Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83EXPORT_SYMBOL(sysctl_tcp_reordering);
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
86int sysctl_tcp_adv_win_scale __read_mostly = 1;
87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89/* rfc5961 challenge ack rate limiting */
90int sysctl_tcp_challenge_ack_limit = 100;
91
92int sysctl_tcp_stdurg __read_mostly;
93int sysctl_tcp_rfc1337 __read_mostly;
94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95int sysctl_tcp_frto __read_mostly = 2;
96
97int sysctl_tcp_thin_dupack __read_mostly;
98
99int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100int sysctl_tcp_early_retrans __read_mostly = 3;
101
102#define FLAG_DATA 0x01 /* Incoming frame contained data. */
103#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107#define FLAG_DATA_SACKED 0x20 /* New SACK. */
108#define FLAG_ECE 0x40 /* ECE in this ACK */
109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124/* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128{
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171}
172
173static void tcp_incr_quickack(struct sock *sk)
174{
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182}
183
184static void tcp_enter_quickack_mode(struct sock *sk)
185{
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190}
191
192/* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196static inline bool tcp_in_quickack_mode(const struct sock *sk)
197{
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201}
202
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210{
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221{
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244}
245
246static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247{
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250}
251
252static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253{
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256}
257
258static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259{
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263}
264
265/* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270static void tcp_sndbuf_expand(struct sock *sk)
271{
272 const struct tcp_sock *tp = tcp_sk(sk);
273 int sndmem, per_mss;
274 u32 nr_segs;
275
276 /* Worst case is non GSO/TSO : each frame consumes one skb
277 * and skb->head is kmalloced using power of two area of memory
278 */
279 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
280 MAX_TCP_HEADER +
281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
282
283 per_mss = roundup_pow_of_two(per_mss) +
284 SKB_DATA_ALIGN(sizeof(struct sk_buff));
285
286 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
287 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
288
289 /* Fast Recovery (RFC 5681 3.2) :
290 * Cubic needs 1.7 factor, rounded to 2 to include
291 * extra cushion (application might react slowly to POLLOUT)
292 */
293 sndmem = 2 * nr_segs * per_mss;
294
295 if (sk->sk_sndbuf < sndmem)
296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
297}
298
299/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
300 *
301 * All tcp_full_space() is split to two parts: "network" buffer, allocated
302 * forward and advertised in receiver window (tp->rcv_wnd) and
303 * "application buffer", required to isolate scheduling/application
304 * latencies from network.
305 * window_clamp is maximal advertised window. It can be less than
306 * tcp_full_space(), in this case tcp_full_space() - window_clamp
307 * is reserved for "application" buffer. The less window_clamp is
308 * the smoother our behaviour from viewpoint of network, but the lower
309 * throughput and the higher sensitivity of the connection to losses. 8)
310 *
311 * rcv_ssthresh is more strict window_clamp used at "slow start"
312 * phase to predict further behaviour of this connection.
313 * It is used for two goals:
314 * - to enforce header prediction at sender, even when application
315 * requires some significant "application buffer". It is check #1.
316 * - to prevent pruning of receive queue because of misprediction
317 * of receiver window. Check #2.
318 *
319 * The scheme does not work when sender sends good segments opening
320 * window and then starts to feed us spaghetti. But it should work
321 * in common situations. Otherwise, we have to rely on queue collapsing.
322 */
323
324/* Slow part of check#2. */
325static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
326{
327 struct tcp_sock *tp = tcp_sk(sk);
328 /* Optimize this! */
329 int truesize = tcp_win_from_space(skb->truesize) >> 1;
330 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
331
332 while (tp->rcv_ssthresh <= window) {
333 if (truesize <= skb->len)
334 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
335
336 truesize >>= 1;
337 window >>= 1;
338 }
339 return 0;
340}
341
342static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
343{
344 struct tcp_sock *tp = tcp_sk(sk);
345
346 /* Check #1 */
347 if (tp->rcv_ssthresh < tp->window_clamp &&
348 (int)tp->rcv_ssthresh < tcp_space(sk) &&
349 !sk_under_memory_pressure(sk)) {
350 int incr;
351
352 /* Check #2. Increase window, if skb with such overhead
353 * will fit to rcvbuf in future.
354 */
355 if (tcp_win_from_space(skb->truesize) <= skb->len)
356 incr = 2 * tp->advmss;
357 else
358 incr = __tcp_grow_window(sk, skb);
359
360 if (incr) {
361 incr = max_t(int, incr, 2 * skb->len);
362 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
363 tp->window_clamp);
364 inet_csk(sk)->icsk_ack.quick |= 1;
365 }
366 }
367}
368
369/* 3. Tuning rcvbuf, when connection enters established state. */
370static void tcp_fixup_rcvbuf(struct sock *sk)
371{
372 u32 mss = tcp_sk(sk)->advmss;
373 int rcvmem;
374
375 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
376 tcp_default_init_rwnd(mss);
377
378 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
379 * Allow enough cushion so that sender is not limited by our window
380 */
381 if (sysctl_tcp_moderate_rcvbuf)
382 rcvmem <<= 2;
383
384 if (sk->sk_rcvbuf < rcvmem)
385 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
386}
387
388/* 4. Try to fixup all. It is made immediately after connection enters
389 * established state.
390 */
391void tcp_init_buffer_space(struct sock *sk)
392{
393 struct tcp_sock *tp = tcp_sk(sk);
394 int maxwin;
395
396 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
397 tcp_fixup_rcvbuf(sk);
398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
399 tcp_sndbuf_expand(sk);
400
401 tp->rcvq_space.space = tp->rcv_wnd;
402 tp->rcvq_space.time = tcp_time_stamp;
403 tp->rcvq_space.seq = tp->copied_seq;
404
405 maxwin = tcp_full_space(sk);
406
407 if (tp->window_clamp >= maxwin) {
408 tp->window_clamp = maxwin;
409
410 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
411 tp->window_clamp = max(maxwin -
412 (maxwin >> sysctl_tcp_app_win),
413 4 * tp->advmss);
414 }
415
416 /* Force reservation of one segment. */
417 if (sysctl_tcp_app_win &&
418 tp->window_clamp > 2 * tp->advmss &&
419 tp->window_clamp + tp->advmss > maxwin)
420 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
421
422 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
423 tp->snd_cwnd_stamp = tcp_time_stamp;
424}
425
426/* 5. Recalculate window clamp after socket hit its memory bounds. */
427static void tcp_clamp_window(struct sock *sk)
428{
429 struct tcp_sock *tp = tcp_sk(sk);
430 struct inet_connection_sock *icsk = inet_csk(sk);
431
432 icsk->icsk_ack.quick = 0;
433
434 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
435 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
436 !sk_under_memory_pressure(sk) &&
437 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
438 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
439 sysctl_tcp_rmem[2]);
440 }
441 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
442 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
443}
444
445/* Initialize RCV_MSS value.
446 * RCV_MSS is an our guess about MSS used by the peer.
447 * We haven't any direct information about the MSS.
448 * It's better to underestimate the RCV_MSS rather than overestimate.
449 * Overestimations make us ACKing less frequently than needed.
450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
451 */
452void tcp_initialize_rcv_mss(struct sock *sk)
453{
454 const struct tcp_sock *tp = tcp_sk(sk);
455 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
456
457 hint = min(hint, tp->rcv_wnd / 2);
458 hint = min(hint, TCP_MSS_DEFAULT);
459 hint = max(hint, TCP_MIN_MSS);
460
461 inet_csk(sk)->icsk_ack.rcv_mss = hint;
462}
463EXPORT_SYMBOL(tcp_initialize_rcv_mss);
464
465/* Receiver "autotuning" code.
466 *
467 * The algorithm for RTT estimation w/o timestamps is based on
468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
469 * <http://public.lanl.gov/radiant/pubs.html#DRS>
470 *
471 * More detail on this code can be found at
472 * <http://staff.psc.edu/jheffner/>,
473 * though this reference is out of date. A new paper
474 * is pending.
475 */
476static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
477{
478 u32 new_sample = tp->rcv_rtt_est.rtt;
479 long m = sample;
480
481 if (m == 0)
482 m = 1;
483
484 if (new_sample != 0) {
485 /* If we sample in larger samples in the non-timestamp
486 * case, we could grossly overestimate the RTT especially
487 * with chatty applications or bulk transfer apps which
488 * are stalled on filesystem I/O.
489 *
490 * Also, since we are only going for a minimum in the
491 * non-timestamp case, we do not smooth things out
492 * else with timestamps disabled convergence takes too
493 * long.
494 */
495 if (!win_dep) {
496 m -= (new_sample >> 3);
497 new_sample += m;
498 } else {
499 m <<= 3;
500 if (m < new_sample)
501 new_sample = m;
502 }
503 } else {
504 /* No previous measure. */
505 new_sample = m << 3;
506 }
507
508 if (tp->rcv_rtt_est.rtt != new_sample)
509 tp->rcv_rtt_est.rtt = new_sample;
510}
511
512static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
513{
514 if (tp->rcv_rtt_est.time == 0)
515 goto new_measure;
516 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
517 return;
518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
519
520new_measure:
521 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
522 tp->rcv_rtt_est.time = tcp_time_stamp;
523}
524
525static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
526 const struct sk_buff *skb)
527{
528 struct tcp_sock *tp = tcp_sk(sk);
529 if (tp->rx_opt.rcv_tsecr &&
530 (TCP_SKB_CB(skb)->end_seq -
531 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
533}
534
535/*
536 * This function should be called every time data is copied to user space.
537 * It calculates the appropriate TCP receive buffer space.
538 */
539void tcp_rcv_space_adjust(struct sock *sk)
540{
541 struct tcp_sock *tp = tcp_sk(sk);
542 int time;
543 int copied;
544
545 time = tcp_time_stamp - tp->rcvq_space.time;
546 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
547 return;
548
549 /* Number of bytes copied to user in last RTT */
550 copied = tp->copied_seq - tp->rcvq_space.seq;
551 if (copied <= tp->rcvq_space.space)
552 goto new_measure;
553
554 /* A bit of theory :
555 * copied = bytes received in previous RTT, our base window
556 * To cope with packet losses, we need a 2x factor
557 * To cope with slow start, and sender growing its cwin by 100 %
558 * every RTT, we need a 4x factor, because the ACK we are sending
559 * now is for the next RTT, not the current one :
560 * <prev RTT . ><current RTT .. ><next RTT .... >
561 */
562
563 if (sysctl_tcp_moderate_rcvbuf &&
564 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
565 int rcvwin, rcvmem, rcvbuf;
566
567 /* minimal window to cope with packet losses, assuming
568 * steady state. Add some cushion because of small variations.
569 */
570 rcvwin = (copied << 1) + 16 * tp->advmss;
571
572 /* If rate increased by 25%,
573 * assume slow start, rcvwin = 3 * copied
574 * If rate increased by 50%,
575 * assume sender can use 2x growth, rcvwin = 4 * copied
576 */
577 if (copied >=
578 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
579 if (copied >=
580 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
581 rcvwin <<= 1;
582 else
583 rcvwin += (rcvwin >> 1);
584 }
585
586 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
587 while (tcp_win_from_space(rcvmem) < tp->advmss)
588 rcvmem += 128;
589
590 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
591 if (rcvbuf > sk->sk_rcvbuf) {
592 sk->sk_rcvbuf = rcvbuf;
593
594 /* Make the window clamp follow along. */
595 tp->window_clamp = rcvwin;
596 }
597 }
598 tp->rcvq_space.space = copied;
599
600new_measure:
601 tp->rcvq_space.seq = tp->copied_seq;
602 tp->rcvq_space.time = tcp_time_stamp;
603}
604
605/* There is something which you must keep in mind when you analyze the
606 * behavior of the tp->ato delayed ack timeout interval. When a
607 * connection starts up, we want to ack as quickly as possible. The
608 * problem is that "good" TCP's do slow start at the beginning of data
609 * transmission. The means that until we send the first few ACK's the
610 * sender will sit on his end and only queue most of his data, because
611 * he can only send snd_cwnd unacked packets at any given time. For
612 * each ACK we send, he increments snd_cwnd and transmits more of his
613 * queue. -DaveM
614 */
615static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
616{
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct inet_connection_sock *icsk = inet_csk(sk);
619 u32 now;
620
621 inet_csk_schedule_ack(sk);
622
623 tcp_measure_rcv_mss(sk, skb);
624
625 tcp_rcv_rtt_measure(tp);
626
627 now = tcp_time_stamp;
628
629 if (!icsk->icsk_ack.ato) {
630 /* The _first_ data packet received, initialize
631 * delayed ACK engine.
632 */
633 tcp_incr_quickack(sk);
634 icsk->icsk_ack.ato = TCP_ATO_MIN;
635 } else {
636 int m = now - icsk->icsk_ack.lrcvtime;
637
638 if (m <= TCP_ATO_MIN / 2) {
639 /* The fastest case is the first. */
640 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
641 } else if (m < icsk->icsk_ack.ato) {
642 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
643 if (icsk->icsk_ack.ato > icsk->icsk_rto)
644 icsk->icsk_ack.ato = icsk->icsk_rto;
645 } else if (m > icsk->icsk_rto) {
646 /* Too long gap. Apparently sender failed to
647 * restart window, so that we send ACKs quickly.
648 */
649 tcp_incr_quickack(sk);
650 sk_mem_reclaim(sk);
651 }
652 }
653 icsk->icsk_ack.lrcvtime = now;
654
655 TCP_ECN_check_ce(tp, skb);
656
657 if (skb->len >= 128)
658 tcp_grow_window(sk, skb);
659}
660
661/* Called to compute a smoothed rtt estimate. The data fed to this
662 * routine either comes from timestamps, or from segments that were
663 * known _not_ to have been retransmitted [see Karn/Partridge
664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
665 * piece by Van Jacobson.
666 * NOTE: the next three routines used to be one big routine.
667 * To save cycles in the RFC 1323 implementation it was better to break
668 * it up into three procedures. -- erics
669 */
670static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
671{
672 struct tcp_sock *tp = tcp_sk(sk);
673 long m = mrtt_us; /* RTT */
674 u32 srtt = tp->srtt_us;
675
676 /* The following amusing code comes from Jacobson's
677 * article in SIGCOMM '88. Note that rtt and mdev
678 * are scaled versions of rtt and mean deviation.
679 * This is designed to be as fast as possible
680 * m stands for "measurement".
681 *
682 * On a 1990 paper the rto value is changed to:
683 * RTO = rtt + 4 * mdev
684 *
685 * Funny. This algorithm seems to be very broken.
686 * These formulae increase RTO, when it should be decreased, increase
687 * too slowly, when it should be increased quickly, decrease too quickly
688 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
689 * does not matter how to _calculate_ it. Seems, it was trap
690 * that VJ failed to avoid. 8)
691 */
692 if (srtt != 0) {
693 m -= (srtt >> 3); /* m is now error in rtt est */
694 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
695 if (m < 0) {
696 m = -m; /* m is now abs(error) */
697 m -= (tp->mdev_us >> 2); /* similar update on mdev */
698 /* This is similar to one of Eifel findings.
699 * Eifel blocks mdev updates when rtt decreases.
700 * This solution is a bit different: we use finer gain
701 * for mdev in this case (alpha*beta).
702 * Like Eifel it also prevents growth of rto,
703 * but also it limits too fast rto decreases,
704 * happening in pure Eifel.
705 */
706 if (m > 0)
707 m >>= 3;
708 } else {
709 m -= (tp->mdev_us >> 2); /* similar update on mdev */
710 }
711 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
712 if (tp->mdev_us > tp->mdev_max_us) {
713 tp->mdev_max_us = tp->mdev_us;
714 if (tp->mdev_max_us > tp->rttvar_us)
715 tp->rttvar_us = tp->mdev_max_us;
716 }
717 if (after(tp->snd_una, tp->rtt_seq)) {
718 if (tp->mdev_max_us < tp->rttvar_us)
719 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
720 tp->rtt_seq = tp->snd_nxt;
721 tp->mdev_max_us = tcp_rto_min_us(sk);
722 }
723 } else {
724 /* no previous measure. */
725 srtt = m << 3; /* take the measured time to be rtt */
726 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
727 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
728 tp->mdev_max_us = tp->rttvar_us;
729 tp->rtt_seq = tp->snd_nxt;
730 }
731 tp->srtt_us = max(1U, srtt);
732}
733
734/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
735 * Note: TCP stack does not yet implement pacing.
736 * FQ packet scheduler can be used to implement cheap but effective
737 * TCP pacing, to smooth the burst on large writes when packets
738 * in flight is significantly lower than cwnd (or rwin)
739 */
740static void tcp_update_pacing_rate(struct sock *sk)
741{
742 const struct tcp_sock *tp = tcp_sk(sk);
743 u64 rate;
744
745 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
746 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
747
748 rate *= max(tp->snd_cwnd, tp->packets_out);
749
750 if (likely(tp->srtt_us))
751 do_div(rate, tp->srtt_us);
752
753 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
754 * without any lock. We want to make sure compiler wont store
755 * intermediate values in this location.
756 */
757 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
758 sk->sk_max_pacing_rate);
759}
760
761/* Calculate rto without backoff. This is the second half of Van Jacobson's
762 * routine referred to above.
763 */
764static void tcp_set_rto(struct sock *sk)
765{
766 const struct tcp_sock *tp = tcp_sk(sk);
767 /* Old crap is replaced with new one. 8)
768 *
769 * More seriously:
770 * 1. If rtt variance happened to be less 50msec, it is hallucination.
771 * It cannot be less due to utterly erratic ACK generation made
772 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
773 * to do with delayed acks, because at cwnd>2 true delack timeout
774 * is invisible. Actually, Linux-2.4 also generates erratic
775 * ACKs in some circumstances.
776 */
777 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
778
779 /* 2. Fixups made earlier cannot be right.
780 * If we do not estimate RTO correctly without them,
781 * all the algo is pure shit and should be replaced
782 * with correct one. It is exactly, which we pretend to do.
783 */
784
785 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
786 * guarantees that rto is higher.
787 */
788 tcp_bound_rto(sk);
789}
790
791__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
792{
793 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
794
795 if (!cwnd)
796 cwnd = TCP_INIT_CWND;
797 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
798}
799
800/*
801 * Packet counting of FACK is based on in-order assumptions, therefore TCP
802 * disables it when reordering is detected
803 */
804void tcp_disable_fack(struct tcp_sock *tp)
805{
806 /* RFC3517 uses different metric in lost marker => reset on change */
807 if (tcp_is_fack(tp))
808 tp->lost_skb_hint = NULL;
809 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
810}
811
812/* Take a notice that peer is sending D-SACKs */
813static void tcp_dsack_seen(struct tcp_sock *tp)
814{
815 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
816}
817
818static void tcp_update_reordering(struct sock *sk, const int metric,
819 const int ts)
820{
821 struct tcp_sock *tp = tcp_sk(sk);
822 if (metric > tp->reordering) {
823 int mib_idx;
824
825 tp->reordering = min(TCP_MAX_REORDERING, metric);
826
827 /* This exciting event is worth to be remembered. 8) */
828 if (ts)
829 mib_idx = LINUX_MIB_TCPTSREORDER;
830 else if (tcp_is_reno(tp))
831 mib_idx = LINUX_MIB_TCPRENOREORDER;
832 else if (tcp_is_fack(tp))
833 mib_idx = LINUX_MIB_TCPFACKREORDER;
834 else
835 mib_idx = LINUX_MIB_TCPSACKREORDER;
836
837 NET_INC_STATS_BH(sock_net(sk), mib_idx);
838#if FASTRETRANS_DEBUG > 1
839 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
840 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
841 tp->reordering,
842 tp->fackets_out,
843 tp->sacked_out,
844 tp->undo_marker ? tp->undo_retrans : 0);
845#endif
846 tcp_disable_fack(tp);
847 }
848
849 if (metric > 0)
850 tcp_disable_early_retrans(tp);
851}
852
853/* This must be called before lost_out is incremented */
854static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
855{
856 if ((tp->retransmit_skb_hint == NULL) ||
857 before(TCP_SKB_CB(skb)->seq,
858 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
859 tp->retransmit_skb_hint = skb;
860
861 if (!tp->lost_out ||
862 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
863 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
864}
865
866static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
867{
868 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
869 tcp_verify_retransmit_hint(tp, skb);
870
871 tp->lost_out += tcp_skb_pcount(skb);
872 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
873 }
874}
875
876static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
877 struct sk_buff *skb)
878{
879 tcp_verify_retransmit_hint(tp, skb);
880
881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 tp->lost_out += tcp_skb_pcount(skb);
883 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
884 }
885}
886
887/* This procedure tags the retransmission queue when SACKs arrive.
888 *
889 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
890 * Packets in queue with these bits set are counted in variables
891 * sacked_out, retrans_out and lost_out, correspondingly.
892 *
893 * Valid combinations are:
894 * Tag InFlight Description
895 * 0 1 - orig segment is in flight.
896 * S 0 - nothing flies, orig reached receiver.
897 * L 0 - nothing flies, orig lost by net.
898 * R 2 - both orig and retransmit are in flight.
899 * L|R 1 - orig is lost, retransmit is in flight.
900 * S|R 1 - orig reached receiver, retrans is still in flight.
901 * (L|S|R is logically valid, it could occur when L|R is sacked,
902 * but it is equivalent to plain S and code short-curcuits it to S.
903 * L|S is logically invalid, it would mean -1 packet in flight 8))
904 *
905 * These 6 states form finite state machine, controlled by the following events:
906 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
907 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
908 * 3. Loss detection event of two flavors:
909 * A. Scoreboard estimator decided the packet is lost.
910 * A'. Reno "three dupacks" marks head of queue lost.
911 * A''. Its FACK modification, head until snd.fack is lost.
912 * B. SACK arrives sacking SND.NXT at the moment, when the
913 * segment was retransmitted.
914 * 4. D-SACK added new rule: D-SACK changes any tag to S.
915 *
916 * It is pleasant to note, that state diagram turns out to be commutative,
917 * so that we are allowed not to be bothered by order of our actions,
918 * when multiple events arrive simultaneously. (see the function below).
919 *
920 * Reordering detection.
921 * --------------------
922 * Reordering metric is maximal distance, which a packet can be displaced
923 * in packet stream. With SACKs we can estimate it:
924 *
925 * 1. SACK fills old hole and the corresponding segment was not
926 * ever retransmitted -> reordering. Alas, we cannot use it
927 * when segment was retransmitted.
928 * 2. The last flaw is solved with D-SACK. D-SACK arrives
929 * for retransmitted and already SACKed segment -> reordering..
930 * Both of these heuristics are not used in Loss state, when we cannot
931 * account for retransmits accurately.
932 *
933 * SACK block validation.
934 * ----------------------
935 *
936 * SACK block range validation checks that the received SACK block fits to
937 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
938 * Note that SND.UNA is not included to the range though being valid because
939 * it means that the receiver is rather inconsistent with itself reporting
940 * SACK reneging when it should advance SND.UNA. Such SACK block this is
941 * perfectly valid, however, in light of RFC2018 which explicitly states
942 * that "SACK block MUST reflect the newest segment. Even if the newest
943 * segment is going to be discarded ...", not that it looks very clever
944 * in case of head skb. Due to potentional receiver driven attacks, we
945 * choose to avoid immediate execution of a walk in write queue due to
946 * reneging and defer head skb's loss recovery to standard loss recovery
947 * procedure that will eventually trigger (nothing forbids us doing this).
948 *
949 * Implements also blockage to start_seq wrap-around. Problem lies in the
950 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
951 * there's no guarantee that it will be before snd_nxt (n). The problem
952 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
953 * wrap (s_w):
954 *
955 * <- outs wnd -> <- wrapzone ->
956 * u e n u_w e_w s n_w
957 * | | | | | | |
958 * |<------------+------+----- TCP seqno space --------------+---------->|
959 * ...-- <2^31 ->| |<--------...
960 * ...---- >2^31 ------>| |<--------...
961 *
962 * Current code wouldn't be vulnerable but it's better still to discard such
963 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
964 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
965 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
966 * equal to the ideal case (infinite seqno space without wrap caused issues).
967 *
968 * With D-SACK the lower bound is extended to cover sequence space below
969 * SND.UNA down to undo_marker, which is the last point of interest. Yet
970 * again, D-SACK block must not to go across snd_una (for the same reason as
971 * for the normal SACK blocks, explained above). But there all simplicity
972 * ends, TCP might receive valid D-SACKs below that. As long as they reside
973 * fully below undo_marker they do not affect behavior in anyway and can
974 * therefore be safely ignored. In rare cases (which are more or less
975 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
976 * fragmentation and packet reordering past skb's retransmission. To consider
977 * them correctly, the acceptable range must be extended even more though
978 * the exact amount is rather hard to quantify. However, tp->max_window can
979 * be used as an exaggerated estimate.
980 */
981static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
982 u32 start_seq, u32 end_seq)
983{
984 /* Too far in future, or reversed (interpretation is ambiguous) */
985 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
986 return false;
987
988 /* Nasty start_seq wrap-around check (see comments above) */
989 if (!before(start_seq, tp->snd_nxt))
990 return false;
991
992 /* In outstanding window? ...This is valid exit for D-SACKs too.
993 * start_seq == snd_una is non-sensical (see comments above)
994 */
995 if (after(start_seq, tp->snd_una))
996 return true;
997
998 if (!is_dsack || !tp->undo_marker)
999 return false;
1000
1001 /* ...Then it's D-SACK, and must reside below snd_una completely */
1002 if (after(end_seq, tp->snd_una))
1003 return false;
1004
1005 if (!before(start_seq, tp->undo_marker))
1006 return true;
1007
1008 /* Too old */
1009 if (!after(end_seq, tp->undo_marker))
1010 return false;
1011
1012 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1013 * start_seq < undo_marker and end_seq >= undo_marker.
1014 */
1015 return !before(start_seq, end_seq - tp->max_window);
1016}
1017
1018/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1019 * Event "B". Later note: FACK people cheated me again 8), we have to account
1020 * for reordering! Ugly, but should help.
1021 *
1022 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1023 * less than what is now known to be received by the other end (derived from
1024 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1025 * retransmitted skbs to avoid some costly processing per ACKs.
1026 */
1027static void tcp_mark_lost_retrans(struct sock *sk)
1028{
1029 const struct inet_connection_sock *icsk = inet_csk(sk);
1030 struct tcp_sock *tp = tcp_sk(sk);
1031 struct sk_buff *skb;
1032 int cnt = 0;
1033 u32 new_low_seq = tp->snd_nxt;
1034 u32 received_upto = tcp_highest_sack_seq(tp);
1035
1036 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1037 !after(received_upto, tp->lost_retrans_low) ||
1038 icsk->icsk_ca_state != TCP_CA_Recovery)
1039 return;
1040
1041 tcp_for_write_queue(skb, sk) {
1042 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1043
1044 if (skb == tcp_send_head(sk))
1045 break;
1046 if (cnt == tp->retrans_out)
1047 break;
1048 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1049 continue;
1050
1051 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1052 continue;
1053
1054 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1055 * constraint here (see above) but figuring out that at
1056 * least tp->reordering SACK blocks reside between ack_seq
1057 * and received_upto is not easy task to do cheaply with
1058 * the available datastructures.
1059 *
1060 * Whether FACK should check here for tp->reordering segs
1061 * in-between one could argue for either way (it would be
1062 * rather simple to implement as we could count fack_count
1063 * during the walk and do tp->fackets_out - fack_count).
1064 */
1065 if (after(received_upto, ack_seq)) {
1066 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1067 tp->retrans_out -= tcp_skb_pcount(skb);
1068
1069 tcp_skb_mark_lost_uncond_verify(tp, skb);
1070 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1071 } else {
1072 if (before(ack_seq, new_low_seq))
1073 new_low_seq = ack_seq;
1074 cnt += tcp_skb_pcount(skb);
1075 }
1076 }
1077
1078 if (tp->retrans_out)
1079 tp->lost_retrans_low = new_low_seq;
1080}
1081
1082static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1083 struct tcp_sack_block_wire *sp, int num_sacks,
1084 u32 prior_snd_una)
1085{
1086 struct tcp_sock *tp = tcp_sk(sk);
1087 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1088 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1089 bool dup_sack = false;
1090
1091 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1092 dup_sack = true;
1093 tcp_dsack_seen(tp);
1094 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1095 } else if (num_sacks > 1) {
1096 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1097 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1098
1099 if (!after(end_seq_0, end_seq_1) &&
1100 !before(start_seq_0, start_seq_1)) {
1101 dup_sack = true;
1102 tcp_dsack_seen(tp);
1103 NET_INC_STATS_BH(sock_net(sk),
1104 LINUX_MIB_TCPDSACKOFORECV);
1105 }
1106 }
1107
1108 /* D-SACK for already forgotten data... Do dumb counting. */
1109 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1110 !after(end_seq_0, prior_snd_una) &&
1111 after(end_seq_0, tp->undo_marker))
1112 tp->undo_retrans--;
1113
1114 return dup_sack;
1115}
1116
1117struct tcp_sacktag_state {
1118 int reord;
1119 int fack_count;
1120 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1121 int flag;
1122};
1123
1124/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1125 * the incoming SACK may not exactly match but we can find smaller MSS
1126 * aligned portion of it that matches. Therefore we might need to fragment
1127 * which may fail and creates some hassle (caller must handle error case
1128 * returns).
1129 *
1130 * FIXME: this could be merged to shift decision code
1131 */
1132static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1133 u32 start_seq, u32 end_seq)
1134{
1135 int err;
1136 bool in_sack;
1137 unsigned int pkt_len;
1138 unsigned int mss;
1139
1140 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1141 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1142
1143 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1144 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1145 mss = tcp_skb_mss(skb);
1146 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1147
1148 if (!in_sack) {
1149 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1150 if (pkt_len < mss)
1151 pkt_len = mss;
1152 } else {
1153 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1154 if (pkt_len < mss)
1155 return -EINVAL;
1156 }
1157
1158 /* Round if necessary so that SACKs cover only full MSSes
1159 * and/or the remaining small portion (if present)
1160 */
1161 if (pkt_len > mss) {
1162 unsigned int new_len = (pkt_len / mss) * mss;
1163 if (!in_sack && new_len < pkt_len) {
1164 new_len += mss;
1165 if (new_len > skb->len)
1166 return 0;
1167 }
1168 pkt_len = new_len;
1169 }
1170 err = tcp_fragment(sk, skb, pkt_len, mss);
1171 if (err < 0)
1172 return err;
1173 }
1174
1175 return in_sack;
1176}
1177
1178/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1179static u8 tcp_sacktag_one(struct sock *sk,
1180 struct tcp_sacktag_state *state, u8 sacked,
1181 u32 start_seq, u32 end_seq,
1182 int dup_sack, int pcount,
1183 const struct skb_mstamp *xmit_time)
1184{
1185 struct tcp_sock *tp = tcp_sk(sk);
1186 int fack_count = state->fack_count;
1187
1188 /* Account D-SACK for retransmitted packet. */
1189 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1190 if (tp->undo_marker && tp->undo_retrans &&
1191 after(end_seq, tp->undo_marker))
1192 tp->undo_retrans--;
1193 if (sacked & TCPCB_SACKED_ACKED)
1194 state->reord = min(fack_count, state->reord);
1195 }
1196
1197 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1198 if (!after(end_seq, tp->snd_una))
1199 return sacked;
1200
1201 if (!(sacked & TCPCB_SACKED_ACKED)) {
1202 if (sacked & TCPCB_SACKED_RETRANS) {
1203 /* If the segment is not tagged as lost,
1204 * we do not clear RETRANS, believing
1205 * that retransmission is still in flight.
1206 */
1207 if (sacked & TCPCB_LOST) {
1208 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1209 tp->lost_out -= pcount;
1210 tp->retrans_out -= pcount;
1211 }
1212 } else {
1213 if (!(sacked & TCPCB_RETRANS)) {
1214 /* New sack for not retransmitted frame,
1215 * which was in hole. It is reordering.
1216 */
1217 if (before(start_seq,
1218 tcp_highest_sack_seq(tp)))
1219 state->reord = min(fack_count,
1220 state->reord);
1221 if (!after(end_seq, tp->high_seq))
1222 state->flag |= FLAG_ORIG_SACK_ACKED;
1223 /* Pick the earliest sequence sacked for RTT */
1224 if (state->rtt_us < 0) {
1225 struct skb_mstamp now;
1226
1227 skb_mstamp_get(&now);
1228 state->rtt_us = skb_mstamp_us_delta(&now,
1229 xmit_time);
1230 }
1231 }
1232
1233 if (sacked & TCPCB_LOST) {
1234 sacked &= ~TCPCB_LOST;
1235 tp->lost_out -= pcount;
1236 }
1237 }
1238
1239 sacked |= TCPCB_SACKED_ACKED;
1240 state->flag |= FLAG_DATA_SACKED;
1241 tp->sacked_out += pcount;
1242
1243 fack_count += pcount;
1244
1245 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1246 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1247 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1248 tp->lost_cnt_hint += pcount;
1249
1250 if (fack_count > tp->fackets_out)
1251 tp->fackets_out = fack_count;
1252 }
1253
1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 * are accounted above as well.
1257 */
1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 sacked &= ~TCPCB_SACKED_RETRANS;
1260 tp->retrans_out -= pcount;
1261 }
1262
1263 return sacked;
1264}
1265
1266/* Shift newly-SACKed bytes from this skb to the immediately previous
1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268 */
1269static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1270 struct tcp_sacktag_state *state,
1271 unsigned int pcount, int shifted, int mss,
1272 bool dup_sack)
1273{
1274 struct tcp_sock *tp = tcp_sk(sk);
1275 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1278
1279 BUG_ON(!pcount);
1280
1281 /* Adjust counters and hints for the newly sacked sequence
1282 * range but discard the return value since prev is already
1283 * marked. We must tag the range first because the seq
1284 * advancement below implicitly advances
1285 * tcp_highest_sack_seq() when skb is highest_sack.
1286 */
1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 start_seq, end_seq, dup_sack, pcount,
1289 &skb->skb_mstamp);
1290
1291 if (skb == tp->lost_skb_hint)
1292 tp->lost_cnt_hint += pcount;
1293
1294 TCP_SKB_CB(prev)->end_seq += shifted;
1295 TCP_SKB_CB(skb)->seq += shifted;
1296
1297 skb_shinfo(prev)->gso_segs += pcount;
1298 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1299 skb_shinfo(skb)->gso_segs -= pcount;
1300
1301 /* When we're adding to gso_segs == 1, gso_size will be zero,
1302 * in theory this shouldn't be necessary but as long as DSACK
1303 * code can come after this skb later on it's better to keep
1304 * setting gso_size to something.
1305 */
1306 if (!skb_shinfo(prev)->gso_size) {
1307 skb_shinfo(prev)->gso_size = mss;
1308 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1309 }
1310
1311 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1312 if (skb_shinfo(skb)->gso_segs <= 1) {
1313 skb_shinfo(skb)->gso_size = 0;
1314 skb_shinfo(skb)->gso_type = 0;
1315 }
1316
1317 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1318 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1319
1320 if (skb->len > 0) {
1321 BUG_ON(!tcp_skb_pcount(skb));
1322 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1323 return false;
1324 }
1325
1326 /* Whole SKB was eaten :-) */
1327
1328 if (skb == tp->retransmit_skb_hint)
1329 tp->retransmit_skb_hint = prev;
1330 if (skb == tp->lost_skb_hint) {
1331 tp->lost_skb_hint = prev;
1332 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1333 }
1334
1335 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1336 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1337 TCP_SKB_CB(prev)->end_seq++;
1338
1339 if (skb == tcp_highest_sack(sk))
1340 tcp_advance_highest_sack(sk, skb);
1341
1342 tcp_unlink_write_queue(skb, sk);
1343 sk_wmem_free_skb(sk, skb);
1344
1345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1346
1347 return true;
1348}
1349
1350/* I wish gso_size would have a bit more sane initialization than
1351 * something-or-zero which complicates things
1352 */
1353static int tcp_skb_seglen(const struct sk_buff *skb)
1354{
1355 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1356}
1357
1358/* Shifting pages past head area doesn't work */
1359static int skb_can_shift(const struct sk_buff *skb)
1360{
1361 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1362}
1363
1364/* Try collapsing SACK blocks spanning across multiple skbs to a single
1365 * skb.
1366 */
1367static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1368 struct tcp_sacktag_state *state,
1369 u32 start_seq, u32 end_seq,
1370 bool dup_sack)
1371{
1372 struct tcp_sock *tp = tcp_sk(sk);
1373 struct sk_buff *prev;
1374 int mss;
1375 int pcount = 0;
1376 int len;
1377 int in_sack;
1378
1379 if (!sk_can_gso(sk))
1380 goto fallback;
1381
1382 /* Normally R but no L won't result in plain S */
1383 if (!dup_sack &&
1384 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1385 goto fallback;
1386 if (!skb_can_shift(skb))
1387 goto fallback;
1388 /* This frame is about to be dropped (was ACKed). */
1389 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1390 goto fallback;
1391
1392 /* Can only happen with delayed DSACK + discard craziness */
1393 if (unlikely(skb == tcp_write_queue_head(sk)))
1394 goto fallback;
1395 prev = tcp_write_queue_prev(sk, skb);
1396
1397 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1398 goto fallback;
1399
1400 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402
1403 if (in_sack) {
1404 len = skb->len;
1405 pcount = tcp_skb_pcount(skb);
1406 mss = tcp_skb_seglen(skb);
1407
1408 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1409 * drop this restriction as unnecessary
1410 */
1411 if (mss != tcp_skb_seglen(prev))
1412 goto fallback;
1413 } else {
1414 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415 goto noop;
1416 /* CHECKME: This is non-MSS split case only?, this will
1417 * cause skipped skbs due to advancing loop btw, original
1418 * has that feature too
1419 */
1420 if (tcp_skb_pcount(skb) <= 1)
1421 goto noop;
1422
1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424 if (!in_sack) {
1425 /* TODO: head merge to next could be attempted here
1426 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427 * though it might not be worth of the additional hassle
1428 *
1429 * ...we can probably just fallback to what was done
1430 * previously. We could try merging non-SACKed ones
1431 * as well but it probably isn't going to buy off
1432 * because later SACKs might again split them, and
1433 * it would make skb timestamp tracking considerably
1434 * harder problem.
1435 */
1436 goto fallback;
1437 }
1438
1439 len = end_seq - TCP_SKB_CB(skb)->seq;
1440 BUG_ON(len < 0);
1441 BUG_ON(len > skb->len);
1442
1443 /* MSS boundaries should be honoured or else pcount will
1444 * severely break even though it makes things bit trickier.
1445 * Optimize common case to avoid most of the divides
1446 */
1447 mss = tcp_skb_mss(skb);
1448
1449 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1450 * drop this restriction as unnecessary
1451 */
1452 if (mss != tcp_skb_seglen(prev))
1453 goto fallback;
1454
1455 if (len == mss) {
1456 pcount = 1;
1457 } else if (len < mss) {
1458 goto noop;
1459 } else {
1460 pcount = len / mss;
1461 len = pcount * mss;
1462 }
1463 }
1464
1465 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467 goto fallback;
1468
1469 if (!skb_shift(prev, skb, len))
1470 goto fallback;
1471 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1472 goto out;
1473
1474 /* Hole filled allows collapsing with the next as well, this is very
1475 * useful when hole on every nth skb pattern happens
1476 */
1477 if (prev == tcp_write_queue_tail(sk))
1478 goto out;
1479 skb = tcp_write_queue_next(sk, prev);
1480
1481 if (!skb_can_shift(skb) ||
1482 (skb == tcp_send_head(sk)) ||
1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 (mss != tcp_skb_seglen(skb)))
1485 goto out;
1486
1487 len = skb->len;
1488 if (skb_shift(prev, skb, len)) {
1489 pcount += tcp_skb_pcount(skb);
1490 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1491 }
1492
1493out:
1494 state->fack_count += pcount;
1495 return prev;
1496
1497noop:
1498 return skb;
1499
1500fallback:
1501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 return NULL;
1503}
1504
1505static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 struct tcp_sack_block *next_dup,
1507 struct tcp_sacktag_state *state,
1508 u32 start_seq, u32 end_seq,
1509 bool dup_sack_in)
1510{
1511 struct tcp_sock *tp = tcp_sk(sk);
1512 struct sk_buff *tmp;
1513
1514 tcp_for_write_queue_from(skb, sk) {
1515 int in_sack = 0;
1516 bool dup_sack = dup_sack_in;
1517
1518 if (skb == tcp_send_head(sk))
1519 break;
1520
1521 /* queue is in-order => we can short-circuit the walk early */
1522 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1523 break;
1524
1525 if ((next_dup != NULL) &&
1526 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1527 in_sack = tcp_match_skb_to_sack(sk, skb,
1528 next_dup->start_seq,
1529 next_dup->end_seq);
1530 if (in_sack > 0)
1531 dup_sack = true;
1532 }
1533
1534 /* skb reference here is a bit tricky to get right, since
1535 * shifting can eat and free both this skb and the next,
1536 * so not even _safe variant of the loop is enough.
1537 */
1538 if (in_sack <= 0) {
1539 tmp = tcp_shift_skb_data(sk, skb, state,
1540 start_seq, end_seq, dup_sack);
1541 if (tmp != NULL) {
1542 if (tmp != skb) {
1543 skb = tmp;
1544 continue;
1545 }
1546
1547 in_sack = 0;
1548 } else {
1549 in_sack = tcp_match_skb_to_sack(sk, skb,
1550 start_seq,
1551 end_seq);
1552 }
1553 }
1554
1555 if (unlikely(in_sack < 0))
1556 break;
1557
1558 if (in_sack) {
1559 TCP_SKB_CB(skb)->sacked =
1560 tcp_sacktag_one(sk,
1561 state,
1562 TCP_SKB_CB(skb)->sacked,
1563 TCP_SKB_CB(skb)->seq,
1564 TCP_SKB_CB(skb)->end_seq,
1565 dup_sack,
1566 tcp_skb_pcount(skb),
1567 &skb->skb_mstamp);
1568
1569 if (!before(TCP_SKB_CB(skb)->seq,
1570 tcp_highest_sack_seq(tp)))
1571 tcp_advance_highest_sack(sk, skb);
1572 }
1573
1574 state->fack_count += tcp_skb_pcount(skb);
1575 }
1576 return skb;
1577}
1578
1579/* Avoid all extra work that is being done by sacktag while walking in
1580 * a normal way
1581 */
1582static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1583 struct tcp_sacktag_state *state,
1584 u32 skip_to_seq)
1585{
1586 tcp_for_write_queue_from(skb, sk) {
1587 if (skb == tcp_send_head(sk))
1588 break;
1589
1590 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1591 break;
1592
1593 state->fack_count += tcp_skb_pcount(skb);
1594 }
1595 return skb;
1596}
1597
1598static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1599 struct sock *sk,
1600 struct tcp_sack_block *next_dup,
1601 struct tcp_sacktag_state *state,
1602 u32 skip_to_seq)
1603{
1604 if (next_dup == NULL)
1605 return skb;
1606
1607 if (before(next_dup->start_seq, skip_to_seq)) {
1608 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1609 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1610 next_dup->start_seq, next_dup->end_seq,
1611 1);
1612 }
1613
1614 return skb;
1615}
1616
1617static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1618{
1619 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1620}
1621
1622static int
1623tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1624 u32 prior_snd_una, long *sack_rtt_us)
1625{
1626 struct tcp_sock *tp = tcp_sk(sk);
1627 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1628 TCP_SKB_CB(ack_skb)->sacked);
1629 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1630 struct tcp_sack_block sp[TCP_NUM_SACKS];
1631 struct tcp_sack_block *cache;
1632 struct tcp_sacktag_state state;
1633 struct sk_buff *skb;
1634 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1635 int used_sacks;
1636 bool found_dup_sack = false;
1637 int i, j;
1638 int first_sack_index;
1639
1640 state.flag = 0;
1641 state.reord = tp->packets_out;
1642 state.rtt_us = -1L;
1643
1644 if (!tp->sacked_out) {
1645 if (WARN_ON(tp->fackets_out))
1646 tp->fackets_out = 0;
1647 tcp_highest_sack_reset(sk);
1648 }
1649
1650 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1651 num_sacks, prior_snd_una);
1652 if (found_dup_sack)
1653 state.flag |= FLAG_DSACKING_ACK;
1654
1655 /* Eliminate too old ACKs, but take into
1656 * account more or less fresh ones, they can
1657 * contain valid SACK info.
1658 */
1659 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1660 return 0;
1661
1662 if (!tp->packets_out)
1663 goto out;
1664
1665 used_sacks = 0;
1666 first_sack_index = 0;
1667 for (i = 0; i < num_sacks; i++) {
1668 bool dup_sack = !i && found_dup_sack;
1669
1670 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1671 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1672
1673 if (!tcp_is_sackblock_valid(tp, dup_sack,
1674 sp[used_sacks].start_seq,
1675 sp[used_sacks].end_seq)) {
1676 int mib_idx;
1677
1678 if (dup_sack) {
1679 if (!tp->undo_marker)
1680 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1681 else
1682 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1683 } else {
1684 /* Don't count olds caused by ACK reordering */
1685 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1686 !after(sp[used_sacks].end_seq, tp->snd_una))
1687 continue;
1688 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1689 }
1690
1691 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1692 if (i == 0)
1693 first_sack_index = -1;
1694 continue;
1695 }
1696
1697 /* Ignore very old stuff early */
1698 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1699 continue;
1700
1701 used_sacks++;
1702 }
1703
1704 /* order SACK blocks to allow in order walk of the retrans queue */
1705 for (i = used_sacks - 1; i > 0; i--) {
1706 for (j = 0; j < i; j++) {
1707 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1708 swap(sp[j], sp[j + 1]);
1709
1710 /* Track where the first SACK block goes to */
1711 if (j == first_sack_index)
1712 first_sack_index = j + 1;
1713 }
1714 }
1715 }
1716
1717 skb = tcp_write_queue_head(sk);
1718 state.fack_count = 0;
1719 i = 0;
1720
1721 if (!tp->sacked_out) {
1722 /* It's already past, so skip checking against it */
1723 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1724 } else {
1725 cache = tp->recv_sack_cache;
1726 /* Skip empty blocks in at head of the cache */
1727 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1728 !cache->end_seq)
1729 cache++;
1730 }
1731
1732 while (i < used_sacks) {
1733 u32 start_seq = sp[i].start_seq;
1734 u32 end_seq = sp[i].end_seq;
1735 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1736 struct tcp_sack_block *next_dup = NULL;
1737
1738 if (found_dup_sack && ((i + 1) == first_sack_index))
1739 next_dup = &sp[i + 1];
1740
1741 /* Skip too early cached blocks */
1742 while (tcp_sack_cache_ok(tp, cache) &&
1743 !before(start_seq, cache->end_seq))
1744 cache++;
1745
1746 /* Can skip some work by looking recv_sack_cache? */
1747 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1748 after(end_seq, cache->start_seq)) {
1749
1750 /* Head todo? */
1751 if (before(start_seq, cache->start_seq)) {
1752 skb = tcp_sacktag_skip(skb, sk, &state,
1753 start_seq);
1754 skb = tcp_sacktag_walk(skb, sk, next_dup,
1755 &state,
1756 start_seq,
1757 cache->start_seq,
1758 dup_sack);
1759 }
1760
1761 /* Rest of the block already fully processed? */
1762 if (!after(end_seq, cache->end_seq))
1763 goto advance_sp;
1764
1765 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1766 &state,
1767 cache->end_seq);
1768
1769 /* ...tail remains todo... */
1770 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1771 /* ...but better entrypoint exists! */
1772 skb = tcp_highest_sack(sk);
1773 if (skb == NULL)
1774 break;
1775 state.fack_count = tp->fackets_out;
1776 cache++;
1777 goto walk;
1778 }
1779
1780 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1781 /* Check overlap against next cached too (past this one already) */
1782 cache++;
1783 continue;
1784 }
1785
1786 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1787 skb = tcp_highest_sack(sk);
1788 if (skb == NULL)
1789 break;
1790 state.fack_count = tp->fackets_out;
1791 }
1792 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1793
1794walk:
1795 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1796 start_seq, end_seq, dup_sack);
1797
1798advance_sp:
1799 i++;
1800 }
1801
1802 /* Clear the head of the cache sack blocks so we can skip it next time */
1803 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1804 tp->recv_sack_cache[i].start_seq = 0;
1805 tp->recv_sack_cache[i].end_seq = 0;
1806 }
1807 for (j = 0; j < used_sacks; j++)
1808 tp->recv_sack_cache[i++] = sp[j];
1809
1810 tcp_mark_lost_retrans(sk);
1811
1812 tcp_verify_left_out(tp);
1813
1814 if ((state.reord < tp->fackets_out) &&
1815 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1816 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1817
1818out:
1819
1820#if FASTRETRANS_DEBUG > 0
1821 WARN_ON((int)tp->sacked_out < 0);
1822 WARN_ON((int)tp->lost_out < 0);
1823 WARN_ON((int)tp->retrans_out < 0);
1824 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1825#endif
1826 *sack_rtt_us = state.rtt_us;
1827 return state.flag;
1828}
1829
1830/* Limits sacked_out so that sum with lost_out isn't ever larger than
1831 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1832 */
1833static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1834{
1835 u32 holes;
1836
1837 holes = max(tp->lost_out, 1U);
1838 holes = min(holes, tp->packets_out);
1839
1840 if ((tp->sacked_out + holes) > tp->packets_out) {
1841 tp->sacked_out = tp->packets_out - holes;
1842 return true;
1843 }
1844 return false;
1845}
1846
1847/* If we receive more dupacks than we expected counting segments
1848 * in assumption of absent reordering, interpret this as reordering.
1849 * The only another reason could be bug in receiver TCP.
1850 */
1851static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1852{
1853 struct tcp_sock *tp = tcp_sk(sk);
1854 if (tcp_limit_reno_sacked(tp))
1855 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1856}
1857
1858/* Emulate SACKs for SACKless connection: account for a new dupack. */
1859
1860static void tcp_add_reno_sack(struct sock *sk)
1861{
1862 struct tcp_sock *tp = tcp_sk(sk);
1863 tp->sacked_out++;
1864 tcp_check_reno_reordering(sk, 0);
1865 tcp_verify_left_out(tp);
1866}
1867
1868/* Account for ACK, ACKing some data in Reno Recovery phase. */
1869
1870static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1871{
1872 struct tcp_sock *tp = tcp_sk(sk);
1873
1874 if (acked > 0) {
1875 /* One ACK acked hole. The rest eat duplicate ACKs. */
1876 if (acked - 1 >= tp->sacked_out)
1877 tp->sacked_out = 0;
1878 else
1879 tp->sacked_out -= acked - 1;
1880 }
1881 tcp_check_reno_reordering(sk, acked);
1882 tcp_verify_left_out(tp);
1883}
1884
1885static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1886{
1887 tp->sacked_out = 0;
1888}
1889
1890static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1891{
1892 tp->retrans_out = 0;
1893 tp->lost_out = 0;
1894
1895 tp->undo_marker = 0;
1896 tp->undo_retrans = 0;
1897}
1898
1899void tcp_clear_retrans(struct tcp_sock *tp)
1900{
1901 tcp_clear_retrans_partial(tp);
1902
1903 tp->fackets_out = 0;
1904 tp->sacked_out = 0;
1905}
1906
1907/* Enter Loss state. If "how" is not zero, forget all SACK information
1908 * and reset tags completely, otherwise preserve SACKs. If receiver
1909 * dropped its ofo queue, we will know this due to reneging detection.
1910 */
1911void tcp_enter_loss(struct sock *sk, int how)
1912{
1913 const struct inet_connection_sock *icsk = inet_csk(sk);
1914 struct tcp_sock *tp = tcp_sk(sk);
1915 struct sk_buff *skb;
1916 bool new_recovery = false;
1917
1918 /* Reduce ssthresh if it has not yet been made inside this window. */
1919 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1920 !after(tp->high_seq, tp->snd_una) ||
1921 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1922 new_recovery = true;
1923 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1924 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1925 tcp_ca_event(sk, CA_EVENT_LOSS);
1926 }
1927 tp->snd_cwnd = 1;
1928 tp->snd_cwnd_cnt = 0;
1929 tp->snd_cwnd_stamp = tcp_time_stamp;
1930
1931 tcp_clear_retrans_partial(tp);
1932
1933 if (tcp_is_reno(tp))
1934 tcp_reset_reno_sack(tp);
1935
1936 tp->undo_marker = tp->snd_una;
1937 if (how) {
1938 tp->sacked_out = 0;
1939 tp->fackets_out = 0;
1940 }
1941 tcp_clear_all_retrans_hints(tp);
1942
1943 tcp_for_write_queue(skb, sk) {
1944 if (skb == tcp_send_head(sk))
1945 break;
1946
1947 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1948 tp->undo_marker = 0;
1949
1950 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 tp->lost_out += tcp_skb_pcount(skb);
1955 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1956 }
1957 }
1958 tcp_verify_left_out(tp);
1959
1960 /* Timeout in disordered state after receiving substantial DUPACKs
1961 * suggests that the degree of reordering is over-estimated.
1962 */
1963 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1964 tp->sacked_out >= sysctl_tcp_reordering)
1965 tp->reordering = min_t(unsigned int, tp->reordering,
1966 sysctl_tcp_reordering);
1967 tcp_set_ca_state(sk, TCP_CA_Loss);
1968 tp->high_seq = tp->snd_nxt;
1969 TCP_ECN_queue_cwr(tp);
1970
1971 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1972 * loss recovery is underway except recurring timeout(s) on
1973 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1974 */
1975 tp->frto = sysctl_tcp_frto &&
1976 (new_recovery || icsk->icsk_retransmits) &&
1977 !inet_csk(sk)->icsk_mtup.probe_size;
1978}
1979
1980/* If ACK arrived pointing to a remembered SACK, it means that our
1981 * remembered SACKs do not reflect real state of receiver i.e.
1982 * receiver _host_ is heavily congested (or buggy).
1983 *
1984 * Do processing similar to RTO timeout.
1985 */
1986static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1987{
1988 if (flag & FLAG_SACK_RENEGING) {
1989 struct inet_connection_sock *icsk = inet_csk(sk);
1990 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1991
1992 tcp_enter_loss(sk, 1);
1993 icsk->icsk_retransmits++;
1994 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1996 icsk->icsk_rto, TCP_RTO_MAX);
1997 return true;
1998 }
1999 return false;
2000}
2001
2002static inline int tcp_fackets_out(const struct tcp_sock *tp)
2003{
2004 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2005}
2006
2007/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2008 * counter when SACK is enabled (without SACK, sacked_out is used for
2009 * that purpose).
2010 *
2011 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2012 * segments up to the highest received SACK block so far and holes in
2013 * between them.
2014 *
2015 * With reordering, holes may still be in flight, so RFC3517 recovery
2016 * uses pure sacked_out (total number of SACKed segments) even though
2017 * it violates the RFC that uses duplicate ACKs, often these are equal
2018 * but when e.g. out-of-window ACKs or packet duplication occurs,
2019 * they differ. Since neither occurs due to loss, TCP should really
2020 * ignore them.
2021 */
2022static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2023{
2024 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2025}
2026
2027static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2028{
2029 struct tcp_sock *tp = tcp_sk(sk);
2030 unsigned long delay;
2031
2032 /* Delay early retransmit and entering fast recovery for
2033 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2034 * available, or RTO is scheduled to fire first.
2035 */
2036 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2037 (flag & FLAG_ECE) || !tp->srtt_us)
2038 return false;
2039
2040 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2041 msecs_to_jiffies(2));
2042
2043 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2044 return false;
2045
2046 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2047 TCP_RTO_MAX);
2048 return true;
2049}
2050
2051/* Linux NewReno/SACK/FACK/ECN state machine.
2052 * --------------------------------------
2053 *
2054 * "Open" Normal state, no dubious events, fast path.
2055 * "Disorder" In all the respects it is "Open",
2056 * but requires a bit more attention. It is entered when
2057 * we see some SACKs or dupacks. It is split of "Open"
2058 * mainly to move some processing from fast path to slow one.
2059 * "CWR" CWND was reduced due to some Congestion Notification event.
2060 * It can be ECN, ICMP source quench, local device congestion.
2061 * "Recovery" CWND was reduced, we are fast-retransmitting.
2062 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2063 *
2064 * tcp_fastretrans_alert() is entered:
2065 * - each incoming ACK, if state is not "Open"
2066 * - when arrived ACK is unusual, namely:
2067 * * SACK
2068 * * Duplicate ACK.
2069 * * ECN ECE.
2070 *
2071 * Counting packets in flight is pretty simple.
2072 *
2073 * in_flight = packets_out - left_out + retrans_out
2074 *
2075 * packets_out is SND.NXT-SND.UNA counted in packets.
2076 *
2077 * retrans_out is number of retransmitted segments.
2078 *
2079 * left_out is number of segments left network, but not ACKed yet.
2080 *
2081 * left_out = sacked_out + lost_out
2082 *
2083 * sacked_out: Packets, which arrived to receiver out of order
2084 * and hence not ACKed. With SACKs this number is simply
2085 * amount of SACKed data. Even without SACKs
2086 * it is easy to give pretty reliable estimate of this number,
2087 * counting duplicate ACKs.
2088 *
2089 * lost_out: Packets lost by network. TCP has no explicit
2090 * "loss notification" feedback from network (for now).
2091 * It means that this number can be only _guessed_.
2092 * Actually, it is the heuristics to predict lossage that
2093 * distinguishes different algorithms.
2094 *
2095 * F.e. after RTO, when all the queue is considered as lost,
2096 * lost_out = packets_out and in_flight = retrans_out.
2097 *
2098 * Essentially, we have now two algorithms counting
2099 * lost packets.
2100 *
2101 * FACK: It is the simplest heuristics. As soon as we decided
2102 * that something is lost, we decide that _all_ not SACKed
2103 * packets until the most forward SACK are lost. I.e.
2104 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2105 * It is absolutely correct estimate, if network does not reorder
2106 * packets. And it loses any connection to reality when reordering
2107 * takes place. We use FACK by default until reordering
2108 * is suspected on the path to this destination.
2109 *
2110 * NewReno: when Recovery is entered, we assume that one segment
2111 * is lost (classic Reno). While we are in Recovery and
2112 * a partial ACK arrives, we assume that one more packet
2113 * is lost (NewReno). This heuristics are the same in NewReno
2114 * and SACK.
2115 *
2116 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2117 * deflation etc. CWND is real congestion window, never inflated, changes
2118 * only according to classic VJ rules.
2119 *
2120 * Really tricky (and requiring careful tuning) part of algorithm
2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2122 * The first determines the moment _when_ we should reduce CWND and,
2123 * hence, slow down forward transmission. In fact, it determines the moment
2124 * when we decide that hole is caused by loss, rather than by a reorder.
2125 *
2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2127 * holes, caused by lost packets.
2128 *
2129 * And the most logically complicated part of algorithm is undo
2130 * heuristics. We detect false retransmits due to both too early
2131 * fast retransmit (reordering) and underestimated RTO, analyzing
2132 * timestamps and D-SACKs. When we detect that some segments were
2133 * retransmitted by mistake and CWND reduction was wrong, we undo
2134 * window reduction and abort recovery phase. This logic is hidden
2135 * inside several functions named tcp_try_undo_<something>.
2136 */
2137
2138/* This function decides, when we should leave Disordered state
2139 * and enter Recovery phase, reducing congestion window.
2140 *
2141 * Main question: may we further continue forward transmission
2142 * with the same cwnd?
2143 */
2144static bool tcp_time_to_recover(struct sock *sk, int flag)
2145{
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 __u32 packets_out;
2148
2149 /* Trick#1: The loss is proven. */
2150 if (tp->lost_out)
2151 return true;
2152
2153 /* Not-A-Trick#2 : Classic rule... */
2154 if (tcp_dupack_heuristics(tp) > tp->reordering)
2155 return true;
2156
2157 /* Trick#4: It is still not OK... But will it be useful to delay
2158 * recovery more?
2159 */
2160 packets_out = tp->packets_out;
2161 if (packets_out <= tp->reordering &&
2162 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2163 !tcp_may_send_now(sk)) {
2164 /* We have nothing to send. This connection is limited
2165 * either by receiver window or by application.
2166 */
2167 return true;
2168 }
2169
2170 /* If a thin stream is detected, retransmit after first
2171 * received dupack. Employ only if SACK is supported in order
2172 * to avoid possible corner-case series of spurious retransmissions
2173 * Use only if there are no unsent data.
2174 */
2175 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2176 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2177 tcp_is_sack(tp) && !tcp_send_head(sk))
2178 return true;
2179
2180 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2181 * retransmissions due to small network reorderings, we implement
2182 * Mitigation A.3 in the RFC and delay the retransmission for a short
2183 * interval if appropriate.
2184 */
2185 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2186 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2187 !tcp_may_send_now(sk))
2188 return !tcp_pause_early_retransmit(sk, flag);
2189
2190 return false;
2191}
2192
2193/* Detect loss in event "A" above by marking head of queue up as lost.
2194 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2195 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2196 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2197 * the maximum SACKed segments to pass before reaching this limit.
2198 */
2199static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2200{
2201 struct tcp_sock *tp = tcp_sk(sk);
2202 struct sk_buff *skb;
2203 int cnt, oldcnt;
2204 int err;
2205 unsigned int mss;
2206 /* Use SACK to deduce losses of new sequences sent during recovery */
2207 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2208
2209 WARN_ON(packets > tp->packets_out);
2210 if (tp->lost_skb_hint) {
2211 skb = tp->lost_skb_hint;
2212 cnt = tp->lost_cnt_hint;
2213 /* Head already handled? */
2214 if (mark_head && skb != tcp_write_queue_head(sk))
2215 return;
2216 } else {
2217 skb = tcp_write_queue_head(sk);
2218 cnt = 0;
2219 }
2220
2221 tcp_for_write_queue_from(skb, sk) {
2222 if (skb == tcp_send_head(sk))
2223 break;
2224 /* TODO: do this better */
2225 /* this is not the most efficient way to do this... */
2226 tp->lost_skb_hint = skb;
2227 tp->lost_cnt_hint = cnt;
2228
2229 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2230 break;
2231
2232 oldcnt = cnt;
2233 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2234 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2235 cnt += tcp_skb_pcount(skb);
2236
2237 if (cnt > packets) {
2238 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2239 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2240 (oldcnt >= packets))
2241 break;
2242
2243 mss = skb_shinfo(skb)->gso_size;
2244 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2245 if (err < 0)
2246 break;
2247 cnt = packets;
2248 }
2249
2250 tcp_skb_mark_lost(tp, skb);
2251
2252 if (mark_head)
2253 break;
2254 }
2255 tcp_verify_left_out(tp);
2256}
2257
2258/* Account newly detected lost packet(s) */
2259
2260static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2261{
2262 struct tcp_sock *tp = tcp_sk(sk);
2263
2264 if (tcp_is_reno(tp)) {
2265 tcp_mark_head_lost(sk, 1, 1);
2266 } else if (tcp_is_fack(tp)) {
2267 int lost = tp->fackets_out - tp->reordering;
2268 if (lost <= 0)
2269 lost = 1;
2270 tcp_mark_head_lost(sk, lost, 0);
2271 } else {
2272 int sacked_upto = tp->sacked_out - tp->reordering;
2273 if (sacked_upto >= 0)
2274 tcp_mark_head_lost(sk, sacked_upto, 0);
2275 else if (fast_rexmit)
2276 tcp_mark_head_lost(sk, 1, 1);
2277 }
2278}
2279
2280/* CWND moderation, preventing bursts due to too big ACKs
2281 * in dubious situations.
2282 */
2283static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2284{
2285 tp->snd_cwnd = min(tp->snd_cwnd,
2286 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2287 tp->snd_cwnd_stamp = tcp_time_stamp;
2288}
2289
2290/* Nothing was retransmitted or returned timestamp is less
2291 * than timestamp of the first retransmission.
2292 */
2293static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2294{
2295 return !tp->retrans_stamp ||
2296 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2297 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2298}
2299
2300/* Undo procedures. */
2301
2302#if FASTRETRANS_DEBUG > 1
2303static void DBGUNDO(struct sock *sk, const char *msg)
2304{
2305 struct tcp_sock *tp = tcp_sk(sk);
2306 struct inet_sock *inet = inet_sk(sk);
2307
2308 if (sk->sk_family == AF_INET) {
2309 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2310 msg,
2311 &inet->inet_daddr, ntohs(inet->inet_dport),
2312 tp->snd_cwnd, tcp_left_out(tp),
2313 tp->snd_ssthresh, tp->prior_ssthresh,
2314 tp->packets_out);
2315 }
2316#if IS_ENABLED(CONFIG_IPV6)
2317 else if (sk->sk_family == AF_INET6) {
2318 struct ipv6_pinfo *np = inet6_sk(sk);
2319 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2320 msg,
2321 &np->daddr, ntohs(inet->inet_dport),
2322 tp->snd_cwnd, tcp_left_out(tp),
2323 tp->snd_ssthresh, tp->prior_ssthresh,
2324 tp->packets_out);
2325 }
2326#endif
2327}
2328#else
2329#define DBGUNDO(x...) do { } while (0)
2330#endif
2331
2332static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2333{
2334 struct tcp_sock *tp = tcp_sk(sk);
2335
2336 if (unmark_loss) {
2337 struct sk_buff *skb;
2338
2339 tcp_for_write_queue(skb, sk) {
2340 if (skb == tcp_send_head(sk))
2341 break;
2342 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2343 }
2344 tp->lost_out = 0;
2345 tcp_clear_all_retrans_hints(tp);
2346 }
2347
2348 if (tp->prior_ssthresh) {
2349 const struct inet_connection_sock *icsk = inet_csk(sk);
2350
2351 if (icsk->icsk_ca_ops->undo_cwnd)
2352 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2353 else
2354 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2355
2356 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2357 tp->snd_ssthresh = tp->prior_ssthresh;
2358 TCP_ECN_withdraw_cwr(tp);
2359 }
2360 } else {
2361 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2362 }
2363 tp->snd_cwnd_stamp = tcp_time_stamp;
2364 tp->undo_marker = 0;
2365}
2366
2367static inline bool tcp_may_undo(const struct tcp_sock *tp)
2368{
2369 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2370}
2371
2372/* People celebrate: "We love our President!" */
2373static bool tcp_try_undo_recovery(struct sock *sk)
2374{
2375 struct tcp_sock *tp = tcp_sk(sk);
2376
2377 if (tcp_may_undo(tp)) {
2378 int mib_idx;
2379
2380 /* Happy end! We did not retransmit anything
2381 * or our original transmission succeeded.
2382 */
2383 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2384 tcp_undo_cwnd_reduction(sk, false);
2385 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2386 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2387 else
2388 mib_idx = LINUX_MIB_TCPFULLUNDO;
2389
2390 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2391 }
2392 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2393 /* Hold old state until something *above* high_seq
2394 * is ACKed. For Reno it is MUST to prevent false
2395 * fast retransmits (RFC2582). SACK TCP is safe. */
2396 tcp_moderate_cwnd(tp);
2397 return true;
2398 }
2399 tcp_set_ca_state(sk, TCP_CA_Open);
2400 return false;
2401}
2402
2403/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2404static bool tcp_try_undo_dsack(struct sock *sk)
2405{
2406 struct tcp_sock *tp = tcp_sk(sk);
2407
2408 if (tp->undo_marker && !tp->undo_retrans) {
2409 DBGUNDO(sk, "D-SACK");
2410 tcp_undo_cwnd_reduction(sk, false);
2411 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2412 return true;
2413 }
2414 return false;
2415}
2416
2417/* We can clear retrans_stamp when there are no retransmissions in the
2418 * window. It would seem that it is trivially available for us in
2419 * tp->retrans_out, however, that kind of assumptions doesn't consider
2420 * what will happen if errors occur when sending retransmission for the
2421 * second time. ...It could the that such segment has only
2422 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2423 * the head skb is enough except for some reneging corner cases that
2424 * are not worth the effort.
2425 *
2426 * Main reason for all this complexity is the fact that connection dying
2427 * time now depends on the validity of the retrans_stamp, in particular,
2428 * that successive retransmissions of a segment must not advance
2429 * retrans_stamp under any conditions.
2430 */
2431static bool tcp_any_retrans_done(const struct sock *sk)
2432{
2433 const struct tcp_sock *tp = tcp_sk(sk);
2434 struct sk_buff *skb;
2435
2436 if (tp->retrans_out)
2437 return true;
2438
2439 skb = tcp_write_queue_head(sk);
2440 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2441 return true;
2442
2443 return false;
2444}
2445
2446/* Undo during loss recovery after partial ACK or using F-RTO. */
2447static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2448{
2449 struct tcp_sock *tp = tcp_sk(sk);
2450
2451 if (frto_undo || tcp_may_undo(tp)) {
2452 tcp_undo_cwnd_reduction(sk, true);
2453
2454 DBGUNDO(sk, "partial loss");
2455 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2456 if (frto_undo)
2457 NET_INC_STATS_BH(sock_net(sk),
2458 LINUX_MIB_TCPSPURIOUSRTOS);
2459 inet_csk(sk)->icsk_retransmits = 0;
2460 if (frto_undo || tcp_is_sack(tp))
2461 tcp_set_ca_state(sk, TCP_CA_Open);
2462 return true;
2463 }
2464 return false;
2465}
2466
2467/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2468 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2469 * It computes the number of packets to send (sndcnt) based on packets newly
2470 * delivered:
2471 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2472 * cwnd reductions across a full RTT.
2473 * 2) If packets in flight is lower than ssthresh (such as due to excess
2474 * losses and/or application stalls), do not perform any further cwnd
2475 * reductions, but instead slow start up to ssthresh.
2476 */
2477static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2478{
2479 struct tcp_sock *tp = tcp_sk(sk);
2480
2481 tp->high_seq = tp->snd_nxt;
2482 tp->tlp_high_seq = 0;
2483 tp->snd_cwnd_cnt = 0;
2484 tp->prior_cwnd = tp->snd_cwnd;
2485 tp->prr_delivered = 0;
2486 tp->prr_out = 0;
2487 if (set_ssthresh)
2488 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2489 TCP_ECN_queue_cwr(tp);
2490}
2491
2492static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2493 int fast_rexmit)
2494{
2495 struct tcp_sock *tp = tcp_sk(sk);
2496 int sndcnt = 0;
2497 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2498 int newly_acked_sacked = prior_unsacked -
2499 (tp->packets_out - tp->sacked_out);
2500
2501 tp->prr_delivered += newly_acked_sacked;
2502 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2503 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2504 tp->prior_cwnd - 1;
2505 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2506 } else {
2507 sndcnt = min_t(int, delta,
2508 max_t(int, tp->prr_delivered - tp->prr_out,
2509 newly_acked_sacked) + 1);
2510 }
2511
2512 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2513 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2514}
2515
2516static inline void tcp_end_cwnd_reduction(struct sock *sk)
2517{
2518 struct tcp_sock *tp = tcp_sk(sk);
2519
2520 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2521 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2522 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2523 tp->snd_cwnd = tp->snd_ssthresh;
2524 tp->snd_cwnd_stamp = tcp_time_stamp;
2525 }
2526 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2527}
2528
2529/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2530void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2531{
2532 struct tcp_sock *tp = tcp_sk(sk);
2533
2534 tp->prior_ssthresh = 0;
2535 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2536 tp->undo_marker = 0;
2537 tcp_init_cwnd_reduction(sk, set_ssthresh);
2538 tcp_set_ca_state(sk, TCP_CA_CWR);
2539 }
2540}
2541
2542static void tcp_try_keep_open(struct sock *sk)
2543{
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 int state = TCP_CA_Open;
2546
2547 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2548 state = TCP_CA_Disorder;
2549
2550 if (inet_csk(sk)->icsk_ca_state != state) {
2551 tcp_set_ca_state(sk, state);
2552 tp->high_seq = tp->snd_nxt;
2553 }
2554}
2555
2556static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2557{
2558 struct tcp_sock *tp = tcp_sk(sk);
2559
2560 tcp_verify_left_out(tp);
2561
2562 if (!tcp_any_retrans_done(sk))
2563 tp->retrans_stamp = 0;
2564
2565 if (flag & FLAG_ECE)
2566 tcp_enter_cwr(sk, 1);
2567
2568 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2569 tcp_try_keep_open(sk);
2570 } else {
2571 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2572 }
2573}
2574
2575static void tcp_mtup_probe_failed(struct sock *sk)
2576{
2577 struct inet_connection_sock *icsk = inet_csk(sk);
2578
2579 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2580 icsk->icsk_mtup.probe_size = 0;
2581}
2582
2583static void tcp_mtup_probe_success(struct sock *sk)
2584{
2585 struct tcp_sock *tp = tcp_sk(sk);
2586 struct inet_connection_sock *icsk = inet_csk(sk);
2587
2588 /* FIXME: breaks with very large cwnd */
2589 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2590 tp->snd_cwnd = tp->snd_cwnd *
2591 tcp_mss_to_mtu(sk, tp->mss_cache) /
2592 icsk->icsk_mtup.probe_size;
2593 tp->snd_cwnd_cnt = 0;
2594 tp->snd_cwnd_stamp = tcp_time_stamp;
2595 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2596
2597 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2598 icsk->icsk_mtup.probe_size = 0;
2599 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2600}
2601
2602/* Do a simple retransmit without using the backoff mechanisms in
2603 * tcp_timer. This is used for path mtu discovery.
2604 * The socket is already locked here.
2605 */
2606void tcp_simple_retransmit(struct sock *sk)
2607{
2608 const struct inet_connection_sock *icsk = inet_csk(sk);
2609 struct tcp_sock *tp = tcp_sk(sk);
2610 struct sk_buff *skb;
2611 unsigned int mss = tcp_current_mss(sk);
2612 u32 prior_lost = tp->lost_out;
2613
2614 tcp_for_write_queue(skb, sk) {
2615 if (skb == tcp_send_head(sk))
2616 break;
2617 if (tcp_skb_seglen(skb) > mss &&
2618 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2619 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2620 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2621 tp->retrans_out -= tcp_skb_pcount(skb);
2622 }
2623 tcp_skb_mark_lost_uncond_verify(tp, skb);
2624 }
2625 }
2626
2627 tcp_clear_retrans_hints_partial(tp);
2628
2629 if (prior_lost == tp->lost_out)
2630 return;
2631
2632 if (tcp_is_reno(tp))
2633 tcp_limit_reno_sacked(tp);
2634
2635 tcp_verify_left_out(tp);
2636
2637 /* Don't muck with the congestion window here.
2638 * Reason is that we do not increase amount of _data_
2639 * in network, but units changed and effective
2640 * cwnd/ssthresh really reduced now.
2641 */
2642 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2643 tp->high_seq = tp->snd_nxt;
2644 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2645 tp->prior_ssthresh = 0;
2646 tp->undo_marker = 0;
2647 tcp_set_ca_state(sk, TCP_CA_Loss);
2648 }
2649 tcp_xmit_retransmit_queue(sk);
2650}
2651EXPORT_SYMBOL(tcp_simple_retransmit);
2652
2653static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2654{
2655 struct tcp_sock *tp = tcp_sk(sk);
2656 int mib_idx;
2657
2658 if (tcp_is_reno(tp))
2659 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2660 else
2661 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2662
2663 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2664
2665 tp->prior_ssthresh = 0;
2666 tp->undo_marker = tp->snd_una;
2667 tp->undo_retrans = tp->retrans_out;
2668
2669 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2670 if (!ece_ack)
2671 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2672 tcp_init_cwnd_reduction(sk, true);
2673 }
2674 tcp_set_ca_state(sk, TCP_CA_Recovery);
2675}
2676
2677/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2678 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2679 */
2680static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2681{
2682 struct inet_connection_sock *icsk = inet_csk(sk);
2683 struct tcp_sock *tp = tcp_sk(sk);
2684 bool recovered = !before(tp->snd_una, tp->high_seq);
2685
2686 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2687 /* Step 3.b. A timeout is spurious if not all data are
2688 * lost, i.e., never-retransmitted data are (s)acked.
2689 */
2690 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2691 return;
2692
2693 if (after(tp->snd_nxt, tp->high_seq) &&
2694 (flag & FLAG_DATA_SACKED || is_dupack)) {
2695 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2696 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2697 tp->high_seq = tp->snd_nxt;
2698 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2699 TCP_NAGLE_OFF);
2700 if (after(tp->snd_nxt, tp->high_seq))
2701 return; /* Step 2.b */
2702 tp->frto = 0;
2703 }
2704 }
2705
2706 if (recovered) {
2707 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2708 icsk->icsk_retransmits = 0;
2709 tcp_try_undo_recovery(sk);
2710 return;
2711 }
2712 if (flag & FLAG_DATA_ACKED)
2713 icsk->icsk_retransmits = 0;
2714 if (tcp_is_reno(tp)) {
2715 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2716 * delivered. Lower inflight to clock out (re)tranmissions.
2717 */
2718 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2719 tcp_add_reno_sack(sk);
2720 else if (flag & FLAG_SND_UNA_ADVANCED)
2721 tcp_reset_reno_sack(tp);
2722 }
2723 if (tcp_try_undo_loss(sk, false))
2724 return;
2725 tcp_xmit_retransmit_queue(sk);
2726}
2727
2728/* Undo during fast recovery after partial ACK. */
2729static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2730 const int prior_unsacked)
2731{
2732 struct tcp_sock *tp = tcp_sk(sk);
2733
2734 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2735 /* Plain luck! Hole if filled with delayed
2736 * packet, rather than with a retransmit.
2737 */
2738 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2739
2740 /* We are getting evidence that the reordering degree is higher
2741 * than we realized. If there are no retransmits out then we
2742 * can undo. Otherwise we clock out new packets but do not
2743 * mark more packets lost or retransmit more.
2744 */
2745 if (tp->retrans_out) {
2746 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2747 return true;
2748 }
2749
2750 if (!tcp_any_retrans_done(sk))
2751 tp->retrans_stamp = 0;
2752
2753 DBGUNDO(sk, "partial recovery");
2754 tcp_undo_cwnd_reduction(sk, true);
2755 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2756 tcp_try_keep_open(sk);
2757 return true;
2758 }
2759 return false;
2760}
2761
2762/* Process an event, which can update packets-in-flight not trivially.
2763 * Main goal of this function is to calculate new estimate for left_out,
2764 * taking into account both packets sitting in receiver's buffer and
2765 * packets lost by network.
2766 *
2767 * Besides that it does CWND reduction, when packet loss is detected
2768 * and changes state of machine.
2769 *
2770 * It does _not_ decide what to send, it is made in function
2771 * tcp_xmit_retransmit_queue().
2772 */
2773static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2774 const int prior_unsacked,
2775 bool is_dupack, int flag)
2776{
2777 struct inet_connection_sock *icsk = inet_csk(sk);
2778 struct tcp_sock *tp = tcp_sk(sk);
2779 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2780 (tcp_fackets_out(tp) > tp->reordering));
2781 int fast_rexmit = 0;
2782
2783 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2784 tp->sacked_out = 0;
2785 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2786 tp->fackets_out = 0;
2787
2788 /* Now state machine starts.
2789 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2790 if (flag & FLAG_ECE)
2791 tp->prior_ssthresh = 0;
2792
2793 /* B. In all the states check for reneging SACKs. */
2794 if (tcp_check_sack_reneging(sk, flag))
2795 return;
2796
2797 /* C. Check consistency of the current state. */
2798 tcp_verify_left_out(tp);
2799
2800 /* D. Check state exit conditions. State can be terminated
2801 * when high_seq is ACKed. */
2802 if (icsk->icsk_ca_state == TCP_CA_Open) {
2803 WARN_ON(tp->retrans_out != 0);
2804 tp->retrans_stamp = 0;
2805 } else if (!before(tp->snd_una, tp->high_seq)) {
2806 switch (icsk->icsk_ca_state) {
2807 case TCP_CA_CWR:
2808 /* CWR is to be held something *above* high_seq
2809 * is ACKed for CWR bit to reach receiver. */
2810 if (tp->snd_una != tp->high_seq) {
2811 tcp_end_cwnd_reduction(sk);
2812 tcp_set_ca_state(sk, TCP_CA_Open);
2813 }
2814 break;
2815
2816 case TCP_CA_Recovery:
2817 if (tcp_is_reno(tp))
2818 tcp_reset_reno_sack(tp);
2819 if (tcp_try_undo_recovery(sk))
2820 return;
2821 tcp_end_cwnd_reduction(sk);
2822 break;
2823 }
2824 }
2825
2826 /* E. Process state. */
2827 switch (icsk->icsk_ca_state) {
2828 case TCP_CA_Recovery:
2829 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2830 if (tcp_is_reno(tp) && is_dupack)
2831 tcp_add_reno_sack(sk);
2832 } else {
2833 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2834 return;
2835 /* Partial ACK arrived. Force fast retransmit. */
2836 do_lost = tcp_is_reno(tp) ||
2837 tcp_fackets_out(tp) > tp->reordering;
2838 }
2839 if (tcp_try_undo_dsack(sk)) {
2840 tcp_try_keep_open(sk);
2841 return;
2842 }
2843 break;
2844 case TCP_CA_Loss:
2845 tcp_process_loss(sk, flag, is_dupack);
2846 if (icsk->icsk_ca_state != TCP_CA_Open)
2847 return;
2848 /* Fall through to processing in Open state. */
2849 default:
2850 if (tcp_is_reno(tp)) {
2851 if (flag & FLAG_SND_UNA_ADVANCED)
2852 tcp_reset_reno_sack(tp);
2853 if (is_dupack)
2854 tcp_add_reno_sack(sk);
2855 }
2856
2857 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2858 tcp_try_undo_dsack(sk);
2859
2860 if (!tcp_time_to_recover(sk, flag)) {
2861 tcp_try_to_open(sk, flag, prior_unsacked);
2862 return;
2863 }
2864
2865 /* MTU probe failure: don't reduce cwnd */
2866 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2867 icsk->icsk_mtup.probe_size &&
2868 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2869 tcp_mtup_probe_failed(sk);
2870 /* Restores the reduction we did in tcp_mtup_probe() */
2871 tp->snd_cwnd++;
2872 tcp_simple_retransmit(sk);
2873 return;
2874 }
2875
2876 /* Otherwise enter Recovery state */
2877 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2878 fast_rexmit = 1;
2879 }
2880
2881 if (do_lost)
2882 tcp_update_scoreboard(sk, fast_rexmit);
2883 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2884 tcp_xmit_retransmit_queue(sk);
2885}
2886
2887static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2888 long seq_rtt_us, long sack_rtt_us)
2889{
2890 const struct tcp_sock *tp = tcp_sk(sk);
2891
2892 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2893 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2894 * Karn's algorithm forbids taking RTT if some retransmitted data
2895 * is acked (RFC6298).
2896 */
2897 if (flag & FLAG_RETRANS_DATA_ACKED)
2898 seq_rtt_us = -1L;
2899
2900 if (seq_rtt_us < 0)
2901 seq_rtt_us = sack_rtt_us;
2902
2903 /* RTTM Rule: A TSecr value received in a segment is used to
2904 * update the averaged RTT measurement only if the segment
2905 * acknowledges some new data, i.e., only if it advances the
2906 * left edge of the send window.
2907 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2908 */
2909 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2910 flag & FLAG_ACKED)
2911 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2912
2913 if (seq_rtt_us < 0)
2914 return false;
2915
2916 tcp_rtt_estimator(sk, seq_rtt_us);
2917 tcp_set_rto(sk);
2918
2919 /* RFC6298: only reset backoff on valid RTT measurement. */
2920 inet_csk(sk)->icsk_backoff = 0;
2921 return true;
2922}
2923
2924/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2925static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2926{
2927 struct tcp_sock *tp = tcp_sk(sk);
2928 long seq_rtt_us = -1L;
2929
2930 if (synack_stamp && !tp->total_retrans)
2931 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2932
2933 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2934 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2935 */
2936 if (!tp->srtt_us)
2937 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2938}
2939
2940static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight)
2941{
2942 const struct inet_connection_sock *icsk = inet_csk(sk);
2943 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight);
2944 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2945}
2946
2947/* Restart timer after forward progress on connection.
2948 * RFC2988 recommends to restart timer to now+rto.
2949 */
2950void tcp_rearm_rto(struct sock *sk)
2951{
2952 const struct inet_connection_sock *icsk = inet_csk(sk);
2953 struct tcp_sock *tp = tcp_sk(sk);
2954
2955 /* If the retrans timer is currently being used by Fast Open
2956 * for SYN-ACK retrans purpose, stay put.
2957 */
2958 if (tp->fastopen_rsk)
2959 return;
2960
2961 if (!tp->packets_out) {
2962 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2963 } else {
2964 u32 rto = inet_csk(sk)->icsk_rto;
2965 /* Offset the time elapsed after installing regular RTO */
2966 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2967 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2968 struct sk_buff *skb = tcp_write_queue_head(sk);
2969 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2970 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2971 /* delta may not be positive if the socket is locked
2972 * when the retrans timer fires and is rescheduled.
2973 */
2974 if (delta > 0)
2975 rto = delta;
2976 }
2977 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2978 TCP_RTO_MAX);
2979 }
2980}
2981
2982/* This function is called when the delayed ER timer fires. TCP enters
2983 * fast recovery and performs fast-retransmit.
2984 */
2985void tcp_resume_early_retransmit(struct sock *sk)
2986{
2987 struct tcp_sock *tp = tcp_sk(sk);
2988
2989 tcp_rearm_rto(sk);
2990
2991 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2992 if (!tp->do_early_retrans)
2993 return;
2994
2995 tcp_enter_recovery(sk, false);
2996 tcp_update_scoreboard(sk, 1);
2997 tcp_xmit_retransmit_queue(sk);
2998}
2999
3000/* If we get here, the whole TSO packet has not been acked. */
3001static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3002{
3003 struct tcp_sock *tp = tcp_sk(sk);
3004 u32 packets_acked;
3005
3006 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3007
3008 packets_acked = tcp_skb_pcount(skb);
3009 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3010 return 0;
3011 packets_acked -= tcp_skb_pcount(skb);
3012
3013 if (packets_acked) {
3014 BUG_ON(tcp_skb_pcount(skb) == 0);
3015 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3016 }
3017
3018 return packets_acked;
3019}
3020
3021/* Remove acknowledged frames from the retransmission queue. If our packet
3022 * is before the ack sequence we can discard it as it's confirmed to have
3023 * arrived at the other end.
3024 */
3025static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3026 u32 prior_snd_una, long sack_rtt_us)
3027{
3028 const struct inet_connection_sock *icsk = inet_csk(sk);
3029 struct skb_mstamp first_ackt, last_ackt, now;
3030 struct tcp_sock *tp = tcp_sk(sk);
3031 u32 prior_sacked = tp->sacked_out;
3032 u32 reord = tp->packets_out;
3033 bool fully_acked = true;
3034 long ca_seq_rtt_us = -1L;
3035 long seq_rtt_us = -1L;
3036 struct sk_buff *skb;
3037 u32 pkts_acked = 0;
3038 bool rtt_update;
3039 int flag = 0;
3040
3041 first_ackt.v64 = 0;
3042
3043 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3044 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3045 u8 sacked = scb->sacked;
3046 u32 acked_pcount;
3047
3048 /* Determine how many packets and what bytes were acked, tso and else */
3049 if (after(scb->end_seq, tp->snd_una)) {
3050 if (tcp_skb_pcount(skb) == 1 ||
3051 !after(tp->snd_una, scb->seq))
3052 break;
3053
3054 acked_pcount = tcp_tso_acked(sk, skb);
3055 if (!acked_pcount)
3056 break;
3057
3058 fully_acked = false;
3059 } else {
3060 acked_pcount = tcp_skb_pcount(skb);
3061 }
3062
3063 if (sacked & TCPCB_RETRANS) {
3064 if (sacked & TCPCB_SACKED_RETRANS)
3065 tp->retrans_out -= acked_pcount;
3066 flag |= FLAG_RETRANS_DATA_ACKED;
3067 } else {
3068 last_ackt = skb->skb_mstamp;
3069 WARN_ON_ONCE(last_ackt.v64 == 0);
3070 if (!first_ackt.v64)
3071 first_ackt = last_ackt;
3072
3073 if (!(sacked & TCPCB_SACKED_ACKED))
3074 reord = min(pkts_acked, reord);
3075 if (!after(scb->end_seq, tp->high_seq))
3076 flag |= FLAG_ORIG_SACK_ACKED;
3077 }
3078
3079 if (sacked & TCPCB_SACKED_ACKED)
3080 tp->sacked_out -= acked_pcount;
3081 if (sacked & TCPCB_LOST)
3082 tp->lost_out -= acked_pcount;
3083
3084 tp->packets_out -= acked_pcount;
3085 pkts_acked += acked_pcount;
3086
3087 /* Initial outgoing SYN's get put onto the write_queue
3088 * just like anything else we transmit. It is not
3089 * true data, and if we misinform our callers that
3090 * this ACK acks real data, we will erroneously exit
3091 * connection startup slow start one packet too
3092 * quickly. This is severely frowned upon behavior.
3093 */
3094 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3095 flag |= FLAG_DATA_ACKED;
3096 } else {
3097 flag |= FLAG_SYN_ACKED;
3098 tp->retrans_stamp = 0;
3099 }
3100
3101 if (!fully_acked)
3102 break;
3103
3104 tcp_unlink_write_queue(skb, sk);
3105 sk_wmem_free_skb(sk, skb);
3106 if (skb == tp->retransmit_skb_hint)
3107 tp->retransmit_skb_hint = NULL;
3108 if (skb == tp->lost_skb_hint)
3109 tp->lost_skb_hint = NULL;
3110 }
3111
3112 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3113 tp->snd_up = tp->snd_una;
3114
3115 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3116 flag |= FLAG_SACK_RENEGING;
3117
3118 skb_mstamp_get(&now);
3119 if (first_ackt.v64) {
3120 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3121 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3122 }
3123
3124 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3125
3126 if (flag & FLAG_ACKED) {
3127 const struct tcp_congestion_ops *ca_ops
3128 = inet_csk(sk)->icsk_ca_ops;
3129
3130 tcp_rearm_rto(sk);
3131 if (unlikely(icsk->icsk_mtup.probe_size &&
3132 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3133 tcp_mtup_probe_success(sk);
3134 }
3135
3136 if (tcp_is_reno(tp)) {
3137 tcp_remove_reno_sacks(sk, pkts_acked);
3138 } else {
3139 int delta;
3140
3141 /* Non-retransmitted hole got filled? That's reordering */
3142 if (reord < prior_fackets)
3143 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3144
3145 delta = tcp_is_fack(tp) ? pkts_acked :
3146 prior_sacked - tp->sacked_out;
3147 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3148 }
3149
3150 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3151
3152 if (ca_ops->pkts_acked)
3153 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3154
3155 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3156 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3157 /* Do not re-arm RTO if the sack RTT is measured from data sent
3158 * after when the head was last (re)transmitted. Otherwise the
3159 * timeout may continue to extend in loss recovery.
3160 */
3161 tcp_rearm_rto(sk);
3162 }
3163
3164#if FASTRETRANS_DEBUG > 0
3165 WARN_ON((int)tp->sacked_out < 0);
3166 WARN_ON((int)tp->lost_out < 0);
3167 WARN_ON((int)tp->retrans_out < 0);
3168 if (!tp->packets_out && tcp_is_sack(tp)) {
3169 icsk = inet_csk(sk);
3170 if (tp->lost_out) {
3171 pr_debug("Leak l=%u %d\n",
3172 tp->lost_out, icsk->icsk_ca_state);
3173 tp->lost_out = 0;
3174 }
3175 if (tp->sacked_out) {
3176 pr_debug("Leak s=%u %d\n",
3177 tp->sacked_out, icsk->icsk_ca_state);
3178 tp->sacked_out = 0;
3179 }
3180 if (tp->retrans_out) {
3181 pr_debug("Leak r=%u %d\n",
3182 tp->retrans_out, icsk->icsk_ca_state);
3183 tp->retrans_out = 0;
3184 }
3185 }
3186#endif
3187 return flag;
3188}
3189
3190static void tcp_ack_probe(struct sock *sk)
3191{
3192 const struct tcp_sock *tp = tcp_sk(sk);
3193 struct inet_connection_sock *icsk = inet_csk(sk);
3194
3195 /* Was it a usable window open? */
3196
3197 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3198 icsk->icsk_backoff = 0;
3199 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3200 /* Socket must be waked up by subsequent tcp_data_snd_check().
3201 * This function is not for random using!
3202 */
3203 } else {
3204 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3205 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3206 TCP_RTO_MAX);
3207 }
3208}
3209
3210static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3211{
3212 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3213 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3214}
3215
3216/* Decide wheather to run the increase function of congestion control. */
3217static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3218{
3219 if (tcp_in_cwnd_reduction(sk))
3220 return false;
3221
3222 /* If reordering is high then always grow cwnd whenever data is
3223 * delivered regardless of its ordering. Otherwise stay conservative
3224 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3225 * new SACK or ECE mark may first advance cwnd here and later reduce
3226 * cwnd in tcp_fastretrans_alert() based on more states.
3227 */
3228 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3229 return flag & FLAG_FORWARD_PROGRESS;
3230
3231 return flag & FLAG_DATA_ACKED;
3232}
3233
3234/* Check that window update is acceptable.
3235 * The function assumes that snd_una<=ack<=snd_next.
3236 */
3237static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3238 const u32 ack, const u32 ack_seq,
3239 const u32 nwin)
3240{
3241 return after(ack, tp->snd_una) ||
3242 after(ack_seq, tp->snd_wl1) ||
3243 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3244}
3245
3246/* Update our send window.
3247 *
3248 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3249 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3250 */
3251static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3252 u32 ack_seq)
3253{
3254 struct tcp_sock *tp = tcp_sk(sk);
3255 int flag = 0;
3256 u32 nwin = ntohs(tcp_hdr(skb)->window);
3257
3258 if (likely(!tcp_hdr(skb)->syn))
3259 nwin <<= tp->rx_opt.snd_wscale;
3260
3261 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3262 flag |= FLAG_WIN_UPDATE;
3263 tcp_update_wl(tp, ack_seq);
3264
3265 if (tp->snd_wnd != nwin) {
3266 tp->snd_wnd = nwin;
3267
3268 /* Note, it is the only place, where
3269 * fast path is recovered for sending TCP.
3270 */
3271 tp->pred_flags = 0;
3272 tcp_fast_path_check(sk);
3273
3274 if (nwin > tp->max_window) {
3275 tp->max_window = nwin;
3276 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3277 }
3278 }
3279 }
3280
3281 tp->snd_una = ack;
3282
3283 return flag;
3284}
3285
3286/* RFC 5961 7 [ACK Throttling] */
3287static void tcp_send_challenge_ack(struct sock *sk)
3288{
3289 /* unprotected vars, we dont care of overwrites */
3290 static u32 challenge_timestamp;
3291 static unsigned int challenge_count;
3292 u32 now = jiffies / HZ;
3293
3294 if (now != challenge_timestamp) {
3295 challenge_timestamp = now;
3296 challenge_count = 0;
3297 }
3298 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3299 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3300 tcp_send_ack(sk);
3301 }
3302}
3303
3304static void tcp_store_ts_recent(struct tcp_sock *tp)
3305{
3306 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3307 tp->rx_opt.ts_recent_stamp = get_seconds();
3308}
3309
3310static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3311{
3312 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3313 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3314 * extra check below makes sure this can only happen
3315 * for pure ACK frames. -DaveM
3316 *
3317 * Not only, also it occurs for expired timestamps.
3318 */
3319
3320 if (tcp_paws_check(&tp->rx_opt, 0))
3321 tcp_store_ts_recent(tp);
3322 }
3323}
3324
3325/* This routine deals with acks during a TLP episode.
3326 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3327 */
3328static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3329{
3330 struct tcp_sock *tp = tcp_sk(sk);
3331 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3332 !(flag & (FLAG_SND_UNA_ADVANCED |
3333 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3334
3335 /* Mark the end of TLP episode on receiving TLP dupack or when
3336 * ack is after tlp_high_seq.
3337 */
3338 if (is_tlp_dupack) {
3339 tp->tlp_high_seq = 0;
3340 return;
3341 }
3342
3343 if (after(ack, tp->tlp_high_seq)) {
3344 tp->tlp_high_seq = 0;
3345 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3346 if (!(flag & FLAG_DSACKING_ACK)) {
3347 tcp_init_cwnd_reduction(sk, true);
3348 tcp_set_ca_state(sk, TCP_CA_CWR);
3349 tcp_end_cwnd_reduction(sk);
3350 tcp_try_keep_open(sk);
3351 NET_INC_STATS_BH(sock_net(sk),
3352 LINUX_MIB_TCPLOSSPROBERECOVERY);
3353 }
3354 }
3355}
3356
3357/* This routine deals with incoming acks, but not outgoing ones. */
3358static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3359{
3360 struct inet_connection_sock *icsk = inet_csk(sk);
3361 struct tcp_sock *tp = tcp_sk(sk);
3362 u32 prior_snd_una = tp->snd_una;
3363 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3364 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3365 bool is_dupack = false;
3366 u32 prior_in_flight;
3367 u32 prior_fackets;
3368 int prior_packets = tp->packets_out;
3369 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3370 int acked = 0; /* Number of packets newly acked */
3371 long sack_rtt_us = -1L;
3372
3373 /* If the ack is older than previous acks
3374 * then we can probably ignore it.
3375 */
3376 if (before(ack, prior_snd_una)) {
3377 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3378 if (before(ack, prior_snd_una - tp->max_window)) {
3379 tcp_send_challenge_ack(sk);
3380 return -1;
3381 }
3382 goto old_ack;
3383 }
3384
3385 /* If the ack includes data we haven't sent yet, discard
3386 * this segment (RFC793 Section 3.9).
3387 */
3388 if (after(ack, tp->snd_nxt))
3389 goto invalid_ack;
3390
3391 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3392 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3393 tcp_rearm_rto(sk);
3394
3395 if (after(ack, prior_snd_una))
3396 flag |= FLAG_SND_UNA_ADVANCED;
3397
3398 prior_fackets = tp->fackets_out;
3399 prior_in_flight = tcp_packets_in_flight(tp);
3400
3401 /* ts_recent update must be made after we are sure that the packet
3402 * is in window.
3403 */
3404 if (flag & FLAG_UPDATE_TS_RECENT)
3405 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3406
3407 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3408 /* Window is constant, pure forward advance.
3409 * No more checks are required.
3410 * Note, we use the fact that SND.UNA>=SND.WL2.
3411 */
3412 tcp_update_wl(tp, ack_seq);
3413 tp->snd_una = ack;
3414 flag |= FLAG_WIN_UPDATE;
3415
3416 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3417
3418 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3419 } else {
3420 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3421 flag |= FLAG_DATA;
3422 else
3423 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3424
3425 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3426
3427 if (TCP_SKB_CB(skb)->sacked)
3428 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3429 &sack_rtt_us);
3430
3431 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3432 flag |= FLAG_ECE;
3433
3434 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3435 }
3436
3437 /* We passed data and got it acked, remove any soft error
3438 * log. Something worked...
3439 */
3440 sk->sk_err_soft = 0;
3441 icsk->icsk_probes_out = 0;
3442 tp->rcv_tstamp = tcp_time_stamp;
3443 if (!prior_packets)
3444 goto no_queue;
3445
3446 /* See if we can take anything off of the retransmit queue. */
3447 acked = tp->packets_out;
3448 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3449 sack_rtt_us);
3450 acked -= tp->packets_out;
3451
3452 /* Advance cwnd if state allows */
3453 if (tcp_may_raise_cwnd(sk, flag))
3454 tcp_cong_avoid(sk, ack, acked, prior_in_flight);
3455
3456 if (tcp_ack_is_dubious(sk, flag)) {
3457 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3458 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3459 is_dupack, flag);
3460 }
3461 if (tp->tlp_high_seq)
3462 tcp_process_tlp_ack(sk, ack, flag);
3463
3464 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3465 struct dst_entry *dst = __sk_dst_get(sk);
3466 if (dst)
3467 dst_confirm(dst);
3468 }
3469
3470 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3471 tcp_schedule_loss_probe(sk);
3472 tcp_update_pacing_rate(sk);
3473 return 1;
3474
3475no_queue:
3476 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3477 if (flag & FLAG_DSACKING_ACK)
3478 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3479 is_dupack, flag);
3480 /* If this ack opens up a zero window, clear backoff. It was
3481 * being used to time the probes, and is probably far higher than
3482 * it needs to be for normal retransmission.
3483 */
3484 if (tcp_send_head(sk))
3485 tcp_ack_probe(sk);
3486
3487 if (tp->tlp_high_seq)
3488 tcp_process_tlp_ack(sk, ack, flag);
3489 return 1;
3490
3491invalid_ack:
3492 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3493 return -1;
3494
3495old_ack:
3496 /* If data was SACKed, tag it and see if we should send more data.
3497 * If data was DSACKed, see if we can undo a cwnd reduction.
3498 */
3499 if (TCP_SKB_CB(skb)->sacked) {
3500 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3501 &sack_rtt_us);
3502 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3503 is_dupack, flag);
3504 }
3505
3506 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3507 return 0;
3508}
3509
3510/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3511 * But, this can also be called on packets in the established flow when
3512 * the fast version below fails.
3513 */
3514void tcp_parse_options(const struct sk_buff *skb,
3515 struct tcp_options_received *opt_rx, int estab,
3516 struct tcp_fastopen_cookie *foc)
3517{
3518 const unsigned char *ptr;
3519 const struct tcphdr *th = tcp_hdr(skb);
3520 int length = (th->doff * 4) - sizeof(struct tcphdr);
3521
3522 ptr = (const unsigned char *)(th + 1);
3523 opt_rx->saw_tstamp = 0;
3524
3525 while (length > 0) {
3526 int opcode = *ptr++;
3527 int opsize;
3528
3529 switch (opcode) {
3530 case TCPOPT_EOL:
3531 return;
3532 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3533 length--;
3534 continue;
3535 default:
3536 opsize = *ptr++;
3537 if (opsize < 2) /* "silly options" */
3538 return;
3539 if (opsize > length)
3540 return; /* don't parse partial options */
3541 switch (opcode) {
3542 case TCPOPT_MSS:
3543 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3544 u16 in_mss = get_unaligned_be16(ptr);
3545 if (in_mss) {
3546 if (opt_rx->user_mss &&
3547 opt_rx->user_mss < in_mss)
3548 in_mss = opt_rx->user_mss;
3549 opt_rx->mss_clamp = in_mss;
3550 }
3551 }
3552 break;
3553 case TCPOPT_WINDOW:
3554 if (opsize == TCPOLEN_WINDOW && th->syn &&
3555 !estab && sysctl_tcp_window_scaling) {
3556 __u8 snd_wscale = *(__u8 *)ptr;
3557 opt_rx->wscale_ok = 1;
3558 if (snd_wscale > 14) {
3559 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3560 __func__,
3561 snd_wscale);
3562 snd_wscale = 14;
3563 }
3564 opt_rx->snd_wscale = snd_wscale;
3565 }
3566 break;
3567 case TCPOPT_TIMESTAMP:
3568 if ((opsize == TCPOLEN_TIMESTAMP) &&
3569 ((estab && opt_rx->tstamp_ok) ||
3570 (!estab && sysctl_tcp_timestamps))) {
3571 opt_rx->saw_tstamp = 1;
3572 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3573 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3574 }
3575 break;
3576 case TCPOPT_SACK_PERM:
3577 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3578 !estab && sysctl_tcp_sack) {
3579 opt_rx->sack_ok = TCP_SACK_SEEN;
3580 tcp_sack_reset(opt_rx);
3581 }
3582 break;
3583
3584 case TCPOPT_SACK:
3585 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3586 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3587 opt_rx->sack_ok) {
3588 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3589 }
3590 break;
3591#ifdef CONFIG_TCP_MD5SIG
3592 case TCPOPT_MD5SIG:
3593 /*
3594 * The MD5 Hash has already been
3595 * checked (see tcp_v{4,6}_do_rcv()).
3596 */
3597 break;
3598#endif
3599 case TCPOPT_EXP:
3600 /* Fast Open option shares code 254 using a
3601 * 16 bits magic number. It's valid only in
3602 * SYN or SYN-ACK with an even size.
3603 */
3604 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3605 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3606 foc == NULL || !th->syn || (opsize & 1))
3607 break;
3608 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3609 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3610 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3611 memcpy(foc->val, ptr + 2, foc->len);
3612 else if (foc->len != 0)
3613 foc->len = -1;
3614 break;
3615
3616 }
3617 ptr += opsize-2;
3618 length -= opsize;
3619 }
3620 }
3621}
3622EXPORT_SYMBOL(tcp_parse_options);
3623
3624static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3625{
3626 const __be32 *ptr = (const __be32 *)(th + 1);
3627
3628 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3629 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3630 tp->rx_opt.saw_tstamp = 1;
3631 ++ptr;
3632 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3633 ++ptr;
3634 if (*ptr)
3635 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3636 else
3637 tp->rx_opt.rcv_tsecr = 0;
3638 return true;
3639 }
3640 return false;
3641}
3642
3643/* Fast parse options. This hopes to only see timestamps.
3644 * If it is wrong it falls back on tcp_parse_options().
3645 */
3646static bool tcp_fast_parse_options(const struct sk_buff *skb,
3647 const struct tcphdr *th, struct tcp_sock *tp)
3648{
3649 /* In the spirit of fast parsing, compare doff directly to constant
3650 * values. Because equality is used, short doff can be ignored here.
3651 */
3652 if (th->doff == (sizeof(*th) / 4)) {
3653 tp->rx_opt.saw_tstamp = 0;
3654 return false;
3655 } else if (tp->rx_opt.tstamp_ok &&
3656 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3657 if (tcp_parse_aligned_timestamp(tp, th))
3658 return true;
3659 }
3660
3661 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3662 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3663 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3664
3665 return true;
3666}
3667
3668#ifdef CONFIG_TCP_MD5SIG
3669/*
3670 * Parse MD5 Signature option
3671 */
3672const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3673{
3674 int length = (th->doff << 2) - sizeof(*th);
3675 const u8 *ptr = (const u8 *)(th + 1);
3676
3677 /* If the TCP option is too short, we can short cut */
3678 if (length < TCPOLEN_MD5SIG)
3679 return NULL;
3680
3681 while (length > 0) {
3682 int opcode = *ptr++;
3683 int opsize;
3684
3685 switch (opcode) {
3686 case TCPOPT_EOL:
3687 return NULL;
3688 case TCPOPT_NOP:
3689 length--;
3690 continue;
3691 default:
3692 opsize = *ptr++;
3693 if (opsize < 2 || opsize > length)
3694 return NULL;
3695 if (opcode == TCPOPT_MD5SIG)
3696 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3697 }
3698 ptr += opsize - 2;
3699 length -= opsize;
3700 }
3701 return NULL;
3702}
3703EXPORT_SYMBOL(tcp_parse_md5sig_option);
3704#endif
3705
3706/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3707 *
3708 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3709 * it can pass through stack. So, the following predicate verifies that
3710 * this segment is not used for anything but congestion avoidance or
3711 * fast retransmit. Moreover, we even are able to eliminate most of such
3712 * second order effects, if we apply some small "replay" window (~RTO)
3713 * to timestamp space.
3714 *
3715 * All these measures still do not guarantee that we reject wrapped ACKs
3716 * on networks with high bandwidth, when sequence space is recycled fastly,
3717 * but it guarantees that such events will be very rare and do not affect
3718 * connection seriously. This doesn't look nice, but alas, PAWS is really
3719 * buggy extension.
3720 *
3721 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3722 * states that events when retransmit arrives after original data are rare.
3723 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3724 * the biggest problem on large power networks even with minor reordering.
3725 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3726 * up to bandwidth of 18Gigabit/sec. 8) ]
3727 */
3728
3729static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3730{
3731 const struct tcp_sock *tp = tcp_sk(sk);
3732 const struct tcphdr *th = tcp_hdr(skb);
3733 u32 seq = TCP_SKB_CB(skb)->seq;
3734 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3735
3736 return (/* 1. Pure ACK with correct sequence number. */
3737 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3738
3739 /* 2. ... and duplicate ACK. */
3740 ack == tp->snd_una &&
3741
3742 /* 3. ... and does not update window. */
3743 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3744
3745 /* 4. ... and sits in replay window. */
3746 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3747}
3748
3749static inline bool tcp_paws_discard(const struct sock *sk,
3750 const struct sk_buff *skb)
3751{
3752 const struct tcp_sock *tp = tcp_sk(sk);
3753
3754 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3755 !tcp_disordered_ack(sk, skb);
3756}
3757
3758/* Check segment sequence number for validity.
3759 *
3760 * Segment controls are considered valid, if the segment
3761 * fits to the window after truncation to the window. Acceptability
3762 * of data (and SYN, FIN, of course) is checked separately.
3763 * See tcp_data_queue(), for example.
3764 *
3765 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3766 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3767 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3768 * (borrowed from freebsd)
3769 */
3770
3771static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3772{
3773 return !before(end_seq, tp->rcv_wup) &&
3774 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3775}
3776
3777/* When we get a reset we do this. */
3778void tcp_reset(struct sock *sk)
3779{
3780 /* We want the right error as BSD sees it (and indeed as we do). */
3781 switch (sk->sk_state) {
3782 case TCP_SYN_SENT:
3783 sk->sk_err = ECONNREFUSED;
3784 break;
3785 case TCP_CLOSE_WAIT:
3786 sk->sk_err = EPIPE;
3787 break;
3788 case TCP_CLOSE:
3789 return;
3790 default:
3791 sk->sk_err = ECONNRESET;
3792 }
3793 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3794 smp_wmb();
3795
3796 if (!sock_flag(sk, SOCK_DEAD))
3797 sk->sk_error_report(sk);
3798
3799 tcp_done(sk);
3800}
3801
3802/*
3803 * Process the FIN bit. This now behaves as it is supposed to work
3804 * and the FIN takes effect when it is validly part of sequence
3805 * space. Not before when we get holes.
3806 *
3807 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3808 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3809 * TIME-WAIT)
3810 *
3811 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3812 * close and we go into CLOSING (and later onto TIME-WAIT)
3813 *
3814 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3815 */
3816static void tcp_fin(struct sock *sk)
3817{
3818 struct tcp_sock *tp = tcp_sk(sk);
3819 const struct dst_entry *dst;
3820
3821 inet_csk_schedule_ack(sk);
3822
3823 sk->sk_shutdown |= RCV_SHUTDOWN;
3824 sock_set_flag(sk, SOCK_DONE);
3825
3826 switch (sk->sk_state) {
3827 case TCP_SYN_RECV:
3828 case TCP_ESTABLISHED:
3829 /* Move to CLOSE_WAIT */
3830 tcp_set_state(sk, TCP_CLOSE_WAIT);
3831 dst = __sk_dst_get(sk);
3832 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3833 inet_csk(sk)->icsk_ack.pingpong = 1;
3834 break;
3835
3836 case TCP_CLOSE_WAIT:
3837 case TCP_CLOSING:
3838 /* Received a retransmission of the FIN, do
3839 * nothing.
3840 */
3841 break;
3842 case TCP_LAST_ACK:
3843 /* RFC793: Remain in the LAST-ACK state. */
3844 break;
3845
3846 case TCP_FIN_WAIT1:
3847 /* This case occurs when a simultaneous close
3848 * happens, we must ack the received FIN and
3849 * enter the CLOSING state.
3850 */
3851 tcp_send_ack(sk);
3852 tcp_set_state(sk, TCP_CLOSING);
3853 break;
3854 case TCP_FIN_WAIT2:
3855 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3856 tcp_send_ack(sk);
3857 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3858 break;
3859 default:
3860 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3861 * cases we should never reach this piece of code.
3862 */
3863 pr_err("%s: Impossible, sk->sk_state=%d\n",
3864 __func__, sk->sk_state);
3865 break;
3866 }
3867
3868 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3869 * Probably, we should reset in this case. For now drop them.
3870 */
3871 __skb_queue_purge(&tp->out_of_order_queue);
3872 if (tcp_is_sack(tp))
3873 tcp_sack_reset(&tp->rx_opt);
3874 sk_mem_reclaim(sk);
3875
3876 if (!sock_flag(sk, SOCK_DEAD)) {
3877 sk->sk_state_change(sk);
3878
3879 /* Do not send POLL_HUP for half duplex close. */
3880 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3881 sk->sk_state == TCP_CLOSE)
3882 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3883 else
3884 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3885 }
3886}
3887
3888static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3889 u32 end_seq)
3890{
3891 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3892 if (before(seq, sp->start_seq))
3893 sp->start_seq = seq;
3894 if (after(end_seq, sp->end_seq))
3895 sp->end_seq = end_seq;
3896 return true;
3897 }
3898 return false;
3899}
3900
3901static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3902{
3903 struct tcp_sock *tp = tcp_sk(sk);
3904
3905 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3906 int mib_idx;
3907
3908 if (before(seq, tp->rcv_nxt))
3909 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3910 else
3911 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3912
3913 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3914
3915 tp->rx_opt.dsack = 1;
3916 tp->duplicate_sack[0].start_seq = seq;
3917 tp->duplicate_sack[0].end_seq = end_seq;
3918 }
3919}
3920
3921static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3922{
3923 struct tcp_sock *tp = tcp_sk(sk);
3924
3925 if (!tp->rx_opt.dsack)
3926 tcp_dsack_set(sk, seq, end_seq);
3927 else
3928 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3929}
3930
3931static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3932{
3933 struct tcp_sock *tp = tcp_sk(sk);
3934
3935 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3936 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3937 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3938 tcp_enter_quickack_mode(sk);
3939
3940 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3941 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3942
3943 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3944 end_seq = tp->rcv_nxt;
3945 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3946 }
3947 }
3948
3949 tcp_send_ack(sk);
3950}
3951
3952/* These routines update the SACK block as out-of-order packets arrive or
3953 * in-order packets close up the sequence space.
3954 */
3955static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3956{
3957 int this_sack;
3958 struct tcp_sack_block *sp = &tp->selective_acks[0];
3959 struct tcp_sack_block *swalk = sp + 1;
3960
3961 /* See if the recent change to the first SACK eats into
3962 * or hits the sequence space of other SACK blocks, if so coalesce.
3963 */
3964 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3965 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3966 int i;
3967
3968 /* Zap SWALK, by moving every further SACK up by one slot.
3969 * Decrease num_sacks.
3970 */
3971 tp->rx_opt.num_sacks--;
3972 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3973 sp[i] = sp[i + 1];
3974 continue;
3975 }
3976 this_sack++, swalk++;
3977 }
3978}
3979
3980static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3981{
3982 struct tcp_sock *tp = tcp_sk(sk);
3983 struct tcp_sack_block *sp = &tp->selective_acks[0];
3984 int cur_sacks = tp->rx_opt.num_sacks;
3985 int this_sack;
3986
3987 if (!cur_sacks)
3988 goto new_sack;
3989
3990 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3991 if (tcp_sack_extend(sp, seq, end_seq)) {
3992 /* Rotate this_sack to the first one. */
3993 for (; this_sack > 0; this_sack--, sp--)
3994 swap(*sp, *(sp - 1));
3995 if (cur_sacks > 1)
3996 tcp_sack_maybe_coalesce(tp);
3997 return;
3998 }
3999 }
4000
4001 /* Could not find an adjacent existing SACK, build a new one,
4002 * put it at the front, and shift everyone else down. We
4003 * always know there is at least one SACK present already here.
4004 *
4005 * If the sack array is full, forget about the last one.
4006 */
4007 if (this_sack >= TCP_NUM_SACKS) {
4008 this_sack--;
4009 tp->rx_opt.num_sacks--;
4010 sp--;
4011 }
4012 for (; this_sack > 0; this_sack--, sp--)
4013 *sp = *(sp - 1);
4014
4015new_sack:
4016 /* Build the new head SACK, and we're done. */
4017 sp->start_seq = seq;
4018 sp->end_seq = end_seq;
4019 tp->rx_opt.num_sacks++;
4020}
4021
4022/* RCV.NXT advances, some SACKs should be eaten. */
4023
4024static void tcp_sack_remove(struct tcp_sock *tp)
4025{
4026 struct tcp_sack_block *sp = &tp->selective_acks[0];
4027 int num_sacks = tp->rx_opt.num_sacks;
4028 int this_sack;
4029
4030 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4031 if (skb_queue_empty(&tp->out_of_order_queue)) {
4032 tp->rx_opt.num_sacks = 0;
4033 return;
4034 }
4035
4036 for (this_sack = 0; this_sack < num_sacks;) {
4037 /* Check if the start of the sack is covered by RCV.NXT. */
4038 if (!before(tp->rcv_nxt, sp->start_seq)) {
4039 int i;
4040
4041 /* RCV.NXT must cover all the block! */
4042 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4043
4044 /* Zap this SACK, by moving forward any other SACKS. */
4045 for (i = this_sack+1; i < num_sacks; i++)
4046 tp->selective_acks[i-1] = tp->selective_acks[i];
4047 num_sacks--;
4048 continue;
4049 }
4050 this_sack++;
4051 sp++;
4052 }
4053 tp->rx_opt.num_sacks = num_sacks;
4054}
4055
4056/* This one checks to see if we can put data from the
4057 * out_of_order queue into the receive_queue.
4058 */
4059static void tcp_ofo_queue(struct sock *sk)
4060{
4061 struct tcp_sock *tp = tcp_sk(sk);
4062 __u32 dsack_high = tp->rcv_nxt;
4063 struct sk_buff *skb;
4064
4065 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4066 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4067 break;
4068
4069 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4070 __u32 dsack = dsack_high;
4071 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4072 dsack_high = TCP_SKB_CB(skb)->end_seq;
4073 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4074 }
4075
4076 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4077 SOCK_DEBUG(sk, "ofo packet was already received\n");
4078 __skb_unlink(skb, &tp->out_of_order_queue);
4079 __kfree_skb(skb);
4080 continue;
4081 }
4082 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4083 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4084 TCP_SKB_CB(skb)->end_seq);
4085
4086 __skb_unlink(skb, &tp->out_of_order_queue);
4087 __skb_queue_tail(&sk->sk_receive_queue, skb);
4088 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4089 if (tcp_hdr(skb)->fin)
4090 tcp_fin(sk);
4091 }
4092}
4093
4094static bool tcp_prune_ofo_queue(struct sock *sk);
4095static int tcp_prune_queue(struct sock *sk);
4096
4097static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4098 unsigned int size)
4099{
4100 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4101 !sk_rmem_schedule(sk, skb, size)) {
4102
4103 if (tcp_prune_queue(sk) < 0)
4104 return -1;
4105
4106 if (!sk_rmem_schedule(sk, skb, size)) {
4107 if (!tcp_prune_ofo_queue(sk))
4108 return -1;
4109
4110 if (!sk_rmem_schedule(sk, skb, size))
4111 return -1;
4112 }
4113 }
4114 return 0;
4115}
4116
4117/**
4118 * tcp_try_coalesce - try to merge skb to prior one
4119 * @sk: socket
4120 * @to: prior buffer
4121 * @from: buffer to add in queue
4122 * @fragstolen: pointer to boolean
4123 *
4124 * Before queueing skb @from after @to, try to merge them
4125 * to reduce overall memory use and queue lengths, if cost is small.
4126 * Packets in ofo or receive queues can stay a long time.
4127 * Better try to coalesce them right now to avoid future collapses.
4128 * Returns true if caller should free @from instead of queueing it
4129 */
4130static bool tcp_try_coalesce(struct sock *sk,
4131 struct sk_buff *to,
4132 struct sk_buff *from,
4133 bool *fragstolen)
4134{
4135 int delta;
4136
4137 *fragstolen = false;
4138
4139 if (tcp_hdr(from)->fin)
4140 return false;
4141
4142 /* Its possible this segment overlaps with prior segment in queue */
4143 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4144 return false;
4145
4146 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4147 return false;
4148
4149 atomic_add(delta, &sk->sk_rmem_alloc);
4150 sk_mem_charge(sk, delta);
4151 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4152 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4153 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4154 return true;
4155}
4156
4157static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4158{
4159 struct tcp_sock *tp = tcp_sk(sk);
4160 struct sk_buff *skb1;
4161 u32 seq, end_seq;
4162
4163 TCP_ECN_check_ce(tp, skb);
4164
4165 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4167 __kfree_skb(skb);
4168 return;
4169 }
4170
4171 /* Disable header prediction. */
4172 tp->pred_flags = 0;
4173 inet_csk_schedule_ack(sk);
4174
4175 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4176 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4177 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4178
4179 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4180 if (!skb1) {
4181 /* Initial out of order segment, build 1 SACK. */
4182 if (tcp_is_sack(tp)) {
4183 tp->rx_opt.num_sacks = 1;
4184 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4185 tp->selective_acks[0].end_seq =
4186 TCP_SKB_CB(skb)->end_seq;
4187 }
4188 __skb_queue_head(&tp->out_of_order_queue, skb);
4189 goto end;
4190 }
4191
4192 seq = TCP_SKB_CB(skb)->seq;
4193 end_seq = TCP_SKB_CB(skb)->end_seq;
4194
4195 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4196 bool fragstolen;
4197
4198 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4199 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4200 } else {
4201 tcp_grow_window(sk, skb);
4202 kfree_skb_partial(skb, fragstolen);
4203 skb = NULL;
4204 }
4205
4206 if (!tp->rx_opt.num_sacks ||
4207 tp->selective_acks[0].end_seq != seq)
4208 goto add_sack;
4209
4210 /* Common case: data arrive in order after hole. */
4211 tp->selective_acks[0].end_seq = end_seq;
4212 goto end;
4213 }
4214
4215 /* Find place to insert this segment. */
4216 while (1) {
4217 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4218 break;
4219 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4220 skb1 = NULL;
4221 break;
4222 }
4223 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4224 }
4225
4226 /* Do skb overlap to previous one? */
4227 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4228 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4229 /* All the bits are present. Drop. */
4230 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4231 __kfree_skb(skb);
4232 skb = NULL;
4233 tcp_dsack_set(sk, seq, end_seq);
4234 goto add_sack;
4235 }
4236 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4237 /* Partial overlap. */
4238 tcp_dsack_set(sk, seq,
4239 TCP_SKB_CB(skb1)->end_seq);
4240 } else {
4241 if (skb_queue_is_first(&tp->out_of_order_queue,
4242 skb1))
4243 skb1 = NULL;
4244 else
4245 skb1 = skb_queue_prev(
4246 &tp->out_of_order_queue,
4247 skb1);
4248 }
4249 }
4250 if (!skb1)
4251 __skb_queue_head(&tp->out_of_order_queue, skb);
4252 else
4253 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4254
4255 /* And clean segments covered by new one as whole. */
4256 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4257 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4258
4259 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4260 break;
4261 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4262 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4263 end_seq);
4264 break;
4265 }
4266 __skb_unlink(skb1, &tp->out_of_order_queue);
4267 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4268 TCP_SKB_CB(skb1)->end_seq);
4269 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4270 __kfree_skb(skb1);
4271 }
4272
4273add_sack:
4274 if (tcp_is_sack(tp))
4275 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4276end:
4277 if (skb) {
4278 tcp_grow_window(sk, skb);
4279 skb_set_owner_r(skb, sk);
4280 }
4281}
4282
4283static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4284 bool *fragstolen)
4285{
4286 int eaten;
4287 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4288
4289 __skb_pull(skb, hdrlen);
4290 eaten = (tail &&
4291 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4292 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4293 if (!eaten) {
4294 __skb_queue_tail(&sk->sk_receive_queue, skb);
4295 skb_set_owner_r(skb, sk);
4296 }
4297 return eaten;
4298}
4299
4300int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4301{
4302 struct sk_buff *skb = NULL;
4303 struct tcphdr *th;
4304 bool fragstolen;
4305
4306 if (size == 0)
4307 return 0;
4308
4309 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4310 if (!skb)
4311 goto err;
4312
4313 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4314 goto err_free;
4315
4316 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4317 skb_reset_transport_header(skb);
4318 memset(th, 0, sizeof(*th));
4319
4320 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4321 goto err_free;
4322
4323 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4324 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4325 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4326
4327 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4328 WARN_ON_ONCE(fragstolen); /* should not happen */
4329 __kfree_skb(skb);
4330 }
4331 return size;
4332
4333err_free:
4334 kfree_skb(skb);
4335err:
4336 return -ENOMEM;
4337}
4338
4339static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4340{
4341 const struct tcphdr *th = tcp_hdr(skb);
4342 struct tcp_sock *tp = tcp_sk(sk);
4343 int eaten = -1;
4344 bool fragstolen = false;
4345
4346 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4347 goto drop;
4348
4349 skb_dst_drop(skb);
4350 __skb_pull(skb, th->doff * 4);
4351
4352 TCP_ECN_accept_cwr(tp, skb);
4353
4354 tp->rx_opt.dsack = 0;
4355
4356 /* Queue data for delivery to the user.
4357 * Packets in sequence go to the receive queue.
4358 * Out of sequence packets to the out_of_order_queue.
4359 */
4360 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4361 if (tcp_receive_window(tp) == 0)
4362 goto out_of_window;
4363
4364 /* Ok. In sequence. In window. */
4365 if (tp->ucopy.task == current &&
4366 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4367 sock_owned_by_user(sk) && !tp->urg_data) {
4368 int chunk = min_t(unsigned int, skb->len,
4369 tp->ucopy.len);
4370
4371 __set_current_state(TASK_RUNNING);
4372
4373 local_bh_enable();
4374 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4375 tp->ucopy.len -= chunk;
4376 tp->copied_seq += chunk;
4377 eaten = (chunk == skb->len);
4378 tcp_rcv_space_adjust(sk);
4379 }
4380 local_bh_disable();
4381 }
4382
4383 if (eaten <= 0) {
4384queue_and_out:
4385 if (eaten < 0 &&
4386 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4387 goto drop;
4388
4389 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4390 }
4391 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4392 if (skb->len)
4393 tcp_event_data_recv(sk, skb);
4394 if (th->fin)
4395 tcp_fin(sk);
4396
4397 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4398 tcp_ofo_queue(sk);
4399
4400 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4401 * gap in queue is filled.
4402 */
4403 if (skb_queue_empty(&tp->out_of_order_queue))
4404 inet_csk(sk)->icsk_ack.pingpong = 0;
4405 }
4406
4407 if (tp->rx_opt.num_sacks)
4408 tcp_sack_remove(tp);
4409
4410 tcp_fast_path_check(sk);
4411
4412 if (eaten > 0)
4413 kfree_skb_partial(skb, fragstolen);
4414 if (!sock_flag(sk, SOCK_DEAD))
4415 sk->sk_data_ready(sk);
4416 return;
4417 }
4418
4419 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4420 /* A retransmit, 2nd most common case. Force an immediate ack. */
4421 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4422 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4423
4424out_of_window:
4425 tcp_enter_quickack_mode(sk);
4426 inet_csk_schedule_ack(sk);
4427drop:
4428 __kfree_skb(skb);
4429 return;
4430 }
4431
4432 /* Out of window. F.e. zero window probe. */
4433 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4434 goto out_of_window;
4435
4436 tcp_enter_quickack_mode(sk);
4437
4438 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4439 /* Partial packet, seq < rcv_next < end_seq */
4440 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4441 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4442 TCP_SKB_CB(skb)->end_seq);
4443
4444 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4445
4446 /* If window is closed, drop tail of packet. But after
4447 * remembering D-SACK for its head made in previous line.
4448 */
4449 if (!tcp_receive_window(tp))
4450 goto out_of_window;
4451 goto queue_and_out;
4452 }
4453
4454 tcp_data_queue_ofo(sk, skb);
4455}
4456
4457static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4458 struct sk_buff_head *list)
4459{
4460 struct sk_buff *next = NULL;
4461
4462 if (!skb_queue_is_last(list, skb))
4463 next = skb_queue_next(list, skb);
4464
4465 __skb_unlink(skb, list);
4466 __kfree_skb(skb);
4467 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4468
4469 return next;
4470}
4471
4472/* Collapse contiguous sequence of skbs head..tail with
4473 * sequence numbers start..end.
4474 *
4475 * If tail is NULL, this means until the end of the list.
4476 *
4477 * Segments with FIN/SYN are not collapsed (only because this
4478 * simplifies code)
4479 */
4480static void
4481tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4482 struct sk_buff *head, struct sk_buff *tail,
4483 u32 start, u32 end)
4484{
4485 struct sk_buff *skb, *n;
4486 bool end_of_skbs;
4487
4488 /* First, check that queue is collapsible and find
4489 * the point where collapsing can be useful. */
4490 skb = head;
4491restart:
4492 end_of_skbs = true;
4493 skb_queue_walk_from_safe(list, skb, n) {
4494 if (skb == tail)
4495 break;
4496 /* No new bits? It is possible on ofo queue. */
4497 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4498 skb = tcp_collapse_one(sk, skb, list);
4499 if (!skb)
4500 break;
4501 goto restart;
4502 }
4503
4504 /* The first skb to collapse is:
4505 * - not SYN/FIN and
4506 * - bloated or contains data before "start" or
4507 * overlaps to the next one.
4508 */
4509 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4510 (tcp_win_from_space(skb->truesize) > skb->len ||
4511 before(TCP_SKB_CB(skb)->seq, start))) {
4512 end_of_skbs = false;
4513 break;
4514 }
4515
4516 if (!skb_queue_is_last(list, skb)) {
4517 struct sk_buff *next = skb_queue_next(list, skb);
4518 if (next != tail &&
4519 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4520 end_of_skbs = false;
4521 break;
4522 }
4523 }
4524
4525 /* Decided to skip this, advance start seq. */
4526 start = TCP_SKB_CB(skb)->end_seq;
4527 }
4528 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4529 return;
4530
4531 while (before(start, end)) {
4532 struct sk_buff *nskb;
4533 unsigned int header = skb_headroom(skb);
4534 int copy = SKB_MAX_ORDER(header, 0);
4535
4536 /* Too big header? This can happen with IPv6. */
4537 if (copy < 0)
4538 return;
4539 if (end - start < copy)
4540 copy = end - start;
4541 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4542 if (!nskb)
4543 return;
4544
4545 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4546 skb_set_network_header(nskb, (skb_network_header(skb) -
4547 skb->head));
4548 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4549 skb->head));
4550 skb_reserve(nskb, header);
4551 memcpy(nskb->head, skb->head, header);
4552 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4553 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4554 __skb_queue_before(list, skb, nskb);
4555 skb_set_owner_r(nskb, sk);
4556
4557 /* Copy data, releasing collapsed skbs. */
4558 while (copy > 0) {
4559 int offset = start - TCP_SKB_CB(skb)->seq;
4560 int size = TCP_SKB_CB(skb)->end_seq - start;
4561
4562 BUG_ON(offset < 0);
4563 if (size > 0) {
4564 size = min(copy, size);
4565 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4566 BUG();
4567 TCP_SKB_CB(nskb)->end_seq += size;
4568 copy -= size;
4569 start += size;
4570 }
4571 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4572 skb = tcp_collapse_one(sk, skb, list);
4573 if (!skb ||
4574 skb == tail ||
4575 tcp_hdr(skb)->syn ||
4576 tcp_hdr(skb)->fin)
4577 return;
4578 }
4579 }
4580 }
4581}
4582
4583/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4584 * and tcp_collapse() them until all the queue is collapsed.
4585 */
4586static void tcp_collapse_ofo_queue(struct sock *sk)
4587{
4588 struct tcp_sock *tp = tcp_sk(sk);
4589 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4590 struct sk_buff *head;
4591 u32 start, end;
4592
4593 if (skb == NULL)
4594 return;
4595
4596 start = TCP_SKB_CB(skb)->seq;
4597 end = TCP_SKB_CB(skb)->end_seq;
4598 head = skb;
4599
4600 for (;;) {
4601 struct sk_buff *next = NULL;
4602
4603 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4604 next = skb_queue_next(&tp->out_of_order_queue, skb);
4605 skb = next;
4606
4607 /* Segment is terminated when we see gap or when
4608 * we are at the end of all the queue. */
4609 if (!skb ||
4610 after(TCP_SKB_CB(skb)->seq, end) ||
4611 before(TCP_SKB_CB(skb)->end_seq, start)) {
4612 tcp_collapse(sk, &tp->out_of_order_queue,
4613 head, skb, start, end);
4614 head = skb;
4615 if (!skb)
4616 break;
4617 /* Start new segment */
4618 start = TCP_SKB_CB(skb)->seq;
4619 end = TCP_SKB_CB(skb)->end_seq;
4620 } else {
4621 if (before(TCP_SKB_CB(skb)->seq, start))
4622 start = TCP_SKB_CB(skb)->seq;
4623 if (after(TCP_SKB_CB(skb)->end_seq, end))
4624 end = TCP_SKB_CB(skb)->end_seq;
4625 }
4626 }
4627}
4628
4629/*
4630 * Purge the out-of-order queue.
4631 * Return true if queue was pruned.
4632 */
4633static bool tcp_prune_ofo_queue(struct sock *sk)
4634{
4635 struct tcp_sock *tp = tcp_sk(sk);
4636 bool res = false;
4637
4638 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4639 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4640 __skb_queue_purge(&tp->out_of_order_queue);
4641
4642 /* Reset SACK state. A conforming SACK implementation will
4643 * do the same at a timeout based retransmit. When a connection
4644 * is in a sad state like this, we care only about integrity
4645 * of the connection not performance.
4646 */
4647 if (tp->rx_opt.sack_ok)
4648 tcp_sack_reset(&tp->rx_opt);
4649 sk_mem_reclaim(sk);
4650 res = true;
4651 }
4652 return res;
4653}
4654
4655/* Reduce allocated memory if we can, trying to get
4656 * the socket within its memory limits again.
4657 *
4658 * Return less than zero if we should start dropping frames
4659 * until the socket owning process reads some of the data
4660 * to stabilize the situation.
4661 */
4662static int tcp_prune_queue(struct sock *sk)
4663{
4664 struct tcp_sock *tp = tcp_sk(sk);
4665
4666 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4667
4668 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4669
4670 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4671 tcp_clamp_window(sk);
4672 else if (sk_under_memory_pressure(sk))
4673 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4674
4675 tcp_collapse_ofo_queue(sk);
4676 if (!skb_queue_empty(&sk->sk_receive_queue))
4677 tcp_collapse(sk, &sk->sk_receive_queue,
4678 skb_peek(&sk->sk_receive_queue),
4679 NULL,
4680 tp->copied_seq, tp->rcv_nxt);
4681 sk_mem_reclaim(sk);
4682
4683 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4684 return 0;
4685
4686 /* Collapsing did not help, destructive actions follow.
4687 * This must not ever occur. */
4688
4689 tcp_prune_ofo_queue(sk);
4690
4691 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4692 return 0;
4693
4694 /* If we are really being abused, tell the caller to silently
4695 * drop receive data on the floor. It will get retransmitted
4696 * and hopefully then we'll have sufficient space.
4697 */
4698 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4699
4700 /* Massive buffer overcommit. */
4701 tp->pred_flags = 0;
4702 return -1;
4703}
4704
4705/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4706 * As additional protections, we do not touch cwnd in retransmission phases,
4707 * and if application hit its sndbuf limit recently.
4708 */
4709void tcp_cwnd_application_limited(struct sock *sk)
4710{
4711 struct tcp_sock *tp = tcp_sk(sk);
4712
4713 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4714 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4715 /* Limited by application or receiver window. */
4716 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4717 u32 win_used = max(tp->snd_cwnd_used, init_win);
4718 if (win_used < tp->snd_cwnd) {
4719 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4720 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4721 }
4722 tp->snd_cwnd_used = 0;
4723 }
4724 tp->snd_cwnd_stamp = tcp_time_stamp;
4725}
4726
4727static bool tcp_should_expand_sndbuf(const struct sock *sk)
4728{
4729 const struct tcp_sock *tp = tcp_sk(sk);
4730
4731 /* If the user specified a specific send buffer setting, do
4732 * not modify it.
4733 */
4734 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4735 return false;
4736
4737 /* If we are under global TCP memory pressure, do not expand. */
4738 if (sk_under_memory_pressure(sk))
4739 return false;
4740
4741 /* If we are under soft global TCP memory pressure, do not expand. */
4742 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4743 return false;
4744
4745 /* If we filled the congestion window, do not expand. */
4746 if (tp->packets_out >= tp->snd_cwnd)
4747 return false;
4748
4749 return true;
4750}
4751
4752/* When incoming ACK allowed to free some skb from write_queue,
4753 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4754 * on the exit from tcp input handler.
4755 *
4756 * PROBLEM: sndbuf expansion does not work well with largesend.
4757 */
4758static void tcp_new_space(struct sock *sk)
4759{
4760 struct tcp_sock *tp = tcp_sk(sk);
4761
4762 if (tcp_should_expand_sndbuf(sk)) {
4763 tcp_sndbuf_expand(sk);
4764 tp->snd_cwnd_stamp = tcp_time_stamp;
4765 }
4766
4767 sk->sk_write_space(sk);
4768}
4769
4770static void tcp_check_space(struct sock *sk)
4771{
4772 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4773 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4774 if (sk->sk_socket &&
4775 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4776 tcp_new_space(sk);
4777 }
4778}
4779
4780static inline void tcp_data_snd_check(struct sock *sk)
4781{
4782 tcp_push_pending_frames(sk);
4783 tcp_check_space(sk);
4784}
4785
4786/*
4787 * Check if sending an ack is needed.
4788 */
4789static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4790{
4791 struct tcp_sock *tp = tcp_sk(sk);
4792
4793 /* More than one full frame received... */
4794 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4795 /* ... and right edge of window advances far enough.
4796 * (tcp_recvmsg() will send ACK otherwise). Or...
4797 */
4798 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4799 /* We ACK each frame or... */
4800 tcp_in_quickack_mode(sk) ||
4801 /* We have out of order data. */
4802 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4803 /* Then ack it now */
4804 tcp_send_ack(sk);
4805 } else {
4806 /* Else, send delayed ack. */
4807 tcp_send_delayed_ack(sk);
4808 }
4809}
4810
4811static inline void tcp_ack_snd_check(struct sock *sk)
4812{
4813 if (!inet_csk_ack_scheduled(sk)) {
4814 /* We sent a data segment already. */
4815 return;
4816 }
4817 __tcp_ack_snd_check(sk, 1);
4818}
4819
4820/*
4821 * This routine is only called when we have urgent data
4822 * signaled. Its the 'slow' part of tcp_urg. It could be
4823 * moved inline now as tcp_urg is only called from one
4824 * place. We handle URGent data wrong. We have to - as
4825 * BSD still doesn't use the correction from RFC961.
4826 * For 1003.1g we should support a new option TCP_STDURG to permit
4827 * either form (or just set the sysctl tcp_stdurg).
4828 */
4829
4830static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4831{
4832 struct tcp_sock *tp = tcp_sk(sk);
4833 u32 ptr = ntohs(th->urg_ptr);
4834
4835 if (ptr && !sysctl_tcp_stdurg)
4836 ptr--;
4837 ptr += ntohl(th->seq);
4838
4839 /* Ignore urgent data that we've already seen and read. */
4840 if (after(tp->copied_seq, ptr))
4841 return;
4842
4843 /* Do not replay urg ptr.
4844 *
4845 * NOTE: interesting situation not covered by specs.
4846 * Misbehaving sender may send urg ptr, pointing to segment,
4847 * which we already have in ofo queue. We are not able to fetch
4848 * such data and will stay in TCP_URG_NOTYET until will be eaten
4849 * by recvmsg(). Seems, we are not obliged to handle such wicked
4850 * situations. But it is worth to think about possibility of some
4851 * DoSes using some hypothetical application level deadlock.
4852 */
4853 if (before(ptr, tp->rcv_nxt))
4854 return;
4855
4856 /* Do we already have a newer (or duplicate) urgent pointer? */
4857 if (tp->urg_data && !after(ptr, tp->urg_seq))
4858 return;
4859
4860 /* Tell the world about our new urgent pointer. */
4861 sk_send_sigurg(sk);
4862
4863 /* We may be adding urgent data when the last byte read was
4864 * urgent. To do this requires some care. We cannot just ignore
4865 * tp->copied_seq since we would read the last urgent byte again
4866 * as data, nor can we alter copied_seq until this data arrives
4867 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4868 *
4869 * NOTE. Double Dutch. Rendering to plain English: author of comment
4870 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4871 * and expect that both A and B disappear from stream. This is _wrong_.
4872 * Though this happens in BSD with high probability, this is occasional.
4873 * Any application relying on this is buggy. Note also, that fix "works"
4874 * only in this artificial test. Insert some normal data between A and B and we will
4875 * decline of BSD again. Verdict: it is better to remove to trap
4876 * buggy users.
4877 */
4878 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4879 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4880 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4881 tp->copied_seq++;
4882 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4883 __skb_unlink(skb, &sk->sk_receive_queue);
4884 __kfree_skb(skb);
4885 }
4886 }
4887
4888 tp->urg_data = TCP_URG_NOTYET;
4889 tp->urg_seq = ptr;
4890
4891 /* Disable header prediction. */
4892 tp->pred_flags = 0;
4893}
4894
4895/* This is the 'fast' part of urgent handling. */
4896static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4897{
4898 struct tcp_sock *tp = tcp_sk(sk);
4899
4900 /* Check if we get a new urgent pointer - normally not. */
4901 if (th->urg)
4902 tcp_check_urg(sk, th);
4903
4904 /* Do we wait for any urgent data? - normally not... */
4905 if (tp->urg_data == TCP_URG_NOTYET) {
4906 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4907 th->syn;
4908
4909 /* Is the urgent pointer pointing into this packet? */
4910 if (ptr < skb->len) {
4911 u8 tmp;
4912 if (skb_copy_bits(skb, ptr, &tmp, 1))
4913 BUG();
4914 tp->urg_data = TCP_URG_VALID | tmp;
4915 if (!sock_flag(sk, SOCK_DEAD))
4916 sk->sk_data_ready(sk);
4917 }
4918 }
4919}
4920
4921static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4922{
4923 struct tcp_sock *tp = tcp_sk(sk);
4924 int chunk = skb->len - hlen;
4925 int err;
4926
4927 local_bh_enable();
4928 if (skb_csum_unnecessary(skb))
4929 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4930 else
4931 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4932 tp->ucopy.iov);
4933
4934 if (!err) {
4935 tp->ucopy.len -= chunk;
4936 tp->copied_seq += chunk;
4937 tcp_rcv_space_adjust(sk);
4938 }
4939
4940 local_bh_disable();
4941 return err;
4942}
4943
4944static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4945 struct sk_buff *skb)
4946{
4947 __sum16 result;
4948
4949 if (sock_owned_by_user(sk)) {
4950 local_bh_enable();
4951 result = __tcp_checksum_complete(skb);
4952 local_bh_disable();
4953 } else {
4954 result = __tcp_checksum_complete(skb);
4955 }
4956 return result;
4957}
4958
4959static inline bool tcp_checksum_complete_user(struct sock *sk,
4960 struct sk_buff *skb)
4961{
4962 return !skb_csum_unnecessary(skb) &&
4963 __tcp_checksum_complete_user(sk, skb);
4964}
4965
4966#ifdef CONFIG_NET_DMA
4967static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4968 int hlen)
4969{
4970 struct tcp_sock *tp = tcp_sk(sk);
4971 int chunk = skb->len - hlen;
4972 int dma_cookie;
4973 bool copied_early = false;
4974
4975 if (tp->ucopy.wakeup)
4976 return false;
4977
4978 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4979 tp->ucopy.dma_chan = net_dma_find_channel();
4980
4981 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4982
4983 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4984 skb, hlen,
4985 tp->ucopy.iov, chunk,
4986 tp->ucopy.pinned_list);
4987
4988 if (dma_cookie < 0)
4989 goto out;
4990
4991 tp->ucopy.dma_cookie = dma_cookie;
4992 copied_early = true;
4993
4994 tp->ucopy.len -= chunk;
4995 tp->copied_seq += chunk;
4996 tcp_rcv_space_adjust(sk);
4997
4998 if ((tp->ucopy.len == 0) ||
4999 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5000 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5001 tp->ucopy.wakeup = 1;
5002 sk->sk_data_ready(sk);
5003 }
5004 } else if (chunk > 0) {
5005 tp->ucopy.wakeup = 1;
5006 sk->sk_data_ready(sk);
5007 }
5008out:
5009 return copied_early;
5010}
5011#endif /* CONFIG_NET_DMA */
5012
5013/* Does PAWS and seqno based validation of an incoming segment, flags will
5014 * play significant role here.
5015 */
5016static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5017 const struct tcphdr *th, int syn_inerr)
5018{
5019 struct tcp_sock *tp = tcp_sk(sk);
5020
5021 /* RFC1323: H1. Apply PAWS check first. */
5022 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5023 tcp_paws_discard(sk, skb)) {
5024 if (!th->rst) {
5025 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5026 tcp_send_dupack(sk, skb);
5027 goto discard;
5028 }
5029 /* Reset is accepted even if it did not pass PAWS. */
5030 }
5031
5032 /* Step 1: check sequence number */
5033 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5034 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5035 * (RST) segments are validated by checking their SEQ-fields."
5036 * And page 69: "If an incoming segment is not acceptable,
5037 * an acknowledgment should be sent in reply (unless the RST
5038 * bit is set, if so drop the segment and return)".
5039 */
5040 if (!th->rst) {
5041 if (th->syn)
5042 goto syn_challenge;
5043 tcp_send_dupack(sk, skb);
5044 }
5045 goto discard;
5046 }
5047
5048 /* Step 2: check RST bit */
5049 if (th->rst) {
5050 /* RFC 5961 3.2 :
5051 * If sequence number exactly matches RCV.NXT, then
5052 * RESET the connection
5053 * else
5054 * Send a challenge ACK
5055 */
5056 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5057 tcp_reset(sk);
5058 else
5059 tcp_send_challenge_ack(sk);
5060 goto discard;
5061 }
5062
5063 /* step 3: check security and precedence [ignored] */
5064
5065 /* step 4: Check for a SYN
5066 * RFC 5691 4.2 : Send a challenge ack
5067 */
5068 if (th->syn) {
5069syn_challenge:
5070 if (syn_inerr)
5071 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5072 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5073 tcp_send_challenge_ack(sk);
5074 goto discard;
5075 }
5076
5077 return true;
5078
5079discard:
5080 __kfree_skb(skb);
5081 return false;
5082}
5083
5084/*
5085 * TCP receive function for the ESTABLISHED state.
5086 *
5087 * It is split into a fast path and a slow path. The fast path is
5088 * disabled when:
5089 * - A zero window was announced from us - zero window probing
5090 * is only handled properly in the slow path.
5091 * - Out of order segments arrived.
5092 * - Urgent data is expected.
5093 * - There is no buffer space left
5094 * - Unexpected TCP flags/window values/header lengths are received
5095 * (detected by checking the TCP header against pred_flags)
5096 * - Data is sent in both directions. Fast path only supports pure senders
5097 * or pure receivers (this means either the sequence number or the ack
5098 * value must stay constant)
5099 * - Unexpected TCP option.
5100 *
5101 * When these conditions are not satisfied it drops into a standard
5102 * receive procedure patterned after RFC793 to handle all cases.
5103 * The first three cases are guaranteed by proper pred_flags setting,
5104 * the rest is checked inline. Fast processing is turned on in
5105 * tcp_data_queue when everything is OK.
5106 */
5107void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5108 const struct tcphdr *th, unsigned int len)
5109{
5110 struct tcp_sock *tp = tcp_sk(sk);
5111
5112 if (unlikely(sk->sk_rx_dst == NULL))
5113 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5114 /*
5115 * Header prediction.
5116 * The code loosely follows the one in the famous
5117 * "30 instruction TCP receive" Van Jacobson mail.
5118 *
5119 * Van's trick is to deposit buffers into socket queue
5120 * on a device interrupt, to call tcp_recv function
5121 * on the receive process context and checksum and copy
5122 * the buffer to user space. smart...
5123 *
5124 * Our current scheme is not silly either but we take the
5125 * extra cost of the net_bh soft interrupt processing...
5126 * We do checksum and copy also but from device to kernel.
5127 */
5128
5129 tp->rx_opt.saw_tstamp = 0;
5130
5131 /* pred_flags is 0xS?10 << 16 + snd_wnd
5132 * if header_prediction is to be made
5133 * 'S' will always be tp->tcp_header_len >> 2
5134 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5135 * turn it off (when there are holes in the receive
5136 * space for instance)
5137 * PSH flag is ignored.
5138 */
5139
5140 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5141 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5142 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5143 int tcp_header_len = tp->tcp_header_len;
5144
5145 /* Timestamp header prediction: tcp_header_len
5146 * is automatically equal to th->doff*4 due to pred_flags
5147 * match.
5148 */
5149
5150 /* Check timestamp */
5151 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5152 /* No? Slow path! */
5153 if (!tcp_parse_aligned_timestamp(tp, th))
5154 goto slow_path;
5155
5156 /* If PAWS failed, check it more carefully in slow path */
5157 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5158 goto slow_path;
5159
5160 /* DO NOT update ts_recent here, if checksum fails
5161 * and timestamp was corrupted part, it will result
5162 * in a hung connection since we will drop all
5163 * future packets due to the PAWS test.
5164 */
5165 }
5166
5167 if (len <= tcp_header_len) {
5168 /* Bulk data transfer: sender */
5169 if (len == tcp_header_len) {
5170 /* Predicted packet is in window by definition.
5171 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5172 * Hence, check seq<=rcv_wup reduces to:
5173 */
5174 if (tcp_header_len ==
5175 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5176 tp->rcv_nxt == tp->rcv_wup)
5177 tcp_store_ts_recent(tp);
5178
5179 /* We know that such packets are checksummed
5180 * on entry.
5181 */
5182 tcp_ack(sk, skb, 0);
5183 __kfree_skb(skb);
5184 tcp_data_snd_check(sk);
5185 return;
5186 } else { /* Header too small */
5187 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5188 goto discard;
5189 }
5190 } else {
5191 int eaten = 0;
5192 int copied_early = 0;
5193 bool fragstolen = false;
5194
5195 if (tp->copied_seq == tp->rcv_nxt &&
5196 len - tcp_header_len <= tp->ucopy.len) {
5197#ifdef CONFIG_NET_DMA
5198 if (tp->ucopy.task == current &&
5199 sock_owned_by_user(sk) &&
5200 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5201 copied_early = 1;
5202 eaten = 1;
5203 }
5204#endif
5205 if (tp->ucopy.task == current &&
5206 sock_owned_by_user(sk) && !copied_early) {
5207 __set_current_state(TASK_RUNNING);
5208
5209 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5210 eaten = 1;
5211 }
5212 if (eaten) {
5213 /* Predicted packet is in window by definition.
5214 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5215 * Hence, check seq<=rcv_wup reduces to:
5216 */
5217 if (tcp_header_len ==
5218 (sizeof(struct tcphdr) +
5219 TCPOLEN_TSTAMP_ALIGNED) &&
5220 tp->rcv_nxt == tp->rcv_wup)
5221 tcp_store_ts_recent(tp);
5222
5223 tcp_rcv_rtt_measure_ts(sk, skb);
5224
5225 __skb_pull(skb, tcp_header_len);
5226 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5228 }
5229 if (copied_early)
5230 tcp_cleanup_rbuf(sk, skb->len);
5231 }
5232 if (!eaten) {
5233 if (tcp_checksum_complete_user(sk, skb))
5234 goto csum_error;
5235
5236 if ((int)skb->truesize > sk->sk_forward_alloc)
5237 goto step5;
5238
5239 /* Predicted packet is in window by definition.
5240 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5241 * Hence, check seq<=rcv_wup reduces to:
5242 */
5243 if (tcp_header_len ==
5244 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5245 tp->rcv_nxt == tp->rcv_wup)
5246 tcp_store_ts_recent(tp);
5247
5248 tcp_rcv_rtt_measure_ts(sk, skb);
5249
5250 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5251
5252 /* Bulk data transfer: receiver */
5253 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5254 &fragstolen);
5255 }
5256
5257 tcp_event_data_recv(sk, skb);
5258
5259 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5260 /* Well, only one small jumplet in fast path... */
5261 tcp_ack(sk, skb, FLAG_DATA);
5262 tcp_data_snd_check(sk);
5263 if (!inet_csk_ack_scheduled(sk))
5264 goto no_ack;
5265 }
5266
5267 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5268 __tcp_ack_snd_check(sk, 0);
5269no_ack:
5270#ifdef CONFIG_NET_DMA
5271 if (copied_early)
5272 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5273 else
5274#endif
5275 if (eaten)
5276 kfree_skb_partial(skb, fragstolen);
5277 sk->sk_data_ready(sk);
5278 return;
5279 }
5280 }
5281
5282slow_path:
5283 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5284 goto csum_error;
5285
5286 if (!th->ack && !th->rst)
5287 goto discard;
5288
5289 /*
5290 * Standard slow path.
5291 */
5292
5293 if (!tcp_validate_incoming(sk, skb, th, 1))
5294 return;
5295
5296step5:
5297 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5298 goto discard;
5299
5300 tcp_rcv_rtt_measure_ts(sk, skb);
5301
5302 /* Process urgent data. */
5303 tcp_urg(sk, skb, th);
5304
5305 /* step 7: process the segment text */
5306 tcp_data_queue(sk, skb);
5307
5308 tcp_data_snd_check(sk);
5309 tcp_ack_snd_check(sk);
5310 return;
5311
5312csum_error:
5313 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5314 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5315
5316discard:
5317 __kfree_skb(skb);
5318}
5319EXPORT_SYMBOL(tcp_rcv_established);
5320
5321void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5322{
5323 struct tcp_sock *tp = tcp_sk(sk);
5324 struct inet_connection_sock *icsk = inet_csk(sk);
5325
5326 tcp_set_state(sk, TCP_ESTABLISHED);
5327
5328 if (skb != NULL) {
5329 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5330 security_inet_conn_established(sk, skb);
5331 }
5332
5333 /* Make sure socket is routed, for correct metrics. */
5334 icsk->icsk_af_ops->rebuild_header(sk);
5335
5336 tcp_init_metrics(sk);
5337
5338 tcp_init_congestion_control(sk);
5339
5340 /* Prevent spurious tcp_cwnd_restart() on first data
5341 * packet.
5342 */
5343 tp->lsndtime = tcp_time_stamp;
5344
5345 tcp_init_buffer_space(sk);
5346
5347 if (sock_flag(sk, SOCK_KEEPOPEN))
5348 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5349
5350 if (!tp->rx_opt.snd_wscale)
5351 __tcp_fast_path_on(tp, tp->snd_wnd);
5352 else
5353 tp->pred_flags = 0;
5354
5355 if (!sock_flag(sk, SOCK_DEAD)) {
5356 sk->sk_state_change(sk);
5357 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5358 }
5359}
5360
5361static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5362 struct tcp_fastopen_cookie *cookie)
5363{
5364 struct tcp_sock *tp = tcp_sk(sk);
5365 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5366 u16 mss = tp->rx_opt.mss_clamp;
5367 bool syn_drop;
5368
5369 if (mss == tp->rx_opt.user_mss) {
5370 struct tcp_options_received opt;
5371
5372 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5373 tcp_clear_options(&opt);
5374 opt.user_mss = opt.mss_clamp = 0;
5375 tcp_parse_options(synack, &opt, 0, NULL);
5376 mss = opt.mss_clamp;
5377 }
5378
5379 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5380 cookie->len = -1;
5381
5382 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5383 * the remote receives only the retransmitted (regular) SYNs: either
5384 * the original SYN-data or the corresponding SYN-ACK is lost.
5385 */
5386 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5387
5388 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5389
5390 if (data) { /* Retransmit unacked data in SYN */
5391 tcp_for_write_queue_from(data, sk) {
5392 if (data == tcp_send_head(sk) ||
5393 __tcp_retransmit_skb(sk, data))
5394 break;
5395 }
5396 tcp_rearm_rto(sk);
5397 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5398 return true;
5399 }
5400 tp->syn_data_acked = tp->syn_data;
5401 if (tp->syn_data_acked)
5402 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5403 return false;
5404}
5405
5406static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5407 const struct tcphdr *th, unsigned int len)
5408{
5409 struct inet_connection_sock *icsk = inet_csk(sk);
5410 struct tcp_sock *tp = tcp_sk(sk);
5411 struct tcp_fastopen_cookie foc = { .len = -1 };
5412 int saved_clamp = tp->rx_opt.mss_clamp;
5413
5414 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5415 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5416 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5417
5418 if (th->ack) {
5419 /* rfc793:
5420 * "If the state is SYN-SENT then
5421 * first check the ACK bit
5422 * If the ACK bit is set
5423 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5424 * a reset (unless the RST bit is set, if so drop
5425 * the segment and return)"
5426 */
5427 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5428 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5429 goto reset_and_undo;
5430
5431 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5432 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5433 tcp_time_stamp)) {
5434 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5435 goto reset_and_undo;
5436 }
5437
5438 /* Now ACK is acceptable.
5439 *
5440 * "If the RST bit is set
5441 * If the ACK was acceptable then signal the user "error:
5442 * connection reset", drop the segment, enter CLOSED state,
5443 * delete TCB, and return."
5444 */
5445
5446 if (th->rst) {
5447 tcp_reset(sk);
5448 goto discard;
5449 }
5450
5451 /* rfc793:
5452 * "fifth, if neither of the SYN or RST bits is set then
5453 * drop the segment and return."
5454 *
5455 * See note below!
5456 * --ANK(990513)
5457 */
5458 if (!th->syn)
5459 goto discard_and_undo;
5460
5461 /* rfc793:
5462 * "If the SYN bit is on ...
5463 * are acceptable then ...
5464 * (our SYN has been ACKed), change the connection
5465 * state to ESTABLISHED..."
5466 */
5467
5468 TCP_ECN_rcv_synack(tp, th);
5469
5470 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5471 tcp_ack(sk, skb, FLAG_SLOWPATH);
5472
5473 /* Ok.. it's good. Set up sequence numbers and
5474 * move to established.
5475 */
5476 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5477 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5478
5479 /* RFC1323: The window in SYN & SYN/ACK segments is
5480 * never scaled.
5481 */
5482 tp->snd_wnd = ntohs(th->window);
5483
5484 if (!tp->rx_opt.wscale_ok) {
5485 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5486 tp->window_clamp = min(tp->window_clamp, 65535U);
5487 }
5488
5489 if (tp->rx_opt.saw_tstamp) {
5490 tp->rx_opt.tstamp_ok = 1;
5491 tp->tcp_header_len =
5492 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5493 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5494 tcp_store_ts_recent(tp);
5495 } else {
5496 tp->tcp_header_len = sizeof(struct tcphdr);
5497 }
5498
5499 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5500 tcp_enable_fack(tp);
5501
5502 tcp_mtup_init(sk);
5503 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5504 tcp_initialize_rcv_mss(sk);
5505
5506 /* Remember, tcp_poll() does not lock socket!
5507 * Change state from SYN-SENT only after copied_seq
5508 * is initialized. */
5509 tp->copied_seq = tp->rcv_nxt;
5510
5511 smp_mb();
5512
5513 tcp_finish_connect(sk, skb);
5514
5515 if ((tp->syn_fastopen || tp->syn_data) &&
5516 tcp_rcv_fastopen_synack(sk, skb, &foc))
5517 return -1;
5518
5519 if (sk->sk_write_pending ||
5520 icsk->icsk_accept_queue.rskq_defer_accept ||
5521 icsk->icsk_ack.pingpong) {
5522 /* Save one ACK. Data will be ready after
5523 * several ticks, if write_pending is set.
5524 *
5525 * It may be deleted, but with this feature tcpdumps
5526 * look so _wonderfully_ clever, that I was not able
5527 * to stand against the temptation 8) --ANK
5528 */
5529 inet_csk_schedule_ack(sk);
5530 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5531 tcp_enter_quickack_mode(sk);
5532 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5533 TCP_DELACK_MAX, TCP_RTO_MAX);
5534
5535discard:
5536 __kfree_skb(skb);
5537 return 0;
5538 } else {
5539 tcp_send_ack(sk);
5540 }
5541 return -1;
5542 }
5543
5544 /* No ACK in the segment */
5545
5546 if (th->rst) {
5547 /* rfc793:
5548 * "If the RST bit is set
5549 *
5550 * Otherwise (no ACK) drop the segment and return."
5551 */
5552
5553 goto discard_and_undo;
5554 }
5555
5556 /* PAWS check. */
5557 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5558 tcp_paws_reject(&tp->rx_opt, 0))
5559 goto discard_and_undo;
5560
5561 if (th->syn) {
5562 /* We see SYN without ACK. It is attempt of
5563 * simultaneous connect with crossed SYNs.
5564 * Particularly, it can be connect to self.
5565 */
5566 tcp_set_state(sk, TCP_SYN_RECV);
5567
5568 if (tp->rx_opt.saw_tstamp) {
5569 tp->rx_opt.tstamp_ok = 1;
5570 tcp_store_ts_recent(tp);
5571 tp->tcp_header_len =
5572 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5573 } else {
5574 tp->tcp_header_len = sizeof(struct tcphdr);
5575 }
5576
5577 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5578 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5579
5580 /* RFC1323: The window in SYN & SYN/ACK segments is
5581 * never scaled.
5582 */
5583 tp->snd_wnd = ntohs(th->window);
5584 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5585 tp->max_window = tp->snd_wnd;
5586
5587 TCP_ECN_rcv_syn(tp, th);
5588
5589 tcp_mtup_init(sk);
5590 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5591 tcp_initialize_rcv_mss(sk);
5592
5593 tcp_send_synack(sk);
5594#if 0
5595 /* Note, we could accept data and URG from this segment.
5596 * There are no obstacles to make this (except that we must
5597 * either change tcp_recvmsg() to prevent it from returning data
5598 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5599 *
5600 * However, if we ignore data in ACKless segments sometimes,
5601 * we have no reasons to accept it sometimes.
5602 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5603 * is not flawless. So, discard packet for sanity.
5604 * Uncomment this return to process the data.
5605 */
5606 return -1;
5607#else
5608 goto discard;
5609#endif
5610 }
5611 /* "fifth, if neither of the SYN or RST bits is set then
5612 * drop the segment and return."
5613 */
5614
5615discard_and_undo:
5616 tcp_clear_options(&tp->rx_opt);
5617 tp->rx_opt.mss_clamp = saved_clamp;
5618 goto discard;
5619
5620reset_and_undo:
5621 tcp_clear_options(&tp->rx_opt);
5622 tp->rx_opt.mss_clamp = saved_clamp;
5623 return 1;
5624}
5625
5626/*
5627 * This function implements the receiving procedure of RFC 793 for
5628 * all states except ESTABLISHED and TIME_WAIT.
5629 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5630 * address independent.
5631 */
5632
5633int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5634 const struct tcphdr *th, unsigned int len)
5635{
5636 struct tcp_sock *tp = tcp_sk(sk);
5637 struct inet_connection_sock *icsk = inet_csk(sk);
5638 struct request_sock *req;
5639 int queued = 0;
5640 bool acceptable;
5641 u32 synack_stamp;
5642
5643 tp->rx_opt.saw_tstamp = 0;
5644
5645 switch (sk->sk_state) {
5646 case TCP_CLOSE:
5647 goto discard;
5648
5649 case TCP_LISTEN:
5650 if (th->ack)
5651 return 1;
5652
5653 if (th->rst)
5654 goto discard;
5655
5656 if (th->syn) {
5657 if (th->fin)
5658 goto discard;
5659 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5660 return 1;
5661
5662 /* Now we have several options: In theory there is
5663 * nothing else in the frame. KA9Q has an option to
5664 * send data with the syn, BSD accepts data with the
5665 * syn up to the [to be] advertised window and
5666 * Solaris 2.1 gives you a protocol error. For now
5667 * we just ignore it, that fits the spec precisely
5668 * and avoids incompatibilities. It would be nice in
5669 * future to drop through and process the data.
5670 *
5671 * Now that TTCP is starting to be used we ought to
5672 * queue this data.
5673 * But, this leaves one open to an easy denial of
5674 * service attack, and SYN cookies can't defend
5675 * against this problem. So, we drop the data
5676 * in the interest of security over speed unless
5677 * it's still in use.
5678 */
5679 kfree_skb(skb);
5680 return 0;
5681 }
5682 goto discard;
5683
5684 case TCP_SYN_SENT:
5685 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5686 if (queued >= 0)
5687 return queued;
5688
5689 /* Do step6 onward by hand. */
5690 tcp_urg(sk, skb, th);
5691 __kfree_skb(skb);
5692 tcp_data_snd_check(sk);
5693 return 0;
5694 }
5695
5696 req = tp->fastopen_rsk;
5697 if (req != NULL) {
5698 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5699 sk->sk_state != TCP_FIN_WAIT1);
5700
5701 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5702 goto discard;
5703 }
5704
5705 if (!th->ack && !th->rst)
5706 goto discard;
5707
5708 if (!tcp_validate_incoming(sk, skb, th, 0))
5709 return 0;
5710
5711 /* step 5: check the ACK field */
5712 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5713 FLAG_UPDATE_TS_RECENT) > 0;
5714
5715 switch (sk->sk_state) {
5716 case TCP_SYN_RECV:
5717 if (!acceptable)
5718 return 1;
5719
5720 /* Once we leave TCP_SYN_RECV, we no longer need req
5721 * so release it.
5722 */
5723 if (req) {
5724 synack_stamp = tcp_rsk(req)->snt_synack;
5725 tp->total_retrans = req->num_retrans;
5726 reqsk_fastopen_remove(sk, req, false);
5727 } else {
5728 synack_stamp = tp->lsndtime;
5729 /* Make sure socket is routed, for correct metrics. */
5730 icsk->icsk_af_ops->rebuild_header(sk);
5731 tcp_init_congestion_control(sk);
5732
5733 tcp_mtup_init(sk);
5734 tp->copied_seq = tp->rcv_nxt;
5735 tcp_init_buffer_space(sk);
5736 }
5737 smp_mb();
5738 tcp_set_state(sk, TCP_ESTABLISHED);
5739 sk->sk_state_change(sk);
5740
5741 /* Note, that this wakeup is only for marginal crossed SYN case.
5742 * Passively open sockets are not waked up, because
5743 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5744 */
5745 if (sk->sk_socket)
5746 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5747
5748 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5749 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5750 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5751 tcp_synack_rtt_meas(sk, synack_stamp);
5752
5753 if (tp->rx_opt.tstamp_ok)
5754 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5755
5756 if (req) {
5757 /* Re-arm the timer because data may have been sent out.
5758 * This is similar to the regular data transmission case
5759 * when new data has just been ack'ed.
5760 *
5761 * (TFO) - we could try to be more aggressive and
5762 * retransmitting any data sooner based on when they
5763 * are sent out.
5764 */
5765 tcp_rearm_rto(sk);
5766 } else
5767 tcp_init_metrics(sk);
5768
5769 tcp_update_pacing_rate(sk);
5770
5771 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5772 tp->lsndtime = tcp_time_stamp;
5773
5774 tcp_initialize_rcv_mss(sk);
5775 tcp_fast_path_on(tp);
5776 break;
5777
5778 case TCP_FIN_WAIT1: {
5779 struct dst_entry *dst;
5780 int tmo;
5781
5782 /* If we enter the TCP_FIN_WAIT1 state and we are a
5783 * Fast Open socket and this is the first acceptable
5784 * ACK we have received, this would have acknowledged
5785 * our SYNACK so stop the SYNACK timer.
5786 */
5787 if (req != NULL) {
5788 /* Return RST if ack_seq is invalid.
5789 * Note that RFC793 only says to generate a
5790 * DUPACK for it but for TCP Fast Open it seems
5791 * better to treat this case like TCP_SYN_RECV
5792 * above.
5793 */
5794 if (!acceptable)
5795 return 1;
5796 /* We no longer need the request sock. */
5797 reqsk_fastopen_remove(sk, req, false);
5798 tcp_rearm_rto(sk);
5799 }
5800 if (tp->snd_una != tp->write_seq)
5801 break;
5802
5803 tcp_set_state(sk, TCP_FIN_WAIT2);
5804 sk->sk_shutdown |= SEND_SHUTDOWN;
5805
5806 dst = __sk_dst_get(sk);
5807 if (dst)
5808 dst_confirm(dst);
5809
5810 if (!sock_flag(sk, SOCK_DEAD)) {
5811 /* Wake up lingering close() */
5812 sk->sk_state_change(sk);
5813 break;
5814 }
5815
5816 if (tp->linger2 < 0 ||
5817 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5818 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5819 tcp_done(sk);
5820 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5821 return 1;
5822 }
5823
5824 tmo = tcp_fin_time(sk);
5825 if (tmo > TCP_TIMEWAIT_LEN) {
5826 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5827 } else if (th->fin || sock_owned_by_user(sk)) {
5828 /* Bad case. We could lose such FIN otherwise.
5829 * It is not a big problem, but it looks confusing
5830 * and not so rare event. We still can lose it now,
5831 * if it spins in bh_lock_sock(), but it is really
5832 * marginal case.
5833 */
5834 inet_csk_reset_keepalive_timer(sk, tmo);
5835 } else {
5836 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5837 goto discard;
5838 }
5839 break;
5840 }
5841
5842 case TCP_CLOSING:
5843 if (tp->snd_una == tp->write_seq) {
5844 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5845 goto discard;
5846 }
5847 break;
5848
5849 case TCP_LAST_ACK:
5850 if (tp->snd_una == tp->write_seq) {
5851 tcp_update_metrics(sk);
5852 tcp_done(sk);
5853 goto discard;
5854 }
5855 break;
5856 }
5857
5858 /* step 6: check the URG bit */
5859 tcp_urg(sk, skb, th);
5860
5861 /* step 7: process the segment text */
5862 switch (sk->sk_state) {
5863 case TCP_CLOSE_WAIT:
5864 case TCP_CLOSING:
5865 case TCP_LAST_ACK:
5866 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5867 break;
5868 case TCP_FIN_WAIT1:
5869 case TCP_FIN_WAIT2:
5870 /* RFC 793 says to queue data in these states,
5871 * RFC 1122 says we MUST send a reset.
5872 * BSD 4.4 also does reset.
5873 */
5874 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5875 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5876 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5877 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5878 tcp_reset(sk);
5879 return 1;
5880 }
5881 }
5882 /* Fall through */
5883 case TCP_ESTABLISHED:
5884 tcp_data_queue(sk, skb);
5885 queued = 1;
5886 break;
5887 }
5888
5889 /* tcp_data could move socket to TIME-WAIT */
5890 if (sk->sk_state != TCP_CLOSE) {
5891 tcp_data_snd_check(sk);
5892 tcp_ack_snd_check(sk);
5893 }
5894
5895 if (!queued) {
5896discard:
5897 __kfree_skb(skb);
5898 }
5899 return 0;
5900}
5901EXPORT_SYMBOL(tcp_rcv_state_process);
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83EXPORT_SYMBOL(sysctl_tcp_reordering);
84int sysctl_tcp_ecn __read_mostly = 2;
85EXPORT_SYMBOL(sysctl_tcp_ecn);
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
88int sysctl_tcp_adv_win_scale __read_mostly = 1;
89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91int sysctl_tcp_stdurg __read_mostly;
92int sysctl_tcp_rfc1337 __read_mostly;
93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94int sysctl_tcp_frto __read_mostly = 2;
95int sysctl_tcp_frto_response __read_mostly;
96int sysctl_tcp_nometrics_save __read_mostly;
97
98int sysctl_tcp_thin_dupack __read_mostly;
99
100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101int sysctl_tcp_abc __read_mostly;
102int sysctl_tcp_early_retrans __read_mostly = 2;
103
104#define FLAG_DATA 0x01 /* Incoming frame contained data. */
105#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109#define FLAG_DATA_SACKED 0x20 /* New SACK. */
110#define FLAG_ECE 0x40 /* ECE in this ACK */
111#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
112#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
113#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
115#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
116#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117
118#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123
124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127/* Adapt the MSS value used to make delayed ack decision to the
128 * real world.
129 */
130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131{
132 struct inet_connection_sock *icsk = inet_csk(sk);
133 const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 unsigned int len;
135
136 icsk->icsk_ack.last_seg_size = 0;
137
138 /* skb->len may jitter because of SACKs, even if peer
139 * sends good full-sized frames.
140 */
141 len = skb_shinfo(skb)->gso_size ? : skb->len;
142 if (len >= icsk->icsk_ack.rcv_mss) {
143 icsk->icsk_ack.rcv_mss = len;
144 } else {
145 /* Otherwise, we make more careful check taking into account,
146 * that SACKs block is variable.
147 *
148 * "len" is invariant segment length, including TCP header.
149 */
150 len += skb->data - skb_transport_header(skb);
151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 /* If PSH is not set, packet should be
153 * full sized, provided peer TCP is not badly broken.
154 * This observation (if it is correct 8)) allows
155 * to handle super-low mtu links fairly.
156 */
157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 /* Subtract also invariant (if peer is RFC compliant),
160 * tcp header plus fixed timestamp option length.
161 * Resulting "len" is MSS free of SACK jitter.
162 */
163 len -= tcp_sk(sk)->tcp_header_len;
164 icsk->icsk_ack.last_seg_size = len;
165 if (len == lss) {
166 icsk->icsk_ack.rcv_mss = len;
167 return;
168 }
169 }
170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 }
174}
175
176static void tcp_incr_quickack(struct sock *sk)
177{
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180
181 if (quickacks == 0)
182 quickacks = 2;
183 if (quickacks > icsk->icsk_ack.quick)
184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185}
186
187static void tcp_enter_quickack_mode(struct sock *sk)
188{
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 tcp_incr_quickack(sk);
191 icsk->icsk_ack.pingpong = 0;
192 icsk->icsk_ack.ato = TCP_ATO_MIN;
193}
194
195/* Send ACKs quickly, if "quick" count is not exhausted
196 * and the session is not interactive.
197 */
198
199static inline bool tcp_in_quickack_mode(const struct sock *sk)
200{
201 const struct inet_connection_sock *icsk = inet_csk(sk);
202
203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204}
205
206static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207{
208 if (tp->ecn_flags & TCP_ECN_OK)
209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210}
211
212static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213{
214 if (tcp_hdr(skb)->cwr)
215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216}
217
218static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219{
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221}
222
223static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224{
225 if (!(tp->ecn_flags & TCP_ECN_OK))
226 return;
227
228 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
229 case INET_ECN_NOT_ECT:
230 /* Funny extension: if ECT is not set on a segment,
231 * and we already seen ECT on a previous segment,
232 * it is probably a retransmit.
233 */
234 if (tp->ecn_flags & TCP_ECN_SEEN)
235 tcp_enter_quickack_mode((struct sock *)tp);
236 break;
237 case INET_ECN_CE:
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 /* fallinto */
240 default:
241 tp->ecn_flags |= TCP_ECN_SEEN;
242 }
243}
244
245static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
246{
247 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
248 tp->ecn_flags &= ~TCP_ECN_OK;
249}
250
251static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
252{
253 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
254 tp->ecn_flags &= ~TCP_ECN_OK;
255}
256
257static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
258{
259 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
260 return true;
261 return false;
262}
263
264/* Buffer size and advertised window tuning.
265 *
266 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
267 */
268
269static void tcp_fixup_sndbuf(struct sock *sk)
270{
271 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
272
273 sndmem *= TCP_INIT_CWND;
274 if (sk->sk_sndbuf < sndmem)
275 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
276}
277
278/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
279 *
280 * All tcp_full_space() is split to two parts: "network" buffer, allocated
281 * forward and advertised in receiver window (tp->rcv_wnd) and
282 * "application buffer", required to isolate scheduling/application
283 * latencies from network.
284 * window_clamp is maximal advertised window. It can be less than
285 * tcp_full_space(), in this case tcp_full_space() - window_clamp
286 * is reserved for "application" buffer. The less window_clamp is
287 * the smoother our behaviour from viewpoint of network, but the lower
288 * throughput and the higher sensitivity of the connection to losses. 8)
289 *
290 * rcv_ssthresh is more strict window_clamp used at "slow start"
291 * phase to predict further behaviour of this connection.
292 * It is used for two goals:
293 * - to enforce header prediction at sender, even when application
294 * requires some significant "application buffer". It is check #1.
295 * - to prevent pruning of receive queue because of misprediction
296 * of receiver window. Check #2.
297 *
298 * The scheme does not work when sender sends good segments opening
299 * window and then starts to feed us spaghetti. But it should work
300 * in common situations. Otherwise, we have to rely on queue collapsing.
301 */
302
303/* Slow part of check#2. */
304static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
305{
306 struct tcp_sock *tp = tcp_sk(sk);
307 /* Optimize this! */
308 int truesize = tcp_win_from_space(skb->truesize) >> 1;
309 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
310
311 while (tp->rcv_ssthresh <= window) {
312 if (truesize <= skb->len)
313 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
314
315 truesize >>= 1;
316 window >>= 1;
317 }
318 return 0;
319}
320
321static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
322{
323 struct tcp_sock *tp = tcp_sk(sk);
324
325 /* Check #1 */
326 if (tp->rcv_ssthresh < tp->window_clamp &&
327 (int)tp->rcv_ssthresh < tcp_space(sk) &&
328 !sk_under_memory_pressure(sk)) {
329 int incr;
330
331 /* Check #2. Increase window, if skb with such overhead
332 * will fit to rcvbuf in future.
333 */
334 if (tcp_win_from_space(skb->truesize) <= skb->len)
335 incr = 2 * tp->advmss;
336 else
337 incr = __tcp_grow_window(sk, skb);
338
339 if (incr) {
340 incr = max_t(int, incr, 2 * skb->len);
341 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
342 tp->window_clamp);
343 inet_csk(sk)->icsk_ack.quick |= 1;
344 }
345 }
346}
347
348/* 3. Tuning rcvbuf, when connection enters established state. */
349
350static void tcp_fixup_rcvbuf(struct sock *sk)
351{
352 u32 mss = tcp_sk(sk)->advmss;
353 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
354 int rcvmem;
355
356 /* Limit to 10 segments if mss <= 1460,
357 * or 14600/mss segments, with a minimum of two segments.
358 */
359 if (mss > 1460)
360 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
361
362 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
363 while (tcp_win_from_space(rcvmem) < mss)
364 rcvmem += 128;
365
366 rcvmem *= icwnd;
367
368 if (sk->sk_rcvbuf < rcvmem)
369 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
370}
371
372/* 4. Try to fixup all. It is made immediately after connection enters
373 * established state.
374 */
375static void tcp_init_buffer_space(struct sock *sk)
376{
377 struct tcp_sock *tp = tcp_sk(sk);
378 int maxwin;
379
380 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
381 tcp_fixup_rcvbuf(sk);
382 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
383 tcp_fixup_sndbuf(sk);
384
385 tp->rcvq_space.space = tp->rcv_wnd;
386
387 maxwin = tcp_full_space(sk);
388
389 if (tp->window_clamp >= maxwin) {
390 tp->window_clamp = maxwin;
391
392 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
393 tp->window_clamp = max(maxwin -
394 (maxwin >> sysctl_tcp_app_win),
395 4 * tp->advmss);
396 }
397
398 /* Force reservation of one segment. */
399 if (sysctl_tcp_app_win &&
400 tp->window_clamp > 2 * tp->advmss &&
401 tp->window_clamp + tp->advmss > maxwin)
402 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
403
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
405 tp->snd_cwnd_stamp = tcp_time_stamp;
406}
407
408/* 5. Recalculate window clamp after socket hit its memory bounds. */
409static void tcp_clamp_window(struct sock *sk)
410{
411 struct tcp_sock *tp = tcp_sk(sk);
412 struct inet_connection_sock *icsk = inet_csk(sk);
413
414 icsk->icsk_ack.quick = 0;
415
416 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
417 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
418 !sk_under_memory_pressure(sk) &&
419 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
420 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
421 sysctl_tcp_rmem[2]);
422 }
423 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
424 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
425}
426
427/* Initialize RCV_MSS value.
428 * RCV_MSS is an our guess about MSS used by the peer.
429 * We haven't any direct information about the MSS.
430 * It's better to underestimate the RCV_MSS rather than overestimate.
431 * Overestimations make us ACKing less frequently than needed.
432 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
433 */
434void tcp_initialize_rcv_mss(struct sock *sk)
435{
436 const struct tcp_sock *tp = tcp_sk(sk);
437 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
438
439 hint = min(hint, tp->rcv_wnd / 2);
440 hint = min(hint, TCP_MSS_DEFAULT);
441 hint = max(hint, TCP_MIN_MSS);
442
443 inet_csk(sk)->icsk_ack.rcv_mss = hint;
444}
445EXPORT_SYMBOL(tcp_initialize_rcv_mss);
446
447/* Receiver "autotuning" code.
448 *
449 * The algorithm for RTT estimation w/o timestamps is based on
450 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
451 * <http://public.lanl.gov/radiant/pubs.html#DRS>
452 *
453 * More detail on this code can be found at
454 * <http://staff.psc.edu/jheffner/>,
455 * though this reference is out of date. A new paper
456 * is pending.
457 */
458static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
459{
460 u32 new_sample = tp->rcv_rtt_est.rtt;
461 long m = sample;
462
463 if (m == 0)
464 m = 1;
465
466 if (new_sample != 0) {
467 /* If we sample in larger samples in the non-timestamp
468 * case, we could grossly overestimate the RTT especially
469 * with chatty applications or bulk transfer apps which
470 * are stalled on filesystem I/O.
471 *
472 * Also, since we are only going for a minimum in the
473 * non-timestamp case, we do not smooth things out
474 * else with timestamps disabled convergence takes too
475 * long.
476 */
477 if (!win_dep) {
478 m -= (new_sample >> 3);
479 new_sample += m;
480 } else {
481 m <<= 3;
482 if (m < new_sample)
483 new_sample = m;
484 }
485 } else {
486 /* No previous measure. */
487 new_sample = m << 3;
488 }
489
490 if (tp->rcv_rtt_est.rtt != new_sample)
491 tp->rcv_rtt_est.rtt = new_sample;
492}
493
494static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
495{
496 if (tp->rcv_rtt_est.time == 0)
497 goto new_measure;
498 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
499 return;
500 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
501
502new_measure:
503 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
504 tp->rcv_rtt_est.time = tcp_time_stamp;
505}
506
507static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
508 const struct sk_buff *skb)
509{
510 struct tcp_sock *tp = tcp_sk(sk);
511 if (tp->rx_opt.rcv_tsecr &&
512 (TCP_SKB_CB(skb)->end_seq -
513 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
514 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
515}
516
517/*
518 * This function should be called every time data is copied to user space.
519 * It calculates the appropriate TCP receive buffer space.
520 */
521void tcp_rcv_space_adjust(struct sock *sk)
522{
523 struct tcp_sock *tp = tcp_sk(sk);
524 int time;
525 int space;
526
527 if (tp->rcvq_space.time == 0)
528 goto new_measure;
529
530 time = tcp_time_stamp - tp->rcvq_space.time;
531 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
532 return;
533
534 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
535
536 space = max(tp->rcvq_space.space, space);
537
538 if (tp->rcvq_space.space != space) {
539 int rcvmem;
540
541 tp->rcvq_space.space = space;
542
543 if (sysctl_tcp_moderate_rcvbuf &&
544 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
545 int new_clamp = space;
546
547 /* Receive space grows, normalize in order to
548 * take into account packet headers and sk_buff
549 * structure overhead.
550 */
551 space /= tp->advmss;
552 if (!space)
553 space = 1;
554 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
555 while (tcp_win_from_space(rcvmem) < tp->advmss)
556 rcvmem += 128;
557 space *= rcvmem;
558 space = min(space, sysctl_tcp_rmem[2]);
559 if (space > sk->sk_rcvbuf) {
560 sk->sk_rcvbuf = space;
561
562 /* Make the window clamp follow along. */
563 tp->window_clamp = new_clamp;
564 }
565 }
566 }
567
568new_measure:
569 tp->rcvq_space.seq = tp->copied_seq;
570 tp->rcvq_space.time = tcp_time_stamp;
571}
572
573/* There is something which you must keep in mind when you analyze the
574 * behavior of the tp->ato delayed ack timeout interval. When a
575 * connection starts up, we want to ack as quickly as possible. The
576 * problem is that "good" TCP's do slow start at the beginning of data
577 * transmission. The means that until we send the first few ACK's the
578 * sender will sit on his end and only queue most of his data, because
579 * he can only send snd_cwnd unacked packets at any given time. For
580 * each ACK we send, he increments snd_cwnd and transmits more of his
581 * queue. -DaveM
582 */
583static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
584{
585 struct tcp_sock *tp = tcp_sk(sk);
586 struct inet_connection_sock *icsk = inet_csk(sk);
587 u32 now;
588
589 inet_csk_schedule_ack(sk);
590
591 tcp_measure_rcv_mss(sk, skb);
592
593 tcp_rcv_rtt_measure(tp);
594
595 now = tcp_time_stamp;
596
597 if (!icsk->icsk_ack.ato) {
598 /* The _first_ data packet received, initialize
599 * delayed ACK engine.
600 */
601 tcp_incr_quickack(sk);
602 icsk->icsk_ack.ato = TCP_ATO_MIN;
603 } else {
604 int m = now - icsk->icsk_ack.lrcvtime;
605
606 if (m <= TCP_ATO_MIN / 2) {
607 /* The fastest case is the first. */
608 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
609 } else if (m < icsk->icsk_ack.ato) {
610 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
611 if (icsk->icsk_ack.ato > icsk->icsk_rto)
612 icsk->icsk_ack.ato = icsk->icsk_rto;
613 } else if (m > icsk->icsk_rto) {
614 /* Too long gap. Apparently sender failed to
615 * restart window, so that we send ACKs quickly.
616 */
617 tcp_incr_quickack(sk);
618 sk_mem_reclaim(sk);
619 }
620 }
621 icsk->icsk_ack.lrcvtime = now;
622
623 TCP_ECN_check_ce(tp, skb);
624
625 if (skb->len >= 128)
626 tcp_grow_window(sk, skb);
627}
628
629/* Called to compute a smoothed rtt estimate. The data fed to this
630 * routine either comes from timestamps, or from segments that were
631 * known _not_ to have been retransmitted [see Karn/Partridge
632 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
633 * piece by Van Jacobson.
634 * NOTE: the next three routines used to be one big routine.
635 * To save cycles in the RFC 1323 implementation it was better to break
636 * it up into three procedures. -- erics
637 */
638static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
639{
640 struct tcp_sock *tp = tcp_sk(sk);
641 long m = mrtt; /* RTT */
642
643 /* The following amusing code comes from Jacobson's
644 * article in SIGCOMM '88. Note that rtt and mdev
645 * are scaled versions of rtt and mean deviation.
646 * This is designed to be as fast as possible
647 * m stands for "measurement".
648 *
649 * On a 1990 paper the rto value is changed to:
650 * RTO = rtt + 4 * mdev
651 *
652 * Funny. This algorithm seems to be very broken.
653 * These formulae increase RTO, when it should be decreased, increase
654 * too slowly, when it should be increased quickly, decrease too quickly
655 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
656 * does not matter how to _calculate_ it. Seems, it was trap
657 * that VJ failed to avoid. 8)
658 */
659 if (m == 0)
660 m = 1;
661 if (tp->srtt != 0) {
662 m -= (tp->srtt >> 3); /* m is now error in rtt est */
663 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
664 if (m < 0) {
665 m = -m; /* m is now abs(error) */
666 m -= (tp->mdev >> 2); /* similar update on mdev */
667 /* This is similar to one of Eifel findings.
668 * Eifel blocks mdev updates when rtt decreases.
669 * This solution is a bit different: we use finer gain
670 * for mdev in this case (alpha*beta).
671 * Like Eifel it also prevents growth of rto,
672 * but also it limits too fast rto decreases,
673 * happening in pure Eifel.
674 */
675 if (m > 0)
676 m >>= 3;
677 } else {
678 m -= (tp->mdev >> 2); /* similar update on mdev */
679 }
680 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
681 if (tp->mdev > tp->mdev_max) {
682 tp->mdev_max = tp->mdev;
683 if (tp->mdev_max > tp->rttvar)
684 tp->rttvar = tp->mdev_max;
685 }
686 if (after(tp->snd_una, tp->rtt_seq)) {
687 if (tp->mdev_max < tp->rttvar)
688 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
689 tp->rtt_seq = tp->snd_nxt;
690 tp->mdev_max = tcp_rto_min(sk);
691 }
692 } else {
693 /* no previous measure. */
694 tp->srtt = m << 3; /* take the measured time to be rtt */
695 tp->mdev = m << 1; /* make sure rto = 3*rtt */
696 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
697 tp->rtt_seq = tp->snd_nxt;
698 }
699}
700
701/* Calculate rto without backoff. This is the second half of Van Jacobson's
702 * routine referred to above.
703 */
704static inline void tcp_set_rto(struct sock *sk)
705{
706 const struct tcp_sock *tp = tcp_sk(sk);
707 /* Old crap is replaced with new one. 8)
708 *
709 * More seriously:
710 * 1. If rtt variance happened to be less 50msec, it is hallucination.
711 * It cannot be less due to utterly erratic ACK generation made
712 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
713 * to do with delayed acks, because at cwnd>2 true delack timeout
714 * is invisible. Actually, Linux-2.4 also generates erratic
715 * ACKs in some circumstances.
716 */
717 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
718
719 /* 2. Fixups made earlier cannot be right.
720 * If we do not estimate RTO correctly without them,
721 * all the algo is pure shit and should be replaced
722 * with correct one. It is exactly, which we pretend to do.
723 */
724
725 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
726 * guarantees that rto is higher.
727 */
728 tcp_bound_rto(sk);
729}
730
731/* Save metrics learned by this TCP session.
732 This function is called only, when TCP finishes successfully
733 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
734 */
735void tcp_update_metrics(struct sock *sk)
736{
737 struct tcp_sock *tp = tcp_sk(sk);
738 struct dst_entry *dst = __sk_dst_get(sk);
739
740 if (sysctl_tcp_nometrics_save)
741 return;
742
743 dst_confirm(dst);
744
745 if (dst && (dst->flags & DST_HOST)) {
746 const struct inet_connection_sock *icsk = inet_csk(sk);
747 int m;
748 unsigned long rtt;
749
750 if (icsk->icsk_backoff || !tp->srtt) {
751 /* This session failed to estimate rtt. Why?
752 * Probably, no packets returned in time.
753 * Reset our results.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT)))
756 dst_metric_set(dst, RTAX_RTT, 0);
757 return;
758 }
759
760 rtt = dst_metric_rtt(dst, RTAX_RTT);
761 m = rtt - tp->srtt;
762
763 /* If newly calculated rtt larger than stored one,
764 * store new one. Otherwise, use EWMA. Remember,
765 * rtt overestimation is always better than underestimation.
766 */
767 if (!(dst_metric_locked(dst, RTAX_RTT))) {
768 if (m <= 0)
769 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
770 else
771 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
772 }
773
774 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
775 unsigned long var;
776 if (m < 0)
777 m = -m;
778
779 /* Scale deviation to rttvar fixed point */
780 m >>= 1;
781 if (m < tp->mdev)
782 m = tp->mdev;
783
784 var = dst_metric_rtt(dst, RTAX_RTTVAR);
785 if (m >= var)
786 var = m;
787 else
788 var -= (var - m) >> 2;
789
790 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
791 }
792
793 if (tcp_in_initial_slowstart(tp)) {
794 /* Slow start still did not finish. */
795 if (dst_metric(dst, RTAX_SSTHRESH) &&
796 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
797 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
798 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
799 if (!dst_metric_locked(dst, RTAX_CWND) &&
800 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
801 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
802 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
803 icsk->icsk_ca_state == TCP_CA_Open) {
804 /* Cong. avoidance phase, cwnd is reliable. */
805 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
806 dst_metric_set(dst, RTAX_SSTHRESH,
807 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
808 if (!dst_metric_locked(dst, RTAX_CWND))
809 dst_metric_set(dst, RTAX_CWND,
810 (dst_metric(dst, RTAX_CWND) +
811 tp->snd_cwnd) >> 1);
812 } else {
813 /* Else slow start did not finish, cwnd is non-sense,
814 ssthresh may be also invalid.
815 */
816 if (!dst_metric_locked(dst, RTAX_CWND))
817 dst_metric_set(dst, RTAX_CWND,
818 (dst_metric(dst, RTAX_CWND) +
819 tp->snd_ssthresh) >> 1);
820 if (dst_metric(dst, RTAX_SSTHRESH) &&
821 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
822 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
823 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
824 }
825
826 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
827 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
828 tp->reordering != sysctl_tcp_reordering)
829 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
830 }
831 }
832}
833
834__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
835{
836 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
837
838 if (!cwnd)
839 cwnd = TCP_INIT_CWND;
840 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
841}
842
843/* Set slow start threshold and cwnd not falling to slow start */
844void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
845{
846 struct tcp_sock *tp = tcp_sk(sk);
847 const struct inet_connection_sock *icsk = inet_csk(sk);
848
849 tp->prior_ssthresh = 0;
850 tp->bytes_acked = 0;
851 if (icsk->icsk_ca_state < TCP_CA_CWR) {
852 tp->undo_marker = 0;
853 if (set_ssthresh)
854 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
855 tp->snd_cwnd = min(tp->snd_cwnd,
856 tcp_packets_in_flight(tp) + 1U);
857 tp->snd_cwnd_cnt = 0;
858 tp->high_seq = tp->snd_nxt;
859 tp->snd_cwnd_stamp = tcp_time_stamp;
860 TCP_ECN_queue_cwr(tp);
861
862 tcp_set_ca_state(sk, TCP_CA_CWR);
863 }
864}
865
866/*
867 * Packet counting of FACK is based on in-order assumptions, therefore TCP
868 * disables it when reordering is detected
869 */
870static void tcp_disable_fack(struct tcp_sock *tp)
871{
872 /* RFC3517 uses different metric in lost marker => reset on change */
873 if (tcp_is_fack(tp))
874 tp->lost_skb_hint = NULL;
875 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
876}
877
878/* Take a notice that peer is sending D-SACKs */
879static void tcp_dsack_seen(struct tcp_sock *tp)
880{
881 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
882}
883
884/* Initialize metrics on socket. */
885
886static void tcp_init_metrics(struct sock *sk)
887{
888 struct tcp_sock *tp = tcp_sk(sk);
889 struct dst_entry *dst = __sk_dst_get(sk);
890
891 if (dst == NULL)
892 goto reset;
893
894 dst_confirm(dst);
895
896 if (dst_metric_locked(dst, RTAX_CWND))
897 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
898 if (dst_metric(dst, RTAX_SSTHRESH)) {
899 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
900 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
901 tp->snd_ssthresh = tp->snd_cwnd_clamp;
902 } else {
903 /* ssthresh may have been reduced unnecessarily during.
904 * 3WHS. Restore it back to its initial default.
905 */
906 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
907 }
908 if (dst_metric(dst, RTAX_REORDERING) &&
909 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
910 tcp_disable_fack(tp);
911 tcp_disable_early_retrans(tp);
912 tp->reordering = dst_metric(dst, RTAX_REORDERING);
913 }
914
915 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
916 goto reset;
917
918 /* Initial rtt is determined from SYN,SYN-ACK.
919 * The segment is small and rtt may appear much
920 * less than real one. Use per-dst memory
921 * to make it more realistic.
922 *
923 * A bit of theory. RTT is time passed after "normal" sized packet
924 * is sent until it is ACKed. In normal circumstances sending small
925 * packets force peer to delay ACKs and calculation is correct too.
926 * The algorithm is adaptive and, provided we follow specs, it
927 * NEVER underestimate RTT. BUT! If peer tries to make some clever
928 * tricks sort of "quick acks" for time long enough to decrease RTT
929 * to low value, and then abruptly stops to do it and starts to delay
930 * ACKs, wait for troubles.
931 */
932 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
933 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
934 tp->rtt_seq = tp->snd_nxt;
935 }
936 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
937 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
938 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
939 }
940 tcp_set_rto(sk);
941reset:
942 if (tp->srtt == 0) {
943 /* RFC6298: 5.7 We've failed to get a valid RTT sample from
944 * 3WHS. This is most likely due to retransmission,
945 * including spurious one. Reset the RTO back to 3secs
946 * from the more aggressive 1sec to avoid more spurious
947 * retransmission.
948 */
949 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
950 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
951 }
952 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
953 * retransmitted. In light of RFC6298 more aggressive 1sec
954 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
955 * retransmission has occurred.
956 */
957 if (tp->total_retrans > 1)
958 tp->snd_cwnd = 1;
959 else
960 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
961 tp->snd_cwnd_stamp = tcp_time_stamp;
962}
963
964static void tcp_update_reordering(struct sock *sk, const int metric,
965 const int ts)
966{
967 struct tcp_sock *tp = tcp_sk(sk);
968 if (metric > tp->reordering) {
969 int mib_idx;
970
971 tp->reordering = min(TCP_MAX_REORDERING, metric);
972
973 /* This exciting event is worth to be remembered. 8) */
974 if (ts)
975 mib_idx = LINUX_MIB_TCPTSREORDER;
976 else if (tcp_is_reno(tp))
977 mib_idx = LINUX_MIB_TCPRENOREORDER;
978 else if (tcp_is_fack(tp))
979 mib_idx = LINUX_MIB_TCPFACKREORDER;
980 else
981 mib_idx = LINUX_MIB_TCPSACKREORDER;
982
983 NET_INC_STATS_BH(sock_net(sk), mib_idx);
984#if FASTRETRANS_DEBUG > 1
985 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
986 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
987 tp->reordering,
988 tp->fackets_out,
989 tp->sacked_out,
990 tp->undo_marker ? tp->undo_retrans : 0);
991#endif
992 tcp_disable_fack(tp);
993 }
994
995 if (metric > 0)
996 tcp_disable_early_retrans(tp);
997}
998
999/* This must be called before lost_out is incremented */
1000static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1001{
1002 if ((tp->retransmit_skb_hint == NULL) ||
1003 before(TCP_SKB_CB(skb)->seq,
1004 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1005 tp->retransmit_skb_hint = skb;
1006
1007 if (!tp->lost_out ||
1008 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1009 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1010}
1011
1012static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1013{
1014 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1015 tcp_verify_retransmit_hint(tp, skb);
1016
1017 tp->lost_out += tcp_skb_pcount(skb);
1018 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019 }
1020}
1021
1022static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1023 struct sk_buff *skb)
1024{
1025 tcp_verify_retransmit_hint(tp, skb);
1026
1027 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1028 tp->lost_out += tcp_skb_pcount(skb);
1029 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1030 }
1031}
1032
1033/* This procedure tags the retransmission queue when SACKs arrive.
1034 *
1035 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1036 * Packets in queue with these bits set are counted in variables
1037 * sacked_out, retrans_out and lost_out, correspondingly.
1038 *
1039 * Valid combinations are:
1040 * Tag InFlight Description
1041 * 0 1 - orig segment is in flight.
1042 * S 0 - nothing flies, orig reached receiver.
1043 * L 0 - nothing flies, orig lost by net.
1044 * R 2 - both orig and retransmit are in flight.
1045 * L|R 1 - orig is lost, retransmit is in flight.
1046 * S|R 1 - orig reached receiver, retrans is still in flight.
1047 * (L|S|R is logically valid, it could occur when L|R is sacked,
1048 * but it is equivalent to plain S and code short-curcuits it to S.
1049 * L|S is logically invalid, it would mean -1 packet in flight 8))
1050 *
1051 * These 6 states form finite state machine, controlled by the following events:
1052 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1053 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1054 * 3. Loss detection event of two flavors:
1055 * A. Scoreboard estimator decided the packet is lost.
1056 * A'. Reno "three dupacks" marks head of queue lost.
1057 * A''. Its FACK modification, head until snd.fack is lost.
1058 * B. SACK arrives sacking SND.NXT at the moment, when the
1059 * segment was retransmitted.
1060 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1061 *
1062 * It is pleasant to note, that state diagram turns out to be commutative,
1063 * so that we are allowed not to be bothered by order of our actions,
1064 * when multiple events arrive simultaneously. (see the function below).
1065 *
1066 * Reordering detection.
1067 * --------------------
1068 * Reordering metric is maximal distance, which a packet can be displaced
1069 * in packet stream. With SACKs we can estimate it:
1070 *
1071 * 1. SACK fills old hole and the corresponding segment was not
1072 * ever retransmitted -> reordering. Alas, we cannot use it
1073 * when segment was retransmitted.
1074 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1075 * for retransmitted and already SACKed segment -> reordering..
1076 * Both of these heuristics are not used in Loss state, when we cannot
1077 * account for retransmits accurately.
1078 *
1079 * SACK block validation.
1080 * ----------------------
1081 *
1082 * SACK block range validation checks that the received SACK block fits to
1083 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1084 * Note that SND.UNA is not included to the range though being valid because
1085 * it means that the receiver is rather inconsistent with itself reporting
1086 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1087 * perfectly valid, however, in light of RFC2018 which explicitly states
1088 * that "SACK block MUST reflect the newest segment. Even if the newest
1089 * segment is going to be discarded ...", not that it looks very clever
1090 * in case of head skb. Due to potentional receiver driven attacks, we
1091 * choose to avoid immediate execution of a walk in write queue due to
1092 * reneging and defer head skb's loss recovery to standard loss recovery
1093 * procedure that will eventually trigger (nothing forbids us doing this).
1094 *
1095 * Implements also blockage to start_seq wrap-around. Problem lies in the
1096 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1097 * there's no guarantee that it will be before snd_nxt (n). The problem
1098 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1099 * wrap (s_w):
1100 *
1101 * <- outs wnd -> <- wrapzone ->
1102 * u e n u_w e_w s n_w
1103 * | | | | | | |
1104 * |<------------+------+----- TCP seqno space --------------+---------->|
1105 * ...-- <2^31 ->| |<--------...
1106 * ...---- >2^31 ------>| |<--------...
1107 *
1108 * Current code wouldn't be vulnerable but it's better still to discard such
1109 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1110 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1111 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1112 * equal to the ideal case (infinite seqno space without wrap caused issues).
1113 *
1114 * With D-SACK the lower bound is extended to cover sequence space below
1115 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1116 * again, D-SACK block must not to go across snd_una (for the same reason as
1117 * for the normal SACK blocks, explained above). But there all simplicity
1118 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1119 * fully below undo_marker they do not affect behavior in anyway and can
1120 * therefore be safely ignored. In rare cases (which are more or less
1121 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1122 * fragmentation and packet reordering past skb's retransmission. To consider
1123 * them correctly, the acceptable range must be extended even more though
1124 * the exact amount is rather hard to quantify. However, tp->max_window can
1125 * be used as an exaggerated estimate.
1126 */
1127static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1128 u32 start_seq, u32 end_seq)
1129{
1130 /* Too far in future, or reversed (interpretation is ambiguous) */
1131 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1132 return false;
1133
1134 /* Nasty start_seq wrap-around check (see comments above) */
1135 if (!before(start_seq, tp->snd_nxt))
1136 return false;
1137
1138 /* In outstanding window? ...This is valid exit for D-SACKs too.
1139 * start_seq == snd_una is non-sensical (see comments above)
1140 */
1141 if (after(start_seq, tp->snd_una))
1142 return true;
1143
1144 if (!is_dsack || !tp->undo_marker)
1145 return false;
1146
1147 /* ...Then it's D-SACK, and must reside below snd_una completely */
1148 if (after(end_seq, tp->snd_una))
1149 return false;
1150
1151 if (!before(start_seq, tp->undo_marker))
1152 return true;
1153
1154 /* Too old */
1155 if (!after(end_seq, tp->undo_marker))
1156 return false;
1157
1158 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1159 * start_seq < undo_marker and end_seq >= undo_marker.
1160 */
1161 return !before(start_seq, end_seq - tp->max_window);
1162}
1163
1164/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1165 * Event "B". Later note: FACK people cheated me again 8), we have to account
1166 * for reordering! Ugly, but should help.
1167 *
1168 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1169 * less than what is now known to be received by the other end (derived from
1170 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1171 * retransmitted skbs to avoid some costly processing per ACKs.
1172 */
1173static void tcp_mark_lost_retrans(struct sock *sk)
1174{
1175 const struct inet_connection_sock *icsk = inet_csk(sk);
1176 struct tcp_sock *tp = tcp_sk(sk);
1177 struct sk_buff *skb;
1178 int cnt = 0;
1179 u32 new_low_seq = tp->snd_nxt;
1180 u32 received_upto = tcp_highest_sack_seq(tp);
1181
1182 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1183 !after(received_upto, tp->lost_retrans_low) ||
1184 icsk->icsk_ca_state != TCP_CA_Recovery)
1185 return;
1186
1187 tcp_for_write_queue(skb, sk) {
1188 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1189
1190 if (skb == tcp_send_head(sk))
1191 break;
1192 if (cnt == tp->retrans_out)
1193 break;
1194 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1195 continue;
1196
1197 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1198 continue;
1199
1200 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1201 * constraint here (see above) but figuring out that at
1202 * least tp->reordering SACK blocks reside between ack_seq
1203 * and received_upto is not easy task to do cheaply with
1204 * the available datastructures.
1205 *
1206 * Whether FACK should check here for tp->reordering segs
1207 * in-between one could argue for either way (it would be
1208 * rather simple to implement as we could count fack_count
1209 * during the walk and do tp->fackets_out - fack_count).
1210 */
1211 if (after(received_upto, ack_seq)) {
1212 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1213 tp->retrans_out -= tcp_skb_pcount(skb);
1214
1215 tcp_skb_mark_lost_uncond_verify(tp, skb);
1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1217 } else {
1218 if (before(ack_seq, new_low_seq))
1219 new_low_seq = ack_seq;
1220 cnt += tcp_skb_pcount(skb);
1221 }
1222 }
1223
1224 if (tp->retrans_out)
1225 tp->lost_retrans_low = new_low_seq;
1226}
1227
1228static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1229 struct tcp_sack_block_wire *sp, int num_sacks,
1230 u32 prior_snd_una)
1231{
1232 struct tcp_sock *tp = tcp_sk(sk);
1233 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1234 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1235 bool dup_sack = false;
1236
1237 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1238 dup_sack = true;
1239 tcp_dsack_seen(tp);
1240 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1241 } else if (num_sacks > 1) {
1242 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1243 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1244
1245 if (!after(end_seq_0, end_seq_1) &&
1246 !before(start_seq_0, start_seq_1)) {
1247 dup_sack = true;
1248 tcp_dsack_seen(tp);
1249 NET_INC_STATS_BH(sock_net(sk),
1250 LINUX_MIB_TCPDSACKOFORECV);
1251 }
1252 }
1253
1254 /* D-SACK for already forgotten data... Do dumb counting. */
1255 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1256 !after(end_seq_0, prior_snd_una) &&
1257 after(end_seq_0, tp->undo_marker))
1258 tp->undo_retrans--;
1259
1260 return dup_sack;
1261}
1262
1263struct tcp_sacktag_state {
1264 int reord;
1265 int fack_count;
1266 int flag;
1267};
1268
1269/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1270 * the incoming SACK may not exactly match but we can find smaller MSS
1271 * aligned portion of it that matches. Therefore we might need to fragment
1272 * which may fail and creates some hassle (caller must handle error case
1273 * returns).
1274 *
1275 * FIXME: this could be merged to shift decision code
1276 */
1277static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1278 u32 start_seq, u32 end_seq)
1279{
1280 int err;
1281 bool in_sack;
1282 unsigned int pkt_len;
1283 unsigned int mss;
1284
1285 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1286 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1287
1288 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1289 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1290 mss = tcp_skb_mss(skb);
1291 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1292
1293 if (!in_sack) {
1294 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1295 if (pkt_len < mss)
1296 pkt_len = mss;
1297 } else {
1298 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1299 if (pkt_len < mss)
1300 return -EINVAL;
1301 }
1302
1303 /* Round if necessary so that SACKs cover only full MSSes
1304 * and/or the remaining small portion (if present)
1305 */
1306 if (pkt_len > mss) {
1307 unsigned int new_len = (pkt_len / mss) * mss;
1308 if (!in_sack && new_len < pkt_len) {
1309 new_len += mss;
1310 if (new_len > skb->len)
1311 return 0;
1312 }
1313 pkt_len = new_len;
1314 }
1315 err = tcp_fragment(sk, skb, pkt_len, mss);
1316 if (err < 0)
1317 return err;
1318 }
1319
1320 return in_sack;
1321}
1322
1323/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1324static u8 tcp_sacktag_one(struct sock *sk,
1325 struct tcp_sacktag_state *state, u8 sacked,
1326 u32 start_seq, u32 end_seq,
1327 bool dup_sack, int pcount)
1328{
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 int fack_count = state->fack_count;
1331
1332 /* Account D-SACK for retransmitted packet. */
1333 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1334 if (tp->undo_marker && tp->undo_retrans &&
1335 after(end_seq, tp->undo_marker))
1336 tp->undo_retrans--;
1337 if (sacked & TCPCB_SACKED_ACKED)
1338 state->reord = min(fack_count, state->reord);
1339 }
1340
1341 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1342 if (!after(end_seq, tp->snd_una))
1343 return sacked;
1344
1345 if (!(sacked & TCPCB_SACKED_ACKED)) {
1346 if (sacked & TCPCB_SACKED_RETRANS) {
1347 /* If the segment is not tagged as lost,
1348 * we do not clear RETRANS, believing
1349 * that retransmission is still in flight.
1350 */
1351 if (sacked & TCPCB_LOST) {
1352 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353 tp->lost_out -= pcount;
1354 tp->retrans_out -= pcount;
1355 }
1356 } else {
1357 if (!(sacked & TCPCB_RETRANS)) {
1358 /* New sack for not retransmitted frame,
1359 * which was in hole. It is reordering.
1360 */
1361 if (before(start_seq,
1362 tcp_highest_sack_seq(tp)))
1363 state->reord = min(fack_count,
1364 state->reord);
1365
1366 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1367 if (!after(end_seq, tp->frto_highmark))
1368 state->flag |= FLAG_ONLY_ORIG_SACKED;
1369 }
1370
1371 if (sacked & TCPCB_LOST) {
1372 sacked &= ~TCPCB_LOST;
1373 tp->lost_out -= pcount;
1374 }
1375 }
1376
1377 sacked |= TCPCB_SACKED_ACKED;
1378 state->flag |= FLAG_DATA_SACKED;
1379 tp->sacked_out += pcount;
1380
1381 fack_count += pcount;
1382
1383 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1384 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1385 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1386 tp->lost_cnt_hint += pcount;
1387
1388 if (fack_count > tp->fackets_out)
1389 tp->fackets_out = fack_count;
1390 }
1391
1392 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1393 * frames and clear it. undo_retrans is decreased above, L|R frames
1394 * are accounted above as well.
1395 */
1396 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1397 sacked &= ~TCPCB_SACKED_RETRANS;
1398 tp->retrans_out -= pcount;
1399 }
1400
1401 return sacked;
1402}
1403
1404/* Shift newly-SACKed bytes from this skb to the immediately previous
1405 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1406 */
1407static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1408 struct tcp_sacktag_state *state,
1409 unsigned int pcount, int shifted, int mss,
1410 bool dup_sack)
1411{
1412 struct tcp_sock *tp = tcp_sk(sk);
1413 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1414 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1415 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1416
1417 BUG_ON(!pcount);
1418
1419 /* Adjust counters and hints for the newly sacked sequence
1420 * range but discard the return value since prev is already
1421 * marked. We must tag the range first because the seq
1422 * advancement below implicitly advances
1423 * tcp_highest_sack_seq() when skb is highest_sack.
1424 */
1425 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1426 start_seq, end_seq, dup_sack, pcount);
1427
1428 if (skb == tp->lost_skb_hint)
1429 tp->lost_cnt_hint += pcount;
1430
1431 TCP_SKB_CB(prev)->end_seq += shifted;
1432 TCP_SKB_CB(skb)->seq += shifted;
1433
1434 skb_shinfo(prev)->gso_segs += pcount;
1435 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1436 skb_shinfo(skb)->gso_segs -= pcount;
1437
1438 /* When we're adding to gso_segs == 1, gso_size will be zero,
1439 * in theory this shouldn't be necessary but as long as DSACK
1440 * code can come after this skb later on it's better to keep
1441 * setting gso_size to something.
1442 */
1443 if (!skb_shinfo(prev)->gso_size) {
1444 skb_shinfo(prev)->gso_size = mss;
1445 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1446 }
1447
1448 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1449 if (skb_shinfo(skb)->gso_segs <= 1) {
1450 skb_shinfo(skb)->gso_size = 0;
1451 skb_shinfo(skb)->gso_type = 0;
1452 }
1453
1454 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1455 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1456
1457 if (skb->len > 0) {
1458 BUG_ON(!tcp_skb_pcount(skb));
1459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1460 return false;
1461 }
1462
1463 /* Whole SKB was eaten :-) */
1464
1465 if (skb == tp->retransmit_skb_hint)
1466 tp->retransmit_skb_hint = prev;
1467 if (skb == tp->scoreboard_skb_hint)
1468 tp->scoreboard_skb_hint = prev;
1469 if (skb == tp->lost_skb_hint) {
1470 tp->lost_skb_hint = prev;
1471 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1472 }
1473
1474 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1475 if (skb == tcp_highest_sack(sk))
1476 tcp_advance_highest_sack(sk, skb);
1477
1478 tcp_unlink_write_queue(skb, sk);
1479 sk_wmem_free_skb(sk, skb);
1480
1481 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1482
1483 return true;
1484}
1485
1486/* I wish gso_size would have a bit more sane initialization than
1487 * something-or-zero which complicates things
1488 */
1489static int tcp_skb_seglen(const struct sk_buff *skb)
1490{
1491 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1492}
1493
1494/* Shifting pages past head area doesn't work */
1495static int skb_can_shift(const struct sk_buff *skb)
1496{
1497 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498}
1499
1500/* Try collapsing SACK blocks spanning across multiple skbs to a single
1501 * skb.
1502 */
1503static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504 struct tcp_sacktag_state *state,
1505 u32 start_seq, u32 end_seq,
1506 bool dup_sack)
1507{
1508 struct tcp_sock *tp = tcp_sk(sk);
1509 struct sk_buff *prev;
1510 int mss;
1511 int pcount = 0;
1512 int len;
1513 int in_sack;
1514
1515 if (!sk_can_gso(sk))
1516 goto fallback;
1517
1518 /* Normally R but no L won't result in plain S */
1519 if (!dup_sack &&
1520 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1521 goto fallback;
1522 if (!skb_can_shift(skb))
1523 goto fallback;
1524 /* This frame is about to be dropped (was ACKed). */
1525 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526 goto fallback;
1527
1528 /* Can only happen with delayed DSACK + discard craziness */
1529 if (unlikely(skb == tcp_write_queue_head(sk)))
1530 goto fallback;
1531 prev = tcp_write_queue_prev(sk, skb);
1532
1533 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534 goto fallback;
1535
1536 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538
1539 if (in_sack) {
1540 len = skb->len;
1541 pcount = tcp_skb_pcount(skb);
1542 mss = tcp_skb_seglen(skb);
1543
1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 * drop this restriction as unnecessary
1546 */
1547 if (mss != tcp_skb_seglen(prev))
1548 goto fallback;
1549 } else {
1550 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551 goto noop;
1552 /* CHECKME: This is non-MSS split case only?, this will
1553 * cause skipped skbs due to advancing loop btw, original
1554 * has that feature too
1555 */
1556 if (tcp_skb_pcount(skb) <= 1)
1557 goto noop;
1558
1559 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560 if (!in_sack) {
1561 /* TODO: head merge to next could be attempted here
1562 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563 * though it might not be worth of the additional hassle
1564 *
1565 * ...we can probably just fallback to what was done
1566 * previously. We could try merging non-SACKed ones
1567 * as well but it probably isn't going to buy off
1568 * because later SACKs might again split them, and
1569 * it would make skb timestamp tracking considerably
1570 * harder problem.
1571 */
1572 goto fallback;
1573 }
1574
1575 len = end_seq - TCP_SKB_CB(skb)->seq;
1576 BUG_ON(len < 0);
1577 BUG_ON(len > skb->len);
1578
1579 /* MSS boundaries should be honoured or else pcount will
1580 * severely break even though it makes things bit trickier.
1581 * Optimize common case to avoid most of the divides
1582 */
1583 mss = tcp_skb_mss(skb);
1584
1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 * drop this restriction as unnecessary
1587 */
1588 if (mss != tcp_skb_seglen(prev))
1589 goto fallback;
1590
1591 if (len == mss) {
1592 pcount = 1;
1593 } else if (len < mss) {
1594 goto noop;
1595 } else {
1596 pcount = len / mss;
1597 len = pcount * mss;
1598 }
1599 }
1600
1601 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603 goto fallback;
1604
1605 if (!skb_shift(prev, skb, len))
1606 goto fallback;
1607 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1608 goto out;
1609
1610 /* Hole filled allows collapsing with the next as well, this is very
1611 * useful when hole on every nth skb pattern happens
1612 */
1613 if (prev == tcp_write_queue_tail(sk))
1614 goto out;
1615 skb = tcp_write_queue_next(sk, prev);
1616
1617 if (!skb_can_shift(skb) ||
1618 (skb == tcp_send_head(sk)) ||
1619 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 (mss != tcp_skb_seglen(skb)))
1621 goto out;
1622
1623 len = skb->len;
1624 if (skb_shift(prev, skb, len)) {
1625 pcount += tcp_skb_pcount(skb);
1626 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1627 }
1628
1629out:
1630 state->fack_count += pcount;
1631 return prev;
1632
1633noop:
1634 return skb;
1635
1636fallback:
1637 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1638 return NULL;
1639}
1640
1641static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642 struct tcp_sack_block *next_dup,
1643 struct tcp_sacktag_state *state,
1644 u32 start_seq, u32 end_seq,
1645 bool dup_sack_in)
1646{
1647 struct tcp_sock *tp = tcp_sk(sk);
1648 struct sk_buff *tmp;
1649
1650 tcp_for_write_queue_from(skb, sk) {
1651 int in_sack = 0;
1652 bool dup_sack = dup_sack_in;
1653
1654 if (skb == tcp_send_head(sk))
1655 break;
1656
1657 /* queue is in-order => we can short-circuit the walk early */
1658 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659 break;
1660
1661 if ((next_dup != NULL) &&
1662 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663 in_sack = tcp_match_skb_to_sack(sk, skb,
1664 next_dup->start_seq,
1665 next_dup->end_seq);
1666 if (in_sack > 0)
1667 dup_sack = true;
1668 }
1669
1670 /* skb reference here is a bit tricky to get right, since
1671 * shifting can eat and free both this skb and the next,
1672 * so not even _safe variant of the loop is enough.
1673 */
1674 if (in_sack <= 0) {
1675 tmp = tcp_shift_skb_data(sk, skb, state,
1676 start_seq, end_seq, dup_sack);
1677 if (tmp != NULL) {
1678 if (tmp != skb) {
1679 skb = tmp;
1680 continue;
1681 }
1682
1683 in_sack = 0;
1684 } else {
1685 in_sack = tcp_match_skb_to_sack(sk, skb,
1686 start_seq,
1687 end_seq);
1688 }
1689 }
1690
1691 if (unlikely(in_sack < 0))
1692 break;
1693
1694 if (in_sack) {
1695 TCP_SKB_CB(skb)->sacked =
1696 tcp_sacktag_one(sk,
1697 state,
1698 TCP_SKB_CB(skb)->sacked,
1699 TCP_SKB_CB(skb)->seq,
1700 TCP_SKB_CB(skb)->end_seq,
1701 dup_sack,
1702 tcp_skb_pcount(skb));
1703
1704 if (!before(TCP_SKB_CB(skb)->seq,
1705 tcp_highest_sack_seq(tp)))
1706 tcp_advance_highest_sack(sk, skb);
1707 }
1708
1709 state->fack_count += tcp_skb_pcount(skb);
1710 }
1711 return skb;
1712}
1713
1714/* Avoid all extra work that is being done by sacktag while walking in
1715 * a normal way
1716 */
1717static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1718 struct tcp_sacktag_state *state,
1719 u32 skip_to_seq)
1720{
1721 tcp_for_write_queue_from(skb, sk) {
1722 if (skb == tcp_send_head(sk))
1723 break;
1724
1725 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1726 break;
1727
1728 state->fack_count += tcp_skb_pcount(skb);
1729 }
1730 return skb;
1731}
1732
1733static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734 struct sock *sk,
1735 struct tcp_sack_block *next_dup,
1736 struct tcp_sacktag_state *state,
1737 u32 skip_to_seq)
1738{
1739 if (next_dup == NULL)
1740 return skb;
1741
1742 if (before(next_dup->start_seq, skip_to_seq)) {
1743 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745 next_dup->start_seq, next_dup->end_seq,
1746 1);
1747 }
1748
1749 return skb;
1750}
1751
1752static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1753{
1754 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755}
1756
1757static int
1758tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1759 u32 prior_snd_una)
1760{
1761 const struct inet_connection_sock *icsk = inet_csk(sk);
1762 struct tcp_sock *tp = tcp_sk(sk);
1763 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764 TCP_SKB_CB(ack_skb)->sacked);
1765 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1766 struct tcp_sack_block sp[TCP_NUM_SACKS];
1767 struct tcp_sack_block *cache;
1768 struct tcp_sacktag_state state;
1769 struct sk_buff *skb;
1770 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1771 int used_sacks;
1772 bool found_dup_sack = false;
1773 int i, j;
1774 int first_sack_index;
1775
1776 state.flag = 0;
1777 state.reord = tp->packets_out;
1778
1779 if (!tp->sacked_out) {
1780 if (WARN_ON(tp->fackets_out))
1781 tp->fackets_out = 0;
1782 tcp_highest_sack_reset(sk);
1783 }
1784
1785 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1786 num_sacks, prior_snd_una);
1787 if (found_dup_sack)
1788 state.flag |= FLAG_DSACKING_ACK;
1789
1790 /* Eliminate too old ACKs, but take into
1791 * account more or less fresh ones, they can
1792 * contain valid SACK info.
1793 */
1794 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795 return 0;
1796
1797 if (!tp->packets_out)
1798 goto out;
1799
1800 used_sacks = 0;
1801 first_sack_index = 0;
1802 for (i = 0; i < num_sacks; i++) {
1803 bool dup_sack = !i && found_dup_sack;
1804
1805 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1806 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1807
1808 if (!tcp_is_sackblock_valid(tp, dup_sack,
1809 sp[used_sacks].start_seq,
1810 sp[used_sacks].end_seq)) {
1811 int mib_idx;
1812
1813 if (dup_sack) {
1814 if (!tp->undo_marker)
1815 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1816 else
1817 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1818 } else {
1819 /* Don't count olds caused by ACK reordering */
1820 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1821 !after(sp[used_sacks].end_seq, tp->snd_una))
1822 continue;
1823 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1824 }
1825
1826 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1827 if (i == 0)
1828 first_sack_index = -1;
1829 continue;
1830 }
1831
1832 /* Ignore very old stuff early */
1833 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1834 continue;
1835
1836 used_sacks++;
1837 }
1838
1839 /* order SACK blocks to allow in order walk of the retrans queue */
1840 for (i = used_sacks - 1; i > 0; i--) {
1841 for (j = 0; j < i; j++) {
1842 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1843 swap(sp[j], sp[j + 1]);
1844
1845 /* Track where the first SACK block goes to */
1846 if (j == first_sack_index)
1847 first_sack_index = j + 1;
1848 }
1849 }
1850 }
1851
1852 skb = tcp_write_queue_head(sk);
1853 state.fack_count = 0;
1854 i = 0;
1855
1856 if (!tp->sacked_out) {
1857 /* It's already past, so skip checking against it */
1858 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1859 } else {
1860 cache = tp->recv_sack_cache;
1861 /* Skip empty blocks in at head of the cache */
1862 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1863 !cache->end_seq)
1864 cache++;
1865 }
1866
1867 while (i < used_sacks) {
1868 u32 start_seq = sp[i].start_seq;
1869 u32 end_seq = sp[i].end_seq;
1870 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1871 struct tcp_sack_block *next_dup = NULL;
1872
1873 if (found_dup_sack && ((i + 1) == first_sack_index))
1874 next_dup = &sp[i + 1];
1875
1876 /* Skip too early cached blocks */
1877 while (tcp_sack_cache_ok(tp, cache) &&
1878 !before(start_seq, cache->end_seq))
1879 cache++;
1880
1881 /* Can skip some work by looking recv_sack_cache? */
1882 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1883 after(end_seq, cache->start_seq)) {
1884
1885 /* Head todo? */
1886 if (before(start_seq, cache->start_seq)) {
1887 skb = tcp_sacktag_skip(skb, sk, &state,
1888 start_seq);
1889 skb = tcp_sacktag_walk(skb, sk, next_dup,
1890 &state,
1891 start_seq,
1892 cache->start_seq,
1893 dup_sack);
1894 }
1895
1896 /* Rest of the block already fully processed? */
1897 if (!after(end_seq, cache->end_seq))
1898 goto advance_sp;
1899
1900 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1901 &state,
1902 cache->end_seq);
1903
1904 /* ...tail remains todo... */
1905 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1906 /* ...but better entrypoint exists! */
1907 skb = tcp_highest_sack(sk);
1908 if (skb == NULL)
1909 break;
1910 state.fack_count = tp->fackets_out;
1911 cache++;
1912 goto walk;
1913 }
1914
1915 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1916 /* Check overlap against next cached too (past this one already) */
1917 cache++;
1918 continue;
1919 }
1920
1921 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1922 skb = tcp_highest_sack(sk);
1923 if (skb == NULL)
1924 break;
1925 state.fack_count = tp->fackets_out;
1926 }
1927 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928
1929walk:
1930 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1931 start_seq, end_seq, dup_sack);
1932
1933advance_sp:
1934 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1935 * due to in-order walk
1936 */
1937 if (after(end_seq, tp->frto_highmark))
1938 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1939
1940 i++;
1941 }
1942
1943 /* Clear the head of the cache sack blocks so we can skip it next time */
1944 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1945 tp->recv_sack_cache[i].start_seq = 0;
1946 tp->recv_sack_cache[i].end_seq = 0;
1947 }
1948 for (j = 0; j < used_sacks; j++)
1949 tp->recv_sack_cache[i++] = sp[j];
1950
1951 tcp_mark_lost_retrans(sk);
1952
1953 tcp_verify_left_out(tp);
1954
1955 if ((state.reord < tp->fackets_out) &&
1956 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1957 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1958 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1959
1960out:
1961
1962#if FASTRETRANS_DEBUG > 0
1963 WARN_ON((int)tp->sacked_out < 0);
1964 WARN_ON((int)tp->lost_out < 0);
1965 WARN_ON((int)tp->retrans_out < 0);
1966 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1967#endif
1968 return state.flag;
1969}
1970
1971/* Limits sacked_out so that sum with lost_out isn't ever larger than
1972 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1973 */
1974static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1975{
1976 u32 holes;
1977
1978 holes = max(tp->lost_out, 1U);
1979 holes = min(holes, tp->packets_out);
1980
1981 if ((tp->sacked_out + holes) > tp->packets_out) {
1982 tp->sacked_out = tp->packets_out - holes;
1983 return true;
1984 }
1985 return false;
1986}
1987
1988/* If we receive more dupacks than we expected counting segments
1989 * in assumption of absent reordering, interpret this as reordering.
1990 * The only another reason could be bug in receiver TCP.
1991 */
1992static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1993{
1994 struct tcp_sock *tp = tcp_sk(sk);
1995 if (tcp_limit_reno_sacked(tp))
1996 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1997}
1998
1999/* Emulate SACKs for SACKless connection: account for a new dupack. */
2000
2001static void tcp_add_reno_sack(struct sock *sk)
2002{
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 tp->sacked_out++;
2005 tcp_check_reno_reordering(sk, 0);
2006 tcp_verify_left_out(tp);
2007}
2008
2009/* Account for ACK, ACKing some data in Reno Recovery phase. */
2010
2011static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2012{
2013 struct tcp_sock *tp = tcp_sk(sk);
2014
2015 if (acked > 0) {
2016 /* One ACK acked hole. The rest eat duplicate ACKs. */
2017 if (acked - 1 >= tp->sacked_out)
2018 tp->sacked_out = 0;
2019 else
2020 tp->sacked_out -= acked - 1;
2021 }
2022 tcp_check_reno_reordering(sk, acked);
2023 tcp_verify_left_out(tp);
2024}
2025
2026static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2027{
2028 tp->sacked_out = 0;
2029}
2030
2031static int tcp_is_sackfrto(const struct tcp_sock *tp)
2032{
2033 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2034}
2035
2036/* F-RTO can only be used if TCP has never retransmitted anything other than
2037 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2038 */
2039bool tcp_use_frto(struct sock *sk)
2040{
2041 const struct tcp_sock *tp = tcp_sk(sk);
2042 const struct inet_connection_sock *icsk = inet_csk(sk);
2043 struct sk_buff *skb;
2044
2045 if (!sysctl_tcp_frto)
2046 return false;
2047
2048 /* MTU probe and F-RTO won't really play nicely along currently */
2049 if (icsk->icsk_mtup.probe_size)
2050 return false;
2051
2052 if (tcp_is_sackfrto(tp))
2053 return true;
2054
2055 /* Avoid expensive walking of rexmit queue if possible */
2056 if (tp->retrans_out > 1)
2057 return false;
2058
2059 skb = tcp_write_queue_head(sk);
2060 if (tcp_skb_is_last(sk, skb))
2061 return true;
2062 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2063 tcp_for_write_queue_from(skb, sk) {
2064 if (skb == tcp_send_head(sk))
2065 break;
2066 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2067 return false;
2068 /* Short-circuit when first non-SACKed skb has been checked */
2069 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2070 break;
2071 }
2072 return true;
2073}
2074
2075/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2076 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2077 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2078 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2079 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2080 * bits are handled if the Loss state is really to be entered (in
2081 * tcp_enter_frto_loss).
2082 *
2083 * Do like tcp_enter_loss() would; when RTO expires the second time it
2084 * does:
2085 * "Reduce ssthresh if it has not yet been made inside this window."
2086 */
2087void tcp_enter_frto(struct sock *sk)
2088{
2089 const struct inet_connection_sock *icsk = inet_csk(sk);
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 struct sk_buff *skb;
2092
2093 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2094 tp->snd_una == tp->high_seq ||
2095 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2096 !icsk->icsk_retransmits)) {
2097 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098 /* Our state is too optimistic in ssthresh() call because cwnd
2099 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2100 * recovery has not yet completed. Pattern would be this: RTO,
2101 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2102 * up here twice).
2103 * RFC4138 should be more specific on what to do, even though
2104 * RTO is quite unlikely to occur after the first Cumulative ACK
2105 * due to back-off and complexity of triggering events ...
2106 */
2107 if (tp->frto_counter) {
2108 u32 stored_cwnd;
2109 stored_cwnd = tp->snd_cwnd;
2110 tp->snd_cwnd = 2;
2111 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112 tp->snd_cwnd = stored_cwnd;
2113 } else {
2114 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2115 }
2116 /* ... in theory, cong.control module could do "any tricks" in
2117 * ssthresh(), which means that ca_state, lost bits and lost_out
2118 * counter would have to be faked before the call occurs. We
2119 * consider that too expensive, unlikely and hacky, so modules
2120 * using these in ssthresh() must deal these incompatibility
2121 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2122 */
2123 tcp_ca_event(sk, CA_EVENT_FRTO);
2124 }
2125
2126 tp->undo_marker = tp->snd_una;
2127 tp->undo_retrans = 0;
2128
2129 skb = tcp_write_queue_head(sk);
2130 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2131 tp->undo_marker = 0;
2132 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2133 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2134 tp->retrans_out -= tcp_skb_pcount(skb);
2135 }
2136 tcp_verify_left_out(tp);
2137
2138 /* Too bad if TCP was application limited */
2139 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2140
2141 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2142 * The last condition is necessary at least in tp->frto_counter case.
2143 */
2144 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2145 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2146 after(tp->high_seq, tp->snd_una)) {
2147 tp->frto_highmark = tp->high_seq;
2148 } else {
2149 tp->frto_highmark = tp->snd_nxt;
2150 }
2151 tcp_set_ca_state(sk, TCP_CA_Disorder);
2152 tp->high_seq = tp->snd_nxt;
2153 tp->frto_counter = 1;
2154}
2155
2156/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2157 * which indicates that we should follow the traditional RTO recovery,
2158 * i.e. mark everything lost and do go-back-N retransmission.
2159 */
2160static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2161{
2162 struct tcp_sock *tp = tcp_sk(sk);
2163 struct sk_buff *skb;
2164
2165 tp->lost_out = 0;
2166 tp->retrans_out = 0;
2167 if (tcp_is_reno(tp))
2168 tcp_reset_reno_sack(tp);
2169
2170 tcp_for_write_queue(skb, sk) {
2171 if (skb == tcp_send_head(sk))
2172 break;
2173
2174 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2175 /*
2176 * Count the retransmission made on RTO correctly (only when
2177 * waiting for the first ACK and did not get it)...
2178 */
2179 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2180 /* For some reason this R-bit might get cleared? */
2181 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2182 tp->retrans_out += tcp_skb_pcount(skb);
2183 /* ...enter this if branch just for the first segment */
2184 flag |= FLAG_DATA_ACKED;
2185 } else {
2186 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2187 tp->undo_marker = 0;
2188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189 }
2190
2191 /* Marking forward transmissions that were made after RTO lost
2192 * can cause unnecessary retransmissions in some scenarios,
2193 * SACK blocks will mitigate that in some but not in all cases.
2194 * We used to not mark them but it was causing break-ups with
2195 * receivers that do only in-order receival.
2196 *
2197 * TODO: we could detect presence of such receiver and select
2198 * different behavior per flow.
2199 */
2200 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2201 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2202 tp->lost_out += tcp_skb_pcount(skb);
2203 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204 }
2205 }
2206 tcp_verify_left_out(tp);
2207
2208 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2209 tp->snd_cwnd_cnt = 0;
2210 tp->snd_cwnd_stamp = tcp_time_stamp;
2211 tp->frto_counter = 0;
2212 tp->bytes_acked = 0;
2213
2214 tp->reordering = min_t(unsigned int, tp->reordering,
2215 sysctl_tcp_reordering);
2216 tcp_set_ca_state(sk, TCP_CA_Loss);
2217 tp->high_seq = tp->snd_nxt;
2218 TCP_ECN_queue_cwr(tp);
2219
2220 tcp_clear_all_retrans_hints(tp);
2221}
2222
2223static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2224{
2225 tp->retrans_out = 0;
2226 tp->lost_out = 0;
2227
2228 tp->undo_marker = 0;
2229 tp->undo_retrans = 0;
2230}
2231
2232void tcp_clear_retrans(struct tcp_sock *tp)
2233{
2234 tcp_clear_retrans_partial(tp);
2235
2236 tp->fackets_out = 0;
2237 tp->sacked_out = 0;
2238}
2239
2240/* Enter Loss state. If "how" is not zero, forget all SACK information
2241 * and reset tags completely, otherwise preserve SACKs. If receiver
2242 * dropped its ofo queue, we will know this due to reneging detection.
2243 */
2244void tcp_enter_loss(struct sock *sk, int how)
2245{
2246 const struct inet_connection_sock *icsk = inet_csk(sk);
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 struct sk_buff *skb;
2249
2250 /* Reduce ssthresh if it has not yet been made inside this window. */
2251 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2252 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2253 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2254 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2255 tcp_ca_event(sk, CA_EVENT_LOSS);
2256 }
2257 tp->snd_cwnd = 1;
2258 tp->snd_cwnd_cnt = 0;
2259 tp->snd_cwnd_stamp = tcp_time_stamp;
2260
2261 tp->bytes_acked = 0;
2262 tcp_clear_retrans_partial(tp);
2263
2264 if (tcp_is_reno(tp))
2265 tcp_reset_reno_sack(tp);
2266
2267 if (!how) {
2268 /* Push undo marker, if it was plain RTO and nothing
2269 * was retransmitted. */
2270 tp->undo_marker = tp->snd_una;
2271 } else {
2272 tp->sacked_out = 0;
2273 tp->fackets_out = 0;
2274 }
2275 tcp_clear_all_retrans_hints(tp);
2276
2277 tcp_for_write_queue(skb, sk) {
2278 if (skb == tcp_send_head(sk))
2279 break;
2280
2281 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2282 tp->undo_marker = 0;
2283 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2284 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2285 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2286 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2287 tp->lost_out += tcp_skb_pcount(skb);
2288 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2289 }
2290 }
2291 tcp_verify_left_out(tp);
2292
2293 tp->reordering = min_t(unsigned int, tp->reordering,
2294 sysctl_tcp_reordering);
2295 tcp_set_ca_state(sk, TCP_CA_Loss);
2296 tp->high_seq = tp->snd_nxt;
2297 TCP_ECN_queue_cwr(tp);
2298 /* Abort F-RTO algorithm if one is in progress */
2299 tp->frto_counter = 0;
2300}
2301
2302/* If ACK arrived pointing to a remembered SACK, it means that our
2303 * remembered SACKs do not reflect real state of receiver i.e.
2304 * receiver _host_ is heavily congested (or buggy).
2305 *
2306 * Do processing similar to RTO timeout.
2307 */
2308static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2309{
2310 if (flag & FLAG_SACK_RENEGING) {
2311 struct inet_connection_sock *icsk = inet_csk(sk);
2312 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2313
2314 tcp_enter_loss(sk, 1);
2315 icsk->icsk_retransmits++;
2316 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2317 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2318 icsk->icsk_rto, TCP_RTO_MAX);
2319 return true;
2320 }
2321 return false;
2322}
2323
2324static inline int tcp_fackets_out(const struct tcp_sock *tp)
2325{
2326 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2327}
2328
2329/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2330 * counter when SACK is enabled (without SACK, sacked_out is used for
2331 * that purpose).
2332 *
2333 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2334 * segments up to the highest received SACK block so far and holes in
2335 * between them.
2336 *
2337 * With reordering, holes may still be in flight, so RFC3517 recovery
2338 * uses pure sacked_out (total number of SACKed segments) even though
2339 * it violates the RFC that uses duplicate ACKs, often these are equal
2340 * but when e.g. out-of-window ACKs or packet duplication occurs,
2341 * they differ. Since neither occurs due to loss, TCP should really
2342 * ignore them.
2343 */
2344static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2345{
2346 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2347}
2348
2349static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2350{
2351 struct tcp_sock *tp = tcp_sk(sk);
2352 unsigned long delay;
2353
2354 /* Delay early retransmit and entering fast recovery for
2355 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2356 * available, or RTO is scheduled to fire first.
2357 */
2358 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2359 return false;
2360
2361 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2362 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2363 return false;
2364
2365 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2366 tp->early_retrans_delayed = 1;
2367 return true;
2368}
2369
2370static inline int tcp_skb_timedout(const struct sock *sk,
2371 const struct sk_buff *skb)
2372{
2373 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2374}
2375
2376static inline int tcp_head_timedout(const struct sock *sk)
2377{
2378 const struct tcp_sock *tp = tcp_sk(sk);
2379
2380 return tp->packets_out &&
2381 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2382}
2383
2384/* Linux NewReno/SACK/FACK/ECN state machine.
2385 * --------------------------------------
2386 *
2387 * "Open" Normal state, no dubious events, fast path.
2388 * "Disorder" In all the respects it is "Open",
2389 * but requires a bit more attention. It is entered when
2390 * we see some SACKs or dupacks. It is split of "Open"
2391 * mainly to move some processing from fast path to slow one.
2392 * "CWR" CWND was reduced due to some Congestion Notification event.
2393 * It can be ECN, ICMP source quench, local device congestion.
2394 * "Recovery" CWND was reduced, we are fast-retransmitting.
2395 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2396 *
2397 * tcp_fastretrans_alert() is entered:
2398 * - each incoming ACK, if state is not "Open"
2399 * - when arrived ACK is unusual, namely:
2400 * * SACK
2401 * * Duplicate ACK.
2402 * * ECN ECE.
2403 *
2404 * Counting packets in flight is pretty simple.
2405 *
2406 * in_flight = packets_out - left_out + retrans_out
2407 *
2408 * packets_out is SND.NXT-SND.UNA counted in packets.
2409 *
2410 * retrans_out is number of retransmitted segments.
2411 *
2412 * left_out is number of segments left network, but not ACKed yet.
2413 *
2414 * left_out = sacked_out + lost_out
2415 *
2416 * sacked_out: Packets, which arrived to receiver out of order
2417 * and hence not ACKed. With SACKs this number is simply
2418 * amount of SACKed data. Even without SACKs
2419 * it is easy to give pretty reliable estimate of this number,
2420 * counting duplicate ACKs.
2421 *
2422 * lost_out: Packets lost by network. TCP has no explicit
2423 * "loss notification" feedback from network (for now).
2424 * It means that this number can be only _guessed_.
2425 * Actually, it is the heuristics to predict lossage that
2426 * distinguishes different algorithms.
2427 *
2428 * F.e. after RTO, when all the queue is considered as lost,
2429 * lost_out = packets_out and in_flight = retrans_out.
2430 *
2431 * Essentially, we have now two algorithms counting
2432 * lost packets.
2433 *
2434 * FACK: It is the simplest heuristics. As soon as we decided
2435 * that something is lost, we decide that _all_ not SACKed
2436 * packets until the most forward SACK are lost. I.e.
2437 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2438 * It is absolutely correct estimate, if network does not reorder
2439 * packets. And it loses any connection to reality when reordering
2440 * takes place. We use FACK by default until reordering
2441 * is suspected on the path to this destination.
2442 *
2443 * NewReno: when Recovery is entered, we assume that one segment
2444 * is lost (classic Reno). While we are in Recovery and
2445 * a partial ACK arrives, we assume that one more packet
2446 * is lost (NewReno). This heuristics are the same in NewReno
2447 * and SACK.
2448 *
2449 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2450 * deflation etc. CWND is real congestion window, never inflated, changes
2451 * only according to classic VJ rules.
2452 *
2453 * Really tricky (and requiring careful tuning) part of algorithm
2454 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2455 * The first determines the moment _when_ we should reduce CWND and,
2456 * hence, slow down forward transmission. In fact, it determines the moment
2457 * when we decide that hole is caused by loss, rather than by a reorder.
2458 *
2459 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2460 * holes, caused by lost packets.
2461 *
2462 * And the most logically complicated part of algorithm is undo
2463 * heuristics. We detect false retransmits due to both too early
2464 * fast retransmit (reordering) and underestimated RTO, analyzing
2465 * timestamps and D-SACKs. When we detect that some segments were
2466 * retransmitted by mistake and CWND reduction was wrong, we undo
2467 * window reduction and abort recovery phase. This logic is hidden
2468 * inside several functions named tcp_try_undo_<something>.
2469 */
2470
2471/* This function decides, when we should leave Disordered state
2472 * and enter Recovery phase, reducing congestion window.
2473 *
2474 * Main question: may we further continue forward transmission
2475 * with the same cwnd?
2476 */
2477static bool tcp_time_to_recover(struct sock *sk, int flag)
2478{
2479 struct tcp_sock *tp = tcp_sk(sk);
2480 __u32 packets_out;
2481
2482 /* Do not perform any recovery during F-RTO algorithm */
2483 if (tp->frto_counter)
2484 return false;
2485
2486 /* Trick#1: The loss is proven. */
2487 if (tp->lost_out)
2488 return true;
2489
2490 /* Not-A-Trick#2 : Classic rule... */
2491 if (tcp_dupack_heuristics(tp) > tp->reordering)
2492 return true;
2493
2494 /* Trick#3 : when we use RFC2988 timer restart, fast
2495 * retransmit can be triggered by timeout of queue head.
2496 */
2497 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2498 return true;
2499
2500 /* Trick#4: It is still not OK... But will it be useful to delay
2501 * recovery more?
2502 */
2503 packets_out = tp->packets_out;
2504 if (packets_out <= tp->reordering &&
2505 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2506 !tcp_may_send_now(sk)) {
2507 /* We have nothing to send. This connection is limited
2508 * either by receiver window or by application.
2509 */
2510 return true;
2511 }
2512
2513 /* If a thin stream is detected, retransmit after first
2514 * received dupack. Employ only if SACK is supported in order
2515 * to avoid possible corner-case series of spurious retransmissions
2516 * Use only if there are no unsent data.
2517 */
2518 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2519 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2520 tcp_is_sack(tp) && !tcp_send_head(sk))
2521 return true;
2522
2523 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2524 * retransmissions due to small network reorderings, we implement
2525 * Mitigation A.3 in the RFC and delay the retransmission for a short
2526 * interval if appropriate.
2527 */
2528 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2529 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2530 !tcp_may_send_now(sk))
2531 return !tcp_pause_early_retransmit(sk, flag);
2532
2533 return false;
2534}
2535
2536/* New heuristics: it is possible only after we switched to restart timer
2537 * each time when something is ACKed. Hence, we can detect timed out packets
2538 * during fast retransmit without falling to slow start.
2539 *
2540 * Usefulness of this as is very questionable, since we should know which of
2541 * the segments is the next to timeout which is relatively expensive to find
2542 * in general case unless we add some data structure just for that. The
2543 * current approach certainly won't find the right one too often and when it
2544 * finally does find _something_ it usually marks large part of the window
2545 * right away (because a retransmission with a larger timestamp blocks the
2546 * loop from advancing). -ij
2547 */
2548static void tcp_timeout_skbs(struct sock *sk)
2549{
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 struct sk_buff *skb;
2552
2553 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2554 return;
2555
2556 skb = tp->scoreboard_skb_hint;
2557 if (tp->scoreboard_skb_hint == NULL)
2558 skb = tcp_write_queue_head(sk);
2559
2560 tcp_for_write_queue_from(skb, sk) {
2561 if (skb == tcp_send_head(sk))
2562 break;
2563 if (!tcp_skb_timedout(sk, skb))
2564 break;
2565
2566 tcp_skb_mark_lost(tp, skb);
2567 }
2568
2569 tp->scoreboard_skb_hint = skb;
2570
2571 tcp_verify_left_out(tp);
2572}
2573
2574/* Detect loss in event "A" above by marking head of queue up as lost.
2575 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2576 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2577 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2578 * the maximum SACKed segments to pass before reaching this limit.
2579 */
2580static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2581{
2582 struct tcp_sock *tp = tcp_sk(sk);
2583 struct sk_buff *skb;
2584 int cnt, oldcnt;
2585 int err;
2586 unsigned int mss;
2587 /* Use SACK to deduce losses of new sequences sent during recovery */
2588 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2589
2590 WARN_ON(packets > tp->packets_out);
2591 if (tp->lost_skb_hint) {
2592 skb = tp->lost_skb_hint;
2593 cnt = tp->lost_cnt_hint;
2594 /* Head already handled? */
2595 if (mark_head && skb != tcp_write_queue_head(sk))
2596 return;
2597 } else {
2598 skb = tcp_write_queue_head(sk);
2599 cnt = 0;
2600 }
2601
2602 tcp_for_write_queue_from(skb, sk) {
2603 if (skb == tcp_send_head(sk))
2604 break;
2605 /* TODO: do this better */
2606 /* this is not the most efficient way to do this... */
2607 tp->lost_skb_hint = skb;
2608 tp->lost_cnt_hint = cnt;
2609
2610 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2611 break;
2612
2613 oldcnt = cnt;
2614 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2615 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2616 cnt += tcp_skb_pcount(skb);
2617
2618 if (cnt > packets) {
2619 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2620 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2621 (oldcnt >= packets))
2622 break;
2623
2624 mss = skb_shinfo(skb)->gso_size;
2625 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2626 if (err < 0)
2627 break;
2628 cnt = packets;
2629 }
2630
2631 tcp_skb_mark_lost(tp, skb);
2632
2633 if (mark_head)
2634 break;
2635 }
2636 tcp_verify_left_out(tp);
2637}
2638
2639/* Account newly detected lost packet(s) */
2640
2641static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2642{
2643 struct tcp_sock *tp = tcp_sk(sk);
2644
2645 if (tcp_is_reno(tp)) {
2646 tcp_mark_head_lost(sk, 1, 1);
2647 } else if (tcp_is_fack(tp)) {
2648 int lost = tp->fackets_out - tp->reordering;
2649 if (lost <= 0)
2650 lost = 1;
2651 tcp_mark_head_lost(sk, lost, 0);
2652 } else {
2653 int sacked_upto = tp->sacked_out - tp->reordering;
2654 if (sacked_upto >= 0)
2655 tcp_mark_head_lost(sk, sacked_upto, 0);
2656 else if (fast_rexmit)
2657 tcp_mark_head_lost(sk, 1, 1);
2658 }
2659
2660 tcp_timeout_skbs(sk);
2661}
2662
2663/* CWND moderation, preventing bursts due to too big ACKs
2664 * in dubious situations.
2665 */
2666static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2667{
2668 tp->snd_cwnd = min(tp->snd_cwnd,
2669 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2670 tp->snd_cwnd_stamp = tcp_time_stamp;
2671}
2672
2673/* Lower bound on congestion window is slow start threshold
2674 * unless congestion avoidance choice decides to overide it.
2675 */
2676static inline u32 tcp_cwnd_min(const struct sock *sk)
2677{
2678 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2679
2680 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2681}
2682
2683/* Decrease cwnd each second ack. */
2684static void tcp_cwnd_down(struct sock *sk, int flag)
2685{
2686 struct tcp_sock *tp = tcp_sk(sk);
2687 int decr = tp->snd_cwnd_cnt + 1;
2688
2689 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2690 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2691 tp->snd_cwnd_cnt = decr & 1;
2692 decr >>= 1;
2693
2694 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2695 tp->snd_cwnd -= decr;
2696
2697 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2698 tp->snd_cwnd_stamp = tcp_time_stamp;
2699 }
2700}
2701
2702/* Nothing was retransmitted or returned timestamp is less
2703 * than timestamp of the first retransmission.
2704 */
2705static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2706{
2707 return !tp->retrans_stamp ||
2708 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2709 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2710}
2711
2712/* Undo procedures. */
2713
2714#if FASTRETRANS_DEBUG > 1
2715static void DBGUNDO(struct sock *sk, const char *msg)
2716{
2717 struct tcp_sock *tp = tcp_sk(sk);
2718 struct inet_sock *inet = inet_sk(sk);
2719
2720 if (sk->sk_family == AF_INET) {
2721 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2722 msg,
2723 &inet->inet_daddr, ntohs(inet->inet_dport),
2724 tp->snd_cwnd, tcp_left_out(tp),
2725 tp->snd_ssthresh, tp->prior_ssthresh,
2726 tp->packets_out);
2727 }
2728#if IS_ENABLED(CONFIG_IPV6)
2729 else if (sk->sk_family == AF_INET6) {
2730 struct ipv6_pinfo *np = inet6_sk(sk);
2731 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2732 msg,
2733 &np->daddr, ntohs(inet->inet_dport),
2734 tp->snd_cwnd, tcp_left_out(tp),
2735 tp->snd_ssthresh, tp->prior_ssthresh,
2736 tp->packets_out);
2737 }
2738#endif
2739}
2740#else
2741#define DBGUNDO(x...) do { } while (0)
2742#endif
2743
2744static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2745{
2746 struct tcp_sock *tp = tcp_sk(sk);
2747
2748 if (tp->prior_ssthresh) {
2749 const struct inet_connection_sock *icsk = inet_csk(sk);
2750
2751 if (icsk->icsk_ca_ops->undo_cwnd)
2752 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2753 else
2754 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2755
2756 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2757 tp->snd_ssthresh = tp->prior_ssthresh;
2758 TCP_ECN_withdraw_cwr(tp);
2759 }
2760 } else {
2761 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2762 }
2763 tp->snd_cwnd_stamp = tcp_time_stamp;
2764}
2765
2766static inline int tcp_may_undo(const struct tcp_sock *tp)
2767{
2768 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2769}
2770
2771/* People celebrate: "We love our President!" */
2772static bool tcp_try_undo_recovery(struct sock *sk)
2773{
2774 struct tcp_sock *tp = tcp_sk(sk);
2775
2776 if (tcp_may_undo(tp)) {
2777 int mib_idx;
2778
2779 /* Happy end! We did not retransmit anything
2780 * or our original transmission succeeded.
2781 */
2782 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2783 tcp_undo_cwr(sk, true);
2784 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2785 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2786 else
2787 mib_idx = LINUX_MIB_TCPFULLUNDO;
2788
2789 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2790 tp->undo_marker = 0;
2791 }
2792 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2793 /* Hold old state until something *above* high_seq
2794 * is ACKed. For Reno it is MUST to prevent false
2795 * fast retransmits (RFC2582). SACK TCP is safe. */
2796 tcp_moderate_cwnd(tp);
2797 return true;
2798 }
2799 tcp_set_ca_state(sk, TCP_CA_Open);
2800 return false;
2801}
2802
2803/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2804static void tcp_try_undo_dsack(struct sock *sk)
2805{
2806 struct tcp_sock *tp = tcp_sk(sk);
2807
2808 if (tp->undo_marker && !tp->undo_retrans) {
2809 DBGUNDO(sk, "D-SACK");
2810 tcp_undo_cwr(sk, true);
2811 tp->undo_marker = 0;
2812 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2813 }
2814}
2815
2816/* We can clear retrans_stamp when there are no retransmissions in the
2817 * window. It would seem that it is trivially available for us in
2818 * tp->retrans_out, however, that kind of assumptions doesn't consider
2819 * what will happen if errors occur when sending retransmission for the
2820 * second time. ...It could the that such segment has only
2821 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2822 * the head skb is enough except for some reneging corner cases that
2823 * are not worth the effort.
2824 *
2825 * Main reason for all this complexity is the fact that connection dying
2826 * time now depends on the validity of the retrans_stamp, in particular,
2827 * that successive retransmissions of a segment must not advance
2828 * retrans_stamp under any conditions.
2829 */
2830static bool tcp_any_retrans_done(const struct sock *sk)
2831{
2832 const struct tcp_sock *tp = tcp_sk(sk);
2833 struct sk_buff *skb;
2834
2835 if (tp->retrans_out)
2836 return true;
2837
2838 skb = tcp_write_queue_head(sk);
2839 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2840 return true;
2841
2842 return false;
2843}
2844
2845/* Undo during fast recovery after partial ACK. */
2846
2847static int tcp_try_undo_partial(struct sock *sk, int acked)
2848{
2849 struct tcp_sock *tp = tcp_sk(sk);
2850 /* Partial ACK arrived. Force Hoe's retransmit. */
2851 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2852
2853 if (tcp_may_undo(tp)) {
2854 /* Plain luck! Hole if filled with delayed
2855 * packet, rather than with a retransmit.
2856 */
2857 if (!tcp_any_retrans_done(sk))
2858 tp->retrans_stamp = 0;
2859
2860 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2861
2862 DBGUNDO(sk, "Hoe");
2863 tcp_undo_cwr(sk, false);
2864 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2865
2866 /* So... Do not make Hoe's retransmit yet.
2867 * If the first packet was delayed, the rest
2868 * ones are most probably delayed as well.
2869 */
2870 failed = 0;
2871 }
2872 return failed;
2873}
2874
2875/* Undo during loss recovery after partial ACK. */
2876static bool tcp_try_undo_loss(struct sock *sk)
2877{
2878 struct tcp_sock *tp = tcp_sk(sk);
2879
2880 if (tcp_may_undo(tp)) {
2881 struct sk_buff *skb;
2882 tcp_for_write_queue(skb, sk) {
2883 if (skb == tcp_send_head(sk))
2884 break;
2885 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2886 }
2887
2888 tcp_clear_all_retrans_hints(tp);
2889
2890 DBGUNDO(sk, "partial loss");
2891 tp->lost_out = 0;
2892 tcp_undo_cwr(sk, true);
2893 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2894 inet_csk(sk)->icsk_retransmits = 0;
2895 tp->undo_marker = 0;
2896 if (tcp_is_sack(tp))
2897 tcp_set_ca_state(sk, TCP_CA_Open);
2898 return true;
2899 }
2900 return false;
2901}
2902
2903static inline void tcp_complete_cwr(struct sock *sk)
2904{
2905 struct tcp_sock *tp = tcp_sk(sk);
2906
2907 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2908 if (tp->undo_marker) {
2909 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2910 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2911 tp->snd_cwnd_stamp = tcp_time_stamp;
2912 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2913 /* PRR algorithm. */
2914 tp->snd_cwnd = tp->snd_ssthresh;
2915 tp->snd_cwnd_stamp = tcp_time_stamp;
2916 }
2917 }
2918 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2919}
2920
2921static void tcp_try_keep_open(struct sock *sk)
2922{
2923 struct tcp_sock *tp = tcp_sk(sk);
2924 int state = TCP_CA_Open;
2925
2926 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2927 state = TCP_CA_Disorder;
2928
2929 if (inet_csk(sk)->icsk_ca_state != state) {
2930 tcp_set_ca_state(sk, state);
2931 tp->high_seq = tp->snd_nxt;
2932 }
2933}
2934
2935static void tcp_try_to_open(struct sock *sk, int flag)
2936{
2937 struct tcp_sock *tp = tcp_sk(sk);
2938
2939 tcp_verify_left_out(tp);
2940
2941 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2942 tp->retrans_stamp = 0;
2943
2944 if (flag & FLAG_ECE)
2945 tcp_enter_cwr(sk, 1);
2946
2947 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2948 tcp_try_keep_open(sk);
2949 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2950 tcp_moderate_cwnd(tp);
2951 } else {
2952 tcp_cwnd_down(sk, flag);
2953 }
2954}
2955
2956static void tcp_mtup_probe_failed(struct sock *sk)
2957{
2958 struct inet_connection_sock *icsk = inet_csk(sk);
2959
2960 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2961 icsk->icsk_mtup.probe_size = 0;
2962}
2963
2964static void tcp_mtup_probe_success(struct sock *sk)
2965{
2966 struct tcp_sock *tp = tcp_sk(sk);
2967 struct inet_connection_sock *icsk = inet_csk(sk);
2968
2969 /* FIXME: breaks with very large cwnd */
2970 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2971 tp->snd_cwnd = tp->snd_cwnd *
2972 tcp_mss_to_mtu(sk, tp->mss_cache) /
2973 icsk->icsk_mtup.probe_size;
2974 tp->snd_cwnd_cnt = 0;
2975 tp->snd_cwnd_stamp = tcp_time_stamp;
2976 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2977
2978 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2979 icsk->icsk_mtup.probe_size = 0;
2980 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2981}
2982
2983/* Do a simple retransmit without using the backoff mechanisms in
2984 * tcp_timer. This is used for path mtu discovery.
2985 * The socket is already locked here.
2986 */
2987void tcp_simple_retransmit(struct sock *sk)
2988{
2989 const struct inet_connection_sock *icsk = inet_csk(sk);
2990 struct tcp_sock *tp = tcp_sk(sk);
2991 struct sk_buff *skb;
2992 unsigned int mss = tcp_current_mss(sk);
2993 u32 prior_lost = tp->lost_out;
2994
2995 tcp_for_write_queue(skb, sk) {
2996 if (skb == tcp_send_head(sk))
2997 break;
2998 if (tcp_skb_seglen(skb) > mss &&
2999 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
3000 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3001 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
3002 tp->retrans_out -= tcp_skb_pcount(skb);
3003 }
3004 tcp_skb_mark_lost_uncond_verify(tp, skb);
3005 }
3006 }
3007
3008 tcp_clear_retrans_hints_partial(tp);
3009
3010 if (prior_lost == tp->lost_out)
3011 return;
3012
3013 if (tcp_is_reno(tp))
3014 tcp_limit_reno_sacked(tp);
3015
3016 tcp_verify_left_out(tp);
3017
3018 /* Don't muck with the congestion window here.
3019 * Reason is that we do not increase amount of _data_
3020 * in network, but units changed and effective
3021 * cwnd/ssthresh really reduced now.
3022 */
3023 if (icsk->icsk_ca_state != TCP_CA_Loss) {
3024 tp->high_seq = tp->snd_nxt;
3025 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3026 tp->prior_ssthresh = 0;
3027 tp->undo_marker = 0;
3028 tcp_set_ca_state(sk, TCP_CA_Loss);
3029 }
3030 tcp_xmit_retransmit_queue(sk);
3031}
3032EXPORT_SYMBOL(tcp_simple_retransmit);
3033
3034/* This function implements the PRR algorithm, specifcally the PRR-SSRB
3035 * (proportional rate reduction with slow start reduction bound) as described in
3036 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3037 * It computes the number of packets to send (sndcnt) based on packets newly
3038 * delivered:
3039 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
3040 * cwnd reductions across a full RTT.
3041 * 2) If packets in flight is lower than ssthresh (such as due to excess
3042 * losses and/or application stalls), do not perform any further cwnd
3043 * reductions, but instead slow start up to ssthresh.
3044 */
3045static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3046 int fast_rexmit, int flag)
3047{
3048 struct tcp_sock *tp = tcp_sk(sk);
3049 int sndcnt = 0;
3050 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3051
3052 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3053 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3054 tp->prior_cwnd - 1;
3055 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3056 } else {
3057 sndcnt = min_t(int, delta,
3058 max_t(int, tp->prr_delivered - tp->prr_out,
3059 newly_acked_sacked) + 1);
3060 }
3061
3062 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3063 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3064}
3065
3066static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3067{
3068 struct tcp_sock *tp = tcp_sk(sk);
3069 int mib_idx;
3070
3071 if (tcp_is_reno(tp))
3072 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3073 else
3074 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3075
3076 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3077
3078 tp->high_seq = tp->snd_nxt;
3079 tp->prior_ssthresh = 0;
3080 tp->undo_marker = tp->snd_una;
3081 tp->undo_retrans = tp->retrans_out;
3082
3083 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3084 if (!ece_ack)
3085 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3086 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3087 TCP_ECN_queue_cwr(tp);
3088 }
3089
3090 tp->bytes_acked = 0;
3091 tp->snd_cwnd_cnt = 0;
3092 tp->prior_cwnd = tp->snd_cwnd;
3093 tp->prr_delivered = 0;
3094 tp->prr_out = 0;
3095 tcp_set_ca_state(sk, TCP_CA_Recovery);
3096}
3097
3098/* Process an event, which can update packets-in-flight not trivially.
3099 * Main goal of this function is to calculate new estimate for left_out,
3100 * taking into account both packets sitting in receiver's buffer and
3101 * packets lost by network.
3102 *
3103 * Besides that it does CWND reduction, when packet loss is detected
3104 * and changes state of machine.
3105 *
3106 * It does _not_ decide what to send, it is made in function
3107 * tcp_xmit_retransmit_queue().
3108 */
3109static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3110 int prior_sacked, bool is_dupack,
3111 int flag)
3112{
3113 struct inet_connection_sock *icsk = inet_csk(sk);
3114 struct tcp_sock *tp = tcp_sk(sk);
3115 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3116 (tcp_fackets_out(tp) > tp->reordering));
3117 int newly_acked_sacked = 0;
3118 int fast_rexmit = 0;
3119
3120 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3121 tp->sacked_out = 0;
3122 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3123 tp->fackets_out = 0;
3124
3125 /* Now state machine starts.
3126 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3127 if (flag & FLAG_ECE)
3128 tp->prior_ssthresh = 0;
3129
3130 /* B. In all the states check for reneging SACKs. */
3131 if (tcp_check_sack_reneging(sk, flag))
3132 return;
3133
3134 /* C. Check consistency of the current state. */
3135 tcp_verify_left_out(tp);
3136
3137 /* D. Check state exit conditions. State can be terminated
3138 * when high_seq is ACKed. */
3139 if (icsk->icsk_ca_state == TCP_CA_Open) {
3140 WARN_ON(tp->retrans_out != 0);
3141 tp->retrans_stamp = 0;
3142 } else if (!before(tp->snd_una, tp->high_seq)) {
3143 switch (icsk->icsk_ca_state) {
3144 case TCP_CA_Loss:
3145 icsk->icsk_retransmits = 0;
3146 if (tcp_try_undo_recovery(sk))
3147 return;
3148 break;
3149
3150 case TCP_CA_CWR:
3151 /* CWR is to be held something *above* high_seq
3152 * is ACKed for CWR bit to reach receiver. */
3153 if (tp->snd_una != tp->high_seq) {
3154 tcp_complete_cwr(sk);
3155 tcp_set_ca_state(sk, TCP_CA_Open);
3156 }
3157 break;
3158
3159 case TCP_CA_Recovery:
3160 if (tcp_is_reno(tp))
3161 tcp_reset_reno_sack(tp);
3162 if (tcp_try_undo_recovery(sk))
3163 return;
3164 tcp_complete_cwr(sk);
3165 break;
3166 }
3167 }
3168
3169 /* E. Process state. */
3170 switch (icsk->icsk_ca_state) {
3171 case TCP_CA_Recovery:
3172 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3173 if (tcp_is_reno(tp) && is_dupack)
3174 tcp_add_reno_sack(sk);
3175 } else
3176 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3177 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
3178 break;
3179 case TCP_CA_Loss:
3180 if (flag & FLAG_DATA_ACKED)
3181 icsk->icsk_retransmits = 0;
3182 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3183 tcp_reset_reno_sack(tp);
3184 if (!tcp_try_undo_loss(sk)) {
3185 tcp_moderate_cwnd(tp);
3186 tcp_xmit_retransmit_queue(sk);
3187 return;
3188 }
3189 if (icsk->icsk_ca_state != TCP_CA_Open)
3190 return;
3191 /* Loss is undone; fall through to processing in Open state. */
3192 default:
3193 if (tcp_is_reno(tp)) {
3194 if (flag & FLAG_SND_UNA_ADVANCED)
3195 tcp_reset_reno_sack(tp);
3196 if (is_dupack)
3197 tcp_add_reno_sack(sk);
3198 }
3199 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
3200
3201 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3202 tcp_try_undo_dsack(sk);
3203
3204 if (!tcp_time_to_recover(sk, flag)) {
3205 tcp_try_to_open(sk, flag);
3206 return;
3207 }
3208
3209 /* MTU probe failure: don't reduce cwnd */
3210 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3211 icsk->icsk_mtup.probe_size &&
3212 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3213 tcp_mtup_probe_failed(sk);
3214 /* Restores the reduction we did in tcp_mtup_probe() */
3215 tp->snd_cwnd++;
3216 tcp_simple_retransmit(sk);
3217 return;
3218 }
3219
3220 /* Otherwise enter Recovery state */
3221 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3222 fast_rexmit = 1;
3223 }
3224
3225 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3226 tcp_update_scoreboard(sk, fast_rexmit);
3227 tp->prr_delivered += newly_acked_sacked;
3228 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3229 tcp_xmit_retransmit_queue(sk);
3230}
3231
3232void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3233{
3234 tcp_rtt_estimator(sk, seq_rtt);
3235 tcp_set_rto(sk);
3236 inet_csk(sk)->icsk_backoff = 0;
3237}
3238EXPORT_SYMBOL(tcp_valid_rtt_meas);
3239
3240/* Read draft-ietf-tcplw-high-performance before mucking
3241 * with this code. (Supersedes RFC1323)
3242 */
3243static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3244{
3245 /* RTTM Rule: A TSecr value received in a segment is used to
3246 * update the averaged RTT measurement only if the segment
3247 * acknowledges some new data, i.e., only if it advances the
3248 * left edge of the send window.
3249 *
3250 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3251 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3252 *
3253 * Changed: reset backoff as soon as we see the first valid sample.
3254 * If we do not, we get strongly overestimated rto. With timestamps
3255 * samples are accepted even from very old segments: f.e., when rtt=1
3256 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3257 * answer arrives rto becomes 120 seconds! If at least one of segments
3258 * in window is lost... Voila. --ANK (010210)
3259 */
3260 struct tcp_sock *tp = tcp_sk(sk);
3261
3262 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3263}
3264
3265static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3266{
3267 /* We don't have a timestamp. Can only use
3268 * packets that are not retransmitted to determine
3269 * rtt estimates. Also, we must not reset the
3270 * backoff for rto until we get a non-retransmitted
3271 * packet. This allows us to deal with a situation
3272 * where the network delay has increased suddenly.
3273 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3274 */
3275
3276 if (flag & FLAG_RETRANS_DATA_ACKED)
3277 return;
3278
3279 tcp_valid_rtt_meas(sk, seq_rtt);
3280}
3281
3282static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3283 const s32 seq_rtt)
3284{
3285 const struct tcp_sock *tp = tcp_sk(sk);
3286 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3287 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3288 tcp_ack_saw_tstamp(sk, flag);
3289 else if (seq_rtt >= 0)
3290 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3291}
3292
3293static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3294{
3295 const struct inet_connection_sock *icsk = inet_csk(sk);
3296 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3297 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3298}
3299
3300/* Restart timer after forward progress on connection.
3301 * RFC2988 recommends to restart timer to now+rto.
3302 */
3303void tcp_rearm_rto(struct sock *sk)
3304{
3305 struct tcp_sock *tp = tcp_sk(sk);
3306
3307 if (!tp->packets_out) {
3308 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3309 } else {
3310 u32 rto = inet_csk(sk)->icsk_rto;
3311 /* Offset the time elapsed after installing regular RTO */
3312 if (tp->early_retrans_delayed) {
3313 struct sk_buff *skb = tcp_write_queue_head(sk);
3314 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3315 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3316 /* delta may not be positive if the socket is locked
3317 * when the delayed ER timer fires and is rescheduled.
3318 */
3319 if (delta > 0)
3320 rto = delta;
3321 }
3322 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3323 TCP_RTO_MAX);
3324 }
3325 tp->early_retrans_delayed = 0;
3326}
3327
3328/* This function is called when the delayed ER timer fires. TCP enters
3329 * fast recovery and performs fast-retransmit.
3330 */
3331void tcp_resume_early_retransmit(struct sock *sk)
3332{
3333 struct tcp_sock *tp = tcp_sk(sk);
3334
3335 tcp_rearm_rto(sk);
3336
3337 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3338 if (!tp->do_early_retrans)
3339 return;
3340
3341 tcp_enter_recovery(sk, false);
3342 tcp_update_scoreboard(sk, 1);
3343 tcp_xmit_retransmit_queue(sk);
3344}
3345
3346/* If we get here, the whole TSO packet has not been acked. */
3347static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3348{
3349 struct tcp_sock *tp = tcp_sk(sk);
3350 u32 packets_acked;
3351
3352 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3353
3354 packets_acked = tcp_skb_pcount(skb);
3355 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3356 return 0;
3357 packets_acked -= tcp_skb_pcount(skb);
3358
3359 if (packets_acked) {
3360 BUG_ON(tcp_skb_pcount(skb) == 0);
3361 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3362 }
3363
3364 return packets_acked;
3365}
3366
3367/* Remove acknowledged frames from the retransmission queue. If our packet
3368 * is before the ack sequence we can discard it as it's confirmed to have
3369 * arrived at the other end.
3370 */
3371static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3372 u32 prior_snd_una)
3373{
3374 struct tcp_sock *tp = tcp_sk(sk);
3375 const struct inet_connection_sock *icsk = inet_csk(sk);
3376 struct sk_buff *skb;
3377 u32 now = tcp_time_stamp;
3378 int fully_acked = true;
3379 int flag = 0;
3380 u32 pkts_acked = 0;
3381 u32 reord = tp->packets_out;
3382 u32 prior_sacked = tp->sacked_out;
3383 s32 seq_rtt = -1;
3384 s32 ca_seq_rtt = -1;
3385 ktime_t last_ackt = net_invalid_timestamp();
3386
3387 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3388 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3389 u32 acked_pcount;
3390 u8 sacked = scb->sacked;
3391
3392 /* Determine how many packets and what bytes were acked, tso and else */
3393 if (after(scb->end_seq, tp->snd_una)) {
3394 if (tcp_skb_pcount(skb) == 1 ||
3395 !after(tp->snd_una, scb->seq))
3396 break;
3397
3398 acked_pcount = tcp_tso_acked(sk, skb);
3399 if (!acked_pcount)
3400 break;
3401
3402 fully_acked = false;
3403 } else {
3404 acked_pcount = tcp_skb_pcount(skb);
3405 }
3406
3407 if (sacked & TCPCB_RETRANS) {
3408 if (sacked & TCPCB_SACKED_RETRANS)
3409 tp->retrans_out -= acked_pcount;
3410 flag |= FLAG_RETRANS_DATA_ACKED;
3411 ca_seq_rtt = -1;
3412 seq_rtt = -1;
3413 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3414 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3415 } else {
3416 ca_seq_rtt = now - scb->when;
3417 last_ackt = skb->tstamp;
3418 if (seq_rtt < 0) {
3419 seq_rtt = ca_seq_rtt;
3420 }
3421 if (!(sacked & TCPCB_SACKED_ACKED))
3422 reord = min(pkts_acked, reord);
3423 }
3424
3425 if (sacked & TCPCB_SACKED_ACKED)
3426 tp->sacked_out -= acked_pcount;
3427 if (sacked & TCPCB_LOST)
3428 tp->lost_out -= acked_pcount;
3429
3430 tp->packets_out -= acked_pcount;
3431 pkts_acked += acked_pcount;
3432
3433 /* Initial outgoing SYN's get put onto the write_queue
3434 * just like anything else we transmit. It is not
3435 * true data, and if we misinform our callers that
3436 * this ACK acks real data, we will erroneously exit
3437 * connection startup slow start one packet too
3438 * quickly. This is severely frowned upon behavior.
3439 */
3440 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3441 flag |= FLAG_DATA_ACKED;
3442 } else {
3443 flag |= FLAG_SYN_ACKED;
3444 tp->retrans_stamp = 0;
3445 }
3446
3447 if (!fully_acked)
3448 break;
3449
3450 tcp_unlink_write_queue(skb, sk);
3451 sk_wmem_free_skb(sk, skb);
3452 tp->scoreboard_skb_hint = NULL;
3453 if (skb == tp->retransmit_skb_hint)
3454 tp->retransmit_skb_hint = NULL;
3455 if (skb == tp->lost_skb_hint)
3456 tp->lost_skb_hint = NULL;
3457 }
3458
3459 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3460 tp->snd_up = tp->snd_una;
3461
3462 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3463 flag |= FLAG_SACK_RENEGING;
3464
3465 if (flag & FLAG_ACKED) {
3466 const struct tcp_congestion_ops *ca_ops
3467 = inet_csk(sk)->icsk_ca_ops;
3468
3469 if (unlikely(icsk->icsk_mtup.probe_size &&
3470 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3471 tcp_mtup_probe_success(sk);
3472 }
3473
3474 tcp_ack_update_rtt(sk, flag, seq_rtt);
3475 tcp_rearm_rto(sk);
3476
3477 if (tcp_is_reno(tp)) {
3478 tcp_remove_reno_sacks(sk, pkts_acked);
3479 } else {
3480 int delta;
3481
3482 /* Non-retransmitted hole got filled? That's reordering */
3483 if (reord < prior_fackets)
3484 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3485
3486 delta = tcp_is_fack(tp) ? pkts_acked :
3487 prior_sacked - tp->sacked_out;
3488 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3489 }
3490
3491 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3492
3493 if (ca_ops->pkts_acked) {
3494 s32 rtt_us = -1;
3495
3496 /* Is the ACK triggering packet unambiguous? */
3497 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3498 /* High resolution needed and available? */
3499 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3500 !ktime_equal(last_ackt,
3501 net_invalid_timestamp()))
3502 rtt_us = ktime_us_delta(ktime_get_real(),
3503 last_ackt);
3504 else if (ca_seq_rtt >= 0)
3505 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3506 }
3507
3508 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3509 }
3510 }
3511
3512#if FASTRETRANS_DEBUG > 0
3513 WARN_ON((int)tp->sacked_out < 0);
3514 WARN_ON((int)tp->lost_out < 0);
3515 WARN_ON((int)tp->retrans_out < 0);
3516 if (!tp->packets_out && tcp_is_sack(tp)) {
3517 icsk = inet_csk(sk);
3518 if (tp->lost_out) {
3519 pr_debug("Leak l=%u %d\n",
3520 tp->lost_out, icsk->icsk_ca_state);
3521 tp->lost_out = 0;
3522 }
3523 if (tp->sacked_out) {
3524 pr_debug("Leak s=%u %d\n",
3525 tp->sacked_out, icsk->icsk_ca_state);
3526 tp->sacked_out = 0;
3527 }
3528 if (tp->retrans_out) {
3529 pr_debug("Leak r=%u %d\n",
3530 tp->retrans_out, icsk->icsk_ca_state);
3531 tp->retrans_out = 0;
3532 }
3533 }
3534#endif
3535 return flag;
3536}
3537
3538static void tcp_ack_probe(struct sock *sk)
3539{
3540 const struct tcp_sock *tp = tcp_sk(sk);
3541 struct inet_connection_sock *icsk = inet_csk(sk);
3542
3543 /* Was it a usable window open? */
3544
3545 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3546 icsk->icsk_backoff = 0;
3547 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3548 /* Socket must be waked up by subsequent tcp_data_snd_check().
3549 * This function is not for random using!
3550 */
3551 } else {
3552 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3553 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3554 TCP_RTO_MAX);
3555 }
3556}
3557
3558static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3559{
3560 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3561 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3562}
3563
3564static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3565{
3566 const struct tcp_sock *tp = tcp_sk(sk);
3567 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3568 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3569}
3570
3571/* Check that window update is acceptable.
3572 * The function assumes that snd_una<=ack<=snd_next.
3573 */
3574static inline int tcp_may_update_window(const struct tcp_sock *tp,
3575 const u32 ack, const u32 ack_seq,
3576 const u32 nwin)
3577{
3578 return after(ack, tp->snd_una) ||
3579 after(ack_seq, tp->snd_wl1) ||
3580 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3581}
3582
3583/* Update our send window.
3584 *
3585 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3586 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3587 */
3588static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3589 u32 ack_seq)
3590{
3591 struct tcp_sock *tp = tcp_sk(sk);
3592 int flag = 0;
3593 u32 nwin = ntohs(tcp_hdr(skb)->window);
3594
3595 if (likely(!tcp_hdr(skb)->syn))
3596 nwin <<= tp->rx_opt.snd_wscale;
3597
3598 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3599 flag |= FLAG_WIN_UPDATE;
3600 tcp_update_wl(tp, ack_seq);
3601
3602 if (tp->snd_wnd != nwin) {
3603 tp->snd_wnd = nwin;
3604
3605 /* Note, it is the only place, where
3606 * fast path is recovered for sending TCP.
3607 */
3608 tp->pred_flags = 0;
3609 tcp_fast_path_check(sk);
3610
3611 if (nwin > tp->max_window) {
3612 tp->max_window = nwin;
3613 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3614 }
3615 }
3616 }
3617
3618 tp->snd_una = ack;
3619
3620 return flag;
3621}
3622
3623/* A very conservative spurious RTO response algorithm: reduce cwnd and
3624 * continue in congestion avoidance.
3625 */
3626static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3627{
3628 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3629 tp->snd_cwnd_cnt = 0;
3630 tp->bytes_acked = 0;
3631 TCP_ECN_queue_cwr(tp);
3632 tcp_moderate_cwnd(tp);
3633}
3634
3635/* A conservative spurious RTO response algorithm: reduce cwnd using
3636 * rate halving and continue in congestion avoidance.
3637 */
3638static void tcp_ratehalving_spur_to_response(struct sock *sk)
3639{
3640 tcp_enter_cwr(sk, 0);
3641}
3642
3643static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3644{
3645 if (flag & FLAG_ECE)
3646 tcp_ratehalving_spur_to_response(sk);
3647 else
3648 tcp_undo_cwr(sk, true);
3649}
3650
3651/* F-RTO spurious RTO detection algorithm (RFC4138)
3652 *
3653 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3654 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3655 * window (but not to or beyond highest sequence sent before RTO):
3656 * On First ACK, send two new segments out.
3657 * On Second ACK, RTO was likely spurious. Do spurious response (response
3658 * algorithm is not part of the F-RTO detection algorithm
3659 * given in RFC4138 but can be selected separately).
3660 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3661 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3662 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3663 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3664 *
3665 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3666 * original window even after we transmit two new data segments.
3667 *
3668 * SACK version:
3669 * on first step, wait until first cumulative ACK arrives, then move to
3670 * the second step. In second step, the next ACK decides.
3671 *
3672 * F-RTO is implemented (mainly) in four functions:
3673 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3674 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3675 * called when tcp_use_frto() showed green light
3676 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3677 * - tcp_enter_frto_loss() is called if there is not enough evidence
3678 * to prove that the RTO is indeed spurious. It transfers the control
3679 * from F-RTO to the conventional RTO recovery
3680 */
3681static bool tcp_process_frto(struct sock *sk, int flag)
3682{
3683 struct tcp_sock *tp = tcp_sk(sk);
3684
3685 tcp_verify_left_out(tp);
3686
3687 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3688 if (flag & FLAG_DATA_ACKED)
3689 inet_csk(sk)->icsk_retransmits = 0;
3690
3691 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3692 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3693 tp->undo_marker = 0;
3694
3695 if (!before(tp->snd_una, tp->frto_highmark)) {
3696 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3697 return true;
3698 }
3699
3700 if (!tcp_is_sackfrto(tp)) {
3701 /* RFC4138 shortcoming in step 2; should also have case c):
3702 * ACK isn't duplicate nor advances window, e.g., opposite dir
3703 * data, winupdate
3704 */
3705 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3706 return true;
3707
3708 if (!(flag & FLAG_DATA_ACKED)) {
3709 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3710 flag);
3711 return true;
3712 }
3713 } else {
3714 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3715 /* Prevent sending of new data. */
3716 tp->snd_cwnd = min(tp->snd_cwnd,
3717 tcp_packets_in_flight(tp));
3718 return true;
3719 }
3720
3721 if ((tp->frto_counter >= 2) &&
3722 (!(flag & FLAG_FORWARD_PROGRESS) ||
3723 ((flag & FLAG_DATA_SACKED) &&
3724 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3725 /* RFC4138 shortcoming (see comment above) */
3726 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3727 (flag & FLAG_NOT_DUP))
3728 return true;
3729
3730 tcp_enter_frto_loss(sk, 3, flag);
3731 return true;
3732 }
3733 }
3734
3735 if (tp->frto_counter == 1) {
3736 /* tcp_may_send_now needs to see updated state */
3737 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3738 tp->frto_counter = 2;
3739
3740 if (!tcp_may_send_now(sk))
3741 tcp_enter_frto_loss(sk, 2, flag);
3742
3743 return true;
3744 } else {
3745 switch (sysctl_tcp_frto_response) {
3746 case 2:
3747 tcp_undo_spur_to_response(sk, flag);
3748 break;
3749 case 1:
3750 tcp_conservative_spur_to_response(tp);
3751 break;
3752 default:
3753 tcp_ratehalving_spur_to_response(sk);
3754 break;
3755 }
3756 tp->frto_counter = 0;
3757 tp->undo_marker = 0;
3758 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3759 }
3760 return false;
3761}
3762
3763/* This routine deals with incoming acks, but not outgoing ones. */
3764static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3765{
3766 struct inet_connection_sock *icsk = inet_csk(sk);
3767 struct tcp_sock *tp = tcp_sk(sk);
3768 u32 prior_snd_una = tp->snd_una;
3769 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3770 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3771 bool is_dupack = false;
3772 u32 prior_in_flight;
3773 u32 prior_fackets;
3774 int prior_packets;
3775 int prior_sacked = tp->sacked_out;
3776 int pkts_acked = 0;
3777 bool frto_cwnd = false;
3778
3779 /* If the ack is older than previous acks
3780 * then we can probably ignore it.
3781 */
3782 if (before(ack, prior_snd_una))
3783 goto old_ack;
3784
3785 /* If the ack includes data we haven't sent yet, discard
3786 * this segment (RFC793 Section 3.9).
3787 */
3788 if (after(ack, tp->snd_nxt))
3789 goto invalid_ack;
3790
3791 if (tp->early_retrans_delayed)
3792 tcp_rearm_rto(sk);
3793
3794 if (after(ack, prior_snd_una))
3795 flag |= FLAG_SND_UNA_ADVANCED;
3796
3797 if (sysctl_tcp_abc) {
3798 if (icsk->icsk_ca_state < TCP_CA_CWR)
3799 tp->bytes_acked += ack - prior_snd_una;
3800 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3801 /* we assume just one segment left network */
3802 tp->bytes_acked += min(ack - prior_snd_una,
3803 tp->mss_cache);
3804 }
3805
3806 prior_fackets = tp->fackets_out;
3807 prior_in_flight = tcp_packets_in_flight(tp);
3808
3809 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3810 /* Window is constant, pure forward advance.
3811 * No more checks are required.
3812 * Note, we use the fact that SND.UNA>=SND.WL2.
3813 */
3814 tcp_update_wl(tp, ack_seq);
3815 tp->snd_una = ack;
3816 flag |= FLAG_WIN_UPDATE;
3817
3818 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3819
3820 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3821 } else {
3822 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3823 flag |= FLAG_DATA;
3824 else
3825 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3826
3827 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3828
3829 if (TCP_SKB_CB(skb)->sacked)
3830 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3831
3832 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3833 flag |= FLAG_ECE;
3834
3835 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3836 }
3837
3838 /* We passed data and got it acked, remove any soft error
3839 * log. Something worked...
3840 */
3841 sk->sk_err_soft = 0;
3842 icsk->icsk_probes_out = 0;
3843 tp->rcv_tstamp = tcp_time_stamp;
3844 prior_packets = tp->packets_out;
3845 if (!prior_packets)
3846 goto no_queue;
3847
3848 /* See if we can take anything off of the retransmit queue. */
3849 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3850
3851 pkts_acked = prior_packets - tp->packets_out;
3852
3853 if (tp->frto_counter)
3854 frto_cwnd = tcp_process_frto(sk, flag);
3855 /* Guarantee sacktag reordering detection against wrap-arounds */
3856 if (before(tp->frto_highmark, tp->snd_una))
3857 tp->frto_highmark = 0;
3858
3859 if (tcp_ack_is_dubious(sk, flag)) {
3860 /* Advance CWND, if state allows this. */
3861 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3862 tcp_may_raise_cwnd(sk, flag))
3863 tcp_cong_avoid(sk, ack, prior_in_flight);
3864 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3865 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3866 is_dupack, flag);
3867 } else {
3868 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3869 tcp_cong_avoid(sk, ack, prior_in_flight);
3870 }
3871
3872 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3873 dst_confirm(__sk_dst_get(sk));
3874
3875 return 1;
3876
3877no_queue:
3878 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3879 if (flag & FLAG_DSACKING_ACK)
3880 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3881 is_dupack, flag);
3882 /* If this ack opens up a zero window, clear backoff. It was
3883 * being used to time the probes, and is probably far higher than
3884 * it needs to be for normal retransmission.
3885 */
3886 if (tcp_send_head(sk))
3887 tcp_ack_probe(sk);
3888 return 1;
3889
3890invalid_ack:
3891 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3892 return -1;
3893
3894old_ack:
3895 /* If data was SACKed, tag it and see if we should send more data.
3896 * If data was DSACKed, see if we can undo a cwnd reduction.
3897 */
3898 if (TCP_SKB_CB(skb)->sacked) {
3899 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3900 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3901 is_dupack, flag);
3902 }
3903
3904 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3905 return 0;
3906}
3907
3908/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3909 * But, this can also be called on packets in the established flow when
3910 * the fast version below fails.
3911 */
3912void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3913 const u8 **hvpp, int estab)
3914{
3915 const unsigned char *ptr;
3916 const struct tcphdr *th = tcp_hdr(skb);
3917 int length = (th->doff * 4) - sizeof(struct tcphdr);
3918
3919 ptr = (const unsigned char *)(th + 1);
3920 opt_rx->saw_tstamp = 0;
3921
3922 while (length > 0) {
3923 int opcode = *ptr++;
3924 int opsize;
3925
3926 switch (opcode) {
3927 case TCPOPT_EOL:
3928 return;
3929 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3930 length--;
3931 continue;
3932 default:
3933 opsize = *ptr++;
3934 if (opsize < 2) /* "silly options" */
3935 return;
3936 if (opsize > length)
3937 return; /* don't parse partial options */
3938 switch (opcode) {
3939 case TCPOPT_MSS:
3940 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3941 u16 in_mss = get_unaligned_be16(ptr);
3942 if (in_mss) {
3943 if (opt_rx->user_mss &&
3944 opt_rx->user_mss < in_mss)
3945 in_mss = opt_rx->user_mss;
3946 opt_rx->mss_clamp = in_mss;
3947 }
3948 }
3949 break;
3950 case TCPOPT_WINDOW:
3951 if (opsize == TCPOLEN_WINDOW && th->syn &&
3952 !estab && sysctl_tcp_window_scaling) {
3953 __u8 snd_wscale = *(__u8 *)ptr;
3954 opt_rx->wscale_ok = 1;
3955 if (snd_wscale > 14) {
3956 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3957 __func__,
3958 snd_wscale);
3959 snd_wscale = 14;
3960 }
3961 opt_rx->snd_wscale = snd_wscale;
3962 }
3963 break;
3964 case TCPOPT_TIMESTAMP:
3965 if ((opsize == TCPOLEN_TIMESTAMP) &&
3966 ((estab && opt_rx->tstamp_ok) ||
3967 (!estab && sysctl_tcp_timestamps))) {
3968 opt_rx->saw_tstamp = 1;
3969 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3970 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3971 }
3972 break;
3973 case TCPOPT_SACK_PERM:
3974 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3975 !estab && sysctl_tcp_sack) {
3976 opt_rx->sack_ok = TCP_SACK_SEEN;
3977 tcp_sack_reset(opt_rx);
3978 }
3979 break;
3980
3981 case TCPOPT_SACK:
3982 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3983 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3984 opt_rx->sack_ok) {
3985 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3986 }
3987 break;
3988#ifdef CONFIG_TCP_MD5SIG
3989 case TCPOPT_MD5SIG:
3990 /*
3991 * The MD5 Hash has already been
3992 * checked (see tcp_v{4,6}_do_rcv()).
3993 */
3994 break;
3995#endif
3996 case TCPOPT_COOKIE:
3997 /* This option is variable length.
3998 */
3999 switch (opsize) {
4000 case TCPOLEN_COOKIE_BASE:
4001 /* not yet implemented */
4002 break;
4003 case TCPOLEN_COOKIE_PAIR:
4004 /* not yet implemented */
4005 break;
4006 case TCPOLEN_COOKIE_MIN+0:
4007 case TCPOLEN_COOKIE_MIN+2:
4008 case TCPOLEN_COOKIE_MIN+4:
4009 case TCPOLEN_COOKIE_MIN+6:
4010 case TCPOLEN_COOKIE_MAX:
4011 /* 16-bit multiple */
4012 opt_rx->cookie_plus = opsize;
4013 *hvpp = ptr;
4014 break;
4015 default:
4016 /* ignore option */
4017 break;
4018 }
4019 break;
4020 }
4021
4022 ptr += opsize-2;
4023 length -= opsize;
4024 }
4025 }
4026}
4027EXPORT_SYMBOL(tcp_parse_options);
4028
4029static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4030{
4031 const __be32 *ptr = (const __be32 *)(th + 1);
4032
4033 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4034 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4035 tp->rx_opt.saw_tstamp = 1;
4036 ++ptr;
4037 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4038 ++ptr;
4039 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4040 return true;
4041 }
4042 return false;
4043}
4044
4045/* Fast parse options. This hopes to only see timestamps.
4046 * If it is wrong it falls back on tcp_parse_options().
4047 */
4048static bool tcp_fast_parse_options(const struct sk_buff *skb,
4049 const struct tcphdr *th,
4050 struct tcp_sock *tp, const u8 **hvpp)
4051{
4052 /* In the spirit of fast parsing, compare doff directly to constant
4053 * values. Because equality is used, short doff can be ignored here.
4054 */
4055 if (th->doff == (sizeof(*th) / 4)) {
4056 tp->rx_opt.saw_tstamp = 0;
4057 return false;
4058 } else if (tp->rx_opt.tstamp_ok &&
4059 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4060 if (tcp_parse_aligned_timestamp(tp, th))
4061 return true;
4062 }
4063 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4064 return true;
4065}
4066
4067#ifdef CONFIG_TCP_MD5SIG
4068/*
4069 * Parse MD5 Signature option
4070 */
4071const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4072{
4073 int length = (th->doff << 2) - sizeof(*th);
4074 const u8 *ptr = (const u8 *)(th + 1);
4075
4076 /* If the TCP option is too short, we can short cut */
4077 if (length < TCPOLEN_MD5SIG)
4078 return NULL;
4079
4080 while (length > 0) {
4081 int opcode = *ptr++;
4082 int opsize;
4083
4084 switch(opcode) {
4085 case TCPOPT_EOL:
4086 return NULL;
4087 case TCPOPT_NOP:
4088 length--;
4089 continue;
4090 default:
4091 opsize = *ptr++;
4092 if (opsize < 2 || opsize > length)
4093 return NULL;
4094 if (opcode == TCPOPT_MD5SIG)
4095 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4096 }
4097 ptr += opsize - 2;
4098 length -= opsize;
4099 }
4100 return NULL;
4101}
4102EXPORT_SYMBOL(tcp_parse_md5sig_option);
4103#endif
4104
4105static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4106{
4107 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4108 tp->rx_opt.ts_recent_stamp = get_seconds();
4109}
4110
4111static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4112{
4113 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4114 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4115 * extra check below makes sure this can only happen
4116 * for pure ACK frames. -DaveM
4117 *
4118 * Not only, also it occurs for expired timestamps.
4119 */
4120
4121 if (tcp_paws_check(&tp->rx_opt, 0))
4122 tcp_store_ts_recent(tp);
4123 }
4124}
4125
4126/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4127 *
4128 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4129 * it can pass through stack. So, the following predicate verifies that
4130 * this segment is not used for anything but congestion avoidance or
4131 * fast retransmit. Moreover, we even are able to eliminate most of such
4132 * second order effects, if we apply some small "replay" window (~RTO)
4133 * to timestamp space.
4134 *
4135 * All these measures still do not guarantee that we reject wrapped ACKs
4136 * on networks with high bandwidth, when sequence space is recycled fastly,
4137 * but it guarantees that such events will be very rare and do not affect
4138 * connection seriously. This doesn't look nice, but alas, PAWS is really
4139 * buggy extension.
4140 *
4141 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4142 * states that events when retransmit arrives after original data are rare.
4143 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4144 * the biggest problem on large power networks even with minor reordering.
4145 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4146 * up to bandwidth of 18Gigabit/sec. 8) ]
4147 */
4148
4149static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4150{
4151 const struct tcp_sock *tp = tcp_sk(sk);
4152 const struct tcphdr *th = tcp_hdr(skb);
4153 u32 seq = TCP_SKB_CB(skb)->seq;
4154 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4155
4156 return (/* 1. Pure ACK with correct sequence number. */
4157 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4158
4159 /* 2. ... and duplicate ACK. */
4160 ack == tp->snd_una &&
4161
4162 /* 3. ... and does not update window. */
4163 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4164
4165 /* 4. ... and sits in replay window. */
4166 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4167}
4168
4169static inline int tcp_paws_discard(const struct sock *sk,
4170 const struct sk_buff *skb)
4171{
4172 const struct tcp_sock *tp = tcp_sk(sk);
4173
4174 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4175 !tcp_disordered_ack(sk, skb);
4176}
4177
4178/* Check segment sequence number for validity.
4179 *
4180 * Segment controls are considered valid, if the segment
4181 * fits to the window after truncation to the window. Acceptability
4182 * of data (and SYN, FIN, of course) is checked separately.
4183 * See tcp_data_queue(), for example.
4184 *
4185 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4186 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4187 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4188 * (borrowed from freebsd)
4189 */
4190
4191static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4192{
4193 return !before(end_seq, tp->rcv_wup) &&
4194 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4195}
4196
4197/* When we get a reset we do this. */
4198static void tcp_reset(struct sock *sk)
4199{
4200 /* We want the right error as BSD sees it (and indeed as we do). */
4201 switch (sk->sk_state) {
4202 case TCP_SYN_SENT:
4203 sk->sk_err = ECONNREFUSED;
4204 break;
4205 case TCP_CLOSE_WAIT:
4206 sk->sk_err = EPIPE;
4207 break;
4208 case TCP_CLOSE:
4209 return;
4210 default:
4211 sk->sk_err = ECONNRESET;
4212 }
4213 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4214 smp_wmb();
4215
4216 if (!sock_flag(sk, SOCK_DEAD))
4217 sk->sk_error_report(sk);
4218
4219 tcp_done(sk);
4220}
4221
4222/*
4223 * Process the FIN bit. This now behaves as it is supposed to work
4224 * and the FIN takes effect when it is validly part of sequence
4225 * space. Not before when we get holes.
4226 *
4227 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4228 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4229 * TIME-WAIT)
4230 *
4231 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4232 * close and we go into CLOSING (and later onto TIME-WAIT)
4233 *
4234 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4235 */
4236static void tcp_fin(struct sock *sk)
4237{
4238 struct tcp_sock *tp = tcp_sk(sk);
4239
4240 inet_csk_schedule_ack(sk);
4241
4242 sk->sk_shutdown |= RCV_SHUTDOWN;
4243 sock_set_flag(sk, SOCK_DONE);
4244
4245 switch (sk->sk_state) {
4246 case TCP_SYN_RECV:
4247 case TCP_ESTABLISHED:
4248 /* Move to CLOSE_WAIT */
4249 tcp_set_state(sk, TCP_CLOSE_WAIT);
4250 inet_csk(sk)->icsk_ack.pingpong = 1;
4251 break;
4252
4253 case TCP_CLOSE_WAIT:
4254 case TCP_CLOSING:
4255 /* Received a retransmission of the FIN, do
4256 * nothing.
4257 */
4258 break;
4259 case TCP_LAST_ACK:
4260 /* RFC793: Remain in the LAST-ACK state. */
4261 break;
4262
4263 case TCP_FIN_WAIT1:
4264 /* This case occurs when a simultaneous close
4265 * happens, we must ack the received FIN and
4266 * enter the CLOSING state.
4267 */
4268 tcp_send_ack(sk);
4269 tcp_set_state(sk, TCP_CLOSING);
4270 break;
4271 case TCP_FIN_WAIT2:
4272 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4273 tcp_send_ack(sk);
4274 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4275 break;
4276 default:
4277 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4278 * cases we should never reach this piece of code.
4279 */
4280 pr_err("%s: Impossible, sk->sk_state=%d\n",
4281 __func__, sk->sk_state);
4282 break;
4283 }
4284
4285 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4286 * Probably, we should reset in this case. For now drop them.
4287 */
4288 __skb_queue_purge(&tp->out_of_order_queue);
4289 if (tcp_is_sack(tp))
4290 tcp_sack_reset(&tp->rx_opt);
4291 sk_mem_reclaim(sk);
4292
4293 if (!sock_flag(sk, SOCK_DEAD)) {
4294 sk->sk_state_change(sk);
4295
4296 /* Do not send POLL_HUP for half duplex close. */
4297 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4298 sk->sk_state == TCP_CLOSE)
4299 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4300 else
4301 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4302 }
4303}
4304
4305static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4306 u32 end_seq)
4307{
4308 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4309 if (before(seq, sp->start_seq))
4310 sp->start_seq = seq;
4311 if (after(end_seq, sp->end_seq))
4312 sp->end_seq = end_seq;
4313 return true;
4314 }
4315 return false;
4316}
4317
4318static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4319{
4320 struct tcp_sock *tp = tcp_sk(sk);
4321
4322 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4323 int mib_idx;
4324
4325 if (before(seq, tp->rcv_nxt))
4326 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4327 else
4328 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4329
4330 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4331
4332 tp->rx_opt.dsack = 1;
4333 tp->duplicate_sack[0].start_seq = seq;
4334 tp->duplicate_sack[0].end_seq = end_seq;
4335 }
4336}
4337
4338static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4339{
4340 struct tcp_sock *tp = tcp_sk(sk);
4341
4342 if (!tp->rx_opt.dsack)
4343 tcp_dsack_set(sk, seq, end_seq);
4344 else
4345 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4346}
4347
4348static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4349{
4350 struct tcp_sock *tp = tcp_sk(sk);
4351
4352 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4353 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4355 tcp_enter_quickack_mode(sk);
4356
4357 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4358 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4359
4360 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4361 end_seq = tp->rcv_nxt;
4362 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4363 }
4364 }
4365
4366 tcp_send_ack(sk);
4367}
4368
4369/* These routines update the SACK block as out-of-order packets arrive or
4370 * in-order packets close up the sequence space.
4371 */
4372static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4373{
4374 int this_sack;
4375 struct tcp_sack_block *sp = &tp->selective_acks[0];
4376 struct tcp_sack_block *swalk = sp + 1;
4377
4378 /* See if the recent change to the first SACK eats into
4379 * or hits the sequence space of other SACK blocks, if so coalesce.
4380 */
4381 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4382 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4383 int i;
4384
4385 /* Zap SWALK, by moving every further SACK up by one slot.
4386 * Decrease num_sacks.
4387 */
4388 tp->rx_opt.num_sacks--;
4389 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4390 sp[i] = sp[i + 1];
4391 continue;
4392 }
4393 this_sack++, swalk++;
4394 }
4395}
4396
4397static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4398{
4399 struct tcp_sock *tp = tcp_sk(sk);
4400 struct tcp_sack_block *sp = &tp->selective_acks[0];
4401 int cur_sacks = tp->rx_opt.num_sacks;
4402 int this_sack;
4403
4404 if (!cur_sacks)
4405 goto new_sack;
4406
4407 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4408 if (tcp_sack_extend(sp, seq, end_seq)) {
4409 /* Rotate this_sack to the first one. */
4410 for (; this_sack > 0; this_sack--, sp--)
4411 swap(*sp, *(sp - 1));
4412 if (cur_sacks > 1)
4413 tcp_sack_maybe_coalesce(tp);
4414 return;
4415 }
4416 }
4417
4418 /* Could not find an adjacent existing SACK, build a new one,
4419 * put it at the front, and shift everyone else down. We
4420 * always know there is at least one SACK present already here.
4421 *
4422 * If the sack array is full, forget about the last one.
4423 */
4424 if (this_sack >= TCP_NUM_SACKS) {
4425 this_sack--;
4426 tp->rx_opt.num_sacks--;
4427 sp--;
4428 }
4429 for (; this_sack > 0; this_sack--, sp--)
4430 *sp = *(sp - 1);
4431
4432new_sack:
4433 /* Build the new head SACK, and we're done. */
4434 sp->start_seq = seq;
4435 sp->end_seq = end_seq;
4436 tp->rx_opt.num_sacks++;
4437}
4438
4439/* RCV.NXT advances, some SACKs should be eaten. */
4440
4441static void tcp_sack_remove(struct tcp_sock *tp)
4442{
4443 struct tcp_sack_block *sp = &tp->selective_acks[0];
4444 int num_sacks = tp->rx_opt.num_sacks;
4445 int this_sack;
4446
4447 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4448 if (skb_queue_empty(&tp->out_of_order_queue)) {
4449 tp->rx_opt.num_sacks = 0;
4450 return;
4451 }
4452
4453 for (this_sack = 0; this_sack < num_sacks;) {
4454 /* Check if the start of the sack is covered by RCV.NXT. */
4455 if (!before(tp->rcv_nxt, sp->start_seq)) {
4456 int i;
4457
4458 /* RCV.NXT must cover all the block! */
4459 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4460
4461 /* Zap this SACK, by moving forward any other SACKS. */
4462 for (i=this_sack+1; i < num_sacks; i++)
4463 tp->selective_acks[i-1] = tp->selective_acks[i];
4464 num_sacks--;
4465 continue;
4466 }
4467 this_sack++;
4468 sp++;
4469 }
4470 tp->rx_opt.num_sacks = num_sacks;
4471}
4472
4473/* This one checks to see if we can put data from the
4474 * out_of_order queue into the receive_queue.
4475 */
4476static void tcp_ofo_queue(struct sock *sk)
4477{
4478 struct tcp_sock *tp = tcp_sk(sk);
4479 __u32 dsack_high = tp->rcv_nxt;
4480 struct sk_buff *skb;
4481
4482 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4483 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4484 break;
4485
4486 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4487 __u32 dsack = dsack_high;
4488 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4489 dsack_high = TCP_SKB_CB(skb)->end_seq;
4490 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4491 }
4492
4493 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4494 SOCK_DEBUG(sk, "ofo packet was already received\n");
4495 __skb_unlink(skb, &tp->out_of_order_queue);
4496 __kfree_skb(skb);
4497 continue;
4498 }
4499 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4500 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4501 TCP_SKB_CB(skb)->end_seq);
4502
4503 __skb_unlink(skb, &tp->out_of_order_queue);
4504 __skb_queue_tail(&sk->sk_receive_queue, skb);
4505 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4506 if (tcp_hdr(skb)->fin)
4507 tcp_fin(sk);
4508 }
4509}
4510
4511static bool tcp_prune_ofo_queue(struct sock *sk);
4512static int tcp_prune_queue(struct sock *sk);
4513
4514static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4515{
4516 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4517 !sk_rmem_schedule(sk, size)) {
4518
4519 if (tcp_prune_queue(sk) < 0)
4520 return -1;
4521
4522 if (!sk_rmem_schedule(sk, size)) {
4523 if (!tcp_prune_ofo_queue(sk))
4524 return -1;
4525
4526 if (!sk_rmem_schedule(sk, size))
4527 return -1;
4528 }
4529 }
4530 return 0;
4531}
4532
4533/**
4534 * tcp_try_coalesce - try to merge skb to prior one
4535 * @sk: socket
4536 * @to: prior buffer
4537 * @from: buffer to add in queue
4538 * @fragstolen: pointer to boolean
4539 *
4540 * Before queueing skb @from after @to, try to merge them
4541 * to reduce overall memory use and queue lengths, if cost is small.
4542 * Packets in ofo or receive queues can stay a long time.
4543 * Better try to coalesce them right now to avoid future collapses.
4544 * Returns true if caller should free @from instead of queueing it
4545 */
4546static bool tcp_try_coalesce(struct sock *sk,
4547 struct sk_buff *to,
4548 struct sk_buff *from,
4549 bool *fragstolen)
4550{
4551 int delta;
4552
4553 *fragstolen = false;
4554
4555 if (tcp_hdr(from)->fin)
4556 return false;
4557
4558 /* Its possible this segment overlaps with prior segment in queue */
4559 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4560 return false;
4561
4562 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4563 return false;
4564
4565 atomic_add(delta, &sk->sk_rmem_alloc);
4566 sk_mem_charge(sk, delta);
4567 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4568 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4569 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4570 return true;
4571}
4572
4573static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4574{
4575 struct tcp_sock *tp = tcp_sk(sk);
4576 struct sk_buff *skb1;
4577 u32 seq, end_seq;
4578
4579 TCP_ECN_check_ce(tp, skb);
4580
4581 if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4582 /* TODO: should increment a counter */
4583 __kfree_skb(skb);
4584 return;
4585 }
4586
4587 /* Disable header prediction. */
4588 tp->pred_flags = 0;
4589 inet_csk_schedule_ack(sk);
4590
4591 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4592 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4593
4594 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4595 if (!skb1) {
4596 /* Initial out of order segment, build 1 SACK. */
4597 if (tcp_is_sack(tp)) {
4598 tp->rx_opt.num_sacks = 1;
4599 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4600 tp->selective_acks[0].end_seq =
4601 TCP_SKB_CB(skb)->end_seq;
4602 }
4603 __skb_queue_head(&tp->out_of_order_queue, skb);
4604 goto end;
4605 }
4606
4607 seq = TCP_SKB_CB(skb)->seq;
4608 end_seq = TCP_SKB_CB(skb)->end_seq;
4609
4610 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4611 bool fragstolen;
4612
4613 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4614 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4615 } else {
4616 kfree_skb_partial(skb, fragstolen);
4617 skb = NULL;
4618 }
4619
4620 if (!tp->rx_opt.num_sacks ||
4621 tp->selective_acks[0].end_seq != seq)
4622 goto add_sack;
4623
4624 /* Common case: data arrive in order after hole. */
4625 tp->selective_acks[0].end_seq = end_seq;
4626 goto end;
4627 }
4628
4629 /* Find place to insert this segment. */
4630 while (1) {
4631 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4632 break;
4633 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4634 skb1 = NULL;
4635 break;
4636 }
4637 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4638 }
4639
4640 /* Do skb overlap to previous one? */
4641 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4642 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4643 /* All the bits are present. Drop. */
4644 __kfree_skb(skb);
4645 skb = NULL;
4646 tcp_dsack_set(sk, seq, end_seq);
4647 goto add_sack;
4648 }
4649 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4650 /* Partial overlap. */
4651 tcp_dsack_set(sk, seq,
4652 TCP_SKB_CB(skb1)->end_seq);
4653 } else {
4654 if (skb_queue_is_first(&tp->out_of_order_queue,
4655 skb1))
4656 skb1 = NULL;
4657 else
4658 skb1 = skb_queue_prev(
4659 &tp->out_of_order_queue,
4660 skb1);
4661 }
4662 }
4663 if (!skb1)
4664 __skb_queue_head(&tp->out_of_order_queue, skb);
4665 else
4666 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4667
4668 /* And clean segments covered by new one as whole. */
4669 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4670 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4671
4672 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4673 break;
4674 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4675 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4676 end_seq);
4677 break;
4678 }
4679 __skb_unlink(skb1, &tp->out_of_order_queue);
4680 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4681 TCP_SKB_CB(skb1)->end_seq);
4682 __kfree_skb(skb1);
4683 }
4684
4685add_sack:
4686 if (tcp_is_sack(tp))
4687 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4688end:
4689 if (skb)
4690 skb_set_owner_r(skb, sk);
4691}
4692
4693static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4694 bool *fragstolen)
4695{
4696 int eaten;
4697 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4698
4699 __skb_pull(skb, hdrlen);
4700 eaten = (tail &&
4701 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4702 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4703 if (!eaten) {
4704 __skb_queue_tail(&sk->sk_receive_queue, skb);
4705 skb_set_owner_r(skb, sk);
4706 }
4707 return eaten;
4708}
4709
4710int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4711{
4712 struct sk_buff *skb;
4713 struct tcphdr *th;
4714 bool fragstolen;
4715
4716 if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
4717 goto err;
4718
4719 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4720 if (!skb)
4721 goto err;
4722
4723 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4724 skb_reset_transport_header(skb);
4725 memset(th, 0, sizeof(*th));
4726
4727 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4728 goto err_free;
4729
4730 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4731 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4732 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4733
4734 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4735 WARN_ON_ONCE(fragstolen); /* should not happen */
4736 __kfree_skb(skb);
4737 }
4738 return size;
4739
4740err_free:
4741 kfree_skb(skb);
4742err:
4743 return -ENOMEM;
4744}
4745
4746static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4747{
4748 const struct tcphdr *th = tcp_hdr(skb);
4749 struct tcp_sock *tp = tcp_sk(sk);
4750 int eaten = -1;
4751 bool fragstolen = false;
4752
4753 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4754 goto drop;
4755
4756 skb_dst_drop(skb);
4757 __skb_pull(skb, th->doff * 4);
4758
4759 TCP_ECN_accept_cwr(tp, skb);
4760
4761 tp->rx_opt.dsack = 0;
4762
4763 /* Queue data for delivery to the user.
4764 * Packets in sequence go to the receive queue.
4765 * Out of sequence packets to the out_of_order_queue.
4766 */
4767 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4768 if (tcp_receive_window(tp) == 0)
4769 goto out_of_window;
4770
4771 /* Ok. In sequence. In window. */
4772 if (tp->ucopy.task == current &&
4773 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4774 sock_owned_by_user(sk) && !tp->urg_data) {
4775 int chunk = min_t(unsigned int, skb->len,
4776 tp->ucopy.len);
4777
4778 __set_current_state(TASK_RUNNING);
4779
4780 local_bh_enable();
4781 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4782 tp->ucopy.len -= chunk;
4783 tp->copied_seq += chunk;
4784 eaten = (chunk == skb->len);
4785 tcp_rcv_space_adjust(sk);
4786 }
4787 local_bh_disable();
4788 }
4789
4790 if (eaten <= 0) {
4791queue_and_out:
4792 if (eaten < 0 &&
4793 tcp_try_rmem_schedule(sk, skb->truesize))
4794 goto drop;
4795
4796 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4797 }
4798 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4799 if (skb->len)
4800 tcp_event_data_recv(sk, skb);
4801 if (th->fin)
4802 tcp_fin(sk);
4803
4804 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4805 tcp_ofo_queue(sk);
4806
4807 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4808 * gap in queue is filled.
4809 */
4810 if (skb_queue_empty(&tp->out_of_order_queue))
4811 inet_csk(sk)->icsk_ack.pingpong = 0;
4812 }
4813
4814 if (tp->rx_opt.num_sacks)
4815 tcp_sack_remove(tp);
4816
4817 tcp_fast_path_check(sk);
4818
4819 if (eaten > 0)
4820 kfree_skb_partial(skb, fragstolen);
4821 else if (!sock_flag(sk, SOCK_DEAD))
4822 sk->sk_data_ready(sk, 0);
4823 return;
4824 }
4825
4826 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4827 /* A retransmit, 2nd most common case. Force an immediate ack. */
4828 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4829 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4830
4831out_of_window:
4832 tcp_enter_quickack_mode(sk);
4833 inet_csk_schedule_ack(sk);
4834drop:
4835 __kfree_skb(skb);
4836 return;
4837 }
4838
4839 /* Out of window. F.e. zero window probe. */
4840 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4841 goto out_of_window;
4842
4843 tcp_enter_quickack_mode(sk);
4844
4845 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4846 /* Partial packet, seq < rcv_next < end_seq */
4847 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4848 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4849 TCP_SKB_CB(skb)->end_seq);
4850
4851 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4852
4853 /* If window is closed, drop tail of packet. But after
4854 * remembering D-SACK for its head made in previous line.
4855 */
4856 if (!tcp_receive_window(tp))
4857 goto out_of_window;
4858 goto queue_and_out;
4859 }
4860
4861 tcp_data_queue_ofo(sk, skb);
4862}
4863
4864static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4865 struct sk_buff_head *list)
4866{
4867 struct sk_buff *next = NULL;
4868
4869 if (!skb_queue_is_last(list, skb))
4870 next = skb_queue_next(list, skb);
4871
4872 __skb_unlink(skb, list);
4873 __kfree_skb(skb);
4874 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4875
4876 return next;
4877}
4878
4879/* Collapse contiguous sequence of skbs head..tail with
4880 * sequence numbers start..end.
4881 *
4882 * If tail is NULL, this means until the end of the list.
4883 *
4884 * Segments with FIN/SYN are not collapsed (only because this
4885 * simplifies code)
4886 */
4887static void
4888tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4889 struct sk_buff *head, struct sk_buff *tail,
4890 u32 start, u32 end)
4891{
4892 struct sk_buff *skb, *n;
4893 bool end_of_skbs;
4894
4895 /* First, check that queue is collapsible and find
4896 * the point where collapsing can be useful. */
4897 skb = head;
4898restart:
4899 end_of_skbs = true;
4900 skb_queue_walk_from_safe(list, skb, n) {
4901 if (skb == tail)
4902 break;
4903 /* No new bits? It is possible on ofo queue. */
4904 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4905 skb = tcp_collapse_one(sk, skb, list);
4906 if (!skb)
4907 break;
4908 goto restart;
4909 }
4910
4911 /* The first skb to collapse is:
4912 * - not SYN/FIN and
4913 * - bloated or contains data before "start" or
4914 * overlaps to the next one.
4915 */
4916 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4917 (tcp_win_from_space(skb->truesize) > skb->len ||
4918 before(TCP_SKB_CB(skb)->seq, start))) {
4919 end_of_skbs = false;
4920 break;
4921 }
4922
4923 if (!skb_queue_is_last(list, skb)) {
4924 struct sk_buff *next = skb_queue_next(list, skb);
4925 if (next != tail &&
4926 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4927 end_of_skbs = false;
4928 break;
4929 }
4930 }
4931
4932 /* Decided to skip this, advance start seq. */
4933 start = TCP_SKB_CB(skb)->end_seq;
4934 }
4935 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4936 return;
4937
4938 while (before(start, end)) {
4939 struct sk_buff *nskb;
4940 unsigned int header = skb_headroom(skb);
4941 int copy = SKB_MAX_ORDER(header, 0);
4942
4943 /* Too big header? This can happen with IPv6. */
4944 if (copy < 0)
4945 return;
4946 if (end - start < copy)
4947 copy = end - start;
4948 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4949 if (!nskb)
4950 return;
4951
4952 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4953 skb_set_network_header(nskb, (skb_network_header(skb) -
4954 skb->head));
4955 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4956 skb->head));
4957 skb_reserve(nskb, header);
4958 memcpy(nskb->head, skb->head, header);
4959 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4960 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4961 __skb_queue_before(list, skb, nskb);
4962 skb_set_owner_r(nskb, sk);
4963
4964 /* Copy data, releasing collapsed skbs. */
4965 while (copy > 0) {
4966 int offset = start - TCP_SKB_CB(skb)->seq;
4967 int size = TCP_SKB_CB(skb)->end_seq - start;
4968
4969 BUG_ON(offset < 0);
4970 if (size > 0) {
4971 size = min(copy, size);
4972 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4973 BUG();
4974 TCP_SKB_CB(nskb)->end_seq += size;
4975 copy -= size;
4976 start += size;
4977 }
4978 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4979 skb = tcp_collapse_one(sk, skb, list);
4980 if (!skb ||
4981 skb == tail ||
4982 tcp_hdr(skb)->syn ||
4983 tcp_hdr(skb)->fin)
4984 return;
4985 }
4986 }
4987 }
4988}
4989
4990/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4991 * and tcp_collapse() them until all the queue is collapsed.
4992 */
4993static void tcp_collapse_ofo_queue(struct sock *sk)
4994{
4995 struct tcp_sock *tp = tcp_sk(sk);
4996 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4997 struct sk_buff *head;
4998 u32 start, end;
4999
5000 if (skb == NULL)
5001 return;
5002
5003 start = TCP_SKB_CB(skb)->seq;
5004 end = TCP_SKB_CB(skb)->end_seq;
5005 head = skb;
5006
5007 for (;;) {
5008 struct sk_buff *next = NULL;
5009
5010 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5011 next = skb_queue_next(&tp->out_of_order_queue, skb);
5012 skb = next;
5013
5014 /* Segment is terminated when we see gap or when
5015 * we are at the end of all the queue. */
5016 if (!skb ||
5017 after(TCP_SKB_CB(skb)->seq, end) ||
5018 before(TCP_SKB_CB(skb)->end_seq, start)) {
5019 tcp_collapse(sk, &tp->out_of_order_queue,
5020 head, skb, start, end);
5021 head = skb;
5022 if (!skb)
5023 break;
5024 /* Start new segment */
5025 start = TCP_SKB_CB(skb)->seq;
5026 end = TCP_SKB_CB(skb)->end_seq;
5027 } else {
5028 if (before(TCP_SKB_CB(skb)->seq, start))
5029 start = TCP_SKB_CB(skb)->seq;
5030 if (after(TCP_SKB_CB(skb)->end_seq, end))
5031 end = TCP_SKB_CB(skb)->end_seq;
5032 }
5033 }
5034}
5035
5036/*
5037 * Purge the out-of-order queue.
5038 * Return true if queue was pruned.
5039 */
5040static bool tcp_prune_ofo_queue(struct sock *sk)
5041{
5042 struct tcp_sock *tp = tcp_sk(sk);
5043 bool res = false;
5044
5045 if (!skb_queue_empty(&tp->out_of_order_queue)) {
5046 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5047 __skb_queue_purge(&tp->out_of_order_queue);
5048
5049 /* Reset SACK state. A conforming SACK implementation will
5050 * do the same at a timeout based retransmit. When a connection
5051 * is in a sad state like this, we care only about integrity
5052 * of the connection not performance.
5053 */
5054 if (tp->rx_opt.sack_ok)
5055 tcp_sack_reset(&tp->rx_opt);
5056 sk_mem_reclaim(sk);
5057 res = true;
5058 }
5059 return res;
5060}
5061
5062/* Reduce allocated memory if we can, trying to get
5063 * the socket within its memory limits again.
5064 *
5065 * Return less than zero if we should start dropping frames
5066 * until the socket owning process reads some of the data
5067 * to stabilize the situation.
5068 */
5069static int tcp_prune_queue(struct sock *sk)
5070{
5071 struct tcp_sock *tp = tcp_sk(sk);
5072
5073 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5074
5075 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5076
5077 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5078 tcp_clamp_window(sk);
5079 else if (sk_under_memory_pressure(sk))
5080 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5081
5082 tcp_collapse_ofo_queue(sk);
5083 if (!skb_queue_empty(&sk->sk_receive_queue))
5084 tcp_collapse(sk, &sk->sk_receive_queue,
5085 skb_peek(&sk->sk_receive_queue),
5086 NULL,
5087 tp->copied_seq, tp->rcv_nxt);
5088 sk_mem_reclaim(sk);
5089
5090 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5091 return 0;
5092
5093 /* Collapsing did not help, destructive actions follow.
5094 * This must not ever occur. */
5095
5096 tcp_prune_ofo_queue(sk);
5097
5098 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5099 return 0;
5100
5101 /* If we are really being abused, tell the caller to silently
5102 * drop receive data on the floor. It will get retransmitted
5103 * and hopefully then we'll have sufficient space.
5104 */
5105 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5106
5107 /* Massive buffer overcommit. */
5108 tp->pred_flags = 0;
5109 return -1;
5110}
5111
5112/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5113 * As additional protections, we do not touch cwnd in retransmission phases,
5114 * and if application hit its sndbuf limit recently.
5115 */
5116void tcp_cwnd_application_limited(struct sock *sk)
5117{
5118 struct tcp_sock *tp = tcp_sk(sk);
5119
5120 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5121 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5122 /* Limited by application or receiver window. */
5123 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5124 u32 win_used = max(tp->snd_cwnd_used, init_win);
5125 if (win_used < tp->snd_cwnd) {
5126 tp->snd_ssthresh = tcp_current_ssthresh(sk);
5127 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5128 }
5129 tp->snd_cwnd_used = 0;
5130 }
5131 tp->snd_cwnd_stamp = tcp_time_stamp;
5132}
5133
5134static bool tcp_should_expand_sndbuf(const struct sock *sk)
5135{
5136 const struct tcp_sock *tp = tcp_sk(sk);
5137
5138 /* If the user specified a specific send buffer setting, do
5139 * not modify it.
5140 */
5141 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5142 return false;
5143
5144 /* If we are under global TCP memory pressure, do not expand. */
5145 if (sk_under_memory_pressure(sk))
5146 return false;
5147
5148 /* If we are under soft global TCP memory pressure, do not expand. */
5149 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5150 return false;
5151
5152 /* If we filled the congestion window, do not expand. */
5153 if (tp->packets_out >= tp->snd_cwnd)
5154 return false;
5155
5156 return true;
5157}
5158
5159/* When incoming ACK allowed to free some skb from write_queue,
5160 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5161 * on the exit from tcp input handler.
5162 *
5163 * PROBLEM: sndbuf expansion does not work well with largesend.
5164 */
5165static void tcp_new_space(struct sock *sk)
5166{
5167 struct tcp_sock *tp = tcp_sk(sk);
5168
5169 if (tcp_should_expand_sndbuf(sk)) {
5170 int sndmem = SKB_TRUESIZE(max_t(u32,
5171 tp->rx_opt.mss_clamp,
5172 tp->mss_cache) +
5173 MAX_TCP_HEADER);
5174 int demanded = max_t(unsigned int, tp->snd_cwnd,
5175 tp->reordering + 1);
5176 sndmem *= 2 * demanded;
5177 if (sndmem > sk->sk_sndbuf)
5178 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5179 tp->snd_cwnd_stamp = tcp_time_stamp;
5180 }
5181
5182 sk->sk_write_space(sk);
5183}
5184
5185static void tcp_check_space(struct sock *sk)
5186{
5187 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5188 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5189 if (sk->sk_socket &&
5190 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5191 tcp_new_space(sk);
5192 }
5193}
5194
5195static inline void tcp_data_snd_check(struct sock *sk)
5196{
5197 tcp_push_pending_frames(sk);
5198 tcp_check_space(sk);
5199}
5200
5201/*
5202 * Check if sending an ack is needed.
5203 */
5204static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5205{
5206 struct tcp_sock *tp = tcp_sk(sk);
5207
5208 /* More than one full frame received... */
5209 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5210 /* ... and right edge of window advances far enough.
5211 * (tcp_recvmsg() will send ACK otherwise). Or...
5212 */
5213 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5214 /* We ACK each frame or... */
5215 tcp_in_quickack_mode(sk) ||
5216 /* We have out of order data. */
5217 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5218 /* Then ack it now */
5219 tcp_send_ack(sk);
5220 } else {
5221 /* Else, send delayed ack. */
5222 tcp_send_delayed_ack(sk);
5223 }
5224}
5225
5226static inline void tcp_ack_snd_check(struct sock *sk)
5227{
5228 if (!inet_csk_ack_scheduled(sk)) {
5229 /* We sent a data segment already. */
5230 return;
5231 }
5232 __tcp_ack_snd_check(sk, 1);
5233}
5234
5235/*
5236 * This routine is only called when we have urgent data
5237 * signaled. Its the 'slow' part of tcp_urg. It could be
5238 * moved inline now as tcp_urg is only called from one
5239 * place. We handle URGent data wrong. We have to - as
5240 * BSD still doesn't use the correction from RFC961.
5241 * For 1003.1g we should support a new option TCP_STDURG to permit
5242 * either form (or just set the sysctl tcp_stdurg).
5243 */
5244
5245static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5246{
5247 struct tcp_sock *tp = tcp_sk(sk);
5248 u32 ptr = ntohs(th->urg_ptr);
5249
5250 if (ptr && !sysctl_tcp_stdurg)
5251 ptr--;
5252 ptr += ntohl(th->seq);
5253
5254 /* Ignore urgent data that we've already seen and read. */
5255 if (after(tp->copied_seq, ptr))
5256 return;
5257
5258 /* Do not replay urg ptr.
5259 *
5260 * NOTE: interesting situation not covered by specs.
5261 * Misbehaving sender may send urg ptr, pointing to segment,
5262 * which we already have in ofo queue. We are not able to fetch
5263 * such data and will stay in TCP_URG_NOTYET until will be eaten
5264 * by recvmsg(). Seems, we are not obliged to handle such wicked
5265 * situations. But it is worth to think about possibility of some
5266 * DoSes using some hypothetical application level deadlock.
5267 */
5268 if (before(ptr, tp->rcv_nxt))
5269 return;
5270
5271 /* Do we already have a newer (or duplicate) urgent pointer? */
5272 if (tp->urg_data && !after(ptr, tp->urg_seq))
5273 return;
5274
5275 /* Tell the world about our new urgent pointer. */
5276 sk_send_sigurg(sk);
5277
5278 /* We may be adding urgent data when the last byte read was
5279 * urgent. To do this requires some care. We cannot just ignore
5280 * tp->copied_seq since we would read the last urgent byte again
5281 * as data, nor can we alter copied_seq until this data arrives
5282 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5283 *
5284 * NOTE. Double Dutch. Rendering to plain English: author of comment
5285 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5286 * and expect that both A and B disappear from stream. This is _wrong_.
5287 * Though this happens in BSD with high probability, this is occasional.
5288 * Any application relying on this is buggy. Note also, that fix "works"
5289 * only in this artificial test. Insert some normal data between A and B and we will
5290 * decline of BSD again. Verdict: it is better to remove to trap
5291 * buggy users.
5292 */
5293 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5294 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5295 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5296 tp->copied_seq++;
5297 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5298 __skb_unlink(skb, &sk->sk_receive_queue);
5299 __kfree_skb(skb);
5300 }
5301 }
5302
5303 tp->urg_data = TCP_URG_NOTYET;
5304 tp->urg_seq = ptr;
5305
5306 /* Disable header prediction. */
5307 tp->pred_flags = 0;
5308}
5309
5310/* This is the 'fast' part of urgent handling. */
5311static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5312{
5313 struct tcp_sock *tp = tcp_sk(sk);
5314
5315 /* Check if we get a new urgent pointer - normally not. */
5316 if (th->urg)
5317 tcp_check_urg(sk, th);
5318
5319 /* Do we wait for any urgent data? - normally not... */
5320 if (tp->urg_data == TCP_URG_NOTYET) {
5321 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5322 th->syn;
5323
5324 /* Is the urgent pointer pointing into this packet? */
5325 if (ptr < skb->len) {
5326 u8 tmp;
5327 if (skb_copy_bits(skb, ptr, &tmp, 1))
5328 BUG();
5329 tp->urg_data = TCP_URG_VALID | tmp;
5330 if (!sock_flag(sk, SOCK_DEAD))
5331 sk->sk_data_ready(sk, 0);
5332 }
5333 }
5334}
5335
5336static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5337{
5338 struct tcp_sock *tp = tcp_sk(sk);
5339 int chunk = skb->len - hlen;
5340 int err;
5341
5342 local_bh_enable();
5343 if (skb_csum_unnecessary(skb))
5344 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5345 else
5346 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5347 tp->ucopy.iov);
5348
5349 if (!err) {
5350 tp->ucopy.len -= chunk;
5351 tp->copied_seq += chunk;
5352 tcp_rcv_space_adjust(sk);
5353 }
5354
5355 local_bh_disable();
5356 return err;
5357}
5358
5359static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5360 struct sk_buff *skb)
5361{
5362 __sum16 result;
5363
5364 if (sock_owned_by_user(sk)) {
5365 local_bh_enable();
5366 result = __tcp_checksum_complete(skb);
5367 local_bh_disable();
5368 } else {
5369 result = __tcp_checksum_complete(skb);
5370 }
5371 return result;
5372}
5373
5374static inline int tcp_checksum_complete_user(struct sock *sk,
5375 struct sk_buff *skb)
5376{
5377 return !skb_csum_unnecessary(skb) &&
5378 __tcp_checksum_complete_user(sk, skb);
5379}
5380
5381#ifdef CONFIG_NET_DMA
5382static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5383 int hlen)
5384{
5385 struct tcp_sock *tp = tcp_sk(sk);
5386 int chunk = skb->len - hlen;
5387 int dma_cookie;
5388 bool copied_early = false;
5389
5390 if (tp->ucopy.wakeup)
5391 return false;
5392
5393 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5394 tp->ucopy.dma_chan = net_dma_find_channel();
5395
5396 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5397
5398 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5399 skb, hlen,
5400 tp->ucopy.iov, chunk,
5401 tp->ucopy.pinned_list);
5402
5403 if (dma_cookie < 0)
5404 goto out;
5405
5406 tp->ucopy.dma_cookie = dma_cookie;
5407 copied_early = true;
5408
5409 tp->ucopy.len -= chunk;
5410 tp->copied_seq += chunk;
5411 tcp_rcv_space_adjust(sk);
5412
5413 if ((tp->ucopy.len == 0) ||
5414 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5415 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5416 tp->ucopy.wakeup = 1;
5417 sk->sk_data_ready(sk, 0);
5418 }
5419 } else if (chunk > 0) {
5420 tp->ucopy.wakeup = 1;
5421 sk->sk_data_ready(sk, 0);
5422 }
5423out:
5424 return copied_early;
5425}
5426#endif /* CONFIG_NET_DMA */
5427
5428/* Does PAWS and seqno based validation of an incoming segment, flags will
5429 * play significant role here.
5430 */
5431static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5432 const struct tcphdr *th, int syn_inerr)
5433{
5434 const u8 *hash_location;
5435 struct tcp_sock *tp = tcp_sk(sk);
5436
5437 /* RFC1323: H1. Apply PAWS check first. */
5438 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5439 tp->rx_opt.saw_tstamp &&
5440 tcp_paws_discard(sk, skb)) {
5441 if (!th->rst) {
5442 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5443 tcp_send_dupack(sk, skb);
5444 goto discard;
5445 }
5446 /* Reset is accepted even if it did not pass PAWS. */
5447 }
5448
5449 /* Step 1: check sequence number */
5450 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5451 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5452 * (RST) segments are validated by checking their SEQ-fields."
5453 * And page 69: "If an incoming segment is not acceptable,
5454 * an acknowledgment should be sent in reply (unless the RST
5455 * bit is set, if so drop the segment and return)".
5456 */
5457 if (!th->rst)
5458 tcp_send_dupack(sk, skb);
5459 goto discard;
5460 }
5461
5462 /* Step 2: check RST bit */
5463 if (th->rst) {
5464 tcp_reset(sk);
5465 goto discard;
5466 }
5467
5468 /* ts_recent update must be made after we are sure that the packet
5469 * is in window.
5470 */
5471 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5472
5473 /* step 3: check security and precedence [ignored] */
5474
5475 /* step 4: Check for a SYN in window. */
5476 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5477 if (syn_inerr)
5478 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5479 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5480 tcp_reset(sk);
5481 return -1;
5482 }
5483
5484 return 1;
5485
5486discard:
5487 __kfree_skb(skb);
5488 return 0;
5489}
5490
5491/*
5492 * TCP receive function for the ESTABLISHED state.
5493 *
5494 * It is split into a fast path and a slow path. The fast path is
5495 * disabled when:
5496 * - A zero window was announced from us - zero window probing
5497 * is only handled properly in the slow path.
5498 * - Out of order segments arrived.
5499 * - Urgent data is expected.
5500 * - There is no buffer space left
5501 * - Unexpected TCP flags/window values/header lengths are received
5502 * (detected by checking the TCP header against pred_flags)
5503 * - Data is sent in both directions. Fast path only supports pure senders
5504 * or pure receivers (this means either the sequence number or the ack
5505 * value must stay constant)
5506 * - Unexpected TCP option.
5507 *
5508 * When these conditions are not satisfied it drops into a standard
5509 * receive procedure patterned after RFC793 to handle all cases.
5510 * The first three cases are guaranteed by proper pred_flags setting,
5511 * the rest is checked inline. Fast processing is turned on in
5512 * tcp_data_queue when everything is OK.
5513 */
5514int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5515 const struct tcphdr *th, unsigned int len)
5516{
5517 struct tcp_sock *tp = tcp_sk(sk);
5518 int res;
5519
5520 /*
5521 * Header prediction.
5522 * The code loosely follows the one in the famous
5523 * "30 instruction TCP receive" Van Jacobson mail.
5524 *
5525 * Van's trick is to deposit buffers into socket queue
5526 * on a device interrupt, to call tcp_recv function
5527 * on the receive process context and checksum and copy
5528 * the buffer to user space. smart...
5529 *
5530 * Our current scheme is not silly either but we take the
5531 * extra cost of the net_bh soft interrupt processing...
5532 * We do checksum and copy also but from device to kernel.
5533 */
5534
5535 tp->rx_opt.saw_tstamp = 0;
5536
5537 /* pred_flags is 0xS?10 << 16 + snd_wnd
5538 * if header_prediction is to be made
5539 * 'S' will always be tp->tcp_header_len >> 2
5540 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5541 * turn it off (when there are holes in the receive
5542 * space for instance)
5543 * PSH flag is ignored.
5544 */
5545
5546 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5547 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5548 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5549 int tcp_header_len = tp->tcp_header_len;
5550
5551 /* Timestamp header prediction: tcp_header_len
5552 * is automatically equal to th->doff*4 due to pred_flags
5553 * match.
5554 */
5555
5556 /* Check timestamp */
5557 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5558 /* No? Slow path! */
5559 if (!tcp_parse_aligned_timestamp(tp, th))
5560 goto slow_path;
5561
5562 /* If PAWS failed, check it more carefully in slow path */
5563 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5564 goto slow_path;
5565
5566 /* DO NOT update ts_recent here, if checksum fails
5567 * and timestamp was corrupted part, it will result
5568 * in a hung connection since we will drop all
5569 * future packets due to the PAWS test.
5570 */
5571 }
5572
5573 if (len <= tcp_header_len) {
5574 /* Bulk data transfer: sender */
5575 if (len == tcp_header_len) {
5576 /* Predicted packet is in window by definition.
5577 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5578 * Hence, check seq<=rcv_wup reduces to:
5579 */
5580 if (tcp_header_len ==
5581 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5582 tp->rcv_nxt == tp->rcv_wup)
5583 tcp_store_ts_recent(tp);
5584
5585 /* We know that such packets are checksummed
5586 * on entry.
5587 */
5588 tcp_ack(sk, skb, 0);
5589 __kfree_skb(skb);
5590 tcp_data_snd_check(sk);
5591 return 0;
5592 } else { /* Header too small */
5593 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5594 goto discard;
5595 }
5596 } else {
5597 int eaten = 0;
5598 int copied_early = 0;
5599 bool fragstolen = false;
5600
5601 if (tp->copied_seq == tp->rcv_nxt &&
5602 len - tcp_header_len <= tp->ucopy.len) {
5603#ifdef CONFIG_NET_DMA
5604 if (tp->ucopy.task == current &&
5605 sock_owned_by_user(sk) &&
5606 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5607 copied_early = 1;
5608 eaten = 1;
5609 }
5610#endif
5611 if (tp->ucopy.task == current &&
5612 sock_owned_by_user(sk) && !copied_early) {
5613 __set_current_state(TASK_RUNNING);
5614
5615 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5616 eaten = 1;
5617 }
5618 if (eaten) {
5619 /* Predicted packet is in window by definition.
5620 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5621 * Hence, check seq<=rcv_wup reduces to:
5622 */
5623 if (tcp_header_len ==
5624 (sizeof(struct tcphdr) +
5625 TCPOLEN_TSTAMP_ALIGNED) &&
5626 tp->rcv_nxt == tp->rcv_wup)
5627 tcp_store_ts_recent(tp);
5628
5629 tcp_rcv_rtt_measure_ts(sk, skb);
5630
5631 __skb_pull(skb, tcp_header_len);
5632 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5633 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5634 }
5635 if (copied_early)
5636 tcp_cleanup_rbuf(sk, skb->len);
5637 }
5638 if (!eaten) {
5639 if (tcp_checksum_complete_user(sk, skb))
5640 goto csum_error;
5641
5642 /* Predicted packet is in window by definition.
5643 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5644 * Hence, check seq<=rcv_wup reduces to:
5645 */
5646 if (tcp_header_len ==
5647 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5648 tp->rcv_nxt == tp->rcv_wup)
5649 tcp_store_ts_recent(tp);
5650
5651 tcp_rcv_rtt_measure_ts(sk, skb);
5652
5653 if ((int)skb->truesize > sk->sk_forward_alloc)
5654 goto step5;
5655
5656 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5657
5658 /* Bulk data transfer: receiver */
5659 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5660 &fragstolen);
5661 }
5662
5663 tcp_event_data_recv(sk, skb);
5664
5665 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5666 /* Well, only one small jumplet in fast path... */
5667 tcp_ack(sk, skb, FLAG_DATA);
5668 tcp_data_snd_check(sk);
5669 if (!inet_csk_ack_scheduled(sk))
5670 goto no_ack;
5671 }
5672
5673 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5674 __tcp_ack_snd_check(sk, 0);
5675no_ack:
5676#ifdef CONFIG_NET_DMA
5677 if (copied_early)
5678 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5679 else
5680#endif
5681 if (eaten)
5682 kfree_skb_partial(skb, fragstolen);
5683 else
5684 sk->sk_data_ready(sk, 0);
5685 return 0;
5686 }
5687 }
5688
5689slow_path:
5690 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5691 goto csum_error;
5692
5693 /*
5694 * Standard slow path.
5695 */
5696
5697 res = tcp_validate_incoming(sk, skb, th, 1);
5698 if (res <= 0)
5699 return -res;
5700
5701step5:
5702 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5703 goto discard;
5704
5705 tcp_rcv_rtt_measure_ts(sk, skb);
5706
5707 /* Process urgent data. */
5708 tcp_urg(sk, skb, th);
5709
5710 /* step 7: process the segment text */
5711 tcp_data_queue(sk, skb);
5712
5713 tcp_data_snd_check(sk);
5714 tcp_ack_snd_check(sk);
5715 return 0;
5716
5717csum_error:
5718 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5719
5720discard:
5721 __kfree_skb(skb);
5722 return 0;
5723}
5724EXPORT_SYMBOL(tcp_rcv_established);
5725
5726void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5727{
5728 struct tcp_sock *tp = tcp_sk(sk);
5729 struct inet_connection_sock *icsk = inet_csk(sk);
5730
5731 tcp_set_state(sk, TCP_ESTABLISHED);
5732
5733 if (skb != NULL)
5734 security_inet_conn_established(sk, skb);
5735
5736 /* Make sure socket is routed, for correct metrics. */
5737 icsk->icsk_af_ops->rebuild_header(sk);
5738
5739 tcp_init_metrics(sk);
5740
5741 tcp_init_congestion_control(sk);
5742
5743 /* Prevent spurious tcp_cwnd_restart() on first data
5744 * packet.
5745 */
5746 tp->lsndtime = tcp_time_stamp;
5747
5748 tcp_init_buffer_space(sk);
5749
5750 if (sock_flag(sk, SOCK_KEEPOPEN))
5751 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5752
5753 if (!tp->rx_opt.snd_wscale)
5754 __tcp_fast_path_on(tp, tp->snd_wnd);
5755 else
5756 tp->pred_flags = 0;
5757
5758 if (!sock_flag(sk, SOCK_DEAD)) {
5759 sk->sk_state_change(sk);
5760 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5761 }
5762}
5763
5764static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5765 const struct tcphdr *th, unsigned int len)
5766{
5767 const u8 *hash_location;
5768 struct inet_connection_sock *icsk = inet_csk(sk);
5769 struct tcp_sock *tp = tcp_sk(sk);
5770 struct tcp_cookie_values *cvp = tp->cookie_values;
5771 int saved_clamp = tp->rx_opt.mss_clamp;
5772
5773 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5774
5775 if (th->ack) {
5776 /* rfc793:
5777 * "If the state is SYN-SENT then
5778 * first check the ACK bit
5779 * If the ACK bit is set
5780 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5781 * a reset (unless the RST bit is set, if so drop
5782 * the segment and return)"
5783 *
5784 * We do not send data with SYN, so that RFC-correct
5785 * test reduces to:
5786 */
5787 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5788 goto reset_and_undo;
5789
5790 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5791 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5792 tcp_time_stamp)) {
5793 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5794 goto reset_and_undo;
5795 }
5796
5797 /* Now ACK is acceptable.
5798 *
5799 * "If the RST bit is set
5800 * If the ACK was acceptable then signal the user "error:
5801 * connection reset", drop the segment, enter CLOSED state,
5802 * delete TCB, and return."
5803 */
5804
5805 if (th->rst) {
5806 tcp_reset(sk);
5807 goto discard;
5808 }
5809
5810 /* rfc793:
5811 * "fifth, if neither of the SYN or RST bits is set then
5812 * drop the segment and return."
5813 *
5814 * See note below!
5815 * --ANK(990513)
5816 */
5817 if (!th->syn)
5818 goto discard_and_undo;
5819
5820 /* rfc793:
5821 * "If the SYN bit is on ...
5822 * are acceptable then ...
5823 * (our SYN has been ACKed), change the connection
5824 * state to ESTABLISHED..."
5825 */
5826
5827 TCP_ECN_rcv_synack(tp, th);
5828
5829 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5830 tcp_ack(sk, skb, FLAG_SLOWPATH);
5831
5832 /* Ok.. it's good. Set up sequence numbers and
5833 * move to established.
5834 */
5835 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5836 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5837
5838 /* RFC1323: The window in SYN & SYN/ACK segments is
5839 * never scaled.
5840 */
5841 tp->snd_wnd = ntohs(th->window);
5842 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5843
5844 if (!tp->rx_opt.wscale_ok) {
5845 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5846 tp->window_clamp = min(tp->window_clamp, 65535U);
5847 }
5848
5849 if (tp->rx_opt.saw_tstamp) {
5850 tp->rx_opt.tstamp_ok = 1;
5851 tp->tcp_header_len =
5852 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5853 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5854 tcp_store_ts_recent(tp);
5855 } else {
5856 tp->tcp_header_len = sizeof(struct tcphdr);
5857 }
5858
5859 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5860 tcp_enable_fack(tp);
5861
5862 tcp_mtup_init(sk);
5863 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5864 tcp_initialize_rcv_mss(sk);
5865
5866 /* Remember, tcp_poll() does not lock socket!
5867 * Change state from SYN-SENT only after copied_seq
5868 * is initialized. */
5869 tp->copied_seq = tp->rcv_nxt;
5870
5871 if (cvp != NULL &&
5872 cvp->cookie_pair_size > 0 &&
5873 tp->rx_opt.cookie_plus > 0) {
5874 int cookie_size = tp->rx_opt.cookie_plus
5875 - TCPOLEN_COOKIE_BASE;
5876 int cookie_pair_size = cookie_size
5877 + cvp->cookie_desired;
5878
5879 /* A cookie extension option was sent and returned.
5880 * Note that each incoming SYNACK replaces the
5881 * Responder cookie. The initial exchange is most
5882 * fragile, as protection against spoofing relies
5883 * entirely upon the sequence and timestamp (above).
5884 * This replacement strategy allows the correct pair to
5885 * pass through, while any others will be filtered via
5886 * Responder verification later.
5887 */
5888 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5889 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5890 hash_location, cookie_size);
5891 cvp->cookie_pair_size = cookie_pair_size;
5892 }
5893 }
5894
5895 smp_mb();
5896
5897 tcp_finish_connect(sk, skb);
5898
5899 if (sk->sk_write_pending ||
5900 icsk->icsk_accept_queue.rskq_defer_accept ||
5901 icsk->icsk_ack.pingpong) {
5902 /* Save one ACK. Data will be ready after
5903 * several ticks, if write_pending is set.
5904 *
5905 * It may be deleted, but with this feature tcpdumps
5906 * look so _wonderfully_ clever, that I was not able
5907 * to stand against the temptation 8) --ANK
5908 */
5909 inet_csk_schedule_ack(sk);
5910 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5911 tcp_enter_quickack_mode(sk);
5912 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5913 TCP_DELACK_MAX, TCP_RTO_MAX);
5914
5915discard:
5916 __kfree_skb(skb);
5917 return 0;
5918 } else {
5919 tcp_send_ack(sk);
5920 }
5921 return -1;
5922 }
5923
5924 /* No ACK in the segment */
5925
5926 if (th->rst) {
5927 /* rfc793:
5928 * "If the RST bit is set
5929 *
5930 * Otherwise (no ACK) drop the segment and return."
5931 */
5932
5933 goto discard_and_undo;
5934 }
5935
5936 /* PAWS check. */
5937 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5938 tcp_paws_reject(&tp->rx_opt, 0))
5939 goto discard_and_undo;
5940
5941 if (th->syn) {
5942 /* We see SYN without ACK. It is attempt of
5943 * simultaneous connect with crossed SYNs.
5944 * Particularly, it can be connect to self.
5945 */
5946 tcp_set_state(sk, TCP_SYN_RECV);
5947
5948 if (tp->rx_opt.saw_tstamp) {
5949 tp->rx_opt.tstamp_ok = 1;
5950 tcp_store_ts_recent(tp);
5951 tp->tcp_header_len =
5952 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5953 } else {
5954 tp->tcp_header_len = sizeof(struct tcphdr);
5955 }
5956
5957 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5958 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5959
5960 /* RFC1323: The window in SYN & SYN/ACK segments is
5961 * never scaled.
5962 */
5963 tp->snd_wnd = ntohs(th->window);
5964 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5965 tp->max_window = tp->snd_wnd;
5966
5967 TCP_ECN_rcv_syn(tp, th);
5968
5969 tcp_mtup_init(sk);
5970 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5971 tcp_initialize_rcv_mss(sk);
5972
5973 tcp_send_synack(sk);
5974#if 0
5975 /* Note, we could accept data and URG from this segment.
5976 * There are no obstacles to make this.
5977 *
5978 * However, if we ignore data in ACKless segments sometimes,
5979 * we have no reasons to accept it sometimes.
5980 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5981 * is not flawless. So, discard packet for sanity.
5982 * Uncomment this return to process the data.
5983 */
5984 return -1;
5985#else
5986 goto discard;
5987#endif
5988 }
5989 /* "fifth, if neither of the SYN or RST bits is set then
5990 * drop the segment and return."
5991 */
5992
5993discard_and_undo:
5994 tcp_clear_options(&tp->rx_opt);
5995 tp->rx_opt.mss_clamp = saved_clamp;
5996 goto discard;
5997
5998reset_and_undo:
5999 tcp_clear_options(&tp->rx_opt);
6000 tp->rx_opt.mss_clamp = saved_clamp;
6001 return 1;
6002}
6003
6004/*
6005 * This function implements the receiving procedure of RFC 793 for
6006 * all states except ESTABLISHED and TIME_WAIT.
6007 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6008 * address independent.
6009 */
6010
6011int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6012 const struct tcphdr *th, unsigned int len)
6013{
6014 struct tcp_sock *tp = tcp_sk(sk);
6015 struct inet_connection_sock *icsk = inet_csk(sk);
6016 int queued = 0;
6017 int res;
6018
6019 tp->rx_opt.saw_tstamp = 0;
6020
6021 switch (sk->sk_state) {
6022 case TCP_CLOSE:
6023 goto discard;
6024
6025 case TCP_LISTEN:
6026 if (th->ack)
6027 return 1;
6028
6029 if (th->rst)
6030 goto discard;
6031
6032 if (th->syn) {
6033 if (th->fin)
6034 goto discard;
6035 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
6036 return 1;
6037
6038 /* Now we have several options: In theory there is
6039 * nothing else in the frame. KA9Q has an option to
6040 * send data with the syn, BSD accepts data with the
6041 * syn up to the [to be] advertised window and
6042 * Solaris 2.1 gives you a protocol error. For now
6043 * we just ignore it, that fits the spec precisely
6044 * and avoids incompatibilities. It would be nice in
6045 * future to drop through and process the data.
6046 *
6047 * Now that TTCP is starting to be used we ought to
6048 * queue this data.
6049 * But, this leaves one open to an easy denial of
6050 * service attack, and SYN cookies can't defend
6051 * against this problem. So, we drop the data
6052 * in the interest of security over speed unless
6053 * it's still in use.
6054 */
6055 kfree_skb(skb);
6056 return 0;
6057 }
6058 goto discard;
6059
6060 case TCP_SYN_SENT:
6061 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6062 if (queued >= 0)
6063 return queued;
6064
6065 /* Do step6 onward by hand. */
6066 tcp_urg(sk, skb, th);
6067 __kfree_skb(skb);
6068 tcp_data_snd_check(sk);
6069 return 0;
6070 }
6071
6072 res = tcp_validate_incoming(sk, skb, th, 0);
6073 if (res <= 0)
6074 return -res;
6075
6076 /* step 5: check the ACK field */
6077 if (th->ack) {
6078 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
6079
6080 switch (sk->sk_state) {
6081 case TCP_SYN_RECV:
6082 if (acceptable) {
6083 tp->copied_seq = tp->rcv_nxt;
6084 smp_mb();
6085 tcp_set_state(sk, TCP_ESTABLISHED);
6086 sk->sk_state_change(sk);
6087
6088 /* Note, that this wakeup is only for marginal
6089 * crossed SYN case. Passively open sockets
6090 * are not waked up, because sk->sk_sleep ==
6091 * NULL and sk->sk_socket == NULL.
6092 */
6093 if (sk->sk_socket)
6094 sk_wake_async(sk,
6095 SOCK_WAKE_IO, POLL_OUT);
6096
6097 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6098 tp->snd_wnd = ntohs(th->window) <<
6099 tp->rx_opt.snd_wscale;
6100 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6101
6102 if (tp->rx_opt.tstamp_ok)
6103 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6104
6105 /* Make sure socket is routed, for
6106 * correct metrics.
6107 */
6108 icsk->icsk_af_ops->rebuild_header(sk);
6109
6110 tcp_init_metrics(sk);
6111
6112 tcp_init_congestion_control(sk);
6113
6114 /* Prevent spurious tcp_cwnd_restart() on
6115 * first data packet.
6116 */
6117 tp->lsndtime = tcp_time_stamp;
6118
6119 tcp_mtup_init(sk);
6120 tcp_initialize_rcv_mss(sk);
6121 tcp_init_buffer_space(sk);
6122 tcp_fast_path_on(tp);
6123 } else {
6124 return 1;
6125 }
6126 break;
6127
6128 case TCP_FIN_WAIT1:
6129 if (tp->snd_una == tp->write_seq) {
6130 tcp_set_state(sk, TCP_FIN_WAIT2);
6131 sk->sk_shutdown |= SEND_SHUTDOWN;
6132 dst_confirm(__sk_dst_get(sk));
6133
6134 if (!sock_flag(sk, SOCK_DEAD))
6135 /* Wake up lingering close() */
6136 sk->sk_state_change(sk);
6137 else {
6138 int tmo;
6139
6140 if (tp->linger2 < 0 ||
6141 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6142 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6143 tcp_done(sk);
6144 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6145 return 1;
6146 }
6147
6148 tmo = tcp_fin_time(sk);
6149 if (tmo > TCP_TIMEWAIT_LEN) {
6150 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6151 } else if (th->fin || sock_owned_by_user(sk)) {
6152 /* Bad case. We could lose such FIN otherwise.
6153 * It is not a big problem, but it looks confusing
6154 * and not so rare event. We still can lose it now,
6155 * if it spins in bh_lock_sock(), but it is really
6156 * marginal case.
6157 */
6158 inet_csk_reset_keepalive_timer(sk, tmo);
6159 } else {
6160 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6161 goto discard;
6162 }
6163 }
6164 }
6165 break;
6166
6167 case TCP_CLOSING:
6168 if (tp->snd_una == tp->write_seq) {
6169 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6170 goto discard;
6171 }
6172 break;
6173
6174 case TCP_LAST_ACK:
6175 if (tp->snd_una == tp->write_seq) {
6176 tcp_update_metrics(sk);
6177 tcp_done(sk);
6178 goto discard;
6179 }
6180 break;
6181 }
6182 } else
6183 goto discard;
6184
6185 /* step 6: check the URG bit */
6186 tcp_urg(sk, skb, th);
6187
6188 /* step 7: process the segment text */
6189 switch (sk->sk_state) {
6190 case TCP_CLOSE_WAIT:
6191 case TCP_CLOSING:
6192 case TCP_LAST_ACK:
6193 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6194 break;
6195 case TCP_FIN_WAIT1:
6196 case TCP_FIN_WAIT2:
6197 /* RFC 793 says to queue data in these states,
6198 * RFC 1122 says we MUST send a reset.
6199 * BSD 4.4 also does reset.
6200 */
6201 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6202 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6203 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6204 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6205 tcp_reset(sk);
6206 return 1;
6207 }
6208 }
6209 /* Fall through */
6210 case TCP_ESTABLISHED:
6211 tcp_data_queue(sk, skb);
6212 queued = 1;
6213 break;
6214 }
6215
6216 /* tcp_data could move socket to TIME-WAIT */
6217 if (sk->sk_state != TCP_CLOSE) {
6218 tcp_data_snd_check(sk);
6219 tcp_ack_snd_check(sk);
6220 }
6221
6222 if (!queued) {
6223discard:
6224 __kfree_skb(skb);
6225 }
6226 return 0;
6227}
6228EXPORT_SYMBOL(tcp_rcv_state_process);