Linux Audio

Check our new training course

Loading...
v3.15
  1/* mpihelp-div.c  -  MPI helper functions
  2 *	Copyright (C) 1994, 1996 Free Software Foundation, Inc.
  3 *	Copyright (C) 1998, 1999 Free Software Foundation, Inc.
  4 *
  5 * This file is part of GnuPG.
  6 *
  7 * GnuPG is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 *
 12 * GnuPG is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program; if not, write to the Free Software
 19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 20 *
 21 * Note: This code is heavily based on the GNU MP Library.
 22 *	 Actually it's the same code with only minor changes in the
 23 *	 way the data is stored; this is to support the abstraction
 24 *	 of an optional secure memory allocation which may be used
 25 *	 to avoid revealing of sensitive data due to paging etc.
 26 *	 The GNU MP Library itself is published under the LGPL;
 27 *	 however I decided to publish this code under the plain GPL.
 28 */
 29
 30#include "mpi-internal.h"
 31#include "longlong.h"
 32
 33#ifndef UMUL_TIME
 34#define UMUL_TIME 1
 35#endif
 36#ifndef UDIV_TIME
 37#define UDIV_TIME UMUL_TIME
 38#endif
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
 41 * the NSIZE-DSIZE least significant quotient limbs at QP
 42 * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is
 43 * non-zero, generate that many fraction bits and append them after the
 44 * other quotient limbs.
 45 * Return the most significant limb of the quotient, this is always 0 or 1.
 46 *
 47 * Preconditions:
 48 * 0. NSIZE >= DSIZE.
 49 * 1. The most significant bit of the divisor must be set.
 50 * 2. QP must either not overlap with the input operands at all, or
 51 *    QP + DSIZE >= NP must hold true.	(This means that it's
 52 *    possible to put the quotient in the high part of NUM, right after the
 53 *    remainder in NUM.
 54 * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
 55 */
 56
 57mpi_limb_t
 58mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
 59	       mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
 60{
 61	mpi_limb_t most_significant_q_limb = 0;
 62
 63	switch (dsize) {
 64	case 0:
 65		/* We are asked to divide by zero, so go ahead and do it!  (To make
 66		   the compiler not remove this statement, return the value.)  */
 67		/*
 68		 * existing clients of this function have been modified
 69		 * not to call it with dsize == 0, so this should not happen
 70		 */
 71		return 1 / dsize;
 72
 73	case 1:
 74		{
 75			mpi_size_t i;
 76			mpi_limb_t n1;
 77			mpi_limb_t d;
 78
 79			d = dp[0];
 80			n1 = np[nsize - 1];
 81
 82			if (n1 >= d) {
 83				n1 -= d;
 84				most_significant_q_limb = 1;
 85			}
 86
 87			qp += qextra_limbs;
 88			for (i = nsize - 2; i >= 0; i--)
 89				udiv_qrnnd(qp[i], n1, n1, np[i], d);
 90			qp -= qextra_limbs;
 91
 92			for (i = qextra_limbs - 1; i >= 0; i--)
 93				udiv_qrnnd(qp[i], n1, n1, 0, d);
 94
 95			np[0] = n1;
 96		}
 97		break;
 98
 99	case 2:
100		{
101			mpi_size_t i;
102			mpi_limb_t n1, n0, n2;
103			mpi_limb_t d1, d0;
104
105			np += nsize - 2;
106			d1 = dp[1];
107			d0 = dp[0];
108			n1 = np[1];
109			n0 = np[0];
110
111			if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
112				sub_ddmmss(n1, n0, n1, n0, d1, d0);
113				most_significant_q_limb = 1;
114			}
115
116			for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
117				mpi_limb_t q;
118				mpi_limb_t r;
119
120				if (i >= qextra_limbs)
121					np--;
122				else
123					np[0] = 0;
124
125				if (n1 == d1) {
126					/* Q should be either 111..111 or 111..110.  Need special
127					 * treatment of this rare case as normal division would
128					 * give overflow.  */
129					q = ~(mpi_limb_t) 0;
130
131					r = n0 + d1;
132					if (r < d1) {	/* Carry in the addition? */
133						add_ssaaaa(n1, n0, r - d0,
134							   np[0], 0, d0);
135						qp[i] = q;
136						continue;
137					}
138					n1 = d0 - (d0 != 0 ? 1 : 0);
139					n0 = -d0;
140				} else {
141					udiv_qrnnd(q, r, n1, n0, d1);
142					umul_ppmm(n1, n0, d0, q);
143				}
144
145				n2 = np[0];
146q_test:
147				if (n1 > r || (n1 == r && n0 > n2)) {
148					/* The estimated Q was too large.  */
149					q--;
150					sub_ddmmss(n1, n0, n1, n0, 0, d0);
151					r += d1;
152					if (r >= d1)	/* If not carry, test Q again.  */
153						goto q_test;
154				}
155
156				qp[i] = q;
157				sub_ddmmss(n1, n0, r, n2, n1, n0);
158			}
159			np[1] = n1;
160			np[0] = n0;
161		}
162		break;
163
164	default:
165		{
166			mpi_size_t i;
167			mpi_limb_t dX, d1, n0;
168
169			np += nsize - dsize;
170			dX = dp[dsize - 1];
171			d1 = dp[dsize - 2];
172			n0 = np[dsize - 1];
173
174			if (n0 >= dX) {
175				if (n0 > dX
176				    || mpihelp_cmp(np, dp, dsize - 1) >= 0) {
177					mpihelp_sub_n(np, np, dp, dsize);
178					n0 = np[dsize - 1];
179					most_significant_q_limb = 1;
180				}
181			}
182
183			for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
184				mpi_limb_t q;
185				mpi_limb_t n1, n2;
186				mpi_limb_t cy_limb;
187
188				if (i >= qextra_limbs) {
189					np--;
190					n2 = np[dsize];
191				} else {
192					n2 = np[dsize - 1];
193					MPN_COPY_DECR(np + 1, np, dsize - 1);
194					np[0] = 0;
195				}
196
197				if (n0 == dX) {
198					/* This might over-estimate q, but it's probably not worth
199					 * the extra code here to find out.  */
200					q = ~(mpi_limb_t) 0;
201				} else {
202					mpi_limb_t r;
203
204					udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
205					umul_ppmm(n1, n0, d1, q);
206
207					while (n1 > r
208					       || (n1 == r
209						   && n0 > np[dsize - 2])) {
210						q--;
211						r += dX;
212						if (r < dX)	/* I.e. "carry in previous addition?" */
213							break;
214						n1 -= n0 < d1;
215						n0 -= d1;
216					}
217				}
218
219				/* Possible optimization: We already have (q * n0) and (1 * n1)
220				 * after the calculation of q.  Taking advantage of that, we
221				 * could make this loop make two iterations less.  */
222				cy_limb = mpihelp_submul_1(np, dp, dsize, q);
223
224				if (n2 != cy_limb) {
225					mpihelp_add_n(np, np, dp, dsize);
226					q--;
227				}
228
229				qp[i] = q;
230				n0 = np[dsize - 1];
231			}
232		}
233	}
234
235	return most_significant_q_limb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236}
v3.5.6
  1/* mpihelp-div.c  -  MPI helper functions
  2 *	Copyright (C) 1994, 1996 Free Software Foundation, Inc.
  3 *	Copyright (C) 1998, 1999 Free Software Foundation, Inc.
  4 *
  5 * This file is part of GnuPG.
  6 *
  7 * GnuPG is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 *
 12 * GnuPG is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program; if not, write to the Free Software
 19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 20 *
 21 * Note: This code is heavily based on the GNU MP Library.
 22 *	 Actually it's the same code with only minor changes in the
 23 *	 way the data is stored; this is to support the abstraction
 24 *	 of an optional secure memory allocation which may be used
 25 *	 to avoid revealing of sensitive data due to paging etc.
 26 *	 The GNU MP Library itself is published under the LGPL;
 27 *	 however I decided to publish this code under the plain GPL.
 28 */
 29
 30#include "mpi-internal.h"
 31#include "longlong.h"
 32
 33#ifndef UMUL_TIME
 34#define UMUL_TIME 1
 35#endif
 36#ifndef UDIV_TIME
 37#define UDIV_TIME UMUL_TIME
 38#endif
 39
 40/* FIXME: We should be using invert_limb (or invert_normalized_limb)
 41 * here (not udiv_qrnnd).
 42 */
 43
 44mpi_limb_t
 45mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
 46	      mpi_limb_t divisor_limb)
 47{
 48	mpi_size_t i;
 49	mpi_limb_t n1, n0, r;
 50	int dummy;
 51
 52	/* Botch: Should this be handled at all?  Rely on callers?  */
 53	if (!dividend_size)
 54		return 0;
 55
 56	/* If multiplication is much faster than division, and the
 57	 * dividend is large, pre-invert the divisor, and use
 58	 * only multiplications in the inner loop.
 59	 *
 60	 * This test should be read:
 61	 *   Does it ever help to use udiv_qrnnd_preinv?
 62	 *     && Does what we save compensate for the inversion overhead?
 63	 */
 64	if (UDIV_TIME > (2 * UMUL_TIME + 6)
 65	    && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
 66		int normalization_steps;
 67
 68		count_leading_zeros(normalization_steps, divisor_limb);
 69		if (normalization_steps) {
 70			mpi_limb_t divisor_limb_inverted;
 71
 72			divisor_limb <<= normalization_steps;
 73
 74			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
 75			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
 76			 * most significant bit (with weight 2**N) implicit.
 77			 *
 78			 * Special case for DIVISOR_LIMB == 100...000.
 79			 */
 80			if (!(divisor_limb << 1))
 81				divisor_limb_inverted = ~(mpi_limb_t) 0;
 82			else
 83				udiv_qrnnd(divisor_limb_inverted, dummy,
 84					   -divisor_limb, 0, divisor_limb);
 85
 86			n1 = dividend_ptr[dividend_size - 1];
 87			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
 88
 89			/* Possible optimization:
 90			 * if (r == 0
 91			 * && divisor_limb > ((n1 << normalization_steps)
 92			 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
 93			 * ...one division less...
 94			 */
 95			for (i = dividend_size - 2; i >= 0; i--) {
 96				n0 = dividend_ptr[i];
 97				UDIV_QRNND_PREINV(dummy, r, r,
 98						  ((n1 << normalization_steps)
 99						   | (n0 >>
100						      (BITS_PER_MPI_LIMB -
101						       normalization_steps))),
102						  divisor_limb,
103						  divisor_limb_inverted);
104				n1 = n0;
105			}
106			UDIV_QRNND_PREINV(dummy, r, r,
107					  n1 << normalization_steps,
108					  divisor_limb, divisor_limb_inverted);
109			return r >> normalization_steps;
110		} else {
111			mpi_limb_t divisor_limb_inverted;
112
113			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
114			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
115			 * most significant bit (with weight 2**N) implicit.
116			 *
117			 * Special case for DIVISOR_LIMB == 100...000.
118			 */
119			if (!(divisor_limb << 1))
120				divisor_limb_inverted = ~(mpi_limb_t) 0;
121			else
122				udiv_qrnnd(divisor_limb_inverted, dummy,
123					   -divisor_limb, 0, divisor_limb);
124
125			i = dividend_size - 1;
126			r = dividend_ptr[i];
127
128			if (r >= divisor_limb)
129				r = 0;
130			else
131				i--;
132
133			for (; i >= 0; i--) {
134				n0 = dividend_ptr[i];
135				UDIV_QRNND_PREINV(dummy, r, r,
136						  n0, divisor_limb,
137						  divisor_limb_inverted);
138			}
139			return r;
140		}
141	} else {
142		if (UDIV_NEEDS_NORMALIZATION) {
143			int normalization_steps;
144
145			count_leading_zeros(normalization_steps, divisor_limb);
146			if (normalization_steps) {
147				divisor_limb <<= normalization_steps;
148
149				n1 = dividend_ptr[dividend_size - 1];
150				r = n1 >> (BITS_PER_MPI_LIMB -
151					   normalization_steps);
152
153				/* Possible optimization:
154				 * if (r == 0
155				 * && divisor_limb > ((n1 << normalization_steps)
156				 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
157				 * ...one division less...
158				 */
159				for (i = dividend_size - 2; i >= 0; i--) {
160					n0 = dividend_ptr[i];
161					udiv_qrnnd(dummy, r, r,
162						   ((n1 << normalization_steps)
163						    | (n0 >>
164						       (BITS_PER_MPI_LIMB -
165							normalization_steps))),
166						   divisor_limb);
167					n1 = n0;
168				}
169				udiv_qrnnd(dummy, r, r,
170					   n1 << normalization_steps,
171					   divisor_limb);
172				return r >> normalization_steps;
173			}
174		}
175		/* No normalization needed, either because udiv_qrnnd doesn't require
176		 * it, or because DIVISOR_LIMB is already normalized.  */
177		i = dividend_size - 1;
178		r = dividend_ptr[i];
179
180		if (r >= divisor_limb)
181			r = 0;
182		else
183			i--;
184
185		for (; i >= 0; i--) {
186			n0 = dividend_ptr[i];
187			udiv_qrnnd(dummy, r, r, n0, divisor_limb);
188		}
189		return r;
190	}
191}
192
193/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
194 * the NSIZE-DSIZE least significant quotient limbs at QP
195 * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is
196 * non-zero, generate that many fraction bits and append them after the
197 * other quotient limbs.
198 * Return the most significant limb of the quotient, this is always 0 or 1.
199 *
200 * Preconditions:
201 * 0. NSIZE >= DSIZE.
202 * 1. The most significant bit of the divisor must be set.
203 * 2. QP must either not overlap with the input operands at all, or
204 *    QP + DSIZE >= NP must hold true.	(This means that it's
205 *    possible to put the quotient in the high part of NUM, right after the
206 *    remainder in NUM.
207 * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
208 */
209
210mpi_limb_t
211mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
212	       mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
213{
214	mpi_limb_t most_significant_q_limb = 0;
215
216	switch (dsize) {
217	case 0:
218		/* We are asked to divide by zero, so go ahead and do it!  (To make
219		   the compiler not remove this statement, return the value.)  */
220		/*
221		 * existing clients of this function have been modified
222		 * not to call it with dsize == 0, so this should not happen
223		 */
224		return 1 / dsize;
225
226	case 1:
227		{
228			mpi_size_t i;
229			mpi_limb_t n1;
230			mpi_limb_t d;
231
232			d = dp[0];
233			n1 = np[nsize - 1];
234
235			if (n1 >= d) {
236				n1 -= d;
237				most_significant_q_limb = 1;
238			}
239
240			qp += qextra_limbs;
241			for (i = nsize - 2; i >= 0; i--)
242				udiv_qrnnd(qp[i], n1, n1, np[i], d);
243			qp -= qextra_limbs;
244
245			for (i = qextra_limbs - 1; i >= 0; i--)
246				udiv_qrnnd(qp[i], n1, n1, 0, d);
247
248			np[0] = n1;
249		}
250		break;
251
252	case 2:
253		{
254			mpi_size_t i;
255			mpi_limb_t n1, n0, n2;
256			mpi_limb_t d1, d0;
257
258			np += nsize - 2;
259			d1 = dp[1];
260			d0 = dp[0];
261			n1 = np[1];
262			n0 = np[0];
263
264			if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
265				sub_ddmmss(n1, n0, n1, n0, d1, d0);
266				most_significant_q_limb = 1;
267			}
268
269			for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
270				mpi_limb_t q;
271				mpi_limb_t r;
272
273				if (i >= qextra_limbs)
274					np--;
275				else
276					np[0] = 0;
277
278				if (n1 == d1) {
279					/* Q should be either 111..111 or 111..110.  Need special
280					 * treatment of this rare case as normal division would
281					 * give overflow.  */
282					q = ~(mpi_limb_t) 0;
283
284					r = n0 + d1;
285					if (r < d1) {	/* Carry in the addition? */
286						add_ssaaaa(n1, n0, r - d0,
287							   np[0], 0, d0);
288						qp[i] = q;
289						continue;
290					}
291					n1 = d0 - (d0 != 0 ? 1 : 0);
292					n0 = -d0;
293				} else {
294					udiv_qrnnd(q, r, n1, n0, d1);
295					umul_ppmm(n1, n0, d0, q);
296				}
297
298				n2 = np[0];
299q_test:
300				if (n1 > r || (n1 == r && n0 > n2)) {
301					/* The estimated Q was too large.  */
302					q--;
303					sub_ddmmss(n1, n0, n1, n0, 0, d0);
304					r += d1;
305					if (r >= d1)	/* If not carry, test Q again.  */
306						goto q_test;
307				}
308
309				qp[i] = q;
310				sub_ddmmss(n1, n0, r, n2, n1, n0);
311			}
312			np[1] = n1;
313			np[0] = n0;
314		}
315		break;
316
317	default:
318		{
319			mpi_size_t i;
320			mpi_limb_t dX, d1, n0;
321
322			np += nsize - dsize;
323			dX = dp[dsize - 1];
324			d1 = dp[dsize - 2];
325			n0 = np[dsize - 1];
326
327			if (n0 >= dX) {
328				if (n0 > dX
329				    || mpihelp_cmp(np, dp, dsize - 1) >= 0) {
330					mpihelp_sub_n(np, np, dp, dsize);
331					n0 = np[dsize - 1];
332					most_significant_q_limb = 1;
333				}
334			}
335
336			for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
337				mpi_limb_t q;
338				mpi_limb_t n1, n2;
339				mpi_limb_t cy_limb;
340
341				if (i >= qextra_limbs) {
342					np--;
343					n2 = np[dsize];
344				} else {
345					n2 = np[dsize - 1];
346					MPN_COPY_DECR(np + 1, np, dsize - 1);
347					np[0] = 0;
348				}
349
350				if (n0 == dX) {
351					/* This might over-estimate q, but it's probably not worth
352					 * the extra code here to find out.  */
353					q = ~(mpi_limb_t) 0;
354				} else {
355					mpi_limb_t r;
356
357					udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
358					umul_ppmm(n1, n0, d1, q);
359
360					while (n1 > r
361					       || (n1 == r
362						   && n0 > np[dsize - 2])) {
363						q--;
364						r += dX;
365						if (r < dX)	/* I.e. "carry in previous addition?" */
366							break;
367						n1 -= n0 < d1;
368						n0 -= d1;
369					}
370				}
371
372				/* Possible optimization: We already have (q * n0) and (1 * n1)
373				 * after the calculation of q.  Taking advantage of that, we
374				 * could make this loop make two iterations less.  */
375				cy_limb = mpihelp_submul_1(np, dp, dsize, q);
376
377				if (n2 != cy_limb) {
378					mpihelp_add_n(np, np, dp, dsize);
379					q--;
380				}
381
382				qp[i] = q;
383				n0 = np[dsize - 1];
384			}
385		}
386	}
387
388	return most_significant_q_limb;
389}
390
391/****************
392 * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
393 * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
394 * Return the single-limb remainder.
395 * There are no constraints on the value of the divisor.
396 *
397 * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
398 */
399
400mpi_limb_t
401mpihelp_divmod_1(mpi_ptr_t quot_ptr,
402		 mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
403		 mpi_limb_t divisor_limb)
404{
405	mpi_size_t i;
406	mpi_limb_t n1, n0, r;
407	int dummy;
408
409	if (!dividend_size)
410		return 0;
411
412	/* If multiplication is much faster than division, and the
413	 * dividend is large, pre-invert the divisor, and use
414	 * only multiplications in the inner loop.
415	 *
416	 * This test should be read:
417	 * Does it ever help to use udiv_qrnnd_preinv?
418	 * && Does what we save compensate for the inversion overhead?
419	 */
420	if (UDIV_TIME > (2 * UMUL_TIME + 6)
421	    && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
422		int normalization_steps;
423
424		count_leading_zeros(normalization_steps, divisor_limb);
425		if (normalization_steps) {
426			mpi_limb_t divisor_limb_inverted;
427
428			divisor_limb <<= normalization_steps;
429
430			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
431			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
432			 * most significant bit (with weight 2**N) implicit.
433			 */
434			/* Special case for DIVISOR_LIMB == 100...000.  */
435			if (!(divisor_limb << 1))
436				divisor_limb_inverted = ~(mpi_limb_t) 0;
437			else
438				udiv_qrnnd(divisor_limb_inverted, dummy,
439					   -divisor_limb, 0, divisor_limb);
440
441			n1 = dividend_ptr[dividend_size - 1];
442			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
443
444			/* Possible optimization:
445			 * if (r == 0
446			 * && divisor_limb > ((n1 << normalization_steps)
447			 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
448			 * ...one division less...
449			 */
450			for (i = dividend_size - 2; i >= 0; i--) {
451				n0 = dividend_ptr[i];
452				UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
453						  ((n1 << normalization_steps)
454						   | (n0 >>
455						      (BITS_PER_MPI_LIMB -
456						       normalization_steps))),
457						  divisor_limb,
458						  divisor_limb_inverted);
459				n1 = n0;
460			}
461			UDIV_QRNND_PREINV(quot_ptr[0], r, r,
462					  n1 << normalization_steps,
463					  divisor_limb, divisor_limb_inverted);
464			return r >> normalization_steps;
465		} else {
466			mpi_limb_t divisor_limb_inverted;
467
468			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
469			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
470			 * most significant bit (with weight 2**N) implicit.
471			 */
472			/* Special case for DIVISOR_LIMB == 100...000.  */
473			if (!(divisor_limb << 1))
474				divisor_limb_inverted = ~(mpi_limb_t) 0;
475			else
476				udiv_qrnnd(divisor_limb_inverted, dummy,
477					   -divisor_limb, 0, divisor_limb);
478
479			i = dividend_size - 1;
480			r = dividend_ptr[i];
481
482			if (r >= divisor_limb)
483				r = 0;
484			else
485				quot_ptr[i--] = 0;
486
487			for (; i >= 0; i--) {
488				n0 = dividend_ptr[i];
489				UDIV_QRNND_PREINV(quot_ptr[i], r, r,
490						  n0, divisor_limb,
491						  divisor_limb_inverted);
492			}
493			return r;
494		}
495	} else {
496		if (UDIV_NEEDS_NORMALIZATION) {
497			int normalization_steps;
498
499			count_leading_zeros(normalization_steps, divisor_limb);
500			if (normalization_steps) {
501				divisor_limb <<= normalization_steps;
502
503				n1 = dividend_ptr[dividend_size - 1];
504				r = n1 >> (BITS_PER_MPI_LIMB -
505					   normalization_steps);
506
507				/* Possible optimization:
508				 * if (r == 0
509				 * && divisor_limb > ((n1 << normalization_steps)
510				 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
511				 * ...one division less...
512				 */
513				for (i = dividend_size - 2; i >= 0; i--) {
514					n0 = dividend_ptr[i];
515					udiv_qrnnd(quot_ptr[i + 1], r, r,
516						   ((n1 << normalization_steps)
517						    | (n0 >>
518						       (BITS_PER_MPI_LIMB -
519							normalization_steps))),
520						   divisor_limb);
521					n1 = n0;
522				}
523				udiv_qrnnd(quot_ptr[0], r, r,
524					   n1 << normalization_steps,
525					   divisor_limb);
526				return r >> normalization_steps;
527			}
528		}
529		/* No normalization needed, either because udiv_qrnnd doesn't require
530		 * it, or because DIVISOR_LIMB is already normalized.  */
531		i = dividend_size - 1;
532		r = dividend_ptr[i];
533
534		if (r >= divisor_limb)
535			r = 0;
536		else
537			quot_ptr[i--] = 0;
538
539		for (; i >= 0; i--) {
540			n0 = dividend_ptr[i];
541			udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
542		}
543		return r;
544	}
545}