Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/errqueue.h>
97#include <linux/types.h>
98#include <linux/socket.h>
99#include <linux/in.h>
100#include <linux/kernel.h>
101#include <linux/module.h>
102#include <linux/proc_fs.h>
103#include <linux/seq_file.h>
104#include <linux/sched.h>
105#include <linux/timer.h>
106#include <linux/string.h>
107#include <linux/sockios.h>
108#include <linux/net.h>
109#include <linux/mm.h>
110#include <linux/slab.h>
111#include <linux/interrupt.h>
112#include <linux/poll.h>
113#include <linux/tcp.h>
114#include <linux/init.h>
115#include <linux/highmem.h>
116#include <linux/user_namespace.h>
117#include <linux/static_key.h>
118#include <linux/memcontrol.h>
119#include <linux/prefetch.h>
120
121#include <asm/uaccess.h>
122
123#include <linux/netdevice.h>
124#include <net/protocol.h>
125#include <linux/skbuff.h>
126#include <net/net_namespace.h>
127#include <net/request_sock.h>
128#include <net/sock.h>
129#include <linux/net_tstamp.h>
130#include <net/xfrm.h>
131#include <linux/ipsec.h>
132#include <net/cls_cgroup.h>
133#include <net/netprio_cgroup.h>
134
135#include <linux/filter.h>
136
137#include <trace/events/sock.h>
138
139#ifdef CONFIG_INET
140#include <net/tcp.h>
141#endif
142
143#include <net/busy_poll.h>
144
145static DEFINE_MUTEX(proto_list_mutex);
146static LIST_HEAD(proto_list);
147
148/**
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
153 *
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
157 */
158bool sk_ns_capable(const struct sock *sk,
159 struct user_namespace *user_ns, int cap)
160{
161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 ns_capable(user_ns, cap);
163}
164EXPORT_SYMBOL(sk_ns_capable);
165
166/**
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capbility to use
170 *
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
173 * namespaces.
174 */
175bool sk_capable(const struct sock *sk, int cap)
176{
177 return sk_ns_capable(sk, &init_user_ns, cap);
178}
179EXPORT_SYMBOL(sk_capable);
180
181/**
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
185 *
186 * Test to see if the opener of the socket had when the socke was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
189 */
190bool sk_net_capable(const struct sock *sk, int cap)
191{
192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193}
194EXPORT_SYMBOL(sk_net_capable);
195
196
197#ifdef CONFIG_MEMCG_KMEM
198int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199{
200 struct proto *proto;
201 int ret = 0;
202
203 mutex_lock(&proto_list_mutex);
204 list_for_each_entry(proto, &proto_list, node) {
205 if (proto->init_cgroup) {
206 ret = proto->init_cgroup(memcg, ss);
207 if (ret)
208 goto out;
209 }
210 }
211
212 mutex_unlock(&proto_list_mutex);
213 return ret;
214out:
215 list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 if (proto->destroy_cgroup)
217 proto->destroy_cgroup(memcg);
218 mutex_unlock(&proto_list_mutex);
219 return ret;
220}
221
222void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223{
224 struct proto *proto;
225
226 mutex_lock(&proto_list_mutex);
227 list_for_each_entry_reverse(proto, &proto_list, node)
228 if (proto->destroy_cgroup)
229 proto->destroy_cgroup(memcg);
230 mutex_unlock(&proto_list_mutex);
231}
232#endif
233
234/*
235 * Each address family might have different locking rules, so we have
236 * one slock key per address family:
237 */
238static struct lock_class_key af_family_keys[AF_MAX];
239static struct lock_class_key af_family_slock_keys[AF_MAX];
240
241#if defined(CONFIG_MEMCG_KMEM)
242struct static_key memcg_socket_limit_enabled;
243EXPORT_SYMBOL(memcg_socket_limit_enabled);
244#endif
245
246/*
247 * Make lock validator output more readable. (we pre-construct these
248 * strings build-time, so that runtime initialization of socket
249 * locks is fast):
250 */
251static const char *const af_family_key_strings[AF_MAX+1] = {
252 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
253 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
254 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
255 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
256 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
257 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
258 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
259 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
260 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
261 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
262 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
263 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
264 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
265 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
266};
267static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
269 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
270 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
271 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
272 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
273 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
274 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
275 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
276 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
277 "slock-27" , "slock-28" , "slock-AF_CAN" ,
278 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
279 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
280 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
281 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
282};
283static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
285 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
286 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
287 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
288 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
289 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
290 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
291 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
292 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
293 "clock-27" , "clock-28" , "clock-AF_CAN" ,
294 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
295 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
296 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
297 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
298};
299
300/*
301 * sk_callback_lock locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
303 */
304static struct lock_class_key af_callback_keys[AF_MAX];
305
306/* Take into consideration the size of the struct sk_buff overhead in the
307 * determination of these values, since that is non-constant across
308 * platforms. This makes socket queueing behavior and performance
309 * not depend upon such differences.
310 */
311#define _SK_MEM_PACKETS 256
312#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
313#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315
316/* Run time adjustable parameters. */
317__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318EXPORT_SYMBOL(sysctl_wmem_max);
319__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320EXPORT_SYMBOL(sysctl_rmem_max);
321__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323
324/* Maximal space eaten by iovec or ancillary data plus some space */
325int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326EXPORT_SYMBOL(sysctl_optmem_max);
327
328struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
329EXPORT_SYMBOL_GPL(memalloc_socks);
330
331/**
332 * sk_set_memalloc - sets %SOCK_MEMALLOC
333 * @sk: socket to set it on
334 *
335 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
336 * It's the responsibility of the admin to adjust min_free_kbytes
337 * to meet the requirements
338 */
339void sk_set_memalloc(struct sock *sk)
340{
341 sock_set_flag(sk, SOCK_MEMALLOC);
342 sk->sk_allocation |= __GFP_MEMALLOC;
343 static_key_slow_inc(&memalloc_socks);
344}
345EXPORT_SYMBOL_GPL(sk_set_memalloc);
346
347void sk_clear_memalloc(struct sock *sk)
348{
349 sock_reset_flag(sk, SOCK_MEMALLOC);
350 sk->sk_allocation &= ~__GFP_MEMALLOC;
351 static_key_slow_dec(&memalloc_socks);
352
353 /*
354 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
355 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
356 * it has rmem allocations there is a risk that the user of the
357 * socket cannot make forward progress due to exceeding the rmem
358 * limits. By rights, sk_clear_memalloc() should only be called
359 * on sockets being torn down but warn and reset the accounting if
360 * that assumption breaks.
361 */
362 if (WARN_ON(sk->sk_forward_alloc))
363 sk_mem_reclaim(sk);
364}
365EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366
367int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368{
369 int ret;
370 unsigned long pflags = current->flags;
371
372 /* these should have been dropped before queueing */
373 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374
375 current->flags |= PF_MEMALLOC;
376 ret = sk->sk_backlog_rcv(sk, skb);
377 tsk_restore_flags(current, pflags, PF_MEMALLOC);
378
379 return ret;
380}
381EXPORT_SYMBOL(__sk_backlog_rcv);
382
383static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384{
385 struct timeval tv;
386
387 if (optlen < sizeof(tv))
388 return -EINVAL;
389 if (copy_from_user(&tv, optval, sizeof(tv)))
390 return -EFAULT;
391 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 return -EDOM;
393
394 if (tv.tv_sec < 0) {
395 static int warned __read_mostly;
396
397 *timeo_p = 0;
398 if (warned < 10 && net_ratelimit()) {
399 warned++;
400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 __func__, current->comm, task_pid_nr(current));
402 }
403 return 0;
404 }
405 *timeo_p = MAX_SCHEDULE_TIMEOUT;
406 if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 return 0;
408 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 return 0;
411}
412
413static void sock_warn_obsolete_bsdism(const char *name)
414{
415 static int warned;
416 static char warncomm[TASK_COMM_LEN];
417 if (strcmp(warncomm, current->comm) && warned < 5) {
418 strcpy(warncomm, current->comm);
419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 warncomm, name);
421 warned++;
422 }
423}
424
425#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
426
427static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428{
429 if (sk->sk_flags & flags) {
430 sk->sk_flags &= ~flags;
431 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
432 net_disable_timestamp();
433 }
434}
435
436
437int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
438{
439 int err;
440 int skb_len;
441 unsigned long flags;
442 struct sk_buff_head *list = &sk->sk_receive_queue;
443
444 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
445 atomic_inc(&sk->sk_drops);
446 trace_sock_rcvqueue_full(sk, skb);
447 return -ENOMEM;
448 }
449
450 err = sk_filter(sk, skb);
451 if (err)
452 return err;
453
454 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
455 atomic_inc(&sk->sk_drops);
456 return -ENOBUFS;
457 }
458
459 skb->dev = NULL;
460 skb_set_owner_r(skb, sk);
461
462 /* Cache the SKB length before we tack it onto the receive
463 * queue. Once it is added it no longer belongs to us and
464 * may be freed by other threads of control pulling packets
465 * from the queue.
466 */
467 skb_len = skb->len;
468
469 /* we escape from rcu protected region, make sure we dont leak
470 * a norefcounted dst
471 */
472 skb_dst_force(skb);
473
474 spin_lock_irqsave(&list->lock, flags);
475 skb->dropcount = atomic_read(&sk->sk_drops);
476 __skb_queue_tail(list, skb);
477 spin_unlock_irqrestore(&list->lock, flags);
478
479 if (!sock_flag(sk, SOCK_DEAD))
480 sk->sk_data_ready(sk);
481 return 0;
482}
483EXPORT_SYMBOL(sock_queue_rcv_skb);
484
485int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
486{
487 int rc = NET_RX_SUCCESS;
488
489 if (sk_filter(sk, skb))
490 goto discard_and_relse;
491
492 skb->dev = NULL;
493
494 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
495 atomic_inc(&sk->sk_drops);
496 goto discard_and_relse;
497 }
498 if (nested)
499 bh_lock_sock_nested(sk);
500 else
501 bh_lock_sock(sk);
502 if (!sock_owned_by_user(sk)) {
503 /*
504 * trylock + unlock semantics:
505 */
506 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
507
508 rc = sk_backlog_rcv(sk, skb);
509
510 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
511 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
512 bh_unlock_sock(sk);
513 atomic_inc(&sk->sk_drops);
514 goto discard_and_relse;
515 }
516
517 bh_unlock_sock(sk);
518out:
519 sock_put(sk);
520 return rc;
521discard_and_relse:
522 kfree_skb(skb);
523 goto out;
524}
525EXPORT_SYMBOL(sk_receive_skb);
526
527struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
528{
529 struct dst_entry *dst = __sk_dst_get(sk);
530
531 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
532 sk_tx_queue_clear(sk);
533 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
534 dst_release(dst);
535 return NULL;
536 }
537
538 return dst;
539}
540EXPORT_SYMBOL(__sk_dst_check);
541
542struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
543{
544 struct dst_entry *dst = sk_dst_get(sk);
545
546 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547 sk_dst_reset(sk);
548 dst_release(dst);
549 return NULL;
550 }
551
552 return dst;
553}
554EXPORT_SYMBOL(sk_dst_check);
555
556static int sock_setbindtodevice(struct sock *sk, char __user *optval,
557 int optlen)
558{
559 int ret = -ENOPROTOOPT;
560#ifdef CONFIG_NETDEVICES
561 struct net *net = sock_net(sk);
562 char devname[IFNAMSIZ];
563 int index;
564
565 /* Sorry... */
566 ret = -EPERM;
567 if (!ns_capable(net->user_ns, CAP_NET_RAW))
568 goto out;
569
570 ret = -EINVAL;
571 if (optlen < 0)
572 goto out;
573
574 /* Bind this socket to a particular device like "eth0",
575 * as specified in the passed interface name. If the
576 * name is "" or the option length is zero the socket
577 * is not bound.
578 */
579 if (optlen > IFNAMSIZ - 1)
580 optlen = IFNAMSIZ - 1;
581 memset(devname, 0, sizeof(devname));
582
583 ret = -EFAULT;
584 if (copy_from_user(devname, optval, optlen))
585 goto out;
586
587 index = 0;
588 if (devname[0] != '\0') {
589 struct net_device *dev;
590
591 rcu_read_lock();
592 dev = dev_get_by_name_rcu(net, devname);
593 if (dev)
594 index = dev->ifindex;
595 rcu_read_unlock();
596 ret = -ENODEV;
597 if (!dev)
598 goto out;
599 }
600
601 lock_sock(sk);
602 sk->sk_bound_dev_if = index;
603 sk_dst_reset(sk);
604 release_sock(sk);
605
606 ret = 0;
607
608out:
609#endif
610
611 return ret;
612}
613
614static int sock_getbindtodevice(struct sock *sk, char __user *optval,
615 int __user *optlen, int len)
616{
617 int ret = -ENOPROTOOPT;
618#ifdef CONFIG_NETDEVICES
619 struct net *net = sock_net(sk);
620 char devname[IFNAMSIZ];
621
622 if (sk->sk_bound_dev_if == 0) {
623 len = 0;
624 goto zero;
625 }
626
627 ret = -EINVAL;
628 if (len < IFNAMSIZ)
629 goto out;
630
631 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
632 if (ret)
633 goto out;
634
635 len = strlen(devname) + 1;
636
637 ret = -EFAULT;
638 if (copy_to_user(optval, devname, len))
639 goto out;
640
641zero:
642 ret = -EFAULT;
643 if (put_user(len, optlen))
644 goto out;
645
646 ret = 0;
647
648out:
649#endif
650
651 return ret;
652}
653
654static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
655{
656 if (valbool)
657 sock_set_flag(sk, bit);
658 else
659 sock_reset_flag(sk, bit);
660}
661
662/*
663 * This is meant for all protocols to use and covers goings on
664 * at the socket level. Everything here is generic.
665 */
666
667int sock_setsockopt(struct socket *sock, int level, int optname,
668 char __user *optval, unsigned int optlen)
669{
670 struct sock *sk = sock->sk;
671 int val;
672 int valbool;
673 struct linger ling;
674 int ret = 0;
675
676 /*
677 * Options without arguments
678 */
679
680 if (optname == SO_BINDTODEVICE)
681 return sock_setbindtodevice(sk, optval, optlen);
682
683 if (optlen < sizeof(int))
684 return -EINVAL;
685
686 if (get_user(val, (int __user *)optval))
687 return -EFAULT;
688
689 valbool = val ? 1 : 0;
690
691 lock_sock(sk);
692
693 switch (optname) {
694 case SO_DEBUG:
695 if (val && !capable(CAP_NET_ADMIN))
696 ret = -EACCES;
697 else
698 sock_valbool_flag(sk, SOCK_DBG, valbool);
699 break;
700 case SO_REUSEADDR:
701 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
702 break;
703 case SO_REUSEPORT:
704 sk->sk_reuseport = valbool;
705 break;
706 case SO_TYPE:
707 case SO_PROTOCOL:
708 case SO_DOMAIN:
709 case SO_ERROR:
710 ret = -ENOPROTOOPT;
711 break;
712 case SO_DONTROUTE:
713 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
714 break;
715 case SO_BROADCAST:
716 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
717 break;
718 case SO_SNDBUF:
719 /* Don't error on this BSD doesn't and if you think
720 * about it this is right. Otherwise apps have to
721 * play 'guess the biggest size' games. RCVBUF/SNDBUF
722 * are treated in BSD as hints
723 */
724 val = min_t(u32, val, sysctl_wmem_max);
725set_sndbuf:
726 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
727 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
728 /* Wake up sending tasks if we upped the value. */
729 sk->sk_write_space(sk);
730 break;
731
732 case SO_SNDBUFFORCE:
733 if (!capable(CAP_NET_ADMIN)) {
734 ret = -EPERM;
735 break;
736 }
737 goto set_sndbuf;
738
739 case SO_RCVBUF:
740 /* Don't error on this BSD doesn't and if you think
741 * about it this is right. Otherwise apps have to
742 * play 'guess the biggest size' games. RCVBUF/SNDBUF
743 * are treated in BSD as hints
744 */
745 val = min_t(u32, val, sysctl_rmem_max);
746set_rcvbuf:
747 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
748 /*
749 * We double it on the way in to account for
750 * "struct sk_buff" etc. overhead. Applications
751 * assume that the SO_RCVBUF setting they make will
752 * allow that much actual data to be received on that
753 * socket.
754 *
755 * Applications are unaware that "struct sk_buff" and
756 * other overheads allocate from the receive buffer
757 * during socket buffer allocation.
758 *
759 * And after considering the possible alternatives,
760 * returning the value we actually used in getsockopt
761 * is the most desirable behavior.
762 */
763 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
764 break;
765
766 case SO_RCVBUFFORCE:
767 if (!capable(CAP_NET_ADMIN)) {
768 ret = -EPERM;
769 break;
770 }
771 goto set_rcvbuf;
772
773 case SO_KEEPALIVE:
774#ifdef CONFIG_INET
775 if (sk->sk_protocol == IPPROTO_TCP &&
776 sk->sk_type == SOCK_STREAM)
777 tcp_set_keepalive(sk, valbool);
778#endif
779 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
780 break;
781
782 case SO_OOBINLINE:
783 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
784 break;
785
786 case SO_NO_CHECK:
787 sk->sk_no_check = valbool;
788 break;
789
790 case SO_PRIORITY:
791 if ((val >= 0 && val <= 6) ||
792 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
793 sk->sk_priority = val;
794 else
795 ret = -EPERM;
796 break;
797
798 case SO_LINGER:
799 if (optlen < sizeof(ling)) {
800 ret = -EINVAL; /* 1003.1g */
801 break;
802 }
803 if (copy_from_user(&ling, optval, sizeof(ling))) {
804 ret = -EFAULT;
805 break;
806 }
807 if (!ling.l_onoff)
808 sock_reset_flag(sk, SOCK_LINGER);
809 else {
810#if (BITS_PER_LONG == 32)
811 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
812 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
813 else
814#endif
815 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
816 sock_set_flag(sk, SOCK_LINGER);
817 }
818 break;
819
820 case SO_BSDCOMPAT:
821 sock_warn_obsolete_bsdism("setsockopt");
822 break;
823
824 case SO_PASSCRED:
825 if (valbool)
826 set_bit(SOCK_PASSCRED, &sock->flags);
827 else
828 clear_bit(SOCK_PASSCRED, &sock->flags);
829 break;
830
831 case SO_TIMESTAMP:
832 case SO_TIMESTAMPNS:
833 if (valbool) {
834 if (optname == SO_TIMESTAMP)
835 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
836 else
837 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
838 sock_set_flag(sk, SOCK_RCVTSTAMP);
839 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
840 } else {
841 sock_reset_flag(sk, SOCK_RCVTSTAMP);
842 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
843 }
844 break;
845
846 case SO_TIMESTAMPING:
847 if (val & ~SOF_TIMESTAMPING_MASK) {
848 ret = -EINVAL;
849 break;
850 }
851 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
852 val & SOF_TIMESTAMPING_TX_HARDWARE);
853 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
854 val & SOF_TIMESTAMPING_TX_SOFTWARE);
855 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
856 val & SOF_TIMESTAMPING_RX_HARDWARE);
857 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
858 sock_enable_timestamp(sk,
859 SOCK_TIMESTAMPING_RX_SOFTWARE);
860 else
861 sock_disable_timestamp(sk,
862 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
863 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
864 val & SOF_TIMESTAMPING_SOFTWARE);
865 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
866 val & SOF_TIMESTAMPING_SYS_HARDWARE);
867 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
868 val & SOF_TIMESTAMPING_RAW_HARDWARE);
869 break;
870
871 case SO_RCVLOWAT:
872 if (val < 0)
873 val = INT_MAX;
874 sk->sk_rcvlowat = val ? : 1;
875 break;
876
877 case SO_RCVTIMEO:
878 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
879 break;
880
881 case SO_SNDTIMEO:
882 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
883 break;
884
885 case SO_ATTACH_FILTER:
886 ret = -EINVAL;
887 if (optlen == sizeof(struct sock_fprog)) {
888 struct sock_fprog fprog;
889
890 ret = -EFAULT;
891 if (copy_from_user(&fprog, optval, sizeof(fprog)))
892 break;
893
894 ret = sk_attach_filter(&fprog, sk);
895 }
896 break;
897
898 case SO_DETACH_FILTER:
899 ret = sk_detach_filter(sk);
900 break;
901
902 case SO_LOCK_FILTER:
903 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
904 ret = -EPERM;
905 else
906 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
907 break;
908
909 case SO_PASSSEC:
910 if (valbool)
911 set_bit(SOCK_PASSSEC, &sock->flags);
912 else
913 clear_bit(SOCK_PASSSEC, &sock->flags);
914 break;
915 case SO_MARK:
916 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
917 ret = -EPERM;
918 else
919 sk->sk_mark = val;
920 break;
921
922 /* We implement the SO_SNDLOWAT etc to
923 not be settable (1003.1g 5.3) */
924 case SO_RXQ_OVFL:
925 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
926 break;
927
928 case SO_WIFI_STATUS:
929 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
930 break;
931
932 case SO_PEEK_OFF:
933 if (sock->ops->set_peek_off)
934 ret = sock->ops->set_peek_off(sk, val);
935 else
936 ret = -EOPNOTSUPP;
937 break;
938
939 case SO_NOFCS:
940 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
941 break;
942
943 case SO_SELECT_ERR_QUEUE:
944 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
945 break;
946
947#ifdef CONFIG_NET_RX_BUSY_POLL
948 case SO_BUSY_POLL:
949 /* allow unprivileged users to decrease the value */
950 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
951 ret = -EPERM;
952 else {
953 if (val < 0)
954 ret = -EINVAL;
955 else
956 sk->sk_ll_usec = val;
957 }
958 break;
959#endif
960
961 case SO_MAX_PACING_RATE:
962 sk->sk_max_pacing_rate = val;
963 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
964 sk->sk_max_pacing_rate);
965 break;
966
967 default:
968 ret = -ENOPROTOOPT;
969 break;
970 }
971 release_sock(sk);
972 return ret;
973}
974EXPORT_SYMBOL(sock_setsockopt);
975
976
977static void cred_to_ucred(struct pid *pid, const struct cred *cred,
978 struct ucred *ucred)
979{
980 ucred->pid = pid_vnr(pid);
981 ucred->uid = ucred->gid = -1;
982 if (cred) {
983 struct user_namespace *current_ns = current_user_ns();
984
985 ucred->uid = from_kuid_munged(current_ns, cred->euid);
986 ucred->gid = from_kgid_munged(current_ns, cred->egid);
987 }
988}
989
990int sock_getsockopt(struct socket *sock, int level, int optname,
991 char __user *optval, int __user *optlen)
992{
993 struct sock *sk = sock->sk;
994
995 union {
996 int val;
997 struct linger ling;
998 struct timeval tm;
999 } v;
1000
1001 int lv = sizeof(int);
1002 int len;
1003
1004 if (get_user(len, optlen))
1005 return -EFAULT;
1006 if (len < 0)
1007 return -EINVAL;
1008
1009 memset(&v, 0, sizeof(v));
1010
1011 switch (optname) {
1012 case SO_DEBUG:
1013 v.val = sock_flag(sk, SOCK_DBG);
1014 break;
1015
1016 case SO_DONTROUTE:
1017 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1018 break;
1019
1020 case SO_BROADCAST:
1021 v.val = sock_flag(sk, SOCK_BROADCAST);
1022 break;
1023
1024 case SO_SNDBUF:
1025 v.val = sk->sk_sndbuf;
1026 break;
1027
1028 case SO_RCVBUF:
1029 v.val = sk->sk_rcvbuf;
1030 break;
1031
1032 case SO_REUSEADDR:
1033 v.val = sk->sk_reuse;
1034 break;
1035
1036 case SO_REUSEPORT:
1037 v.val = sk->sk_reuseport;
1038 break;
1039
1040 case SO_KEEPALIVE:
1041 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1042 break;
1043
1044 case SO_TYPE:
1045 v.val = sk->sk_type;
1046 break;
1047
1048 case SO_PROTOCOL:
1049 v.val = sk->sk_protocol;
1050 break;
1051
1052 case SO_DOMAIN:
1053 v.val = sk->sk_family;
1054 break;
1055
1056 case SO_ERROR:
1057 v.val = -sock_error(sk);
1058 if (v.val == 0)
1059 v.val = xchg(&sk->sk_err_soft, 0);
1060 break;
1061
1062 case SO_OOBINLINE:
1063 v.val = sock_flag(sk, SOCK_URGINLINE);
1064 break;
1065
1066 case SO_NO_CHECK:
1067 v.val = sk->sk_no_check;
1068 break;
1069
1070 case SO_PRIORITY:
1071 v.val = sk->sk_priority;
1072 break;
1073
1074 case SO_LINGER:
1075 lv = sizeof(v.ling);
1076 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1077 v.ling.l_linger = sk->sk_lingertime / HZ;
1078 break;
1079
1080 case SO_BSDCOMPAT:
1081 sock_warn_obsolete_bsdism("getsockopt");
1082 break;
1083
1084 case SO_TIMESTAMP:
1085 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1086 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1087 break;
1088
1089 case SO_TIMESTAMPNS:
1090 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1091 break;
1092
1093 case SO_TIMESTAMPING:
1094 v.val = 0;
1095 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1096 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1097 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1098 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1099 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1100 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1101 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1102 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1103 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1104 v.val |= SOF_TIMESTAMPING_SOFTWARE;
1105 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1106 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1107 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1108 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1109 break;
1110
1111 case SO_RCVTIMEO:
1112 lv = sizeof(struct timeval);
1113 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1114 v.tm.tv_sec = 0;
1115 v.tm.tv_usec = 0;
1116 } else {
1117 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1118 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1119 }
1120 break;
1121
1122 case SO_SNDTIMEO:
1123 lv = sizeof(struct timeval);
1124 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1125 v.tm.tv_sec = 0;
1126 v.tm.tv_usec = 0;
1127 } else {
1128 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1129 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1130 }
1131 break;
1132
1133 case SO_RCVLOWAT:
1134 v.val = sk->sk_rcvlowat;
1135 break;
1136
1137 case SO_SNDLOWAT:
1138 v.val = 1;
1139 break;
1140
1141 case SO_PASSCRED:
1142 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1143 break;
1144
1145 case SO_PEERCRED:
1146 {
1147 struct ucred peercred;
1148 if (len > sizeof(peercred))
1149 len = sizeof(peercred);
1150 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1151 if (copy_to_user(optval, &peercred, len))
1152 return -EFAULT;
1153 goto lenout;
1154 }
1155
1156 case SO_PEERNAME:
1157 {
1158 char address[128];
1159
1160 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1161 return -ENOTCONN;
1162 if (lv < len)
1163 return -EINVAL;
1164 if (copy_to_user(optval, address, len))
1165 return -EFAULT;
1166 goto lenout;
1167 }
1168
1169 /* Dubious BSD thing... Probably nobody even uses it, but
1170 * the UNIX standard wants it for whatever reason... -DaveM
1171 */
1172 case SO_ACCEPTCONN:
1173 v.val = sk->sk_state == TCP_LISTEN;
1174 break;
1175
1176 case SO_PASSSEC:
1177 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1178 break;
1179
1180 case SO_PEERSEC:
1181 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1182
1183 case SO_MARK:
1184 v.val = sk->sk_mark;
1185 break;
1186
1187 case SO_RXQ_OVFL:
1188 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1189 break;
1190
1191 case SO_WIFI_STATUS:
1192 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1193 break;
1194
1195 case SO_PEEK_OFF:
1196 if (!sock->ops->set_peek_off)
1197 return -EOPNOTSUPP;
1198
1199 v.val = sk->sk_peek_off;
1200 break;
1201 case SO_NOFCS:
1202 v.val = sock_flag(sk, SOCK_NOFCS);
1203 break;
1204
1205 case SO_BINDTODEVICE:
1206 return sock_getbindtodevice(sk, optval, optlen, len);
1207
1208 case SO_GET_FILTER:
1209 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1210 if (len < 0)
1211 return len;
1212
1213 goto lenout;
1214
1215 case SO_LOCK_FILTER:
1216 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1217 break;
1218
1219 case SO_BPF_EXTENSIONS:
1220 v.val = bpf_tell_extensions();
1221 break;
1222
1223 case SO_SELECT_ERR_QUEUE:
1224 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1225 break;
1226
1227#ifdef CONFIG_NET_RX_BUSY_POLL
1228 case SO_BUSY_POLL:
1229 v.val = sk->sk_ll_usec;
1230 break;
1231#endif
1232
1233 case SO_MAX_PACING_RATE:
1234 v.val = sk->sk_max_pacing_rate;
1235 break;
1236
1237 default:
1238 return -ENOPROTOOPT;
1239 }
1240
1241 if (len > lv)
1242 len = lv;
1243 if (copy_to_user(optval, &v, len))
1244 return -EFAULT;
1245lenout:
1246 if (put_user(len, optlen))
1247 return -EFAULT;
1248 return 0;
1249}
1250
1251/*
1252 * Initialize an sk_lock.
1253 *
1254 * (We also register the sk_lock with the lock validator.)
1255 */
1256static inline void sock_lock_init(struct sock *sk)
1257{
1258 sock_lock_init_class_and_name(sk,
1259 af_family_slock_key_strings[sk->sk_family],
1260 af_family_slock_keys + sk->sk_family,
1261 af_family_key_strings[sk->sk_family],
1262 af_family_keys + sk->sk_family);
1263}
1264
1265/*
1266 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1267 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1268 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1269 */
1270static void sock_copy(struct sock *nsk, const struct sock *osk)
1271{
1272#ifdef CONFIG_SECURITY_NETWORK
1273 void *sptr = nsk->sk_security;
1274#endif
1275 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1276
1277 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1278 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1279
1280#ifdef CONFIG_SECURITY_NETWORK
1281 nsk->sk_security = sptr;
1282 security_sk_clone(osk, nsk);
1283#endif
1284}
1285
1286void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1287{
1288 unsigned long nulls1, nulls2;
1289
1290 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1291 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1292 if (nulls1 > nulls2)
1293 swap(nulls1, nulls2);
1294
1295 if (nulls1 != 0)
1296 memset((char *)sk, 0, nulls1);
1297 memset((char *)sk + nulls1 + sizeof(void *), 0,
1298 nulls2 - nulls1 - sizeof(void *));
1299 memset((char *)sk + nulls2 + sizeof(void *), 0,
1300 size - nulls2 - sizeof(void *));
1301}
1302EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1303
1304static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1305 int family)
1306{
1307 struct sock *sk;
1308 struct kmem_cache *slab;
1309
1310 slab = prot->slab;
1311 if (slab != NULL) {
1312 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1313 if (!sk)
1314 return sk;
1315 if (priority & __GFP_ZERO) {
1316 if (prot->clear_sk)
1317 prot->clear_sk(sk, prot->obj_size);
1318 else
1319 sk_prot_clear_nulls(sk, prot->obj_size);
1320 }
1321 } else
1322 sk = kmalloc(prot->obj_size, priority);
1323
1324 if (sk != NULL) {
1325 kmemcheck_annotate_bitfield(sk, flags);
1326
1327 if (security_sk_alloc(sk, family, priority))
1328 goto out_free;
1329
1330 if (!try_module_get(prot->owner))
1331 goto out_free_sec;
1332 sk_tx_queue_clear(sk);
1333 }
1334
1335 return sk;
1336
1337out_free_sec:
1338 security_sk_free(sk);
1339out_free:
1340 if (slab != NULL)
1341 kmem_cache_free(slab, sk);
1342 else
1343 kfree(sk);
1344 return NULL;
1345}
1346
1347static void sk_prot_free(struct proto *prot, struct sock *sk)
1348{
1349 struct kmem_cache *slab;
1350 struct module *owner;
1351
1352 owner = prot->owner;
1353 slab = prot->slab;
1354
1355 security_sk_free(sk);
1356 if (slab != NULL)
1357 kmem_cache_free(slab, sk);
1358 else
1359 kfree(sk);
1360 module_put(owner);
1361}
1362
1363#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1364void sock_update_netprioidx(struct sock *sk)
1365{
1366 if (in_interrupt())
1367 return;
1368
1369 sk->sk_cgrp_prioidx = task_netprioidx(current);
1370}
1371EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1372#endif
1373
1374/**
1375 * sk_alloc - All socket objects are allocated here
1376 * @net: the applicable net namespace
1377 * @family: protocol family
1378 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1379 * @prot: struct proto associated with this new sock instance
1380 */
1381struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1382 struct proto *prot)
1383{
1384 struct sock *sk;
1385
1386 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1387 if (sk) {
1388 sk->sk_family = family;
1389 /*
1390 * See comment in struct sock definition to understand
1391 * why we need sk_prot_creator -acme
1392 */
1393 sk->sk_prot = sk->sk_prot_creator = prot;
1394 sock_lock_init(sk);
1395 sock_net_set(sk, get_net(net));
1396 atomic_set(&sk->sk_wmem_alloc, 1);
1397
1398 sock_update_classid(sk);
1399 sock_update_netprioidx(sk);
1400 }
1401
1402 return sk;
1403}
1404EXPORT_SYMBOL(sk_alloc);
1405
1406static void __sk_free(struct sock *sk)
1407{
1408 struct sk_filter *filter;
1409
1410 if (sk->sk_destruct)
1411 sk->sk_destruct(sk);
1412
1413 filter = rcu_dereference_check(sk->sk_filter,
1414 atomic_read(&sk->sk_wmem_alloc) == 0);
1415 if (filter) {
1416 sk_filter_uncharge(sk, filter);
1417 RCU_INIT_POINTER(sk->sk_filter, NULL);
1418 }
1419
1420 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1421
1422 if (atomic_read(&sk->sk_omem_alloc))
1423 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1424 __func__, atomic_read(&sk->sk_omem_alloc));
1425
1426 if (sk->sk_peer_cred)
1427 put_cred(sk->sk_peer_cred);
1428 put_pid(sk->sk_peer_pid);
1429 put_net(sock_net(sk));
1430 sk_prot_free(sk->sk_prot_creator, sk);
1431}
1432
1433void sk_free(struct sock *sk)
1434{
1435 /*
1436 * We subtract one from sk_wmem_alloc and can know if
1437 * some packets are still in some tx queue.
1438 * If not null, sock_wfree() will call __sk_free(sk) later
1439 */
1440 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1441 __sk_free(sk);
1442}
1443EXPORT_SYMBOL(sk_free);
1444
1445/*
1446 * Last sock_put should drop reference to sk->sk_net. It has already
1447 * been dropped in sk_change_net. Taking reference to stopping namespace
1448 * is not an option.
1449 * Take reference to a socket to remove it from hash _alive_ and after that
1450 * destroy it in the context of init_net.
1451 */
1452void sk_release_kernel(struct sock *sk)
1453{
1454 if (sk == NULL || sk->sk_socket == NULL)
1455 return;
1456
1457 sock_hold(sk);
1458 sock_release(sk->sk_socket);
1459 release_net(sock_net(sk));
1460 sock_net_set(sk, get_net(&init_net));
1461 sock_put(sk);
1462}
1463EXPORT_SYMBOL(sk_release_kernel);
1464
1465static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1466{
1467 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1468 sock_update_memcg(newsk);
1469}
1470
1471/**
1472 * sk_clone_lock - clone a socket, and lock its clone
1473 * @sk: the socket to clone
1474 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1475 *
1476 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1477 */
1478struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1479{
1480 struct sock *newsk;
1481
1482 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1483 if (newsk != NULL) {
1484 struct sk_filter *filter;
1485
1486 sock_copy(newsk, sk);
1487
1488 /* SANITY */
1489 get_net(sock_net(newsk));
1490 sk_node_init(&newsk->sk_node);
1491 sock_lock_init(newsk);
1492 bh_lock_sock(newsk);
1493 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1494 newsk->sk_backlog.len = 0;
1495
1496 atomic_set(&newsk->sk_rmem_alloc, 0);
1497 /*
1498 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1499 */
1500 atomic_set(&newsk->sk_wmem_alloc, 1);
1501 atomic_set(&newsk->sk_omem_alloc, 0);
1502 skb_queue_head_init(&newsk->sk_receive_queue);
1503 skb_queue_head_init(&newsk->sk_write_queue);
1504#ifdef CONFIG_NET_DMA
1505 skb_queue_head_init(&newsk->sk_async_wait_queue);
1506#endif
1507
1508 spin_lock_init(&newsk->sk_dst_lock);
1509 rwlock_init(&newsk->sk_callback_lock);
1510 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1511 af_callback_keys + newsk->sk_family,
1512 af_family_clock_key_strings[newsk->sk_family]);
1513
1514 newsk->sk_dst_cache = NULL;
1515 newsk->sk_wmem_queued = 0;
1516 newsk->sk_forward_alloc = 0;
1517 newsk->sk_send_head = NULL;
1518 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1519
1520 sock_reset_flag(newsk, SOCK_DONE);
1521 skb_queue_head_init(&newsk->sk_error_queue);
1522
1523 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1524 if (filter != NULL)
1525 sk_filter_charge(newsk, filter);
1526
1527 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1528 /* It is still raw copy of parent, so invalidate
1529 * destructor and make plain sk_free() */
1530 newsk->sk_destruct = NULL;
1531 bh_unlock_sock(newsk);
1532 sk_free(newsk);
1533 newsk = NULL;
1534 goto out;
1535 }
1536
1537 newsk->sk_err = 0;
1538 newsk->sk_priority = 0;
1539 /*
1540 * Before updating sk_refcnt, we must commit prior changes to memory
1541 * (Documentation/RCU/rculist_nulls.txt for details)
1542 */
1543 smp_wmb();
1544 atomic_set(&newsk->sk_refcnt, 2);
1545
1546 /*
1547 * Increment the counter in the same struct proto as the master
1548 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1549 * is the same as sk->sk_prot->socks, as this field was copied
1550 * with memcpy).
1551 *
1552 * This _changes_ the previous behaviour, where
1553 * tcp_create_openreq_child always was incrementing the
1554 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1555 * to be taken into account in all callers. -acme
1556 */
1557 sk_refcnt_debug_inc(newsk);
1558 sk_set_socket(newsk, NULL);
1559 newsk->sk_wq = NULL;
1560
1561 sk_update_clone(sk, newsk);
1562
1563 if (newsk->sk_prot->sockets_allocated)
1564 sk_sockets_allocated_inc(newsk);
1565
1566 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1567 net_enable_timestamp();
1568 }
1569out:
1570 return newsk;
1571}
1572EXPORT_SYMBOL_GPL(sk_clone_lock);
1573
1574void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1575{
1576 __sk_dst_set(sk, dst);
1577 sk->sk_route_caps = dst->dev->features;
1578 if (sk->sk_route_caps & NETIF_F_GSO)
1579 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1580 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1581 if (sk_can_gso(sk)) {
1582 if (dst->header_len) {
1583 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1584 } else {
1585 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1586 sk->sk_gso_max_size = dst->dev->gso_max_size;
1587 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1588 }
1589 }
1590}
1591EXPORT_SYMBOL_GPL(sk_setup_caps);
1592
1593/*
1594 * Simple resource managers for sockets.
1595 */
1596
1597
1598/*
1599 * Write buffer destructor automatically called from kfree_skb.
1600 */
1601void sock_wfree(struct sk_buff *skb)
1602{
1603 struct sock *sk = skb->sk;
1604 unsigned int len = skb->truesize;
1605
1606 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1607 /*
1608 * Keep a reference on sk_wmem_alloc, this will be released
1609 * after sk_write_space() call
1610 */
1611 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1612 sk->sk_write_space(sk);
1613 len = 1;
1614 }
1615 /*
1616 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1617 * could not do because of in-flight packets
1618 */
1619 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1620 __sk_free(sk);
1621}
1622EXPORT_SYMBOL(sock_wfree);
1623
1624void skb_orphan_partial(struct sk_buff *skb)
1625{
1626 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1627 * so we do not completely orphan skb, but transfert all
1628 * accounted bytes but one, to avoid unexpected reorders.
1629 */
1630 if (skb->destructor == sock_wfree
1631#ifdef CONFIG_INET
1632 || skb->destructor == tcp_wfree
1633#endif
1634 ) {
1635 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1636 skb->truesize = 1;
1637 } else {
1638 skb_orphan(skb);
1639 }
1640}
1641EXPORT_SYMBOL(skb_orphan_partial);
1642
1643/*
1644 * Read buffer destructor automatically called from kfree_skb.
1645 */
1646void sock_rfree(struct sk_buff *skb)
1647{
1648 struct sock *sk = skb->sk;
1649 unsigned int len = skb->truesize;
1650
1651 atomic_sub(len, &sk->sk_rmem_alloc);
1652 sk_mem_uncharge(sk, len);
1653}
1654EXPORT_SYMBOL(sock_rfree);
1655
1656void sock_edemux(struct sk_buff *skb)
1657{
1658 struct sock *sk = skb->sk;
1659
1660#ifdef CONFIG_INET
1661 if (sk->sk_state == TCP_TIME_WAIT)
1662 inet_twsk_put(inet_twsk(sk));
1663 else
1664#endif
1665 sock_put(sk);
1666}
1667EXPORT_SYMBOL(sock_edemux);
1668
1669kuid_t sock_i_uid(struct sock *sk)
1670{
1671 kuid_t uid;
1672
1673 read_lock_bh(&sk->sk_callback_lock);
1674 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1675 read_unlock_bh(&sk->sk_callback_lock);
1676 return uid;
1677}
1678EXPORT_SYMBOL(sock_i_uid);
1679
1680unsigned long sock_i_ino(struct sock *sk)
1681{
1682 unsigned long ino;
1683
1684 read_lock_bh(&sk->sk_callback_lock);
1685 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1686 read_unlock_bh(&sk->sk_callback_lock);
1687 return ino;
1688}
1689EXPORT_SYMBOL(sock_i_ino);
1690
1691/*
1692 * Allocate a skb from the socket's send buffer.
1693 */
1694struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1695 gfp_t priority)
1696{
1697 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1698 struct sk_buff *skb = alloc_skb(size, priority);
1699 if (skb) {
1700 skb_set_owner_w(skb, sk);
1701 return skb;
1702 }
1703 }
1704 return NULL;
1705}
1706EXPORT_SYMBOL(sock_wmalloc);
1707
1708/*
1709 * Allocate a memory block from the socket's option memory buffer.
1710 */
1711void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1712{
1713 if ((unsigned int)size <= sysctl_optmem_max &&
1714 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1715 void *mem;
1716 /* First do the add, to avoid the race if kmalloc
1717 * might sleep.
1718 */
1719 atomic_add(size, &sk->sk_omem_alloc);
1720 mem = kmalloc(size, priority);
1721 if (mem)
1722 return mem;
1723 atomic_sub(size, &sk->sk_omem_alloc);
1724 }
1725 return NULL;
1726}
1727EXPORT_SYMBOL(sock_kmalloc);
1728
1729/*
1730 * Free an option memory block.
1731 */
1732void sock_kfree_s(struct sock *sk, void *mem, int size)
1733{
1734 kfree(mem);
1735 atomic_sub(size, &sk->sk_omem_alloc);
1736}
1737EXPORT_SYMBOL(sock_kfree_s);
1738
1739/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1740 I think, these locks should be removed for datagram sockets.
1741 */
1742static long sock_wait_for_wmem(struct sock *sk, long timeo)
1743{
1744 DEFINE_WAIT(wait);
1745
1746 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1747 for (;;) {
1748 if (!timeo)
1749 break;
1750 if (signal_pending(current))
1751 break;
1752 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1753 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1754 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1755 break;
1756 if (sk->sk_shutdown & SEND_SHUTDOWN)
1757 break;
1758 if (sk->sk_err)
1759 break;
1760 timeo = schedule_timeout(timeo);
1761 }
1762 finish_wait(sk_sleep(sk), &wait);
1763 return timeo;
1764}
1765
1766
1767/*
1768 * Generic send/receive buffer handlers
1769 */
1770
1771struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1772 unsigned long data_len, int noblock,
1773 int *errcode, int max_page_order)
1774{
1775 struct sk_buff *skb = NULL;
1776 unsigned long chunk;
1777 gfp_t gfp_mask;
1778 long timeo;
1779 int err;
1780 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1781 struct page *page;
1782 int i;
1783
1784 err = -EMSGSIZE;
1785 if (npages > MAX_SKB_FRAGS)
1786 goto failure;
1787
1788 timeo = sock_sndtimeo(sk, noblock);
1789 while (!skb) {
1790 err = sock_error(sk);
1791 if (err != 0)
1792 goto failure;
1793
1794 err = -EPIPE;
1795 if (sk->sk_shutdown & SEND_SHUTDOWN)
1796 goto failure;
1797
1798 if (atomic_read(&sk->sk_wmem_alloc) >= sk->sk_sndbuf) {
1799 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1800 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1801 err = -EAGAIN;
1802 if (!timeo)
1803 goto failure;
1804 if (signal_pending(current))
1805 goto interrupted;
1806 timeo = sock_wait_for_wmem(sk, timeo);
1807 continue;
1808 }
1809
1810 err = -ENOBUFS;
1811 gfp_mask = sk->sk_allocation;
1812 if (gfp_mask & __GFP_WAIT)
1813 gfp_mask |= __GFP_REPEAT;
1814
1815 skb = alloc_skb(header_len, gfp_mask);
1816 if (!skb)
1817 goto failure;
1818
1819 skb->truesize += data_len;
1820
1821 for (i = 0; npages > 0; i++) {
1822 int order = max_page_order;
1823
1824 while (order) {
1825 if (npages >= 1 << order) {
1826 page = alloc_pages(sk->sk_allocation |
1827 __GFP_COMP |
1828 __GFP_NOWARN |
1829 __GFP_NORETRY,
1830 order);
1831 if (page)
1832 goto fill_page;
1833 }
1834 order--;
1835 }
1836 page = alloc_page(sk->sk_allocation);
1837 if (!page)
1838 goto failure;
1839fill_page:
1840 chunk = min_t(unsigned long, data_len,
1841 PAGE_SIZE << order);
1842 skb_fill_page_desc(skb, i, page, 0, chunk);
1843 data_len -= chunk;
1844 npages -= 1 << order;
1845 }
1846 }
1847
1848 skb_set_owner_w(skb, sk);
1849 return skb;
1850
1851interrupted:
1852 err = sock_intr_errno(timeo);
1853failure:
1854 kfree_skb(skb);
1855 *errcode = err;
1856 return NULL;
1857}
1858EXPORT_SYMBOL(sock_alloc_send_pskb);
1859
1860struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1861 int noblock, int *errcode)
1862{
1863 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1864}
1865EXPORT_SYMBOL(sock_alloc_send_skb);
1866
1867/* On 32bit arches, an skb frag is limited to 2^15 */
1868#define SKB_FRAG_PAGE_ORDER get_order(32768)
1869
1870/**
1871 * skb_page_frag_refill - check that a page_frag contains enough room
1872 * @sz: minimum size of the fragment we want to get
1873 * @pfrag: pointer to page_frag
1874 * @prio: priority for memory allocation
1875 *
1876 * Note: While this allocator tries to use high order pages, there is
1877 * no guarantee that allocations succeed. Therefore, @sz MUST be
1878 * less or equal than PAGE_SIZE.
1879 */
1880bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio)
1881{
1882 int order;
1883
1884 if (pfrag->page) {
1885 if (atomic_read(&pfrag->page->_count) == 1) {
1886 pfrag->offset = 0;
1887 return true;
1888 }
1889 if (pfrag->offset + sz <= pfrag->size)
1890 return true;
1891 put_page(pfrag->page);
1892 }
1893
1894 order = SKB_FRAG_PAGE_ORDER;
1895 do {
1896 gfp_t gfp = prio;
1897
1898 if (order)
1899 gfp |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
1900 pfrag->page = alloc_pages(gfp, order);
1901 if (likely(pfrag->page)) {
1902 pfrag->offset = 0;
1903 pfrag->size = PAGE_SIZE << order;
1904 return true;
1905 }
1906 } while (--order >= 0);
1907
1908 return false;
1909}
1910EXPORT_SYMBOL(skb_page_frag_refill);
1911
1912bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1913{
1914 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1915 return true;
1916
1917 sk_enter_memory_pressure(sk);
1918 sk_stream_moderate_sndbuf(sk);
1919 return false;
1920}
1921EXPORT_SYMBOL(sk_page_frag_refill);
1922
1923static void __lock_sock(struct sock *sk)
1924 __releases(&sk->sk_lock.slock)
1925 __acquires(&sk->sk_lock.slock)
1926{
1927 DEFINE_WAIT(wait);
1928
1929 for (;;) {
1930 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1931 TASK_UNINTERRUPTIBLE);
1932 spin_unlock_bh(&sk->sk_lock.slock);
1933 schedule();
1934 spin_lock_bh(&sk->sk_lock.slock);
1935 if (!sock_owned_by_user(sk))
1936 break;
1937 }
1938 finish_wait(&sk->sk_lock.wq, &wait);
1939}
1940
1941static void __release_sock(struct sock *sk)
1942 __releases(&sk->sk_lock.slock)
1943 __acquires(&sk->sk_lock.slock)
1944{
1945 struct sk_buff *skb = sk->sk_backlog.head;
1946
1947 do {
1948 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1949 bh_unlock_sock(sk);
1950
1951 do {
1952 struct sk_buff *next = skb->next;
1953
1954 prefetch(next);
1955 WARN_ON_ONCE(skb_dst_is_noref(skb));
1956 skb->next = NULL;
1957 sk_backlog_rcv(sk, skb);
1958
1959 /*
1960 * We are in process context here with softirqs
1961 * disabled, use cond_resched_softirq() to preempt.
1962 * This is safe to do because we've taken the backlog
1963 * queue private:
1964 */
1965 cond_resched_softirq();
1966
1967 skb = next;
1968 } while (skb != NULL);
1969
1970 bh_lock_sock(sk);
1971 } while ((skb = sk->sk_backlog.head) != NULL);
1972
1973 /*
1974 * Doing the zeroing here guarantee we can not loop forever
1975 * while a wild producer attempts to flood us.
1976 */
1977 sk->sk_backlog.len = 0;
1978}
1979
1980/**
1981 * sk_wait_data - wait for data to arrive at sk_receive_queue
1982 * @sk: sock to wait on
1983 * @timeo: for how long
1984 *
1985 * Now socket state including sk->sk_err is changed only under lock,
1986 * hence we may omit checks after joining wait queue.
1987 * We check receive queue before schedule() only as optimization;
1988 * it is very likely that release_sock() added new data.
1989 */
1990int sk_wait_data(struct sock *sk, long *timeo)
1991{
1992 int rc;
1993 DEFINE_WAIT(wait);
1994
1995 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1996 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1997 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1998 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1999 finish_wait(sk_sleep(sk), &wait);
2000 return rc;
2001}
2002EXPORT_SYMBOL(sk_wait_data);
2003
2004/**
2005 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2006 * @sk: socket
2007 * @size: memory size to allocate
2008 * @kind: allocation type
2009 *
2010 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2011 * rmem allocation. This function assumes that protocols which have
2012 * memory_pressure use sk_wmem_queued as write buffer accounting.
2013 */
2014int __sk_mem_schedule(struct sock *sk, int size, int kind)
2015{
2016 struct proto *prot = sk->sk_prot;
2017 int amt = sk_mem_pages(size);
2018 long allocated;
2019 int parent_status = UNDER_LIMIT;
2020
2021 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2022
2023 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2024
2025 /* Under limit. */
2026 if (parent_status == UNDER_LIMIT &&
2027 allocated <= sk_prot_mem_limits(sk, 0)) {
2028 sk_leave_memory_pressure(sk);
2029 return 1;
2030 }
2031
2032 /* Under pressure. (we or our parents) */
2033 if ((parent_status > SOFT_LIMIT) ||
2034 allocated > sk_prot_mem_limits(sk, 1))
2035 sk_enter_memory_pressure(sk);
2036
2037 /* Over hard limit (we or our parents) */
2038 if ((parent_status == OVER_LIMIT) ||
2039 (allocated > sk_prot_mem_limits(sk, 2)))
2040 goto suppress_allocation;
2041
2042 /* guarantee minimum buffer size under pressure */
2043 if (kind == SK_MEM_RECV) {
2044 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2045 return 1;
2046
2047 } else { /* SK_MEM_SEND */
2048 if (sk->sk_type == SOCK_STREAM) {
2049 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2050 return 1;
2051 } else if (atomic_read(&sk->sk_wmem_alloc) <
2052 prot->sysctl_wmem[0])
2053 return 1;
2054 }
2055
2056 if (sk_has_memory_pressure(sk)) {
2057 int alloc;
2058
2059 if (!sk_under_memory_pressure(sk))
2060 return 1;
2061 alloc = sk_sockets_allocated_read_positive(sk);
2062 if (sk_prot_mem_limits(sk, 2) > alloc *
2063 sk_mem_pages(sk->sk_wmem_queued +
2064 atomic_read(&sk->sk_rmem_alloc) +
2065 sk->sk_forward_alloc))
2066 return 1;
2067 }
2068
2069suppress_allocation:
2070
2071 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2072 sk_stream_moderate_sndbuf(sk);
2073
2074 /* Fail only if socket is _under_ its sndbuf.
2075 * In this case we cannot block, so that we have to fail.
2076 */
2077 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2078 return 1;
2079 }
2080
2081 trace_sock_exceed_buf_limit(sk, prot, allocated);
2082
2083 /* Alas. Undo changes. */
2084 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2085
2086 sk_memory_allocated_sub(sk, amt);
2087
2088 return 0;
2089}
2090EXPORT_SYMBOL(__sk_mem_schedule);
2091
2092/**
2093 * __sk_reclaim - reclaim memory_allocated
2094 * @sk: socket
2095 */
2096void __sk_mem_reclaim(struct sock *sk)
2097{
2098 sk_memory_allocated_sub(sk,
2099 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2100 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2101
2102 if (sk_under_memory_pressure(sk) &&
2103 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2104 sk_leave_memory_pressure(sk);
2105}
2106EXPORT_SYMBOL(__sk_mem_reclaim);
2107
2108
2109/*
2110 * Set of default routines for initialising struct proto_ops when
2111 * the protocol does not support a particular function. In certain
2112 * cases where it makes no sense for a protocol to have a "do nothing"
2113 * function, some default processing is provided.
2114 */
2115
2116int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2117{
2118 return -EOPNOTSUPP;
2119}
2120EXPORT_SYMBOL(sock_no_bind);
2121
2122int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2123 int len, int flags)
2124{
2125 return -EOPNOTSUPP;
2126}
2127EXPORT_SYMBOL(sock_no_connect);
2128
2129int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2130{
2131 return -EOPNOTSUPP;
2132}
2133EXPORT_SYMBOL(sock_no_socketpair);
2134
2135int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2136{
2137 return -EOPNOTSUPP;
2138}
2139EXPORT_SYMBOL(sock_no_accept);
2140
2141int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2142 int *len, int peer)
2143{
2144 return -EOPNOTSUPP;
2145}
2146EXPORT_SYMBOL(sock_no_getname);
2147
2148unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2149{
2150 return 0;
2151}
2152EXPORT_SYMBOL(sock_no_poll);
2153
2154int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2155{
2156 return -EOPNOTSUPP;
2157}
2158EXPORT_SYMBOL(sock_no_ioctl);
2159
2160int sock_no_listen(struct socket *sock, int backlog)
2161{
2162 return -EOPNOTSUPP;
2163}
2164EXPORT_SYMBOL(sock_no_listen);
2165
2166int sock_no_shutdown(struct socket *sock, int how)
2167{
2168 return -EOPNOTSUPP;
2169}
2170EXPORT_SYMBOL(sock_no_shutdown);
2171
2172int sock_no_setsockopt(struct socket *sock, int level, int optname,
2173 char __user *optval, unsigned int optlen)
2174{
2175 return -EOPNOTSUPP;
2176}
2177EXPORT_SYMBOL(sock_no_setsockopt);
2178
2179int sock_no_getsockopt(struct socket *sock, int level, int optname,
2180 char __user *optval, int __user *optlen)
2181{
2182 return -EOPNOTSUPP;
2183}
2184EXPORT_SYMBOL(sock_no_getsockopt);
2185
2186int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2187 size_t len)
2188{
2189 return -EOPNOTSUPP;
2190}
2191EXPORT_SYMBOL(sock_no_sendmsg);
2192
2193int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2194 size_t len, int flags)
2195{
2196 return -EOPNOTSUPP;
2197}
2198EXPORT_SYMBOL(sock_no_recvmsg);
2199
2200int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2201{
2202 /* Mirror missing mmap method error code */
2203 return -ENODEV;
2204}
2205EXPORT_SYMBOL(sock_no_mmap);
2206
2207ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2208{
2209 ssize_t res;
2210 struct msghdr msg = {.msg_flags = flags};
2211 struct kvec iov;
2212 char *kaddr = kmap(page);
2213 iov.iov_base = kaddr + offset;
2214 iov.iov_len = size;
2215 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2216 kunmap(page);
2217 return res;
2218}
2219EXPORT_SYMBOL(sock_no_sendpage);
2220
2221/*
2222 * Default Socket Callbacks
2223 */
2224
2225static void sock_def_wakeup(struct sock *sk)
2226{
2227 struct socket_wq *wq;
2228
2229 rcu_read_lock();
2230 wq = rcu_dereference(sk->sk_wq);
2231 if (wq_has_sleeper(wq))
2232 wake_up_interruptible_all(&wq->wait);
2233 rcu_read_unlock();
2234}
2235
2236static void sock_def_error_report(struct sock *sk)
2237{
2238 struct socket_wq *wq;
2239
2240 rcu_read_lock();
2241 wq = rcu_dereference(sk->sk_wq);
2242 if (wq_has_sleeper(wq))
2243 wake_up_interruptible_poll(&wq->wait, POLLERR);
2244 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2245 rcu_read_unlock();
2246}
2247
2248static void sock_def_readable(struct sock *sk)
2249{
2250 struct socket_wq *wq;
2251
2252 rcu_read_lock();
2253 wq = rcu_dereference(sk->sk_wq);
2254 if (wq_has_sleeper(wq))
2255 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2256 POLLRDNORM | POLLRDBAND);
2257 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2258 rcu_read_unlock();
2259}
2260
2261static void sock_def_write_space(struct sock *sk)
2262{
2263 struct socket_wq *wq;
2264
2265 rcu_read_lock();
2266
2267 /* Do not wake up a writer until he can make "significant"
2268 * progress. --DaveM
2269 */
2270 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2271 wq = rcu_dereference(sk->sk_wq);
2272 if (wq_has_sleeper(wq))
2273 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2274 POLLWRNORM | POLLWRBAND);
2275
2276 /* Should agree with poll, otherwise some programs break */
2277 if (sock_writeable(sk))
2278 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2279 }
2280
2281 rcu_read_unlock();
2282}
2283
2284static void sock_def_destruct(struct sock *sk)
2285{
2286 kfree(sk->sk_protinfo);
2287}
2288
2289void sk_send_sigurg(struct sock *sk)
2290{
2291 if (sk->sk_socket && sk->sk_socket->file)
2292 if (send_sigurg(&sk->sk_socket->file->f_owner))
2293 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2294}
2295EXPORT_SYMBOL(sk_send_sigurg);
2296
2297void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2298 unsigned long expires)
2299{
2300 if (!mod_timer(timer, expires))
2301 sock_hold(sk);
2302}
2303EXPORT_SYMBOL(sk_reset_timer);
2304
2305void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2306{
2307 if (del_timer(timer))
2308 __sock_put(sk);
2309}
2310EXPORT_SYMBOL(sk_stop_timer);
2311
2312void sock_init_data(struct socket *sock, struct sock *sk)
2313{
2314 skb_queue_head_init(&sk->sk_receive_queue);
2315 skb_queue_head_init(&sk->sk_write_queue);
2316 skb_queue_head_init(&sk->sk_error_queue);
2317#ifdef CONFIG_NET_DMA
2318 skb_queue_head_init(&sk->sk_async_wait_queue);
2319#endif
2320
2321 sk->sk_send_head = NULL;
2322
2323 init_timer(&sk->sk_timer);
2324
2325 sk->sk_allocation = GFP_KERNEL;
2326 sk->sk_rcvbuf = sysctl_rmem_default;
2327 sk->sk_sndbuf = sysctl_wmem_default;
2328 sk->sk_state = TCP_CLOSE;
2329 sk_set_socket(sk, sock);
2330
2331 sock_set_flag(sk, SOCK_ZAPPED);
2332
2333 if (sock) {
2334 sk->sk_type = sock->type;
2335 sk->sk_wq = sock->wq;
2336 sock->sk = sk;
2337 } else
2338 sk->sk_wq = NULL;
2339
2340 spin_lock_init(&sk->sk_dst_lock);
2341 rwlock_init(&sk->sk_callback_lock);
2342 lockdep_set_class_and_name(&sk->sk_callback_lock,
2343 af_callback_keys + sk->sk_family,
2344 af_family_clock_key_strings[sk->sk_family]);
2345
2346 sk->sk_state_change = sock_def_wakeup;
2347 sk->sk_data_ready = sock_def_readable;
2348 sk->sk_write_space = sock_def_write_space;
2349 sk->sk_error_report = sock_def_error_report;
2350 sk->sk_destruct = sock_def_destruct;
2351
2352 sk->sk_frag.page = NULL;
2353 sk->sk_frag.offset = 0;
2354 sk->sk_peek_off = -1;
2355
2356 sk->sk_peer_pid = NULL;
2357 sk->sk_peer_cred = NULL;
2358 sk->sk_write_pending = 0;
2359 sk->sk_rcvlowat = 1;
2360 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2361 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2362
2363 sk->sk_stamp = ktime_set(-1L, 0);
2364
2365#ifdef CONFIG_NET_RX_BUSY_POLL
2366 sk->sk_napi_id = 0;
2367 sk->sk_ll_usec = sysctl_net_busy_read;
2368#endif
2369
2370 sk->sk_max_pacing_rate = ~0U;
2371 sk->sk_pacing_rate = ~0U;
2372 /*
2373 * Before updating sk_refcnt, we must commit prior changes to memory
2374 * (Documentation/RCU/rculist_nulls.txt for details)
2375 */
2376 smp_wmb();
2377 atomic_set(&sk->sk_refcnt, 1);
2378 atomic_set(&sk->sk_drops, 0);
2379}
2380EXPORT_SYMBOL(sock_init_data);
2381
2382void lock_sock_nested(struct sock *sk, int subclass)
2383{
2384 might_sleep();
2385 spin_lock_bh(&sk->sk_lock.slock);
2386 if (sk->sk_lock.owned)
2387 __lock_sock(sk);
2388 sk->sk_lock.owned = 1;
2389 spin_unlock(&sk->sk_lock.slock);
2390 /*
2391 * The sk_lock has mutex_lock() semantics here:
2392 */
2393 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2394 local_bh_enable();
2395}
2396EXPORT_SYMBOL(lock_sock_nested);
2397
2398void release_sock(struct sock *sk)
2399{
2400 /*
2401 * The sk_lock has mutex_unlock() semantics:
2402 */
2403 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2404
2405 spin_lock_bh(&sk->sk_lock.slock);
2406 if (sk->sk_backlog.tail)
2407 __release_sock(sk);
2408
2409 /* Warning : release_cb() might need to release sk ownership,
2410 * ie call sock_release_ownership(sk) before us.
2411 */
2412 if (sk->sk_prot->release_cb)
2413 sk->sk_prot->release_cb(sk);
2414
2415 sock_release_ownership(sk);
2416 if (waitqueue_active(&sk->sk_lock.wq))
2417 wake_up(&sk->sk_lock.wq);
2418 spin_unlock_bh(&sk->sk_lock.slock);
2419}
2420EXPORT_SYMBOL(release_sock);
2421
2422/**
2423 * lock_sock_fast - fast version of lock_sock
2424 * @sk: socket
2425 *
2426 * This version should be used for very small section, where process wont block
2427 * return false if fast path is taken
2428 * sk_lock.slock locked, owned = 0, BH disabled
2429 * return true if slow path is taken
2430 * sk_lock.slock unlocked, owned = 1, BH enabled
2431 */
2432bool lock_sock_fast(struct sock *sk)
2433{
2434 might_sleep();
2435 spin_lock_bh(&sk->sk_lock.slock);
2436
2437 if (!sk->sk_lock.owned)
2438 /*
2439 * Note : We must disable BH
2440 */
2441 return false;
2442
2443 __lock_sock(sk);
2444 sk->sk_lock.owned = 1;
2445 spin_unlock(&sk->sk_lock.slock);
2446 /*
2447 * The sk_lock has mutex_lock() semantics here:
2448 */
2449 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2450 local_bh_enable();
2451 return true;
2452}
2453EXPORT_SYMBOL(lock_sock_fast);
2454
2455int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2456{
2457 struct timeval tv;
2458 if (!sock_flag(sk, SOCK_TIMESTAMP))
2459 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2460 tv = ktime_to_timeval(sk->sk_stamp);
2461 if (tv.tv_sec == -1)
2462 return -ENOENT;
2463 if (tv.tv_sec == 0) {
2464 sk->sk_stamp = ktime_get_real();
2465 tv = ktime_to_timeval(sk->sk_stamp);
2466 }
2467 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2468}
2469EXPORT_SYMBOL(sock_get_timestamp);
2470
2471int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2472{
2473 struct timespec ts;
2474 if (!sock_flag(sk, SOCK_TIMESTAMP))
2475 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2476 ts = ktime_to_timespec(sk->sk_stamp);
2477 if (ts.tv_sec == -1)
2478 return -ENOENT;
2479 if (ts.tv_sec == 0) {
2480 sk->sk_stamp = ktime_get_real();
2481 ts = ktime_to_timespec(sk->sk_stamp);
2482 }
2483 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2484}
2485EXPORT_SYMBOL(sock_get_timestampns);
2486
2487void sock_enable_timestamp(struct sock *sk, int flag)
2488{
2489 if (!sock_flag(sk, flag)) {
2490 unsigned long previous_flags = sk->sk_flags;
2491
2492 sock_set_flag(sk, flag);
2493 /*
2494 * we just set one of the two flags which require net
2495 * time stamping, but time stamping might have been on
2496 * already because of the other one
2497 */
2498 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2499 net_enable_timestamp();
2500 }
2501}
2502
2503int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2504 int level, int type)
2505{
2506 struct sock_exterr_skb *serr;
2507 struct sk_buff *skb, *skb2;
2508 int copied, err;
2509
2510 err = -EAGAIN;
2511 skb = skb_dequeue(&sk->sk_error_queue);
2512 if (skb == NULL)
2513 goto out;
2514
2515 copied = skb->len;
2516 if (copied > len) {
2517 msg->msg_flags |= MSG_TRUNC;
2518 copied = len;
2519 }
2520 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2521 if (err)
2522 goto out_free_skb;
2523
2524 sock_recv_timestamp(msg, sk, skb);
2525
2526 serr = SKB_EXT_ERR(skb);
2527 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2528
2529 msg->msg_flags |= MSG_ERRQUEUE;
2530 err = copied;
2531
2532 /* Reset and regenerate socket error */
2533 spin_lock_bh(&sk->sk_error_queue.lock);
2534 sk->sk_err = 0;
2535 if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2536 sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2537 spin_unlock_bh(&sk->sk_error_queue.lock);
2538 sk->sk_error_report(sk);
2539 } else
2540 spin_unlock_bh(&sk->sk_error_queue.lock);
2541
2542out_free_skb:
2543 kfree_skb(skb);
2544out:
2545 return err;
2546}
2547EXPORT_SYMBOL(sock_recv_errqueue);
2548
2549/*
2550 * Get a socket option on an socket.
2551 *
2552 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2553 * asynchronous errors should be reported by getsockopt. We assume
2554 * this means if you specify SO_ERROR (otherwise whats the point of it).
2555 */
2556int sock_common_getsockopt(struct socket *sock, int level, int optname,
2557 char __user *optval, int __user *optlen)
2558{
2559 struct sock *sk = sock->sk;
2560
2561 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2562}
2563EXPORT_SYMBOL(sock_common_getsockopt);
2564
2565#ifdef CONFIG_COMPAT
2566int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2567 char __user *optval, int __user *optlen)
2568{
2569 struct sock *sk = sock->sk;
2570
2571 if (sk->sk_prot->compat_getsockopt != NULL)
2572 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2573 optval, optlen);
2574 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2575}
2576EXPORT_SYMBOL(compat_sock_common_getsockopt);
2577#endif
2578
2579int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2580 struct msghdr *msg, size_t size, int flags)
2581{
2582 struct sock *sk = sock->sk;
2583 int addr_len = 0;
2584 int err;
2585
2586 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2587 flags & ~MSG_DONTWAIT, &addr_len);
2588 if (err >= 0)
2589 msg->msg_namelen = addr_len;
2590 return err;
2591}
2592EXPORT_SYMBOL(sock_common_recvmsg);
2593
2594/*
2595 * Set socket options on an inet socket.
2596 */
2597int sock_common_setsockopt(struct socket *sock, int level, int optname,
2598 char __user *optval, unsigned int optlen)
2599{
2600 struct sock *sk = sock->sk;
2601
2602 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2603}
2604EXPORT_SYMBOL(sock_common_setsockopt);
2605
2606#ifdef CONFIG_COMPAT
2607int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2608 char __user *optval, unsigned int optlen)
2609{
2610 struct sock *sk = sock->sk;
2611
2612 if (sk->sk_prot->compat_setsockopt != NULL)
2613 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2614 optval, optlen);
2615 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2616}
2617EXPORT_SYMBOL(compat_sock_common_setsockopt);
2618#endif
2619
2620void sk_common_release(struct sock *sk)
2621{
2622 if (sk->sk_prot->destroy)
2623 sk->sk_prot->destroy(sk);
2624
2625 /*
2626 * Observation: when sock_common_release is called, processes have
2627 * no access to socket. But net still has.
2628 * Step one, detach it from networking:
2629 *
2630 * A. Remove from hash tables.
2631 */
2632
2633 sk->sk_prot->unhash(sk);
2634
2635 /*
2636 * In this point socket cannot receive new packets, but it is possible
2637 * that some packets are in flight because some CPU runs receiver and
2638 * did hash table lookup before we unhashed socket. They will achieve
2639 * receive queue and will be purged by socket destructor.
2640 *
2641 * Also we still have packets pending on receive queue and probably,
2642 * our own packets waiting in device queues. sock_destroy will drain
2643 * receive queue, but transmitted packets will delay socket destruction
2644 * until the last reference will be released.
2645 */
2646
2647 sock_orphan(sk);
2648
2649 xfrm_sk_free_policy(sk);
2650
2651 sk_refcnt_debug_release(sk);
2652
2653 if (sk->sk_frag.page) {
2654 put_page(sk->sk_frag.page);
2655 sk->sk_frag.page = NULL;
2656 }
2657
2658 sock_put(sk);
2659}
2660EXPORT_SYMBOL(sk_common_release);
2661
2662#ifdef CONFIG_PROC_FS
2663#define PROTO_INUSE_NR 64 /* should be enough for the first time */
2664struct prot_inuse {
2665 int val[PROTO_INUSE_NR];
2666};
2667
2668static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2669
2670#ifdef CONFIG_NET_NS
2671void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2672{
2673 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2674}
2675EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2676
2677int sock_prot_inuse_get(struct net *net, struct proto *prot)
2678{
2679 int cpu, idx = prot->inuse_idx;
2680 int res = 0;
2681
2682 for_each_possible_cpu(cpu)
2683 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2684
2685 return res >= 0 ? res : 0;
2686}
2687EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2688
2689static int __net_init sock_inuse_init_net(struct net *net)
2690{
2691 net->core.inuse = alloc_percpu(struct prot_inuse);
2692 return net->core.inuse ? 0 : -ENOMEM;
2693}
2694
2695static void __net_exit sock_inuse_exit_net(struct net *net)
2696{
2697 free_percpu(net->core.inuse);
2698}
2699
2700static struct pernet_operations net_inuse_ops = {
2701 .init = sock_inuse_init_net,
2702 .exit = sock_inuse_exit_net,
2703};
2704
2705static __init int net_inuse_init(void)
2706{
2707 if (register_pernet_subsys(&net_inuse_ops))
2708 panic("Cannot initialize net inuse counters");
2709
2710 return 0;
2711}
2712
2713core_initcall(net_inuse_init);
2714#else
2715static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2716
2717void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2718{
2719 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2720}
2721EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2722
2723int sock_prot_inuse_get(struct net *net, struct proto *prot)
2724{
2725 int cpu, idx = prot->inuse_idx;
2726 int res = 0;
2727
2728 for_each_possible_cpu(cpu)
2729 res += per_cpu(prot_inuse, cpu).val[idx];
2730
2731 return res >= 0 ? res : 0;
2732}
2733EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2734#endif
2735
2736static void assign_proto_idx(struct proto *prot)
2737{
2738 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2739
2740 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2741 pr_err("PROTO_INUSE_NR exhausted\n");
2742 return;
2743 }
2744
2745 set_bit(prot->inuse_idx, proto_inuse_idx);
2746}
2747
2748static void release_proto_idx(struct proto *prot)
2749{
2750 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2751 clear_bit(prot->inuse_idx, proto_inuse_idx);
2752}
2753#else
2754static inline void assign_proto_idx(struct proto *prot)
2755{
2756}
2757
2758static inline void release_proto_idx(struct proto *prot)
2759{
2760}
2761#endif
2762
2763int proto_register(struct proto *prot, int alloc_slab)
2764{
2765 if (alloc_slab) {
2766 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2767 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2768 NULL);
2769
2770 if (prot->slab == NULL) {
2771 pr_crit("%s: Can't create sock SLAB cache!\n",
2772 prot->name);
2773 goto out;
2774 }
2775
2776 if (prot->rsk_prot != NULL) {
2777 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2778 if (prot->rsk_prot->slab_name == NULL)
2779 goto out_free_sock_slab;
2780
2781 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2782 prot->rsk_prot->obj_size, 0,
2783 SLAB_HWCACHE_ALIGN, NULL);
2784
2785 if (prot->rsk_prot->slab == NULL) {
2786 pr_crit("%s: Can't create request sock SLAB cache!\n",
2787 prot->name);
2788 goto out_free_request_sock_slab_name;
2789 }
2790 }
2791
2792 if (prot->twsk_prot != NULL) {
2793 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2794
2795 if (prot->twsk_prot->twsk_slab_name == NULL)
2796 goto out_free_request_sock_slab;
2797
2798 prot->twsk_prot->twsk_slab =
2799 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2800 prot->twsk_prot->twsk_obj_size,
2801 0,
2802 SLAB_HWCACHE_ALIGN |
2803 prot->slab_flags,
2804 NULL);
2805 if (prot->twsk_prot->twsk_slab == NULL)
2806 goto out_free_timewait_sock_slab_name;
2807 }
2808 }
2809
2810 mutex_lock(&proto_list_mutex);
2811 list_add(&prot->node, &proto_list);
2812 assign_proto_idx(prot);
2813 mutex_unlock(&proto_list_mutex);
2814 return 0;
2815
2816out_free_timewait_sock_slab_name:
2817 kfree(prot->twsk_prot->twsk_slab_name);
2818out_free_request_sock_slab:
2819 if (prot->rsk_prot && prot->rsk_prot->slab) {
2820 kmem_cache_destroy(prot->rsk_prot->slab);
2821 prot->rsk_prot->slab = NULL;
2822 }
2823out_free_request_sock_slab_name:
2824 if (prot->rsk_prot)
2825 kfree(prot->rsk_prot->slab_name);
2826out_free_sock_slab:
2827 kmem_cache_destroy(prot->slab);
2828 prot->slab = NULL;
2829out:
2830 return -ENOBUFS;
2831}
2832EXPORT_SYMBOL(proto_register);
2833
2834void proto_unregister(struct proto *prot)
2835{
2836 mutex_lock(&proto_list_mutex);
2837 release_proto_idx(prot);
2838 list_del(&prot->node);
2839 mutex_unlock(&proto_list_mutex);
2840
2841 if (prot->slab != NULL) {
2842 kmem_cache_destroy(prot->slab);
2843 prot->slab = NULL;
2844 }
2845
2846 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2847 kmem_cache_destroy(prot->rsk_prot->slab);
2848 kfree(prot->rsk_prot->slab_name);
2849 prot->rsk_prot->slab = NULL;
2850 }
2851
2852 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2853 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2854 kfree(prot->twsk_prot->twsk_slab_name);
2855 prot->twsk_prot->twsk_slab = NULL;
2856 }
2857}
2858EXPORT_SYMBOL(proto_unregister);
2859
2860#ifdef CONFIG_PROC_FS
2861static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2862 __acquires(proto_list_mutex)
2863{
2864 mutex_lock(&proto_list_mutex);
2865 return seq_list_start_head(&proto_list, *pos);
2866}
2867
2868static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2869{
2870 return seq_list_next(v, &proto_list, pos);
2871}
2872
2873static void proto_seq_stop(struct seq_file *seq, void *v)
2874 __releases(proto_list_mutex)
2875{
2876 mutex_unlock(&proto_list_mutex);
2877}
2878
2879static char proto_method_implemented(const void *method)
2880{
2881 return method == NULL ? 'n' : 'y';
2882}
2883static long sock_prot_memory_allocated(struct proto *proto)
2884{
2885 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2886}
2887
2888static char *sock_prot_memory_pressure(struct proto *proto)
2889{
2890 return proto->memory_pressure != NULL ?
2891 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2892}
2893
2894static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2895{
2896
2897 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2898 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2899 proto->name,
2900 proto->obj_size,
2901 sock_prot_inuse_get(seq_file_net(seq), proto),
2902 sock_prot_memory_allocated(proto),
2903 sock_prot_memory_pressure(proto),
2904 proto->max_header,
2905 proto->slab == NULL ? "no" : "yes",
2906 module_name(proto->owner),
2907 proto_method_implemented(proto->close),
2908 proto_method_implemented(proto->connect),
2909 proto_method_implemented(proto->disconnect),
2910 proto_method_implemented(proto->accept),
2911 proto_method_implemented(proto->ioctl),
2912 proto_method_implemented(proto->init),
2913 proto_method_implemented(proto->destroy),
2914 proto_method_implemented(proto->shutdown),
2915 proto_method_implemented(proto->setsockopt),
2916 proto_method_implemented(proto->getsockopt),
2917 proto_method_implemented(proto->sendmsg),
2918 proto_method_implemented(proto->recvmsg),
2919 proto_method_implemented(proto->sendpage),
2920 proto_method_implemented(proto->bind),
2921 proto_method_implemented(proto->backlog_rcv),
2922 proto_method_implemented(proto->hash),
2923 proto_method_implemented(proto->unhash),
2924 proto_method_implemented(proto->get_port),
2925 proto_method_implemented(proto->enter_memory_pressure));
2926}
2927
2928static int proto_seq_show(struct seq_file *seq, void *v)
2929{
2930 if (v == &proto_list)
2931 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2932 "protocol",
2933 "size",
2934 "sockets",
2935 "memory",
2936 "press",
2937 "maxhdr",
2938 "slab",
2939 "module",
2940 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2941 else
2942 proto_seq_printf(seq, list_entry(v, struct proto, node));
2943 return 0;
2944}
2945
2946static const struct seq_operations proto_seq_ops = {
2947 .start = proto_seq_start,
2948 .next = proto_seq_next,
2949 .stop = proto_seq_stop,
2950 .show = proto_seq_show,
2951};
2952
2953static int proto_seq_open(struct inode *inode, struct file *file)
2954{
2955 return seq_open_net(inode, file, &proto_seq_ops,
2956 sizeof(struct seq_net_private));
2957}
2958
2959static const struct file_operations proto_seq_fops = {
2960 .owner = THIS_MODULE,
2961 .open = proto_seq_open,
2962 .read = seq_read,
2963 .llseek = seq_lseek,
2964 .release = seq_release_net,
2965};
2966
2967static __net_init int proto_init_net(struct net *net)
2968{
2969 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2970 return -ENOMEM;
2971
2972 return 0;
2973}
2974
2975static __net_exit void proto_exit_net(struct net *net)
2976{
2977 remove_proc_entry("protocols", net->proc_net);
2978}
2979
2980
2981static __net_initdata struct pernet_operations proto_net_ops = {
2982 .init = proto_init_net,
2983 .exit = proto_exit_net,
2984};
2985
2986static int __init proto_init(void)
2987{
2988 return register_pernet_subsys(&proto_net_ops);
2989}
2990
2991subsys_initcall(proto_init);
2992
2993#endif /* PROC_FS */
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115#include <linux/user_namespace.h>
116#include <linux/static_key.h>
117#include <linux/memcontrol.h>
118#include <linux/prefetch.h>
119
120#include <asm/uaccess.h>
121
122#include <linux/netdevice.h>
123#include <net/protocol.h>
124#include <linux/skbuff.h>
125#include <net/net_namespace.h>
126#include <net/request_sock.h>
127#include <net/sock.h>
128#include <linux/net_tstamp.h>
129#include <net/xfrm.h>
130#include <linux/ipsec.h>
131#include <net/cls_cgroup.h>
132#include <net/netprio_cgroup.h>
133
134#include <linux/filter.h>
135
136#include <trace/events/sock.h>
137
138#ifdef CONFIG_INET
139#include <net/tcp.h>
140#endif
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
146int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147{
148 struct proto *proto;
149 int ret = 0;
150
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
155 if (ret)
156 goto out;
157 }
158 }
159
160 mutex_unlock(&proto_list_mutex);
161 return ret;
162out:
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
167 return ret;
168}
169
170void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171{
172 struct proto *proto;
173
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
179}
180#endif
181
182/*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186static struct lock_class_key af_family_keys[AF_MAX];
187static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189struct static_key memcg_socket_limit_enabled;
190EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192/*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197static const char *const af_family_key_strings[AF_MAX+1] = {
198 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
199 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
200 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
201 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
202 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
203 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
204 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
205 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
206 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
207 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
208 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
209 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
210 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
211 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
212};
213static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
215 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
216 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
217 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
218 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
219 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
220 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
221 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
222 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
223 "slock-27" , "slock-28" , "slock-AF_CAN" ,
224 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
225 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
226 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
227 "slock-AF_NFC" , "slock-AF_MAX"
228};
229static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
231 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
232 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
233 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
234 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
235 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
236 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
237 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
238 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
239 "clock-27" , "clock-28" , "clock-AF_CAN" ,
240 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
241 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
242 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
243 "clock-AF_NFC" , "clock-AF_MAX"
244};
245
246/*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250static struct lock_class_key af_callback_keys[AF_MAX];
251
252/* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms. This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257#define _SK_MEM_PACKETS 256
258#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
259#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262/* Run time adjustable parameters. */
263__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264EXPORT_SYMBOL(sysctl_wmem_max);
265__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266EXPORT_SYMBOL(sysctl_rmem_max);
267__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270/* Maximal space eaten by iovec or ancillary data plus some space */
271int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272EXPORT_SYMBOL(sysctl_optmem_max);
273
274#if defined(CONFIG_CGROUPS)
275#if !defined(CONFIG_NET_CLS_CGROUP)
276int net_cls_subsys_id = -1;
277EXPORT_SYMBOL_GPL(net_cls_subsys_id);
278#endif
279#if !defined(CONFIG_NETPRIO_CGROUP)
280int net_prio_subsys_id = -1;
281EXPORT_SYMBOL_GPL(net_prio_subsys_id);
282#endif
283#endif
284
285static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
286{
287 struct timeval tv;
288
289 if (optlen < sizeof(tv))
290 return -EINVAL;
291 if (copy_from_user(&tv, optval, sizeof(tv)))
292 return -EFAULT;
293 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
294 return -EDOM;
295
296 if (tv.tv_sec < 0) {
297 static int warned __read_mostly;
298
299 *timeo_p = 0;
300 if (warned < 10 && net_ratelimit()) {
301 warned++;
302 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
303 __func__, current->comm, task_pid_nr(current));
304 }
305 return 0;
306 }
307 *timeo_p = MAX_SCHEDULE_TIMEOUT;
308 if (tv.tv_sec == 0 && tv.tv_usec == 0)
309 return 0;
310 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
311 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
312 return 0;
313}
314
315static void sock_warn_obsolete_bsdism(const char *name)
316{
317 static int warned;
318 static char warncomm[TASK_COMM_LEN];
319 if (strcmp(warncomm, current->comm) && warned < 5) {
320 strcpy(warncomm, current->comm);
321 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
322 warncomm, name);
323 warned++;
324 }
325}
326
327#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
328
329static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
330{
331 if (sk->sk_flags & flags) {
332 sk->sk_flags &= ~flags;
333 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
334 net_disable_timestamp();
335 }
336}
337
338
339int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
340{
341 int err;
342 int skb_len;
343 unsigned long flags;
344 struct sk_buff_head *list = &sk->sk_receive_queue;
345
346 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
347 atomic_inc(&sk->sk_drops);
348 trace_sock_rcvqueue_full(sk, skb);
349 return -ENOMEM;
350 }
351
352 err = sk_filter(sk, skb);
353 if (err)
354 return err;
355
356 if (!sk_rmem_schedule(sk, skb->truesize)) {
357 atomic_inc(&sk->sk_drops);
358 return -ENOBUFS;
359 }
360
361 skb->dev = NULL;
362 skb_set_owner_r(skb, sk);
363
364 /* Cache the SKB length before we tack it onto the receive
365 * queue. Once it is added it no longer belongs to us and
366 * may be freed by other threads of control pulling packets
367 * from the queue.
368 */
369 skb_len = skb->len;
370
371 /* we escape from rcu protected region, make sure we dont leak
372 * a norefcounted dst
373 */
374 skb_dst_force(skb);
375
376 spin_lock_irqsave(&list->lock, flags);
377 skb->dropcount = atomic_read(&sk->sk_drops);
378 __skb_queue_tail(list, skb);
379 spin_unlock_irqrestore(&list->lock, flags);
380
381 if (!sock_flag(sk, SOCK_DEAD))
382 sk->sk_data_ready(sk, skb_len);
383 return 0;
384}
385EXPORT_SYMBOL(sock_queue_rcv_skb);
386
387int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
388{
389 int rc = NET_RX_SUCCESS;
390
391 if (sk_filter(sk, skb))
392 goto discard_and_relse;
393
394 skb->dev = NULL;
395
396 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
397 atomic_inc(&sk->sk_drops);
398 goto discard_and_relse;
399 }
400 if (nested)
401 bh_lock_sock_nested(sk);
402 else
403 bh_lock_sock(sk);
404 if (!sock_owned_by_user(sk)) {
405 /*
406 * trylock + unlock semantics:
407 */
408 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
409
410 rc = sk_backlog_rcv(sk, skb);
411
412 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
413 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
414 bh_unlock_sock(sk);
415 atomic_inc(&sk->sk_drops);
416 goto discard_and_relse;
417 }
418
419 bh_unlock_sock(sk);
420out:
421 sock_put(sk);
422 return rc;
423discard_and_relse:
424 kfree_skb(skb);
425 goto out;
426}
427EXPORT_SYMBOL(sk_receive_skb);
428
429void sk_reset_txq(struct sock *sk)
430{
431 sk_tx_queue_clear(sk);
432}
433EXPORT_SYMBOL(sk_reset_txq);
434
435struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
436{
437 struct dst_entry *dst = __sk_dst_get(sk);
438
439 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
440 sk_tx_queue_clear(sk);
441 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
442 dst_release(dst);
443 return NULL;
444 }
445
446 return dst;
447}
448EXPORT_SYMBOL(__sk_dst_check);
449
450struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
451{
452 struct dst_entry *dst = sk_dst_get(sk);
453
454 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
455 sk_dst_reset(sk);
456 dst_release(dst);
457 return NULL;
458 }
459
460 return dst;
461}
462EXPORT_SYMBOL(sk_dst_check);
463
464static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
465{
466 int ret = -ENOPROTOOPT;
467#ifdef CONFIG_NETDEVICES
468 struct net *net = sock_net(sk);
469 char devname[IFNAMSIZ];
470 int index;
471
472 /* Sorry... */
473 ret = -EPERM;
474 if (!capable(CAP_NET_RAW))
475 goto out;
476
477 ret = -EINVAL;
478 if (optlen < 0)
479 goto out;
480
481 /* Bind this socket to a particular device like "eth0",
482 * as specified in the passed interface name. If the
483 * name is "" or the option length is zero the socket
484 * is not bound.
485 */
486 if (optlen > IFNAMSIZ - 1)
487 optlen = IFNAMSIZ - 1;
488 memset(devname, 0, sizeof(devname));
489
490 ret = -EFAULT;
491 if (copy_from_user(devname, optval, optlen))
492 goto out;
493
494 index = 0;
495 if (devname[0] != '\0') {
496 struct net_device *dev;
497
498 rcu_read_lock();
499 dev = dev_get_by_name_rcu(net, devname);
500 if (dev)
501 index = dev->ifindex;
502 rcu_read_unlock();
503 ret = -ENODEV;
504 if (!dev)
505 goto out;
506 }
507
508 lock_sock(sk);
509 sk->sk_bound_dev_if = index;
510 sk_dst_reset(sk);
511 release_sock(sk);
512
513 ret = 0;
514
515out:
516#endif
517
518 return ret;
519}
520
521static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
522{
523 if (valbool)
524 sock_set_flag(sk, bit);
525 else
526 sock_reset_flag(sk, bit);
527}
528
529/*
530 * This is meant for all protocols to use and covers goings on
531 * at the socket level. Everything here is generic.
532 */
533
534int sock_setsockopt(struct socket *sock, int level, int optname,
535 char __user *optval, unsigned int optlen)
536{
537 struct sock *sk = sock->sk;
538 int val;
539 int valbool;
540 struct linger ling;
541 int ret = 0;
542
543 /*
544 * Options without arguments
545 */
546
547 if (optname == SO_BINDTODEVICE)
548 return sock_bindtodevice(sk, optval, optlen);
549
550 if (optlen < sizeof(int))
551 return -EINVAL;
552
553 if (get_user(val, (int __user *)optval))
554 return -EFAULT;
555
556 valbool = val ? 1 : 0;
557
558 lock_sock(sk);
559
560 switch (optname) {
561 case SO_DEBUG:
562 if (val && !capable(CAP_NET_ADMIN))
563 ret = -EACCES;
564 else
565 sock_valbool_flag(sk, SOCK_DBG, valbool);
566 break;
567 case SO_REUSEADDR:
568 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
569 break;
570 case SO_TYPE:
571 case SO_PROTOCOL:
572 case SO_DOMAIN:
573 case SO_ERROR:
574 ret = -ENOPROTOOPT;
575 break;
576 case SO_DONTROUTE:
577 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
578 break;
579 case SO_BROADCAST:
580 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
581 break;
582 case SO_SNDBUF:
583 /* Don't error on this BSD doesn't and if you think
584 * about it this is right. Otherwise apps have to
585 * play 'guess the biggest size' games. RCVBUF/SNDBUF
586 * are treated in BSD as hints
587 */
588 val = min_t(u32, val, sysctl_wmem_max);
589set_sndbuf:
590 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
591 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
592 /* Wake up sending tasks if we upped the value. */
593 sk->sk_write_space(sk);
594 break;
595
596 case SO_SNDBUFFORCE:
597 if (!capable(CAP_NET_ADMIN)) {
598 ret = -EPERM;
599 break;
600 }
601 goto set_sndbuf;
602
603 case SO_RCVBUF:
604 /* Don't error on this BSD doesn't and if you think
605 * about it this is right. Otherwise apps have to
606 * play 'guess the biggest size' games. RCVBUF/SNDBUF
607 * are treated in BSD as hints
608 */
609 val = min_t(u32, val, sysctl_rmem_max);
610set_rcvbuf:
611 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
612 /*
613 * We double it on the way in to account for
614 * "struct sk_buff" etc. overhead. Applications
615 * assume that the SO_RCVBUF setting they make will
616 * allow that much actual data to be received on that
617 * socket.
618 *
619 * Applications are unaware that "struct sk_buff" and
620 * other overheads allocate from the receive buffer
621 * during socket buffer allocation.
622 *
623 * And after considering the possible alternatives,
624 * returning the value we actually used in getsockopt
625 * is the most desirable behavior.
626 */
627 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
628 break;
629
630 case SO_RCVBUFFORCE:
631 if (!capable(CAP_NET_ADMIN)) {
632 ret = -EPERM;
633 break;
634 }
635 goto set_rcvbuf;
636
637 case SO_KEEPALIVE:
638#ifdef CONFIG_INET
639 if (sk->sk_protocol == IPPROTO_TCP)
640 tcp_set_keepalive(sk, valbool);
641#endif
642 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
643 break;
644
645 case SO_OOBINLINE:
646 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
647 break;
648
649 case SO_NO_CHECK:
650 sk->sk_no_check = valbool;
651 break;
652
653 case SO_PRIORITY:
654 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
655 sk->sk_priority = val;
656 else
657 ret = -EPERM;
658 break;
659
660 case SO_LINGER:
661 if (optlen < sizeof(ling)) {
662 ret = -EINVAL; /* 1003.1g */
663 break;
664 }
665 if (copy_from_user(&ling, optval, sizeof(ling))) {
666 ret = -EFAULT;
667 break;
668 }
669 if (!ling.l_onoff)
670 sock_reset_flag(sk, SOCK_LINGER);
671 else {
672#if (BITS_PER_LONG == 32)
673 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
674 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
675 else
676#endif
677 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
678 sock_set_flag(sk, SOCK_LINGER);
679 }
680 break;
681
682 case SO_BSDCOMPAT:
683 sock_warn_obsolete_bsdism("setsockopt");
684 break;
685
686 case SO_PASSCRED:
687 if (valbool)
688 set_bit(SOCK_PASSCRED, &sock->flags);
689 else
690 clear_bit(SOCK_PASSCRED, &sock->flags);
691 break;
692
693 case SO_TIMESTAMP:
694 case SO_TIMESTAMPNS:
695 if (valbool) {
696 if (optname == SO_TIMESTAMP)
697 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
698 else
699 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
700 sock_set_flag(sk, SOCK_RCVTSTAMP);
701 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
702 } else {
703 sock_reset_flag(sk, SOCK_RCVTSTAMP);
704 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
705 }
706 break;
707
708 case SO_TIMESTAMPING:
709 if (val & ~SOF_TIMESTAMPING_MASK) {
710 ret = -EINVAL;
711 break;
712 }
713 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
714 val & SOF_TIMESTAMPING_TX_HARDWARE);
715 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
716 val & SOF_TIMESTAMPING_TX_SOFTWARE);
717 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
718 val & SOF_TIMESTAMPING_RX_HARDWARE);
719 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
720 sock_enable_timestamp(sk,
721 SOCK_TIMESTAMPING_RX_SOFTWARE);
722 else
723 sock_disable_timestamp(sk,
724 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
725 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
726 val & SOF_TIMESTAMPING_SOFTWARE);
727 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
728 val & SOF_TIMESTAMPING_SYS_HARDWARE);
729 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
730 val & SOF_TIMESTAMPING_RAW_HARDWARE);
731 break;
732
733 case SO_RCVLOWAT:
734 if (val < 0)
735 val = INT_MAX;
736 sk->sk_rcvlowat = val ? : 1;
737 break;
738
739 case SO_RCVTIMEO:
740 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
741 break;
742
743 case SO_SNDTIMEO:
744 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
745 break;
746
747 case SO_ATTACH_FILTER:
748 ret = -EINVAL;
749 if (optlen == sizeof(struct sock_fprog)) {
750 struct sock_fprog fprog;
751
752 ret = -EFAULT;
753 if (copy_from_user(&fprog, optval, sizeof(fprog)))
754 break;
755
756 ret = sk_attach_filter(&fprog, sk);
757 }
758 break;
759
760 case SO_DETACH_FILTER:
761 ret = sk_detach_filter(sk);
762 break;
763
764 case SO_PASSSEC:
765 if (valbool)
766 set_bit(SOCK_PASSSEC, &sock->flags);
767 else
768 clear_bit(SOCK_PASSSEC, &sock->flags);
769 break;
770 case SO_MARK:
771 if (!capable(CAP_NET_ADMIN))
772 ret = -EPERM;
773 else
774 sk->sk_mark = val;
775 break;
776
777 /* We implement the SO_SNDLOWAT etc to
778 not be settable (1003.1g 5.3) */
779 case SO_RXQ_OVFL:
780 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
781 break;
782
783 case SO_WIFI_STATUS:
784 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
785 break;
786
787 case SO_PEEK_OFF:
788 if (sock->ops->set_peek_off)
789 sock->ops->set_peek_off(sk, val);
790 else
791 ret = -EOPNOTSUPP;
792 break;
793
794 case SO_NOFCS:
795 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
796 break;
797
798 default:
799 ret = -ENOPROTOOPT;
800 break;
801 }
802 release_sock(sk);
803 return ret;
804}
805EXPORT_SYMBOL(sock_setsockopt);
806
807
808void cred_to_ucred(struct pid *pid, const struct cred *cred,
809 struct ucred *ucred)
810{
811 ucred->pid = pid_vnr(pid);
812 ucred->uid = ucred->gid = -1;
813 if (cred) {
814 struct user_namespace *current_ns = current_user_ns();
815
816 ucred->uid = from_kuid(current_ns, cred->euid);
817 ucred->gid = from_kgid(current_ns, cred->egid);
818 }
819}
820EXPORT_SYMBOL_GPL(cred_to_ucred);
821
822int sock_getsockopt(struct socket *sock, int level, int optname,
823 char __user *optval, int __user *optlen)
824{
825 struct sock *sk = sock->sk;
826
827 union {
828 int val;
829 struct linger ling;
830 struct timeval tm;
831 } v;
832
833 int lv = sizeof(int);
834 int len;
835
836 if (get_user(len, optlen))
837 return -EFAULT;
838 if (len < 0)
839 return -EINVAL;
840
841 memset(&v, 0, sizeof(v));
842
843 switch (optname) {
844 case SO_DEBUG:
845 v.val = sock_flag(sk, SOCK_DBG);
846 break;
847
848 case SO_DONTROUTE:
849 v.val = sock_flag(sk, SOCK_LOCALROUTE);
850 break;
851
852 case SO_BROADCAST:
853 v.val = sock_flag(sk, SOCK_BROADCAST);
854 break;
855
856 case SO_SNDBUF:
857 v.val = sk->sk_sndbuf;
858 break;
859
860 case SO_RCVBUF:
861 v.val = sk->sk_rcvbuf;
862 break;
863
864 case SO_REUSEADDR:
865 v.val = sk->sk_reuse;
866 break;
867
868 case SO_KEEPALIVE:
869 v.val = sock_flag(sk, SOCK_KEEPOPEN);
870 break;
871
872 case SO_TYPE:
873 v.val = sk->sk_type;
874 break;
875
876 case SO_PROTOCOL:
877 v.val = sk->sk_protocol;
878 break;
879
880 case SO_DOMAIN:
881 v.val = sk->sk_family;
882 break;
883
884 case SO_ERROR:
885 v.val = -sock_error(sk);
886 if (v.val == 0)
887 v.val = xchg(&sk->sk_err_soft, 0);
888 break;
889
890 case SO_OOBINLINE:
891 v.val = sock_flag(sk, SOCK_URGINLINE);
892 break;
893
894 case SO_NO_CHECK:
895 v.val = sk->sk_no_check;
896 break;
897
898 case SO_PRIORITY:
899 v.val = sk->sk_priority;
900 break;
901
902 case SO_LINGER:
903 lv = sizeof(v.ling);
904 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
905 v.ling.l_linger = sk->sk_lingertime / HZ;
906 break;
907
908 case SO_BSDCOMPAT:
909 sock_warn_obsolete_bsdism("getsockopt");
910 break;
911
912 case SO_TIMESTAMP:
913 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
914 !sock_flag(sk, SOCK_RCVTSTAMPNS);
915 break;
916
917 case SO_TIMESTAMPNS:
918 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
919 break;
920
921 case SO_TIMESTAMPING:
922 v.val = 0;
923 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
924 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
925 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
926 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
927 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
928 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
929 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
930 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
931 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
932 v.val |= SOF_TIMESTAMPING_SOFTWARE;
933 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
934 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
935 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
936 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
937 break;
938
939 case SO_RCVTIMEO:
940 lv = sizeof(struct timeval);
941 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
942 v.tm.tv_sec = 0;
943 v.tm.tv_usec = 0;
944 } else {
945 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
946 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
947 }
948 break;
949
950 case SO_SNDTIMEO:
951 lv = sizeof(struct timeval);
952 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
953 v.tm.tv_sec = 0;
954 v.tm.tv_usec = 0;
955 } else {
956 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
957 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
958 }
959 break;
960
961 case SO_RCVLOWAT:
962 v.val = sk->sk_rcvlowat;
963 break;
964
965 case SO_SNDLOWAT:
966 v.val = 1;
967 break;
968
969 case SO_PASSCRED:
970 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
971 break;
972
973 case SO_PEERCRED:
974 {
975 struct ucred peercred;
976 if (len > sizeof(peercred))
977 len = sizeof(peercred);
978 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
979 if (copy_to_user(optval, &peercred, len))
980 return -EFAULT;
981 goto lenout;
982 }
983
984 case SO_PEERNAME:
985 {
986 char address[128];
987
988 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
989 return -ENOTCONN;
990 if (lv < len)
991 return -EINVAL;
992 if (copy_to_user(optval, address, len))
993 return -EFAULT;
994 goto lenout;
995 }
996
997 /* Dubious BSD thing... Probably nobody even uses it, but
998 * the UNIX standard wants it for whatever reason... -DaveM
999 */
1000 case SO_ACCEPTCONN:
1001 v.val = sk->sk_state == TCP_LISTEN;
1002 break;
1003
1004 case SO_PASSSEC:
1005 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1006 break;
1007
1008 case SO_PEERSEC:
1009 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1010
1011 case SO_MARK:
1012 v.val = sk->sk_mark;
1013 break;
1014
1015 case SO_RXQ_OVFL:
1016 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1017 break;
1018
1019 case SO_WIFI_STATUS:
1020 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1021 break;
1022
1023 case SO_PEEK_OFF:
1024 if (!sock->ops->set_peek_off)
1025 return -EOPNOTSUPP;
1026
1027 v.val = sk->sk_peek_off;
1028 break;
1029 case SO_NOFCS:
1030 v.val = sock_flag(sk, SOCK_NOFCS);
1031 break;
1032 default:
1033 return -ENOPROTOOPT;
1034 }
1035
1036 if (len > lv)
1037 len = lv;
1038 if (copy_to_user(optval, &v, len))
1039 return -EFAULT;
1040lenout:
1041 if (put_user(len, optlen))
1042 return -EFAULT;
1043 return 0;
1044}
1045
1046/*
1047 * Initialize an sk_lock.
1048 *
1049 * (We also register the sk_lock with the lock validator.)
1050 */
1051static inline void sock_lock_init(struct sock *sk)
1052{
1053 sock_lock_init_class_and_name(sk,
1054 af_family_slock_key_strings[sk->sk_family],
1055 af_family_slock_keys + sk->sk_family,
1056 af_family_key_strings[sk->sk_family],
1057 af_family_keys + sk->sk_family);
1058}
1059
1060/*
1061 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1062 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1063 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1064 */
1065static void sock_copy(struct sock *nsk, const struct sock *osk)
1066{
1067#ifdef CONFIG_SECURITY_NETWORK
1068 void *sptr = nsk->sk_security;
1069#endif
1070 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1071
1072 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1073 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1074
1075#ifdef CONFIG_SECURITY_NETWORK
1076 nsk->sk_security = sptr;
1077 security_sk_clone(osk, nsk);
1078#endif
1079}
1080
1081/*
1082 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1083 * un-modified. Special care is taken when initializing object to zero.
1084 */
1085static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1086{
1087 if (offsetof(struct sock, sk_node.next) != 0)
1088 memset(sk, 0, offsetof(struct sock, sk_node.next));
1089 memset(&sk->sk_node.pprev, 0,
1090 size - offsetof(struct sock, sk_node.pprev));
1091}
1092
1093void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1094{
1095 unsigned long nulls1, nulls2;
1096
1097 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1098 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1099 if (nulls1 > nulls2)
1100 swap(nulls1, nulls2);
1101
1102 if (nulls1 != 0)
1103 memset((char *)sk, 0, nulls1);
1104 memset((char *)sk + nulls1 + sizeof(void *), 0,
1105 nulls2 - nulls1 - sizeof(void *));
1106 memset((char *)sk + nulls2 + sizeof(void *), 0,
1107 size - nulls2 - sizeof(void *));
1108}
1109EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1110
1111static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1112 int family)
1113{
1114 struct sock *sk;
1115 struct kmem_cache *slab;
1116
1117 slab = prot->slab;
1118 if (slab != NULL) {
1119 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1120 if (!sk)
1121 return sk;
1122 if (priority & __GFP_ZERO) {
1123 if (prot->clear_sk)
1124 prot->clear_sk(sk, prot->obj_size);
1125 else
1126 sk_prot_clear_nulls(sk, prot->obj_size);
1127 }
1128 } else
1129 sk = kmalloc(prot->obj_size, priority);
1130
1131 if (sk != NULL) {
1132 kmemcheck_annotate_bitfield(sk, flags);
1133
1134 if (security_sk_alloc(sk, family, priority))
1135 goto out_free;
1136
1137 if (!try_module_get(prot->owner))
1138 goto out_free_sec;
1139 sk_tx_queue_clear(sk);
1140 }
1141
1142 return sk;
1143
1144out_free_sec:
1145 security_sk_free(sk);
1146out_free:
1147 if (slab != NULL)
1148 kmem_cache_free(slab, sk);
1149 else
1150 kfree(sk);
1151 return NULL;
1152}
1153
1154static void sk_prot_free(struct proto *prot, struct sock *sk)
1155{
1156 struct kmem_cache *slab;
1157 struct module *owner;
1158
1159 owner = prot->owner;
1160 slab = prot->slab;
1161
1162 security_sk_free(sk);
1163 if (slab != NULL)
1164 kmem_cache_free(slab, sk);
1165 else
1166 kfree(sk);
1167 module_put(owner);
1168}
1169
1170#ifdef CONFIG_CGROUPS
1171void sock_update_classid(struct sock *sk)
1172{
1173 u32 classid;
1174
1175 rcu_read_lock(); /* doing current task, which cannot vanish. */
1176 classid = task_cls_classid(current);
1177 rcu_read_unlock();
1178 if (classid && classid != sk->sk_classid)
1179 sk->sk_classid = classid;
1180}
1181EXPORT_SYMBOL(sock_update_classid);
1182
1183void sock_update_netprioidx(struct sock *sk)
1184{
1185 if (in_interrupt())
1186 return;
1187
1188 sk->sk_cgrp_prioidx = task_netprioidx(current);
1189}
1190EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1191#endif
1192
1193/**
1194 * sk_alloc - All socket objects are allocated here
1195 * @net: the applicable net namespace
1196 * @family: protocol family
1197 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1198 * @prot: struct proto associated with this new sock instance
1199 */
1200struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1201 struct proto *prot)
1202{
1203 struct sock *sk;
1204
1205 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1206 if (sk) {
1207 sk->sk_family = family;
1208 /*
1209 * See comment in struct sock definition to understand
1210 * why we need sk_prot_creator -acme
1211 */
1212 sk->sk_prot = sk->sk_prot_creator = prot;
1213 sock_lock_init(sk);
1214 sock_net_set(sk, get_net(net));
1215 atomic_set(&sk->sk_wmem_alloc, 1);
1216
1217 sock_update_classid(sk);
1218 sock_update_netprioidx(sk);
1219 }
1220
1221 return sk;
1222}
1223EXPORT_SYMBOL(sk_alloc);
1224
1225static void __sk_free(struct sock *sk)
1226{
1227 struct sk_filter *filter;
1228
1229 if (sk->sk_destruct)
1230 sk->sk_destruct(sk);
1231
1232 filter = rcu_dereference_check(sk->sk_filter,
1233 atomic_read(&sk->sk_wmem_alloc) == 0);
1234 if (filter) {
1235 sk_filter_uncharge(sk, filter);
1236 RCU_INIT_POINTER(sk->sk_filter, NULL);
1237 }
1238
1239 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1240
1241 if (atomic_read(&sk->sk_omem_alloc))
1242 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1243 __func__, atomic_read(&sk->sk_omem_alloc));
1244
1245 if (sk->sk_peer_cred)
1246 put_cred(sk->sk_peer_cred);
1247 put_pid(sk->sk_peer_pid);
1248 put_net(sock_net(sk));
1249 sk_prot_free(sk->sk_prot_creator, sk);
1250}
1251
1252void sk_free(struct sock *sk)
1253{
1254 /*
1255 * We subtract one from sk_wmem_alloc and can know if
1256 * some packets are still in some tx queue.
1257 * If not null, sock_wfree() will call __sk_free(sk) later
1258 */
1259 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1260 __sk_free(sk);
1261}
1262EXPORT_SYMBOL(sk_free);
1263
1264/*
1265 * Last sock_put should drop reference to sk->sk_net. It has already
1266 * been dropped in sk_change_net. Taking reference to stopping namespace
1267 * is not an option.
1268 * Take reference to a socket to remove it from hash _alive_ and after that
1269 * destroy it in the context of init_net.
1270 */
1271void sk_release_kernel(struct sock *sk)
1272{
1273 if (sk == NULL || sk->sk_socket == NULL)
1274 return;
1275
1276 sock_hold(sk);
1277 sock_release(sk->sk_socket);
1278 release_net(sock_net(sk));
1279 sock_net_set(sk, get_net(&init_net));
1280 sock_put(sk);
1281}
1282EXPORT_SYMBOL(sk_release_kernel);
1283
1284static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1285{
1286 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1287 sock_update_memcg(newsk);
1288}
1289
1290/**
1291 * sk_clone_lock - clone a socket, and lock its clone
1292 * @sk: the socket to clone
1293 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1294 *
1295 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1296 */
1297struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1298{
1299 struct sock *newsk;
1300
1301 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1302 if (newsk != NULL) {
1303 struct sk_filter *filter;
1304
1305 sock_copy(newsk, sk);
1306
1307 /* SANITY */
1308 get_net(sock_net(newsk));
1309 sk_node_init(&newsk->sk_node);
1310 sock_lock_init(newsk);
1311 bh_lock_sock(newsk);
1312 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1313 newsk->sk_backlog.len = 0;
1314
1315 atomic_set(&newsk->sk_rmem_alloc, 0);
1316 /*
1317 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1318 */
1319 atomic_set(&newsk->sk_wmem_alloc, 1);
1320 atomic_set(&newsk->sk_omem_alloc, 0);
1321 skb_queue_head_init(&newsk->sk_receive_queue);
1322 skb_queue_head_init(&newsk->sk_write_queue);
1323#ifdef CONFIG_NET_DMA
1324 skb_queue_head_init(&newsk->sk_async_wait_queue);
1325#endif
1326
1327 spin_lock_init(&newsk->sk_dst_lock);
1328 rwlock_init(&newsk->sk_callback_lock);
1329 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1330 af_callback_keys + newsk->sk_family,
1331 af_family_clock_key_strings[newsk->sk_family]);
1332
1333 newsk->sk_dst_cache = NULL;
1334 newsk->sk_wmem_queued = 0;
1335 newsk->sk_forward_alloc = 0;
1336 newsk->sk_send_head = NULL;
1337 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1338
1339 sock_reset_flag(newsk, SOCK_DONE);
1340 skb_queue_head_init(&newsk->sk_error_queue);
1341
1342 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1343 if (filter != NULL)
1344 sk_filter_charge(newsk, filter);
1345
1346 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1347 /* It is still raw copy of parent, so invalidate
1348 * destructor and make plain sk_free() */
1349 newsk->sk_destruct = NULL;
1350 bh_unlock_sock(newsk);
1351 sk_free(newsk);
1352 newsk = NULL;
1353 goto out;
1354 }
1355
1356 newsk->sk_err = 0;
1357 newsk->sk_priority = 0;
1358 /*
1359 * Before updating sk_refcnt, we must commit prior changes to memory
1360 * (Documentation/RCU/rculist_nulls.txt for details)
1361 */
1362 smp_wmb();
1363 atomic_set(&newsk->sk_refcnt, 2);
1364
1365 /*
1366 * Increment the counter in the same struct proto as the master
1367 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1368 * is the same as sk->sk_prot->socks, as this field was copied
1369 * with memcpy).
1370 *
1371 * This _changes_ the previous behaviour, where
1372 * tcp_create_openreq_child always was incrementing the
1373 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1374 * to be taken into account in all callers. -acme
1375 */
1376 sk_refcnt_debug_inc(newsk);
1377 sk_set_socket(newsk, NULL);
1378 newsk->sk_wq = NULL;
1379
1380 sk_update_clone(sk, newsk);
1381
1382 if (newsk->sk_prot->sockets_allocated)
1383 sk_sockets_allocated_inc(newsk);
1384
1385 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1386 net_enable_timestamp();
1387 }
1388out:
1389 return newsk;
1390}
1391EXPORT_SYMBOL_GPL(sk_clone_lock);
1392
1393void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1394{
1395 __sk_dst_set(sk, dst);
1396 sk->sk_route_caps = dst->dev->features;
1397 if (sk->sk_route_caps & NETIF_F_GSO)
1398 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1399 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1400 if (sk_can_gso(sk)) {
1401 if (dst->header_len) {
1402 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1403 } else {
1404 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1405 sk->sk_gso_max_size = dst->dev->gso_max_size;
1406 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1407 }
1408 }
1409}
1410EXPORT_SYMBOL_GPL(sk_setup_caps);
1411
1412void __init sk_init(void)
1413{
1414 if (totalram_pages <= 4096) {
1415 sysctl_wmem_max = 32767;
1416 sysctl_rmem_max = 32767;
1417 sysctl_wmem_default = 32767;
1418 sysctl_rmem_default = 32767;
1419 } else if (totalram_pages >= 131072) {
1420 sysctl_wmem_max = 131071;
1421 sysctl_rmem_max = 131071;
1422 }
1423}
1424
1425/*
1426 * Simple resource managers for sockets.
1427 */
1428
1429
1430/*
1431 * Write buffer destructor automatically called from kfree_skb.
1432 */
1433void sock_wfree(struct sk_buff *skb)
1434{
1435 struct sock *sk = skb->sk;
1436 unsigned int len = skb->truesize;
1437
1438 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1439 /*
1440 * Keep a reference on sk_wmem_alloc, this will be released
1441 * after sk_write_space() call
1442 */
1443 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1444 sk->sk_write_space(sk);
1445 len = 1;
1446 }
1447 /*
1448 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1449 * could not do because of in-flight packets
1450 */
1451 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1452 __sk_free(sk);
1453}
1454EXPORT_SYMBOL(sock_wfree);
1455
1456/*
1457 * Read buffer destructor automatically called from kfree_skb.
1458 */
1459void sock_rfree(struct sk_buff *skb)
1460{
1461 struct sock *sk = skb->sk;
1462 unsigned int len = skb->truesize;
1463
1464 atomic_sub(len, &sk->sk_rmem_alloc);
1465 sk_mem_uncharge(sk, len);
1466}
1467EXPORT_SYMBOL(sock_rfree);
1468
1469
1470int sock_i_uid(struct sock *sk)
1471{
1472 int uid;
1473
1474 read_lock_bh(&sk->sk_callback_lock);
1475 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1476 read_unlock_bh(&sk->sk_callback_lock);
1477 return uid;
1478}
1479EXPORT_SYMBOL(sock_i_uid);
1480
1481unsigned long sock_i_ino(struct sock *sk)
1482{
1483 unsigned long ino;
1484
1485 read_lock_bh(&sk->sk_callback_lock);
1486 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1487 read_unlock_bh(&sk->sk_callback_lock);
1488 return ino;
1489}
1490EXPORT_SYMBOL(sock_i_ino);
1491
1492/*
1493 * Allocate a skb from the socket's send buffer.
1494 */
1495struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1496 gfp_t priority)
1497{
1498 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1499 struct sk_buff *skb = alloc_skb(size, priority);
1500 if (skb) {
1501 skb_set_owner_w(skb, sk);
1502 return skb;
1503 }
1504 }
1505 return NULL;
1506}
1507EXPORT_SYMBOL(sock_wmalloc);
1508
1509/*
1510 * Allocate a skb from the socket's receive buffer.
1511 */
1512struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1513 gfp_t priority)
1514{
1515 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1516 struct sk_buff *skb = alloc_skb(size, priority);
1517 if (skb) {
1518 skb_set_owner_r(skb, sk);
1519 return skb;
1520 }
1521 }
1522 return NULL;
1523}
1524
1525/*
1526 * Allocate a memory block from the socket's option memory buffer.
1527 */
1528void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1529{
1530 if ((unsigned int)size <= sysctl_optmem_max &&
1531 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1532 void *mem;
1533 /* First do the add, to avoid the race if kmalloc
1534 * might sleep.
1535 */
1536 atomic_add(size, &sk->sk_omem_alloc);
1537 mem = kmalloc(size, priority);
1538 if (mem)
1539 return mem;
1540 atomic_sub(size, &sk->sk_omem_alloc);
1541 }
1542 return NULL;
1543}
1544EXPORT_SYMBOL(sock_kmalloc);
1545
1546/*
1547 * Free an option memory block.
1548 */
1549void sock_kfree_s(struct sock *sk, void *mem, int size)
1550{
1551 kfree(mem);
1552 atomic_sub(size, &sk->sk_omem_alloc);
1553}
1554EXPORT_SYMBOL(sock_kfree_s);
1555
1556/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1557 I think, these locks should be removed for datagram sockets.
1558 */
1559static long sock_wait_for_wmem(struct sock *sk, long timeo)
1560{
1561 DEFINE_WAIT(wait);
1562
1563 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1564 for (;;) {
1565 if (!timeo)
1566 break;
1567 if (signal_pending(current))
1568 break;
1569 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1570 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1571 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1572 break;
1573 if (sk->sk_shutdown & SEND_SHUTDOWN)
1574 break;
1575 if (sk->sk_err)
1576 break;
1577 timeo = schedule_timeout(timeo);
1578 }
1579 finish_wait(sk_sleep(sk), &wait);
1580 return timeo;
1581}
1582
1583
1584/*
1585 * Generic send/receive buffer handlers
1586 */
1587
1588struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1589 unsigned long data_len, int noblock,
1590 int *errcode)
1591{
1592 struct sk_buff *skb;
1593 gfp_t gfp_mask;
1594 long timeo;
1595 int err;
1596 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1597
1598 err = -EMSGSIZE;
1599 if (npages > MAX_SKB_FRAGS)
1600 goto failure;
1601
1602 gfp_mask = sk->sk_allocation;
1603 if (gfp_mask & __GFP_WAIT)
1604 gfp_mask |= __GFP_REPEAT;
1605
1606 timeo = sock_sndtimeo(sk, noblock);
1607 while (1) {
1608 err = sock_error(sk);
1609 if (err != 0)
1610 goto failure;
1611
1612 err = -EPIPE;
1613 if (sk->sk_shutdown & SEND_SHUTDOWN)
1614 goto failure;
1615
1616 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1617 skb = alloc_skb(header_len, gfp_mask);
1618 if (skb) {
1619 int i;
1620
1621 /* No pages, we're done... */
1622 if (!data_len)
1623 break;
1624
1625 skb->truesize += data_len;
1626 skb_shinfo(skb)->nr_frags = npages;
1627 for (i = 0; i < npages; i++) {
1628 struct page *page;
1629
1630 page = alloc_pages(sk->sk_allocation, 0);
1631 if (!page) {
1632 err = -ENOBUFS;
1633 skb_shinfo(skb)->nr_frags = i;
1634 kfree_skb(skb);
1635 goto failure;
1636 }
1637
1638 __skb_fill_page_desc(skb, i,
1639 page, 0,
1640 (data_len >= PAGE_SIZE ?
1641 PAGE_SIZE :
1642 data_len));
1643 data_len -= PAGE_SIZE;
1644 }
1645
1646 /* Full success... */
1647 break;
1648 }
1649 err = -ENOBUFS;
1650 goto failure;
1651 }
1652 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1653 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1654 err = -EAGAIN;
1655 if (!timeo)
1656 goto failure;
1657 if (signal_pending(current))
1658 goto interrupted;
1659 timeo = sock_wait_for_wmem(sk, timeo);
1660 }
1661
1662 skb_set_owner_w(skb, sk);
1663 return skb;
1664
1665interrupted:
1666 err = sock_intr_errno(timeo);
1667failure:
1668 *errcode = err;
1669 return NULL;
1670}
1671EXPORT_SYMBOL(sock_alloc_send_pskb);
1672
1673struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1674 int noblock, int *errcode)
1675{
1676 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1677}
1678EXPORT_SYMBOL(sock_alloc_send_skb);
1679
1680static void __lock_sock(struct sock *sk)
1681 __releases(&sk->sk_lock.slock)
1682 __acquires(&sk->sk_lock.slock)
1683{
1684 DEFINE_WAIT(wait);
1685
1686 for (;;) {
1687 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1688 TASK_UNINTERRUPTIBLE);
1689 spin_unlock_bh(&sk->sk_lock.slock);
1690 schedule();
1691 spin_lock_bh(&sk->sk_lock.slock);
1692 if (!sock_owned_by_user(sk))
1693 break;
1694 }
1695 finish_wait(&sk->sk_lock.wq, &wait);
1696}
1697
1698static void __release_sock(struct sock *sk)
1699 __releases(&sk->sk_lock.slock)
1700 __acquires(&sk->sk_lock.slock)
1701{
1702 struct sk_buff *skb = sk->sk_backlog.head;
1703
1704 do {
1705 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1706 bh_unlock_sock(sk);
1707
1708 do {
1709 struct sk_buff *next = skb->next;
1710
1711 prefetch(next);
1712 WARN_ON_ONCE(skb_dst_is_noref(skb));
1713 skb->next = NULL;
1714 sk_backlog_rcv(sk, skb);
1715
1716 /*
1717 * We are in process context here with softirqs
1718 * disabled, use cond_resched_softirq() to preempt.
1719 * This is safe to do because we've taken the backlog
1720 * queue private:
1721 */
1722 cond_resched_softirq();
1723
1724 skb = next;
1725 } while (skb != NULL);
1726
1727 bh_lock_sock(sk);
1728 } while ((skb = sk->sk_backlog.head) != NULL);
1729
1730 /*
1731 * Doing the zeroing here guarantee we can not loop forever
1732 * while a wild producer attempts to flood us.
1733 */
1734 sk->sk_backlog.len = 0;
1735}
1736
1737/**
1738 * sk_wait_data - wait for data to arrive at sk_receive_queue
1739 * @sk: sock to wait on
1740 * @timeo: for how long
1741 *
1742 * Now socket state including sk->sk_err is changed only under lock,
1743 * hence we may omit checks after joining wait queue.
1744 * We check receive queue before schedule() only as optimization;
1745 * it is very likely that release_sock() added new data.
1746 */
1747int sk_wait_data(struct sock *sk, long *timeo)
1748{
1749 int rc;
1750 DEFINE_WAIT(wait);
1751
1752 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1753 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1754 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1755 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1756 finish_wait(sk_sleep(sk), &wait);
1757 return rc;
1758}
1759EXPORT_SYMBOL(sk_wait_data);
1760
1761/**
1762 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1763 * @sk: socket
1764 * @size: memory size to allocate
1765 * @kind: allocation type
1766 *
1767 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1768 * rmem allocation. This function assumes that protocols which have
1769 * memory_pressure use sk_wmem_queued as write buffer accounting.
1770 */
1771int __sk_mem_schedule(struct sock *sk, int size, int kind)
1772{
1773 struct proto *prot = sk->sk_prot;
1774 int amt = sk_mem_pages(size);
1775 long allocated;
1776 int parent_status = UNDER_LIMIT;
1777
1778 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1779
1780 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1781
1782 /* Under limit. */
1783 if (parent_status == UNDER_LIMIT &&
1784 allocated <= sk_prot_mem_limits(sk, 0)) {
1785 sk_leave_memory_pressure(sk);
1786 return 1;
1787 }
1788
1789 /* Under pressure. (we or our parents) */
1790 if ((parent_status > SOFT_LIMIT) ||
1791 allocated > sk_prot_mem_limits(sk, 1))
1792 sk_enter_memory_pressure(sk);
1793
1794 /* Over hard limit (we or our parents) */
1795 if ((parent_status == OVER_LIMIT) ||
1796 (allocated > sk_prot_mem_limits(sk, 2)))
1797 goto suppress_allocation;
1798
1799 /* guarantee minimum buffer size under pressure */
1800 if (kind == SK_MEM_RECV) {
1801 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1802 return 1;
1803
1804 } else { /* SK_MEM_SEND */
1805 if (sk->sk_type == SOCK_STREAM) {
1806 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1807 return 1;
1808 } else if (atomic_read(&sk->sk_wmem_alloc) <
1809 prot->sysctl_wmem[0])
1810 return 1;
1811 }
1812
1813 if (sk_has_memory_pressure(sk)) {
1814 int alloc;
1815
1816 if (!sk_under_memory_pressure(sk))
1817 return 1;
1818 alloc = sk_sockets_allocated_read_positive(sk);
1819 if (sk_prot_mem_limits(sk, 2) > alloc *
1820 sk_mem_pages(sk->sk_wmem_queued +
1821 atomic_read(&sk->sk_rmem_alloc) +
1822 sk->sk_forward_alloc))
1823 return 1;
1824 }
1825
1826suppress_allocation:
1827
1828 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1829 sk_stream_moderate_sndbuf(sk);
1830
1831 /* Fail only if socket is _under_ its sndbuf.
1832 * In this case we cannot block, so that we have to fail.
1833 */
1834 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1835 return 1;
1836 }
1837
1838 trace_sock_exceed_buf_limit(sk, prot, allocated);
1839
1840 /* Alas. Undo changes. */
1841 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1842
1843 sk_memory_allocated_sub(sk, amt);
1844
1845 return 0;
1846}
1847EXPORT_SYMBOL(__sk_mem_schedule);
1848
1849/**
1850 * __sk_reclaim - reclaim memory_allocated
1851 * @sk: socket
1852 */
1853void __sk_mem_reclaim(struct sock *sk)
1854{
1855 sk_memory_allocated_sub(sk,
1856 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1857 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1858
1859 if (sk_under_memory_pressure(sk) &&
1860 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1861 sk_leave_memory_pressure(sk);
1862}
1863EXPORT_SYMBOL(__sk_mem_reclaim);
1864
1865
1866/*
1867 * Set of default routines for initialising struct proto_ops when
1868 * the protocol does not support a particular function. In certain
1869 * cases where it makes no sense for a protocol to have a "do nothing"
1870 * function, some default processing is provided.
1871 */
1872
1873int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1874{
1875 return -EOPNOTSUPP;
1876}
1877EXPORT_SYMBOL(sock_no_bind);
1878
1879int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1880 int len, int flags)
1881{
1882 return -EOPNOTSUPP;
1883}
1884EXPORT_SYMBOL(sock_no_connect);
1885
1886int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1887{
1888 return -EOPNOTSUPP;
1889}
1890EXPORT_SYMBOL(sock_no_socketpair);
1891
1892int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1893{
1894 return -EOPNOTSUPP;
1895}
1896EXPORT_SYMBOL(sock_no_accept);
1897
1898int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1899 int *len, int peer)
1900{
1901 return -EOPNOTSUPP;
1902}
1903EXPORT_SYMBOL(sock_no_getname);
1904
1905unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1906{
1907 return 0;
1908}
1909EXPORT_SYMBOL(sock_no_poll);
1910
1911int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1912{
1913 return -EOPNOTSUPP;
1914}
1915EXPORT_SYMBOL(sock_no_ioctl);
1916
1917int sock_no_listen(struct socket *sock, int backlog)
1918{
1919 return -EOPNOTSUPP;
1920}
1921EXPORT_SYMBOL(sock_no_listen);
1922
1923int sock_no_shutdown(struct socket *sock, int how)
1924{
1925 return -EOPNOTSUPP;
1926}
1927EXPORT_SYMBOL(sock_no_shutdown);
1928
1929int sock_no_setsockopt(struct socket *sock, int level, int optname,
1930 char __user *optval, unsigned int optlen)
1931{
1932 return -EOPNOTSUPP;
1933}
1934EXPORT_SYMBOL(sock_no_setsockopt);
1935
1936int sock_no_getsockopt(struct socket *sock, int level, int optname,
1937 char __user *optval, int __user *optlen)
1938{
1939 return -EOPNOTSUPP;
1940}
1941EXPORT_SYMBOL(sock_no_getsockopt);
1942
1943int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1944 size_t len)
1945{
1946 return -EOPNOTSUPP;
1947}
1948EXPORT_SYMBOL(sock_no_sendmsg);
1949
1950int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1951 size_t len, int flags)
1952{
1953 return -EOPNOTSUPP;
1954}
1955EXPORT_SYMBOL(sock_no_recvmsg);
1956
1957int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1958{
1959 /* Mirror missing mmap method error code */
1960 return -ENODEV;
1961}
1962EXPORT_SYMBOL(sock_no_mmap);
1963
1964ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1965{
1966 ssize_t res;
1967 struct msghdr msg = {.msg_flags = flags};
1968 struct kvec iov;
1969 char *kaddr = kmap(page);
1970 iov.iov_base = kaddr + offset;
1971 iov.iov_len = size;
1972 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1973 kunmap(page);
1974 return res;
1975}
1976EXPORT_SYMBOL(sock_no_sendpage);
1977
1978/*
1979 * Default Socket Callbacks
1980 */
1981
1982static void sock_def_wakeup(struct sock *sk)
1983{
1984 struct socket_wq *wq;
1985
1986 rcu_read_lock();
1987 wq = rcu_dereference(sk->sk_wq);
1988 if (wq_has_sleeper(wq))
1989 wake_up_interruptible_all(&wq->wait);
1990 rcu_read_unlock();
1991}
1992
1993static void sock_def_error_report(struct sock *sk)
1994{
1995 struct socket_wq *wq;
1996
1997 rcu_read_lock();
1998 wq = rcu_dereference(sk->sk_wq);
1999 if (wq_has_sleeper(wq))
2000 wake_up_interruptible_poll(&wq->wait, POLLERR);
2001 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2002 rcu_read_unlock();
2003}
2004
2005static void sock_def_readable(struct sock *sk, int len)
2006{
2007 struct socket_wq *wq;
2008
2009 rcu_read_lock();
2010 wq = rcu_dereference(sk->sk_wq);
2011 if (wq_has_sleeper(wq))
2012 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2013 POLLRDNORM | POLLRDBAND);
2014 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2015 rcu_read_unlock();
2016}
2017
2018static void sock_def_write_space(struct sock *sk)
2019{
2020 struct socket_wq *wq;
2021
2022 rcu_read_lock();
2023
2024 /* Do not wake up a writer until he can make "significant"
2025 * progress. --DaveM
2026 */
2027 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2028 wq = rcu_dereference(sk->sk_wq);
2029 if (wq_has_sleeper(wq))
2030 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2031 POLLWRNORM | POLLWRBAND);
2032
2033 /* Should agree with poll, otherwise some programs break */
2034 if (sock_writeable(sk))
2035 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2036 }
2037
2038 rcu_read_unlock();
2039}
2040
2041static void sock_def_destruct(struct sock *sk)
2042{
2043 kfree(sk->sk_protinfo);
2044}
2045
2046void sk_send_sigurg(struct sock *sk)
2047{
2048 if (sk->sk_socket && sk->sk_socket->file)
2049 if (send_sigurg(&sk->sk_socket->file->f_owner))
2050 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2051}
2052EXPORT_SYMBOL(sk_send_sigurg);
2053
2054void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2055 unsigned long expires)
2056{
2057 if (!mod_timer(timer, expires))
2058 sock_hold(sk);
2059}
2060EXPORT_SYMBOL(sk_reset_timer);
2061
2062void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2063{
2064 if (timer_pending(timer) && del_timer(timer))
2065 __sock_put(sk);
2066}
2067EXPORT_SYMBOL(sk_stop_timer);
2068
2069void sock_init_data(struct socket *sock, struct sock *sk)
2070{
2071 skb_queue_head_init(&sk->sk_receive_queue);
2072 skb_queue_head_init(&sk->sk_write_queue);
2073 skb_queue_head_init(&sk->sk_error_queue);
2074#ifdef CONFIG_NET_DMA
2075 skb_queue_head_init(&sk->sk_async_wait_queue);
2076#endif
2077
2078 sk->sk_send_head = NULL;
2079
2080 init_timer(&sk->sk_timer);
2081
2082 sk->sk_allocation = GFP_KERNEL;
2083 sk->sk_rcvbuf = sysctl_rmem_default;
2084 sk->sk_sndbuf = sysctl_wmem_default;
2085 sk->sk_state = TCP_CLOSE;
2086 sk_set_socket(sk, sock);
2087
2088 sock_set_flag(sk, SOCK_ZAPPED);
2089
2090 if (sock) {
2091 sk->sk_type = sock->type;
2092 sk->sk_wq = sock->wq;
2093 sock->sk = sk;
2094 } else
2095 sk->sk_wq = NULL;
2096
2097 spin_lock_init(&sk->sk_dst_lock);
2098 rwlock_init(&sk->sk_callback_lock);
2099 lockdep_set_class_and_name(&sk->sk_callback_lock,
2100 af_callback_keys + sk->sk_family,
2101 af_family_clock_key_strings[sk->sk_family]);
2102
2103 sk->sk_state_change = sock_def_wakeup;
2104 sk->sk_data_ready = sock_def_readable;
2105 sk->sk_write_space = sock_def_write_space;
2106 sk->sk_error_report = sock_def_error_report;
2107 sk->sk_destruct = sock_def_destruct;
2108
2109 sk->sk_sndmsg_page = NULL;
2110 sk->sk_sndmsg_off = 0;
2111 sk->sk_peek_off = -1;
2112
2113 sk->sk_peer_pid = NULL;
2114 sk->sk_peer_cred = NULL;
2115 sk->sk_write_pending = 0;
2116 sk->sk_rcvlowat = 1;
2117 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2118 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2119
2120 sk->sk_stamp = ktime_set(-1L, 0);
2121
2122 /*
2123 * Before updating sk_refcnt, we must commit prior changes to memory
2124 * (Documentation/RCU/rculist_nulls.txt for details)
2125 */
2126 smp_wmb();
2127 atomic_set(&sk->sk_refcnt, 1);
2128 atomic_set(&sk->sk_drops, 0);
2129}
2130EXPORT_SYMBOL(sock_init_data);
2131
2132void lock_sock_nested(struct sock *sk, int subclass)
2133{
2134 might_sleep();
2135 spin_lock_bh(&sk->sk_lock.slock);
2136 if (sk->sk_lock.owned)
2137 __lock_sock(sk);
2138 sk->sk_lock.owned = 1;
2139 spin_unlock(&sk->sk_lock.slock);
2140 /*
2141 * The sk_lock has mutex_lock() semantics here:
2142 */
2143 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2144 local_bh_enable();
2145}
2146EXPORT_SYMBOL(lock_sock_nested);
2147
2148void release_sock(struct sock *sk)
2149{
2150 /*
2151 * The sk_lock has mutex_unlock() semantics:
2152 */
2153 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2154
2155 spin_lock_bh(&sk->sk_lock.slock);
2156 if (sk->sk_backlog.tail)
2157 __release_sock(sk);
2158 sk->sk_lock.owned = 0;
2159 if (waitqueue_active(&sk->sk_lock.wq))
2160 wake_up(&sk->sk_lock.wq);
2161 spin_unlock_bh(&sk->sk_lock.slock);
2162}
2163EXPORT_SYMBOL(release_sock);
2164
2165/**
2166 * lock_sock_fast - fast version of lock_sock
2167 * @sk: socket
2168 *
2169 * This version should be used for very small section, where process wont block
2170 * return false if fast path is taken
2171 * sk_lock.slock locked, owned = 0, BH disabled
2172 * return true if slow path is taken
2173 * sk_lock.slock unlocked, owned = 1, BH enabled
2174 */
2175bool lock_sock_fast(struct sock *sk)
2176{
2177 might_sleep();
2178 spin_lock_bh(&sk->sk_lock.slock);
2179
2180 if (!sk->sk_lock.owned)
2181 /*
2182 * Note : We must disable BH
2183 */
2184 return false;
2185
2186 __lock_sock(sk);
2187 sk->sk_lock.owned = 1;
2188 spin_unlock(&sk->sk_lock.slock);
2189 /*
2190 * The sk_lock has mutex_lock() semantics here:
2191 */
2192 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2193 local_bh_enable();
2194 return true;
2195}
2196EXPORT_SYMBOL(lock_sock_fast);
2197
2198int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2199{
2200 struct timeval tv;
2201 if (!sock_flag(sk, SOCK_TIMESTAMP))
2202 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2203 tv = ktime_to_timeval(sk->sk_stamp);
2204 if (tv.tv_sec == -1)
2205 return -ENOENT;
2206 if (tv.tv_sec == 0) {
2207 sk->sk_stamp = ktime_get_real();
2208 tv = ktime_to_timeval(sk->sk_stamp);
2209 }
2210 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2211}
2212EXPORT_SYMBOL(sock_get_timestamp);
2213
2214int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2215{
2216 struct timespec ts;
2217 if (!sock_flag(sk, SOCK_TIMESTAMP))
2218 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2219 ts = ktime_to_timespec(sk->sk_stamp);
2220 if (ts.tv_sec == -1)
2221 return -ENOENT;
2222 if (ts.tv_sec == 0) {
2223 sk->sk_stamp = ktime_get_real();
2224 ts = ktime_to_timespec(sk->sk_stamp);
2225 }
2226 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2227}
2228EXPORT_SYMBOL(sock_get_timestampns);
2229
2230void sock_enable_timestamp(struct sock *sk, int flag)
2231{
2232 if (!sock_flag(sk, flag)) {
2233 unsigned long previous_flags = sk->sk_flags;
2234
2235 sock_set_flag(sk, flag);
2236 /*
2237 * we just set one of the two flags which require net
2238 * time stamping, but time stamping might have been on
2239 * already because of the other one
2240 */
2241 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2242 net_enable_timestamp();
2243 }
2244}
2245
2246/*
2247 * Get a socket option on an socket.
2248 *
2249 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2250 * asynchronous errors should be reported by getsockopt. We assume
2251 * this means if you specify SO_ERROR (otherwise whats the point of it).
2252 */
2253int sock_common_getsockopt(struct socket *sock, int level, int optname,
2254 char __user *optval, int __user *optlen)
2255{
2256 struct sock *sk = sock->sk;
2257
2258 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2259}
2260EXPORT_SYMBOL(sock_common_getsockopt);
2261
2262#ifdef CONFIG_COMPAT
2263int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2264 char __user *optval, int __user *optlen)
2265{
2266 struct sock *sk = sock->sk;
2267
2268 if (sk->sk_prot->compat_getsockopt != NULL)
2269 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2270 optval, optlen);
2271 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2272}
2273EXPORT_SYMBOL(compat_sock_common_getsockopt);
2274#endif
2275
2276int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2277 struct msghdr *msg, size_t size, int flags)
2278{
2279 struct sock *sk = sock->sk;
2280 int addr_len = 0;
2281 int err;
2282
2283 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2284 flags & ~MSG_DONTWAIT, &addr_len);
2285 if (err >= 0)
2286 msg->msg_namelen = addr_len;
2287 return err;
2288}
2289EXPORT_SYMBOL(sock_common_recvmsg);
2290
2291/*
2292 * Set socket options on an inet socket.
2293 */
2294int sock_common_setsockopt(struct socket *sock, int level, int optname,
2295 char __user *optval, unsigned int optlen)
2296{
2297 struct sock *sk = sock->sk;
2298
2299 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2300}
2301EXPORT_SYMBOL(sock_common_setsockopt);
2302
2303#ifdef CONFIG_COMPAT
2304int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2305 char __user *optval, unsigned int optlen)
2306{
2307 struct sock *sk = sock->sk;
2308
2309 if (sk->sk_prot->compat_setsockopt != NULL)
2310 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2311 optval, optlen);
2312 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2313}
2314EXPORT_SYMBOL(compat_sock_common_setsockopt);
2315#endif
2316
2317void sk_common_release(struct sock *sk)
2318{
2319 if (sk->sk_prot->destroy)
2320 sk->sk_prot->destroy(sk);
2321
2322 /*
2323 * Observation: when sock_common_release is called, processes have
2324 * no access to socket. But net still has.
2325 * Step one, detach it from networking:
2326 *
2327 * A. Remove from hash tables.
2328 */
2329
2330 sk->sk_prot->unhash(sk);
2331
2332 /*
2333 * In this point socket cannot receive new packets, but it is possible
2334 * that some packets are in flight because some CPU runs receiver and
2335 * did hash table lookup before we unhashed socket. They will achieve
2336 * receive queue and will be purged by socket destructor.
2337 *
2338 * Also we still have packets pending on receive queue and probably,
2339 * our own packets waiting in device queues. sock_destroy will drain
2340 * receive queue, but transmitted packets will delay socket destruction
2341 * until the last reference will be released.
2342 */
2343
2344 sock_orphan(sk);
2345
2346 xfrm_sk_free_policy(sk);
2347
2348 sk_refcnt_debug_release(sk);
2349 sock_put(sk);
2350}
2351EXPORT_SYMBOL(sk_common_release);
2352
2353#ifdef CONFIG_PROC_FS
2354#define PROTO_INUSE_NR 64 /* should be enough for the first time */
2355struct prot_inuse {
2356 int val[PROTO_INUSE_NR];
2357};
2358
2359static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2360
2361#ifdef CONFIG_NET_NS
2362void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2363{
2364 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2365}
2366EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2367
2368int sock_prot_inuse_get(struct net *net, struct proto *prot)
2369{
2370 int cpu, idx = prot->inuse_idx;
2371 int res = 0;
2372
2373 for_each_possible_cpu(cpu)
2374 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2375
2376 return res >= 0 ? res : 0;
2377}
2378EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2379
2380static int __net_init sock_inuse_init_net(struct net *net)
2381{
2382 net->core.inuse = alloc_percpu(struct prot_inuse);
2383 return net->core.inuse ? 0 : -ENOMEM;
2384}
2385
2386static void __net_exit sock_inuse_exit_net(struct net *net)
2387{
2388 free_percpu(net->core.inuse);
2389}
2390
2391static struct pernet_operations net_inuse_ops = {
2392 .init = sock_inuse_init_net,
2393 .exit = sock_inuse_exit_net,
2394};
2395
2396static __init int net_inuse_init(void)
2397{
2398 if (register_pernet_subsys(&net_inuse_ops))
2399 panic("Cannot initialize net inuse counters");
2400
2401 return 0;
2402}
2403
2404core_initcall(net_inuse_init);
2405#else
2406static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2407
2408void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2409{
2410 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2411}
2412EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2413
2414int sock_prot_inuse_get(struct net *net, struct proto *prot)
2415{
2416 int cpu, idx = prot->inuse_idx;
2417 int res = 0;
2418
2419 for_each_possible_cpu(cpu)
2420 res += per_cpu(prot_inuse, cpu).val[idx];
2421
2422 return res >= 0 ? res : 0;
2423}
2424EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2425#endif
2426
2427static void assign_proto_idx(struct proto *prot)
2428{
2429 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2430
2431 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2432 pr_err("PROTO_INUSE_NR exhausted\n");
2433 return;
2434 }
2435
2436 set_bit(prot->inuse_idx, proto_inuse_idx);
2437}
2438
2439static void release_proto_idx(struct proto *prot)
2440{
2441 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2442 clear_bit(prot->inuse_idx, proto_inuse_idx);
2443}
2444#else
2445static inline void assign_proto_idx(struct proto *prot)
2446{
2447}
2448
2449static inline void release_proto_idx(struct proto *prot)
2450{
2451}
2452#endif
2453
2454int proto_register(struct proto *prot, int alloc_slab)
2455{
2456 if (alloc_slab) {
2457 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2458 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2459 NULL);
2460
2461 if (prot->slab == NULL) {
2462 pr_crit("%s: Can't create sock SLAB cache!\n",
2463 prot->name);
2464 goto out;
2465 }
2466
2467 if (prot->rsk_prot != NULL) {
2468 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2469 if (prot->rsk_prot->slab_name == NULL)
2470 goto out_free_sock_slab;
2471
2472 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2473 prot->rsk_prot->obj_size, 0,
2474 SLAB_HWCACHE_ALIGN, NULL);
2475
2476 if (prot->rsk_prot->slab == NULL) {
2477 pr_crit("%s: Can't create request sock SLAB cache!\n",
2478 prot->name);
2479 goto out_free_request_sock_slab_name;
2480 }
2481 }
2482
2483 if (prot->twsk_prot != NULL) {
2484 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2485
2486 if (prot->twsk_prot->twsk_slab_name == NULL)
2487 goto out_free_request_sock_slab;
2488
2489 prot->twsk_prot->twsk_slab =
2490 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2491 prot->twsk_prot->twsk_obj_size,
2492 0,
2493 SLAB_HWCACHE_ALIGN |
2494 prot->slab_flags,
2495 NULL);
2496 if (prot->twsk_prot->twsk_slab == NULL)
2497 goto out_free_timewait_sock_slab_name;
2498 }
2499 }
2500
2501 mutex_lock(&proto_list_mutex);
2502 list_add(&prot->node, &proto_list);
2503 assign_proto_idx(prot);
2504 mutex_unlock(&proto_list_mutex);
2505 return 0;
2506
2507out_free_timewait_sock_slab_name:
2508 kfree(prot->twsk_prot->twsk_slab_name);
2509out_free_request_sock_slab:
2510 if (prot->rsk_prot && prot->rsk_prot->slab) {
2511 kmem_cache_destroy(prot->rsk_prot->slab);
2512 prot->rsk_prot->slab = NULL;
2513 }
2514out_free_request_sock_slab_name:
2515 if (prot->rsk_prot)
2516 kfree(prot->rsk_prot->slab_name);
2517out_free_sock_slab:
2518 kmem_cache_destroy(prot->slab);
2519 prot->slab = NULL;
2520out:
2521 return -ENOBUFS;
2522}
2523EXPORT_SYMBOL(proto_register);
2524
2525void proto_unregister(struct proto *prot)
2526{
2527 mutex_lock(&proto_list_mutex);
2528 release_proto_idx(prot);
2529 list_del(&prot->node);
2530 mutex_unlock(&proto_list_mutex);
2531
2532 if (prot->slab != NULL) {
2533 kmem_cache_destroy(prot->slab);
2534 prot->slab = NULL;
2535 }
2536
2537 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2538 kmem_cache_destroy(prot->rsk_prot->slab);
2539 kfree(prot->rsk_prot->slab_name);
2540 prot->rsk_prot->slab = NULL;
2541 }
2542
2543 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2544 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2545 kfree(prot->twsk_prot->twsk_slab_name);
2546 prot->twsk_prot->twsk_slab = NULL;
2547 }
2548}
2549EXPORT_SYMBOL(proto_unregister);
2550
2551#ifdef CONFIG_PROC_FS
2552static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2553 __acquires(proto_list_mutex)
2554{
2555 mutex_lock(&proto_list_mutex);
2556 return seq_list_start_head(&proto_list, *pos);
2557}
2558
2559static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2560{
2561 return seq_list_next(v, &proto_list, pos);
2562}
2563
2564static void proto_seq_stop(struct seq_file *seq, void *v)
2565 __releases(proto_list_mutex)
2566{
2567 mutex_unlock(&proto_list_mutex);
2568}
2569
2570static char proto_method_implemented(const void *method)
2571{
2572 return method == NULL ? 'n' : 'y';
2573}
2574static long sock_prot_memory_allocated(struct proto *proto)
2575{
2576 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2577}
2578
2579static char *sock_prot_memory_pressure(struct proto *proto)
2580{
2581 return proto->memory_pressure != NULL ?
2582 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2583}
2584
2585static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2586{
2587
2588 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2589 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2590 proto->name,
2591 proto->obj_size,
2592 sock_prot_inuse_get(seq_file_net(seq), proto),
2593 sock_prot_memory_allocated(proto),
2594 sock_prot_memory_pressure(proto),
2595 proto->max_header,
2596 proto->slab == NULL ? "no" : "yes",
2597 module_name(proto->owner),
2598 proto_method_implemented(proto->close),
2599 proto_method_implemented(proto->connect),
2600 proto_method_implemented(proto->disconnect),
2601 proto_method_implemented(proto->accept),
2602 proto_method_implemented(proto->ioctl),
2603 proto_method_implemented(proto->init),
2604 proto_method_implemented(proto->destroy),
2605 proto_method_implemented(proto->shutdown),
2606 proto_method_implemented(proto->setsockopt),
2607 proto_method_implemented(proto->getsockopt),
2608 proto_method_implemented(proto->sendmsg),
2609 proto_method_implemented(proto->recvmsg),
2610 proto_method_implemented(proto->sendpage),
2611 proto_method_implemented(proto->bind),
2612 proto_method_implemented(proto->backlog_rcv),
2613 proto_method_implemented(proto->hash),
2614 proto_method_implemented(proto->unhash),
2615 proto_method_implemented(proto->get_port),
2616 proto_method_implemented(proto->enter_memory_pressure));
2617}
2618
2619static int proto_seq_show(struct seq_file *seq, void *v)
2620{
2621 if (v == &proto_list)
2622 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2623 "protocol",
2624 "size",
2625 "sockets",
2626 "memory",
2627 "press",
2628 "maxhdr",
2629 "slab",
2630 "module",
2631 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2632 else
2633 proto_seq_printf(seq, list_entry(v, struct proto, node));
2634 return 0;
2635}
2636
2637static const struct seq_operations proto_seq_ops = {
2638 .start = proto_seq_start,
2639 .next = proto_seq_next,
2640 .stop = proto_seq_stop,
2641 .show = proto_seq_show,
2642};
2643
2644static int proto_seq_open(struct inode *inode, struct file *file)
2645{
2646 return seq_open_net(inode, file, &proto_seq_ops,
2647 sizeof(struct seq_net_private));
2648}
2649
2650static const struct file_operations proto_seq_fops = {
2651 .owner = THIS_MODULE,
2652 .open = proto_seq_open,
2653 .read = seq_read,
2654 .llseek = seq_lseek,
2655 .release = seq_release_net,
2656};
2657
2658static __net_init int proto_init_net(struct net *net)
2659{
2660 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2661 return -ENOMEM;
2662
2663 return 0;
2664}
2665
2666static __net_exit void proto_exit_net(struct net *net)
2667{
2668 proc_net_remove(net, "protocols");
2669}
2670
2671
2672static __net_initdata struct pernet_operations proto_net_ops = {
2673 .init = proto_init_net,
2674 .exit = proto_exit_net,
2675};
2676
2677static int __init proto_init(void)
2678{
2679 return register_pernet_subsys(&proto_net_ops);
2680}
2681
2682subsys_initcall(proto_init);
2683
2684#endif /* PROC_FS */