mem_reclaim(sk);
4682
4683	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4684		return 0;
4685
4686	/* Collapsing did not help, destructive actions follow.
4687	 * This must not ever occur. */
4688
4689	tcp_prune_ofo_queue(sk);
4690
4691	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4692		return 0;
4693
4694	/* If we are really being abused, tell the caller to silently
4695	 * drop receive data on the floor.  It will get retransmitted
4696	 * and hopefully then we'll have sufficient space.
4697	 */
4698	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4699
4700	/* Massive buffer overcommit. */
4701	tp->pred_flags = 0;
4702	return -1;
4703}
4704
4705/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4706 * As additional protections, we do not touch cwnd in retransmission phases,
4707 * and if application hit its sndbuf limit recently.
4708 */
4709void tcp_cwnd_application_limited(struct sock *sk)
4710{
4711	struct tcp_sock *tp = tcp_sk(sk);
4712
4713	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4714	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4715		/* Limited by application or receiver window. */
4716		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4717		u32 win_used = max(tp->snd_cwnd_used, init_win);
4718		if (win_used < tp->snd_cwnd) {
4719			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4720			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4721		}
4722		tp->snd_cwnd_used = 0;
4723	}
4724	tp->snd_cwnd_stamp = tcp_time_stamp;
4725}
4726
4727static bool tcp_should_expand_sndbuf(const struct sock *sk)
4728{
4729	const struct tcp_sock *tp = tcp_sk(sk);
4730
4731	/* If the user specified a specific send buffer setting, do
4732	 * not modify it.
4733	 */
4734	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4735		return false;
4736
4737	/* If we are under global TCP memory pressure, do not expand.  */
4738	if (sk_under_memory_pressure(sk))
4739		return false;
4740
4741	/* If we are under soft global TCP memory pressure, do not expand.  */
4742	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4743		return false;
4744
4745	/* If we filled the congestion window, do not expand.  */
4746	if (tp->packets_out >= tp->snd_cwnd)
4747		return false;
4748
4749	return true;
4750}
4751
4752/* When incoming ACK allowed to free some skb from write_queue,
4753 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4754 * on the exit from tcp input handler.
4755 *
4756 * PROBLEM: sndbuf expansion does not work well with largesend.
4757 */
4758static void tcp_new_space(struct sock *sk)
4759{
4760	struct tcp_sock *tp = tcp_sk(sk);
4761
4762	if (tcp_should_expand_sndbuf(sk)) {
4763		tcp_sndbuf_expand(sk);
 
 
 
 
 
 
 
 
4764		tp->snd_cwnd_stamp = tcp_time_stamp;
4765	}
4766
4767	sk->sk_write_space(sk);
4768}
4769
4770static void tcp_check_space(struct sock *sk)
4771{
4772	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4773		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4774		if (sk->sk_socket &&
4775		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4776			tcp_new_space(sk);
4777	}
4778}
4779
4780static inline void tcp_data_snd_check(struct sock *sk)
4781{
4782	tcp_push_pending_frames(sk);
4783	tcp_check_space(sk);
4784}
4785
4786/*
4787 * Check if sending an ack is needed.
4788 */
4789static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4790{
4791	struct tcp_sock *tp = tcp_sk(sk);
4792
4793	    /* More than one full frame received... */
4794	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4795	     /* ... and right edge of window advances far enough.
4796	      * (tcp_recvmsg() will send ACK otherwise). Or...
4797	      */
4798	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4799	    /* We ACK each frame or... */
4800	    tcp_in_quickack_mode(sk) ||
4801	    /* We have out of order data. */
4802	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4803		/* Then ack it now */
4804		tcp_send_ack(sk);
4805	} else {
4806		/* Else, send delayed ack. */
4807		tcp_send_delayed_ack(sk);
4808	}
4809}
4810
4811static inline void tcp_ack_snd_check(struct sock *sk)
4812{
4813	if (!inet_csk_ack_scheduled(sk)) {
4814		/* We sent a data segment already. */
4815		return;
4816	}
4817	__tcp_ack_snd_check(sk, 1);
4818}
4819
4820/*
4821 *	This routine is only called when we have urgent data
4822 *	signaled. Its the 'slow' part of tcp_urg. It could be
4823 *	moved inline now as tcp_urg is only called from one
4824 *	place. We handle URGent data wrong. We have to - as
4825 *	BSD still doesn't use the correction from RFC961.
4826 *	For 1003.1g we should support a new option TCP_STDURG to permit
4827 *	either form (or just set the sysctl tcp_stdurg).
4828 */
4829
4830static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4831{
4832	struct tcp_sock *tp = tcp_sk(sk);
4833	u32 ptr = ntohs(th->urg_ptr);
4834
4835	if (ptr && !sysctl_tcp_stdurg)
4836		ptr--;
4837	ptr += ntohl(th->seq);
4838
4839	/* Ignore urgent data that we've already seen and read. */
4840	if (after(tp->copied_seq, ptr))
4841		return;
4842
4843	/* Do not replay urg ptr.
4844	 *
4845	 * NOTE: interesting situation not covered by specs.
4846	 * Misbehaving sender may send urg ptr, pointing to segment,
4847	 * which we already have in ofo queue. We are not able to fetch
4848	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4849	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4850	 * situations. But it is worth to think about possibility of some
4851	 * DoSes using some hypothetical application level deadlock.
4852	 */
4853	if (before(ptr, tp->rcv_nxt))
4854		return;
4855
4856	/* Do we already have a newer (or duplicate) urgent pointer? */
4857	if (tp->urg_data && !after(ptr, tp->urg_seq))
4858		return;
4859
4860	/* Tell the world about our new urgent pointer. */
4861	sk_send_sigurg(sk);
4862
4863	/* We may be adding urgent data when the last byte read was
4864	 * urgent. To do this requires some care. We cannot just ignore
4865	 * tp->copied_seq since we would read the last urgent byte again
4866	 * as data, nor can we alter copied_seq until this data arrives
4867	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4868	 *
4869	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4870	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4871	 * and expect that both A and B disappear from stream. This is _wrong_.
4872	 * Though this happens in BSD with high probability, this is occasional.
4873	 * Any application relying on this is buggy. Note also, that fix "works"
4874	 * only in this artificial test. Insert some normal data between A and B and we will
4875	 * decline of BSD again. Verdict: it is better to remove to trap
4876	 * buggy users.
4877	 */
4878	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4879	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4880		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4881		tp->copied_seq++;
4882		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4883			__skb_unlink(skb, &sk->sk_receive_queue);
4884			__kfree_skb(skb);
4885		}
4886	}
4887
4888	tp->urg_data = TCP_URG_NOTYET;
4889	tp->urg_seq = ptr;
4890
4891	/* Disable header prediction. */
4892	tp->pred_flags = 0;
4893}
4894
4895/* This is the 'fast' part of urgent handling. */
4896static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4897{
4898	struct tcp_sock *tp = tcp_sk(sk);
4899
4900	/* Check if we get a new urgent pointer - normally not. */
4901	if (th->urg)
4902		tcp_check_urg(sk, th);
4903
4904	/* Do we wait for any urgent data? - normally not... */
4905	if (tp->urg_data == TCP_URG_NOTYET) {
4906		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4907			  th->syn;
4908
4909		/* Is the urgent pointer pointing into this packet? */
4910		if (ptr < skb->len) {
4911			u8 tmp;
4912			if (skb_copy_bits(skb, ptr, &tmp, 1))
4913				BUG();
4914			tp->urg_data = TCP_URG_VALID | tmp;
4915			if (!sock_flag(sk, SOCK_DEAD))
4916				sk->sk_data_ready(sk);
4917		}
4918	}
4919}
4920
4921static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4922{
4923	struct tcp_sock *tp = tcp_sk(sk);
4924	int chunk = skb->len - hlen;
4925	int err;
4926
4927	local_bh_enable();
4928	if (skb_csum_unnecessary(skb))
4929		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4930	else
4931		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4932						       tp->ucopy.iov);
4933
4934	if (!err) {
4935		tp->ucopy.len -= chunk;
4936		tp->copied_seq += chunk;
4937		tcp_rcv_space_adjust(sk);
4938	}
4939
4940	local_bh_disable();
4941	return err;
4942}
4943
4944static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4945					    struct sk_buff *skb)
4946{
4947	__sum16 result;
4948
4949	if (sock_owned_by_user(sk)) {
4950		local_bh_enable();
4951		result = __tcp_checksum_complete(skb);
4952		local_bh_disable();
4953	} else {
4954		result = __tcp_checksum_complete(skb);
4955	}
4956	return result;
4957}
4958
4959static inline bool tcp_checksum_complete_user(struct sock *sk,
4960					     struct sk_buff *skb)
4961{
4962	return !skb_csum_unnecessary(skb) &&
4963	       __tcp_checksum_complete_user(sk, skb);
4964}
4965
4966#ifdef CONFIG_NET_DMA
4967static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4968				  int hlen)
4969{
4970	struct tcp_sock *tp = tcp_sk(sk);
4971	int chunk = skb->len - hlen;
4972	int dma_cookie;
4973	bool copied_early = false;
4974
4975	if (tp->ucopy.wakeup)
4976		return false;
4977
4978	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4979		tp->ucopy.dma_chan = net_dma_find_channel();
4980
4981	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4982
4983		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4984							 skb, hlen,
4985							 tp->ucopy.iov, chunk,
4986							 tp->ucopy.pinned_list);
4987
4988		if (dma_cookie < 0)
4989			goto out;
4990
4991		tp->ucopy.dma_cookie = dma_cookie;
4992		copied_early = true;
4993
4994		tp->ucopy.len -= chunk;
4995		tp->copied_seq += chunk;
4996		tcp_rcv_space_adjust(sk);
4997
4998		if ((tp->ucopy.len == 0) ||
4999		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5000		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5001			tp->ucopy.wakeup = 1;
5002			sk->sk_data_ready(sk);
5003		}
5004	} else if (chunk > 0) {
5005		tp->ucopy.wakeup = 1;
5006		sk->sk_data_ready(sk);
5007	}
5008out:
5009	return copied_early;
5010}
5011#endif /* CONFIG_NET_DMA */
5012
5013/* Does PAWS and seqno based validation of an incoming segment, flags will
5014 * play significant role here.
5015 */
5016static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5017				  const struct tcphdr *th, int syn_inerr)
5018{
 
5019	struct tcp_sock *tp = tcp_sk(sk);
5020
5021	/* RFC1323: H1. Apply PAWS check first. */
5022	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
 
5023	    tcp_paws_discard(sk, skb)) {
5024		if (!th->rst) {
5025			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5026			tcp_send_dupack(sk, skb);
5027			goto discard;
5028		}
5029		/* Reset is accepted even if it did not pass PAWS. */
5030	}
5031
5032	/* Step 1: check sequence number */
5033	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5034		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5035		 * (RST) segments are validated by checking their SEQ-fields."
5036		 * And page 69: "If an incoming segment is not acceptable,
5037		 * an acknowledgment should be sent in reply (unless the RST
5038		 * bit is set, if so drop the segment and return)".
5039		 */
5040		if (!th->rst) {
5041			if (th->syn)
5042				goto syn_challenge;
5043			tcp_send_dupack(sk, skb);
5044		}
5045		goto discard;
5046	}
5047
5048	/* Step 2: check RST bit */
5049	if (th->rst) {
5050		/* RFC 5961 3.2 :
5051		 * If sequence number exactly matches RCV.NXT, then
5052		 *     RESET the connection
5053		 * else
5054		 *     Send a challenge ACK
5055		 */
5056		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5057			tcp_reset(sk);
5058		else
5059			tcp_send_challenge_ack(sk);
5060		goto discard;
5061	}
5062
 
 
 
 
 
5063	/* step 3: check security and precedence [ignored] */
5064
5065	/* step 4: Check for a SYN
5066	 * RFC 5691 4.2 : Send a challenge ack
5067	 */
5068	if (th->syn) {
5069syn_challenge:
5070		if (syn_inerr)
5071			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5072		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5073		tcp_send_challenge_ack(sk);
5074		goto discard;
5075	}
5076
5077	return true;
5078
5079discard:
5080	__kfree_skb(skb);
5081	return false;
5082}
5083
5084/*
5085 *	TCP receive function for the ESTABLISHED state.
5086 *
5087 *	It is split into a fast path and a slow path. The fast path is
5088 * 	disabled when:
5089 *	- A zero window was announced from us - zero window probing
5090 *        is only handled properly in the slow path.
5091 *	- Out of order segments arrived.
5092 *	- Urgent data is expected.
5093 *	- There is no buffer space left
5094 *	- Unexpected TCP flags/window values/header lengths are received
5095 *	  (detected by checking the TCP header against pred_flags)
5096 *	- Data is sent in both directions. Fast path only supports pure senders
5097 *	  or pure receivers (this means either the sequence number or the ack
5098 *	  value must stay constant)
5099 *	- Unexpected TCP option.
5100 *
5101 *	When these conditions are not satisfied it drops into a standard
5102 *	receive procedure patterned after RFC793 to handle all cases.
5103 *	The first three cases are guaranteed by proper pred_flags setting,
5104 *	the rest is checked inline. Fast processing is turned on in
5105 *	tcp_data_queue when everything is OK.
5106 */
5107void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5108			 const struct tcphdr *th, unsigned int len)
5109{
5110	struct tcp_sock *tp = tcp_sk(sk);
 
5111
5112	if (unlikely(sk->sk_rx_dst == NULL))
5113		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5114	/*
5115	 *	Header prediction.
5116	 *	The code loosely follows the one in the famous
5117	 *	"30 instruction TCP receive" Van Jacobson mail.
5118	 *
5119	 *	Van's trick is to deposit buffers into socket queue
5120	 *	on a device interrupt, to call tcp_recv function
5121	 *	on the receive process context and checksum and copy
5122	 *	the buffer to user space. smart...
5123	 *
5124	 *	Our current scheme is not silly either but we take the
5125	 *	extra cost of the net_bh soft interrupt processing...
5126	 *	We do checksum and copy also but from device to kernel.
5127	 */
5128
5129	tp->rx_opt.saw_tstamp = 0;
5130
5131	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5132	 *	if header_prediction is to be made
5133	 *	'S' will always be tp->tcp_header_len >> 2
5134	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5135	 *  turn it off	(when there are holes in the receive
5136	 *	 space for instance)
5137	 *	PSH flag is ignored.
5138	 */
5139
5140	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5141	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5142	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5143		int tcp_header_len = tp->tcp_header_len;
5144
5145		/* Timestamp header prediction: tcp_header_len
5146		 * is automatically equal to th->doff*4 due to pred_flags
5147		 * match.
5148		 */
5149
5150		/* Check timestamp */
5151		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5152			/* No? Slow path! */
5153			if (!tcp_parse_aligned_timestamp(tp, th))
5154				goto slow_path;
5155
5156			/* If PAWS failed, check it more carefully in slow path */
5157			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5158				goto slow_path;
5159
5160			/* DO NOT update ts_recent here, if checksum fails
5161			 * and timestamp was corrupted part, it will result
5162			 * in a hung connection since we will drop all
5163			 * future packets due to the PAWS test.
5164			 */
5165		}
5166
5167		if (len <= tcp_header_len) {
5168			/* Bulk data transfer: sender */
5169			if (len == tcp_header_len) {
5170				/* Predicted packet is in window by definition.
5171				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5172				 * Hence, check seq<=rcv_wup reduces to:
5173				 */
5174				if (tcp_header_len ==
5175				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5176				    tp->rcv_nxt == tp->rcv_wup)
5177					tcp_store_ts_recent(tp);
5178
5179				/* We know that such packets are checksummed
5180				 * on entry.
5181				 */
5182				tcp_ack(sk, skb, 0);
5183				__kfree_skb(skb);
5184				tcp_data_snd_check(sk);
5185				return;
5186			} else { /* Header too small */
5187				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5188				goto discard;
5189			}
5190		} else {
5191			int eaten = 0;
5192			int copied_early = 0;
5193			bool fragstolen = false;
5194
5195			if (tp->copied_seq == tp->rcv_nxt &&
5196			    len - tcp_header_len <= tp->ucopy.len) {
5197#ifdef CONFIG_NET_DMA
5198				if (tp->ucopy.task == current &&
5199				    sock_owned_by_user(sk) &&
5200				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5201					copied_early = 1;
5202					eaten = 1;
5203				}
5204#endif
5205				if (tp->ucopy.task == current &&
5206				    sock_owned_by_user(sk) && !copied_early) {
5207					__set_current_state(TASK_RUNNING);
5208
5209					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5210						eaten = 1;
5211				}
5212				if (eaten) {
5213					/* Predicted packet is in window by definition.
5214					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5215					 * Hence, check seq<=rcv_wup reduces to:
5216					 */
5217					if (tcp_header_len ==
5218					    (sizeof(struct tcphdr) +
5219					     TCPOLEN_TSTAMP_ALIGNED) &&
5220					    tp->rcv_nxt == tp->rcv_wup)
5221						tcp_store_ts_recent(tp);
5222
5223					tcp_rcv_rtt_measure_ts(sk, skb);
5224
5225					__skb_pull(skb, tcp_header_len);
5226					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5227					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5228				}
5229				if (copied_early)
5230					tcp_cleanup_rbuf(sk, skb->len);
5231			}
5232			if (!eaten) {
5233				if (tcp_checksum_complete_user(sk, skb))
5234					goto csum_error;
5235
5236				if ((int)skb->truesize > sk->sk_forward_alloc)
5237					goto step5;
5238
5239				/* Predicted packet is in window by definition.
5240				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5241				 * Hence, check seq<=rcv_wup reduces to:
5242				 */
5243				if (tcp_header_len ==
5244				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5245				    tp->rcv_nxt == tp->rcv_wup)
5246					tcp_store_ts_recent(tp);
5247
5248				tcp_rcv_rtt_measure_ts(sk, skb);
5249
 
 
 
5250				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5251
5252				/* Bulk data transfer: receiver */
5253				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5254						      &fragstolen);
5255			}
5256
5257			tcp_event_data_recv(sk, skb);
5258
5259			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5260				/* Well, only one small jumplet in fast path... */
5261				tcp_ack(sk, skb, FLAG_DATA);
5262				tcp_data_snd_check(sk);
5263				if (!inet_csk_ack_scheduled(sk))
5264					goto no_ack;
5265			}
5266
5267			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5268				__tcp_ack_snd_check(sk, 0);
5269no_ack:
5270#ifdef CONFIG_NET_DMA
5271			if (copied_early)
5272				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5273			else
5274#endif
5275			if (eaten)
5276				kfree_skb_partial(skb, fragstolen);
5277			sk->sk_data_ready(sk);
5278			return;
 
5279		}
5280	}
5281
5282slow_path:
5283	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5284		goto csum_error;
5285
5286	if (!th->ack && !th->rst)
5287		goto discard;
5288
5289	/*
5290	 *	Standard slow path.
5291	 */
5292
5293	if (!tcp_validate_incoming(sk, skb, th, 1))
5294		return;
 
5295
5296step5:
5297	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5298		goto discard;
5299
5300	tcp_rcv_rtt_measure_ts(sk, skb);
5301
5302	/* Process urgent data. */
5303	tcp_urg(sk, skb, th);
5304
5305	/* step 7: process the segment text */
5306	tcp_data_queue(sk, skb);
5307
5308	tcp_data_snd_check(sk);
5309	tcp_ack_snd_check(sk);
5310	return;
5311
5312csum_error:
5313	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5314	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5315
5316discard:
5317	__kfree_skb(skb);
 
5318}
5319EXPORT_SYMBOL(tcp_rcv_established);
5320
5321void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5322{
5323	struct tcp_sock *tp = tcp_sk(sk);
5324	struct inet_connection_sock *icsk = inet_csk(sk);
5325
5326	tcp_set_state(sk, TCP_ESTABLISHED);
5327
5328	if (skb != NULL) {
5329		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5330		security_inet_conn_established(sk, skb);
5331	}
5332
5333	/* Make sure socket is routed, for correct metrics.  */
5334	icsk->icsk_af_ops->rebuild_header(sk);
5335
5336	tcp_init_metrics(sk);
5337
5338	tcp_init_congestion_control(sk);
5339
5340	/* Prevent spurious tcp_cwnd_restart() on first data
5341	 * packet.
5342	 */
5343	tp->lsndtime = tcp_time_stamp;
5344
5345	tcp_init_buffer_space(sk);
5346
5347	if (sock_flag(sk, SOCK_KEEPOPEN))
5348		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5349
5350	if (!tp->rx_opt.snd_wscale)
5351		__tcp_fast_path_on(tp, tp->snd_wnd);
5352	else
5353		tp->pred_flags = 0;
5354
5355	if (!sock_flag(sk, SOCK_DEAD)) {
5356		sk->sk_state_change(sk);
5357		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5358	}
5359}
5360
5361static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5362				    struct tcp_fastopen_cookie *cookie)
5363{
5364	struct tcp_sock *tp = tcp_sk(sk);
5365	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5366	u16 mss = tp->rx_opt.mss_clamp;
5367	bool syn_drop;
5368
5369	if (mss == tp->rx_opt.user_mss) {
5370		struct tcp_options_received opt;
5371
5372		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5373		tcp_clear_options(&opt);
5374		opt.user_mss = opt.mss_clamp = 0;
5375		tcp_parse_options(synack, &opt, 0, NULL);
5376		mss = opt.mss_clamp;
5377	}
5378
5379	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5380		cookie->len = -1;
5381
5382	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5383	 * the remote receives only the retransmitted (regular) SYNs: either
5384	 * the original SYN-data or the corresponding SYN-ACK is lost.
5385	 */
5386	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5387
5388	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5389
5390	if (data) { /* Retransmit unacked data in SYN */
5391		tcp_for_write_queue_from(data, sk) {
5392			if (data == tcp_send_head(sk) ||
5393			    __tcp_retransmit_skb(sk, data))
5394				break;
5395		}
5396		tcp_rearm_rto(sk);
5397		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5398		return true;
5399	}
5400	tp->syn_data_acked = tp->syn_data;
5401	if (tp->syn_data_acked)
5402		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5403	return false;
5404}
5405
5406static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5407					 const struct tcphdr *th, unsigned int len)
5408{
 
5409	struct inet_connection_sock *icsk = inet_csk(sk);
5410	struct tcp_sock *tp = tcp_sk(sk);
5411	struct tcp_fastopen_cookie foc = { .len = -1 };
5412	int saved_clamp = tp->rx_opt.mss_clamp;
5413
5414	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5415	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5416		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5417
5418	if (th->ack) {
5419		/* rfc793:
5420		 * "If the state is SYN-SENT then
5421		 *    first check the ACK bit
5422		 *      If the ACK bit is set
5423		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5424		 *        a reset (unless the RST bit is set, if so drop
5425		 *        the segment and return)"
 
 
 
5426		 */
5427		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5428		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5429			goto reset_and_undo;
5430
5431		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5432		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5433			     tcp_time_stamp)) {
5434			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5435			goto reset_and_undo;
5436		}
5437
5438		/* Now ACK is acceptable.
5439		 *
5440		 * "If the RST bit is set
5441		 *    If the ACK was acceptable then signal the user "error:
5442		 *    connection reset", drop the segment, enter CLOSED state,
5443		 *    delete TCB, and return."
5444		 */
5445
5446		if (th->rst) {
5447			tcp_reset(sk);
5448			goto discard;
5449		}
5450
5451		/* rfc793:
5452		 *   "fifth, if neither of the SYN or RST bits is set then
5453		 *    drop the segment and return."
5454		 *
5455		 *    See note below!
5456		 *                                        --ANK(990513)
5457		 */
5458		if (!th->syn)
5459			goto discard_and_undo;
5460
5461		/* rfc793:
5462		 *   "If the SYN bit is on ...
5463		 *    are acceptable then ...
5464		 *    (our SYN has been ACKed), change the connection
5465		 *    state to ESTABLISHED..."
5466		 */
5467
5468		TCP_ECN_rcv_synack(tp, th);
5469
5470		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5471		tcp_ack(sk, skb, FLAG_SLOWPATH);
5472
5473		/* Ok.. it's good. Set up sequence numbers and
5474		 * move to established.
5475		 */
5476		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5477		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5478
5479		/* RFC1323: The window in SYN & SYN/ACK segments is
5480		 * never scaled.
5481		 */
5482		tp->snd_wnd = ntohs(th->window);
 
5483
5484		if (!tp->rx_opt.wscale_ok) {
5485			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5486			tp->window_clamp = min(tp->window_clamp, 65535U);
5487		}
5488
5489		if (tp->rx_opt.saw_tstamp) {
5490			tp->rx_opt.tstamp_ok	   = 1;
5491			tp->tcp_header_len =
5492				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5493			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5494			tcp_store_ts_recent(tp);
5495		} else {
5496			tp->tcp_header_len = sizeof(struct tcphdr);
5497		}
5498
5499		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5500			tcp_enable_fack(tp);
5501
5502		tcp_mtup_init(sk);
5503		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5504		tcp_initialize_rcv_mss(sk);
5505
5506		/* Remember, tcp_poll() does not lock socket!
5507		 * Change state from SYN-SENT only after copied_seq
5508		 * is initialized. */
5509		tp->copied_seq = tp->rcv_nxt;
5510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5511		smp_mb();
5512
5513		tcp_finish_connect(sk, skb);
5514
5515		if ((tp->syn_fastopen || tp->syn_data) &&
5516		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5517			return -1;
5518
5519		if (sk->sk_write_pending ||
5520		    icsk->icsk_accept_queue.rskq_defer_accept ||
5521		    icsk->icsk_ack.pingpong) {
5522			/* Save one ACK. Data will be ready after
5523			 * several ticks, if write_pending is set.
5524			 *
5525			 * It may be deleted, but with this feature tcpdumps
5526			 * look so _wonderfully_ clever, that I was not able
5527			 * to stand against the temptation 8)     --ANK
5528			 */
5529			inet_csk_schedule_ack(sk);
5530			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5531			tcp_enter_quickack_mode(sk);
5532			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5533						  TCP_DELACK_MAX, TCP_RTO_MAX);
5534
5535discard:
5536			__kfree_skb(skb);
5537			return 0;
5538		} else {
5539			tcp_send_ack(sk);
5540		}
5541		return -1;
5542	}
5543
5544	/* No ACK in the segment */
5545
5546	if (th->rst) {
5547		/* rfc793:
5548		 * "If the RST bit is set
5549		 *
5550		 *      Otherwise (no ACK) drop the segment and return."
5551		 */
5552
5553		goto discard_and_undo;
5554	}
5555
5556	/* PAWS check. */
5557	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5558	    tcp_paws_reject(&tp->rx_opt, 0))
5559		goto discard_and_undo;
5560
5561	if (th->syn) {
5562		/* We see SYN without ACK. It is attempt of
5563		 * simultaneous connect with crossed SYNs.
5564		 * Particularly, it can be connect to self.
5565		 */
5566		tcp_set_state(sk, TCP_SYN_RECV);
5567
5568		if (tp->rx_opt.saw_tstamp) {
5569			tp->rx_opt.tstamp_ok = 1;
5570			tcp_store_ts_recent(tp);
5571			tp->tcp_header_len =
5572				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5573		} else {
5574			tp->tcp_header_len = sizeof(struct tcphdr);
5575		}
5576
5577		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5578		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5579
5580		/* RFC1323: The window in SYN & SYN/ACK segments is
5581		 * never scaled.
5582		 */
5583		tp->snd_wnd    = ntohs(th->window);
5584		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5585		tp->max_window = tp->snd_wnd;
5586
5587		TCP_ECN_rcv_syn(tp, th);
5588
5589		tcp_mtup_init(sk);
5590		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5591		tcp_initialize_rcv_mss(sk);
5592
5593		tcp_send_synack(sk);
5594#if 0
5595		/* Note, we could accept data and URG from this segment.
5596		 * There are no obstacles to make this (except that we must
5597		 * either change tcp_recvmsg() to prevent it from returning data
5598		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5599		 *
5600		 * However, if we ignore data in ACKless segments sometimes,
5601		 * we have no reasons to accept it sometimes.
5602		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5603		 * is not flawless. So, discard packet for sanity.
5604		 * Uncomment this return to process the data.
5605		 */
5606		return -1;
5607#else
5608		goto discard;
5609#endif
5610	}
5611	/* "fifth, if neither of the SYN or RST bits is set then
5612	 * drop the segment and return."
5613	 */
5614
5615discard_and_undo:
5616	tcp_clear_options(&tp->rx_opt);
5617	tp->rx_opt.mss_clamp = saved_clamp;
5618	goto discard;
5619
5620reset_and_undo:
5621	tcp_clear_options(&tp->rx_opt);
5622	tp->rx_opt.mss_clamp = saved_clamp;
5623	return 1;
5624}
5625
5626/*
5627 *	This function implements the receiving procedure of RFC 793 for
5628 *	all states except ESTABLISHED and TIME_WAIT.
5629 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5630 *	address independent.
5631 */
5632
5633int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5634			  const struct tcphdr *th, unsigned int len)
5635{
5636	struct tcp_sock *tp = tcp_sk(sk);
5637	struct inet_connection_sock *icsk = inet_csk(sk);
5638	struct request_sock *req;
5639	int queued = 0;
5640	bool acceptable;
5641	u32 synack_stamp;
5642
5643	tp->rx_opt.saw_tstamp = 0;
5644
5645	switch (sk->sk_state) {
5646	case TCP_CLOSE:
5647		goto discard;
5648
5649	case TCP_LISTEN:
5650		if (th->ack)
5651			return 1;
5652
5653		if (th->rst)
5654			goto discard;
5655
5656		if (th->syn) {
5657			if (th->fin)
5658				goto discard;
5659			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5660				return 1;
5661
5662			/* Now we have several options: In theory there is
5663			 * nothing else in the frame. KA9Q has an option to
5664			 * send data with the syn, BSD accepts data with the
5665			 * syn up to the [to be] advertised window and
5666			 * Solaris 2.1 gives you a protocol error. For now
5667			 * we just ignore it, that fits the spec precisely
5668			 * and avoids incompatibilities. It would be nice in
5669			 * future to drop through and process the data.
5670			 *
5671			 * Now that TTCP is starting to be used we ought to
5672			 * queue this data.
5673			 * But, this leaves one open to an easy denial of
5674			 * service attack, and SYN cookies can't defend
5675			 * against this problem. So, we drop the data
5676			 * in the interest of security over speed unless
5677			 * it's still in use.
5678			 */
5679			kfree_skb(skb);
5680			return 0;
5681		}
5682		goto discard;
5683
5684	case TCP_SYN_SENT:
5685		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5686		if (queued >= 0)
5687			return queued;
5688
5689		/* Do step6 onward by hand. */
5690		tcp_urg(sk, skb, th);
5691		__kfree_skb(skb);
5692		tcp_data_snd_check(sk);
5693		return 0;
5694	}
5695
5696	req = tp->fastopen_rsk;
5697	if (req != NULL) {
5698		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5699		    sk->sk_state != TCP_FIN_WAIT1);
5700
5701		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5702			goto discard;
5703	}
5704
5705	if (!th->ack && !th->rst)
5706		goto discard;
5707
5708	if (!tcp_validate_incoming(sk, skb, th, 0))
5709		return 0;
5710
5711	/* step 5: check the ACK field */
5712	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5713				      FLAG_UPDATE_TS_RECENT) > 0;
5714
5715	switch (sk->sk_state) {
5716	case TCP_SYN_RECV:
5717		if (!acceptable)
5718			return 1;
5719
5720		/* Once we leave TCP_SYN_RECV, we no longer need req
5721		 * so release it.
5722		 */
5723		if (req) {
5724			synack_stamp = tcp_rsk(req)->snt_synack;
5725			tp->total_retrans = req->num_retrans;
5726			reqsk_fastopen_remove(sk, req, false);
5727		} else {
5728			synack_stamp = tp->lsndtime;
5729			/* Make sure socket is routed, for correct metrics. */
5730			icsk->icsk_af_ops->rebuild_header(sk);
5731			tcp_init_congestion_control(sk);
5732
5733			tcp_mtup_init(sk);
5734			tp->copied_seq = tp->rcv_nxt;
5735			tcp_init_buffer_space(sk);
5736		}
5737		smp_mb();
5738		tcp_set_state(sk, TCP_ESTABLISHED);
5739		sk->sk_state_change(sk);
5740
5741		/* Note, that this wakeup is only for marginal crossed SYN case.
5742		 * Passively open sockets are not waked up, because
5743		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5744		 */
5745		if (sk->sk_socket)
5746			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5747
5748		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5749		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5750		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5751		tcp_synack_rtt_meas(sk, synack_stamp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5752
5753		if (tp->rx_opt.tstamp_ok)
5754			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5755
5756		if (req) {
5757			/* Re-arm the timer because data may have been sent out.
5758			 * This is similar to the regular data transmission case
5759			 * when new data has just been ack'ed.
5760			 *
5761			 * (TFO) - we could try to be more aggressive and
5762			 * retransmitting any data sooner based on when they
5763			 * are sent out.
5764			 */
5765			tcp_rearm_rto(sk);
5766		} else
5767			tcp_init_metrics(sk);
5768
5769		tcp_update_pacing_rate(sk);
5770
5771		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5772		tp->lsndtime = tcp_time_stamp;
5773
5774		tcp_initialize_rcv_mss(sk);
5775		tcp_fast_path_on(tp);
5776		break;
 
5777
5778	case TCP_FIN_WAIT1: {
5779		struct dst_entry *dst;
5780		int tmo;
5781
5782		/* If we enter the TCP_FIN_WAIT1 state and we are a
5783		 * Fast Open socket and this is the first acceptable
5784		 * ACK we have received, this would have acknowledged
5785		 * our SYNACK so stop the SYNACK timer.
5786		 */
5787		if (req != NULL) {
5788			/* Return RST if ack_seq is invalid.
5789			 * Note that RFC793 only says to generate a
5790			 * DUPACK for it but for TCP Fast Open it seems
5791			 * better to treat this case like TCP_SYN_RECV
5792			 * above.
5793			 */
5794			if (!acceptable)
5795				return 1;
5796			/* We no longer need the request sock. */
5797			reqsk_fastopen_remove(sk, req, false);
5798			tcp_rearm_rto(sk);
5799		}
5800		if (tp->snd_una != tp->write_seq)
5801			break;
5802
5803		tcp_set_state(sk, TCP_FIN_WAIT2);
5804		sk->sk_shutdown |= SEND_SHUTDOWN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5805
5806		dst = __sk_dst_get(sk);
5807		if (dst)
5808			dst_confirm(dst);
5809
5810		if (!sock_flag(sk, SOCK_DEAD)) {
5811			/* Wake up lingering close() */
5812			sk->sk_state_change(sk);
 
 
 
 
 
 
 
 
 
 
5813			break;
5814		}
5815
5816		if (tp->linger2 < 0 ||
5817		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5818		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5819			tcp_done(sk);
5820			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5821			return 1;
5822		}
5823
5824		tmo = tcp_fin_time(sk);
5825		if (tmo > TCP_TIMEWAIT_LEN) {
5826			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5827		} else if (th->fin || sock_owned_by_user(sk)) {
5828			/* Bad case. We could lose such FIN otherwise.
5829			 * It is not a big problem, but it looks confusing
5830			 * and not so rare event. We still can lose it now,
5831			 * if it spins in bh_lock_sock(), but it is really
5832			 * marginal case.
5833			 */
5834			inet_csk_reset_keepalive_timer(sk, tmo);
5835		} else {
5836			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5837			goto discard;
5838		}
5839		break;
5840	}
5841
5842	case TCP_CLOSING:
5843		if (tp->snd_una == tp->write_seq) {
5844			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5845			goto discard;
5846		}
5847		break;
5848
5849	case TCP_LAST_ACK:
5850		if (tp->snd_una == tp->write_seq) {
5851			tcp_update_metrics(sk);
5852			tcp_done(sk);
5853			goto discard;
 
 
5854		}
5855		break;
5856	}
5857
5858	/* step 6: check the URG bit */
5859	tcp_urg(sk, skb, th);
5860
5861	/* step 7: process the segment text */
5862	switch (sk->sk_state) {
5863	case TCP_CLOSE_WAIT:
5864	case TCP_CLOSING:
5865	case TCP_LAST_ACK:
5866		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5867			break;
5868	case TCP_FIN_WAIT1:
5869	case TCP_FIN_WAIT2:
5870		/* RFC 793 says to queue data in these states,
5871		 * RFC 1122 says we MUST send a reset.
5872		 * BSD 4.4 also does reset.
5873		 */
5874		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5875			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5876			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5877				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5878				tcp_reset(sk);
5879				return 1;
5880			}
5881		}
5882		/* Fall through */
5883	case TCP_ESTABLISHED:
5884		tcp_data_queue(sk, skb);
5885		queued = 1;
5886		break;
5887	}
5888
5889	/* tcp_data could move socket to TIME-WAIT */
5890	if (sk->sk_state != TCP_CLOSE) {
5891		tcp_data_snd_check(sk);
5892		tcp_ack_snd_check(sk);
5893	}
5894
5895	if (!queued) {
5896discard:
5897		__kfree_skb(skb);
5898	}
5899	return 0;
5900}
5901EXPORT_SYMBOL(tcp_rcv_state_process);
v3.5.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *		Pedro Roque	:	Fast Retransmit/Recovery.
  24 *					Two receive queues.
  25 *					Retransmit queue handled by TCP.
  26 *					Better retransmit timer handling.
  27 *					New congestion avoidance.
  28 *					Header prediction.
  29 *					Variable renaming.
  30 *
  31 *		Eric		:	Fast Retransmit.
  32 *		Randy Scott	:	MSS option defines.
  33 *		Eric Schenk	:	Fixes to slow start algorithm.
  34 *		Eric Schenk	:	Yet another double ACK bug.
  35 *		Eric Schenk	:	Delayed ACK bug fixes.
  36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  37 *		David S. Miller	:	Don't allow zero congestion window.
  38 *		Eric Schenk	:	Fix retransmitter so that it sends
  39 *					next packet on ack of previous packet.
  40 *		Andi Kleen	:	Moved open_request checking here
  41 *					and process RSTs for open_requests.
  42 *		Andi Kleen	:	Better prune_queue, and other fixes.
  43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  44 *					timestamps.
  45 *		Andrey Savochkin:	Check sequence numbers correctly when
  46 *					removing SACKs due to in sequence incoming
  47 *					data segments.
  48 *		Andi Kleen:		Make sure we never ack data there is not
  49 *					enough room for. Also make this condition
  50 *					a fatal error if it might still happen.
  51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  52 *					connections with MSS<min(MTU,ann. MSS)
  53 *					work without delayed acks.
  54 *		Andi Kleen:		Process packets with PSH set in the
  55 *					fast path.
  56 *		J Hadi Salim:		ECN support
  57 *	 	Andrei Gurtov,
  58 *		Pasi Sarolahti,
  59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  60 *					engine. Lots of bugs are found.
  61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <net/dst.h>
  72#include <net/tcp.h>
  73#include <net/inet_common.h>
  74#include <linux/ipsec.h>
  75#include <asm/unaligned.h>
  76#include <net/netdma.h>
  77
  78int sysctl_tcp_timestamps __read_mostly = 1;
  79int sysctl_tcp_window_scaling __read_mostly = 1;
  80int sysctl_tcp_sack __read_mostly = 1;
  81int sysctl_tcp_fack __read_mostly = 1;
  82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  83EXPORT_SYMBOL(sysctl_tcp_reordering);
  84int sysctl_tcp_ecn __read_mostly = 2;
  85EXPORT_SYMBOL(sysctl_tcp_ecn);
  86int sysctl_tcp_dsack __read_mostly = 1;
  87int sysctl_tcp_app_win __read_mostly = 31;
  88int sysctl_tcp_adv_win_scale __read_mostly = 1;
  89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  90
 
 
 
  91int sysctl_tcp_stdurg __read_mostly;
  92int sysctl_tcp_rfc1337 __read_mostly;
  93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  94int sysctl_tcp_frto __read_mostly = 2;
  95int sysctl_tcp_frto_response __read_mostly;
  96int sysctl_tcp_nometrics_save __read_mostly;
  97
  98int sysctl_tcp_thin_dupack __read_mostly;
  99
 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 101int sysctl_tcp_abc __read_mostly;
 102int sysctl_tcp_early_retrans __read_mostly = 2;
 103
 104#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 105#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 106#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 107#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 108#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 109#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 110#define FLAG_ECE		0x40 /* ECE in this ACK				*/
 111#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 112#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
 113#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 114#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
 115#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
 116#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 
 117
 118#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 119#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 120#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 121#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 122#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
 123
 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 126
 127/* Adapt the MSS value used to make delayed ack decision to the
 128 * real world.
 129 */
 130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 131{
 132	struct inet_connection_sock *icsk = inet_csk(sk);
 133	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 134	unsigned int len;
 135
 136	icsk->icsk_ack.last_seg_size = 0;
 137
 138	/* skb->len may jitter because of SACKs, even if peer
 139	 * sends good full-sized frames.
 140	 */
 141	len = skb_shinfo(skb)->gso_size ? : skb->len;
 142	if (len >= icsk->icsk_ack.rcv_mss) {
 143		icsk->icsk_ack.rcv_mss = len;
 144	} else {
 145		/* Otherwise, we make more careful check taking into account,
 146		 * that SACKs block is variable.
 147		 *
 148		 * "len" is invariant segment length, including TCP header.
 149		 */
 150		len += skb->data - skb_transport_header(skb);
 151		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 152		    /* If PSH is not set, packet should be
 153		     * full sized, provided peer TCP is not badly broken.
 154		     * This observation (if it is correct 8)) allows
 155		     * to handle super-low mtu links fairly.
 156		     */
 157		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 158		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 159			/* Subtract also invariant (if peer is RFC compliant),
 160			 * tcp header plus fixed timestamp option length.
 161			 * Resulting "len" is MSS free of SACK jitter.
 162			 */
 163			len -= tcp_sk(sk)->tcp_header_len;
 164			icsk->icsk_ack.last_seg_size = len;
 165			if (len == lss) {
 166				icsk->icsk_ack.rcv_mss = len;
 167				return;
 168			}
 169		}
 170		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 171			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 172		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 173	}
 174}
 175
 176static void tcp_incr_quickack(struct sock *sk)
 177{
 178	struct inet_connection_sock *icsk = inet_csk(sk);
 179	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 180
 181	if (quickacks == 0)
 182		quickacks = 2;
 183	if (quickacks > icsk->icsk_ack.quick)
 184		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 185}
 186
 187static void tcp_enter_quickack_mode(struct sock *sk)
 188{
 189	struct inet_connection_sock *icsk = inet_csk(sk);
 190	tcp_incr_quickack(sk);
 191	icsk->icsk_ack.pingpong = 0;
 192	icsk->icsk_ack.ato = TCP_ATO_MIN;
 193}
 194
 195/* Send ACKs quickly, if "quick" count is not exhausted
 196 * and the session is not interactive.
 197 */
 198
 199static inline bool tcp_in_quickack_mode(const struct sock *sk)
 200{
 201	const struct inet_connection_sock *icsk = inet_csk(sk);
 202
 203	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
 204}
 205
 206static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
 207{
 208	if (tp->ecn_flags & TCP_ECN_OK)
 209		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 210}
 211
 212static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 213{
 214	if (tcp_hdr(skb)->cwr)
 215		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 216}
 217
 218static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
 219{
 220	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 221}
 222
 223static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 224{
 225	if (!(tp->ecn_flags & TCP_ECN_OK))
 226		return;
 227
 228	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 229	case INET_ECN_NOT_ECT:
 230		/* Funny extension: if ECT is not set on a segment,
 231		 * and we already seen ECT on a previous segment,
 232		 * it is probably a retransmit.
 233		 */
 234		if (tp->ecn_flags & TCP_ECN_SEEN)
 235			tcp_enter_quickack_mode((struct sock *)tp);
 236		break;
 237	case INET_ECN_CE:
 238		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 
 
 
 
 239		/* fallinto */
 240	default:
 241		tp->ecn_flags |= TCP_ECN_SEEN;
 242	}
 243}
 244
 245static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 246{
 247	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 248		tp->ecn_flags &= ~TCP_ECN_OK;
 249}
 250
 251static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 252{
 253	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 254		tp->ecn_flags &= ~TCP_ECN_OK;
 255}
 256
 257static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 258{
 259	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 260		return true;
 261	return false;
 262}
 263
 264/* Buffer size and advertised window tuning.
 265 *
 266 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 267 */
 268
 269static void tcp_fixup_sndbuf(struct sock *sk)
 270{
 271	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272
 273	sndmem *= TCP_INIT_CWND;
 274	if (sk->sk_sndbuf < sndmem)
 275		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 276}
 277
 278/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 279 *
 280 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 281 * forward and advertised in receiver window (tp->rcv_wnd) and
 282 * "application buffer", required to isolate scheduling/application
 283 * latencies from network.
 284 * window_clamp is maximal advertised window. It can be less than
 285 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 286 * is reserved for "application" buffer. The less window_clamp is
 287 * the smoother our behaviour from viewpoint of network, but the lower
 288 * throughput and the higher sensitivity of the connection to losses. 8)
 289 *
 290 * rcv_ssthresh is more strict window_clamp used at "slow start"
 291 * phase to predict further behaviour of this connection.
 292 * It is used for two goals:
 293 * - to enforce header prediction at sender, even when application
 294 *   requires some significant "application buffer". It is check #1.
 295 * - to prevent pruning of receive queue because of misprediction
 296 *   of receiver window. Check #2.
 297 *
 298 * The scheme does not work when sender sends good segments opening
 299 * window and then starts to feed us spaghetti. But it should work
 300 * in common situations. Otherwise, we have to rely on queue collapsing.
 301 */
 302
 303/* Slow part of check#2. */
 304static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 305{
 306	struct tcp_sock *tp = tcp_sk(sk);
 307	/* Optimize this! */
 308	int truesize = tcp_win_from_space(skb->truesize) >> 1;
 309	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 310
 311	while (tp->rcv_ssthresh <= window) {
 312		if (truesize <= skb->len)
 313			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 314
 315		truesize >>= 1;
 316		window >>= 1;
 317	}
 318	return 0;
 319}
 320
 321static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 322{
 323	struct tcp_sock *tp = tcp_sk(sk);
 324
 325	/* Check #1 */
 326	if (tp->rcv_ssthresh < tp->window_clamp &&
 327	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 328	    !sk_under_memory_pressure(sk)) {
 329		int incr;
 330
 331		/* Check #2. Increase window, if skb with such overhead
 332		 * will fit to rcvbuf in future.
 333		 */
 334		if (tcp_win_from_space(skb->truesize) <= skb->len)
 335			incr = 2 * tp->advmss;
 336		else
 337			incr = __tcp_grow_window(sk, skb);
 338
 339		if (incr) {
 340			incr = max_t(int, incr, 2 * skb->len);
 341			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 342					       tp->window_clamp);
 343			inet_csk(sk)->icsk_ack.quick |= 1;
 344		}
 345	}
 346}
 347
 348/* 3. Tuning rcvbuf, when connection enters established state. */
 349
 350static void tcp_fixup_rcvbuf(struct sock *sk)
 351{
 352	u32 mss = tcp_sk(sk)->advmss;
 353	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
 354	int rcvmem;
 355
 356	/* Limit to 10 segments if mss <= 1460,
 357	 * or 14600/mss segments, with a minimum of two segments.
 
 
 
 358	 */
 359	if (mss > 1460)
 360		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
 361
 362	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
 363	while (tcp_win_from_space(rcvmem) < mss)
 364		rcvmem += 128;
 365
 366	rcvmem *= icwnd;
 367
 368	if (sk->sk_rcvbuf < rcvmem)
 369		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 370}
 371
 372/* 4. Try to fixup all. It is made immediately after connection enters
 373 *    established state.
 374 */
 375static void tcp_init_buffer_space(struct sock *sk)
 376{
 377	struct tcp_sock *tp = tcp_sk(sk);
 378	int maxwin;
 379
 380	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 381		tcp_fixup_rcvbuf(sk);
 382	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 383		tcp_fixup_sndbuf(sk);
 384
 385	tp->rcvq_space.space = tp->rcv_wnd;
 
 
 386
 387	maxwin = tcp_full_space(sk);
 388
 389	if (tp->window_clamp >= maxwin) {
 390		tp->window_clamp = maxwin;
 391
 392		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 393			tp->window_clamp = max(maxwin -
 394					       (maxwin >> sysctl_tcp_app_win),
 395					       4 * tp->advmss);
 396	}
 397
 398	/* Force reservation of one segment. */
 399	if (sysctl_tcp_app_win &&
 400	    tp->window_clamp > 2 * tp->advmss &&
 401	    tp->window_clamp + tp->advmss > maxwin)
 402		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 403
 404	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 405	tp->snd_cwnd_stamp = tcp_time_stamp;
 406}
 407
 408/* 5. Recalculate window clamp after socket hit its memory bounds. */
 409static void tcp_clamp_window(struct sock *sk)
 410{
 411	struct tcp_sock *tp = tcp_sk(sk);
 412	struct inet_connection_sock *icsk = inet_csk(sk);
 413
 414	icsk->icsk_ack.quick = 0;
 415
 416	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 417	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 418	    !sk_under_memory_pressure(sk) &&
 419	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 420		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 421				    sysctl_tcp_rmem[2]);
 422	}
 423	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 424		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 425}
 426
 427/* Initialize RCV_MSS value.
 428 * RCV_MSS is an our guess about MSS used by the peer.
 429 * We haven't any direct information about the MSS.
 430 * It's better to underestimate the RCV_MSS rather than overestimate.
 431 * Overestimations make us ACKing less frequently than needed.
 432 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 433 */
 434void tcp_initialize_rcv_mss(struct sock *sk)
 435{
 436	const struct tcp_sock *tp = tcp_sk(sk);
 437	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 438
 439	hint = min(hint, tp->rcv_wnd / 2);
 440	hint = min(hint, TCP_MSS_DEFAULT);
 441	hint = max(hint, TCP_MIN_MSS);
 442
 443	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 444}
 445EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 446
 447/* Receiver "autotuning" code.
 448 *
 449 * The algorithm for RTT estimation w/o timestamps is based on
 450 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 451 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 452 *
 453 * More detail on this code can be found at
 454 * <http://staff.psc.edu/jheffner/>,
 455 * though this reference is out of date.  A new paper
 456 * is pending.
 457 */
 458static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 459{
 460	u32 new_sample = tp->rcv_rtt_est.rtt;
 461	long m = sample;
 462
 463	if (m == 0)
 464		m = 1;
 465
 466	if (new_sample != 0) {
 467		/* If we sample in larger samples in the non-timestamp
 468		 * case, we could grossly overestimate the RTT especially
 469		 * with chatty applications or bulk transfer apps which
 470		 * are stalled on filesystem I/O.
 471		 *
 472		 * Also, since we are only going for a minimum in the
 473		 * non-timestamp case, we do not smooth things out
 474		 * else with timestamps disabled convergence takes too
 475		 * long.
 476		 */
 477		if (!win_dep) {
 478			m -= (new_sample >> 3);
 479			new_sample += m;
 480		} else {
 481			m <<= 3;
 482			if (m < new_sample)
 483				new_sample = m;
 484		}
 485	} else {
 486		/* No previous measure. */
 487		new_sample = m << 3;
 488	}
 489
 490	if (tp->rcv_rtt_est.rtt != new_sample)
 491		tp->rcv_rtt_est.rtt = new_sample;
 492}
 493
 494static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 495{
 496	if (tp->rcv_rtt_est.time == 0)
 497		goto new_measure;
 498	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 499		return;
 500	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 501
 502new_measure:
 503	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 504	tp->rcv_rtt_est.time = tcp_time_stamp;
 505}
 506
 507static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 508					  const struct sk_buff *skb)
 509{
 510	struct tcp_sock *tp = tcp_sk(sk);
 511	if (tp->rx_opt.rcv_tsecr &&
 512	    (TCP_SKB_CB(skb)->end_seq -
 513	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 514		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 515}
 516
 517/*
 518 * This function should be called every time data is copied to user space.
 519 * It calculates the appropriate TCP receive buffer space.
 520 */
 521void tcp_rcv_space_adjust(struct sock *sk)
 522{
 523	struct tcp_sock *tp = tcp_sk(sk);
 524	int time;
 525	int space;
 526
 527	if (tp->rcvq_space.time == 0)
 528		goto new_measure;
 529
 530	time = tcp_time_stamp - tp->rcvq_space.time;
 531	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 532		return;
 533
 534	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
 
 
 
 535
 536	space = max(tp->rcvq_space.space, space);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537
 538	if (tp->rcvq_space.space != space) {
 539		int rcvmem;
 
 540
 541		tp->rcvq_space.space = space;
 542
 543		if (sysctl_tcp_moderate_rcvbuf &&
 544		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 545			int new_clamp = space;
 546
 547			/* Receive space grows, normalize in order to
 548			 * take into account packet headers and sk_buff
 549			 * structure overhead.
 550			 */
 551			space /= tp->advmss;
 552			if (!space)
 553				space = 1;
 554			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 555			while (tcp_win_from_space(rcvmem) < tp->advmss)
 556				rcvmem += 128;
 557			space *= rcvmem;
 558			space = min(space, sysctl_tcp_rmem[2]);
 559			if (space > sk->sk_rcvbuf) {
 560				sk->sk_rcvbuf = space;
 561
 562				/* Make the window clamp follow along.  */
 563				tp->window_clamp = new_clamp;
 564			}
 565		}
 566	}
 
 567
 568new_measure:
 569	tp->rcvq_space.seq = tp->copied_seq;
 570	tp->rcvq_space.time = tcp_time_stamp;
 571}
 572
 573/* There is something which you must keep in mind when you analyze the
 574 * behavior of the tp->ato delayed ack timeout interval.  When a
 575 * connection starts up, we want to ack as quickly as possible.  The
 576 * problem is that "good" TCP's do slow start at the beginning of data
 577 * transmission.  The means that until we send the first few ACK's the
 578 * sender will sit on his end and only queue most of his data, because
 579 * he can only send snd_cwnd unacked packets at any given time.  For
 580 * each ACK we send, he increments snd_cwnd and transmits more of his
 581 * queue.  -DaveM
 582 */
 583static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 584{
 585	struct tcp_sock *tp = tcp_sk(sk);
 586	struct inet_connection_sock *icsk = inet_csk(sk);
 587	u32 now;
 588
 589	inet_csk_schedule_ack(sk);
 590
 591	tcp_measure_rcv_mss(sk, skb);
 592
 593	tcp_rcv_rtt_measure(tp);
 594
 595	now = tcp_time_stamp;
 596
 597	if (!icsk->icsk_ack.ato) {
 598		/* The _first_ data packet received, initialize
 599		 * delayed ACK engine.
 600		 */
 601		tcp_incr_quickack(sk);
 602		icsk->icsk_ack.ato = TCP_ATO_MIN;
 603	} else {
 604		int m = now - icsk->icsk_ack.lrcvtime;
 605
 606		if (m <= TCP_ATO_MIN / 2) {
 607			/* The fastest case is the first. */
 608			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 609		} else if (m < icsk->icsk_ack.ato) {
 610			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 611			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 612				icsk->icsk_ack.ato = icsk->icsk_rto;
 613		} else if (m > icsk->icsk_rto) {
 614			/* Too long gap. Apparently sender failed to
 615			 * restart window, so that we send ACKs quickly.
 616			 */
 617			tcp_incr_quickack(sk);
 618			sk_mem_reclaim(sk);
 619		}
 620	}
 621	icsk->icsk_ack.lrcvtime = now;
 622
 623	TCP_ECN_check_ce(tp, skb);
 624
 625	if (skb->len >= 128)
 626		tcp_grow_window(sk, skb);
 627}
 628
 629/* Called to compute a smoothed rtt estimate. The data fed to this
 630 * routine either comes from timestamps, or from segments that were
 631 * known _not_ to have been retransmitted [see Karn/Partridge
 632 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 633 * piece by Van Jacobson.
 634 * NOTE: the next three routines used to be one big routine.
 635 * To save cycles in the RFC 1323 implementation it was better to break
 636 * it up into three procedures. -- erics
 637 */
 638static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
 639{
 640	struct tcp_sock *tp = tcp_sk(sk);
 641	long m = mrtt; /* RTT */
 
 642
 643	/*	The following amusing code comes from Jacobson's
 644	 *	article in SIGCOMM '88.  Note that rtt and mdev
 645	 *	are scaled versions of rtt and mean deviation.
 646	 *	This is designed to be as fast as possible
 647	 *	m stands for "measurement".
 648	 *
 649	 *	On a 1990 paper the rto value is changed to:
 650	 *	RTO = rtt + 4 * mdev
 651	 *
 652	 * Funny. This algorithm seems to be very broken.
 653	 * These formulae increase RTO, when it should be decreased, increase
 654	 * too slowly, when it should be increased quickly, decrease too quickly
 655	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 656	 * does not matter how to _calculate_ it. Seems, it was trap
 657	 * that VJ failed to avoid. 8)
 658	 */
 659	if (m == 0)
 660		m = 1;
 661	if (tp->srtt != 0) {
 662		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
 663		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 664		if (m < 0) {
 665			m = -m;		/* m is now abs(error) */
 666			m -= (tp->mdev >> 2);   /* similar update on mdev */
 667			/* This is similar to one of Eifel findings.
 668			 * Eifel blocks mdev updates when rtt decreases.
 669			 * This solution is a bit different: we use finer gain
 670			 * for mdev in this case (alpha*beta).
 671			 * Like Eifel it also prevents growth of rto,
 672			 * but also it limits too fast rto decreases,
 673			 * happening in pure Eifel.
 674			 */
 675			if (m > 0)
 676				m >>= 3;
 677		} else {
 678			m -= (tp->mdev >> 2);   /* similar update on mdev */
 679		}
 680		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
 681		if (tp->mdev > tp->mdev_max) {
 682			tp->mdev_max = tp->mdev;
 683			if (tp->mdev_max > tp->rttvar)
 684				tp->rttvar = tp->mdev_max;
 685		}
 686		if (after(tp->snd_una, tp->rtt_seq)) {
 687			if (tp->mdev_max < tp->rttvar)
 688				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
 689			tp->rtt_seq = tp->snd_nxt;
 690			tp->mdev_max = tcp_rto_min(sk);
 691		}
 692	} else {
 693		/* no previous measure. */
 694		tp->srtt = m << 3;	/* take the measured time to be rtt */
 695		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
 696		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 
 697		tp->rtt_seq = tp->snd_nxt;
 698	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699}
 700
 701/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 702 * routine referred to above.
 703 */
 704static inline void tcp_set_rto(struct sock *sk)
 705{
 706	const struct tcp_sock *tp = tcp_sk(sk);
 707	/* Old crap is replaced with new one. 8)
 708	 *
 709	 * More seriously:
 710	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 711	 *    It cannot be less due to utterly erratic ACK generation made
 712	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 713	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 714	 *    is invisible. Actually, Linux-2.4 also generates erratic
 715	 *    ACKs in some circumstances.
 716	 */
 717	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 718
 719	/* 2. Fixups made earlier cannot be right.
 720	 *    If we do not estimate RTO correctly without them,
 721	 *    all the algo is pure shit and should be replaced
 722	 *    with correct one. It is exactly, which we pretend to do.
 723	 */
 724
 725	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 726	 * guarantees that rto is higher.
 727	 */
 728	tcp_bound_rto(sk);
 729}
 730
 731/* Save metrics learned by this TCP session.
 732   This function is called only, when TCP finishes successfully
 733   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
 734 */
 735void tcp_update_metrics(struct sock *sk)
 736{
 737	struct tcp_sock *tp = tcp_sk(sk);
 738	struct dst_entry *dst = __sk_dst_get(sk);
 739
 740	if (sysctl_tcp_nometrics_save)
 741		return;
 742
 743	dst_confirm(dst);
 744
 745	if (dst && (dst->flags & DST_HOST)) {
 746		const struct inet_connection_sock *icsk = inet_csk(sk);
 747		int m;
 748		unsigned long rtt;
 749
 750		if (icsk->icsk_backoff || !tp->srtt) {
 751			/* This session failed to estimate rtt. Why?
 752			 * Probably, no packets returned in time.
 753			 * Reset our results.
 754			 */
 755			if (!(dst_metric_locked(dst, RTAX_RTT)))
 756				dst_metric_set(dst, RTAX_RTT, 0);
 757			return;
 758		}
 759
 760		rtt = dst_metric_rtt(dst, RTAX_RTT);
 761		m = rtt - tp->srtt;
 762
 763		/* If newly calculated rtt larger than stored one,
 764		 * store new one. Otherwise, use EWMA. Remember,
 765		 * rtt overestimation is always better than underestimation.
 766		 */
 767		if (!(dst_metric_locked(dst, RTAX_RTT))) {
 768			if (m <= 0)
 769				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
 770			else
 771				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
 772		}
 773
 774		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
 775			unsigned long var;
 776			if (m < 0)
 777				m = -m;
 778
 779			/* Scale deviation to rttvar fixed point */
 780			m >>= 1;
 781			if (m < tp->mdev)
 782				m = tp->mdev;
 783
 784			var = dst_metric_rtt(dst, RTAX_RTTVAR);
 785			if (m >= var)
 786				var = m;
 787			else
 788				var -= (var - m) >> 2;
 789
 790			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
 791		}
 792
 793		if (tcp_in_initial_slowstart(tp)) {
 794			/* Slow start still did not finish. */
 795			if (dst_metric(dst, RTAX_SSTHRESH) &&
 796			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 797			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
 798				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
 799			if (!dst_metric_locked(dst, RTAX_CWND) &&
 800			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
 801				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
 802		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
 803			   icsk->icsk_ca_state == TCP_CA_Open) {
 804			/* Cong. avoidance phase, cwnd is reliable. */
 805			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
 806				dst_metric_set(dst, RTAX_SSTHRESH,
 807					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
 808			if (!dst_metric_locked(dst, RTAX_CWND))
 809				dst_metric_set(dst, RTAX_CWND,
 810					       (dst_metric(dst, RTAX_CWND) +
 811						tp->snd_cwnd) >> 1);
 812		} else {
 813			/* Else slow start did not finish, cwnd is non-sense,
 814			   ssthresh may be also invalid.
 815			 */
 816			if (!dst_metric_locked(dst, RTAX_CWND))
 817				dst_metric_set(dst, RTAX_CWND,
 818					       (dst_metric(dst, RTAX_CWND) +
 819						tp->snd_ssthresh) >> 1);
 820			if (dst_metric(dst, RTAX_SSTHRESH) &&
 821			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 822			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
 823				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
 824		}
 825
 826		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
 827			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
 828			    tp->reordering != sysctl_tcp_reordering)
 829				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
 830		}
 831	}
 832}
 833
 834__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 835{
 836	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 837
 838	if (!cwnd)
 839		cwnd = TCP_INIT_CWND;
 840	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 841}
 842
 843/* Set slow start threshold and cwnd not falling to slow start */
 844void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
 845{
 846	struct tcp_sock *tp = tcp_sk(sk);
 847	const struct inet_connection_sock *icsk = inet_csk(sk);
 848
 849	tp->prior_ssthresh = 0;
 850	tp->bytes_acked = 0;
 851	if (icsk->icsk_ca_state < TCP_CA_CWR) {
 852		tp->undo_marker = 0;
 853		if (set_ssthresh)
 854			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
 855		tp->snd_cwnd = min(tp->snd_cwnd,
 856				   tcp_packets_in_flight(tp) + 1U);
 857		tp->snd_cwnd_cnt = 0;
 858		tp->high_seq = tp->snd_nxt;
 859		tp->snd_cwnd_stamp = tcp_time_stamp;
 860		TCP_ECN_queue_cwr(tp);
 861
 862		tcp_set_ca_state(sk, TCP_CA_CWR);
 863	}
 864}
 865
 866/*
 867 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 868 * disables it when reordering is detected
 869 */
 870static void tcp_disable_fack(struct tcp_sock *tp)
 871{
 872	/* RFC3517 uses different metric in lost marker => reset on change */
 873	if (tcp_is_fack(tp))
 874		tp->lost_skb_hint = NULL;
 875	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 876}
 877
 878/* Take a notice that peer is sending D-SACKs */
 879static void tcp_dsack_seen(struct tcp_sock *tp)
 880{
 881	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 882}
 883
 884/* Initialize metrics on socket. */
 885
 886static void tcp_init_metrics(struct sock *sk)
 887{
 888	struct tcp_sock *tp = tcp_sk(sk);
 889	struct dst_entry *dst = __sk_dst_get(sk);
 890
 891	if (dst == NULL)
 892		goto reset;
 893
 894	dst_confirm(dst);
 895
 896	if (dst_metric_locked(dst, RTAX_CWND))
 897		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
 898	if (dst_metric(dst, RTAX_SSTHRESH)) {
 899		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
 900		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
 901			tp->snd_ssthresh = tp->snd_cwnd_clamp;
 902	} else {
 903		/* ssthresh may have been reduced unnecessarily during.
 904		 * 3WHS. Restore it back to its initial default.
 905		 */
 906		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 907	}
 908	if (dst_metric(dst, RTAX_REORDERING) &&
 909	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
 910		tcp_disable_fack(tp);
 911		tcp_disable_early_retrans(tp);
 912		tp->reordering = dst_metric(dst, RTAX_REORDERING);
 913	}
 914
 915	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
 916		goto reset;
 917
 918	/* Initial rtt is determined from SYN,SYN-ACK.
 919	 * The segment is small and rtt may appear much
 920	 * less than real one. Use per-dst memory
 921	 * to make it more realistic.
 922	 *
 923	 * A bit of theory. RTT is time passed after "normal" sized packet
 924	 * is sent until it is ACKed. In normal circumstances sending small
 925	 * packets force peer to delay ACKs and calculation is correct too.
 926	 * The algorithm is adaptive and, provided we follow specs, it
 927	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
 928	 * tricks sort of "quick acks" for time long enough to decrease RTT
 929	 * to low value, and then abruptly stops to do it and starts to delay
 930	 * ACKs, wait for troubles.
 931	 */
 932	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
 933		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
 934		tp->rtt_seq = tp->snd_nxt;
 935	}
 936	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
 937		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
 938		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 939	}
 940	tcp_set_rto(sk);
 941reset:
 942	if (tp->srtt == 0) {
 943		/* RFC6298: 5.7 We've failed to get a valid RTT sample from
 944		 * 3WHS. This is most likely due to retransmission,
 945		 * including spurious one. Reset the RTO back to 3secs
 946		 * from the more aggressive 1sec to avoid more spurious
 947		 * retransmission.
 948		 */
 949		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
 950		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
 951	}
 952	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
 953	 * retransmitted. In light of RFC6298 more aggressive 1sec
 954	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
 955	 * retransmission has occurred.
 956	 */
 957	if (tp->total_retrans > 1)
 958		tp->snd_cwnd = 1;
 959	else
 960		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
 961	tp->snd_cwnd_stamp = tcp_time_stamp;
 962}
 963
 964static void tcp_update_reordering(struct sock *sk, const int metric,
 965				  const int ts)
 966{
 967	struct tcp_sock *tp = tcp_sk(sk);
 968	if (metric > tp->reordering) {
 969		int mib_idx;
 970
 971		tp->reordering = min(TCP_MAX_REORDERING, metric);
 972
 973		/* This exciting event is worth to be remembered. 8) */
 974		if (ts)
 975			mib_idx = LINUX_MIB_TCPTSREORDER;
 976		else if (tcp_is_reno(tp))
 977			mib_idx = LINUX_MIB_TCPRENOREORDER;
 978		else if (tcp_is_fack(tp))
 979			mib_idx = LINUX_MIB_TCPFACKREORDER;
 980		else
 981			mib_idx = LINUX_MIB_TCPSACKREORDER;
 982
 983		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 984#if FASTRETRANS_DEBUG > 1
 985		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 986			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 987			 tp->reordering,
 988			 tp->fackets_out,
 989			 tp->sacked_out,
 990			 tp->undo_marker ? tp->undo_retrans : 0);
 991#endif
 992		tcp_disable_fack(tp);
 993	}
 994
 995	if (metric > 0)
 996		tcp_disable_early_retrans(tp);
 997}
 998
 999/* This must be called before lost_out is incremented */
1000static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1001{
1002	if ((tp->retransmit_skb_hint == NULL) ||
1003	    before(TCP_SKB_CB(skb)->seq,
1004		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1005		tp->retransmit_skb_hint = skb;
1006
1007	if (!tp->lost_out ||
1008	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1009		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1010}
1011
1012static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1013{
1014	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1015		tcp_verify_retransmit_hint(tp, skb);
1016
1017		tp->lost_out += tcp_skb_pcount(skb);
1018		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019	}
1020}
1021
1022static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1023					    struct sk_buff *skb)
1024{
1025	tcp_verify_retransmit_hint(tp, skb);
1026
1027	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1028		tp->lost_out += tcp_skb_pcount(skb);
1029		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1030	}
1031}
1032
1033/* This procedure tags the retransmission queue when SACKs arrive.
1034 *
1035 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1036 * Packets in queue with these bits set are counted in variables
1037 * sacked_out, retrans_out and lost_out, correspondingly.
1038 *
1039 * Valid combinations are:
1040 * Tag  InFlight	Description
1041 * 0	1		- orig segment is in flight.
1042 * S	0		- nothing flies, orig reached receiver.
1043 * L	0		- nothing flies, orig lost by net.
1044 * R	2		- both orig and retransmit are in flight.
1045 * L|R	1		- orig is lost, retransmit is in flight.
1046 * S|R  1		- orig reached receiver, retrans is still in flight.
1047 * (L|S|R is logically valid, it could occur when L|R is sacked,
1048 *  but it is equivalent to plain S and code short-curcuits it to S.
1049 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1050 *
1051 * These 6 states form finite state machine, controlled by the following events:
1052 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1053 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1054 * 3. Loss detection event of two flavors:
1055 *	A. Scoreboard estimator decided the packet is lost.
1056 *	   A'. Reno "three dupacks" marks head of queue lost.
1057 *	   A''. Its FACK modification, head until snd.fack is lost.
1058 *	B. SACK arrives sacking SND.NXT at the moment, when the
1059 *	   segment was retransmitted.
1060 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1061 *
1062 * It is pleasant to note, that state diagram turns out to be commutative,
1063 * so that we are allowed not to be bothered by order of our actions,
1064 * when multiple events arrive simultaneously. (see the function below).
1065 *
1066 * Reordering detection.
1067 * --------------------
1068 * Reordering metric is maximal distance, which a packet can be displaced
1069 * in packet stream. With SACKs we can estimate it:
1070 *
1071 * 1. SACK fills old hole and the corresponding segment was not
1072 *    ever retransmitted -> reordering. Alas, we cannot use it
1073 *    when segment was retransmitted.
1074 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1075 *    for retransmitted and already SACKed segment -> reordering..
1076 * Both of these heuristics are not used in Loss state, when we cannot
1077 * account for retransmits accurately.
1078 *
1079 * SACK block validation.
1080 * ----------------------
1081 *
1082 * SACK block range validation checks that the received SACK block fits to
1083 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1084 * Note that SND.UNA is not included to the range though being valid because
1085 * it means that the receiver is rather inconsistent with itself reporting
1086 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1087 * perfectly valid, however, in light of RFC2018 which explicitly states
1088 * that "SACK block MUST reflect the newest segment.  Even if the newest
1089 * segment is going to be discarded ...", not that it looks very clever
1090 * in case of head skb. Due to potentional receiver driven attacks, we
1091 * choose to avoid immediate execution of a walk in write queue due to
1092 * reneging and defer head skb's loss recovery to standard loss recovery
1093 * procedure that will eventually trigger (nothing forbids us doing this).
1094 *
1095 * Implements also blockage to start_seq wrap-around. Problem lies in the
1096 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1097 * there's no guarantee that it will be before snd_nxt (n). The problem
1098 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1099 * wrap (s_w):
1100 *
1101 *         <- outs wnd ->                          <- wrapzone ->
1102 *         u     e      n                         u_w   e_w  s n_w
1103 *         |     |      |                          |     |   |  |
1104 * |<------------+------+----- TCP seqno space --------------+---------->|
1105 * ...-- <2^31 ->|                                           |<--------...
1106 * ...---- >2^31 ------>|                                    |<--------...
1107 *
1108 * Current code wouldn't be vulnerable but it's better still to discard such
1109 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1110 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1111 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1112 * equal to the ideal case (infinite seqno space without wrap caused issues).
1113 *
1114 * With D-SACK the lower bound is extended to cover sequence space below
1115 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1116 * again, D-SACK block must not to go across snd_una (for the same reason as
1117 * for the normal SACK blocks, explained above). But there all simplicity
1118 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1119 * fully below undo_marker they do not affect behavior in anyway and can
1120 * therefore be safely ignored. In rare cases (which are more or less
1121 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1122 * fragmentation and packet reordering past skb's retransmission. To consider
1123 * them correctly, the acceptable range must be extended even more though
1124 * the exact amount is rather hard to quantify. However, tp->max_window can
1125 * be used as an exaggerated estimate.
1126 */
1127static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1128				   u32 start_seq, u32 end_seq)
1129{
1130	/* Too far in future, or reversed (interpretation is ambiguous) */
1131	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1132		return false;
1133
1134	/* Nasty start_seq wrap-around check (see comments above) */
1135	if (!before(start_seq, tp->snd_nxt))
1136		return false;
1137
1138	/* In outstanding window? ...This is valid exit for D-SACKs too.
1139	 * start_seq == snd_una is non-sensical (see comments above)
1140	 */
1141	if (after(start_seq, tp->snd_una))
1142		return true;
1143
1144	if (!is_dsack || !tp->undo_marker)
1145		return false;
1146
1147	/* ...Then it's D-SACK, and must reside below snd_una completely */
1148	if (after(end_seq, tp->snd_una))
1149		return false;
1150
1151	if (!before(start_seq, tp->undo_marker))
1152		return true;
1153
1154	/* Too old */
1155	if (!after(end_seq, tp->undo_marker))
1156		return false;
1157
1158	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1159	 *   start_seq < undo_marker and end_seq >= undo_marker.
1160	 */
1161	return !before(start_seq, end_seq - tp->max_window);
1162}
1163
1164/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1165 * Event "B". Later note: FACK people cheated me again 8), we have to account
1166 * for reordering! Ugly, but should help.
1167 *
1168 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1169 * less than what is now known to be received by the other end (derived from
1170 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1171 * retransmitted skbs to avoid some costly processing per ACKs.
1172 */
1173static void tcp_mark_lost_retrans(struct sock *sk)
1174{
1175	const struct inet_connection_sock *icsk = inet_csk(sk);
1176	struct tcp_sock *tp = tcp_sk(sk);
1177	struct sk_buff *skb;
1178	int cnt = 0;
1179	u32 new_low_seq = tp->snd_nxt;
1180	u32 received_upto = tcp_highest_sack_seq(tp);
1181
1182	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1183	    !after(received_upto, tp->lost_retrans_low) ||
1184	    icsk->icsk_ca_state != TCP_CA_Recovery)
1185		return;
1186
1187	tcp_for_write_queue(skb, sk) {
1188		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1189
1190		if (skb == tcp_send_head(sk))
1191			break;
1192		if (cnt == tp->retrans_out)
1193			break;
1194		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1195			continue;
1196
1197		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1198			continue;
1199
1200		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1201		 * constraint here (see above) but figuring out that at
1202		 * least tp->reordering SACK blocks reside between ack_seq
1203		 * and received_upto is not easy task to do cheaply with
1204		 * the available datastructures.
1205		 *
1206		 * Whether FACK should check here for tp->reordering segs
1207		 * in-between one could argue for either way (it would be
1208		 * rather simple to implement as we could count fack_count
1209		 * during the walk and do tp->fackets_out - fack_count).
1210		 */
1211		if (after(received_upto, ack_seq)) {
1212			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1213			tp->retrans_out -= tcp_skb_pcount(skb);
1214
1215			tcp_skb_mark_lost_uncond_verify(tp, skb);
1216			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1217		} else {
1218			if (before(ack_seq, new_low_seq))
1219				new_low_seq = ack_seq;
1220			cnt += tcp_skb_pcount(skb);
1221		}
1222	}
1223
1224	if (tp->retrans_out)
1225		tp->lost_retrans_low = new_low_seq;
1226}
1227
1228static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1229			    struct tcp_sack_block_wire *sp, int num_sacks,
1230			    u32 prior_snd_una)
1231{
1232	struct tcp_sock *tp = tcp_sk(sk);
1233	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1234	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1235	bool dup_sack = false;
1236
1237	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1238		dup_sack = true;
1239		tcp_dsack_seen(tp);
1240		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1241	} else if (num_sacks > 1) {
1242		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1243		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1244
1245		if (!after(end_seq_0, end_seq_1) &&
1246		    !before(start_seq_0, start_seq_1)) {
1247			dup_sack = true;
1248			tcp_dsack_seen(tp);
1249			NET_INC_STATS_BH(sock_net(sk),
1250					LINUX_MIB_TCPDSACKOFORECV);
1251		}
1252	}
1253
1254	/* D-SACK for already forgotten data... Do dumb counting. */
1255	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1256	    !after(end_seq_0, prior_snd_una) &&
1257	    after(end_seq_0, tp->undo_marker))
1258		tp->undo_retrans--;
1259
1260	return dup_sack;
1261}
1262
1263struct tcp_sacktag_state {
1264	int reord;
1265	int fack_count;
1266	int flag;
 
1267};
1268
1269/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1270 * the incoming SACK may not exactly match but we can find smaller MSS
1271 * aligned portion of it that matches. Therefore we might need to fragment
1272 * which may fail and creates some hassle (caller must handle error case
1273 * returns).
1274 *
1275 * FIXME: this could be merged to shift decision code
1276 */
1277static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1278				  u32 start_seq, u32 end_seq)
1279{
1280	int err;
1281	bool in_sack;
1282	unsigned int pkt_len;
1283	unsigned int mss;
1284
1285	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1286		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1287
1288	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1289	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1290		mss = tcp_skb_mss(skb);
1291		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1292
1293		if (!in_sack) {
1294			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1295			if (pkt_len < mss)
1296				pkt_len = mss;
1297		} else {
1298			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1299			if (pkt_len < mss)
1300				return -EINVAL;
1301		}
1302
1303		/* Round if necessary so that SACKs cover only full MSSes
1304		 * and/or the remaining small portion (if present)
1305		 */
1306		if (pkt_len > mss) {
1307			unsigned int new_len = (pkt_len / mss) * mss;
1308			if (!in_sack && new_len < pkt_len) {
1309				new_len += mss;
1310				if (new_len > skb->len)
1311					return 0;
1312			}
1313			pkt_len = new_len;
1314		}
1315		err = tcp_fragment(sk, skb, pkt_len, mss);
1316		if (err < 0)
1317			return err;
1318	}
1319
1320	return in_sack;
1321}
1322
1323/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1324static u8 tcp_sacktag_one(struct sock *sk,
1325			  struct tcp_sacktag_state *state, u8 sacked,
1326			  u32 start_seq, u32 end_seq,
1327			  bool dup_sack, int pcount)
 
1328{
1329	struct tcp_sock *tp = tcp_sk(sk);
1330	int fack_count = state->fack_count;
1331
1332	/* Account D-SACK for retransmitted packet. */
1333	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1334		if (tp->undo_marker && tp->undo_retrans &&
1335		    after(end_seq, tp->undo_marker))
1336			tp->undo_retrans--;
1337		if (sacked & TCPCB_SACKED_ACKED)
1338			state->reord = min(fack_count, state->reord);
1339	}
1340
1341	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1342	if (!after(end_seq, tp->snd_una))
1343		return sacked;
1344
1345	if (!(sacked & TCPCB_SACKED_ACKED)) {
1346		if (sacked & TCPCB_SACKED_RETRANS) {
1347			/* If the segment is not tagged as lost,
1348			 * we do not clear RETRANS, believing
1349			 * that retransmission is still in flight.
1350			 */
1351			if (sacked & TCPCB_LOST) {
1352				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353				tp->lost_out -= pcount;
1354				tp->retrans_out -= pcount;
1355			}
1356		} else {
1357			if (!(sacked & TCPCB_RETRANS)) {
1358				/* New sack for not retransmitted frame,
1359				 * which was in hole. It is reordering.
1360				 */
1361				if (before(start_seq,
1362					   tcp_highest_sack_seq(tp)))
1363					state->reord = min(fack_count,
1364							   state->reord);
1365
1366				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1367				if (!after(end_seq, tp->frto_highmark))
1368					state->flag |= FLAG_ONLY_ORIG_SACKED;
 
 
 
 
 
 
1369			}
1370
1371			if (sacked & TCPCB_LOST) {
1372				sacked &= ~TCPCB_LOST;
1373				tp->lost_out -= pcount;
1374			}
1375		}
1376
1377		sacked |= TCPCB_SACKED_ACKED;
1378		state->flag |= FLAG_DATA_SACKED;
1379		tp->sacked_out += pcount;
1380
1381		fack_count += pcount;
1382
1383		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1384		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1385		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1386			tp->lost_cnt_hint += pcount;
1387
1388		if (fack_count > tp->fackets_out)
1389			tp->fackets_out = fack_count;
1390	}
1391
1392	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1393	 * frames and clear it. undo_retrans is decreased above, L|R frames
1394	 * are accounted above as well.
1395	 */
1396	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1397		sacked &= ~TCPCB_SACKED_RETRANS;
1398		tp->retrans_out -= pcount;
1399	}
1400
1401	return sacked;
1402}
1403
1404/* Shift newly-SACKed bytes from this skb to the immediately previous
1405 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1406 */
1407static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1408			    struct tcp_sacktag_state *state,
1409			    unsigned int pcount, int shifted, int mss,
1410			    bool dup_sack)
1411{
1412	struct tcp_sock *tp = tcp_sk(sk);
1413	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1414	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1415	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1416
1417	BUG_ON(!pcount);
1418
1419	/* Adjust counters and hints for the newly sacked sequence
1420	 * range but discard the return value since prev is already
1421	 * marked. We must tag the range first because the seq
1422	 * advancement below implicitly advances
1423	 * tcp_highest_sack_seq() when skb is highest_sack.
1424	 */
1425	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1426			start_seq, end_seq, dup_sack, pcount);
 
1427
1428	if (skb == tp->lost_skb_hint)
1429		tp->lost_cnt_hint += pcount;
1430
1431	TCP_SKB_CB(prev)->end_seq += shifted;
1432	TCP_SKB_CB(skb)->seq += shifted;
1433
1434	skb_shinfo(prev)->gso_segs += pcount;
1435	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1436	skb_shinfo(skb)->gso_segs -= pcount;
1437
1438	/* When we're adding to gso_segs == 1, gso_size will be zero,
1439	 * in theory this shouldn't be necessary but as long as DSACK
1440	 * code can come after this skb later on it's better to keep
1441	 * setting gso_size to something.
1442	 */
1443	if (!skb_shinfo(prev)->gso_size) {
1444		skb_shinfo(prev)->gso_size = mss;
1445		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1446	}
1447
1448	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1449	if (skb_shinfo(skb)->gso_segs <= 1) {
1450		skb_shinfo(skb)->gso_size = 0;
1451		skb_shinfo(skb)->gso_type = 0;
1452	}
1453
1454	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1455	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1456
1457	if (skb->len > 0) {
1458		BUG_ON(!tcp_skb_pcount(skb));
1459		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1460		return false;
1461	}
1462
1463	/* Whole SKB was eaten :-) */
1464
1465	if (skb == tp->retransmit_skb_hint)
1466		tp->retransmit_skb_hint = prev;
1467	if (skb == tp->scoreboard_skb_hint)
1468		tp->scoreboard_skb_hint = prev;
1469	if (skb == tp->lost_skb_hint) {
1470		tp->lost_skb_hint = prev;
1471		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1472	}
1473
1474	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
 
 
 
1475	if (skb == tcp_highest_sack(sk))
1476		tcp_advance_highest_sack(sk, skb);
1477
1478	tcp_unlink_write_queue(skb, sk);
1479	sk_wmem_free_skb(sk, skb);
1480
1481	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1482
1483	return true;
1484}
1485
1486/* I wish gso_size would have a bit more sane initialization than
1487 * something-or-zero which complicates things
1488 */
1489static int tcp_skb_seglen(const struct sk_buff *skb)
1490{
1491	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1492}
1493
1494/* Shifting pages past head area doesn't work */
1495static int skb_can_shift(const struct sk_buff *skb)
1496{
1497	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498}
1499
1500/* Try collapsing SACK blocks spanning across multiple skbs to a single
1501 * skb.
1502 */
1503static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504					  struct tcp_sacktag_state *state,
1505					  u32 start_seq, u32 end_seq,
1506					  bool dup_sack)
1507{
1508	struct tcp_sock *tp = tcp_sk(sk);
1509	struct sk_buff *prev;
1510	int mss;
1511	int pcount = 0;
1512	int len;
1513	int in_sack;
1514
1515	if (!sk_can_gso(sk))
1516		goto fallback;
1517
1518	/* Normally R but no L won't result in plain S */
1519	if (!dup_sack &&
1520	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1521		goto fallback;
1522	if (!skb_can_shift(skb))
1523		goto fallback;
1524	/* This frame is about to be dropped (was ACKed). */
1525	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526		goto fallback;
1527
1528	/* Can only happen with delayed DSACK + discard craziness */
1529	if (unlikely(skb == tcp_write_queue_head(sk)))
1530		goto fallback;
1531	prev = tcp_write_queue_prev(sk, skb);
1532
1533	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534		goto fallback;
1535
1536	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538
1539	if (in_sack) {
1540		len = skb->len;
1541		pcount = tcp_skb_pcount(skb);
1542		mss = tcp_skb_seglen(skb);
1543
1544		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1545		 * drop this restriction as unnecessary
1546		 */
1547		if (mss != tcp_skb_seglen(prev))
1548			goto fallback;
1549	} else {
1550		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551			goto noop;
1552		/* CHECKME: This is non-MSS split case only?, this will
1553		 * cause skipped skbs due to advancing loop btw, original
1554		 * has that feature too
1555		 */
1556		if (tcp_skb_pcount(skb) <= 1)
1557			goto noop;
1558
1559		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560		if (!in_sack) {
1561			/* TODO: head merge to next could be attempted here
1562			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563			 * though it might not be worth of the additional hassle
1564			 *
1565			 * ...we can probably just fallback to what was done
1566			 * previously. We could try merging non-SACKed ones
1567			 * as well but it probably isn't going to buy off
1568			 * because later SACKs might again split them, and
1569			 * it would make skb timestamp tracking considerably
1570			 * harder problem.
1571			 */
1572			goto fallback;
1573		}
1574
1575		len = end_seq - TCP_SKB_CB(skb)->seq;
1576		BUG_ON(len < 0);
1577		BUG_ON(len > skb->len);
1578
1579		/* MSS boundaries should be honoured or else pcount will
1580		 * severely break even though it makes things bit trickier.
1581		 * Optimize common case to avoid most of the divides
1582		 */
1583		mss = tcp_skb_mss(skb);
1584
1585		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586		 * drop this restriction as unnecessary
1587		 */
1588		if (mss != tcp_skb_seglen(prev))
1589			goto fallback;
1590
1591		if (len == mss) {
1592			pcount = 1;
1593		} else if (len < mss) {
1594			goto noop;
1595		} else {
1596			pcount = len / mss;
1597			len = pcount * mss;
1598		}
1599	}
1600
1601	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603		goto fallback;
1604
1605	if (!skb_shift(prev, skb, len))
1606		goto fallback;
1607	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1608		goto out;
1609
1610	/* Hole filled allows collapsing with the next as well, this is very
1611	 * useful when hole on every nth skb pattern happens
1612	 */
1613	if (prev == tcp_write_queue_tail(sk))
1614		goto out;
1615	skb = tcp_write_queue_next(sk, prev);
1616
1617	if (!skb_can_shift(skb) ||
1618	    (skb == tcp_send_head(sk)) ||
1619	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620	    (mss != tcp_skb_seglen(skb)))
1621		goto out;
1622
1623	len = skb->len;
1624	if (skb_shift(prev, skb, len)) {
1625		pcount += tcp_skb_pcount(skb);
1626		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1627	}
1628
1629out:
1630	state->fack_count += pcount;
1631	return prev;
1632
1633noop:
1634	return skb;
1635
1636fallback:
1637	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1638	return NULL;
1639}
1640
1641static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642					struct tcp_sack_block *next_dup,
1643					struct tcp_sacktag_state *state,
1644					u32 start_seq, u32 end_seq,
1645					bool dup_sack_in)
1646{
1647	struct tcp_sock *tp = tcp_sk(sk);
1648	struct sk_buff *tmp;
1649
1650	tcp_for_write_queue_from(skb, sk) {
1651		int in_sack = 0;
1652		bool dup_sack = dup_sack_in;
1653
1654		if (skb == tcp_send_head(sk))
1655			break;
1656
1657		/* queue is in-order => we can short-circuit the walk early */
1658		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659			break;
1660
1661		if ((next_dup != NULL) &&
1662		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663			in_sack = tcp_match_skb_to_sack(sk, skb,
1664							next_dup->start_seq,
1665							next_dup->end_seq);
1666			if (in_sack > 0)
1667				dup_sack = true;
1668		}
1669
1670		/* skb reference here is a bit tricky to get right, since
1671		 * shifting can eat and free both this skb and the next,
1672		 * so not even _safe variant of the loop is enough.
1673		 */
1674		if (in_sack <= 0) {
1675			tmp = tcp_shift_skb_data(sk, skb, state,
1676						 start_seq, end_seq, dup_sack);
1677			if (tmp != NULL) {
1678				if (tmp != skb) {
1679					skb = tmp;
1680					continue;
1681				}
1682
1683				in_sack = 0;
1684			} else {
1685				in_sack = tcp_match_skb_to_sack(sk, skb,
1686								start_seq,
1687								end_seq);
1688			}
1689		}
1690
1691		if (unlikely(in_sack < 0))
1692			break;
1693
1694		if (in_sack) {
1695			TCP_SKB_CB(skb)->sacked =
1696				tcp_sacktag_one(sk,
1697						state,
1698						TCP_SKB_CB(skb)->sacked,
1699						TCP_SKB_CB(skb)->seq,
1700						TCP_SKB_CB(skb)->end_seq,
1701						dup_sack,
1702						tcp_skb_pcount(skb));
 
1703
1704			if (!before(TCP_SKB_CB(skb)->seq,
1705				    tcp_highest_sack_seq(tp)))
1706				tcp_advance_highest_sack(sk, skb);
1707		}
1708
1709		state->fack_count += tcp_skb_pcount(skb);
1710	}
1711	return skb;
1712}
1713
1714/* Avoid all extra work that is being done by sacktag while walking in
1715 * a normal way
1716 */
1717static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1718					struct tcp_sacktag_state *state,
1719					u32 skip_to_seq)
1720{
1721	tcp_for_write_queue_from(skb, sk) {
1722		if (skb == tcp_send_head(sk))
1723			break;
1724
1725		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1726			break;
1727
1728		state->fack_count += tcp_skb_pcount(skb);
1729	}
1730	return skb;
1731}
1732
1733static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734						struct sock *sk,
1735						struct tcp_sack_block *next_dup,
1736						struct tcp_sacktag_state *state,
1737						u32 skip_to_seq)
1738{
1739	if (next_dup == NULL)
1740		return skb;
1741
1742	if (before(next_dup->start_seq, skip_to_seq)) {
1743		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745				       next_dup->start_seq, next_dup->end_seq,
1746				       1);
1747	}
1748
1749	return skb;
1750}
1751
1752static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1753{
1754	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755}
1756
1757static int
1758tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1759			u32 prior_snd_una)
1760{
1761	const struct inet_connection_sock *icsk = inet_csk(sk);
1762	struct tcp_sock *tp = tcp_sk(sk);
1763	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764				    TCP_SKB_CB(ack_skb)->sacked);
1765	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1766	struct tcp_sack_block sp[TCP_NUM_SACKS];
1767	struct tcp_sack_block *cache;
1768	struct tcp_sacktag_state state;
1769	struct sk_buff *skb;
1770	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1771	int used_sacks;
1772	bool found_dup_sack = false;
1773	int i, j;
1774	int first_sack_index;
1775
1776	state.flag = 0;
1777	state.reord = tp->packets_out;
 
1778
1779	if (!tp->sacked_out) {
1780		if (WARN_ON(tp->fackets_out))
1781			tp->fackets_out = 0;
1782		tcp_highest_sack_reset(sk);
1783	}
1784
1785	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1786					 num_sacks, prior_snd_una);
1787	if (found_dup_sack)
1788		state.flag |= FLAG_DSACKING_ACK;
1789
1790	/* Eliminate too old ACKs, but take into
1791	 * account more or less fresh ones, they can
1792	 * contain valid SACK info.
1793	 */
1794	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795		return 0;
1796
1797	if (!tp->packets_out)
1798		goto out;
1799
1800	used_sacks = 0;
1801	first_sack_index = 0;
1802	for (i = 0; i < num_sacks; i++) {
1803		bool dup_sack = !i && found_dup_sack;
1804
1805		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1806		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1807
1808		if (!tcp_is_sackblock_valid(tp, dup_sack,
1809					    sp[used_sacks].start_seq,
1810					    sp[used_sacks].end_seq)) {
1811			int mib_idx;
1812
1813			if (dup_sack) {
1814				if (!tp->undo_marker)
1815					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1816				else
1817					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1818			} else {
1819				/* Don't count olds caused by ACK reordering */
1820				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1821				    !after(sp[used_sacks].end_seq, tp->snd_una))
1822					continue;
1823				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1824			}
1825
1826			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1827			if (i == 0)
1828				first_sack_index = -1;
1829			continue;
1830		}
1831
1832		/* Ignore very old stuff early */
1833		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1834			continue;
1835
1836		used_sacks++;
1837	}
1838
1839	/* order SACK blocks to allow in order walk of the retrans queue */
1840	for (i = used_sacks - 1; i > 0; i--) {
1841		for (j = 0; j < i; j++) {
1842			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1843				swap(sp[j], sp[j + 1]);
1844
1845				/* Track where the first SACK block goes to */
1846				if (j == first_sack_index)
1847					first_sack_index = j + 1;
1848			}
1849		}
1850	}
1851
1852	skb = tcp_write_queue_head(sk);
1853	state.fack_count = 0;
1854	i = 0;
1855
1856	if (!tp->sacked_out) {
1857		/* It's already past, so skip checking against it */
1858		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1859	} else {
1860		cache = tp->recv_sack_cache;
1861		/* Skip empty blocks in at head of the cache */
1862		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1863		       !cache->end_seq)
1864			cache++;
1865	}
1866
1867	while (i < used_sacks) {
1868		u32 start_seq = sp[i].start_seq;
1869		u32 end_seq = sp[i].end_seq;
1870		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1871		struct tcp_sack_block *next_dup = NULL;
1872
1873		if (found_dup_sack && ((i + 1) == first_sack_index))
1874			next_dup = &sp[i + 1];
1875
1876		/* Skip too early cached blocks */
1877		while (tcp_sack_cache_ok(tp, cache) &&
1878		       !before(start_seq, cache->end_seq))
1879			cache++;
1880
1881		/* Can skip some work by looking recv_sack_cache? */
1882		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1883		    after(end_seq, cache->start_seq)) {
1884
1885			/* Head todo? */
1886			if (before(start_seq, cache->start_seq)) {
1887				skb = tcp_sacktag_skip(skb, sk, &state,
1888						       start_seq);
1889				skb = tcp_sacktag_walk(skb, sk, next_dup,
1890						       &state,
1891						       start_seq,
1892						       cache->start_seq,
1893						       dup_sack);
1894			}
1895
1896			/* Rest of the block already fully processed? */
1897			if (!after(end_seq, cache->end_seq))
1898				goto advance_sp;
1899
1900			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1901						       &state,
1902						       cache->end_seq);
1903
1904			/* ...tail remains todo... */
1905			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1906				/* ...but better entrypoint exists! */
1907				skb = tcp_highest_sack(sk);
1908				if (skb == NULL)
1909					break;
1910				state.fack_count = tp->fackets_out;
1911				cache++;
1912				goto walk;
1913			}
1914
1915			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1916			/* Check overlap against next cached too (past this one already) */
1917			cache++;
1918			continue;
1919		}
1920
1921		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1922			skb = tcp_highest_sack(sk);
1923			if (skb == NULL)
1924				break;
1925			state.fack_count = tp->fackets_out;
1926		}
1927		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928
1929walk:
1930		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1931				       start_seq, end_seq, dup_sack);
1932
1933advance_sp:
1934		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1935		 * due to in-order walk
1936		 */
1937		if (after(end_seq, tp->frto_highmark))
1938			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1939
1940		i++;
1941	}
1942
1943	/* Clear the head of the cache sack blocks so we can skip it next time */
1944	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1945		tp->recv_sack_cache[i].start_seq = 0;
1946		tp->recv_sack_cache[i].end_seq = 0;
1947	}
1948	for (j = 0; j < used_sacks; j++)
1949		tp->recv_sack_cache[i++] = sp[j];
1950
1951	tcp_mark_lost_retrans(sk);
1952
1953	tcp_verify_left_out(tp);
1954
1955	if ((state.reord < tp->fackets_out) &&
1956	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1957	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1958		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1959
1960out:
1961
1962#if FASTRETRANS_DEBUG > 0
1963	WARN_ON((int)tp->sacked_out < 0);
1964	WARN_ON((int)tp->lost_out < 0);
1965	WARN_ON((int)tp->retrans_out < 0);
1966	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1967#endif
 
1968	return state.flag;
1969}
1970
1971/* Limits sacked_out so that sum with lost_out isn't ever larger than
1972 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1973 */
1974static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1975{
1976	u32 holes;
1977
1978	holes = max(tp->lost_out, 1U);
1979	holes = min(holes, tp->packets_out);
1980
1981	if ((tp->sacked_out + holes) > tp->packets_out) {
1982		tp->sacked_out = tp->packets_out - holes;
1983		return true;
1984	}
1985	return false;
1986}
1987
1988/* If we receive more dupacks than we expected counting segments
1989 * in assumption of absent reordering, interpret this as reordering.
1990 * The only another reason could be bug in receiver TCP.
1991 */
1992static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1993{
1994	struct tcp_sock *tp = tcp_sk(sk);
1995	if (tcp_limit_reno_sacked(tp))
1996		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1997}
1998
1999/* Emulate SACKs for SACKless connection: account for a new dupack. */
2000
2001static void tcp_add_reno_sack(struct sock *sk)
2002{
2003	struct tcp_sock *tp = tcp_sk(sk);
2004	tp->sacked_out++;
2005	tcp_check_reno_reordering(sk, 0);
2006	tcp_verify_left_out(tp);
2007}
2008
2009/* Account for ACK, ACKing some data in Reno Recovery phase. */
2010
2011static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2012{
2013	struct tcp_sock *tp = tcp_sk(sk);
2014
2015	if (acked > 0) {
2016		/* One ACK acked hole. The rest eat duplicate ACKs. */
2017		if (acked - 1 >= tp->sacked_out)
2018			tp->sacked_out = 0;
2019		else
2020			tp->sacked_out -= acked - 1;
2021	}
2022	tcp_check_reno_reordering(sk, acked);
2023	tcp_verify_left_out(tp);
2024}
2025
2026static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2027{
2028	tp->sacked_out = 0;
2029}
2030
2031static int tcp_is_sackfrto(const struct tcp_sock *tp)
2032{
2033	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2034}
2035
2036/* F-RTO can only be used if TCP has never retransmitted anything other than
2037 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2038 */
2039bool tcp_use_frto(struct sock *sk)
2040{
2041	const struct tcp_sock *tp = tcp_sk(sk);
2042	const struct inet_connection_sock *icsk = inet_csk(sk);
2043	struct sk_buff *skb;
2044
2045	if (!sysctl_tcp_frto)
2046		return false;
2047
2048	/* MTU probe and F-RTO won't really play nicely along currently */
2049	if (icsk->icsk_mtup.probe_size)
2050		return false;
2051
2052	if (tcp_is_sackfrto(tp))
2053		return true;
2054
2055	/* Avoid expensive walking of rexmit queue if possible */
2056	if (tp->retrans_out > 1)
2057		return false;
2058
2059	skb = tcp_write_queue_head(sk);
2060	if (tcp_skb_is_last(sk, skb))
2061		return true;
2062	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2063	tcp_for_write_queue_from(skb, sk) {
2064		if (skb == tcp_send_head(sk))
2065			break;
2066		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2067			return false;
2068		/* Short-circuit when first non-SACKed skb has been checked */
2069		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2070			break;
2071	}
2072	return true;
2073}
2074
2075/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2076 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2077 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2078 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2079 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2080 * bits are handled if the Loss state is really to be entered (in
2081 * tcp_enter_frto_loss).
2082 *
2083 * Do like tcp_enter_loss() would; when RTO expires the second time it
2084 * does:
2085 *  "Reduce ssthresh if it has not yet been made inside this window."
2086 */
2087void tcp_enter_frto(struct sock *sk)
2088{
2089	const struct inet_connection_sock *icsk = inet_csk(sk);
2090	struct tcp_sock *tp = tcp_sk(sk);
2091	struct sk_buff *skb;
2092
2093	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2094	    tp->snd_una == tp->high_seq ||
2095	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2096	     !icsk->icsk_retransmits)) {
2097		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098		/* Our state is too optimistic in ssthresh() call because cwnd
2099		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2100		 * recovery has not yet completed. Pattern would be this: RTO,
2101		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2102		 * up here twice).
2103		 * RFC4138 should be more specific on what to do, even though
2104		 * RTO is quite unlikely to occur after the first Cumulative ACK
2105		 * due to back-off and complexity of triggering events ...
2106		 */
2107		if (tp->frto_counter) {
2108			u32 stored_cwnd;
2109			stored_cwnd = tp->snd_cwnd;
2110			tp->snd_cwnd = 2;
2111			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112			tp->snd_cwnd = stored_cwnd;
2113		} else {
2114			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2115		}
2116		/* ... in theory, cong.control module could do "any tricks" in
2117		 * ssthresh(), which means that ca_state, lost bits and lost_out
2118		 * counter would have to be faked before the call occurs. We
2119		 * consider that too expensive, unlikely and hacky, so modules
2120		 * using these in ssthresh() must deal these incompatibility
2121		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2122		 */
2123		tcp_ca_event(sk, CA_EVENT_FRTO);
2124	}
2125
2126	tp->undo_marker = tp->snd_una;
2127	tp->undo_retrans = 0;
2128
2129	skb = tcp_write_queue_head(sk);
2130	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2131		tp->undo_marker = 0;
2132	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2133		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2134		tp->retrans_out -= tcp_skb_pcount(skb);
2135	}
2136	tcp_verify_left_out(tp);
2137
2138	/* Too bad if TCP was application limited */
2139	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2140
2141	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2142	 * The last condition is necessary at least in tp->frto_counter case.
2143	 */
2144	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2145	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2146	    after(tp->high_seq, tp->snd_una)) {
2147		tp->frto_highmark = tp->high_seq;
2148	} else {
2149		tp->frto_highmark = tp->snd_nxt;
2150	}
2151	tcp_set_ca_state(sk, TCP_CA_Disorder);
2152	tp->high_seq = tp->snd_nxt;
2153	tp->frto_counter = 1;
2154}
2155
2156/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2157 * which indicates that we should follow the traditional RTO recovery,
2158 * i.e. mark everything lost and do go-back-N retransmission.
2159 */
2160static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2161{
2162	struct tcp_sock *tp = tcp_sk(sk);
2163	struct sk_buff *skb;
2164
2165	tp->lost_out = 0;
2166	tp->retrans_out = 0;
2167	if (tcp_is_reno(tp))
2168		tcp_reset_reno_sack(tp);
2169
2170	tcp_for_write_queue(skb, sk) {
2171		if (skb == tcp_send_head(sk))
2172			break;
2173
2174		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2175		/*
2176		 * Count the retransmission made on RTO correctly (only when
2177		 * waiting for the first ACK and did not get it)...
2178		 */
2179		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2180			/* For some reason this R-bit might get cleared? */
2181			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2182				tp->retrans_out += tcp_skb_pcount(skb);
2183			/* ...enter this if branch just for the first segment */
2184			flag |= FLAG_DATA_ACKED;
2185		} else {
2186			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2187				tp->undo_marker = 0;
2188			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189		}
2190
2191		/* Marking forward transmissions that were made after RTO lost
2192		 * can cause unnecessary retransmissions in some scenarios,
2193		 * SACK blocks will mitigate that in some but not in all cases.
2194		 * We used to not mark them but it was causing break-ups with
2195		 * receivers that do only in-order receival.
2196		 *
2197		 * TODO: we could detect presence of such receiver and select
2198		 * different behavior per flow.
2199		 */
2200		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2201			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2202			tp->lost_out += tcp_skb_pcount(skb);
2203			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204		}
2205	}
2206	tcp_verify_left_out(tp);
2207
2208	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2209	tp->snd_cwnd_cnt = 0;
2210	tp->snd_cwnd_stamp = tcp_time_stamp;
2211	tp->frto_counter = 0;
2212	tp->bytes_acked = 0;
2213
2214	tp->reordering = min_t(unsigned int, tp->reordering,
2215			       sysctl_tcp_reordering);
2216	tcp_set_ca_state(sk, TCP_CA_Loss);
2217	tp->high_seq = tp->snd_nxt;
2218	TCP_ECN_queue_cwr(tp);
2219
2220	tcp_clear_all_retrans_hints(tp);
2221}
2222
2223static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2224{
2225	tp->retrans_out = 0;
2226	tp->lost_out = 0;
2227
2228	tp->undo_marker = 0;
2229	tp->undo_retrans = 0;
2230}
2231
2232void tcp_clear_retrans(struct tcp_sock *tp)
2233{
2234	tcp_clear_retrans_partial(tp);
2235
2236	tp->fackets_out = 0;
2237	tp->sacked_out = 0;
2238}
2239
2240/* Enter Loss state. If "how" is not zero, forget all SACK information
2241 * and reset tags completely, otherwise preserve SACKs. If receiver
2242 * dropped its ofo queue, we will know this due to reneging detection.
2243 */
2244void tcp_enter_loss(struct sock *sk, int how)
2245{
2246	const struct inet_connection_sock *icsk = inet_csk(sk);
2247	struct tcp_sock *tp = tcp_sk(sk);
2248	struct sk_buff *skb;
 
2249
2250	/* Reduce ssthresh if it has not yet been made inside this window. */
2251	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
 
2252	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
 
2253		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2254		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2255		tcp_ca_event(sk, CA_EVENT_LOSS);
2256	}
2257	tp->snd_cwnd	   = 1;
2258	tp->snd_cwnd_cnt   = 0;
2259	tp->snd_cwnd_stamp = tcp_time_stamp;
2260
2261	tp->bytes_acked = 0;
2262	tcp_clear_retrans_partial(tp);
2263
2264	if (tcp_is_reno(tp))
2265		tcp_reset_reno_sack(tp);
2266
2267	if (!how) {
2268		/* Push undo marker, if it was plain RTO and nothing
2269		 * was retransmitted. */
2270		tp->undo_marker = tp->snd_una;
2271	} else {
2272		tp->sacked_out = 0;
2273		tp->fackets_out = 0;
2274	}
2275	tcp_clear_all_retrans_hints(tp);
2276
2277	tcp_for_write_queue(skb, sk) {
2278		if (skb == tcp_send_head(sk))
2279			break;
2280
2281		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2282			tp->undo_marker = 0;
 
2283		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2284		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2285			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2286			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2287			tp->lost_out += tcp_skb_pcount(skb);
2288			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2289		}
2290	}
2291	tcp_verify_left_out(tp);
2292
2293	tp->reordering = min_t(unsigned int, tp->reordering,
2294			       sysctl_tcp_reordering);
 
 
 
 
 
2295	tcp_set_ca_state(sk, TCP_CA_Loss);
2296	tp->high_seq = tp->snd_nxt;
2297	TCP_ECN_queue_cwr(tp);
2298	/* Abort F-RTO algorithm if one is in progress */
2299	tp->frto_counter = 0;
 
 
 
 
 
 
2300}
2301
2302/* If ACK arrived pointing to a remembered SACK, it means that our
2303 * remembered SACKs do not reflect real state of receiver i.e.
2304 * receiver _host_ is heavily congested (or buggy).
2305 *
2306 * Do processing similar to RTO timeout.
2307 */
2308static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2309{
2310	if (flag & FLAG_SACK_RENEGING) {
2311		struct inet_connection_sock *icsk = inet_csk(sk);
2312		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2313
2314		tcp_enter_loss(sk, 1);
2315		icsk->icsk_retransmits++;
2316		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2317		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2318					  icsk->icsk_rto, TCP_RTO_MAX);
2319		return true;
2320	}
2321	return false;
2322}
2323
2324static inline int tcp_fackets_out(const struct tcp_sock *tp)
2325{
2326	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2327}
2328
2329/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2330 * counter when SACK is enabled (without SACK, sacked_out is used for
2331 * that purpose).
2332 *
2333 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2334 * segments up to the highest received SACK block so far and holes in
2335 * between them.
2336 *
2337 * With reordering, holes may still be in flight, so RFC3517 recovery
2338 * uses pure sacked_out (total number of SACKed segments) even though
2339 * it violates the RFC that uses duplicate ACKs, often these are equal
2340 * but when e.g. out-of-window ACKs or packet duplication occurs,
2341 * they differ. Since neither occurs due to loss, TCP should really
2342 * ignore them.
2343 */
2344static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2345{
2346	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2347}
2348
2349static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2350{
2351	struct tcp_sock *tp = tcp_sk(sk);
2352	unsigned long delay;
2353
2354	/* Delay early retransmit and entering fast recovery for
2355	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2356	 * available, or RTO is scheduled to fire first.
2357	 */
2358	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
 
2359		return false;
2360
2361	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
 
 
2362	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2363		return false;
2364
2365	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2366	tp->early_retrans_delayed = 1;
2367	return true;
2368}
2369
2370static inline int tcp_skb_timedout(const struct sock *sk,
2371				   const struct sk_buff *skb)
2372{
2373	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2374}
2375
2376static inline int tcp_head_timedout(const struct sock *sk)
2377{
2378	const struct tcp_sock *tp = tcp_sk(sk);
2379
2380	return tp->packets_out &&
2381	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2382}
2383
2384/* Linux NewReno/SACK/FACK/ECN state machine.
2385 * --------------------------------------
2386 *
2387 * "Open"	Normal state, no dubious events, fast path.
2388 * "Disorder"   In all the respects it is "Open",
2389 *		but requires a bit more attention. It is entered when
2390 *		we see some SACKs or dupacks. It is split of "Open"
2391 *		mainly to move some processing from fast path to slow one.
2392 * "CWR"	CWND was reduced due to some Congestion Notification event.
2393 *		It can be ECN, ICMP source quench, local device congestion.
2394 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2395 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2396 *
2397 * tcp_fastretrans_alert() is entered:
2398 * - each incoming ACK, if state is not "Open"
2399 * - when arrived ACK is unusual, namely:
2400 *	* SACK
2401 *	* Duplicate ACK.
2402 *	* ECN ECE.
2403 *
2404 * Counting packets in flight is pretty simple.
2405 *
2406 *	in_flight = packets_out - left_out + retrans_out
2407 *
2408 *	packets_out is SND.NXT-SND.UNA counted in packets.
2409 *
2410 *	retrans_out is number of retransmitted segments.
2411 *
2412 *	left_out is number of segments left network, but not ACKed yet.
2413 *
2414 *		left_out = sacked_out + lost_out
2415 *
2416 *     sacked_out: Packets, which arrived to receiver out of order
2417 *		   and hence not ACKed. With SACKs this number is simply
2418 *		   amount of SACKed data. Even without SACKs
2419 *		   it is easy to give pretty reliable estimate of this number,
2420 *		   counting duplicate ACKs.
2421 *
2422 *       lost_out: Packets lost by network. TCP has no explicit
2423 *		   "loss notification" feedback from network (for now).
2424 *		   It means that this number can be only _guessed_.
2425 *		   Actually, it is the heuristics to predict lossage that
2426 *		   distinguishes different algorithms.
2427 *
2428 *	F.e. after RTO, when all the queue is considered as lost,
2429 *	lost_out = packets_out and in_flight = retrans_out.
2430 *
2431 *		Essentially, we have now two algorithms counting
2432 *		lost packets.
2433 *
2434 *		FACK: It is the simplest heuristics. As soon as we decided
2435 *		that something is lost, we decide that _all_ not SACKed
2436 *		packets until the most forward SACK are lost. I.e.
2437 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2438 *		It is absolutely correct estimate, if network does not reorder
2439 *		packets. And it loses any connection to reality when reordering
2440 *		takes place. We use FACK by default until reordering
2441 *		is suspected on the path to this destination.
2442 *
2443 *		NewReno: when Recovery is entered, we assume that one segment
2444 *		is lost (classic Reno). While we are in Recovery and
2445 *		a partial ACK arrives, we assume that one more packet
2446 *		is lost (NewReno). This heuristics are the same in NewReno
2447 *		and SACK.
2448 *
2449 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2450 *  deflation etc. CWND is real congestion window, never inflated, changes
2451 *  only according to classic VJ rules.
2452 *
2453 * Really tricky (and requiring careful tuning) part of algorithm
2454 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2455 * The first determines the moment _when_ we should reduce CWND and,
2456 * hence, slow down forward transmission. In fact, it determines the moment
2457 * when we decide that hole is caused by loss, rather than by a reorder.
2458 *
2459 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2460 * holes, caused by lost packets.
2461 *
2462 * And the most logically complicated part of algorithm is undo
2463 * heuristics. We detect false retransmits due to both too early
2464 * fast retransmit (reordering) and underestimated RTO, analyzing
2465 * timestamps and D-SACKs. When we detect that some segments were
2466 * retransmitted by mistake and CWND reduction was wrong, we undo
2467 * window reduction and abort recovery phase. This logic is hidden
2468 * inside several functions named tcp_try_undo_<something>.
2469 */
2470
2471/* This function decides, when we should leave Disordered state
2472 * and enter Recovery phase, reducing congestion window.
2473 *
2474 * Main question: may we further continue forward transmission
2475 * with the same cwnd?
2476 */
2477static bool tcp_time_to_recover(struct sock *sk, int flag)
2478{
2479	struct tcp_sock *tp = tcp_sk(sk);
2480	__u32 packets_out;
2481
2482	/* Do not perform any recovery during F-RTO algorithm */
2483	if (tp->frto_counter)
2484		return false;
2485
2486	/* Trick#1: The loss is proven. */
2487	if (tp->lost_out)
2488		return true;
2489
2490	/* Not-A-Trick#2 : Classic rule... */
2491	if (tcp_dupack_heuristics(tp) > tp->reordering)
2492		return true;
2493
2494	/* Trick#3 : when we use RFC2988 timer restart, fast
2495	 * retransmit can be triggered by timeout of queue head.
2496	 */
2497	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2498		return true;
2499
2500	/* Trick#4: It is still not OK... But will it be useful to delay
2501	 * recovery more?
2502	 */
2503	packets_out = tp->packets_out;
2504	if (packets_out <= tp->reordering &&
2505	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2506	    !tcp_may_send_now(sk)) {
2507		/* We have nothing to send. This connection is limited
2508		 * either by receiver window or by application.
2509		 */
2510		return true;
2511	}
2512
2513	/* If a thin stream is detected, retransmit after first
2514	 * received dupack. Employ only if SACK is supported in order
2515	 * to avoid possible corner-case series of spurious retransmissions
2516	 * Use only if there are no unsent data.
2517	 */
2518	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2519	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2520	    tcp_is_sack(tp) && !tcp_send_head(sk))
2521		return true;
2522
2523	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2524	 * retransmissions due to small network reorderings, we implement
2525	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2526	 * interval if appropriate.
2527	 */
2528	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2529	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2530	    !tcp_may_send_now(sk))
2531		return !tcp_pause_early_retransmit(sk, flag);
2532
2533	return false;
2534}
2535
2536/* New heuristics: it is possible only after we switched to restart timer
2537 * each time when something is ACKed. Hence, we can detect timed out packets
2538 * during fast retransmit without falling to slow start.
2539 *
2540 * Usefulness of this as is very questionable, since we should know which of
2541 * the segments is the next to timeout which is relatively expensive to find
2542 * in general case unless we add some data structure just for that. The
2543 * current approach certainly won't find the right one too often and when it
2544 * finally does find _something_ it usually marks large part of the window
2545 * right away (because a retransmission with a larger timestamp blocks the
2546 * loop from advancing). -ij
2547 */
2548static void tcp_timeout_skbs(struct sock *sk)
2549{
2550	struct tcp_sock *tp = tcp_sk(sk);
2551	struct sk_buff *skb;
2552
2553	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2554		return;
2555
2556	skb = tp->scoreboard_skb_hint;
2557	if (tp->scoreboard_skb_hint == NULL)
2558		skb = tcp_write_queue_head(sk);
2559
2560	tcp_for_write_queue_from(skb, sk) {
2561		if (skb == tcp_send_head(sk))
2562			break;
2563		if (!tcp_skb_timedout(sk, skb))
2564			break;
2565
2566		tcp_skb_mark_lost(tp, skb);
2567	}
2568
2569	tp->scoreboard_skb_hint = skb;
2570
2571	tcp_verify_left_out(tp);
2572}
2573
2574/* Detect loss in event "A" above by marking head of queue up as lost.
2575 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2576 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2577 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2578 * the maximum SACKed segments to pass before reaching this limit.
2579 */
2580static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2581{
2582	struct tcp_sock *tp = tcp_sk(sk);
2583	struct sk_buff *skb;
2584	int cnt, oldcnt;
2585	int err;
2586	unsigned int mss;
2587	/* Use SACK to deduce losses of new sequences sent during recovery */
2588	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2589
2590	WARN_ON(packets > tp->packets_out);
2591	if (tp->lost_skb_hint) {
2592		skb = tp->lost_skb_hint;
2593		cnt = tp->lost_cnt_hint;
2594		/* Head already handled? */
2595		if (mark_head && skb != tcp_write_queue_head(sk))
2596			return;
2597	} else {
2598		skb = tcp_write_queue_head(sk);
2599		cnt = 0;
2600	}
2601
2602	tcp_for_write_queue_from(skb, sk) {
2603		if (skb == tcp_send_head(sk))
2604			break;
2605		/* TODO: do this better */
2606		/* this is not the most efficient way to do this... */
2607		tp->lost_skb_hint = skb;
2608		tp->lost_cnt_hint = cnt;
2609
2610		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2611			break;
2612
2613		oldcnt = cnt;
2614		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2615		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2616			cnt += tcp_skb_pcount(skb);
2617
2618		if (cnt > packets) {
2619			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2620			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2621			    (oldcnt >= packets))
2622				break;
2623
2624			mss = skb_shinfo(skb)->gso_size;
2625			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2626			if (err < 0)
2627				break;
2628			cnt = packets;
2629		}
2630
2631		tcp_skb_mark_lost(tp, skb);
2632
2633		if (mark_head)
2634			break;
2635	}
2636	tcp_verify_left_out(tp);
2637}
2638
2639/* Account newly detected lost packet(s) */
2640
2641static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2642{
2643	struct tcp_sock *tp = tcp_sk(sk);
2644
2645	if (tcp_is_reno(tp)) {
2646		tcp_mark_head_lost(sk, 1, 1);
2647	} else if (tcp_is_fack(tp)) {
2648		int lost = tp->fackets_out - tp->reordering;
2649		if (lost <= 0)
2650			lost = 1;
2651		tcp_mark_head_lost(sk, lost, 0);
2652	} else {
2653		int sacked_upto = tp->sacked_out - tp->reordering;
2654		if (sacked_upto >= 0)
2655			tcp_mark_head_lost(sk, sacked_upto, 0);
2656		else if (fast_rexmit)
2657			tcp_mark_head_lost(sk, 1, 1);
2658	}
2659
2660	tcp_timeout_skbs(sk);
2661}
2662
2663/* CWND moderation, preventing bursts due to too big ACKs
2664 * in dubious situations.
2665 */
2666static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2667{
2668	tp->snd_cwnd = min(tp->snd_cwnd,
2669			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2670	tp->snd_cwnd_stamp = tcp_time_stamp;
2671}
2672
2673/* Lower bound on congestion window is slow start threshold
2674 * unless congestion avoidance choice decides to overide it.
2675 */
2676static inline u32 tcp_cwnd_min(const struct sock *sk)
2677{
2678	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2679
2680	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2681}
2682
2683/* Decrease cwnd each second ack. */
2684static void tcp_cwnd_down(struct sock *sk, int flag)
2685{
2686	struct tcp_sock *tp = tcp_sk(sk);
2687	int decr = tp->snd_cwnd_cnt + 1;
2688
2689	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2690	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2691		tp->snd_cwnd_cnt = decr & 1;
2692		decr >>= 1;
2693
2694		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2695			tp->snd_cwnd -= decr;
2696
2697		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2698		tp->snd_cwnd_stamp = tcp_time_stamp;
2699	}
2700}
2701
2702/* Nothing was retransmitted or returned timestamp is less
2703 * than timestamp of the first retransmission.
2704 */
2705static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2706{
2707	return !tp->retrans_stamp ||
2708		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2709		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2710}
2711
2712/* Undo procedures. */
2713
2714#if FASTRETRANS_DEBUG > 1
2715static void DBGUNDO(struct sock *sk, const char *msg)
2716{
2717	struct tcp_sock *tp = tcp_sk(sk);
2718	struct inet_sock *inet = inet_sk(sk);
2719
2720	if (sk->sk_family == AF_INET) {
2721		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2722			 msg,
2723			 &inet->inet_daddr, ntohs(inet->inet_dport),
2724			 tp->snd_cwnd, tcp_left_out(tp),
2725			 tp->snd_ssthresh, tp->prior_ssthresh,
2726			 tp->packets_out);
2727	}
2728#if IS_ENABLED(CONFIG_IPV6)
2729	else if (sk->sk_family == AF_INET6) {
2730		struct ipv6_pinfo *np = inet6_sk(sk);
2731		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2732			 msg,
2733			 &np->daddr, ntohs(inet->inet_dport),
2734			 tp->snd_cwnd, tcp_left_out(tp),
2735			 tp->snd_ssthresh, tp->prior_ssthresh,
2736			 tp->packets_out);
2737	}
2738#endif
2739}
2740#else
2741#define DBGUNDO(x...) do { } while (0)
2742#endif
2743
2744static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2745{
2746	struct tcp_sock *tp = tcp_sk(sk);
2747
 
 
 
 
 
 
 
 
 
 
 
 
2748	if (tp->prior_ssthresh) {
2749		const struct inet_connection_sock *icsk = inet_csk(sk);
2750
2751		if (icsk->icsk_ca_ops->undo_cwnd)
2752			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2753		else
2754			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2755
2756		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2757			tp->snd_ssthresh = tp->prior_ssthresh;
2758			TCP_ECN_withdraw_cwr(tp);
2759		}
2760	} else {
2761		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2762	}
2763	tp->snd_cwnd_stamp = tcp_time_stamp;
 
2764}
2765
2766static inline int tcp_may_undo(const struct tcp_sock *tp)
2767{
2768	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2769}
2770
2771/* People celebrate: "We love our President!" */
2772static bool tcp_try_undo_recovery(struct sock *sk)
2773{
2774	struct tcp_sock *tp = tcp_sk(sk);
2775
2776	if (tcp_may_undo(tp)) {
2777		int mib_idx;
2778
2779		/* Happy end! We did not retransmit anything
2780		 * or our original transmission succeeded.
2781		 */
2782		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2783		tcp_undo_cwr(sk, true);
2784		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2785			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2786		else
2787			mib_idx = LINUX_MIB_TCPFULLUNDO;
2788
2789		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2790		tp->undo_marker = 0;
2791	}
2792	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2793		/* Hold old state until something *above* high_seq
2794		 * is ACKed. For Reno it is MUST to prevent false
2795		 * fast retransmits (RFC2582). SACK TCP is safe. */
2796		tcp_moderate_cwnd(tp);
2797		return true;
2798	}
2799	tcp_set_ca_state(sk, TCP_CA_Open);
2800	return false;
2801}
2802
2803/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2804static void tcp_try_undo_dsack(struct sock *sk)
2805{
2806	struct tcp_sock *tp = tcp_sk(sk);
2807
2808	if (tp->undo_marker && !tp->undo_retrans) {
2809		DBGUNDO(sk, "D-SACK");
2810		tcp_undo_cwr(sk, true);
2811		tp->undo_marker = 0;
2812		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
 
2813	}
 
2814}
2815
2816/* We can clear retrans_stamp when there are no retransmissions in the
2817 * window. It would seem that it is trivially available for us in
2818 * tp->retrans_out, however, that kind of assumptions doesn't consider
2819 * what will happen if errors occur when sending retransmission for the
2820 * second time. ...It could the that such segment has only
2821 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2822 * the head skb is enough except for some reneging corner cases that
2823 * are not worth the effort.
2824 *
2825 * Main reason for all this complexity is the fact that connection dying
2826 * time now depends on the validity of the retrans_stamp, in particular,
2827 * that successive retransmissions of a segment must not advance
2828 * retrans_stamp under any conditions.
2829 */
2830static bool tcp_any_retrans_done(const struct sock *sk)
2831{
2832	const struct tcp_sock *tp = tcp_sk(sk);
2833	struct sk_buff *skb;
2834
2835	if (tp->retrans_out)
2836		return true;
2837
2838	skb = tcp_write_queue_head(sk);
2839	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2840		return true;
2841
2842	return false;
2843}
2844
2845/* Undo during fast recovery after partial ACK. */
2846
2847static int tcp_try_undo_partial(struct sock *sk, int acked)
2848{
2849	struct tcp_sock *tp = tcp_sk(sk);
2850	/* Partial ACK arrived. Force Hoe's retransmit. */
2851	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2852
2853	if (tcp_may_undo(tp)) {
2854		/* Plain luck! Hole if filled with delayed
2855		 * packet, rather than with a retransmit.
2856		 */
2857		if (!tcp_any_retrans_done(sk))
2858			tp->retrans_stamp = 0;
2859
2860		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
 
2861
2862		DBGUNDO(sk, "Hoe");
2863		tcp_undo_cwr(sk, false);
2864		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2865
2866		/* So... Do not make Hoe's retransmit yet.
2867		 * If the first packet was delayed, the rest
2868		 * ones are most probably delayed as well.
2869		 */
2870		failed = 0;
2871	}
2872	return failed;
2873}
2874
2875/* Undo during loss recovery after partial ACK. */
2876static bool tcp_try_undo_loss(struct sock *sk)
 
 
 
 
 
 
 
 
 
2877{
2878	struct tcp_sock *tp = tcp_sk(sk);
2879
2880	if (tcp_may_undo(tp)) {
2881		struct sk_buff *skb;
2882		tcp_for_write_queue(skb, sk) {
2883			if (skb == tcp_send_head(sk))
2884				break;
2885			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2886		}
 
 
 
2887
2888		tcp_clear_all_retrans_hints(tp);
 
 
 
 
 
 
 
2889
2890		DBGUNDO(sk, "partial loss");
2891		tp->lost_out = 0;
2892		tcp_undo_cwr(sk, true);
2893		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2894		inet_csk(sk)->icsk_retransmits = 0;
2895		tp->undo_marker = 0;
2896		if (tcp_is_sack(tp))
2897			tcp_set_ca_state(sk, TCP_CA_Open);
2898		return true;
2899	}
2900	return false;
 
 
2901}
2902
2903static inline void tcp_complete_cwr(struct sock *sk)
2904{
2905	struct tcp_sock *tp = tcp_sk(sk);
2906
2907	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2908	if (tp->undo_marker) {
2909		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2910			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2911			tp->snd_cwnd_stamp = tcp_time_stamp;
2912		} else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2913			/* PRR algorithm. */
2914			tp->snd_cwnd = tp->snd_ssthresh;
2915			tp->snd_cwnd_stamp = tcp_time_stamp;
2916		}
2917	}
2918	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2919}
2920
 
 
 
 
 
 
 
 
 
 
 
 
 
2921static void tcp_try_keep_open(struct sock *sk)
2922{
2923	struct tcp_sock *tp = tcp_sk(sk);
2924	int state = TCP_CA_Open;
2925
2926	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2927		state = TCP_CA_Disorder;
2928
2929	if (inet_csk(sk)->icsk_ca_state != state) {
2930		tcp_set_ca_state(sk, state);
2931		tp->high_seq = tp->snd_nxt;
2932	}
2933}
2934
2935static void tcp_try_to_open(struct sock *sk, int flag)
2936{
2937	struct tcp_sock *tp = tcp_sk(sk);
2938
2939	tcp_verify_left_out(tp);
2940
2941	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2942		tp->retrans_stamp = 0;
2943
2944	if (flag & FLAG_ECE)
2945		tcp_enter_cwr(sk, 1);
2946
2947	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2948		tcp_try_keep_open(sk);
2949		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2950			tcp_moderate_cwnd(tp);
2951	} else {
2952		tcp_cwnd_down(sk, flag);
2953	}
2954}
2955
2956static void tcp_mtup_probe_failed(struct sock *sk)
2957{
2958	struct inet_connection_sock *icsk = inet_csk(sk);
2959
2960	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2961	icsk->icsk_mtup.probe_size = 0;
2962}
2963
2964static void tcp_mtup_probe_success(struct sock *sk)
2965{
2966	struct tcp_sock *tp = tcp_sk(sk);
2967	struct inet_connection_sock *icsk = inet_csk(sk);
2968
2969	/* FIXME: breaks with very large cwnd */
2970	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2971	tp->snd_cwnd = tp->snd_cwnd *
2972		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2973		       icsk->icsk_mtup.probe_size;
2974	tp->snd_cwnd_cnt = 0;
2975	tp->snd_cwnd_stamp = tcp_time_stamp;
2976	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2977
2978	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2979	icsk->icsk_mtup.probe_size = 0;
2980	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2981}
2982
2983/* Do a simple retransmit without using the backoff mechanisms in
2984 * tcp_timer. This is used for path mtu discovery.
2985 * The socket is already locked here.
2986 */
2987void tcp_simple_retransmit(struct sock *sk)
2988{
2989	const struct inet_connection_sock *icsk = inet_csk(sk);
2990	struct tcp_sock *tp = tcp_sk(sk);
2991	struct sk_buff *skb;
2992	unsigned int mss = tcp_current_mss(sk);
2993	u32 prior_lost = tp->lost_out;
2994
2995	tcp_for_write_queue(skb, sk) {
2996		if (skb == tcp_send_head(sk))
2997			break;
2998		if (tcp_skb_seglen(skb) > mss &&
2999		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
3000			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3001				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
3002				tp->retrans_out -= tcp_skb_pcount(skb);
3003			}
3004			tcp_skb_mark_lost_uncond_verify(tp, skb);
3005		}
3006	}
3007
3008	tcp_clear_retrans_hints_partial(tp);
3009
3010	if (prior_lost == tp->lost_out)
3011		return;
3012
3013	if (tcp_is_reno(tp))
3014		tcp_limit_reno_sacked(tp);
3015
3016	tcp_verify_left_out(tp);
3017
3018	/* Don't muck with the congestion window here.
3019	 * Reason is that we do not increase amount of _data_
3020	 * in network, but units changed and effective
3021	 * cwnd/ssthresh really reduced now.
3022	 */
3023	if (icsk->icsk_ca_state != TCP_CA_Loss) {
3024		tp->high_seq = tp->snd_nxt;
3025		tp->snd_ssthresh = tcp_current_ssthresh(sk);
3026		tp->prior_ssthresh = 0;
3027		tp->undo_marker = 0;
3028		tcp_set_ca_state(sk, TCP_CA_Loss);
3029	}
3030	tcp_xmit_retransmit_queue(sk);
3031}
3032EXPORT_SYMBOL(tcp_simple_retransmit);
3033
3034/* This function implements the PRR algorithm, specifcally the PRR-SSRB
3035 * (proportional rate reduction with slow start reduction bound) as described in
3036 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3037 * It computes the number of packets to send (sndcnt) based on packets newly
3038 * delivered:
3039 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3040 *	cwnd reductions across a full RTT.
3041 *   2) If packets in flight is lower than ssthresh (such as due to excess
3042 *	losses and/or application stalls), do not perform any further cwnd
3043 *	reductions, but instead slow start up to ssthresh.
3044 */
3045static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3046					int fast_rexmit, int flag)
3047{
3048	struct tcp_sock *tp = tcp_sk(sk);
3049	int sndcnt = 0;
3050	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3051
3052	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3053		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3054			       tp->prior_cwnd - 1;
3055		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3056	} else {
3057		sndcnt = min_t(int, delta,
3058			       max_t(int, tp->prr_delivered - tp->prr_out,
3059				     newly_acked_sacked) + 1);
3060	}
3061
3062	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3063	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3064}
3065
3066static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3067{
3068	struct tcp_sock *tp = tcp_sk(sk);
3069	int mib_idx;
3070
3071	if (tcp_is_reno(tp))
3072		mib_idx = LINUX_MIB_TCPRENORECOVERY;
3073	else
3074		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3075
3076	NET_INC_STATS_BH(sock_net(sk), mib_idx);
3077
3078	tp->high_seq = tp->snd_nxt;
3079	tp->prior_ssthresh = 0;
3080	tp->undo_marker = tp->snd_una;
3081	tp->undo_retrans = tp->retrans_out;
3082
3083	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3084		if (!ece_ack)
3085			tp->prior_ssthresh = tcp_current_ssthresh(sk);
3086		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3087		TCP_ECN_queue_cwr(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3088	}
 
 
 
 
3089
3090	tp->bytes_acked = 0;
3091	tp->snd_cwnd_cnt = 0;
3092	tp->prior_cwnd = tp->snd_cwnd;
3093	tp->prr_delivered = 0;
3094	tp->prr_out = 0;
3095	tcp_set_ca_state(sk, TCP_CA_Recovery);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3096}
3097
3098/* Process an event, which can update packets-in-flight not trivially.
3099 * Main goal of this function is to calculate new estimate for left_out,
3100 * taking into account both packets sitting in receiver's buffer and
3101 * packets lost by network.
3102 *
3103 * Besides that it does CWND reduction, when packet loss is detected
3104 * and changes state of machine.
3105 *
3106 * It does _not_ decide what to send, it is made in function
3107 * tcp_xmit_retransmit_queue().
3108 */
3109static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3110				  int prior_sacked, bool is_dupack,
3111				  int flag)
3112{
3113	struct inet_connection_sock *icsk = inet_csk(sk);
3114	struct tcp_sock *tp = tcp_sk(sk);
3115	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3116				    (tcp_fackets_out(tp) > tp->reordering));
3117	int newly_acked_sacked = 0;
3118	int fast_rexmit = 0;
3119
3120	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3121		tp->sacked_out = 0;
3122	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3123		tp->fackets_out = 0;
3124
3125	/* Now state machine starts.
3126	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3127	if (flag & FLAG_ECE)
3128		tp->prior_ssthresh = 0;
3129
3130	/* B. In all the states check for reneging SACKs. */
3131	if (tcp_check_sack_reneging(sk, flag))
3132		return;
3133
3134	/* C. Check consistency of the current state. */
3135	tcp_verify_left_out(tp);
3136
3137	/* D. Check state exit conditions. State can be terminated
3138	 *    when high_seq is ACKed. */
3139	if (icsk->icsk_ca_state == TCP_CA_Open) {
3140		WARN_ON(tp->retrans_out != 0);
3141		tp->retrans_stamp = 0;
3142	} else if (!before(tp->snd_una, tp->high_seq)) {
3143		switch (icsk->icsk_ca_state) {
3144		case TCP_CA_Loss:
3145			icsk->icsk_retransmits = 0;
3146			if (tcp_try_undo_recovery(sk))
3147				return;
3148			break;
3149
3150		case TCP_CA_CWR:
3151			/* CWR is to be held something *above* high_seq
3152			 * is ACKed for CWR bit to reach receiver. */
3153			if (tp->snd_una != tp->high_seq) {
3154				tcp_complete_cwr(sk);
3155				tcp_set_ca_state(sk, TCP_CA_Open);
3156			}
3157			break;
3158
3159		case TCP_CA_Recovery:
3160			if (tcp_is_reno(tp))
3161				tcp_reset_reno_sack(tp);
3162			if (tcp_try_undo_recovery(sk))
3163				return;
3164			tcp_complete_cwr(sk);
3165			break;
3166		}
3167	}
3168
3169	/* E. Process state. */
3170	switch (icsk->icsk_ca_state) {
3171	case TCP_CA_Recovery:
3172		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3173			if (tcp_is_reno(tp) && is_dupack)
3174				tcp_add_reno_sack(sk);
3175		} else
3176			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3177		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
 
 
 
 
 
 
 
 
3178		break;
3179	case TCP_CA_Loss:
3180		if (flag & FLAG_DATA_ACKED)
3181			icsk->icsk_retransmits = 0;
3182		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3183			tcp_reset_reno_sack(tp);
3184		if (!tcp_try_undo_loss(sk)) {
3185			tcp_moderate_cwnd(tp);
3186			tcp_xmit_retransmit_queue(sk);
3187			return;
3188		}
3189		if (icsk->icsk_ca_state != TCP_CA_Open)
3190			return;
3191		/* Loss is undone; fall through to processing in Open state. */
3192	default:
3193		if (tcp_is_reno(tp)) {
3194			if (flag & FLAG_SND_UNA_ADVANCED)
3195				tcp_reset_reno_sack(tp);
3196			if (is_dupack)
3197				tcp_add_reno_sack(sk);
3198		}
3199		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
3200
3201		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3202			tcp_try_undo_dsack(sk);
3203
3204		if (!tcp_time_to_recover(sk, flag)) {
3205			tcp_try_to_open(sk, flag);
3206			return;
3207		}
3208
3209		/* MTU probe failure: don't reduce cwnd */
3210		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3211		    icsk->icsk_mtup.probe_size &&
3212		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3213			tcp_mtup_probe_failed(sk);
3214			/* Restores the reduction we did in tcp_mtup_probe() */
3215			tp->snd_cwnd++;
3216			tcp_simple_retransmit(sk);
3217			return;
3218		}
3219
3220		/* Otherwise enter Recovery state */
3221		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3222		fast_rexmit = 1;
3223	}
3224
3225	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3226		tcp_update_scoreboard(sk, fast_rexmit);
3227	tp->prr_delivered += newly_acked_sacked;
3228	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3229	tcp_xmit_retransmit_queue(sk);
3230}
3231
3232void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
 
3233{
3234	tcp_rtt_estimator(sk, seq_rtt);
3235	tcp_set_rto(sk);
3236	inet_csk(sk)->icsk_backoff = 0;
3237}
3238EXPORT_SYMBOL(tcp_valid_rtt_meas);
 
 
 
 
 
 
 
3239
3240/* Read draft-ietf-tcplw-high-performance before mucking
3241 * with this code. (Supersedes RFC1323)
3242 */
3243static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3244{
3245	/* RTTM Rule: A TSecr value received in a segment is used to
3246	 * update the averaged RTT measurement only if the segment
3247	 * acknowledges some new data, i.e., only if it advances the
3248	 * left edge of the send window.
3249	 *
3250	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3251	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3252	 *
3253	 * Changed: reset backoff as soon as we see the first valid sample.
3254	 * If we do not, we get strongly overestimated rto. With timestamps
3255	 * samples are accepted even from very old segments: f.e., when rtt=1
3256	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3257	 * answer arrives rto becomes 120 seconds! If at least one of segments
3258	 * in window is lost... Voila.	 			--ANK (010210)
3259	 */
3260	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
3261
3262	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
 
 
3263}
3264
3265static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
 
3266{
3267	/* We don't have a timestamp. Can only use
3268	 * packets that are not retransmitted to determine
3269	 * rtt estimates. Also, we must not reset the
3270	 * backoff for rto until we get a non-retransmitted
3271	 * packet. This allows us to deal with a situation
3272	 * where the network delay has increased suddenly.
3273	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3274	 */
3275
3276	if (flag & FLAG_RETRANS_DATA_ACKED)
3277		return;
3278
3279	tcp_valid_rtt_meas(sk, seq_rtt);
3280}
3281
3282static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3283				      const s32 seq_rtt)
3284{
3285	const struct tcp_sock *tp = tcp_sk(sk);
3286	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3287	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3288		tcp_ack_saw_tstamp(sk, flag);
3289	else if (seq_rtt >= 0)
3290		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3291}
3292
3293static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3294{
3295	const struct inet_connection_sock *icsk = inet_csk(sk);
3296	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3297	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3298}
3299
3300/* Restart timer after forward progress on connection.
3301 * RFC2988 recommends to restart timer to now+rto.
3302 */
3303void tcp_rearm_rto(struct sock *sk)
3304{
 
3305	struct tcp_sock *tp = tcp_sk(sk);
3306
 
 
 
 
 
 
3307	if (!tp->packets_out) {
3308		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3309	} else {
3310		u32 rto = inet_csk(sk)->icsk_rto;
3311		/* Offset the time elapsed after installing regular RTO */
3312		if (tp->early_retrans_delayed) {
 
3313			struct sk_buff *skb = tcp_write_queue_head(sk);
3314			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3315			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3316			/* delta may not be positive if the socket is locked
3317			 * when the delayed ER timer fires and is rescheduled.
3318			 */
3319			if (delta > 0)
3320				rto = delta;
3321		}
3322		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3323					  TCP_RTO_MAX);
3324	}
3325	tp->early_retrans_delayed = 0;
3326}
3327
3328/* This function is called when the delayed ER timer fires. TCP enters
3329 * fast recovery and performs fast-retransmit.
3330 */
3331void tcp_resume_early_retransmit(struct sock *sk)
3332{
3333	struct tcp_sock *tp = tcp_sk(sk);
3334
3335	tcp_rearm_rto(sk);
3336
3337	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3338	if (!tp->do_early_retrans)
3339		return;
3340
3341	tcp_enter_recovery(sk, false);
3342	tcp_update_scoreboard(sk, 1);
3343	tcp_xmit_retransmit_queue(sk);
3344}
3345
3346/* If we get here, the whole TSO packet has not been acked. */
3347static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3348{
3349	struct tcp_sock *tp = tcp_sk(sk);
3350	u32 packets_acked;
3351
3352	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3353
3354	packets_acked = tcp_skb_pcount(skb);
3355	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3356		return 0;
3357	packets_acked -= tcp_skb_pcount(skb);
3358
3359	if (packets_acked) {
3360		BUG_ON(tcp_skb_pcount(skb) == 0);
3361		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3362	}
3363
3364	return packets_acked;
3365}
3366
3367/* Remove acknowledged frames from the retransmission queue. If our packet
3368 * is before the ack sequence we can discard it as it's confirmed to have
3369 * arrived at the other end.
3370 */
3371static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3372			       u32 prior_snd_una)
3373{
 
 
3374	struct tcp_sock *tp = tcp_sk(sk);
3375	const struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 
 
3376	struct sk_buff *skb;
3377	u32 now = tcp_time_stamp;
3378	int fully_acked = true;
3379	int flag = 0;
3380	u32 pkts_acked = 0;
3381	u32 reord = tp->packets_out;
3382	u32 prior_sacked = tp->sacked_out;
3383	s32 seq_rtt = -1;
3384	s32 ca_seq_rtt = -1;
3385	ktime_t last_ackt = net_invalid_timestamp();
3386
3387	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3388		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
 
3389		u32 acked_pcount;
3390		u8 sacked = scb->sacked;
3391
3392		/* Determine how many packets and what bytes were acked, tso and else */
3393		if (after(scb->end_seq, tp->snd_una)) {
3394			if (tcp_skb_pcount(skb) == 1 ||
3395			    !after(tp->snd_una, scb->seq))
3396				break;
3397
3398			acked_pcount = tcp_tso_acked(sk, skb);
3399			if (!acked_pcount)
3400				break;
3401
3402			fully_acked = false;
3403		} else {
3404			acked_pcount = tcp_skb_pcount(skb);
3405		}
3406
3407		if (sacked & TCPCB_RETRANS) {
3408			if (sacked & TCPCB_SACKED_RETRANS)
3409				tp->retrans_out -= acked_pcount;
3410			flag |= FLAG_RETRANS_DATA_ACKED;
3411			ca_seq_rtt = -1;
3412			seq_rtt = -1;
3413			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3414				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3415		} else {
3416			ca_seq_rtt = now - scb->when;
3417			last_ackt = skb->tstamp;
3418			if (seq_rtt < 0) {
3419				seq_rtt = ca_seq_rtt;
3420			}
3421			if (!(sacked & TCPCB_SACKED_ACKED))
3422				reord = min(pkts_acked, reord);
 
 
3423		}
3424
3425		if (sacked & TCPCB_SACKED_ACKED)
3426			tp->sacked_out -= acked_pcount;
3427		if (sacked & TCPCB_LOST)
3428			tp->lost_out -= acked_pcount;
3429
3430		tp->packets_out -= acked_pcount;
3431		pkts_acked += acked_pcount;
3432
3433		/* Initial outgoing SYN's get put onto the write_queue
3434		 * just like anything else we transmit.  It is not
3435		 * true data, and if we misinform our callers that
3436		 * this ACK acks real data, we will erroneously exit
3437		 * connection startup slow start one packet too
3438		 * quickly.  This is severely frowned upon behavior.
3439		 */
3440		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3441			flag |= FLAG_DATA_ACKED;
3442		} else {
3443			flag |= FLAG_SYN_ACKED;
3444			tp->retrans_stamp = 0;
3445		}
3446
3447		if (!fully_acked)
3448			break;
3449
3450		tcp_unlink_write_queue(skb, sk);
3451		sk_wmem_free_skb(sk, skb);
3452		tp->scoreboard_skb_hint = NULL;
3453		if (skb == tp->retransmit_skb_hint)
3454			tp->retransmit_skb_hint = NULL;
3455		if (skb == tp->lost_skb_hint)
3456			tp->lost_skb_hint = NULL;
3457	}
3458
3459	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3460		tp->snd_up = tp->snd_una;
3461
3462	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3463		flag |= FLAG_SACK_RENEGING;
3464
 
 
 
 
 
 
 
 
3465	if (flag & FLAG_ACKED) {
3466		const struct tcp_congestion_ops *ca_ops
3467			= inet_csk(sk)->icsk_ca_ops;
3468
 
3469		if (unlikely(icsk->icsk_mtup.probe_size &&
3470			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3471			tcp_mtup_probe_success(sk);
3472		}
3473
3474		tcp_ack_update_rtt(sk, flag, seq_rtt);
3475		tcp_rearm_rto(sk);
3476
3477		if (tcp_is_reno(tp)) {
3478			tcp_remove_reno_sacks(sk, pkts_acked);
3479		} else {
3480			int delta;
3481
3482			/* Non-retransmitted hole got filled? That's reordering */
3483			if (reord < prior_fackets)
3484				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3485
3486			delta = tcp_is_fack(tp) ? pkts_acked :
3487						  prior_sacked - tp->sacked_out;
3488			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3489		}
3490
3491		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3492
3493		if (ca_ops->pkts_acked) {
3494			s32 rtt_us = -1;
3495
3496			/* Is the ACK triggering packet unambiguous? */
3497			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3498				/* High resolution needed and available? */
3499				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3500				    !ktime_equal(last_ackt,
3501						 net_invalid_timestamp()))
3502					rtt_us = ktime_us_delta(ktime_get_real(),
3503								last_ackt);
3504				else if (ca_seq_rtt >= 0)
3505					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3506			}
3507
3508			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3509		}
3510	}
3511
3512#if FASTRETRANS_DEBUG > 0
3513	WARN_ON((int)tp->sacked_out < 0);
3514	WARN_ON((int)tp->lost_out < 0);
3515	WARN_ON((int)tp->retrans_out < 0);
3516	if (!tp->packets_out && tcp_is_sack(tp)) {
3517		icsk = inet_csk(sk);
3518		if (tp->lost_out) {
3519			pr_debug("Leak l=%u %d\n",
3520				 tp->lost_out, icsk->icsk_ca_state);
3521			tp->lost_out = 0;
3522		}
3523		if (tp->sacked_out) {
3524			pr_debug("Leak s=%u %d\n",
3525				 tp->sacked_out, icsk->icsk_ca_state);
3526			tp->sacked_out = 0;
3527		}
3528		if (tp->retrans_out) {
3529			pr_debug("Leak r=%u %d\n",
3530				 tp->retrans_out, icsk->icsk_ca_state);
3531			tp->retrans_out = 0;
3532		}
3533	}
3534#endif
3535	return flag;
3536}
3537
3538static void tcp_ack_probe(struct sock *sk)
3539{
3540	const struct tcp_sock *tp = tcp_sk(sk);
3541	struct inet_connection_sock *icsk = inet_csk(sk);
3542
3543	/* Was it a usable window open? */
3544
3545	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3546		icsk->icsk_backoff = 0;
3547		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3548		/* Socket must be waked up by subsequent tcp_data_snd_check().
3549		 * This function is not for random using!
3550		 */
3551	} else {
3552		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3553					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3554					  TCP_RTO_MAX);
3555	}
3556}
3557
3558static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3559{
3560	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3561		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3562}
3563
3564static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
 
3565{
3566	const struct tcp_sock *tp = tcp_sk(sk);
3567	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3568		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
 
 
 
 
 
 
 
 
 
 
3569}
3570
3571/* Check that window update is acceptable.
3572 * The function assumes that snd_una<=ack<=snd_next.
3573 */
3574static inline int tcp_may_update_window(const struct tcp_sock *tp,
3575					const u32 ack, const u32 ack_seq,
3576					const u32 nwin)
3577{
3578	return	after(ack, tp->snd_una) ||
3579		after(ack_seq, tp->snd_wl1) ||
3580		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3581}
3582
3583/* Update our send window.
3584 *
3585 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3586 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3587 */
3588static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3589				 u32 ack_seq)
3590{
3591	struct tcp_sock *tp = tcp_sk(sk);
3592	int flag = 0;
3593	u32 nwin = ntohs(tcp_hdr(skb)->window);
3594
3595	if (likely(!tcp_hdr(skb)->syn))
3596		nwin <<= tp->rx_opt.snd_wscale;
3597
3598	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3599		flag |= FLAG_WIN_UPDATE;
3600		tcp_update_wl(tp, ack_seq);
3601
3602		if (tp->snd_wnd != nwin) {
3603			tp->snd_wnd = nwin;
3604
3605			/* Note, it is the only place, where
3606			 * fast path is recovered for sending TCP.
3607			 */
3608			tp->pred_flags = 0;
3609			tcp_fast_path_check(sk);
3610
3611			if (nwin > tp->max_window) {
3612				tp->max_window = nwin;
3613				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3614			}
3615		}
3616	}
3617
3618	tp->snd_una = ack;
3619
3620	return flag;
3621}
3622
3623/* A very conservative spurious RTO response algorithm: reduce cwnd and
3624 * continue in congestion avoidance.
3625 */
3626static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3627{
3628	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3629	tp->snd_cwnd_cnt = 0;
3630	tp->bytes_acked = 0;
3631	TCP_ECN_queue_cwr(tp);
3632	tcp_moderate_cwnd(tp);
 
 
 
 
 
 
 
 
3633}
3634
3635/* A conservative spurious RTO response algorithm: reduce cwnd using
3636 * rate halving and continue in congestion avoidance.
3637 */
3638static void tcp_ratehalving_spur_to_response(struct sock *sk)
3639{
3640	tcp_enter_cwr(sk, 0);
 
3641}
3642
3643static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3644{
3645	if (flag & FLAG_ECE)
3646		tcp_ratehalving_spur_to_response(sk);
3647	else
3648		tcp_undo_cwr(sk, true);
 
 
 
 
 
 
 
3649}
3650
3651/* F-RTO spurious RTO detection algorithm (RFC4138)
3652 *
3653 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3654 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3655 * window (but not to or beyond highest sequence sent before RTO):
3656 *   On First ACK,  send two new segments out.
3657 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3658 *                  algorithm is not part of the F-RTO detection algorithm
3659 *                  given in RFC4138 but can be selected separately).
3660 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3661 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3662 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3663 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3664 *
3665 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3666 * original window even after we transmit two new data segments.
3667 *
3668 * SACK version:
3669 *   on first step, wait until first cumulative ACK arrives, then move to
3670 *   the second step. In second step, the next ACK decides.
3671 *
3672 * F-RTO is implemented (mainly) in four functions:
3673 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3674 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3675 *     called when tcp_use_frto() showed green light
3676 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3677 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3678 *     to prove that the RTO is indeed spurious. It transfers the control
3679 *     from F-RTO to the conventional RTO recovery
3680 */
3681static bool tcp_process_frto(struct sock *sk, int flag)
3682{
3683	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
3684
3685	tcp_verify_left_out(tp);
3686
3687	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3688	if (flag & FLAG_DATA_ACKED)
3689		inet_csk(sk)->icsk_retransmits = 0;
3690
3691	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3692	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3693		tp->undo_marker = 0;
3694
3695	if (!before(tp->snd_una, tp->frto_highmark)) {
3696		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3697		return true;
3698	}
3699
3700	if (!tcp_is_sackfrto(tp)) {
3701		/* RFC4138 shortcoming in step 2; should also have case c):
3702		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3703		 * data, winupdate
3704		 */
3705		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3706			return true;
3707
3708		if (!(flag & FLAG_DATA_ACKED)) {
3709			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3710					    flag);
3711			return true;
3712		}
3713	} else {
3714		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3715			/* Prevent sending of new data. */
3716			tp->snd_cwnd = min(tp->snd_cwnd,
3717					   tcp_packets_in_flight(tp));
3718			return true;
3719		}
3720
3721		if ((tp->frto_counter >= 2) &&
3722		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3723		     ((flag & FLAG_DATA_SACKED) &&
3724		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3725			/* RFC4138 shortcoming (see comment above) */
3726			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3727			    (flag & FLAG_NOT_DUP))
3728				return true;
3729
3730			tcp_enter_frto_loss(sk, 3, flag);
3731			return true;
3732		}
3733	}
3734
3735	if (tp->frto_counter == 1) {
3736		/* tcp_may_send_now needs to see updated state */
3737		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3738		tp->frto_counter = 2;
3739
3740		if (!tcp_may_send_now(sk))
3741			tcp_enter_frto_loss(sk, 2, flag);
3742
3743		return true;
3744	} else {
3745		switch (sysctl_tcp_frto_response) {
3746		case 2:
3747			tcp_undo_spur_to_response(sk, flag);
3748			break;
3749		case 1:
3750			tcp_conservative_spur_to_response(tp);
3751			break;
3752		default:
3753			tcp_ratehalving_spur_to_response(sk);
3754			break;
3755		}
3756		tp->frto_counter = 0;
3757		tp->undo_marker = 0;
3758		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3759	}
3760	return false;
3761}
3762
3763/* This routine deals with incoming acks, but not outgoing ones. */
3764static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3765{
3766	struct inet_connection_sock *icsk = inet_csk(sk);
3767	struct tcp_sock *tp = tcp_sk(sk);
3768	u32 prior_snd_una = tp->snd_una;
3769	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3770	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3771	bool is_dupack = false;
3772	u32 prior_in_flight;
3773	u32 prior_fackets;
3774	int prior_packets;
3775	int prior_sacked = tp->sacked_out;
3776	int pkts_acked = 0;
3777	bool frto_cwnd = false;
3778
3779	/* If the ack is older than previous acks
3780	 * then we can probably ignore it.
3781	 */
3782	if (before(ack, prior_snd_una))
 
 
 
 
 
3783		goto old_ack;
 
3784
3785	/* If the ack includes data we haven't sent yet, discard
3786	 * this segment (RFC793 Section 3.9).
3787	 */
3788	if (after(ack, tp->snd_nxt))
3789		goto invalid_ack;
3790
3791	if (tp->early_retrans_delayed)
 
3792		tcp_rearm_rto(sk);
3793
3794	if (after(ack, prior_snd_una))
3795		flag |= FLAG_SND_UNA_ADVANCED;
3796
3797	if (sysctl_tcp_abc) {
3798		if (icsk->icsk_ca_state < TCP_CA_CWR)
3799			tp->bytes_acked += ack - prior_snd_una;
3800		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3801			/* we assume just one segment left network */
3802			tp->bytes_acked += min(ack - prior_snd_una,
3803					       tp->mss_cache);
3804	}
3805
3806	prior_fackets = tp->fackets_out;
3807	prior_in_flight = tcp_packets_in_flight(tp);
3808
 
 
 
 
 
 
3809	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3810		/* Window is constant, pure forward advance.
3811		 * No more checks are required.
3812		 * Note, we use the fact that SND.UNA>=SND.WL2.
3813		 */
3814		tcp_update_wl(tp, ack_seq);
3815		tp->snd_una = ack;
3816		flag |= FLAG_WIN_UPDATE;
3817
3818		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3819
3820		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3821	} else {
3822		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3823			flag |= FLAG_DATA;
3824		else
3825			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3826
3827		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3828
3829		if (TCP_SKB_CB(skb)->sacked)
3830			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
 
3831
3832		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3833			flag |= FLAG_ECE;
3834
3835		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3836	}
3837
3838	/* We passed data and got it acked, remove any soft error
3839	 * log. Something worked...
3840	 */
3841	sk->sk_err_soft = 0;
3842	icsk->icsk_probes_out = 0;
3843	tp->rcv_tstamp = tcp_time_stamp;
3844	prior_packets = tp->packets_out;
3845	if (!prior_packets)
3846		goto no_queue;
3847
3848	/* See if we can take anything off of the retransmit queue. */
3849	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3850
3851	pkts_acked = prior_packets - tp->packets_out;
3852
3853	if (tp->frto_counter)
3854		frto_cwnd = tcp_process_frto(sk, flag);
3855	/* Guarantee sacktag reordering detection against wrap-arounds */
3856	if (before(tp->frto_highmark, tp->snd_una))
3857		tp->frto_highmark = 0;
3858
3859	if (tcp_ack_is_dubious(sk, flag)) {
3860		/* Advance CWND, if state allows this. */
3861		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3862		    tcp_may_raise_cwnd(sk, flag))
3863			tcp_cong_avoid(sk, ack, prior_in_flight);
3864		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3865		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3866				      is_dupack, flag);
3867	} else {
3868		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3869			tcp_cong_avoid(sk, ack, prior_in_flight);
3870	}
 
 
3871
3872	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3873		dst_confirm(__sk_dst_get(sk));
 
 
 
3874
 
 
 
3875	return 1;
3876
3877no_queue:
3878	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3879	if (flag & FLAG_DSACKING_ACK)
3880		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3881				      is_dupack, flag);
3882	/* If this ack opens up a zero window, clear backoff.  It was
3883	 * being used to time the probes, and is probably far higher than
3884	 * it needs to be for normal retransmission.
3885	 */
3886	if (tcp_send_head(sk))
3887		tcp_ack_probe(sk);
 
 
 
3888	return 1;
3889
3890invalid_ack:
3891	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3892	return -1;
3893
3894old_ack:
3895	/* If data was SACKed, tag it and see if we should send more data.
3896	 * If data was DSACKed, see if we can undo a cwnd reduction.
3897	 */
3898	if (TCP_SKB_CB(skb)->sacked) {
3899		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3900		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
 
3901				      is_dupack, flag);
3902	}
3903
3904	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3905	return 0;
3906}
3907
3908/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3909 * But, this can also be called on packets in the established flow when
3910 * the fast version below fails.
3911 */
3912void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3913		       const u8 **hvpp, int estab)
 
3914{
3915	const unsigned char *ptr;
3916	const struct tcphdr *th = tcp_hdr(skb);
3917	int length = (th->doff * 4) - sizeof(struct tcphdr);
3918
3919	ptr = (const unsigned char *)(th + 1);
3920	opt_rx->saw_tstamp = 0;
3921
3922	while (length > 0) {
3923		int opcode = *ptr++;
3924		int opsize;
3925
3926		switch (opcode) {
3927		case TCPOPT_EOL:
3928			return;
3929		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3930			length--;
3931			continue;
3932		default:
3933			opsize = *ptr++;
3934			if (opsize < 2) /* "silly options" */
3935				return;
3936			if (opsize > length)
3937				return;	/* don't parse partial options */
3938			switch (opcode) {
3939			case TCPOPT_MSS:
3940				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3941					u16 in_mss = get_unaligned_be16(ptr);
3942					if (in_mss) {
3943						if (opt_rx->user_mss &&
3944						    opt_rx->user_mss < in_mss)
3945							in_mss = opt_rx->user_mss;
3946						opt_rx->mss_clamp = in_mss;
3947					}
3948				}
3949				break;
3950			case TCPOPT_WINDOW:
3951				if (opsize == TCPOLEN_WINDOW && th->syn &&
3952				    !estab && sysctl_tcp_window_scaling) {
3953					__u8 snd_wscale = *(__u8 *)ptr;
3954					opt_rx->wscale_ok = 1;
3955					if (snd_wscale > 14) {
3956						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3957								     __func__,
3958								     snd_wscale);
3959						snd_wscale = 14;
3960					}
3961					opt_rx->snd_wscale = snd_wscale;
3962				}
3963				break;
3964			case TCPOPT_TIMESTAMP:
3965				if ((opsize == TCPOLEN_TIMESTAMP) &&
3966				    ((estab && opt_rx->tstamp_ok) ||
3967				     (!estab && sysctl_tcp_timestamps))) {
3968					opt_rx->saw_tstamp = 1;
3969					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3970					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3971				}
3972				break;
3973			case TCPOPT_SACK_PERM:
3974				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3975				    !estab && sysctl_tcp_sack) {
3976					opt_rx->sack_ok = TCP_SACK_SEEN;
3977					tcp_sack_reset(opt_rx);
3978				}
3979				break;
3980
3981			case TCPOPT_SACK:
3982				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3983				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3984				   opt_rx->sack_ok) {
3985					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3986				}
3987				break;
3988#ifdef CONFIG_TCP_MD5SIG
3989			case TCPOPT_MD5SIG:
3990				/*
3991				 * The MD5 Hash has already been
3992				 * checked (see tcp_v{4,6}_do_rcv()).
3993				 */
3994				break;
3995#endif
3996			case TCPOPT_COOKIE:
3997				/* This option is variable length.
 
 
3998				 */
3999				switch (opsize) {
4000				case TCPOLEN_COOKIE_BASE:
4001					/* not yet implemented */
4002					break;
4003				case TCPOLEN_COOKIE_PAIR:
4004					/* not yet implemented */
4005					break;
4006				case TCPOLEN_COOKIE_MIN+0:
4007				case TCPOLEN_COOKIE_MIN+2:
4008				case TCPOLEN_COOKIE_MIN+4:
4009				case TCPOLEN_COOKIE_MIN+6:
4010				case TCPOLEN_COOKIE_MAX:
4011					/* 16-bit multiple */
4012					opt_rx->cookie_plus = opsize;
4013					*hvpp = ptr;
4014					break;
4015				default:
4016					/* ignore option */
4017					break;
4018				}
 
 
4019				break;
 
4020			}
4021
4022			ptr += opsize-2;
4023			length -= opsize;
4024		}
4025	}
4026}
4027EXPORT_SYMBOL(tcp_parse_options);
4028
4029static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4030{
4031	const __be32 *ptr = (const __be32 *)(th + 1);
4032
4033	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4034			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4035		tp->rx_opt.saw_tstamp = 1;
4036		++ptr;
4037		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4038		++ptr;
4039		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
 
 
 
4040		return true;
4041	}
4042	return false;
4043}
4044
4045/* Fast parse options. This hopes to only see timestamps.
4046 * If it is wrong it falls back on tcp_parse_options().
4047 */
4048static bool tcp_fast_parse_options(const struct sk_buff *skb,
4049				   const struct tcphdr *th,
4050				   struct tcp_sock *tp, const u8 **hvpp)
4051{
4052	/* In the spirit of fast parsing, compare doff directly to constant
4053	 * values.  Because equality is used, short doff can be ignored here.
4054	 */
4055	if (th->doff == (sizeof(*th) / 4)) {
4056		tp->rx_opt.saw_tstamp = 0;
4057		return false;
4058	} else if (tp->rx_opt.tstamp_ok &&
4059		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4060		if (tcp_parse_aligned_timestamp(tp, th))
4061			return true;
4062	}
4063	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
 
 
 
 
4064	return true;
4065}
4066
4067#ifdef CONFIG_TCP_MD5SIG
4068/*
4069 * Parse MD5 Signature option
4070 */
4071const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4072{
4073	int length = (th->doff << 2) - sizeof(*th);
4074	const u8 *ptr = (const u8 *)(th + 1);
4075
4076	/* If the TCP option is too short, we can short cut */
4077	if (length < TCPOLEN_MD5SIG)
4078		return NULL;
4079
4080	while (length > 0) {
4081		int opcode = *ptr++;
4082		int opsize;
4083
4084		switch(opcode) {
4085		case TCPOPT_EOL:
4086			return NULL;
4087		case TCPOPT_NOP:
4088			length--;
4089			continue;
4090		default:
4091			opsize = *ptr++;
4092			if (opsize < 2 || opsize > length)
4093				return NULL;
4094			if (opcode == TCPOPT_MD5SIG)
4095				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4096		}
4097		ptr += opsize - 2;
4098		length -= opsize;
4099	}
4100	return NULL;
4101}
4102EXPORT_SYMBOL(tcp_parse_md5sig_option);
4103#endif
4104
4105static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4106{
4107	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4108	tp->rx_opt.ts_recent_stamp = get_seconds();
4109}
4110
4111static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4112{
4113	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4114		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4115		 * extra check below makes sure this can only happen
4116		 * for pure ACK frames.  -DaveM
4117		 *
4118		 * Not only, also it occurs for expired timestamps.
4119		 */
4120
4121		if (tcp_paws_check(&tp->rx_opt, 0))
4122			tcp_store_ts_recent(tp);
4123	}
4124}
4125
4126/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4127 *
4128 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4129 * it can pass through stack. So, the following predicate verifies that
4130 * this segment is not used for anything but congestion avoidance or
4131 * fast retransmit. Moreover, we even are able to eliminate most of such
4132 * second order effects, if we apply some small "replay" window (~RTO)
4133 * to timestamp space.
4134 *
4135 * All these measures still do not guarantee that we reject wrapped ACKs
4136 * on networks with high bandwidth, when sequence space is recycled fastly,
4137 * but it guarantees that such events will be very rare and do not affect
4138 * connection seriously. This doesn't look nice, but alas, PAWS is really
4139 * buggy extension.
4140 *
4141 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4142 * states that events when retransmit arrives after original data are rare.
4143 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4144 * the biggest problem on large power networks even with minor reordering.
4145 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4146 * up to bandwidth of 18Gigabit/sec. 8) ]
4147 */
4148
4149static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4150{
4151	const struct tcp_sock *tp = tcp_sk(sk);
4152	const struct tcphdr *th = tcp_hdr(skb);
4153	u32 seq = TCP_SKB_CB(skb)->seq;
4154	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4155
4156	return (/* 1. Pure ACK with correct sequence number. */
4157		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4158
4159		/* 2. ... and duplicate ACK. */
4160		ack == tp->snd_una &&
4161
4162		/* 3. ... and does not update window. */
4163		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4164
4165		/* 4. ... and sits in replay window. */
4166		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4167}
4168
4169static inline int tcp_paws_discard(const struct sock *sk,
4170				   const struct sk_buff *skb)
4171{
4172	const struct tcp_sock *tp = tcp_sk(sk);
4173
4174	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4175	       !tcp_disordered_ack(sk, skb);
4176}
4177
4178/* Check segment sequence number for validity.
4179 *
4180 * Segment controls are considered valid, if the segment
4181 * fits to the window after truncation to the window. Acceptability
4182 * of data (and SYN, FIN, of course) is checked separately.
4183 * See tcp_data_queue(), for example.
4184 *
4185 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4186 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4187 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4188 * (borrowed from freebsd)
4189 */
4190
4191static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4192{
4193	return	!before(end_seq, tp->rcv_wup) &&
4194		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4195}
4196
4197/* When we get a reset we do this. */
4198static void tcp_reset(struct sock *sk)
4199{
4200	/* We want the right error as BSD sees it (and indeed as we do). */
4201	switch (sk->sk_state) {
4202	case TCP_SYN_SENT:
4203		sk->sk_err = ECONNREFUSED;
4204		break;
4205	case TCP_CLOSE_WAIT:
4206		sk->sk_err = EPIPE;
4207		break;
4208	case TCP_CLOSE:
4209		return;
4210	default:
4211		sk->sk_err = ECONNRESET;
4212	}
4213	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4214	smp_wmb();
4215
4216	if (!sock_flag(sk, SOCK_DEAD))
4217		sk->sk_error_report(sk);
4218
4219	tcp_done(sk);
4220}
4221
4222/*
4223 * 	Process the FIN bit. This now behaves as it is supposed to work
4224 *	and the FIN takes effect when it is validly part of sequence
4225 *	space. Not before when we get holes.
4226 *
4227 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4228 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4229 *	TIME-WAIT)
4230 *
4231 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4232 *	close and we go into CLOSING (and later onto TIME-WAIT)
4233 *
4234 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4235 */
4236static void tcp_fin(struct sock *sk)
4237{
4238	struct tcp_sock *tp = tcp_sk(sk);
 
4239
4240	inet_csk_schedule_ack(sk);
4241
4242	sk->sk_shutdown |= RCV_SHUTDOWN;
4243	sock_set_flag(sk, SOCK_DONE);
4244
4245	switch (sk->sk_state) {
4246	case TCP_SYN_RECV:
4247	case TCP_ESTABLISHED:
4248		/* Move to CLOSE_WAIT */
4249		tcp_set_state(sk, TCP_CLOSE_WAIT);
4250		inet_csk(sk)->icsk_ack.pingpong = 1;
 
 
4251		break;
4252
4253	case TCP_CLOSE_WAIT:
4254	case TCP_CLOSING:
4255		/* Received a retransmission of the FIN, do
4256		 * nothing.
4257		 */
4258		break;
4259	case TCP_LAST_ACK:
4260		/* RFC793: Remain in the LAST-ACK state. */
4261		break;
4262
4263	case TCP_FIN_WAIT1:
4264		/* This case occurs when a simultaneous close
4265		 * happens, we must ack the received FIN and
4266		 * enter the CLOSING state.
4267		 */
4268		tcp_send_ack(sk);
4269		tcp_set_state(sk, TCP_CLOSING);
4270		break;
4271	case TCP_FIN_WAIT2:
4272		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4273		tcp_send_ack(sk);
4274		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4275		break;
4276	default:
4277		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4278		 * cases we should never reach this piece of code.
4279		 */
4280		pr_err("%s: Impossible, sk->sk_state=%d\n",
4281		       __func__, sk->sk_state);
4282		break;
4283	}
4284
4285	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4286	 * Probably, we should reset in this case. For now drop them.
4287	 */
4288	__skb_queue_purge(&tp->out_of_order_queue);
4289	if (tcp_is_sack(tp))
4290		tcp_sack_reset(&tp->rx_opt);
4291	sk_mem_reclaim(sk);
4292
4293	if (!sock_flag(sk, SOCK_DEAD)) {
4294		sk->sk_state_change(sk);
4295
4296		/* Do not send POLL_HUP for half duplex close. */
4297		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4298		    sk->sk_state == TCP_CLOSE)
4299			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4300		else
4301			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4302	}
4303}
4304
4305static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4306				  u32 end_seq)
4307{
4308	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4309		if (before(seq, sp->start_seq))
4310			sp->start_seq = seq;
4311		if (after(end_seq, sp->end_seq))
4312			sp->end_seq = end_seq;
4313		return true;
4314	}
4315	return false;
4316}
4317
4318static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4319{
4320	struct tcp_sock *tp = tcp_sk(sk);
4321
4322	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4323		int mib_idx;
4324
4325		if (before(seq, tp->rcv_nxt))
4326			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4327		else
4328			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4329
4330		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4331
4332		tp->rx_opt.dsack = 1;
4333		tp->duplicate_sack[0].start_seq = seq;
4334		tp->duplicate_sack[0].end_seq = end_seq;
4335	}
4336}
4337
4338static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4339{
4340	struct tcp_sock *tp = tcp_sk(sk);
4341
4342	if (!tp->rx_opt.dsack)
4343		tcp_dsack_set(sk, seq, end_seq);
4344	else
4345		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4346}
4347
4348static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4349{
4350	struct tcp_sock *tp = tcp_sk(sk);
4351
4352	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4353	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4354		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4355		tcp_enter_quickack_mode(sk);
4356
4357		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4358			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4359
4360			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4361				end_seq = tp->rcv_nxt;
4362			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4363		}
4364	}
4365
4366	tcp_send_ack(sk);
4367}
4368
4369/* These routines update the SACK block as out-of-order packets arrive or
4370 * in-order packets close up the sequence space.
4371 */
4372static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4373{
4374	int this_sack;
4375	struct tcp_sack_block *sp = &tp->selective_acks[0];
4376	struct tcp_sack_block *swalk = sp + 1;
4377
4378	/* See if the recent change to the first SACK eats into
4379	 * or hits the sequence space of other SACK blocks, if so coalesce.
4380	 */
4381	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4382		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4383			int i;
4384
4385			/* Zap SWALK, by moving every further SACK up by one slot.
4386			 * Decrease num_sacks.
4387			 */
4388			tp->rx_opt.num_sacks--;
4389			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4390				sp[i] = sp[i + 1];
4391			continue;
4392		}
4393		this_sack++, swalk++;
4394	}
4395}
4396
4397static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4398{
4399	struct tcp_sock *tp = tcp_sk(sk);
4400	struct tcp_sack_block *sp = &tp->selective_acks[0];
4401	int cur_sacks = tp->rx_opt.num_sacks;
4402	int this_sack;
4403
4404	if (!cur_sacks)
4405		goto new_sack;
4406
4407	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4408		if (tcp_sack_extend(sp, seq, end_seq)) {
4409			/* Rotate this_sack to the first one. */
4410			for (; this_sack > 0; this_sack--, sp--)
4411				swap(*sp, *(sp - 1));
4412			if (cur_sacks > 1)
4413				tcp_sack_maybe_coalesce(tp);
4414			return;
4415		}
4416	}
4417
4418	/* Could not find an adjacent existing SACK, build a new one,
4419	 * put it at the front, and shift everyone else down.  We
4420	 * always know there is at least one SACK present already here.
4421	 *
4422	 * If the sack array is full, forget about the last one.
4423	 */
4424	if (this_sack >= TCP_NUM_SACKS) {
4425		this_sack--;
4426		tp->rx_opt.num_sacks--;
4427		sp--;
4428	}
4429	for (; this_sack > 0; this_sack--, sp--)
4430		*sp = *(sp - 1);
4431
4432new_sack:
4433	/* Build the new head SACK, and we're done. */
4434	sp->start_seq = seq;
4435	sp->end_seq = end_seq;
4436	tp->rx_opt.num_sacks++;
4437}
4438
4439/* RCV.NXT advances, some SACKs should be eaten. */
4440
4441static void tcp_sack_remove(struct tcp_sock *tp)
4442{
4443	struct tcp_sack_block *sp = &tp->selective_acks[0];
4444	int num_sacks = tp->rx_opt.num_sacks;
4445	int this_sack;
4446
4447	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4448	if (skb_queue_empty(&tp->out_of_order_queue)) {
4449		tp->rx_opt.num_sacks = 0;
4450		return;
4451	}
4452
4453	for (this_sack = 0; this_sack < num_sacks;) {
4454		/* Check if the start of the sack is covered by RCV.NXT. */
4455		if (!before(tp->rcv_nxt, sp->start_seq)) {
4456			int i;
4457
4458			/* RCV.NXT must cover all the block! */
4459			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4460
4461			/* Zap this SACK, by moving forward any other SACKS. */
4462			for (i=this_sack+1; i < num_sacks; i++)
4463				tp->selective_acks[i-1] = tp->selective_acks[i];
4464			num_sacks--;
4465			continue;
4466		}
4467		this_sack++;
4468		sp++;
4469	}
4470	tp->rx_opt.num_sacks = num_sacks;
4471}
4472
4473/* This one checks to see if we can put data from the
4474 * out_of_order queue into the receive_queue.
4475 */
4476static void tcp_ofo_queue(struct sock *sk)
4477{
4478	struct tcp_sock *tp = tcp_sk(sk);
4479	__u32 dsack_high = tp->rcv_nxt;
4480	struct sk_buff *skb;
4481
4482	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4483		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4484			break;
4485
4486		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4487			__u32 dsack = dsack_high;
4488			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4489				dsack_high = TCP_SKB_CB(skb)->end_seq;
4490			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4491		}
4492
4493		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4494			SOCK_DEBUG(sk, "ofo packet was already received\n");
4495			__skb_unlink(skb, &tp->out_of_order_queue);
4496			__kfree_skb(skb);
4497			continue;
4498		}
4499		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4500			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4501			   TCP_SKB_CB(skb)->end_seq);
4502
4503		__skb_unlink(skb, &tp->out_of_order_queue);
4504		__skb_queue_tail(&sk->sk_receive_queue, skb);
4505		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4506		if (tcp_hdr(skb)->fin)
4507			tcp_fin(sk);
4508	}
4509}
4510
4511static bool tcp_prune_ofo_queue(struct sock *sk);
4512static int tcp_prune_queue(struct sock *sk);
4513
4514static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
 
4515{
4516	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4517	    !sk_rmem_schedule(sk, size)) {
4518
4519		if (tcp_prune_queue(sk) < 0)
4520			return -1;
4521
4522		if (!sk_rmem_schedule(sk, size)) {
4523			if (!tcp_prune_ofo_queue(sk))
4524				return -1;
4525
4526			if (!sk_rmem_schedule(sk, size))
4527				return -1;
4528		}
4529	}
4530	return 0;
4531}
4532
4533/**
4534 * tcp_try_coalesce - try to merge skb to prior one
4535 * @sk: socket
4536 * @to: prior buffer
4537 * @from: buffer to add in queue
4538 * @fragstolen: pointer to boolean
4539 *
4540 * Before queueing skb @from after @to, try to merge them
4541 * to reduce overall memory use and queue lengths, if cost is small.
4542 * Packets in ofo or receive queues can stay a long time.
4543 * Better try to coalesce them right now to avoid future collapses.
4544 * Returns true if caller should free @from instead of queueing it
4545 */
4546static bool tcp_try_coalesce(struct sock *sk,
4547			     struct sk_buff *to,
4548			     struct sk_buff *from,
4549			     bool *fragstolen)
4550{
4551	int delta;
4552
4553	*fragstolen = false;
4554
4555	if (tcp_hdr(from)->fin)
4556		return false;
4557
4558	/* Its possible this segment overlaps with prior segment in queue */
4559	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4560		return false;
4561
4562	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4563		return false;
4564
4565	atomic_add(delta, &sk->sk_rmem_alloc);
4566	sk_mem_charge(sk, delta);
4567	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4568	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4569	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4570	return true;
4571}
4572
4573static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4574{
4575	struct tcp_sock *tp = tcp_sk(sk);
4576	struct sk_buff *skb1;
4577	u32 seq, end_seq;
4578
4579	TCP_ECN_check_ce(tp, skb);
4580
4581	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4582		/* TODO: should increment a counter */
4583		__kfree_skb(skb);
4584		return;
4585	}
4586
4587	/* Disable header prediction. */
4588	tp->pred_flags = 0;
4589	inet_csk_schedule_ack(sk);
4590
 
4591	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4592		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4593
4594	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4595	if (!skb1) {
4596		/* Initial out of order segment, build 1 SACK. */
4597		if (tcp_is_sack(tp)) {
4598			tp->rx_opt.num_sacks = 1;
4599			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4600			tp->selective_acks[0].end_seq =
4601						TCP_SKB_CB(skb)->end_seq;
4602		}
4603		__skb_queue_head(&tp->out_of_order_queue, skb);
4604		goto end;
4605	}
4606
4607	seq = TCP_SKB_CB(skb)->seq;
4608	end_seq = TCP_SKB_CB(skb)->end_seq;
4609
4610	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4611		bool fragstolen;
4612
4613		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4614			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4615		} else {
 
4616			kfree_skb_partial(skb, fragstolen);
4617			skb = NULL;
4618		}
4619
4620		if (!tp->rx_opt.num_sacks ||
4621		    tp->selective_acks[0].end_seq != seq)
4622			goto add_sack;
4623
4624		/* Common case: data arrive in order after hole. */
4625		tp->selective_acks[0].end_seq = end_seq;
4626		goto end;
4627	}
4628
4629	/* Find place to insert this segment. */
4630	while (1) {
4631		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4632			break;
4633		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4634			skb1 = NULL;
4635			break;
4636		}
4637		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4638	}
4639
4640	/* Do skb overlap to previous one? */
4641	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4642		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4643			/* All the bits are present. Drop. */
 
4644			__kfree_skb(skb);
4645			skb = NULL;
4646			tcp_dsack_set(sk, seq, end_seq);
4647			goto add_sack;
4648		}
4649		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4650			/* Partial overlap. */
4651			tcp_dsack_set(sk, seq,
4652				      TCP_SKB_CB(skb1)->end_seq);
4653		} else {
4654			if (skb_queue_is_first(&tp->out_of_order_queue,
4655					       skb1))
4656				skb1 = NULL;
4657			else
4658				skb1 = skb_queue_prev(
4659					&tp->out_of_order_queue,
4660					skb1);
4661		}
4662	}
4663	if (!skb1)
4664		__skb_queue_head(&tp->out_of_order_queue, skb);
4665	else
4666		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4667
4668	/* And clean segments covered by new one as whole. */
4669	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4670		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4671
4672		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4673			break;
4674		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4675			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4676					 end_seq);
4677			break;
4678		}
4679		__skb_unlink(skb1, &tp->out_of_order_queue);
4680		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4681				 TCP_SKB_CB(skb1)->end_seq);
 
4682		__kfree_skb(skb1);
4683	}
4684
4685add_sack:
4686	if (tcp_is_sack(tp))
4687		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4688end:
4689	if (skb)
 
4690		skb_set_owner_r(skb, sk);
 
4691}
4692
4693static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4694		  bool *fragstolen)
4695{
4696	int eaten;
4697	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4698
4699	__skb_pull(skb, hdrlen);
4700	eaten = (tail &&
4701		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4702	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4703	if (!eaten) {
4704		__skb_queue_tail(&sk->sk_receive_queue, skb);
4705		skb_set_owner_r(skb, sk);
4706	}
4707	return eaten;
4708}
4709
4710int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4711{
4712	struct sk_buff *skb;
4713	struct tcphdr *th;
4714	bool fragstolen;
4715
4716	if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
4717		goto err;
4718
4719	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4720	if (!skb)
4721		goto err;
4722
 
 
 
4723	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4724	skb_reset_transport_header(skb);
4725	memset(th, 0, sizeof(*th));
4726
4727	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4728		goto err_free;
4729
4730	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4731	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4732	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4733
4734	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4735		WARN_ON_ONCE(fragstolen); /* should not happen */
4736		__kfree_skb(skb);
4737	}
4738	return size;
4739
4740err_free:
4741	kfree_skb(skb);
4742err:
4743	return -ENOMEM;
4744}
4745
4746static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4747{
4748	const struct tcphdr *th = tcp_hdr(skb);
4749	struct tcp_sock *tp = tcp_sk(sk);
4750	int eaten = -1;
4751	bool fragstolen = false;
4752
4753	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4754		goto drop;
4755
4756	skb_dst_drop(skb);
4757	__skb_pull(skb, th->doff * 4);
4758
4759	TCP_ECN_accept_cwr(tp, skb);
4760
4761	tp->rx_opt.dsack = 0;
4762
4763	/*  Queue data for delivery to the user.
4764	 *  Packets in sequence go to the receive queue.
4765	 *  Out of sequence packets to the out_of_order_queue.
4766	 */
4767	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4768		if (tcp_receive_window(tp) == 0)
4769			goto out_of_window;
4770
4771		/* Ok. In sequence. In window. */
4772		if (tp->ucopy.task == current &&
4773		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4774		    sock_owned_by_user(sk) && !tp->urg_data) {
4775			int chunk = min_t(unsigned int, skb->len,
4776					  tp->ucopy.len);
4777
4778			__set_current_state(TASK_RUNNING);
4779
4780			local_bh_enable();
4781			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4782				tp->ucopy.len -= chunk;
4783				tp->copied_seq += chunk;
4784				eaten = (chunk == skb->len);
4785				tcp_rcv_space_adjust(sk);
4786			}
4787			local_bh_disable();
4788		}
4789
4790		if (eaten <= 0) {
4791queue_and_out:
4792			if (eaten < 0 &&
4793			    tcp_try_rmem_schedule(sk, skb->truesize))
4794				goto drop;
4795
4796			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4797		}
4798		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4799		if (skb->len)
4800			tcp_event_data_recv(sk, skb);
4801		if (th->fin)
4802			tcp_fin(sk);
4803
4804		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4805			tcp_ofo_queue(sk);
4806
4807			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4808			 * gap in queue is filled.
4809			 */
4810			if (skb_queue_empty(&tp->out_of_order_queue))
4811				inet_csk(sk)->icsk_ack.pingpong = 0;
4812		}
4813
4814		if (tp->rx_opt.num_sacks)
4815			tcp_sack_remove(tp);
4816
4817		tcp_fast_path_check(sk);
4818
4819		if (eaten > 0)
4820			kfree_skb_partial(skb, fragstolen);
4821		else if (!sock_flag(sk, SOCK_DEAD))
4822			sk->sk_data_ready(sk, 0);
4823		return;
4824	}
4825
4826	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4827		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4828		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4829		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4830
4831out_of_window:
4832		tcp_enter_quickack_mode(sk);
4833		inet_csk_schedule_ack(sk);
4834drop:
4835		__kfree_skb(skb);
4836		return;
4837	}
4838
4839	/* Out of window. F.e. zero window probe. */
4840	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4841		goto out_of_window;
4842
4843	tcp_enter_quickack_mode(sk);
4844
4845	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4846		/* Partial packet, seq < rcv_next < end_seq */
4847		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4848			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4849			   TCP_SKB_CB(skb)->end_seq);
4850
4851		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4852
4853		/* If window is closed, drop tail of packet. But after
4854		 * remembering D-SACK for its head made in previous line.
4855		 */
4856		if (!tcp_receive_window(tp))
4857			goto out_of_window;
4858		goto queue_and_out;
4859	}
4860
4861	tcp_data_queue_ofo(sk, skb);
4862}
4863
4864static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4865					struct sk_buff_head *list)
4866{
4867	struct sk_buff *next = NULL;
4868
4869	if (!skb_queue_is_last(list, skb))
4870		next = skb_queue_next(list, skb);
4871
4872	__skb_unlink(skb, list);
4873	__kfree_skb(skb);
4874	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4875
4876	return next;
4877}
4878
4879/* Collapse contiguous sequence of skbs head..tail with
4880 * sequence numbers start..end.
4881 *
4882 * If tail is NULL, this means until the end of the list.
4883 *
4884 * Segments with FIN/SYN are not collapsed (only because this
4885 * simplifies code)
4886 */
4887static void
4888tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4889	     struct sk_buff *head, struct sk_buff *tail,
4890	     u32 start, u32 end)
4891{
4892	struct sk_buff *skb, *n;
4893	bool end_of_skbs;
4894
4895	/* First, check that queue is collapsible and find
4896	 * the point where collapsing can be useful. */
4897	skb = head;
4898restart:
4899	end_of_skbs = true;
4900	skb_queue_walk_from_safe(list, skb, n) {
4901		if (skb == tail)
4902			break;
4903		/* No new bits? It is possible on ofo queue. */
4904		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4905			skb = tcp_collapse_one(sk, skb, list);
4906			if (!skb)
4907				break;
4908			goto restart;
4909		}
4910
4911		/* The first skb to collapse is:
4912		 * - not SYN/FIN and
4913		 * - bloated or contains data before "start" or
4914		 *   overlaps to the next one.
4915		 */
4916		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4917		    (tcp_win_from_space(skb->truesize) > skb->len ||
4918		     before(TCP_SKB_CB(skb)->seq, start))) {
4919			end_of_skbs = false;
4920			break;
4921		}
4922
4923		if (!skb_queue_is_last(list, skb)) {
4924			struct sk_buff *next = skb_queue_next(list, skb);
4925			if (next != tail &&
4926			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4927				end_of_skbs = false;
4928				break;
4929			}
4930		}
4931
4932		/* Decided to skip this, advance start seq. */
4933		start = TCP_SKB_CB(skb)->end_seq;
4934	}
4935	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4936		return;
4937
4938	while (before(start, end)) {
4939		struct sk_buff *nskb;
4940		unsigned int header = skb_headroom(skb);
4941		int copy = SKB_MAX_ORDER(header, 0);
4942
4943		/* Too big header? This can happen with IPv6. */
4944		if (copy < 0)
4945			return;
4946		if (end - start < copy)
4947			copy = end - start;
4948		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4949		if (!nskb)
4950			return;
4951
4952		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4953		skb_set_network_header(nskb, (skb_network_header(skb) -
4954					      skb->head));
4955		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4956						skb->head));
4957		skb_reserve(nskb, header);
4958		memcpy(nskb->head, skb->head, header);
4959		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4960		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4961		__skb_queue_before(list, skb, nskb);
4962		skb_set_owner_r(nskb, sk);
4963
4964		/* Copy data, releasing collapsed skbs. */
4965		while (copy > 0) {
4966			int offset = start - TCP_SKB_CB(skb)->seq;
4967			int size = TCP_SKB_CB(skb)->end_seq - start;
4968
4969			BUG_ON(offset < 0);
4970			if (size > 0) {
4971				size = min(copy, size);
4972				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4973					BUG();
4974				TCP_SKB_CB(nskb)->end_seq += size;
4975				copy -= size;
4976				start += size;
4977			}
4978			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4979				skb = tcp_collapse_one(sk, skb, list);
4980				if (!skb ||
4981				    skb == tail ||
4982				    tcp_hdr(skb)->syn ||
4983				    tcp_hdr(skb)->fin)
4984					return;
4985			}
4986		}
4987	}
4988}
4989
4990/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4991 * and tcp_collapse() them until all the queue is collapsed.
4992 */
4993static void tcp_collapse_ofo_queue(struct sock *sk)
4994{
4995	struct tcp_sock *tp = tcp_sk(sk);
4996	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4997	struct sk_buff *head;
4998	u32 start, end;
4999
5000	if (skb == NULL)
5001		return;
5002
5003	start = TCP_SKB_CB(skb)->seq;
5004	end = TCP_SKB_CB(skb)->end_seq;
5005	head = skb;
5006
5007	for (;;) {
5008		struct sk_buff *next = NULL;
5009
5010		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5011			next = skb_queue_next(&tp->out_of_order_queue, skb);
5012		skb = next;
5013
5014		/* Segment is terminated when we see gap or when
5015		 * we are at the end of all the queue. */
5016		if (!skb ||
5017		    after(TCP_SKB_CB(skb)->seq, end) ||
5018		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5019			tcp_collapse(sk, &tp->out_of_order_queue,
5020				     head, skb, start, end);
5021			head = skb;
5022			if (!skb)
5023				break;
5024			/* Start new segment */
5025			start = TCP_SKB_CB(skb)->seq;
5026			end = TCP_SKB_CB(skb)->end_seq;
5027		} else {
5028			if (before(TCP_SKB_CB(skb)->seq, start))
5029				start = TCP_SKB_CB(skb)->seq;
5030			if (after(TCP_SKB_CB(skb)->end_seq, end))
5031				end = TCP_SKB_CB(skb)->end_seq;
5032		}
5033	}
5034}
5035
5036/*
5037 * Purge the out-of-order queue.
5038 * Return true if queue was pruned.
5039 */
5040static bool tcp_prune_ofo_queue(struct sock *sk)
5041{
5042	struct tcp_sock *tp = tcp_sk(sk);
5043	bool res = false;
5044
5045	if (!skb_queue_empty(&tp->out_of_order_queue)) {
5046		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5047		__skb_queue_purge(&tp->out_of_order_queue);
5048
5049		/* Reset SACK state.  A conforming SACK implementation will
5050		 * do the same at a timeout based retransmit.  When a connection
5051		 * is in a sad state like this, we care only about integrity
5052		 * of the connection not performance.
5053		 */
5054		if (tp->rx_opt.sack_ok)
5055			tcp_sack_reset(&tp->rx_opt);
5056		sk_mem_reclaim(sk);
5057		res = true;
5058	}
5059	return res;
5060}
5061
5062/* Reduce allocated memory if we can, trying to get
5063 * the socket within its memory limits again.
5064 *
5065 * Return less than zero if we should start dropping frames
5066 * until the socket owning process reads some of the data
5067 * to stabilize the situation.
5068 */
5069static int tcp_prune_queue(struct sock *sk)
5070{
5071	struct tcp_sock *tp = tcp_sk(sk);
5072
5073	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5074
5075	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5076
5077	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5078		tcp_clamp_window(sk);
5079	else if (sk_under_memory_pressure(sk))
5080		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5081
5082	tcp_collapse_ofo_queue(sk);
5083	if (!skb_queue_empty(&sk->sk_receive_queue))
5084		tcp_collapse(sk, &sk->sk_receive_queue,
5085			     skb_peek(&sk->sk_receive_queue),
5086			     NULL,
5087			     tp->copied_seq, tp->rcv_nxt);
5088	sk_mem_reclaim(sk);
5089
5090	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5091		return 0;
5092
5093	/* Collapsing did not help, destructive actions follow.
5094	 * This must not ever occur. */
5095
5096	tcp_prune_ofo_queue(sk);
5097
5098	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5099		return 0;
5100
5101	/* If we are really being abused, tell the caller to silently
5102	 * drop receive data on the floor.  It will get retransmitted
5103	 * and hopefully then we'll have sufficient space.
5104	 */
5105	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5106
5107	/* Massive buffer overcommit. */
5108	tp->pred_flags = 0;
5109	return -1;
5110}
5111
5112/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5113 * As additional protections, we do not touch cwnd in retransmission phases,
5114 * and if application hit its sndbuf limit recently.
5115 */
5116void tcp_cwnd_application_limited(struct sock *sk)
5117{
5118	struct tcp_sock *tp = tcp_sk(sk);
5119
5120	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5121	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5122		/* Limited by application or receiver window. */
5123		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5124		u32 win_used = max(tp->snd_cwnd_used, init_win);
5125		if (win_used < tp->snd_cwnd) {
5126			tp->snd_ssthresh = tcp_current_ssthresh(sk);
5127			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5128		}
5129		tp->snd_cwnd_used = 0;
5130	}
5131	tp->snd_cwnd_stamp = tcp_time_stamp;
5132}
5133
5134static bool tcp_should_expand_sndbuf(const struct sock *sk)
5135{
5136	const struct tcp_sock *tp = tcp_sk(sk);
5137
5138	/* If the user specified a specific send buffer setting, do
5139	 * not modify it.
5140	 */
5141	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5142		return false;
5143
5144	/* If we are under global TCP memory pressure, do not expand.  */
5145	if (sk_under_memory_pressure(sk))
5146		return false;
5147
5148	/* If we are under soft global TCP memory pressure, do not expand.  */
5149	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5150		return false;
5151
5152	/* If we filled the congestion window, do not expand.  */
5153	if (tp->packets_out >= tp->snd_cwnd)
5154		return false;
5155
5156	return true;
5157}
5158
5159/* When incoming ACK allowed to free some skb from write_queue,
5160 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5161 * on the exit from tcp input handler.
5162 *
5163 * PROBLEM: sndbuf expansion does not work well with largesend.
5164 */
5165static void tcp_new_space(struct sock *sk)
5166{
5167	struct tcp_sock *tp = tcp_sk(sk);
5168
5169	if (tcp_should_expand_sndbuf(sk)) {
5170		int sndmem = SKB_TRUESIZE(max_t(u32,
5171						tp->rx_opt.mss_clamp,
5172						tp->mss_cache) +
5173					  MAX_TCP_HEADER);
5174		int demanded = max_t(unsigned int, tp->snd_cwnd,
5175				     tp->reordering + 1);
5176		sndmem *= 2 * demanded;
5177		if (sndmem > sk->sk_sndbuf)
5178			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5179		tp->snd_cwnd_stamp = tcp_time_stamp;
5180	}
5181
5182	sk->sk_write_space(sk);
5183}
5184
5185static void tcp_check_space(struct sock *sk)
5186{
5187	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5188		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5189		if (sk->sk_socket &&
5190		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5191			tcp_new_space(sk);
5192	}
5193}
5194
5195static inline void tcp_data_snd_check(struct sock *sk)
5196{
5197	tcp_push_pending_frames(sk);
5198	tcp_check_space(sk);
5199}
5200
5201/*
5202 * Check if sending an ack is needed.
5203 */
5204static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5205{
5206	struct tcp_sock *tp = tcp_sk(sk);
5207
5208	    /* More than one full frame received... */
5209	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5210	     /* ... and right edge of window advances far enough.
5211	      * (tcp_recvmsg() will send ACK otherwise). Or...
5212	      */
5213	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5214	    /* We ACK each frame or... */
5215	    tcp_in_quickack_mode(sk) ||
5216	    /* We have out of order data. */
5217	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5218		/* Then ack it now */
5219		tcp_send_ack(sk);
5220	} else {
5221		/* Else, send delayed ack. */
5222		tcp_send_delayed_ack(sk);
5223	}
5224}
5225
5226static inline void tcp_ack_snd_check(struct sock *sk)
5227{
5228	if (!inet_csk_ack_scheduled(sk)) {
5229		/* We sent a data segment already. */
5230		return;
5231	}
5232	__tcp_ack_snd_check(sk, 1);
5233}
5234
5235/*
5236 *	This routine is only called when we have urgent data
5237 *	signaled. Its the 'slow' part of tcp_urg. It could be
5238 *	moved inline now as tcp_urg is only called from one
5239 *	place. We handle URGent data wrong. We have to - as
5240 *	BSD still doesn't use the correction from RFC961.
5241 *	For 1003.1g we should support a new option TCP_STDURG to permit
5242 *	either form (or just set the sysctl tcp_stdurg).
5243 */
5244
5245static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5246{
5247	struct tcp_sock *tp = tcp_sk(sk);
5248	u32 ptr = ntohs(th->urg_ptr);
5249
5250	if (ptr && !sysctl_tcp_stdurg)
5251		ptr--;
5252	ptr += ntohl(th->seq);
5253
5254	/* Ignore urgent data that we've already seen and read. */
5255	if (after(tp->copied_seq, ptr))
5256		return;
5257
5258	/* Do not replay urg ptr.
5259	 *
5260	 * NOTE: interesting situation not covered by specs.
5261	 * Misbehaving sender may send urg ptr, pointing to segment,
5262	 * which we already have in ofo queue. We are not able to fetch
5263	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5264	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5265	 * situations. But it is worth to think about possibility of some
5266	 * DoSes using some hypothetical application level deadlock.
5267	 */
5268	if (before(ptr, tp->rcv_nxt))
5269		return;
5270
5271	/* Do we already have a newer (or duplicate) urgent pointer? */
5272	if (tp->urg_data && !after(ptr, tp->urg_seq))
5273		return;
5274
5275	/* Tell the world about our new urgent pointer. */
5276	sk_send_sigurg(sk);
5277
5278	/* We may be adding urgent data when the last byte read was
5279	 * urgent. To do this requires some care. We cannot just ignore
5280	 * tp->copied_seq since we would read the last urgent byte again
5281	 * as data, nor can we alter copied_seq until this data arrives
5282	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5283	 *
5284	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5285	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5286	 * and expect that both A and B disappear from stream. This is _wrong_.
5287	 * Though this happens in BSD with high probability, this is occasional.
5288	 * Any application relying on this is buggy. Note also, that fix "works"
5289	 * only in this artificial test. Insert some normal data between A and B and we will
5290	 * decline of BSD again. Verdict: it is better to remove to trap
5291	 * buggy users.
5292	 */
5293	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5294	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5295		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5296		tp->copied_seq++;
5297		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5298			__skb_unlink(skb, &sk->sk_receive_queue);
5299			__kfree_skb(skb);
5300		}
5301	}
5302
5303	tp->urg_data = TCP_URG_NOTYET;
5304	tp->urg_seq = ptr;
5305
5306	/* Disable header prediction. */
5307	tp->pred_flags = 0;
5308}
5309
5310/* This is the 'fast' part of urgent handling. */
5311static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5312{
5313	struct tcp_sock *tp = tcp_sk(sk);
5314
5315	/* Check if we get a new urgent pointer - normally not. */
5316	if (th->urg)
5317		tcp_check_urg(sk, th);
5318
5319	/* Do we wait for any urgent data? - normally not... */
5320	if (tp->urg_data == TCP_URG_NOTYET) {
5321		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5322			  th->syn;
5323
5324		/* Is the urgent pointer pointing into this packet? */
5325		if (ptr < skb->len) {
5326			u8 tmp;
5327			if (skb_copy_bits(skb, ptr, &tmp, 1))
5328				BUG();
5329			tp->urg_data = TCP_URG_VALID | tmp;
5330			if (!sock_flag(sk, SOCK_DEAD))
5331				sk->sk_data_ready(sk, 0);
5332		}
5333	}
5334}
5335
5336static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5337{
5338	struct tcp_sock *tp = tcp_sk(sk);
5339	int chunk = skb->len - hlen;
5340	int err;
5341
5342	local_bh_enable();
5343	if (skb_csum_unnecessary(skb))
5344		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5345	else
5346		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5347						       tp->ucopy.iov);
5348
5349	if (!err) {
5350		tp->ucopy.len -= chunk;
5351		tp->copied_seq += chunk;
5352		tcp_rcv_space_adjust(sk);
5353	}
5354
5355	local_bh_disable();
5356	return err;
5357}
5358
5359static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5360					    struct sk_buff *skb)
5361{
5362	__sum16 result;
5363
5364	if (sock_owned_by_user(sk)) {
5365		local_bh_enable();
5366		result = __tcp_checksum_complete(skb);
5367		local_bh_disable();
5368	} else {
5369		result = __tcp_checksum_complete(skb);
5370	}
5371	return result;
5372}
5373
5374static inline int tcp_checksum_complete_user(struct sock *sk,
5375					     struct sk_buff *skb)
5376{
5377	return !skb_csum_unnecessary(skb) &&
5378	       __tcp_checksum_complete_user(sk, skb);
5379}
5380
5381#ifdef CONFIG_NET_DMA
5382static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5383				  int hlen)
5384{
5385	struct tcp_sock *tp = tcp_sk(sk);
5386	int chunk = skb->len - hlen;
5387	int dma_cookie;
5388	bool copied_early = false;
5389
5390	if (tp->ucopy.wakeup)
5391		return false;
5392
5393	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5394		tp->ucopy.dma_chan = net_dma_find_channel();
5395
5396	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5397
5398		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5399							 skb, hlen,
5400							 tp->ucopy.iov, chunk,
5401							 tp->ucopy.pinned_list);
5402
5403		if (dma_cookie < 0)
5404			goto out;
5405
5406		tp->ucopy.dma_cookie = dma_cookie;
5407		copied_early = true;
5408
5409		tp->ucopy.len -= chunk;
5410		tp->copied_seq += chunk;
5411		tcp_rcv_space_adjust(sk);
5412
5413		if ((tp->ucopy.len == 0) ||
5414		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5415		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5416			tp->ucopy.wakeup = 1;
5417			sk->sk_data_ready(sk, 0);
5418		}
5419	} else if (chunk > 0) {
5420		tp->ucopy.wakeup = 1;
5421		sk->sk_data_ready(sk, 0);
5422	}
5423out:
5424	return copied_early;
5425}
5426#endif /* CONFIG_NET_DMA */
5427
5428/* Does PAWS and seqno based validation of an incoming segment, flags will
5429 * play significant role here.
5430 */
5431static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5432			      const struct tcphdr *th, int syn_inerr)
5433{
5434	const u8 *hash_location;
5435	struct tcp_sock *tp = tcp_sk(sk);
5436
5437	/* RFC1323: H1. Apply PAWS check first. */
5438	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5439	    tp->rx_opt.saw_tstamp &&
5440	    tcp_paws_discard(sk, skb)) {
5441		if (!th->rst) {
5442			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5443			tcp_send_dupack(sk, skb);
5444			goto discard;
5445		}
5446		/* Reset is accepted even if it did not pass PAWS. */
5447	}
5448
5449	/* Step 1: check sequence number */
5450	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5451		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5452		 * (RST) segments are validated by checking their SEQ-fields."
5453		 * And page 69: "If an incoming segment is not acceptable,
5454		 * an acknowledgment should be sent in reply (unless the RST
5455		 * bit is set, if so drop the segment and return)".
5456		 */
5457		if (!th->rst)
 
 
5458			tcp_send_dupack(sk, skb);
 
5459		goto discard;
5460	}
5461
5462	/* Step 2: check RST bit */
5463	if (th->rst) {
5464		tcp_reset(sk);
 
 
 
 
 
 
 
 
 
5465		goto discard;
5466	}
5467
5468	/* ts_recent update must be made after we are sure that the packet
5469	 * is in window.
5470	 */
5471	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5472
5473	/* step 3: check security and precedence [ignored] */
5474
5475	/* step 4: Check for a SYN in window. */
5476	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
 
 
 
5477		if (syn_inerr)
5478			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5479		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5480		tcp_reset(sk);
5481		return -1;
5482	}
5483
5484	return 1;
5485
5486discard:
5487	__kfree_skb(skb);
5488	return 0;
5489}
5490
5491/*
5492 *	TCP receive function for the ESTABLISHED state.
5493 *
5494 *	It is split into a fast path and a slow path. The fast path is
5495 * 	disabled when:
5496 *	- A zero window was announced from us - zero window probing
5497 *        is only handled properly in the slow path.
5498 *	- Out of order segments arrived.
5499 *	- Urgent data is expected.
5500 *	- There is no buffer space left
5501 *	- Unexpected TCP flags/window values/header lengths are received
5502 *	  (detected by checking the TCP header against pred_flags)
5503 *	- Data is sent in both directions. Fast path only supports pure senders
5504 *	  or pure receivers (this means either the sequence number or the ack
5505 *	  value must stay constant)
5506 *	- Unexpected TCP option.
5507 *
5508 *	When these conditions are not satisfied it drops into a standard
5509 *	receive procedure patterned after RFC793 to handle all cases.
5510 *	The first three cases are guaranteed by proper pred_flags setting,
5511 *	the rest is checked inline. Fast processing is turned on in
5512 *	tcp_data_queue when everything is OK.
5513 */
5514int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5515			const struct tcphdr *th, unsigned int len)
5516{
5517	struct tcp_sock *tp = tcp_sk(sk);
5518	int res;
5519
 
 
5520	/*
5521	 *	Header prediction.
5522	 *	The code loosely follows the one in the famous
5523	 *	"30 instruction TCP receive" Van Jacobson mail.
5524	 *
5525	 *	Van's trick is to deposit buffers into socket queue
5526	 *	on a device interrupt, to call tcp_recv function
5527	 *	on the receive process context and checksum and copy
5528	 *	the buffer to user space. smart...
5529	 *
5530	 *	Our current scheme is not silly either but we take the
5531	 *	extra cost of the net_bh soft interrupt processing...
5532	 *	We do checksum and copy also but from device to kernel.
5533	 */
5534
5535	tp->rx_opt.saw_tstamp = 0;
5536
5537	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5538	 *	if header_prediction is to be made
5539	 *	'S' will always be tp->tcp_header_len >> 2
5540	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5541	 *  turn it off	(when there are holes in the receive
5542	 *	 space for instance)
5543	 *	PSH flag is ignored.
5544	 */
5545
5546	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5547	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5548	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5549		int tcp_header_len = tp->tcp_header_len;
5550
5551		/* Timestamp header prediction: tcp_header_len
5552		 * is automatically equal to th->doff*4 due to pred_flags
5553		 * match.
5554		 */
5555
5556		/* Check timestamp */
5557		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5558			/* No? Slow path! */
5559			if (!tcp_parse_aligned_timestamp(tp, th))
5560				goto slow_path;
5561
5562			/* If PAWS failed, check it more carefully in slow path */
5563			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5564				goto slow_path;
5565
5566			/* DO NOT update ts_recent here, if checksum fails
5567			 * and timestamp was corrupted part, it will result
5568			 * in a hung connection since we will drop all
5569			 * future packets due to the PAWS test.
5570			 */
5571		}
5572
5573		if (len <= tcp_header_len) {
5574			/* Bulk data transfer: sender */
5575			if (len == tcp_header_len) {
5576				/* Predicted packet is in window by definition.
5577				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5578				 * Hence, check seq<=rcv_wup reduces to:
5579				 */
5580				if (tcp_header_len ==
5581				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5582				    tp->rcv_nxt == tp->rcv_wup)
5583					tcp_store_ts_recent(tp);
5584
5585				/* We know that such packets are checksummed
5586				 * on entry.
5587				 */
5588				tcp_ack(sk, skb, 0);
5589				__kfree_skb(skb);
5590				tcp_data_snd_check(sk);
5591				return 0;
5592			} else { /* Header too small */
5593				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5594				goto discard;
5595			}
5596		} else {
5597			int eaten = 0;
5598			int copied_early = 0;
5599			bool fragstolen = false;
5600
5601			if (tp->copied_seq == tp->rcv_nxt &&
5602			    len - tcp_header_len <= tp->ucopy.len) {
5603#ifdef CONFIG_NET_DMA
5604				if (tp->ucopy.task == current &&
5605				    sock_owned_by_user(sk) &&
5606				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5607					copied_early = 1;
5608					eaten = 1;
5609				}
5610#endif
5611				if (tp->ucopy.task == current &&
5612				    sock_owned_by_user(sk) && !copied_early) {
5613					__set_current_state(TASK_RUNNING);
5614
5615					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5616						eaten = 1;
5617				}
5618				if (eaten) {
5619					/* Predicted packet is in window by definition.
5620					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5621					 * Hence, check seq<=rcv_wup reduces to:
5622					 */
5623					if (tcp_header_len ==
5624					    (sizeof(struct tcphdr) +
5625					     TCPOLEN_TSTAMP_ALIGNED) &&
5626					    tp->rcv_nxt == tp->rcv_wup)
5627						tcp_store_ts_recent(tp);
5628
5629					tcp_rcv_rtt_measure_ts(sk, skb);
5630
5631					__skb_pull(skb, tcp_header_len);
5632					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5633					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5634				}
5635				if (copied_early)
5636					tcp_cleanup_rbuf(sk, skb->len);
5637			}
5638			if (!eaten) {
5639				if (tcp_checksum_complete_user(sk, skb))
5640					goto csum_error;
5641
 
 
 
5642				/* Predicted packet is in window by definition.
5643				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5644				 * Hence, check seq<=rcv_wup reduces to:
5645				 */
5646				if (tcp_header_len ==
5647				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5648				    tp->rcv_nxt == tp->rcv_wup)
5649					tcp_store_ts_recent(tp);
5650
5651				tcp_rcv_rtt_measure_ts(sk, skb);
5652
5653				if ((int)skb->truesize > sk->sk_forward_alloc)
5654					goto step5;
5655
5656				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5657
5658				/* Bulk data transfer: receiver */
5659				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5660						      &fragstolen);
5661			}
5662
5663			tcp_event_data_recv(sk, skb);
5664
5665			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5666				/* Well, only one small jumplet in fast path... */
5667				tcp_ack(sk, skb, FLAG_DATA);
5668				tcp_data_snd_check(sk);
5669				if (!inet_csk_ack_scheduled(sk))
5670					goto no_ack;
5671			}
5672
5673			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5674				__tcp_ack_snd_check(sk, 0);
5675no_ack:
5676#ifdef CONFIG_NET_DMA
5677			if (copied_early)
5678				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5679			else
5680#endif
5681			if (eaten)
5682				kfree_skb_partial(skb, fragstolen);
5683			else
5684				sk->sk_data_ready(sk, 0);
5685			return 0;
5686		}
5687	}
5688
5689slow_path:
5690	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5691		goto csum_error;
5692
 
 
 
5693	/*
5694	 *	Standard slow path.
5695	 */
5696
5697	res = tcp_validate_incoming(sk, skb, th, 1);
5698	if (res <= 0)
5699		return -res;
5700
5701step5:
5702	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5703		goto discard;
5704
5705	tcp_rcv_rtt_measure_ts(sk, skb);
5706
5707	/* Process urgent data. */
5708	tcp_urg(sk, skb, th);
5709
5710	/* step 7: process the segment text */
5711	tcp_data_queue(sk, skb);
5712
5713	tcp_data_snd_check(sk);
5714	tcp_ack_snd_check(sk);
5715	return 0;
5716
5717csum_error:
 
5718	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5719
5720discard:
5721	__kfree_skb(skb);
5722	return 0;
5723}
5724EXPORT_SYMBOL(tcp_rcv_established);
5725
5726void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5727{
5728	struct tcp_sock *tp = tcp_sk(sk);
5729	struct inet_connection_sock *icsk = inet_csk(sk);
5730
5731	tcp_set_state(sk, TCP_ESTABLISHED);
5732
5733	if (skb != NULL)
 
5734		security_inet_conn_established(sk, skb);
 
5735
5736	/* Make sure socket is routed, for correct metrics.  */
5737	icsk->icsk_af_ops->rebuild_header(sk);
5738
5739	tcp_init_metrics(sk);
5740
5741	tcp_init_congestion_control(sk);
5742
5743	/* Prevent spurious tcp_cwnd_restart() on first data
5744	 * packet.
5745	 */
5746	tp->lsndtime = tcp_time_stamp;
5747
5748	tcp_init_buffer_space(sk);
5749
5750	if (sock_flag(sk, SOCK_KEEPOPEN))
5751		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5752
5753	if (!tp->rx_opt.snd_wscale)
5754		__tcp_fast_path_on(tp, tp->snd_wnd);
5755	else
5756		tp->pred_flags = 0;
5757
5758	if (!sock_flag(sk, SOCK_DEAD)) {
5759		sk->sk_state_change(sk);
5760		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5761	}
5762}
5763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5764static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5765					 const struct tcphdr *th, unsigned int len)
5766{
5767	const u8 *hash_location;
5768	struct inet_connection_sock *icsk = inet_csk(sk);
5769	struct tcp_sock *tp = tcp_sk(sk);
5770	struct tcp_cookie_values *cvp = tp->cookie_values;
5771	int saved_clamp = tp->rx_opt.mss_clamp;
5772
5773	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
 
 
5774
5775	if (th->ack) {
5776		/* rfc793:
5777		 * "If the state is SYN-SENT then
5778		 *    first check the ACK bit
5779		 *      If the ACK bit is set
5780		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5781		 *        a reset (unless the RST bit is set, if so drop
5782		 *        the segment and return)"
5783		 *
5784		 *  We do not send data with SYN, so that RFC-correct
5785		 *  test reduces to:
5786		 */
5787		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
 
5788			goto reset_and_undo;
5789
5790		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5791		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5792			     tcp_time_stamp)) {
5793			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5794			goto reset_and_undo;
5795		}
5796
5797		/* Now ACK is acceptable.
5798		 *
5799		 * "If the RST bit is set
5800		 *    If the ACK was acceptable then signal the user "error:
5801		 *    connection reset", drop the segment, enter CLOSED state,
5802		 *    delete TCB, and return."
5803		 */
5804
5805		if (th->rst) {
5806			tcp_reset(sk);
5807			goto discard;
5808		}
5809
5810		/* rfc793:
5811		 *   "fifth, if neither of the SYN or RST bits is set then
5812		 *    drop the segment and return."
5813		 *
5814		 *    See note below!
5815		 *                                        --ANK(990513)
5816		 */
5817		if (!th->syn)
5818			goto discard_and_undo;
5819
5820		/* rfc793:
5821		 *   "If the SYN bit is on ...
5822		 *    are acceptable then ...
5823		 *    (our SYN has been ACKed), change the connection
5824		 *    state to ESTABLISHED..."
5825		 */
5826
5827		TCP_ECN_rcv_synack(tp, th);
5828
5829		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5830		tcp_ack(sk, skb, FLAG_SLOWPATH);
5831
5832		/* Ok.. it's good. Set up sequence numbers and
5833		 * move to established.
5834		 */
5835		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5836		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5837
5838		/* RFC1323: The window in SYN & SYN/ACK segments is
5839		 * never scaled.
5840		 */
5841		tp->snd_wnd = ntohs(th->window);
5842		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5843
5844		if (!tp->rx_opt.wscale_ok) {
5845			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5846			tp->window_clamp = min(tp->window_clamp, 65535U);
5847		}
5848
5849		if (tp->rx_opt.saw_tstamp) {
5850			tp->rx_opt.tstamp_ok	   = 1;
5851			tp->tcp_header_len =
5852				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5853			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5854			tcp_store_ts_recent(tp);
5855		} else {
5856			tp->tcp_header_len = sizeof(struct tcphdr);
5857		}
5858
5859		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5860			tcp_enable_fack(tp);
5861
5862		tcp_mtup_init(sk);
5863		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5864		tcp_initialize_rcv_mss(sk);
5865
5866		/* Remember, tcp_poll() does not lock socket!
5867		 * Change state from SYN-SENT only after copied_seq
5868		 * is initialized. */
5869		tp->copied_seq = tp->rcv_nxt;
5870
5871		if (cvp != NULL &&
5872		    cvp->cookie_pair_size > 0 &&
5873		    tp->rx_opt.cookie_plus > 0) {
5874			int cookie_size = tp->rx_opt.cookie_plus
5875					- TCPOLEN_COOKIE_BASE;
5876			int cookie_pair_size = cookie_size
5877					     + cvp->cookie_desired;
5878
5879			/* A cookie extension option was sent and returned.
5880			 * Note that each incoming SYNACK replaces the
5881			 * Responder cookie.  The initial exchange is most
5882			 * fragile, as protection against spoofing relies
5883			 * entirely upon the sequence and timestamp (above).
5884			 * This replacement strategy allows the correct pair to
5885			 * pass through, while any others will be filtered via
5886			 * Responder verification later.
5887			 */
5888			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5889				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5890				       hash_location, cookie_size);
5891				cvp->cookie_pair_size = cookie_pair_size;
5892			}
5893		}
5894
5895		smp_mb();
5896
5897		tcp_finish_connect(sk, skb);
5898
 
 
 
 
5899		if (sk->sk_write_pending ||
5900		    icsk->icsk_accept_queue.rskq_defer_accept ||
5901		    icsk->icsk_ack.pingpong) {
5902			/* Save one ACK. Data will be ready after
5903			 * several ticks, if write_pending is set.
5904			 *
5905			 * It may be deleted, but with this feature tcpdumps
5906			 * look so _wonderfully_ clever, that I was not able
5907			 * to stand against the temptation 8)     --ANK
5908			 */
5909			inet_csk_schedule_ack(sk);
5910			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5911			tcp_enter_quickack_mode(sk);
5912			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5913						  TCP_DELACK_MAX, TCP_RTO_MAX);
5914
5915discard:
5916			__kfree_skb(skb);
5917			return 0;
5918		} else {
5919			tcp_send_ack(sk);
5920		}
5921		return -1;
5922	}
5923
5924	/* No ACK in the segment */
5925
5926	if (th->rst) {
5927		/* rfc793:
5928		 * "If the RST bit is set
5929		 *
5930		 *      Otherwise (no ACK) drop the segment and return."
5931		 */
5932
5933		goto discard_and_undo;
5934	}
5935
5936	/* PAWS check. */
5937	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5938	    tcp_paws_reject(&tp->rx_opt, 0))
5939		goto discard_and_undo;
5940
5941	if (th->syn) {
5942		/* We see SYN without ACK. It is attempt of
5943		 * simultaneous connect with crossed SYNs.
5944		 * Particularly, it can be connect to self.
5945		 */
5946		tcp_set_state(sk, TCP_SYN_RECV);
5947
5948		if (tp->rx_opt.saw_tstamp) {
5949			tp->rx_opt.tstamp_ok = 1;
5950			tcp_store_ts_recent(tp);
5951			tp->tcp_header_len =
5952				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5953		} else {
5954			tp->tcp_header_len = sizeof(struct tcphdr);
5955		}
5956
5957		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5958		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5959
5960		/* RFC1323: The window in SYN & SYN/ACK segments is
5961		 * never scaled.
5962		 */
5963		tp->snd_wnd    = ntohs(th->window);
5964		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5965		tp->max_window = tp->snd_wnd;
5966
5967		TCP_ECN_rcv_syn(tp, th);
5968
5969		tcp_mtup_init(sk);
5970		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5971		tcp_initialize_rcv_mss(sk);
5972
5973		tcp_send_synack(sk);
5974#if 0
5975		/* Note, we could accept data and URG from this segment.
5976		 * There are no obstacles to make this.
 
 
5977		 *
5978		 * However, if we ignore data in ACKless segments sometimes,
5979		 * we have no reasons to accept it sometimes.
5980		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5981		 * is not flawless. So, discard packet for sanity.
5982		 * Uncomment this return to process the data.
5983		 */
5984		return -1;
5985#else
5986		goto discard;
5987#endif
5988	}
5989	/* "fifth, if neither of the SYN or RST bits is set then
5990	 * drop the segment and return."
5991	 */
5992
5993discard_and_undo:
5994	tcp_clear_options(&tp->rx_opt);
5995	tp->rx_opt.mss_clamp = saved_clamp;
5996	goto discard;
5997
5998reset_and_undo:
5999	tcp_clear_options(&tp->rx_opt);
6000	tp->rx_opt.mss_clamp = saved_clamp;
6001	return 1;
6002}
6003
6004/*
6005 *	This function implements the receiving procedure of RFC 793 for
6006 *	all states except ESTABLISHED and TIME_WAIT.
6007 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6008 *	address independent.
6009 */
6010
6011int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6012			  const struct tcphdr *th, unsigned int len)
6013{
6014	struct tcp_sock *tp = tcp_sk(sk);
6015	struct inet_connection_sock *icsk = inet_csk(sk);
 
6016	int queued = 0;
6017	int res;
 
6018
6019	tp->rx_opt.saw_tstamp = 0;
6020
6021	switch (sk->sk_state) {
6022	case TCP_CLOSE:
6023		goto discard;
6024
6025	case TCP_LISTEN:
6026		if (th->ack)
6027			return 1;
6028
6029		if (th->rst)
6030			goto discard;
6031
6032		if (th->syn) {
6033			if (th->fin)
6034				goto discard;
6035			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
6036				return 1;
6037
6038			/* Now we have several options: In theory there is
6039			 * nothing else in the frame. KA9Q has an option to
6040			 * send data with the syn, BSD accepts data with the
6041			 * syn up to the [to be] advertised window and
6042			 * Solaris 2.1 gives you a protocol error. For now
6043			 * we just ignore it, that fits the spec precisely
6044			 * and avoids incompatibilities. It would be nice in
6045			 * future to drop through and process the data.
6046			 *
6047			 * Now that TTCP is starting to be used we ought to
6048			 * queue this data.
6049			 * But, this leaves one open to an easy denial of
6050			 * service attack, and SYN cookies can't defend
6051			 * against this problem. So, we drop the data
6052			 * in the interest of security over speed unless
6053			 * it's still in use.
6054			 */
6055			kfree_skb(skb);
6056			return 0;
6057		}
6058		goto discard;
6059
6060	case TCP_SYN_SENT:
6061		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6062		if (queued >= 0)
6063			return queued;
6064
6065		/* Do step6 onward by hand. */
6066		tcp_urg(sk, skb, th);
6067		__kfree_skb(skb);
6068		tcp_data_snd_check(sk);
6069		return 0;
6070	}
6071
6072	res = tcp_validate_incoming(sk, skb, th, 0);
6073	if (res <= 0)
6074		return -res;
 
 
 
 
 
 
 
 
 
 
 
6075
6076	/* step 5: check the ACK field */
6077	if (th->ack) {
6078		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6079
6080		switch (sk->sk_state) {
6081		case TCP_SYN_RECV:
6082			if (acceptable) {
6083				tp->copied_seq = tp->rcv_nxt;
6084				smp_mb();
6085				tcp_set_state(sk, TCP_ESTABLISHED);
6086				sk->sk_state_change(sk);
6087
6088				/* Note, that this wakeup is only for marginal
6089				 * crossed SYN case. Passively open sockets
6090				 * are not waked up, because sk->sk_sleep ==
6091				 * NULL and sk->sk_socket == NULL.
6092				 */
6093				if (sk->sk_socket)
6094					sk_wake_async(sk,
6095						      SOCK_WAKE_IO, POLL_OUT);
6096
6097				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6098				tp->snd_wnd = ntohs(th->window) <<
6099					      tp->rx_opt.snd_wscale;
6100				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6101
6102				if (tp->rx_opt.tstamp_ok)
6103					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6104
6105				/* Make sure socket is routed, for
6106				 * correct metrics.
6107				 */
6108				icsk->icsk_af_ops->rebuild_header(sk);
 
 
 
 
 
 
 
 
6109
6110				tcp_init_metrics(sk);
6111
6112				tcp_init_congestion_control(sk);
 
6113
6114				/* Prevent spurious tcp_cwnd_restart() on
6115				 * first data packet.
6116				 */
6117				tp->lsndtime = tcp_time_stamp;
6118
6119				tcp_mtup_init(sk);
6120				tcp_initialize_rcv_mss(sk);
6121				tcp_init_buffer_space(sk);
6122				tcp_fast_path_on(tp);
6123			} else {
 
 
 
 
 
 
 
 
 
 
 
 
6124				return 1;
6125			}
 
 
 
 
6126			break;
6127
6128		case TCP_FIN_WAIT1:
6129			if (tp->snd_una == tp->write_seq) {
6130				tcp_set_state(sk, TCP_FIN_WAIT2);
6131				sk->sk_shutdown |= SEND_SHUTDOWN;
6132				dst_confirm(__sk_dst_get(sk));
6133
6134				if (!sock_flag(sk, SOCK_DEAD))
6135					/* Wake up lingering close() */
6136					sk->sk_state_change(sk);
6137				else {
6138					int tmo;
6139
6140					if (tp->linger2 < 0 ||
6141					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6142					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6143						tcp_done(sk);
6144						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6145						return 1;
6146					}
6147
6148					tmo = tcp_fin_time(sk);
6149					if (tmo > TCP_TIMEWAIT_LEN) {
6150						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6151					} else if (th->fin || sock_owned_by_user(sk)) {
6152						/* Bad case. We could lose such FIN otherwise.
6153						 * It is not a big problem, but it looks confusing
6154						 * and not so rare event. We still can lose it now,
6155						 * if it spins in bh_lock_sock(), but it is really
6156						 * marginal case.
6157						 */
6158						inet_csk_reset_keepalive_timer(sk, tmo);
6159					} else {
6160						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6161						goto discard;
6162					}
6163				}
6164			}
6165			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6166
6167		case TCP_CLOSING:
6168			if (tp->snd_una == tp->write_seq) {
6169				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6170				goto discard;
6171			}
6172			break;
6173
6174		case TCP_LAST_ACK:
6175			if (tp->snd_una == tp->write_seq) {
6176				tcp_update_metrics(sk);
6177				tcp_done(sk);
6178				goto discard;
6179			}
6180			break;
6181		}
6182	} else
6183		goto discard;
6184
6185	/* step 6: check the URG bit */
6186	tcp_urg(sk, skb, th);
6187
6188	/* step 7: process the segment text */
6189	switch (sk->sk_state) {
6190	case TCP_CLOSE_WAIT:
6191	case TCP_CLOSING:
6192	case TCP_LAST_ACK:
6193		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6194			break;
6195	case TCP_FIN_WAIT1:
6196	case TCP_FIN_WAIT2:
6197		/* RFC 793 says to queue data in these states,
6198		 * RFC 1122 says we MUST send a reset.
6199		 * BSD 4.4 also does reset.
6200		 */
6201		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6202			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6203			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6204				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6205				tcp_reset(sk);
6206				return 1;
6207			}
6208		}
6209		/* Fall through */
6210	case TCP_ESTABLISHED:
6211		tcp_data_queue(sk, skb);
6212		queued = 1;
6213		break;
6214	}
6215
6216	/* tcp_data could move socket to TIME-WAIT */
6217	if (sk->sk_state != TCP_CLOSE) {
6218		tcp_data_snd_check(sk);
6219		tcp_ack_snd_check(sk);
6220	}
6221
6222	if (!queued) {
6223discard:
6224		__kfree_skb(skb);
6225	}
6226	return 0;
6227}
6228EXPORT_SYMBOL(tcp_rcv_state_process);