Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 *
  20 * Copyright (c) 2010 Linaro
  21 *
  22 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  23 */
  24
  25#include <linux/kthread.h>
  26#include <linux/module.h>
  27#include <linux/debugfs.h>
  28#include <linux/seq_file.h>
  29
  30/* Global control variables for rcupdate callback mechanism. */
  31struct rcu_ctrlblk {
  32	struct rcu_head *rcucblist;	/* List of pending callbacks (CBs). */
  33	struct rcu_head **donetail;	/* ->next pointer of last "done" CB. */
  34	struct rcu_head **curtail;	/* ->next pointer of last CB. */
  35	RCU_TRACE(long qlen);		/* Number of pending CBs. */
  36	RCU_TRACE(char *name);		/* Name of RCU type. */
  37};
  38
  39/* Definition for rcupdate control block. */
  40static struct rcu_ctrlblk rcu_sched_ctrlblk = {
  41	.donetail	= &rcu_sched_ctrlblk.rcucblist,
  42	.curtail	= &rcu_sched_ctrlblk.rcucblist,
  43	RCU_TRACE(.name = "rcu_sched")
  44};
  45
  46static struct rcu_ctrlblk rcu_bh_ctrlblk = {
  47	.donetail	= &rcu_bh_ctrlblk.rcucblist,
  48	.curtail	= &rcu_bh_ctrlblk.rcucblist,
  49	RCU_TRACE(.name = "rcu_bh")
  50};
  51
  52#ifdef CONFIG_DEBUG_LOCK_ALLOC
  53int rcu_scheduler_active __read_mostly;
  54EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  55#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
  56
  57#ifdef CONFIG_TINY_PREEMPT_RCU
  58
  59#include <linux/delay.h>
  60
  61/* Global control variables for preemptible RCU. */
  62struct rcu_preempt_ctrlblk {
  63	struct rcu_ctrlblk rcb;	/* curtail: ->next ptr of last CB for GP. */
  64	struct rcu_head **nexttail;
  65				/* Tasks blocked in a preemptible RCU */
  66				/*  read-side critical section while an */
  67				/*  preemptible-RCU grace period is in */
  68				/*  progress must wait for a later grace */
  69				/*  period.  This pointer points to the */
  70				/*  ->next pointer of the last task that */
  71				/*  must wait for a later grace period, or */
  72				/*  to &->rcb.rcucblist if there is no */
  73				/*  such task. */
  74	struct list_head blkd_tasks;
  75				/* Tasks blocked in RCU read-side critical */
  76				/*  section.  Tasks are placed at the head */
  77				/*  of this list and age towards the tail. */
  78	struct list_head *gp_tasks;
  79				/* Pointer to the first task blocking the */
  80				/*  current grace period, or NULL if there */
  81				/*  is no such task. */
  82	struct list_head *exp_tasks;
  83				/* Pointer to first task blocking the */
  84				/*  current expedited grace period, or NULL */
  85				/*  if there is no such task.  If there */
  86				/*  is no current expedited grace period, */
  87				/*  then there cannot be any such task. */
  88#ifdef CONFIG_RCU_BOOST
  89	struct list_head *boost_tasks;
  90				/* Pointer to first task that needs to be */
  91				/*  priority-boosted, or NULL if no priority */
  92				/*  boosting is needed.  If there is no */
  93				/*  current or expedited grace period, there */
  94				/*  can be no such task. */
  95#endif /* #ifdef CONFIG_RCU_BOOST */
  96	u8 gpnum;		/* Current grace period. */
  97	u8 gpcpu;		/* Last grace period blocked by the CPU. */
  98	u8 completed;		/* Last grace period completed. */
  99				/*  If all three are equal, RCU is idle. */
 100#ifdef CONFIG_RCU_BOOST
 101	unsigned long boost_time; /* When to start boosting (jiffies) */
 102#endif /* #ifdef CONFIG_RCU_BOOST */
 103#ifdef CONFIG_RCU_TRACE
 104	unsigned long n_grace_periods;
 105#ifdef CONFIG_RCU_BOOST
 106	unsigned long n_tasks_boosted;
 107				/* Total number of tasks boosted. */
 108	unsigned long n_exp_boosts;
 109				/* Number of tasks boosted for expedited GP. */
 110	unsigned long n_normal_boosts;
 111				/* Number of tasks boosted for normal GP. */
 112	unsigned long n_balk_blkd_tasks;
 113				/* Refused to boost: no blocked tasks. */
 114	unsigned long n_balk_exp_gp_tasks;
 115				/* Refused to boost: nothing blocking GP. */
 116	unsigned long n_balk_boost_tasks;
 117				/* Refused to boost: already boosting. */
 118	unsigned long n_balk_notyet;
 119				/* Refused to boost: not yet time. */
 120	unsigned long n_balk_nos;
 121				/* Refused to boost: not sure why, though. */
 122				/*  This can happen due to race conditions. */
 123#endif /* #ifdef CONFIG_RCU_BOOST */
 124#endif /* #ifdef CONFIG_RCU_TRACE */
 125};
 126
 127static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
 128	.rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
 129	.rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
 130	.nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
 131	.blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
 132	RCU_TRACE(.rcb.name = "rcu_preempt")
 133};
 134
 135static void rcu_read_unlock_special(struct task_struct *t);
 136static int rcu_preempted_readers_exp(void);
 137static void rcu_report_exp_done(void);
 138
 139/*
 140 * Return true if the CPU has not yet responded to the current grace period.
 141 */
 142static int rcu_cpu_blocking_cur_gp(void)
 143{
 144	return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
 145}
 146
 147/*
 148 * Check for a running RCU reader.  Because there is only one CPU,
 149 * there can be but one running RCU reader at a time.  ;-)
 150 *
 151 * Returns zero if there are no running readers.  Returns a positive
 152 * number if there is at least one reader within its RCU read-side
 153 * critical section.  Returns a negative number if an outermost reader
 154 * is in the midst of exiting from its RCU read-side critical section
 155 *
 156 * Returns zero if there are no running readers.  Returns a positive
 157 * number if there is at least one reader within its RCU read-side
 158 * critical section.  Returns a negative number if an outermost reader
 159 * is in the midst of exiting from its RCU read-side critical section.
 160 */
 161static int rcu_preempt_running_reader(void)
 162{
 163	return current->rcu_read_lock_nesting;
 164}
 165
 166/*
 167 * Check for preempted RCU readers blocking any grace period.
 168 * If the caller needs a reliable answer, it must disable hard irqs.
 169 */
 170static int rcu_preempt_blocked_readers_any(void)
 171{
 172	return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
 173}
 174
 175/*
 176 * Check for preempted RCU readers blocking the current grace period.
 177 * If the caller needs a reliable answer, it must disable hard irqs.
 178 */
 179static int rcu_preempt_blocked_readers_cgp(void)
 180{
 181	return rcu_preempt_ctrlblk.gp_tasks != NULL;
 182}
 183
 184/*
 185 * Return true if another preemptible-RCU grace period is needed.
 186 */
 187static int rcu_preempt_needs_another_gp(void)
 188{
 189	return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
 190}
 191
 192/*
 193 * Return true if a preemptible-RCU grace period is in progress.
 194 * The caller must disable hardirqs.
 195 */
 196static int rcu_preempt_gp_in_progress(void)
 197{
 198	return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
 199}
 200
 201/*
 202 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 203 * returning NULL if at the end of the list.
 204 */
 205static struct list_head *rcu_next_node_entry(struct task_struct *t)
 206{
 207	struct list_head *np;
 208
 209	np = t->rcu_node_entry.next;
 210	if (np == &rcu_preempt_ctrlblk.blkd_tasks)
 211		np = NULL;
 212	return np;
 213}
 214
 215#ifdef CONFIG_RCU_TRACE
 216
 217#ifdef CONFIG_RCU_BOOST
 218static void rcu_initiate_boost_trace(void);
 219#endif /* #ifdef CONFIG_RCU_BOOST */
 220
 221/*
 222 * Dump additional statistice for TINY_PREEMPT_RCU.
 223 */
 224static void show_tiny_preempt_stats(struct seq_file *m)
 225{
 226	seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
 227		   rcu_preempt_ctrlblk.rcb.qlen,
 228		   rcu_preempt_ctrlblk.n_grace_periods,
 229		   rcu_preempt_ctrlblk.gpnum,
 230		   rcu_preempt_ctrlblk.gpcpu,
 231		   rcu_preempt_ctrlblk.completed,
 232		   "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
 233		   "N."[!rcu_preempt_ctrlblk.gp_tasks],
 234		   "E."[!rcu_preempt_ctrlblk.exp_tasks]);
 235#ifdef CONFIG_RCU_BOOST
 236	seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
 237		   "             ",
 238		   "B."[!rcu_preempt_ctrlblk.boost_tasks],
 239		   rcu_preempt_ctrlblk.n_tasks_boosted,
 240		   rcu_preempt_ctrlblk.n_exp_boosts,
 241		   rcu_preempt_ctrlblk.n_normal_boosts,
 242		   (int)(jiffies & 0xffff),
 243		   (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
 244	seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
 245		   "             balk",
 246		   rcu_preempt_ctrlblk.n_balk_blkd_tasks,
 247		   rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
 248		   rcu_preempt_ctrlblk.n_balk_boost_tasks,
 249		   rcu_preempt_ctrlblk.n_balk_notyet,
 250		   rcu_preempt_ctrlblk.n_balk_nos);
 251#endif /* #ifdef CONFIG_RCU_BOOST */
 252}
 253
 254#endif /* #ifdef CONFIG_RCU_TRACE */
 255
 256#ifdef CONFIG_RCU_BOOST
 257
 258#include "rtmutex_common.h"
 259
 260#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
 261
 262/* Controls for rcu_kthread() kthread. */
 263static struct task_struct *rcu_kthread_task;
 264static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
 265static unsigned long have_rcu_kthread_work;
 266
 267/*
 268 * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
 269 * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
 270 */
 271static int rcu_boost(void)
 272{
 273	unsigned long flags;
 274	struct rt_mutex mtx;
 275	struct task_struct *t;
 276	struct list_head *tb;
 277
 278	if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
 279	    rcu_preempt_ctrlblk.exp_tasks == NULL)
 280		return 0;  /* Nothing to boost. */
 281
 282	raw_local_irq_save(flags);
 283
 284	/*
 285	 * Recheck with irqs disabled: all tasks in need of boosting
 286	 * might exit their RCU read-side critical sections on their own
 287	 * if we are preempted just before disabling irqs.
 288	 */
 289	if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
 290	    rcu_preempt_ctrlblk.exp_tasks == NULL) {
 291		raw_local_irq_restore(flags);
 292		return 0;
 293	}
 294
 295	/*
 296	 * Preferentially boost tasks blocking expedited grace periods.
 297	 * This cannot starve the normal grace periods because a second
 298	 * expedited grace period must boost all blocked tasks, including
 299	 * those blocking the pre-existing normal grace period.
 300	 */
 301	if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
 302		tb = rcu_preempt_ctrlblk.exp_tasks;
 303		RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
 304	} else {
 305		tb = rcu_preempt_ctrlblk.boost_tasks;
 306		RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
 307	}
 308	RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
 309
 310	/*
 311	 * We boost task t by manufacturing an rt_mutex that appears to
 312	 * be held by task t.  We leave a pointer to that rt_mutex where
 313	 * task t can find it, and task t will release the mutex when it
 314	 * exits its outermost RCU read-side critical section.  Then
 315	 * simply acquiring this artificial rt_mutex will boost task
 316	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 317	 */
 318	t = container_of(tb, struct task_struct, rcu_node_entry);
 319	rt_mutex_init_proxy_locked(&mtx, t);
 320	t->rcu_boost_mutex = &mtx;
 321	raw_local_irq_restore(flags);
 322	rt_mutex_lock(&mtx);
 323	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
 324
 325	return ACCESS_ONCE(rcu_preempt_ctrlblk.boost_tasks) != NULL ||
 326	       ACCESS_ONCE(rcu_preempt_ctrlblk.exp_tasks) != NULL;
 327}
 328
 329/*
 330 * Check to see if it is now time to start boosting RCU readers blocking
 331 * the current grace period, and, if so, tell the rcu_kthread_task to
 332 * start boosting them.  If there is an expedited boost in progress,
 333 * we wait for it to complete.
 334 *
 335 * If there are no blocked readers blocking the current grace period,
 336 * return 0 to let the caller know, otherwise return 1.  Note that this
 337 * return value is independent of whether or not boosting was done.
 338 */
 339static int rcu_initiate_boost(void)
 340{
 341	if (!rcu_preempt_blocked_readers_cgp() &&
 342	    rcu_preempt_ctrlblk.exp_tasks == NULL) {
 343		RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
 344		return 0;
 345	}
 346	if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
 347	    (rcu_preempt_ctrlblk.gp_tasks != NULL &&
 348	     rcu_preempt_ctrlblk.boost_tasks == NULL &&
 349	     ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
 350		if (rcu_preempt_ctrlblk.exp_tasks == NULL)
 351			rcu_preempt_ctrlblk.boost_tasks =
 352				rcu_preempt_ctrlblk.gp_tasks;
 353		invoke_rcu_callbacks();
 354	} else
 355		RCU_TRACE(rcu_initiate_boost_trace());
 356	return 1;
 357}
 358
 359#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
 360
 361/*
 362 * Do priority-boost accounting for the start of a new grace period.
 363 */
 364static void rcu_preempt_boost_start_gp(void)
 365{
 366	rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
 367}
 368
 369#else /* #ifdef CONFIG_RCU_BOOST */
 370
 371/*
 372 * If there is no RCU priority boosting, we don't initiate boosting,
 373 * but we do indicate whether there are blocked readers blocking the
 374 * current grace period.
 375 */
 376static int rcu_initiate_boost(void)
 377{
 378	return rcu_preempt_blocked_readers_cgp();
 379}
 380
 381/*
 382 * If there is no RCU priority boosting, nothing to do at grace-period start.
 383 */
 384static void rcu_preempt_boost_start_gp(void)
 385{
 386}
 387
 388#endif /* else #ifdef CONFIG_RCU_BOOST */
 389
 390/*
 391 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 392 * that this just means that the task currently running on the CPU is
 393 * in a quiescent state.  There might be any number of tasks blocked
 394 * while in an RCU read-side critical section.
 395 *
 396 * Unlike the other rcu_*_qs() functions, callers to this function
 397 * must disable irqs in order to protect the assignment to
 398 * ->rcu_read_unlock_special.
 399 *
 400 * Because this is a single-CPU implementation, the only way a grace
 401 * period can end is if the CPU is in a quiescent state.  The reason is
 402 * that a blocked preemptible-RCU reader can exit its critical section
 403 * only if the CPU is running it at the time.  Therefore, when the
 404 * last task blocking the current grace period exits its RCU read-side
 405 * critical section, neither the CPU nor blocked tasks will be stopping
 406 * the current grace period.  (In contrast, SMP implementations
 407 * might have CPUs running in RCU read-side critical sections that
 408 * block later grace periods -- but this is not possible given only
 409 * one CPU.)
 410 */
 411static void rcu_preempt_cpu_qs(void)
 412{
 413	/* Record both CPU and task as having responded to current GP. */
 414	rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
 415	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
 416
 417	/* If there is no GP then there is nothing more to do.  */
 418	if (!rcu_preempt_gp_in_progress())
 419		return;
 420	/*
 421	 * Check up on boosting.  If there are readers blocking the
 422	 * current grace period, leave.
 423	 */
 424	if (rcu_initiate_boost())
 425		return;
 426
 427	/* Advance callbacks. */
 428	rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
 429	rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
 430	rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
 431
 432	/* If there are no blocked readers, next GP is done instantly. */
 433	if (!rcu_preempt_blocked_readers_any())
 434		rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
 435
 436	/* If there are done callbacks, cause them to be invoked. */
 437	if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
 438		invoke_rcu_callbacks();
 439}
 440
 441/*
 442 * Start a new RCU grace period if warranted.  Hard irqs must be disabled.
 443 */
 444static void rcu_preempt_start_gp(void)
 445{
 446	if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
 447
 448		/* Official start of GP. */
 449		rcu_preempt_ctrlblk.gpnum++;
 450		RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
 451
 452		/* Any blocked RCU readers block new GP. */
 453		if (rcu_preempt_blocked_readers_any())
 454			rcu_preempt_ctrlblk.gp_tasks =
 455				rcu_preempt_ctrlblk.blkd_tasks.next;
 456
 457		/* Set up for RCU priority boosting. */
 458		rcu_preempt_boost_start_gp();
 459
 460		/* If there is no running reader, CPU is done with GP. */
 461		if (!rcu_preempt_running_reader())
 462			rcu_preempt_cpu_qs();
 463	}
 464}
 465
 466/*
 467 * We have entered the scheduler, and the current task might soon be
 468 * context-switched away from.  If this task is in an RCU read-side
 469 * critical section, we will no longer be able to rely on the CPU to
 470 * record that fact, so we enqueue the task on the blkd_tasks list.
 471 * If the task started after the current grace period began, as recorded
 472 * by ->gpcpu, we enqueue at the beginning of the list.  Otherwise
 473 * before the element referenced by ->gp_tasks (or at the tail if
 474 * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
 475 * The task will dequeue itself when it exits the outermost enclosing
 476 * RCU read-side critical section.  Therefore, the current grace period
 477 * cannot be permitted to complete until the ->gp_tasks pointer becomes
 478 * NULL.
 479 *
 480 * Caller must disable preemption.
 481 */
 482void rcu_preempt_note_context_switch(void)
 483{
 484	struct task_struct *t = current;
 485	unsigned long flags;
 486
 487	local_irq_save(flags); /* must exclude scheduler_tick(). */
 488	if (rcu_preempt_running_reader() > 0 &&
 489	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
 490
 491		/* Possibly blocking in an RCU read-side critical section. */
 492		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
 493
 494		/*
 495		 * If this CPU has already checked in, then this task
 496		 * will hold up the next grace period rather than the
 497		 * current grace period.  Queue the task accordingly.
 498		 * If the task is queued for the current grace period
 499		 * (i.e., this CPU has not yet passed through a quiescent
 500		 * state for the current grace period), then as long
 501		 * as that task remains queued, the current grace period
 502		 * cannot end.
 503		 */
 504		list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
 505		if (rcu_cpu_blocking_cur_gp())
 506			rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
 507	} else if (rcu_preempt_running_reader() < 0 &&
 508		   t->rcu_read_unlock_special) {
 509		/*
 510		 * Complete exit from RCU read-side critical section on
 511		 * behalf of preempted instance of __rcu_read_unlock().
 512		 */
 513		rcu_read_unlock_special(t);
 514	}
 515
 516	/*
 517	 * Either we were not in an RCU read-side critical section to
 518	 * begin with, or we have now recorded that critical section
 519	 * globally.  Either way, we can now note a quiescent state
 520	 * for this CPU.  Again, if we were in an RCU read-side critical
 521	 * section, and if that critical section was blocking the current
 522	 * grace period, then the fact that the task has been enqueued
 523	 * means that current grace period continues to be blocked.
 524	 */
 525	rcu_preempt_cpu_qs();
 526	local_irq_restore(flags);
 527}
 528
 529/*
 530 * Tiny-preemptible RCU implementation for rcu_read_lock().
 531 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 532 * if we block.
 533 */
 534void __rcu_read_lock(void)
 535{
 536	current->rcu_read_lock_nesting++;
 537	barrier();  /* needed if we ever invoke rcu_read_lock in rcutiny.c */
 538}
 539EXPORT_SYMBOL_GPL(__rcu_read_lock);
 540
 541/*
 542 * Handle special cases during rcu_read_unlock(), such as needing to
 543 * notify RCU core processing or task having blocked during the RCU
 544 * read-side critical section.
 545 */
 546static noinline void rcu_read_unlock_special(struct task_struct *t)
 547{
 548	int empty;
 549	int empty_exp;
 550	unsigned long flags;
 551	struct list_head *np;
 552#ifdef CONFIG_RCU_BOOST
 553	struct rt_mutex *rbmp = NULL;
 554#endif /* #ifdef CONFIG_RCU_BOOST */
 555	int special;
 556
 557	/*
 558	 * NMI handlers cannot block and cannot safely manipulate state.
 559	 * They therefore cannot possibly be special, so just leave.
 560	 */
 561	if (in_nmi())
 562		return;
 563
 564	local_irq_save(flags);
 565
 566	/*
 567	 * If RCU core is waiting for this CPU to exit critical section,
 568	 * let it know that we have done so.
 569	 */
 570	special = t->rcu_read_unlock_special;
 571	if (special & RCU_READ_UNLOCK_NEED_QS)
 572		rcu_preempt_cpu_qs();
 573
 574	/* Hardware IRQ handlers cannot block. */
 575	if (in_irq() || in_serving_softirq()) {
 576		local_irq_restore(flags);
 577		return;
 578	}
 579
 580	/* Clean up if blocked during RCU read-side critical section. */
 581	if (special & RCU_READ_UNLOCK_BLOCKED) {
 582		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
 583
 584		/*
 585		 * Remove this task from the ->blkd_tasks list and adjust
 586		 * any pointers that might have been referencing it.
 587		 */
 588		empty = !rcu_preempt_blocked_readers_cgp();
 589		empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
 590		np = rcu_next_node_entry(t);
 591		list_del_init(&t->rcu_node_entry);
 592		if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
 593			rcu_preempt_ctrlblk.gp_tasks = np;
 594		if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
 595			rcu_preempt_ctrlblk.exp_tasks = np;
 596#ifdef CONFIG_RCU_BOOST
 597		if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
 598			rcu_preempt_ctrlblk.boost_tasks = np;
 599#endif /* #ifdef CONFIG_RCU_BOOST */
 600
 601		/*
 602		 * If this was the last task on the current list, and if
 603		 * we aren't waiting on the CPU, report the quiescent state
 604		 * and start a new grace period if needed.
 605		 */
 606		if (!empty && !rcu_preempt_blocked_readers_cgp()) {
 607			rcu_preempt_cpu_qs();
 608			rcu_preempt_start_gp();
 609		}
 610
 611		/*
 612		 * If this was the last task on the expedited lists,
 613		 * then we need wake up the waiting task.
 614		 */
 615		if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
 616			rcu_report_exp_done();
 617	}
 618#ifdef CONFIG_RCU_BOOST
 619	/* Unboost self if was boosted. */
 620	if (t->rcu_boost_mutex != NULL) {
 621		rbmp = t->rcu_boost_mutex;
 622		t->rcu_boost_mutex = NULL;
 623		rt_mutex_unlock(rbmp);
 624	}
 625#endif /* #ifdef CONFIG_RCU_BOOST */
 626	local_irq_restore(flags);
 627}
 628
 629/*
 630 * Tiny-preemptible RCU implementation for rcu_read_unlock().
 631 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 632 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 633 * invoke rcu_read_unlock_special() to clean up after a context switch
 634 * in an RCU read-side critical section and other special cases.
 635 */
 636void __rcu_read_unlock(void)
 637{
 638	struct task_struct *t = current;
 639
 640	barrier();  /* needed if we ever invoke rcu_read_unlock in rcutiny.c */
 641	if (t->rcu_read_lock_nesting != 1)
 642		--t->rcu_read_lock_nesting;
 643	else {
 644		t->rcu_read_lock_nesting = INT_MIN;
 645		barrier();  /* assign before ->rcu_read_unlock_special load */
 646		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
 647			rcu_read_unlock_special(t);
 648		barrier();  /* ->rcu_read_unlock_special load before assign */
 649		t->rcu_read_lock_nesting = 0;
 650	}
 651#ifdef CONFIG_PROVE_LOCKING
 652	{
 653		int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
 654
 655		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
 656	}
 657#endif /* #ifdef CONFIG_PROVE_LOCKING */
 658}
 659EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 660
 661/*
 662 * Check for a quiescent state from the current CPU.  When a task blocks,
 663 * the task is recorded in the rcu_preempt_ctrlblk structure, which is
 664 * checked elsewhere.  This is called from the scheduling-clock interrupt.
 665 *
 666 * Caller must disable hard irqs.
 667 */
 668static void rcu_preempt_check_callbacks(void)
 669{
 670	struct task_struct *t = current;
 671
 672	if (rcu_preempt_gp_in_progress() &&
 673	    (!rcu_preempt_running_reader() ||
 674	     !rcu_cpu_blocking_cur_gp()))
 675		rcu_preempt_cpu_qs();
 676	if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
 677	    rcu_preempt_ctrlblk.rcb.donetail)
 678		invoke_rcu_callbacks();
 679	if (rcu_preempt_gp_in_progress() &&
 680	    rcu_cpu_blocking_cur_gp() &&
 681	    rcu_preempt_running_reader() > 0)
 682		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
 683}
 684
 685/*
 686 * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
 687 * update, so this is invoked from rcu_process_callbacks() to
 688 * handle that case.  Of course, it is invoked for all flavors of
 689 * RCU, but RCU callbacks can appear only on one of the lists, and
 690 * neither ->nexttail nor ->donetail can possibly be NULL, so there
 691 * is no need for an explicit check.
 692 */
 693static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
 694{
 695	if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
 696		rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
 697}
 698
 699/*
 700 * Process callbacks for preemptible RCU.
 701 */
 702static void rcu_preempt_process_callbacks(void)
 703{
 704	__rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
 705}
 706
 707/*
 708 * Queue a preemptible -RCU callback for invocation after a grace period.
 709 */
 710void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 711{
 712	unsigned long flags;
 713
 714	debug_rcu_head_queue(head);
 715	head->func = func;
 716	head->next = NULL;
 717
 718	local_irq_save(flags);
 719	*rcu_preempt_ctrlblk.nexttail = head;
 720	rcu_preempt_ctrlblk.nexttail = &head->next;
 721	RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
 722	rcu_preempt_start_gp();  /* checks to see if GP needed. */
 723	local_irq_restore(flags);
 724}
 725EXPORT_SYMBOL_GPL(call_rcu);
 726
 727/*
 728 * synchronize_rcu - wait until a grace period has elapsed.
 729 *
 730 * Control will return to the caller some time after a full grace
 731 * period has elapsed, in other words after all currently executing RCU
 732 * read-side critical sections have completed.  RCU read-side critical
 733 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 734 * and may be nested.
 735 */
 736void synchronize_rcu(void)
 737{
 738	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
 739			   !lock_is_held(&rcu_lock_map) &&
 740			   !lock_is_held(&rcu_sched_lock_map),
 741			   "Illegal synchronize_rcu() in RCU read-side critical section");
 742
 743#ifdef CONFIG_DEBUG_LOCK_ALLOC
 744	if (!rcu_scheduler_active)
 745		return;
 746#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 747
 748	WARN_ON_ONCE(rcu_preempt_running_reader());
 749	if (!rcu_preempt_blocked_readers_any())
 750		return;
 751
 752	/* Once we get past the fastpath checks, same code as rcu_barrier(). */
 753	rcu_barrier();
 754}
 755EXPORT_SYMBOL_GPL(synchronize_rcu);
 756
 757static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
 758static unsigned long sync_rcu_preempt_exp_count;
 759static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
 760
 761/*
 762 * Return non-zero if there are any tasks in RCU read-side critical
 763 * sections blocking the current preemptible-RCU expedited grace period.
 764 * If there is no preemptible-RCU expedited grace period currently in
 765 * progress, returns zero unconditionally.
 766 */
 767static int rcu_preempted_readers_exp(void)
 768{
 769	return rcu_preempt_ctrlblk.exp_tasks != NULL;
 770}
 771
 772/*
 773 * Report the exit from RCU read-side critical section for the last task
 774 * that queued itself during or before the current expedited preemptible-RCU
 775 * grace period.
 776 */
 777static void rcu_report_exp_done(void)
 778{
 779	wake_up(&sync_rcu_preempt_exp_wq);
 780}
 781
 782/*
 783 * Wait for an rcu-preempt grace period, but expedite it.  The basic idea
 784 * is to rely in the fact that there is but one CPU, and that it is
 785 * illegal for a task to invoke synchronize_rcu_expedited() while in a
 786 * preemptible-RCU read-side critical section.  Therefore, any such
 787 * critical sections must correspond to blocked tasks, which must therefore
 788 * be on the ->blkd_tasks list.  So just record the current head of the
 789 * list in the ->exp_tasks pointer, and wait for all tasks including and
 790 * after the task pointed to by ->exp_tasks to drain.
 791 */
 792void synchronize_rcu_expedited(void)
 793{
 794	unsigned long flags;
 795	struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
 796	unsigned long snap;
 797
 798	barrier(); /* ensure prior action seen before grace period. */
 799
 800	WARN_ON_ONCE(rcu_preempt_running_reader());
 801
 802	/*
 803	 * Acquire lock so that there is only one preemptible RCU grace
 804	 * period in flight.  Of course, if someone does the expedited
 805	 * grace period for us while we are acquiring the lock, just leave.
 806	 */
 807	snap = sync_rcu_preempt_exp_count + 1;
 808	mutex_lock(&sync_rcu_preempt_exp_mutex);
 809	if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
 810		goto unlock_mb_ret; /* Others did our work for us. */
 811
 812	local_irq_save(flags);
 813
 814	/*
 815	 * All RCU readers have to already be on blkd_tasks because
 816	 * we cannot legally be executing in an RCU read-side critical
 817	 * section.
 818	 */
 819
 820	/* Snapshot current head of ->blkd_tasks list. */
 821	rpcp->exp_tasks = rpcp->blkd_tasks.next;
 822	if (rpcp->exp_tasks == &rpcp->blkd_tasks)
 823		rpcp->exp_tasks = NULL;
 824
 825	/* Wait for tail of ->blkd_tasks list to drain. */
 826	if (!rcu_preempted_readers_exp())
 827		local_irq_restore(flags);
 828	else {
 829		rcu_initiate_boost();
 830		local_irq_restore(flags);
 831		wait_event(sync_rcu_preempt_exp_wq,
 832			   !rcu_preempted_readers_exp());
 833	}
 834
 835	/* Clean up and exit. */
 836	barrier(); /* ensure expedited GP seen before counter increment. */
 837	sync_rcu_preempt_exp_count++;
 838unlock_mb_ret:
 839	mutex_unlock(&sync_rcu_preempt_exp_mutex);
 840	barrier(); /* ensure subsequent action seen after grace period. */
 841}
 842EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
 843
 844/*
 845 * Does preemptible RCU need the CPU to stay out of dynticks mode?
 846 */
 847int rcu_preempt_needs_cpu(void)
 848{
 849	if (!rcu_preempt_running_reader())
 850		rcu_preempt_cpu_qs();
 851	return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
 852}
 853
 854#else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
 855
 856#ifdef CONFIG_RCU_TRACE
 857
 858/*
 859 * Because preemptible RCU does not exist, it is not necessary to
 860 * dump out its statistics.
 861 */
 862static void show_tiny_preempt_stats(struct seq_file *m)
 863{
 864}
 865
 866#endif /* #ifdef CONFIG_RCU_TRACE */
 867
 868/*
 869 * Because preemptible RCU does not exist, it never has any callbacks
 870 * to check.
 871 */
 872static void rcu_preempt_check_callbacks(void)
 873{
 874}
 875
 876/*
 877 * Because preemptible RCU does not exist, it never has any callbacks
 878 * to remove.
 879 */
 880static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
 881{
 882}
 883
 884/*
 885 * Because preemptible RCU does not exist, it never has any callbacks
 886 * to process.
 887 */
 888static void rcu_preempt_process_callbacks(void)
 889{
 890}
 891
 892#endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
 893
 894#ifdef CONFIG_RCU_BOOST
 895
 896/*
 897 * Wake up rcu_kthread() to process callbacks now eligible for invocation
 898 * or to boost readers.
 899 */
 900static void invoke_rcu_callbacks(void)
 901{
 902	have_rcu_kthread_work = 1;
 903	if (rcu_kthread_task != NULL)
 904		wake_up(&rcu_kthread_wq);
 905}
 906
 907#ifdef CONFIG_RCU_TRACE
 908
 909/*
 910 * Is the current CPU running the RCU-callbacks kthread?
 911 * Caller must have preemption disabled.
 912 */
 913static bool rcu_is_callbacks_kthread(void)
 914{
 915	return rcu_kthread_task == current;
 916}
 917
 918#endif /* #ifdef CONFIG_RCU_TRACE */
 919
 920/*
 921 * This kthread invokes RCU callbacks whose grace periods have
 922 * elapsed.  It is awakened as needed, and takes the place of the
 923 * RCU_SOFTIRQ that is used for this purpose when boosting is disabled.
 924 * This is a kthread, but it is never stopped, at least not until
 925 * the system goes down.
 926 */
 927static int rcu_kthread(void *arg)
 928{
 929	unsigned long work;
 930	unsigned long morework;
 931	unsigned long flags;
 932
 933	for (;;) {
 934		wait_event_interruptible(rcu_kthread_wq,
 935					 have_rcu_kthread_work != 0);
 936		morework = rcu_boost();
 937		local_irq_save(flags);
 938		work = have_rcu_kthread_work;
 939		have_rcu_kthread_work = morework;
 940		local_irq_restore(flags);
 941		if (work)
 942			rcu_process_callbacks(NULL);
 943		schedule_timeout_interruptible(1); /* Leave CPU for others. */
 944	}
 945
 946	return 0;  /* Not reached, but needed to shut gcc up. */
 947}
 948
 949/*
 950 * Spawn the kthread that invokes RCU callbacks.
 951 */
 952static int __init rcu_spawn_kthreads(void)
 953{
 954	struct sched_param sp;
 955
 956	rcu_kthread_task = kthread_run(rcu_kthread, NULL, "rcu_kthread");
 957	sp.sched_priority = RCU_BOOST_PRIO;
 958	sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
 959	return 0;
 960}
 961early_initcall(rcu_spawn_kthreads);
 962
 963#else /* #ifdef CONFIG_RCU_BOOST */
 964
 965/* Hold off callback invocation until early_initcall() time. */
 966static int rcu_scheduler_fully_active __read_mostly;
 967
 968/*
 969 * Start up softirq processing of callbacks.
 970 */
 971void invoke_rcu_callbacks(void)
 972{
 973	if (rcu_scheduler_fully_active)
 974		raise_softirq(RCU_SOFTIRQ);
 975}
 976
 977#ifdef CONFIG_RCU_TRACE
 978
 979/*
 980 * There is no callback kthread, so this thread is never it.
 981 */
 982static bool rcu_is_callbacks_kthread(void)
 983{
 984	return false;
 985}
 986
 987#endif /* #ifdef CONFIG_RCU_TRACE */
 988
 989static int __init rcu_scheduler_really_started(void)
 990{
 991	rcu_scheduler_fully_active = 1;
 992	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
 993	raise_softirq(RCU_SOFTIRQ);  /* Invoke any callbacks from early boot. */
 994	return 0;
 995}
 996early_initcall(rcu_scheduler_really_started);
 997
 998#endif /* #else #ifdef CONFIG_RCU_BOOST */
 999
1000#ifdef CONFIG_DEBUG_LOCK_ALLOC
1001#include <linux/kernel_stat.h>
1002
1003/*
1004 * During boot, we forgive RCU lockdep issues.  After this function is
1005 * invoked, we start taking RCU lockdep issues seriously.
1006 */
1007void __init rcu_scheduler_starting(void)
1008{
1009	WARN_ON(nr_context_switches() > 0);
1010	rcu_scheduler_active = 1;
1011}
1012
1013#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1014
1015#ifdef CONFIG_RCU_TRACE
1016
1017#ifdef CONFIG_RCU_BOOST
1018
1019static void rcu_initiate_boost_trace(void)
1020{
1021	if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
1022		rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
1023	else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
1024		 rcu_preempt_ctrlblk.exp_tasks == NULL)
1025		rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
1026	else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
1027		rcu_preempt_ctrlblk.n_balk_boost_tasks++;
1028	else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
1029		rcu_preempt_ctrlblk.n_balk_notyet++;
1030	else
1031		rcu_preempt_ctrlblk.n_balk_nos++;
1032}
1033
1034#endif /* #ifdef CONFIG_RCU_BOOST */
1035
1036static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
1037{
1038	unsigned long flags;
1039
1040	raw_local_irq_save(flags);
1041	rcp->qlen -= n;
1042	raw_local_irq_restore(flags);
1043}
1044
1045/*
1046 * Dump statistics for TINY_RCU, such as they are.
1047 */
1048static int show_tiny_stats(struct seq_file *m, void *unused)
1049{
1050	show_tiny_preempt_stats(m);
1051	seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
1052	seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
1053	return 0;
1054}
1055
1056static int show_tiny_stats_open(struct inode *inode, struct file *file)
1057{
1058	return single_open(file, show_tiny_stats, NULL);
1059}
1060
1061static const struct file_operations show_tiny_stats_fops = {
1062	.owner = THIS_MODULE,
1063	.open = show_tiny_stats_open,
1064	.read = seq_read,
1065	.llseek = seq_lseek,
1066	.release = single_release,
1067};
1068
1069static struct dentry *rcudir;
1070
1071static int __init rcutiny_trace_init(void)
1072{
1073	struct dentry *retval;
1074
1075	rcudir = debugfs_create_dir("rcu", NULL);
1076	if (!rcudir)
1077		goto free_out;
1078	retval = debugfs_create_file("rcudata", 0444, rcudir,
1079				     NULL, &show_tiny_stats_fops);
1080	if (!retval)
1081		goto free_out;
1082	return 0;
1083free_out:
1084	debugfs_remove_recursive(rcudir);
1085	return 1;
1086}
1087
1088static void __exit rcutiny_trace_cleanup(void)
1089{
1090	debugfs_remove_recursive(rcudir);
1091}
1092
1093module_init(rcutiny_trace_init);
1094module_exit(rcutiny_trace_cleanup);
1095
1096MODULE_AUTHOR("Paul E. McKenney");
1097MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
1098MODULE_LICENSE("GPL");
1099
1100#endif /* #ifdef CONFIG_RCU_TRACE */