Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
  44#include <linux/module.h>
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <linux/prefetch.h>
  54#include <linux/delay.h>
  55#include <linux/stop_machine.h>
  56#include <linux/random.h>
  57#include <linux/ftrace_event.h>
  58#include <linux/suspend.h>
  59
  60#include "tree.h"
  61#include "rcu.h"
  62
  63MODULE_ALIAS("rcutree");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "rcutree."
  68
  69/* Data structures. */
  70
  71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  73
  74/*
  75 * In order to export the rcu_state name to the tracing tools, it
  76 * needs to be added in the __tracepoint_string section.
  77 * This requires defining a separate variable tp_<sname>_varname
  78 * that points to the string being used, and this will allow
  79 * the tracing userspace tools to be able to decipher the string
  80 * address to the matching string.
  81 */
  82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  83static char sname##_varname[] = #sname; \
  84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
  85struct rcu_state sname##_state = { \
  86	.level = { &sname##_state.node[0] }, \
  87	.call = cr, \
  88	.fqs_state = RCU_GP_IDLE, \
  89	.gpnum = 0UL - 300UL, \
  90	.completed = 0UL - 300UL, \
  91	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  92	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
  93	.orphan_donetail = &sname##_state.orphan_donelist, \
  94	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  95	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
  96	.name = sname##_varname, \
  97	.abbr = sabbr, \
  98}; \
  99DEFINE_PER_CPU(struct rcu_data, sname##_data)
 100
 101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 103
 104static struct rcu_state *rcu_state;
 105LIST_HEAD(rcu_struct_flavors);
 106
 107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
 108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
 109module_param(rcu_fanout_leaf, int, 0444);
 110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 111static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
 112	NUM_RCU_LVL_0,
 113	NUM_RCU_LVL_1,
 114	NUM_RCU_LVL_2,
 115	NUM_RCU_LVL_3,
 116	NUM_RCU_LVL_4,
 117};
 118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 119
 120/*
 121 * The rcu_scheduler_active variable transitions from zero to one just
 122 * before the first task is spawned.  So when this variable is zero, RCU
 123 * can assume that there is but one task, allowing RCU to (for example)
 124 * optimize synchronize_sched() to a simple barrier().  When this variable
 125 * is one, RCU must actually do all the hard work required to detect real
 126 * grace periods.  This variable is also used to suppress boot-time false
 127 * positives from lockdep-RCU error checking.
 128 */
 129int rcu_scheduler_active __read_mostly;
 130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 131
 132/*
 133 * The rcu_scheduler_fully_active variable transitions from zero to one
 134 * during the early_initcall() processing, which is after the scheduler
 135 * is capable of creating new tasks.  So RCU processing (for example,
 136 * creating tasks for RCU priority boosting) must be delayed until after
 137 * rcu_scheduler_fully_active transitions from zero to one.  We also
 138 * currently delay invocation of any RCU callbacks until after this point.
 139 *
 140 * It might later prove better for people registering RCU callbacks during
 141 * early boot to take responsibility for these callbacks, but one step at
 142 * a time.
 143 */
 144static int rcu_scheduler_fully_active __read_mostly;
 145
 146#ifdef CONFIG_RCU_BOOST
 147
 148/*
 149 * Control variables for per-CPU and per-rcu_node kthreads.  These
 150 * handle all flavors of RCU.
 151 */
 152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
 153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
 155DEFINE_PER_CPU(char, rcu_cpu_has_work);
 156
 157#endif /* #ifdef CONFIG_RCU_BOOST */
 158
 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 160static void invoke_rcu_core(void);
 161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 162
 163/*
 164 * Track the rcutorture test sequence number and the update version
 165 * number within a given test.  The rcutorture_testseq is incremented
 166 * on every rcutorture module load and unload, so has an odd value
 167 * when a test is running.  The rcutorture_vernum is set to zero
 168 * when rcutorture starts and is incremented on each rcutorture update.
 169 * These variables enable correlating rcutorture output with the
 170 * RCU tracing information.
 171 */
 172unsigned long rcutorture_testseq;
 173unsigned long rcutorture_vernum;
 174
 175/*
 176 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 177 * permit this function to be invoked without holding the root rcu_node
 178 * structure's ->lock, but of course results can be subject to change.
 179 */
 180static int rcu_gp_in_progress(struct rcu_state *rsp)
 181{
 182	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
 183}
 184
 185/*
 186 * Note a quiescent state.  Because we do not need to know
 187 * how many quiescent states passed, just if there was at least
 188 * one since the start of the grace period, this just sets a flag.
 189 * The caller must have disabled preemption.
 190 */
 191void rcu_sched_qs(int cpu)
 192{
 193	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
 194
 195	if (rdp->passed_quiesce == 0)
 196		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
 197	rdp->passed_quiesce = 1;
 198}
 199
 200void rcu_bh_qs(int cpu)
 201{
 202	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
 203
 204	if (rdp->passed_quiesce == 0)
 205		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
 206	rdp->passed_quiesce = 1;
 207}
 208
 209/*
 210 * Note a context switch.  This is a quiescent state for RCU-sched,
 211 * and requires special handling for preemptible RCU.
 212 * The caller must have disabled preemption.
 213 */
 214void rcu_note_context_switch(int cpu)
 215{
 216	trace_rcu_utilization(TPS("Start context switch"));
 217	rcu_sched_qs(cpu);
 218	rcu_preempt_note_context_switch(cpu);
 219	trace_rcu_utilization(TPS("End context switch"));
 220}
 221EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 222
 223static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 224	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 225	.dynticks = ATOMIC_INIT(1),
 226#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 227	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 228	.dynticks_idle = ATOMIC_INIT(1),
 229#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 230};
 231
 232static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
 233static long qhimark = 10000;	/* If this many pending, ignore blimit. */
 234static long qlowmark = 100;	/* Once only this many pending, use blimit. */
 235
 236module_param(blimit, long, 0444);
 237module_param(qhimark, long, 0444);
 238module_param(qlowmark, long, 0444);
 239
 240static ulong jiffies_till_first_fqs = ULONG_MAX;
 241static ulong jiffies_till_next_fqs = ULONG_MAX;
 242
 243module_param(jiffies_till_first_fqs, ulong, 0644);
 244module_param(jiffies_till_next_fqs, ulong, 0644);
 245
 246static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 247				  struct rcu_data *rdp);
 248static void force_qs_rnp(struct rcu_state *rsp,
 249			 int (*f)(struct rcu_data *rsp, bool *isidle,
 250				  unsigned long *maxj),
 251			 bool *isidle, unsigned long *maxj);
 252static void force_quiescent_state(struct rcu_state *rsp);
 253static int rcu_pending(int cpu);
 254
 255/*
 256 * Return the number of RCU-sched batches processed thus far for debug & stats.
 257 */
 258long rcu_batches_completed_sched(void)
 259{
 260	return rcu_sched_state.completed;
 261}
 262EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 263
 264/*
 265 * Return the number of RCU BH batches processed thus far for debug & stats.
 266 */
 267long rcu_batches_completed_bh(void)
 268{
 269	return rcu_bh_state.completed;
 270}
 271EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 272
 273/*
 274 * Force a quiescent state for RCU BH.
 275 */
 276void rcu_bh_force_quiescent_state(void)
 277{
 278	force_quiescent_state(&rcu_bh_state);
 279}
 280EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 281
 282/*
 283 * Record the number of times rcutorture tests have been initiated and
 284 * terminated.  This information allows the debugfs tracing stats to be
 285 * correlated to the rcutorture messages, even when the rcutorture module
 286 * is being repeatedly loaded and unloaded.  In other words, we cannot
 287 * store this state in rcutorture itself.
 288 */
 289void rcutorture_record_test_transition(void)
 290{
 291	rcutorture_testseq++;
 292	rcutorture_vernum = 0;
 293}
 294EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 295
 296/*
 297 * Record the number of writer passes through the current rcutorture test.
 298 * This is also used to correlate debugfs tracing stats with the rcutorture
 299 * messages.
 300 */
 301void rcutorture_record_progress(unsigned long vernum)
 302{
 303	rcutorture_vernum++;
 304}
 305EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 306
 307/*
 308 * Force a quiescent state for RCU-sched.
 309 */
 310void rcu_sched_force_quiescent_state(void)
 311{
 312	force_quiescent_state(&rcu_sched_state);
 313}
 314EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 315
 316/*
 317 * Does the CPU have callbacks ready to be invoked?
 318 */
 319static int
 320cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 321{
 322	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
 323	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
 324}
 325
 326/*
 327 * Does the current CPU require a not-yet-started grace period?
 328 * The caller must have disabled interrupts to prevent races with
 329 * normal callback registry.
 330 */
 331static int
 332cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 333{
 334	int i;
 335
 336	if (rcu_gp_in_progress(rsp))
 337		return 0;  /* No, a grace period is already in progress. */
 338	if (rcu_nocb_needs_gp(rsp))
 339		return 1;  /* Yes, a no-CBs CPU needs one. */
 340	if (!rdp->nxttail[RCU_NEXT_TAIL])
 341		return 0;  /* No, this is a no-CBs (or offline) CPU. */
 342	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
 343		return 1;  /* Yes, this CPU has newly registered callbacks. */
 344	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
 345		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
 346		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
 347				 rdp->nxtcompleted[i]))
 348			return 1;  /* Yes, CBs for future grace period. */
 349	return 0; /* No grace period needed. */
 350}
 351
 352/*
 353 * Return the root node of the specified rcu_state structure.
 354 */
 355static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 356{
 357	return &rsp->node[0];
 358}
 359
 360/*
 361 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
 362 *
 363 * If the new value of the ->dynticks_nesting counter now is zero,
 364 * we really have entered idle, and must do the appropriate accounting.
 365 * The caller must have disabled interrupts.
 366 */
 367static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
 368				bool user)
 369{
 370	struct rcu_state *rsp;
 371	struct rcu_data *rdp;
 372
 373	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
 374	if (!user && !is_idle_task(current)) {
 375		struct task_struct *idle __maybe_unused =
 376			idle_task(smp_processor_id());
 377
 378		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
 379		ftrace_dump(DUMP_ORIG);
 380		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 381			  current->pid, current->comm,
 382			  idle->pid, idle->comm); /* must be idle task! */
 383	}
 384	for_each_rcu_flavor(rsp) {
 385		rdp = this_cpu_ptr(rsp->rda);
 386		do_nocb_deferred_wakeup(rdp);
 387	}
 388	rcu_prepare_for_idle(smp_processor_id());
 389	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 390	smp_mb__before_atomic_inc();  /* See above. */
 391	atomic_inc(&rdtp->dynticks);
 392	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
 393	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 394
 395	/*
 396	 * It is illegal to enter an extended quiescent state while
 397	 * in an RCU read-side critical section.
 398	 */
 399	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
 400			   "Illegal idle entry in RCU read-side critical section.");
 401	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
 402			   "Illegal idle entry in RCU-bh read-side critical section.");
 403	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
 404			   "Illegal idle entry in RCU-sched read-side critical section.");
 405}
 406
 407/*
 408 * Enter an RCU extended quiescent state, which can be either the
 409 * idle loop or adaptive-tickless usermode execution.
 410 */
 411static void rcu_eqs_enter(bool user)
 412{
 413	long long oldval;
 414	struct rcu_dynticks *rdtp;
 415
 416	rdtp = this_cpu_ptr(&rcu_dynticks);
 417	oldval = rdtp->dynticks_nesting;
 418	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
 419	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
 420		rdtp->dynticks_nesting = 0;
 421		rcu_eqs_enter_common(rdtp, oldval, user);
 422	} else {
 423		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 424	}
 425}
 426
 427/**
 428 * rcu_idle_enter - inform RCU that current CPU is entering idle
 429 *
 430 * Enter idle mode, in other words, -leave- the mode in which RCU
 431 * read-side critical sections can occur.  (Though RCU read-side
 432 * critical sections can occur in irq handlers in idle, a possibility
 433 * handled by irq_enter() and irq_exit().)
 434 *
 435 * We crowbar the ->dynticks_nesting field to zero to allow for
 436 * the possibility of usermode upcalls having messed up our count
 437 * of interrupt nesting level during the prior busy period.
 438 */
 439void rcu_idle_enter(void)
 440{
 441	unsigned long flags;
 442
 443	local_irq_save(flags);
 444	rcu_eqs_enter(false);
 445	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
 446	local_irq_restore(flags);
 447}
 448EXPORT_SYMBOL_GPL(rcu_idle_enter);
 449
 450#ifdef CONFIG_RCU_USER_QS
 451/**
 452 * rcu_user_enter - inform RCU that we are resuming userspace.
 453 *
 454 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 455 * is permitted between this call and rcu_user_exit(). This way the
 456 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 457 * when the CPU runs in userspace.
 458 */
 459void rcu_user_enter(void)
 460{
 461	rcu_eqs_enter(1);
 462}
 463#endif /* CONFIG_RCU_USER_QS */
 464
 465/**
 466 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 467 *
 468 * Exit from an interrupt handler, which might possibly result in entering
 469 * idle mode, in other words, leaving the mode in which read-side critical
 470 * sections can occur.
 471 *
 472 * This code assumes that the idle loop never does anything that might
 473 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 474 * architecture violates this assumption, RCU will give you what you
 475 * deserve, good and hard.  But very infrequently and irreproducibly.
 476 *
 477 * Use things like work queues to work around this limitation.
 478 *
 479 * You have been warned.
 480 */
 481void rcu_irq_exit(void)
 482{
 483	unsigned long flags;
 484	long long oldval;
 485	struct rcu_dynticks *rdtp;
 486
 487	local_irq_save(flags);
 488	rdtp = this_cpu_ptr(&rcu_dynticks);
 489	oldval = rdtp->dynticks_nesting;
 490	rdtp->dynticks_nesting--;
 491	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
 492	if (rdtp->dynticks_nesting)
 493		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
 494	else
 495		rcu_eqs_enter_common(rdtp, oldval, true);
 496	rcu_sysidle_enter(rdtp, 1);
 497	local_irq_restore(flags);
 498}
 499
 500/*
 501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 502 *
 503 * If the new value of the ->dynticks_nesting counter was previously zero,
 504 * we really have exited idle, and must do the appropriate accounting.
 505 * The caller must have disabled interrupts.
 506 */
 507static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
 508			       int user)
 509{
 510	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
 511	atomic_inc(&rdtp->dynticks);
 512	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 513	smp_mb__after_atomic_inc();  /* See above. */
 514	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 515	rcu_cleanup_after_idle(smp_processor_id());
 516	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 517	if (!user && !is_idle_task(current)) {
 518		struct task_struct *idle __maybe_unused =
 519			idle_task(smp_processor_id());
 520
 521		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 522				  oldval, rdtp->dynticks_nesting);
 523		ftrace_dump(DUMP_ORIG);
 524		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 525			  current->pid, current->comm,
 526			  idle->pid, idle->comm); /* must be idle task! */
 527	}
 528}
 529
 530/*
 531 * Exit an RCU extended quiescent state, which can be either the
 532 * idle loop or adaptive-tickless usermode execution.
 533 */
 534static void rcu_eqs_exit(bool user)
 535{
 536	struct rcu_dynticks *rdtp;
 537	long long oldval;
 538
 539	rdtp = this_cpu_ptr(&rcu_dynticks);
 540	oldval = rdtp->dynticks_nesting;
 541	WARN_ON_ONCE(oldval < 0);
 542	if (oldval & DYNTICK_TASK_NEST_MASK) {
 543		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 544	} else {
 545		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 546		rcu_eqs_exit_common(rdtp, oldval, user);
 547	}
 548}
 549
 550/**
 551 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 552 *
 553 * Exit idle mode, in other words, -enter- the mode in which RCU
 554 * read-side critical sections can occur.
 555 *
 556 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 557 * allow for the possibility of usermode upcalls messing up our count
 558 * of interrupt nesting level during the busy period that is just
 559 * now starting.
 560 */
 561void rcu_idle_exit(void)
 562{
 563	unsigned long flags;
 564
 565	local_irq_save(flags);
 566	rcu_eqs_exit(false);
 567	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
 568	local_irq_restore(flags);
 569}
 570EXPORT_SYMBOL_GPL(rcu_idle_exit);
 571
 572#ifdef CONFIG_RCU_USER_QS
 573/**
 574 * rcu_user_exit - inform RCU that we are exiting userspace.
 575 *
 576 * Exit RCU idle mode while entering the kernel because it can
 577 * run a RCU read side critical section anytime.
 578 */
 579void rcu_user_exit(void)
 580{
 581	rcu_eqs_exit(1);
 582}
 583#endif /* CONFIG_RCU_USER_QS */
 584
 585/**
 586 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 587 *
 588 * Enter an interrupt handler, which might possibly result in exiting
 589 * idle mode, in other words, entering the mode in which read-side critical
 590 * sections can occur.
 591 *
 592 * Note that the Linux kernel is fully capable of entering an interrupt
 593 * handler that it never exits, for example when doing upcalls to
 594 * user mode!  This code assumes that the idle loop never does upcalls to
 595 * user mode.  If your architecture does do upcalls from the idle loop (or
 596 * does anything else that results in unbalanced calls to the irq_enter()
 597 * and irq_exit() functions), RCU will give you what you deserve, good
 598 * and hard.  But very infrequently and irreproducibly.
 599 *
 600 * Use things like work queues to work around this limitation.
 601 *
 602 * You have been warned.
 603 */
 604void rcu_irq_enter(void)
 605{
 606	unsigned long flags;
 607	struct rcu_dynticks *rdtp;
 608	long long oldval;
 609
 610	local_irq_save(flags);
 611	rdtp = this_cpu_ptr(&rcu_dynticks);
 612	oldval = rdtp->dynticks_nesting;
 613	rdtp->dynticks_nesting++;
 614	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
 615	if (oldval)
 616		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
 617	else
 618		rcu_eqs_exit_common(rdtp, oldval, true);
 619	rcu_sysidle_exit(rdtp, 1);
 620	local_irq_restore(flags);
 621}
 622
 623/**
 624 * rcu_nmi_enter - inform RCU of entry to NMI context
 625 *
 626 * If the CPU was idle with dynamic ticks active, and there is no
 627 * irq handler running, this updates rdtp->dynticks_nmi to let the
 628 * RCU grace-period handling know that the CPU is active.
 629 */
 630void rcu_nmi_enter(void)
 631{
 632	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 633
 634	if (rdtp->dynticks_nmi_nesting == 0 &&
 635	    (atomic_read(&rdtp->dynticks) & 0x1))
 636		return;
 637	rdtp->dynticks_nmi_nesting++;
 638	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
 639	atomic_inc(&rdtp->dynticks);
 640	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 641	smp_mb__after_atomic_inc();  /* See above. */
 642	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 643}
 644
 645/**
 646 * rcu_nmi_exit - inform RCU of exit from NMI context
 647 *
 648 * If the CPU was idle with dynamic ticks active, and there is no
 649 * irq handler running, this updates rdtp->dynticks_nmi to let the
 650 * RCU grace-period handling know that the CPU is no longer active.
 651 */
 652void rcu_nmi_exit(void)
 653{
 654	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 655
 656	if (rdtp->dynticks_nmi_nesting == 0 ||
 657	    --rdtp->dynticks_nmi_nesting != 0)
 658		return;
 659	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 660	smp_mb__before_atomic_inc();  /* See above. */
 661	atomic_inc(&rdtp->dynticks);
 662	smp_mb__after_atomic_inc();  /* Force delay to next write. */
 663	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 664}
 665
 666/**
 667 * __rcu_is_watching - are RCU read-side critical sections safe?
 668 *
 669 * Return true if RCU is watching the running CPU, which means that
 670 * this CPU can safely enter RCU read-side critical sections.  Unlike
 671 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 672 * least disabled preemption.
 673 */
 674bool notrace __rcu_is_watching(void)
 675{
 676	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
 677}
 678
 679/**
 680 * rcu_is_watching - see if RCU thinks that the current CPU is idle
 681 *
 682 * If the current CPU is in its idle loop and is neither in an interrupt
 683 * or NMI handler, return true.
 684 */
 685bool notrace rcu_is_watching(void)
 686{
 687	int ret;
 688
 689	preempt_disable();
 690	ret = __rcu_is_watching();
 691	preempt_enable();
 692	return ret;
 693}
 694EXPORT_SYMBOL_GPL(rcu_is_watching);
 695
 696#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 697
 698/*
 699 * Is the current CPU online?  Disable preemption to avoid false positives
 700 * that could otherwise happen due to the current CPU number being sampled,
 701 * this task being preempted, its old CPU being taken offline, resuming
 702 * on some other CPU, then determining that its old CPU is now offline.
 703 * It is OK to use RCU on an offline processor during initial boot, hence
 704 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 705 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 706 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 707 * offline to continue to use RCU for one jiffy after marking itself
 708 * offline in the cpu_online_mask.  This leniency is necessary given the
 709 * non-atomic nature of the online and offline processing, for example,
 710 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 711 * notifiers.
 712 *
 713 * This is also why RCU internally marks CPUs online during the
 714 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
 715 *
 716 * Disable checking if in an NMI handler because we cannot safely report
 717 * errors from NMI handlers anyway.
 718 */
 719bool rcu_lockdep_current_cpu_online(void)
 720{
 721	struct rcu_data *rdp;
 722	struct rcu_node *rnp;
 723	bool ret;
 724
 725	if (in_nmi())
 726		return true;
 727	preempt_disable();
 728	rdp = this_cpu_ptr(&rcu_sched_data);
 729	rnp = rdp->mynode;
 730	ret = (rdp->grpmask & rnp->qsmaskinit) ||
 731	      !rcu_scheduler_fully_active;
 732	preempt_enable();
 733	return ret;
 734}
 735EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 736
 737#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 738
 739/**
 740 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
 741 *
 742 * If the current CPU is idle or running at a first-level (not nested)
 743 * interrupt from idle, return true.  The caller must have at least
 744 * disabled preemption.
 745 */
 746static int rcu_is_cpu_rrupt_from_idle(void)
 747{
 748	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
 749}
 750
 751/*
 752 * Snapshot the specified CPU's dynticks counter so that we can later
 753 * credit them with an implicit quiescent state.  Return 1 if this CPU
 754 * is in dynticks idle mode, which is an extended quiescent state.
 755 */
 756static int dyntick_save_progress_counter(struct rcu_data *rdp,
 757					 bool *isidle, unsigned long *maxj)
 758{
 759	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
 760	rcu_sysidle_check_cpu(rdp, isidle, maxj);
 761	return (rdp->dynticks_snap & 0x1) == 0;
 762}
 763
 764/*
 765 * This function really isn't for public consumption, but RCU is special in
 766 * that context switches can allow the state machine to make progress.
 767 */
 768extern void resched_cpu(int cpu);
 769
 770/*
 771 * Return true if the specified CPU has passed through a quiescent
 772 * state by virtue of being in or having passed through an dynticks
 773 * idle state since the last call to dyntick_save_progress_counter()
 774 * for this same CPU, or by virtue of having been offline.
 775 */
 776static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
 777				    bool *isidle, unsigned long *maxj)
 778{
 779	unsigned int curr;
 780	unsigned int snap;
 781
 782	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
 783	snap = (unsigned int)rdp->dynticks_snap;
 784
 785	/*
 786	 * If the CPU passed through or entered a dynticks idle phase with
 787	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 788	 * already acknowledged the request to pass through a quiescent
 789	 * state.  Either way, that CPU cannot possibly be in an RCU
 790	 * read-side critical section that started before the beginning
 791	 * of the current RCU grace period.
 792	 */
 793	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
 794		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
 795		rdp->dynticks_fqs++;
 796		return 1;
 797	}
 798
 799	/*
 800	 * Check for the CPU being offline, but only if the grace period
 801	 * is old enough.  We don't need to worry about the CPU changing
 802	 * state: If we see it offline even once, it has been through a
 803	 * quiescent state.
 804	 *
 805	 * The reason for insisting that the grace period be at least
 806	 * one jiffy old is that CPUs that are not quite online and that
 807	 * have just gone offline can still execute RCU read-side critical
 808	 * sections.
 809	 */
 810	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
 811		return 0;  /* Grace period is not old enough. */
 812	barrier();
 813	if (cpu_is_offline(rdp->cpu)) {
 814		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
 815		rdp->offline_fqs++;
 816		return 1;
 817	}
 818
 819	/*
 820	 * There is a possibility that a CPU in adaptive-ticks state
 821	 * might run in the kernel with the scheduling-clock tick disabled
 822	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
 823	 * force the CPU to restart the scheduling-clock tick in this
 824	 * CPU is in this state.
 825	 */
 826	rcu_kick_nohz_cpu(rdp->cpu);
 827
 828	/*
 829	 * Alternatively, the CPU might be running in the kernel
 830	 * for an extended period of time without a quiescent state.
 831	 * Attempt to force the CPU through the scheduler to gain the
 832	 * needed quiescent state, but only if the grace period has gone
 833	 * on for an uncommonly long time.  If there are many stuck CPUs,
 834	 * we will beat on the first one until it gets unstuck, then move
 835	 * to the next.  Only do this for the primary flavor of RCU.
 836	 */
 837	if (rdp->rsp == rcu_state &&
 838	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
 839		rdp->rsp->jiffies_resched += 5;
 840		resched_cpu(rdp->cpu);
 841	}
 842
 843	return 0;
 844}
 845
 846static void record_gp_stall_check_time(struct rcu_state *rsp)
 847{
 848	unsigned long j = jiffies;
 849	unsigned long j1;
 850
 851	rsp->gp_start = j;
 852	smp_wmb(); /* Record start time before stall time. */
 853	j1 = rcu_jiffies_till_stall_check();
 854	rsp->jiffies_stall = j + j1;
 855	rsp->jiffies_resched = j + j1 / 2;
 856}
 857
 858/*
 859 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 860 * for architectures that do not implement trigger_all_cpu_backtrace().
 861 * The NMI-triggered stack traces are more accurate because they are
 862 * printed by the target CPU.
 863 */
 864static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
 865{
 866	int cpu;
 867	unsigned long flags;
 868	struct rcu_node *rnp;
 869
 870	rcu_for_each_leaf_node(rsp, rnp) {
 871		raw_spin_lock_irqsave(&rnp->lock, flags);
 872		if (rnp->qsmask != 0) {
 873			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 874				if (rnp->qsmask & (1UL << cpu))
 875					dump_cpu_task(rnp->grplo + cpu);
 876		}
 877		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 878	}
 879}
 880
 881static void print_other_cpu_stall(struct rcu_state *rsp)
 882{
 883	int cpu;
 884	long delta;
 885	unsigned long flags;
 886	int ndetected = 0;
 887	struct rcu_node *rnp = rcu_get_root(rsp);
 888	long totqlen = 0;
 889
 890	/* Only let one CPU complain about others per time interval. */
 891
 892	raw_spin_lock_irqsave(&rnp->lock, flags);
 893	delta = jiffies - rsp->jiffies_stall;
 894	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
 895		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 896		return;
 897	}
 898	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
 899	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 900
 901	/*
 902	 * OK, time to rat on our buddy...
 903	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 904	 * RCU CPU stall warnings.
 905	 */
 906	pr_err("INFO: %s detected stalls on CPUs/tasks:",
 907	       rsp->name);
 908	print_cpu_stall_info_begin();
 909	rcu_for_each_leaf_node(rsp, rnp) {
 910		raw_spin_lock_irqsave(&rnp->lock, flags);
 911		ndetected += rcu_print_task_stall(rnp);
 912		if (rnp->qsmask != 0) {
 913			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 914				if (rnp->qsmask & (1UL << cpu)) {
 915					print_cpu_stall_info(rsp,
 916							     rnp->grplo + cpu);
 917					ndetected++;
 918				}
 919		}
 920		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 921	}
 922
 923	/*
 924	 * Now rat on any tasks that got kicked up to the root rcu_node
 925	 * due to CPU offlining.
 926	 */
 927	rnp = rcu_get_root(rsp);
 928	raw_spin_lock_irqsave(&rnp->lock, flags);
 929	ndetected += rcu_print_task_stall(rnp);
 930	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 931
 932	print_cpu_stall_info_end();
 933	for_each_possible_cpu(cpu)
 934		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
 935	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
 936	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
 937	       rsp->gpnum, rsp->completed, totqlen);
 938	if (ndetected == 0)
 939		pr_err("INFO: Stall ended before state dump start\n");
 940	else if (!trigger_all_cpu_backtrace())
 941		rcu_dump_cpu_stacks(rsp);
 942
 943	/* Complain about tasks blocking the grace period. */
 944
 945	rcu_print_detail_task_stall(rsp);
 946
 947	force_quiescent_state(rsp);  /* Kick them all. */
 948}
 949
 950/*
 951 * This function really isn't for public consumption, but RCU is special in
 952 * that context switches can allow the state machine to make progress.
 953 */
 954extern void resched_cpu(int cpu);
 955
 956static void print_cpu_stall(struct rcu_state *rsp)
 957{
 958	int cpu;
 959	unsigned long flags;
 960	struct rcu_node *rnp = rcu_get_root(rsp);
 961	long totqlen = 0;
 962
 963	/*
 964	 * OK, time to rat on ourselves...
 965	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 966	 * RCU CPU stall warnings.
 967	 */
 968	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
 969	print_cpu_stall_info_begin();
 970	print_cpu_stall_info(rsp, smp_processor_id());
 971	print_cpu_stall_info_end();
 972	for_each_possible_cpu(cpu)
 973		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
 974	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
 975		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
 976	if (!trigger_all_cpu_backtrace())
 977		dump_stack();
 978
 979	raw_spin_lock_irqsave(&rnp->lock, flags);
 980	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
 981		rsp->jiffies_stall = jiffies +
 982				     3 * rcu_jiffies_till_stall_check() + 3;
 983	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 984
 985	/*
 986	 * Attempt to revive the RCU machinery by forcing a context switch.
 987	 *
 988	 * A context switch would normally allow the RCU state machine to make
 989	 * progress and it could be we're stuck in kernel space without context
 990	 * switches for an entirely unreasonable amount of time.
 991	 */
 992	resched_cpu(smp_processor_id());
 993}
 994
 995static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 996{
 997	unsigned long completed;
 998	unsigned long gpnum;
 999	unsigned long gps;
1000	unsigned long j;
1001	unsigned long js;
1002	struct rcu_node *rnp;
1003
1004	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1005		return;
1006	j = jiffies;
1007
1008	/*
1009	 * Lots of memory barriers to reject false positives.
1010	 *
1011	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1012	 * then rsp->gp_start, and finally rsp->completed.  These values
1013	 * are updated in the opposite order with memory barriers (or
1014	 * equivalent) during grace-period initialization and cleanup.
1015	 * Now, a false positive can occur if we get an new value of
1016	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1017	 * the memory barriers, the only way that this can happen is if one
1018	 * grace period ends and another starts between these two fetches.
1019	 * Detect this by comparing rsp->completed with the previous fetch
1020	 * from rsp->gpnum.
1021	 *
1022	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1023	 * and rsp->gp_start suffice to forestall false positives.
1024	 */
1025	gpnum = ACCESS_ONCE(rsp->gpnum);
1026	smp_rmb(); /* Pick up ->gpnum first... */
1027	js = ACCESS_ONCE(rsp->jiffies_stall);
1028	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1029	gps = ACCESS_ONCE(rsp->gp_start);
1030	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1031	completed = ACCESS_ONCE(rsp->completed);
1032	if (ULONG_CMP_GE(completed, gpnum) ||
1033	    ULONG_CMP_LT(j, js) ||
1034	    ULONG_CMP_GE(gps, js))
1035		return; /* No stall or GP completed since entering function. */
1036	rnp = rdp->mynode;
1037	if (rcu_gp_in_progress(rsp) &&
1038	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1039
1040		/* We haven't checked in, so go dump stack. */
1041		print_cpu_stall(rsp);
1042
1043	} else if (rcu_gp_in_progress(rsp) &&
1044		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1045
1046		/* They had a few time units to dump stack, so complain. */
1047		print_other_cpu_stall(rsp);
1048	}
1049}
1050
1051/**
1052 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1053 *
1054 * Set the stall-warning timeout way off into the future, thus preventing
1055 * any RCU CPU stall-warning messages from appearing in the current set of
1056 * RCU grace periods.
1057 *
1058 * The caller must disable hard irqs.
1059 */
1060void rcu_cpu_stall_reset(void)
1061{
1062	struct rcu_state *rsp;
1063
1064	for_each_rcu_flavor(rsp)
1065		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1066}
1067
1068/*
1069 * Initialize the specified rcu_data structure's callback list to empty.
1070 */
1071static void init_callback_list(struct rcu_data *rdp)
1072{
1073	int i;
1074
1075	if (init_nocb_callback_list(rdp))
1076		return;
1077	rdp->nxtlist = NULL;
1078	for (i = 0; i < RCU_NEXT_SIZE; i++)
1079		rdp->nxttail[i] = &rdp->nxtlist;
1080}
1081
1082/*
1083 * Determine the value that ->completed will have at the end of the
1084 * next subsequent grace period.  This is used to tag callbacks so that
1085 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1086 * been dyntick-idle for an extended period with callbacks under the
1087 * influence of RCU_FAST_NO_HZ.
1088 *
1089 * The caller must hold rnp->lock with interrupts disabled.
1090 */
1091static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1092				       struct rcu_node *rnp)
1093{
1094	/*
1095	 * If RCU is idle, we just wait for the next grace period.
1096	 * But we can only be sure that RCU is idle if we are looking
1097	 * at the root rcu_node structure -- otherwise, a new grace
1098	 * period might have started, but just not yet gotten around
1099	 * to initializing the current non-root rcu_node structure.
1100	 */
1101	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1102		return rnp->completed + 1;
1103
1104	/*
1105	 * Otherwise, wait for a possible partial grace period and
1106	 * then the subsequent full grace period.
1107	 */
1108	return rnp->completed + 2;
1109}
1110
1111/*
1112 * Trace-event helper function for rcu_start_future_gp() and
1113 * rcu_nocb_wait_gp().
1114 */
1115static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1116				unsigned long c, const char *s)
1117{
1118	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1119				      rnp->completed, c, rnp->level,
1120				      rnp->grplo, rnp->grphi, s);
1121}
1122
1123/*
1124 * Start some future grace period, as needed to handle newly arrived
1125 * callbacks.  The required future grace periods are recorded in each
1126 * rcu_node structure's ->need_future_gp field.
1127 *
1128 * The caller must hold the specified rcu_node structure's ->lock.
1129 */
1130static unsigned long __maybe_unused
1131rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1132{
1133	unsigned long c;
1134	int i;
1135	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1136
1137	/*
1138	 * Pick up grace-period number for new callbacks.  If this
1139	 * grace period is already marked as needed, return to the caller.
1140	 */
1141	c = rcu_cbs_completed(rdp->rsp, rnp);
1142	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1143	if (rnp->need_future_gp[c & 0x1]) {
1144		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1145		return c;
1146	}
1147
1148	/*
1149	 * If either this rcu_node structure or the root rcu_node structure
1150	 * believe that a grace period is in progress, then we must wait
1151	 * for the one following, which is in "c".  Because our request
1152	 * will be noticed at the end of the current grace period, we don't
1153	 * need to explicitly start one.
1154	 */
1155	if (rnp->gpnum != rnp->completed ||
1156	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1157		rnp->need_future_gp[c & 0x1]++;
1158		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1159		return c;
1160	}
1161
1162	/*
1163	 * There might be no grace period in progress.  If we don't already
1164	 * hold it, acquire the root rcu_node structure's lock in order to
1165	 * start one (if needed).
1166	 */
1167	if (rnp != rnp_root) {
1168		raw_spin_lock(&rnp_root->lock);
1169		smp_mb__after_unlock_lock();
1170	}
1171
1172	/*
1173	 * Get a new grace-period number.  If there really is no grace
1174	 * period in progress, it will be smaller than the one we obtained
1175	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1176	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1177	 */
1178	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1179	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1180		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1181			rdp->nxtcompleted[i] = c;
1182
1183	/*
1184	 * If the needed for the required grace period is already
1185	 * recorded, trace and leave.
1186	 */
1187	if (rnp_root->need_future_gp[c & 0x1]) {
1188		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1189		goto unlock_out;
1190	}
1191
1192	/* Record the need for the future grace period. */
1193	rnp_root->need_future_gp[c & 0x1]++;
1194
1195	/* If a grace period is not already in progress, start one. */
1196	if (rnp_root->gpnum != rnp_root->completed) {
1197		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1198	} else {
1199		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1200		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1201	}
1202unlock_out:
1203	if (rnp != rnp_root)
1204		raw_spin_unlock(&rnp_root->lock);
1205	return c;
1206}
1207
1208/*
1209 * Clean up any old requests for the just-ended grace period.  Also return
1210 * whether any additional grace periods have been requested.  Also invoke
1211 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1212 * waiting for this grace period to complete.
1213 */
1214static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1215{
1216	int c = rnp->completed;
1217	int needmore;
1218	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1219
1220	rcu_nocb_gp_cleanup(rsp, rnp);
1221	rnp->need_future_gp[c & 0x1] = 0;
1222	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1223	trace_rcu_future_gp(rnp, rdp, c,
1224			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1225	return needmore;
1226}
1227
1228/*
1229 * If there is room, assign a ->completed number to any callbacks on
1230 * this CPU that have not already been assigned.  Also accelerate any
1231 * callbacks that were previously assigned a ->completed number that has
1232 * since proven to be too conservative, which can happen if callbacks get
1233 * assigned a ->completed number while RCU is idle, but with reference to
1234 * a non-root rcu_node structure.  This function is idempotent, so it does
1235 * not hurt to call it repeatedly.
1236 *
1237 * The caller must hold rnp->lock with interrupts disabled.
1238 */
1239static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1240			       struct rcu_data *rdp)
1241{
1242	unsigned long c;
1243	int i;
1244
1245	/* If the CPU has no callbacks, nothing to do. */
1246	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1247		return;
1248
1249	/*
1250	 * Starting from the sublist containing the callbacks most
1251	 * recently assigned a ->completed number and working down, find the
1252	 * first sublist that is not assignable to an upcoming grace period.
1253	 * Such a sublist has something in it (first two tests) and has
1254	 * a ->completed number assigned that will complete sooner than
1255	 * the ->completed number for newly arrived callbacks (last test).
1256	 *
1257	 * The key point is that any later sublist can be assigned the
1258	 * same ->completed number as the newly arrived callbacks, which
1259	 * means that the callbacks in any of these later sublist can be
1260	 * grouped into a single sublist, whether or not they have already
1261	 * been assigned a ->completed number.
1262	 */
1263	c = rcu_cbs_completed(rsp, rnp);
1264	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1265		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1266		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1267			break;
1268
1269	/*
1270	 * If there are no sublist for unassigned callbacks, leave.
1271	 * At the same time, advance "i" one sublist, so that "i" will
1272	 * index into the sublist where all the remaining callbacks should
1273	 * be grouped into.
1274	 */
1275	if (++i >= RCU_NEXT_TAIL)
1276		return;
1277
1278	/*
1279	 * Assign all subsequent callbacks' ->completed number to the next
1280	 * full grace period and group them all in the sublist initially
1281	 * indexed by "i".
1282	 */
1283	for (; i <= RCU_NEXT_TAIL; i++) {
1284		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1285		rdp->nxtcompleted[i] = c;
1286	}
1287	/* Record any needed additional grace periods. */
1288	rcu_start_future_gp(rnp, rdp);
1289
1290	/* Trace depending on how much we were able to accelerate. */
1291	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1292		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1293	else
1294		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1295}
1296
1297/*
1298 * Move any callbacks whose grace period has completed to the
1299 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1300 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1301 * sublist.  This function is idempotent, so it does not hurt to
1302 * invoke it repeatedly.  As long as it is not invoked -too- often...
1303 *
1304 * The caller must hold rnp->lock with interrupts disabled.
1305 */
1306static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1307			    struct rcu_data *rdp)
1308{
1309	int i, j;
1310
1311	/* If the CPU has no callbacks, nothing to do. */
1312	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1313		return;
1314
1315	/*
1316	 * Find all callbacks whose ->completed numbers indicate that they
1317	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1318	 */
1319	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1320		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1321			break;
1322		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1323	}
1324	/* Clean up any sublist tail pointers that were misordered above. */
1325	for (j = RCU_WAIT_TAIL; j < i; j++)
1326		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1327
1328	/* Copy down callbacks to fill in empty sublists. */
1329	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1330		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1331			break;
1332		rdp->nxttail[j] = rdp->nxttail[i];
1333		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1334	}
1335
1336	/* Classify any remaining callbacks. */
1337	rcu_accelerate_cbs(rsp, rnp, rdp);
1338}
1339
1340/*
1341 * Update CPU-local rcu_data state to record the beginnings and ends of
1342 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1343 * structure corresponding to the current CPU, and must have irqs disabled.
1344 */
1345static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1346{
1347	/* Handle the ends of any preceding grace periods first. */
1348	if (rdp->completed == rnp->completed) {
1349
1350		/* No grace period end, so just accelerate recent callbacks. */
1351		rcu_accelerate_cbs(rsp, rnp, rdp);
1352
1353	} else {
1354
1355		/* Advance callbacks. */
1356		rcu_advance_cbs(rsp, rnp, rdp);
1357
1358		/* Remember that we saw this grace-period completion. */
1359		rdp->completed = rnp->completed;
1360		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1361	}
1362
1363	if (rdp->gpnum != rnp->gpnum) {
1364		/*
1365		 * If the current grace period is waiting for this CPU,
1366		 * set up to detect a quiescent state, otherwise don't
1367		 * go looking for one.
1368		 */
1369		rdp->gpnum = rnp->gpnum;
1370		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1371		rdp->passed_quiesce = 0;
1372		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1373		zero_cpu_stall_ticks(rdp);
1374	}
1375}
1376
1377static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1378{
1379	unsigned long flags;
1380	struct rcu_node *rnp;
1381
1382	local_irq_save(flags);
1383	rnp = rdp->mynode;
1384	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1385	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1386	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1387		local_irq_restore(flags);
1388		return;
1389	}
1390	smp_mb__after_unlock_lock();
1391	__note_gp_changes(rsp, rnp, rdp);
1392	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1393}
1394
1395/*
1396 * Initialize a new grace period.  Return 0 if no grace period required.
1397 */
1398static int rcu_gp_init(struct rcu_state *rsp)
1399{
1400	struct rcu_data *rdp;
1401	struct rcu_node *rnp = rcu_get_root(rsp);
1402
1403	rcu_bind_gp_kthread();
1404	raw_spin_lock_irq(&rnp->lock);
1405	smp_mb__after_unlock_lock();
1406	if (rsp->gp_flags == 0) {
1407		/* Spurious wakeup, tell caller to go back to sleep.  */
1408		raw_spin_unlock_irq(&rnp->lock);
1409		return 0;
1410	}
1411	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1412
1413	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1414		/*
1415		 * Grace period already in progress, don't start another.
1416		 * Not supposed to be able to happen.
1417		 */
1418		raw_spin_unlock_irq(&rnp->lock);
1419		return 0;
1420	}
1421
1422	/* Advance to a new grace period and initialize state. */
1423	record_gp_stall_check_time(rsp);
1424	/* Record GP times before starting GP, hence smp_store_release(). */
1425	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1426	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1427	raw_spin_unlock_irq(&rnp->lock);
1428
1429	/* Exclude any concurrent CPU-hotplug operations. */
1430	mutex_lock(&rsp->onoff_mutex);
1431	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1432
1433	/*
1434	 * Set the quiescent-state-needed bits in all the rcu_node
1435	 * structures for all currently online CPUs in breadth-first order,
1436	 * starting from the root rcu_node structure, relying on the layout
1437	 * of the tree within the rsp->node[] array.  Note that other CPUs
1438	 * will access only the leaves of the hierarchy, thus seeing that no
1439	 * grace period is in progress, at least until the corresponding
1440	 * leaf node has been initialized.  In addition, we have excluded
1441	 * CPU-hotplug operations.
1442	 *
1443	 * The grace period cannot complete until the initialization
1444	 * process finishes, because this kthread handles both.
1445	 */
1446	rcu_for_each_node_breadth_first(rsp, rnp) {
1447		raw_spin_lock_irq(&rnp->lock);
1448		smp_mb__after_unlock_lock();
1449		rdp = this_cpu_ptr(rsp->rda);
1450		rcu_preempt_check_blocked_tasks(rnp);
1451		rnp->qsmask = rnp->qsmaskinit;
1452		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1453		WARN_ON_ONCE(rnp->completed != rsp->completed);
1454		ACCESS_ONCE(rnp->completed) = rsp->completed;
1455		if (rnp == rdp->mynode)
1456			__note_gp_changes(rsp, rnp, rdp);
1457		rcu_preempt_boost_start_gp(rnp);
1458		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1459					    rnp->level, rnp->grplo,
1460					    rnp->grphi, rnp->qsmask);
1461		raw_spin_unlock_irq(&rnp->lock);
1462#ifdef CONFIG_PROVE_RCU_DELAY
1463		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1464		    system_state == SYSTEM_RUNNING)
1465			udelay(200);
1466#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1467		cond_resched();
1468	}
1469
1470	mutex_unlock(&rsp->onoff_mutex);
1471	return 1;
1472}
1473
1474/*
1475 * Do one round of quiescent-state forcing.
1476 */
1477static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1478{
1479	int fqs_state = fqs_state_in;
1480	bool isidle = false;
1481	unsigned long maxj;
1482	struct rcu_node *rnp = rcu_get_root(rsp);
1483
1484	rsp->n_force_qs++;
1485	if (fqs_state == RCU_SAVE_DYNTICK) {
1486		/* Collect dyntick-idle snapshots. */
1487		if (is_sysidle_rcu_state(rsp)) {
1488			isidle = 1;
1489			maxj = jiffies - ULONG_MAX / 4;
1490		}
1491		force_qs_rnp(rsp, dyntick_save_progress_counter,
1492			     &isidle, &maxj);
1493		rcu_sysidle_report_gp(rsp, isidle, maxj);
1494		fqs_state = RCU_FORCE_QS;
1495	} else {
1496		/* Handle dyntick-idle and offline CPUs. */
1497		isidle = 0;
1498		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1499	}
1500	/* Clear flag to prevent immediate re-entry. */
1501	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1502		raw_spin_lock_irq(&rnp->lock);
1503		smp_mb__after_unlock_lock();
1504		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1505		raw_spin_unlock_irq(&rnp->lock);
1506	}
1507	return fqs_state;
1508}
1509
1510/*
1511 * Clean up after the old grace period.
1512 */
1513static void rcu_gp_cleanup(struct rcu_state *rsp)
1514{
1515	unsigned long gp_duration;
1516	int nocb = 0;
1517	struct rcu_data *rdp;
1518	struct rcu_node *rnp = rcu_get_root(rsp);
1519
1520	raw_spin_lock_irq(&rnp->lock);
1521	smp_mb__after_unlock_lock();
1522	gp_duration = jiffies - rsp->gp_start;
1523	if (gp_duration > rsp->gp_max)
1524		rsp->gp_max = gp_duration;
1525
1526	/*
1527	 * We know the grace period is complete, but to everyone else
1528	 * it appears to still be ongoing.  But it is also the case
1529	 * that to everyone else it looks like there is nothing that
1530	 * they can do to advance the grace period.  It is therefore
1531	 * safe for us to drop the lock in order to mark the grace
1532	 * period as completed in all of the rcu_node structures.
1533	 */
1534	raw_spin_unlock_irq(&rnp->lock);
1535
1536	/*
1537	 * Propagate new ->completed value to rcu_node structures so
1538	 * that other CPUs don't have to wait until the start of the next
1539	 * grace period to process their callbacks.  This also avoids
1540	 * some nasty RCU grace-period initialization races by forcing
1541	 * the end of the current grace period to be completely recorded in
1542	 * all of the rcu_node structures before the beginning of the next
1543	 * grace period is recorded in any of the rcu_node structures.
1544	 */
1545	rcu_for_each_node_breadth_first(rsp, rnp) {
1546		raw_spin_lock_irq(&rnp->lock);
1547		smp_mb__after_unlock_lock();
1548		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1549		rdp = this_cpu_ptr(rsp->rda);
1550		if (rnp == rdp->mynode)
1551			__note_gp_changes(rsp, rnp, rdp);
1552		/* smp_mb() provided by prior unlock-lock pair. */
1553		nocb += rcu_future_gp_cleanup(rsp, rnp);
1554		raw_spin_unlock_irq(&rnp->lock);
1555		cond_resched();
1556	}
1557	rnp = rcu_get_root(rsp);
1558	raw_spin_lock_irq(&rnp->lock);
1559	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1560	rcu_nocb_gp_set(rnp, nocb);
1561
1562	/* Declare grace period done. */
1563	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1564	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1565	rsp->fqs_state = RCU_GP_IDLE;
1566	rdp = this_cpu_ptr(rsp->rda);
1567	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */
1568	if (cpu_needs_another_gp(rsp, rdp)) {
1569		rsp->gp_flags = RCU_GP_FLAG_INIT;
1570		trace_rcu_grace_period(rsp->name,
1571				       ACCESS_ONCE(rsp->gpnum),
1572				       TPS("newreq"));
1573	}
1574	raw_spin_unlock_irq(&rnp->lock);
1575}
1576
1577/*
1578 * Body of kthread that handles grace periods.
1579 */
1580static int __noreturn rcu_gp_kthread(void *arg)
1581{
1582	int fqs_state;
1583	int gf;
1584	unsigned long j;
1585	int ret;
1586	struct rcu_state *rsp = arg;
1587	struct rcu_node *rnp = rcu_get_root(rsp);
1588
1589	for (;;) {
1590
1591		/* Handle grace-period start. */
1592		for (;;) {
1593			trace_rcu_grace_period(rsp->name,
1594					       ACCESS_ONCE(rsp->gpnum),
1595					       TPS("reqwait"));
1596			wait_event_interruptible(rsp->gp_wq,
1597						 ACCESS_ONCE(rsp->gp_flags) &
1598						 RCU_GP_FLAG_INIT);
1599			/* Locking provides needed memory barrier. */
1600			if (rcu_gp_init(rsp))
1601				break;
1602			cond_resched();
1603			flush_signals(current);
1604			trace_rcu_grace_period(rsp->name,
1605					       ACCESS_ONCE(rsp->gpnum),
1606					       TPS("reqwaitsig"));
1607		}
1608
1609		/* Handle quiescent-state forcing. */
1610		fqs_state = RCU_SAVE_DYNTICK;
1611		j = jiffies_till_first_fqs;
1612		if (j > HZ) {
1613			j = HZ;
1614			jiffies_till_first_fqs = HZ;
1615		}
1616		ret = 0;
1617		for (;;) {
1618			if (!ret)
1619				rsp->jiffies_force_qs = jiffies + j;
1620			trace_rcu_grace_period(rsp->name,
1621					       ACCESS_ONCE(rsp->gpnum),
1622					       TPS("fqswait"));
1623			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1624					((gf = ACCESS_ONCE(rsp->gp_flags)) &
1625					 RCU_GP_FLAG_FQS) ||
1626					(!ACCESS_ONCE(rnp->qsmask) &&
1627					 !rcu_preempt_blocked_readers_cgp(rnp)),
1628					j);
1629			/* Locking provides needed memory barriers. */
1630			/* If grace period done, leave loop. */
1631			if (!ACCESS_ONCE(rnp->qsmask) &&
1632			    !rcu_preempt_blocked_readers_cgp(rnp))
1633				break;
1634			/* If time for quiescent-state forcing, do it. */
1635			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1636			    (gf & RCU_GP_FLAG_FQS)) {
1637				trace_rcu_grace_period(rsp->name,
1638						       ACCESS_ONCE(rsp->gpnum),
1639						       TPS("fqsstart"));
1640				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1641				trace_rcu_grace_period(rsp->name,
1642						       ACCESS_ONCE(rsp->gpnum),
1643						       TPS("fqsend"));
1644				cond_resched();
1645			} else {
1646				/* Deal with stray signal. */
1647				cond_resched();
1648				flush_signals(current);
1649				trace_rcu_grace_period(rsp->name,
1650						       ACCESS_ONCE(rsp->gpnum),
1651						       TPS("fqswaitsig"));
1652			}
1653			j = jiffies_till_next_fqs;
1654			if (j > HZ) {
1655				j = HZ;
1656				jiffies_till_next_fqs = HZ;
1657			} else if (j < 1) {
1658				j = 1;
1659				jiffies_till_next_fqs = 1;
1660			}
1661		}
1662
1663		/* Handle grace-period end. */
1664		rcu_gp_cleanup(rsp);
1665	}
1666}
1667
1668static void rsp_wakeup(struct irq_work *work)
1669{
1670	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1671
1672	/* Wake up rcu_gp_kthread() to start the grace period. */
1673	wake_up(&rsp->gp_wq);
1674}
1675
1676/*
1677 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1678 * in preparation for detecting the next grace period.  The caller must hold
1679 * the root node's ->lock and hard irqs must be disabled.
1680 *
1681 * Note that it is legal for a dying CPU (which is marked as offline) to
1682 * invoke this function.  This can happen when the dying CPU reports its
1683 * quiescent state.
1684 */
1685static void
1686rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1687		      struct rcu_data *rdp)
1688{
1689	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1690		/*
1691		 * Either we have not yet spawned the grace-period
1692		 * task, this CPU does not need another grace period,
1693		 * or a grace period is already in progress.
1694		 * Either way, don't start a new grace period.
1695		 */
1696		return;
1697	}
1698	rsp->gp_flags = RCU_GP_FLAG_INIT;
1699	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1700			       TPS("newreq"));
1701
1702	/*
1703	 * We can't do wakeups while holding the rnp->lock, as that
1704	 * could cause possible deadlocks with the rq->lock. Defer
1705	 * the wakeup to interrupt context.  And don't bother waking
1706	 * up the running kthread.
1707	 */
1708	if (current != rsp->gp_kthread)
1709		irq_work_queue(&rsp->wakeup_work);
1710}
1711
1712/*
1713 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1714 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
1715 * is invoked indirectly from rcu_advance_cbs(), which would result in
1716 * endless recursion -- or would do so if it wasn't for the self-deadlock
1717 * that is encountered beforehand.
1718 */
1719static void
1720rcu_start_gp(struct rcu_state *rsp)
1721{
1722	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1723	struct rcu_node *rnp = rcu_get_root(rsp);
1724
1725	/*
1726	 * If there is no grace period in progress right now, any
1727	 * callbacks we have up to this point will be satisfied by the
1728	 * next grace period.  Also, advancing the callbacks reduces the
1729	 * probability of false positives from cpu_needs_another_gp()
1730	 * resulting in pointless grace periods.  So, advance callbacks
1731	 * then start the grace period!
1732	 */
1733	rcu_advance_cbs(rsp, rnp, rdp);
1734	rcu_start_gp_advanced(rsp, rnp, rdp);
1735}
1736
1737/*
1738 * Report a full set of quiescent states to the specified rcu_state
1739 * data structure.  This involves cleaning up after the prior grace
1740 * period and letting rcu_start_gp() start up the next grace period
1741 * if one is needed.  Note that the caller must hold rnp->lock, which
1742 * is released before return.
1743 */
1744static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1745	__releases(rcu_get_root(rsp)->lock)
1746{
1747	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1748	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1749	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1750}
1751
1752/*
1753 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1754 * Allows quiescent states for a group of CPUs to be reported at one go
1755 * to the specified rcu_node structure, though all the CPUs in the group
1756 * must be represented by the same rcu_node structure (which need not be
1757 * a leaf rcu_node structure, though it often will be).  That structure's
1758 * lock must be held upon entry, and it is released before return.
1759 */
1760static void
1761rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1762		  struct rcu_node *rnp, unsigned long flags)
1763	__releases(rnp->lock)
1764{
1765	struct rcu_node *rnp_c;
1766
1767	/* Walk up the rcu_node hierarchy. */
1768	for (;;) {
1769		if (!(rnp->qsmask & mask)) {
1770
1771			/* Our bit has already been cleared, so done. */
1772			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1773			return;
1774		}
1775		rnp->qsmask &= ~mask;
1776		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1777						 mask, rnp->qsmask, rnp->level,
1778						 rnp->grplo, rnp->grphi,
1779						 !!rnp->gp_tasks);
1780		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1781
1782			/* Other bits still set at this level, so done. */
1783			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1784			return;
1785		}
1786		mask = rnp->grpmask;
1787		if (rnp->parent == NULL) {
1788
1789			/* No more levels.  Exit loop holding root lock. */
1790
1791			break;
1792		}
1793		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1794		rnp_c = rnp;
1795		rnp = rnp->parent;
1796		raw_spin_lock_irqsave(&rnp->lock, flags);
1797		smp_mb__after_unlock_lock();
1798		WARN_ON_ONCE(rnp_c->qsmask);
1799	}
1800
1801	/*
1802	 * Get here if we are the last CPU to pass through a quiescent
1803	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1804	 * to clean up and start the next grace period if one is needed.
1805	 */
1806	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1807}
1808
1809/*
1810 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1811 * structure.  This must be either called from the specified CPU, or
1812 * called when the specified CPU is known to be offline (and when it is
1813 * also known that no other CPU is concurrently trying to help the offline
1814 * CPU).  The lastcomp argument is used to make sure we are still in the
1815 * grace period of interest.  We don't want to end the current grace period
1816 * based on quiescent states detected in an earlier grace period!
1817 */
1818static void
1819rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1820{
1821	unsigned long flags;
1822	unsigned long mask;
1823	struct rcu_node *rnp;
1824
1825	rnp = rdp->mynode;
1826	raw_spin_lock_irqsave(&rnp->lock, flags);
1827	smp_mb__after_unlock_lock();
1828	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1829	    rnp->completed == rnp->gpnum) {
1830
1831		/*
1832		 * The grace period in which this quiescent state was
1833		 * recorded has ended, so don't report it upwards.
1834		 * We will instead need a new quiescent state that lies
1835		 * within the current grace period.
1836		 */
1837		rdp->passed_quiesce = 0;	/* need qs for new gp. */
1838		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1839		return;
1840	}
1841	mask = rdp->grpmask;
1842	if ((rnp->qsmask & mask) == 0) {
1843		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1844	} else {
1845		rdp->qs_pending = 0;
1846
1847		/*
1848		 * This GP can't end until cpu checks in, so all of our
1849		 * callbacks can be processed during the next GP.
1850		 */
1851		rcu_accelerate_cbs(rsp, rnp, rdp);
1852
1853		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1854	}
1855}
1856
1857/*
1858 * Check to see if there is a new grace period of which this CPU
1859 * is not yet aware, and if so, set up local rcu_data state for it.
1860 * Otherwise, see if this CPU has just passed through its first
1861 * quiescent state for this grace period, and record that fact if so.
1862 */
1863static void
1864rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1865{
1866	/* Check for grace-period ends and beginnings. */
1867	note_gp_changes(rsp, rdp);
1868
1869	/*
1870	 * Does this CPU still need to do its part for current grace period?
1871	 * If no, return and let the other CPUs do their part as well.
1872	 */
1873	if (!rdp->qs_pending)
1874		return;
1875
1876	/*
1877	 * Was there a quiescent state since the beginning of the grace
1878	 * period? If no, then exit and wait for the next call.
1879	 */
1880	if (!rdp->passed_quiesce)
1881		return;
1882
1883	/*
1884	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1885	 * judge of that).
1886	 */
1887	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1888}
1889
1890#ifdef CONFIG_HOTPLUG_CPU
1891
1892/*
1893 * Send the specified CPU's RCU callbacks to the orphanage.  The
1894 * specified CPU must be offline, and the caller must hold the
1895 * ->orphan_lock.
1896 */
1897static void
1898rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1899			  struct rcu_node *rnp, struct rcu_data *rdp)
1900{
1901	/* No-CBs CPUs do not have orphanable callbacks. */
1902	if (rcu_is_nocb_cpu(rdp->cpu))
1903		return;
1904
1905	/*
1906	 * Orphan the callbacks.  First adjust the counts.  This is safe
1907	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1908	 * cannot be running now.  Thus no memory barrier is required.
1909	 */
1910	if (rdp->nxtlist != NULL) {
1911		rsp->qlen_lazy += rdp->qlen_lazy;
1912		rsp->qlen += rdp->qlen;
1913		rdp->n_cbs_orphaned += rdp->qlen;
1914		rdp->qlen_lazy = 0;
1915		ACCESS_ONCE(rdp->qlen) = 0;
1916	}
1917
1918	/*
1919	 * Next, move those callbacks still needing a grace period to
1920	 * the orphanage, where some other CPU will pick them up.
1921	 * Some of the callbacks might have gone partway through a grace
1922	 * period, but that is too bad.  They get to start over because we
1923	 * cannot assume that grace periods are synchronized across CPUs.
1924	 * We don't bother updating the ->nxttail[] array yet, instead
1925	 * we just reset the whole thing later on.
1926	 */
1927	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1928		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1929		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1930		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1931	}
1932
1933	/*
1934	 * Then move the ready-to-invoke callbacks to the orphanage,
1935	 * where some other CPU will pick them up.  These will not be
1936	 * required to pass though another grace period: They are done.
1937	 */
1938	if (rdp->nxtlist != NULL) {
1939		*rsp->orphan_donetail = rdp->nxtlist;
1940		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1941	}
1942
1943	/* Finally, initialize the rcu_data structure's list to empty.  */
1944	init_callback_list(rdp);
1945}
1946
1947/*
1948 * Adopt the RCU callbacks from the specified rcu_state structure's
1949 * orphanage.  The caller must hold the ->orphan_lock.
1950 */
1951static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
1952{
1953	int i;
1954	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1955
1956	/* No-CBs CPUs are handled specially. */
1957	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
1958		return;
1959
1960	/* Do the accounting first. */
1961	rdp->qlen_lazy += rsp->qlen_lazy;
1962	rdp->qlen += rsp->qlen;
1963	rdp->n_cbs_adopted += rsp->qlen;
1964	if (rsp->qlen_lazy != rsp->qlen)
1965		rcu_idle_count_callbacks_posted();
1966	rsp->qlen_lazy = 0;
1967	rsp->qlen = 0;
1968
1969	/*
1970	 * We do not need a memory barrier here because the only way we
1971	 * can get here if there is an rcu_barrier() in flight is if
1972	 * we are the task doing the rcu_barrier().
1973	 */
1974
1975	/* First adopt the ready-to-invoke callbacks. */
1976	if (rsp->orphan_donelist != NULL) {
1977		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1978		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1979		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1980			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1981				rdp->nxttail[i] = rsp->orphan_donetail;
1982		rsp->orphan_donelist = NULL;
1983		rsp->orphan_donetail = &rsp->orphan_donelist;
1984	}
1985
1986	/* And then adopt the callbacks that still need a grace period. */
1987	if (rsp->orphan_nxtlist != NULL) {
1988		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1989		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1990		rsp->orphan_nxtlist = NULL;
1991		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1992	}
1993}
1994
1995/*
1996 * Trace the fact that this CPU is going offline.
1997 */
1998static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1999{
2000	RCU_TRACE(unsigned long mask);
2001	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2002	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2003
2004	RCU_TRACE(mask = rdp->grpmask);
2005	trace_rcu_grace_period(rsp->name,
2006			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2007			       TPS("cpuofl"));
2008}
2009
2010/*
2011 * The CPU has been completely removed, and some other CPU is reporting
2012 * this fact from process context.  Do the remainder of the cleanup,
2013 * including orphaning the outgoing CPU's RCU callbacks, and also
2014 * adopting them.  There can only be one CPU hotplug operation at a time,
2015 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2016 */
2017static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2018{
2019	unsigned long flags;
2020	unsigned long mask;
2021	int need_report = 0;
2022	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2023	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2024
2025	/* Adjust any no-longer-needed kthreads. */
2026	rcu_boost_kthread_setaffinity(rnp, -1);
2027
2028	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2029
2030	/* Exclude any attempts to start a new grace period. */
2031	mutex_lock(&rsp->onoff_mutex);
2032	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2033
2034	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2035	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2036	rcu_adopt_orphan_cbs(rsp, flags);
2037
2038	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2039	mask = rdp->grpmask;	/* rnp->grplo is constant. */
2040	do {
2041		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2042		smp_mb__after_unlock_lock();
2043		rnp->qsmaskinit &= ~mask;
2044		if (rnp->qsmaskinit != 0) {
2045			if (rnp != rdp->mynode)
2046				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2047			break;
2048		}
2049		if (rnp == rdp->mynode)
2050			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2051		else
2052			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2053		mask = rnp->grpmask;
2054		rnp = rnp->parent;
2055	} while (rnp != NULL);
2056
2057	/*
2058	 * We still hold the leaf rcu_node structure lock here, and
2059	 * irqs are still disabled.  The reason for this subterfuge is
2060	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2061	 * held leads to deadlock.
2062	 */
2063	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2064	rnp = rdp->mynode;
2065	if (need_report & RCU_OFL_TASKS_NORM_GP)
2066		rcu_report_unblock_qs_rnp(rnp, flags);
2067	else
2068		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2069	if (need_report & RCU_OFL_TASKS_EXP_GP)
2070		rcu_report_exp_rnp(rsp, rnp, true);
2071	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2072		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2073		  cpu, rdp->qlen, rdp->nxtlist);
2074	init_callback_list(rdp);
2075	/* Disallow further callbacks on this CPU. */
2076	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2077	mutex_unlock(&rsp->onoff_mutex);
2078}
2079
2080#else /* #ifdef CONFIG_HOTPLUG_CPU */
2081
2082static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2083{
2084}
2085
2086static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2087{
2088}
2089
2090#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2091
2092/*
2093 * Invoke any RCU callbacks that have made it to the end of their grace
2094 * period.  Thottle as specified by rdp->blimit.
2095 */
2096static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2097{
2098	unsigned long flags;
2099	struct rcu_head *next, *list, **tail;
2100	long bl, count, count_lazy;
2101	int i;
2102
2103	/* If no callbacks are ready, just return. */
2104	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2105		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2106		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2107				    need_resched(), is_idle_task(current),
2108				    rcu_is_callbacks_kthread());
2109		return;
2110	}
2111
2112	/*
2113	 * Extract the list of ready callbacks, disabling to prevent
2114	 * races with call_rcu() from interrupt handlers.
2115	 */
2116	local_irq_save(flags);
2117	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2118	bl = rdp->blimit;
2119	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2120	list = rdp->nxtlist;
2121	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2122	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2123	tail = rdp->nxttail[RCU_DONE_TAIL];
2124	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2125		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2126			rdp->nxttail[i] = &rdp->nxtlist;
2127	local_irq_restore(flags);
2128
2129	/* Invoke callbacks. */
2130	count = count_lazy = 0;
2131	while (list) {
2132		next = list->next;
2133		prefetch(next);
2134		debug_rcu_head_unqueue(list);
2135		if (__rcu_reclaim(rsp->name, list))
2136			count_lazy++;
2137		list = next;
2138		/* Stop only if limit reached and CPU has something to do. */
2139		if (++count >= bl &&
2140		    (need_resched() ||
2141		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2142			break;
2143	}
2144
2145	local_irq_save(flags);
2146	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2147			    is_idle_task(current),
2148			    rcu_is_callbacks_kthread());
2149
2150	/* Update count, and requeue any remaining callbacks. */
2151	if (list != NULL) {
2152		*tail = rdp->nxtlist;
2153		rdp->nxtlist = list;
2154		for (i = 0; i < RCU_NEXT_SIZE; i++)
2155			if (&rdp->nxtlist == rdp->nxttail[i])
2156				rdp->nxttail[i] = tail;
2157			else
2158				break;
2159	}
2160	smp_mb(); /* List handling before counting for rcu_barrier(). */
2161	rdp->qlen_lazy -= count_lazy;
2162	ACCESS_ONCE(rdp->qlen) -= count;
2163	rdp->n_cbs_invoked += count;
2164
2165	/* Reinstate batch limit if we have worked down the excess. */
2166	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2167		rdp->blimit = blimit;
2168
2169	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2170	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2171		rdp->qlen_last_fqs_check = 0;
2172		rdp->n_force_qs_snap = rsp->n_force_qs;
2173	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2174		rdp->qlen_last_fqs_check = rdp->qlen;
2175	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2176
2177	local_irq_restore(flags);
2178
2179	/* Re-invoke RCU core processing if there are callbacks remaining. */
2180	if (cpu_has_callbacks_ready_to_invoke(rdp))
2181		invoke_rcu_core();
2182}
2183
2184/*
2185 * Check to see if this CPU is in a non-context-switch quiescent state
2186 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2187 * Also schedule RCU core processing.
2188 *
2189 * This function must be called from hardirq context.  It is normally
2190 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2191 * false, there is no point in invoking rcu_check_callbacks().
2192 */
2193void rcu_check_callbacks(int cpu, int user)
2194{
2195	trace_rcu_utilization(TPS("Start scheduler-tick"));
2196	increment_cpu_stall_ticks();
2197	if (user || rcu_is_cpu_rrupt_from_idle()) {
2198
2199		/*
2200		 * Get here if this CPU took its interrupt from user
2201		 * mode or from the idle loop, and if this is not a
2202		 * nested interrupt.  In this case, the CPU is in
2203		 * a quiescent state, so note it.
2204		 *
2205		 * No memory barrier is required here because both
2206		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2207		 * variables that other CPUs neither access nor modify,
2208		 * at least not while the corresponding CPU is online.
2209		 */
2210
2211		rcu_sched_qs(cpu);
2212		rcu_bh_qs(cpu);
2213
2214	} else if (!in_softirq()) {
2215
2216		/*
2217		 * Get here if this CPU did not take its interrupt from
2218		 * softirq, in other words, if it is not interrupting
2219		 * a rcu_bh read-side critical section.  This is an _bh
2220		 * critical section, so note it.
2221		 */
2222
2223		rcu_bh_qs(cpu);
2224	}
2225	rcu_preempt_check_callbacks(cpu);
2226	if (rcu_pending(cpu))
2227		invoke_rcu_core();
2228	trace_rcu_utilization(TPS("End scheduler-tick"));
2229}
2230
2231/*
2232 * Scan the leaf rcu_node structures, processing dyntick state for any that
2233 * have not yet encountered a quiescent state, using the function specified.
2234 * Also initiate boosting for any threads blocked on the root rcu_node.
2235 *
2236 * The caller must have suppressed start of new grace periods.
2237 */
2238static void force_qs_rnp(struct rcu_state *rsp,
2239			 int (*f)(struct rcu_data *rsp, bool *isidle,
2240				  unsigned long *maxj),
2241			 bool *isidle, unsigned long *maxj)
2242{
2243	unsigned long bit;
2244	int cpu;
2245	unsigned long flags;
2246	unsigned long mask;
2247	struct rcu_node *rnp;
2248
2249	rcu_for_each_leaf_node(rsp, rnp) {
2250		cond_resched();
2251		mask = 0;
2252		raw_spin_lock_irqsave(&rnp->lock, flags);
2253		smp_mb__after_unlock_lock();
2254		if (!rcu_gp_in_progress(rsp)) {
2255			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2256			return;
2257		}
2258		if (rnp->qsmask == 0) {
2259			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2260			continue;
2261		}
2262		cpu = rnp->grplo;
2263		bit = 1;
2264		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2265			if ((rnp->qsmask & bit) != 0) {
2266				if ((rnp->qsmaskinit & bit) != 0)
2267					*isidle = 0;
2268				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2269					mask |= bit;
2270			}
2271		}
2272		if (mask != 0) {
2273
2274			/* rcu_report_qs_rnp() releases rnp->lock. */
2275			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2276			continue;
2277		}
2278		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2279	}
2280	rnp = rcu_get_root(rsp);
2281	if (rnp->qsmask == 0) {
2282		raw_spin_lock_irqsave(&rnp->lock, flags);
2283		smp_mb__after_unlock_lock();
2284		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2285	}
2286}
2287
2288/*
2289 * Force quiescent states on reluctant CPUs, and also detect which
2290 * CPUs are in dyntick-idle mode.
2291 */
2292static void force_quiescent_state(struct rcu_state *rsp)
2293{
2294	unsigned long flags;
2295	bool ret;
2296	struct rcu_node *rnp;
2297	struct rcu_node *rnp_old = NULL;
2298
2299	/* Funnel through hierarchy to reduce memory contention. */
2300	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2301	for (; rnp != NULL; rnp = rnp->parent) {
2302		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2303		      !raw_spin_trylock(&rnp->fqslock);
2304		if (rnp_old != NULL)
2305			raw_spin_unlock(&rnp_old->fqslock);
2306		if (ret) {
2307			ACCESS_ONCE(rsp->n_force_qs_lh)++;
2308			return;
2309		}
2310		rnp_old = rnp;
2311	}
2312	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2313
2314	/* Reached the root of the rcu_node tree, acquire lock. */
2315	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2316	smp_mb__after_unlock_lock();
2317	raw_spin_unlock(&rnp_old->fqslock);
2318	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2319		ACCESS_ONCE(rsp->n_force_qs_lh)++;
2320		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2321		return;  /* Someone beat us to it. */
2322	}
2323	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2324	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2325	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2326}
2327
2328/*
2329 * This does the RCU core processing work for the specified rcu_state
2330 * and rcu_data structures.  This may be called only from the CPU to
2331 * whom the rdp belongs.
2332 */
2333static void
2334__rcu_process_callbacks(struct rcu_state *rsp)
2335{
2336	unsigned long flags;
2337	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2338
2339	WARN_ON_ONCE(rdp->beenonline == 0);
2340
2341	/* Update RCU state based on any recent quiescent states. */
2342	rcu_check_quiescent_state(rsp, rdp);
2343
2344	/* Does this CPU require a not-yet-started grace period? */
2345	local_irq_save(flags);
2346	if (cpu_needs_another_gp(rsp, rdp)) {
2347		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2348		rcu_start_gp(rsp);
2349		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2350	} else {
2351		local_irq_restore(flags);
2352	}
2353
2354	/* If there are callbacks ready, invoke them. */
2355	if (cpu_has_callbacks_ready_to_invoke(rdp))
2356		invoke_rcu_callbacks(rsp, rdp);
2357
2358	/* Do any needed deferred wakeups of rcuo kthreads. */
2359	do_nocb_deferred_wakeup(rdp);
2360}
2361
2362/*
2363 * Do RCU core processing for the current CPU.
2364 */
2365static void rcu_process_callbacks(struct softirq_action *unused)
2366{
2367	struct rcu_state *rsp;
2368
2369	if (cpu_is_offline(smp_processor_id()))
2370		return;
2371	trace_rcu_utilization(TPS("Start RCU core"));
2372	for_each_rcu_flavor(rsp)
2373		__rcu_process_callbacks(rsp);
2374	trace_rcu_utilization(TPS("End RCU core"));
2375}
2376
2377/*
2378 * Schedule RCU callback invocation.  If the specified type of RCU
2379 * does not support RCU priority boosting, just do a direct call,
2380 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2381 * are running on the current CPU with interrupts disabled, the
2382 * rcu_cpu_kthread_task cannot disappear out from under us.
2383 */
2384static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2385{
2386	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2387		return;
2388	if (likely(!rsp->boost)) {
2389		rcu_do_batch(rsp, rdp);
2390		return;
2391	}
2392	invoke_rcu_callbacks_kthread();
2393}
2394
2395static void invoke_rcu_core(void)
2396{
2397	if (cpu_online(smp_processor_id()))
2398		raise_softirq(RCU_SOFTIRQ);
2399}
2400
2401/*
2402 * Handle any core-RCU processing required by a call_rcu() invocation.
2403 */
2404static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2405			    struct rcu_head *head, unsigned long flags)
2406{
2407	/*
2408	 * If called from an extended quiescent state, invoke the RCU
2409	 * core in order to force a re-evaluation of RCU's idleness.
2410	 */
2411	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2412		invoke_rcu_core();
2413
2414	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2415	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2416		return;
2417
2418	/*
2419	 * Force the grace period if too many callbacks or too long waiting.
2420	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2421	 * if some other CPU has recently done so.  Also, don't bother
2422	 * invoking force_quiescent_state() if the newly enqueued callback
2423	 * is the only one waiting for a grace period to complete.
2424	 */
2425	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2426
2427		/* Are we ignoring a completed grace period? */
2428		note_gp_changes(rsp, rdp);
2429
2430		/* Start a new grace period if one not already started. */
2431		if (!rcu_gp_in_progress(rsp)) {
2432			struct rcu_node *rnp_root = rcu_get_root(rsp);
2433
2434			raw_spin_lock(&rnp_root->lock);
2435			smp_mb__after_unlock_lock();
2436			rcu_start_gp(rsp);
2437			raw_spin_unlock(&rnp_root->lock);
2438		} else {
2439			/* Give the grace period a kick. */
2440			rdp->blimit = LONG_MAX;
2441			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2442			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2443				force_quiescent_state(rsp);
2444			rdp->n_force_qs_snap = rsp->n_force_qs;
2445			rdp->qlen_last_fqs_check = rdp->qlen;
2446		}
2447	}
2448}
2449
2450/*
2451 * RCU callback function to leak a callback.
2452 */
2453static void rcu_leak_callback(struct rcu_head *rhp)
2454{
2455}
2456
2457/*
2458 * Helper function for call_rcu() and friends.  The cpu argument will
2459 * normally be -1, indicating "currently running CPU".  It may specify
2460 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2461 * is expected to specify a CPU.
2462 */
2463static void
2464__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2465	   struct rcu_state *rsp, int cpu, bool lazy)
2466{
2467	unsigned long flags;
2468	struct rcu_data *rdp;
2469
2470	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2471	if (debug_rcu_head_queue(head)) {
2472		/* Probable double call_rcu(), so leak the callback. */
2473		ACCESS_ONCE(head->func) = rcu_leak_callback;
2474		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2475		return;
2476	}
2477	head->func = func;
2478	head->next = NULL;
2479
2480	/*
2481	 * Opportunistically note grace-period endings and beginnings.
2482	 * Note that we might see a beginning right after we see an
2483	 * end, but never vice versa, since this CPU has to pass through
2484	 * a quiescent state betweentimes.
2485	 */
2486	local_irq_save(flags);
2487	rdp = this_cpu_ptr(rsp->rda);
2488
2489	/* Add the callback to our list. */
2490	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2491		int offline;
2492
2493		if (cpu != -1)
2494			rdp = per_cpu_ptr(rsp->rda, cpu);
2495		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2496		WARN_ON_ONCE(offline);
2497		/* _call_rcu() is illegal on offline CPU; leak the callback. */
2498		local_irq_restore(flags);
2499		return;
2500	}
2501	ACCESS_ONCE(rdp->qlen)++;
2502	if (lazy)
2503		rdp->qlen_lazy++;
2504	else
2505		rcu_idle_count_callbacks_posted();
2506	smp_mb();  /* Count before adding callback for rcu_barrier(). */
2507	*rdp->nxttail[RCU_NEXT_TAIL] = head;
2508	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2509
2510	if (__is_kfree_rcu_offset((unsigned long)func))
2511		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2512					 rdp->qlen_lazy, rdp->qlen);
2513	else
2514		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2515
2516	/* Go handle any RCU core processing required. */
2517	__call_rcu_core(rsp, rdp, head, flags);
2518	local_irq_restore(flags);
2519}
2520
2521/*
2522 * Queue an RCU-sched callback for invocation after a grace period.
2523 */
2524void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2525{
2526	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2527}
2528EXPORT_SYMBOL_GPL(call_rcu_sched);
2529
2530/*
2531 * Queue an RCU callback for invocation after a quicker grace period.
2532 */
2533void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2534{
2535	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2536}
2537EXPORT_SYMBOL_GPL(call_rcu_bh);
2538
2539/*
2540 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2541 * any blocking grace-period wait automatically implies a grace period
2542 * if there is only one CPU online at any point time during execution
2543 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
2544 * occasionally incorrectly indicate that there are multiple CPUs online
2545 * when there was in fact only one the whole time, as this just adds
2546 * some overhead: RCU still operates correctly.
2547 */
2548static inline int rcu_blocking_is_gp(void)
2549{
2550	int ret;
2551
2552	might_sleep();  /* Check for RCU read-side critical section. */
2553	preempt_disable();
2554	ret = num_online_cpus() <= 1;
2555	preempt_enable();
2556	return ret;
2557}
2558
2559/**
2560 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2561 *
2562 * Control will return to the caller some time after a full rcu-sched
2563 * grace period has elapsed, in other words after all currently executing
2564 * rcu-sched read-side critical sections have completed.   These read-side
2565 * critical sections are delimited by rcu_read_lock_sched() and
2566 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
2567 * local_irq_disable(), and so on may be used in place of
2568 * rcu_read_lock_sched().
2569 *
2570 * This means that all preempt_disable code sequences, including NMI and
2571 * non-threaded hardware-interrupt handlers, in progress on entry will
2572 * have completed before this primitive returns.  However, this does not
2573 * guarantee that softirq handlers will have completed, since in some
2574 * kernels, these handlers can run in process context, and can block.
2575 *
2576 * Note that this guarantee implies further memory-ordering guarantees.
2577 * On systems with more than one CPU, when synchronize_sched() returns,
2578 * each CPU is guaranteed to have executed a full memory barrier since the
2579 * end of its last RCU-sched read-side critical section whose beginning
2580 * preceded the call to synchronize_sched().  In addition, each CPU having
2581 * an RCU read-side critical section that extends beyond the return from
2582 * synchronize_sched() is guaranteed to have executed a full memory barrier
2583 * after the beginning of synchronize_sched() and before the beginning of
2584 * that RCU read-side critical section.  Note that these guarantees include
2585 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2586 * that are executing in the kernel.
2587 *
2588 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2589 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2590 * to have executed a full memory barrier during the execution of
2591 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2592 * again only if the system has more than one CPU).
2593 *
2594 * This primitive provides the guarantees made by the (now removed)
2595 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
2596 * guarantees that rcu_read_lock() sections will have completed.
2597 * In "classic RCU", these two guarantees happen to be one and
2598 * the same, but can differ in realtime RCU implementations.
2599 */
2600void synchronize_sched(void)
2601{
2602	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2603			   !lock_is_held(&rcu_lock_map) &&
2604			   !lock_is_held(&rcu_sched_lock_map),
2605			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2606	if (rcu_blocking_is_gp())
2607		return;
2608	if (rcu_expedited)
2609		synchronize_sched_expedited();
2610	else
2611		wait_rcu_gp(call_rcu_sched);
2612}
2613EXPORT_SYMBOL_GPL(synchronize_sched);
2614
2615/**
2616 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2617 *
2618 * Control will return to the caller some time after a full rcu_bh grace
2619 * period has elapsed, in other words after all currently executing rcu_bh
2620 * read-side critical sections have completed.  RCU read-side critical
2621 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2622 * and may be nested.
2623 *
2624 * See the description of synchronize_sched() for more detailed information
2625 * on memory ordering guarantees.
2626 */
2627void synchronize_rcu_bh(void)
2628{
2629	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2630			   !lock_is_held(&rcu_lock_map) &&
2631			   !lock_is_held(&rcu_sched_lock_map),
2632			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2633	if (rcu_blocking_is_gp())
2634		return;
2635	if (rcu_expedited)
2636		synchronize_rcu_bh_expedited();
2637	else
2638		wait_rcu_gp(call_rcu_bh);
2639}
2640EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2641
2642/**
2643 * get_state_synchronize_rcu - Snapshot current RCU state
2644 *
2645 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2646 * to determine whether or not a full grace period has elapsed in the
2647 * meantime.
2648 */
2649unsigned long get_state_synchronize_rcu(void)
2650{
2651	/*
2652	 * Any prior manipulation of RCU-protected data must happen
2653	 * before the load from ->gpnum.
2654	 */
2655	smp_mb();  /* ^^^ */
2656
2657	/*
2658	 * Make sure this load happens before the purportedly
2659	 * time-consuming work between get_state_synchronize_rcu()
2660	 * and cond_synchronize_rcu().
2661	 */
2662	return smp_load_acquire(&rcu_state->gpnum);
2663}
2664EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2665
2666/**
2667 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2668 *
2669 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2670 *
2671 * If a full RCU grace period has elapsed since the earlier call to
2672 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2673 * synchronize_rcu() to wait for a full grace period.
2674 *
2675 * Yes, this function does not take counter wrap into account.  But
2676 * counter wrap is harmless.  If the counter wraps, we have waited for
2677 * more than 2 billion grace periods (and way more on a 64-bit system!),
2678 * so waiting for one additional grace period should be just fine.
2679 */
2680void cond_synchronize_rcu(unsigned long oldstate)
2681{
2682	unsigned long newstate;
2683
2684	/*
2685	 * Ensure that this load happens before any RCU-destructive
2686	 * actions the caller might carry out after we return.
2687	 */
2688	newstate = smp_load_acquire(&rcu_state->completed);
2689	if (ULONG_CMP_GE(oldstate, newstate))
2690		synchronize_rcu();
2691}
2692EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2693
2694static int synchronize_sched_expedited_cpu_stop(void *data)
2695{
2696	/*
2697	 * There must be a full memory barrier on each affected CPU
2698	 * between the time that try_stop_cpus() is called and the
2699	 * time that it returns.
2700	 *
2701	 * In the current initial implementation of cpu_stop, the
2702	 * above condition is already met when the control reaches
2703	 * this point and the following smp_mb() is not strictly
2704	 * necessary.  Do smp_mb() anyway for documentation and
2705	 * robustness against future implementation changes.
2706	 */
2707	smp_mb(); /* See above comment block. */
2708	return 0;
2709}
2710
2711/**
2712 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2713 *
2714 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2715 * approach to force the grace period to end quickly.  This consumes
2716 * significant time on all CPUs and is unfriendly to real-time workloads,
2717 * so is thus not recommended for any sort of common-case code.  In fact,
2718 * if you are using synchronize_sched_expedited() in a loop, please
2719 * restructure your code to batch your updates, and then use a single
2720 * synchronize_sched() instead.
2721 *
2722 * Note that it is illegal to call this function while holding any lock
2723 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
2724 * to call this function from a CPU-hotplug notifier.  Failing to observe
2725 * these restriction will result in deadlock.
2726 *
2727 * This implementation can be thought of as an application of ticket
2728 * locking to RCU, with sync_sched_expedited_started and
2729 * sync_sched_expedited_done taking on the roles of the halves
2730 * of the ticket-lock word.  Each task atomically increments
2731 * sync_sched_expedited_started upon entry, snapshotting the old value,
2732 * then attempts to stop all the CPUs.  If this succeeds, then each
2733 * CPU will have executed a context switch, resulting in an RCU-sched
2734 * grace period.  We are then done, so we use atomic_cmpxchg() to
2735 * update sync_sched_expedited_done to match our snapshot -- but
2736 * only if someone else has not already advanced past our snapshot.
2737 *
2738 * On the other hand, if try_stop_cpus() fails, we check the value
2739 * of sync_sched_expedited_done.  If it has advanced past our
2740 * initial snapshot, then someone else must have forced a grace period
2741 * some time after we took our snapshot.  In this case, our work is
2742 * done for us, and we can simply return.  Otherwise, we try again,
2743 * but keep our initial snapshot for purposes of checking for someone
2744 * doing our work for us.
2745 *
2746 * If we fail too many times in a row, we fall back to synchronize_sched().
2747 */
2748void synchronize_sched_expedited(void)
2749{
2750	long firstsnap, s, snap;
2751	int trycount = 0;
2752	struct rcu_state *rsp = &rcu_sched_state;
2753
2754	/*
2755	 * If we are in danger of counter wrap, just do synchronize_sched().
2756	 * By allowing sync_sched_expedited_started to advance no more than
2757	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2758	 * that more than 3.5 billion CPUs would be required to force a
2759	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
2760	 * course be required on a 64-bit system.
2761	 */
2762	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2763			 (ulong)atomic_long_read(&rsp->expedited_done) +
2764			 ULONG_MAX / 8)) {
2765		synchronize_sched();
2766		atomic_long_inc(&rsp->expedited_wrap);
2767		return;
2768	}
2769
2770	/*
2771	 * Take a ticket.  Note that atomic_inc_return() implies a
2772	 * full memory barrier.
2773	 */
2774	snap = atomic_long_inc_return(&rsp->expedited_start);
2775	firstsnap = snap;
2776	get_online_cpus();
2777	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2778
2779	/*
2780	 * Each pass through the following loop attempts to force a
2781	 * context switch on each CPU.
2782	 */
2783	while (try_stop_cpus(cpu_online_mask,
2784			     synchronize_sched_expedited_cpu_stop,
2785			     NULL) == -EAGAIN) {
2786		put_online_cpus();
2787		atomic_long_inc(&rsp->expedited_tryfail);
2788
2789		/* Check to see if someone else did our work for us. */
2790		s = atomic_long_read(&rsp->expedited_done);
2791		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2792			/* ensure test happens before caller kfree */
2793			smp_mb__before_atomic_inc(); /* ^^^ */
2794			atomic_long_inc(&rsp->expedited_workdone1);
2795			return;
2796		}
2797
2798		/* No joy, try again later.  Or just synchronize_sched(). */
2799		if (trycount++ < 10) {
2800			udelay(trycount * num_online_cpus());
2801		} else {
2802			wait_rcu_gp(call_rcu_sched);
2803			atomic_long_inc(&rsp->expedited_normal);
2804			return;
2805		}
2806
2807		/* Recheck to see if someone else did our work for us. */
2808		s = atomic_long_read(&rsp->expedited_done);
2809		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2810			/* ensure test happens before caller kfree */
2811			smp_mb__before_atomic_inc(); /* ^^^ */
2812			atomic_long_inc(&rsp->expedited_workdone2);
2813			return;
2814		}
2815
2816		/*
2817		 * Refetching sync_sched_expedited_started allows later
2818		 * callers to piggyback on our grace period.  We retry
2819		 * after they started, so our grace period works for them,
2820		 * and they started after our first try, so their grace
2821		 * period works for us.
2822		 */
2823		get_online_cpus();
2824		snap = atomic_long_read(&rsp->expedited_start);
2825		smp_mb(); /* ensure read is before try_stop_cpus(). */
2826	}
2827	atomic_long_inc(&rsp->expedited_stoppedcpus);
2828
2829	/*
2830	 * Everyone up to our most recent fetch is covered by our grace
2831	 * period.  Update the counter, but only if our work is still
2832	 * relevant -- which it won't be if someone who started later
2833	 * than we did already did their update.
2834	 */
2835	do {
2836		atomic_long_inc(&rsp->expedited_done_tries);
2837		s = atomic_long_read(&rsp->expedited_done);
2838		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2839			/* ensure test happens before caller kfree */
2840			smp_mb__before_atomic_inc(); /* ^^^ */
2841			atomic_long_inc(&rsp->expedited_done_lost);
2842			break;
2843		}
2844	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2845	atomic_long_inc(&rsp->expedited_done_exit);
2846
2847	put_online_cpus();
2848}
2849EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2850
2851/*
2852 * Check to see if there is any immediate RCU-related work to be done
2853 * by the current CPU, for the specified type of RCU, returning 1 if so.
2854 * The checks are in order of increasing expense: checks that can be
2855 * carried out against CPU-local state are performed first.  However,
2856 * we must check for CPU stalls first, else we might not get a chance.
2857 */
2858static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2859{
2860	struct rcu_node *rnp = rdp->mynode;
2861
2862	rdp->n_rcu_pending++;
2863
2864	/* Check for CPU stalls, if enabled. */
2865	check_cpu_stall(rsp, rdp);
2866
2867	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2868	if (rcu_nohz_full_cpu(rsp))
2869		return 0;
2870
2871	/* Is the RCU core waiting for a quiescent state from this CPU? */
2872	if (rcu_scheduler_fully_active &&
2873	    rdp->qs_pending && !rdp->passed_quiesce) {
2874		rdp->n_rp_qs_pending++;
2875	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2876		rdp->n_rp_report_qs++;
2877		return 1;
2878	}
2879
2880	/* Does this CPU have callbacks ready to invoke? */
2881	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2882		rdp->n_rp_cb_ready++;
2883		return 1;
2884	}
2885
2886	/* Has RCU gone idle with this CPU needing another grace period? */
2887	if (cpu_needs_another_gp(rsp, rdp)) {
2888		rdp->n_rp_cpu_needs_gp++;
2889		return 1;
2890	}
2891
2892	/* Has another RCU grace period completed?  */
2893	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2894		rdp->n_rp_gp_completed++;
2895		return 1;
2896	}
2897
2898	/* Has a new RCU grace period started? */
2899	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2900		rdp->n_rp_gp_started++;
2901		return 1;
2902	}
2903
2904	/* Does this CPU need a deferred NOCB wakeup? */
2905	if (rcu_nocb_need_deferred_wakeup(rdp)) {
2906		rdp->n_rp_nocb_defer_wakeup++;
2907		return 1;
2908	}
2909
2910	/* nothing to do */
2911	rdp->n_rp_need_nothing++;
2912	return 0;
2913}
2914
2915/*
2916 * Check to see if there is any immediate RCU-related work to be done
2917 * by the current CPU, returning 1 if so.  This function is part of the
2918 * RCU implementation; it is -not- an exported member of the RCU API.
2919 */
2920static int rcu_pending(int cpu)
2921{
2922	struct rcu_state *rsp;
2923
2924	for_each_rcu_flavor(rsp)
2925		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2926			return 1;
2927	return 0;
2928}
2929
2930/*
2931 * Return true if the specified CPU has any callback.  If all_lazy is
2932 * non-NULL, store an indication of whether all callbacks are lazy.
2933 * (If there are no callbacks, all of them are deemed to be lazy.)
2934 */
2935static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2936{
2937	bool al = true;
2938	bool hc = false;
2939	struct rcu_data *rdp;
2940	struct rcu_state *rsp;
2941
2942	for_each_rcu_flavor(rsp) {
2943		rdp = per_cpu_ptr(rsp->rda, cpu);
2944		if (!rdp->nxtlist)
2945			continue;
2946		hc = true;
2947		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2948			al = false;
2949			break;
2950		}
2951	}
2952	if (all_lazy)
2953		*all_lazy = al;
2954	return hc;
2955}
2956
2957/*
2958 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
2959 * the compiler is expected to optimize this away.
2960 */
2961static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2962			       int cpu, unsigned long done)
2963{
2964	trace_rcu_barrier(rsp->name, s, cpu,
2965			  atomic_read(&rsp->barrier_cpu_count), done);
2966}
2967
2968/*
2969 * RCU callback function for _rcu_barrier().  If we are last, wake
2970 * up the task executing _rcu_barrier().
2971 */
2972static void rcu_barrier_callback(struct rcu_head *rhp)
2973{
2974	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2975	struct rcu_state *rsp = rdp->rsp;
2976
2977	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2978		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2979		complete(&rsp->barrier_completion);
2980	} else {
2981		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2982	}
2983}
2984
2985/*
2986 * Called with preemption disabled, and from cross-cpu IRQ context.
2987 */
2988static void rcu_barrier_func(void *type)
2989{
2990	struct rcu_state *rsp = type;
2991	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2992
2993	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2994	atomic_inc(&rsp->barrier_cpu_count);
2995	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2996}
2997
2998/*
2999 * Orchestrate the specified type of RCU barrier, waiting for all
3000 * RCU callbacks of the specified type to complete.
3001 */
3002static void _rcu_barrier(struct rcu_state *rsp)
3003{
3004	int cpu;
3005	struct rcu_data *rdp;
3006	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3007	unsigned long snap_done;
3008
3009	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3010
3011	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3012	mutex_lock(&rsp->barrier_mutex);
3013
3014	/*
3015	 * Ensure that all prior references, including to ->n_barrier_done,
3016	 * are ordered before the _rcu_barrier() machinery.
3017	 */
3018	smp_mb();  /* See above block comment. */
3019
3020	/*
3021	 * Recheck ->n_barrier_done to see if others did our work for us.
3022	 * This means checking ->n_barrier_done for an even-to-odd-to-even
3023	 * transition.  The "if" expression below therefore rounds the old
3024	 * value up to the next even number and adds two before comparing.
3025	 */
3026	snap_done = rsp->n_barrier_done;
3027	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3028
3029	/*
3030	 * If the value in snap is odd, we needed to wait for the current
3031	 * rcu_barrier() to complete, then wait for the next one, in other
3032	 * words, we need the value of snap_done to be three larger than
3033	 * the value of snap.  On the other hand, if the value in snap is
3034	 * even, we only had to wait for the next rcu_barrier() to complete,
3035	 * in other words, we need the value of snap_done to be only two
3036	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
3037	 * this for us (thank you, Linus!).
3038	 */
3039	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3040		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3041		smp_mb(); /* caller's subsequent code after above check. */
3042		mutex_unlock(&rsp->barrier_mutex);
3043		return;
3044	}
3045
3046	/*
3047	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3048	 * ACCESS_ONCE() to prevent the compiler from speculating
3049	 * the increment to precede the early-exit check.
3050	 */
3051	ACCESS_ONCE(rsp->n_barrier_done)++;
3052	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3053	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3054	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3055
3056	/*
3057	 * Initialize the count to one rather than to zero in order to
3058	 * avoid a too-soon return to zero in case of a short grace period
3059	 * (or preemption of this task).  Exclude CPU-hotplug operations
3060	 * to ensure that no offline CPU has callbacks queued.
3061	 */
3062	init_completion(&rsp->barrier_completion);
3063	atomic_set(&rsp->barrier_cpu_count, 1);
3064	get_online_cpus();
3065
3066	/*
3067	 * Force each CPU with callbacks to register a new callback.
3068	 * When that callback is invoked, we will know that all of the
3069	 * corresponding CPU's preceding callbacks have been invoked.
3070	 */
3071	for_each_possible_cpu(cpu) {
3072		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3073			continue;
3074		rdp = per_cpu_ptr(rsp->rda, cpu);
3075		if (rcu_is_nocb_cpu(cpu)) {
3076			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3077					   rsp->n_barrier_done);
3078			atomic_inc(&rsp->barrier_cpu_count);
3079			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3080				   rsp, cpu, 0);
3081		} else if (ACCESS_ONCE(rdp->qlen)) {
3082			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3083					   rsp->n_barrier_done);
3084			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3085		} else {
3086			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3087					   rsp->n_barrier_done);
3088		}
3089	}
3090	put_online_cpus();
3091
3092	/*
3093	 * Now that we have an rcu_barrier_callback() callback on each
3094	 * CPU, and thus each counted, remove the initial count.
3095	 */
3096	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3097		complete(&rsp->barrier_completion);
3098
3099	/* Increment ->n_barrier_done to prevent duplicate work. */
3100	smp_mb(); /* Keep increment after above mechanism. */
3101	ACCESS_ONCE(rsp->n_barrier_done)++;
3102	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3103	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3104	smp_mb(); /* Keep increment before caller's subsequent code. */
3105
3106	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3107	wait_for_completion(&rsp->barrier_completion);
3108
3109	/* Other rcu_barrier() invocations can now safely proceed. */
3110	mutex_unlock(&rsp->barrier_mutex);
3111}
3112
3113/**
3114 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3115 */
3116void rcu_barrier_bh(void)
3117{
3118	_rcu_barrier(&rcu_bh_state);
3119}
3120EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3121
3122/**
3123 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3124 */
3125void rcu_barrier_sched(void)
3126{
3127	_rcu_barrier(&rcu_sched_state);
3128}
3129EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3130
3131/*
3132 * Do boot-time initialization of a CPU's per-CPU RCU data.
3133 */
3134static void __init
3135rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3136{
3137	unsigned long flags;
3138	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3139	struct rcu_node *rnp = rcu_get_root(rsp);
3140
3141	/* Set up local state, ensuring consistent view of global state. */
3142	raw_spin_lock_irqsave(&rnp->lock, flags);
3143	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3144	init_callback_list(rdp);
3145	rdp->qlen_lazy = 0;
3146	ACCESS_ONCE(rdp->qlen) = 0;
3147	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3148	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3149	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3150	rdp->cpu = cpu;
3151	rdp->rsp = rsp;
3152	rcu_boot_init_nocb_percpu_data(rdp);
3153	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3154}
3155
3156/*
3157 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3158 * offline event can be happening at a given time.  Note also that we
3159 * can accept some slop in the rsp->completed access due to the fact
3160 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3161 */
3162static void
3163rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3164{
3165	unsigned long flags;
3166	unsigned long mask;
3167	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3168	struct rcu_node *rnp = rcu_get_root(rsp);
3169
3170	/* Exclude new grace periods. */
3171	mutex_lock(&rsp->onoff_mutex);
3172
3173	/* Set up local state, ensuring consistent view of global state. */
3174	raw_spin_lock_irqsave(&rnp->lock, flags);
3175	rdp->beenonline = 1;	 /* We have now been online. */
3176	rdp->preemptible = preemptible;
3177	rdp->qlen_last_fqs_check = 0;
3178	rdp->n_force_qs_snap = rsp->n_force_qs;
3179	rdp->blimit = blimit;
3180	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3181	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3182	rcu_sysidle_init_percpu_data(rdp->dynticks);
3183	atomic_set(&rdp->dynticks->dynticks,
3184		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3185	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3186
3187	/* Add CPU to rcu_node bitmasks. */
3188	rnp = rdp->mynode;
3189	mask = rdp->grpmask;
3190	do {
3191		/* Exclude any attempts to start a new GP on small systems. */
3192		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3193		rnp->qsmaskinit |= mask;
3194		mask = rnp->grpmask;
3195		if (rnp == rdp->mynode) {
3196			/*
3197			 * If there is a grace period in progress, we will
3198			 * set up to wait for it next time we run the
3199			 * RCU core code.
3200			 */
3201			rdp->gpnum = rnp->completed;
3202			rdp->completed = rnp->completed;
3203			rdp->passed_quiesce = 0;
3204			rdp->qs_pending = 0;
3205			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3206		}
3207		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3208		rnp = rnp->parent;
3209	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3210	local_irq_restore(flags);
3211
3212	mutex_unlock(&rsp->onoff_mutex);
3213}
3214
3215static void rcu_prepare_cpu(int cpu)
3216{
3217	struct rcu_state *rsp;
3218
3219	for_each_rcu_flavor(rsp)
3220		rcu_init_percpu_data(cpu, rsp,
3221				     strcmp(rsp->name, "rcu_preempt") == 0);
3222}
3223
3224/*
3225 * Handle CPU online/offline notification events.
3226 */
3227static int rcu_cpu_notify(struct notifier_block *self,
3228				    unsigned long action, void *hcpu)
3229{
3230	long cpu = (long)hcpu;
3231	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3232	struct rcu_node *rnp = rdp->mynode;
3233	struct rcu_state *rsp;
3234
3235	trace_rcu_utilization(TPS("Start CPU hotplug"));
3236	switch (action) {
3237	case CPU_UP_PREPARE:
3238	case CPU_UP_PREPARE_FROZEN:
3239		rcu_prepare_cpu(cpu);
3240		rcu_prepare_kthreads(cpu);
3241		break;
3242	case CPU_ONLINE:
3243	case CPU_DOWN_FAILED:
3244		rcu_boost_kthread_setaffinity(rnp, -1);
3245		break;
3246	case CPU_DOWN_PREPARE:
3247		rcu_boost_kthread_setaffinity(rnp, cpu);
3248		break;
3249	case CPU_DYING:
3250	case CPU_DYING_FROZEN:
3251		for_each_rcu_flavor(rsp)
3252			rcu_cleanup_dying_cpu(rsp);
3253		break;
3254	case CPU_DEAD:
3255	case CPU_DEAD_FROZEN:
3256	case CPU_UP_CANCELED:
3257	case CPU_UP_CANCELED_FROZEN:
3258		for_each_rcu_flavor(rsp)
3259			rcu_cleanup_dead_cpu(cpu, rsp);
3260		break;
3261	default:
3262		break;
3263	}
3264	trace_rcu_utilization(TPS("End CPU hotplug"));
3265	return NOTIFY_OK;
3266}
3267
3268static int rcu_pm_notify(struct notifier_block *self,
3269			 unsigned long action, void *hcpu)
3270{
3271	switch (action) {
3272	case PM_HIBERNATION_PREPARE:
3273	case PM_SUSPEND_PREPARE:
3274		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3275			rcu_expedited = 1;
3276		break;
3277	case PM_POST_HIBERNATION:
3278	case PM_POST_SUSPEND:
3279		rcu_expedited = 0;
3280		break;
3281	default:
3282		break;
3283	}
3284	return NOTIFY_OK;
3285}
3286
3287/*
3288 * Spawn the kthread that handles this RCU flavor's grace periods.
3289 */
3290static int __init rcu_spawn_gp_kthread(void)
3291{
3292	unsigned long flags;
3293	struct rcu_node *rnp;
3294	struct rcu_state *rsp;
3295	struct task_struct *t;
3296
3297	for_each_rcu_flavor(rsp) {
3298		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3299		BUG_ON(IS_ERR(t));
3300		rnp = rcu_get_root(rsp);
3301		raw_spin_lock_irqsave(&rnp->lock, flags);
3302		rsp->gp_kthread = t;
3303		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3304		rcu_spawn_nocb_kthreads(rsp);
3305	}
3306	return 0;
3307}
3308early_initcall(rcu_spawn_gp_kthread);
3309
3310/*
3311 * This function is invoked towards the end of the scheduler's initialization
3312 * process.  Before this is called, the idle task might contain
3313 * RCU read-side critical sections (during which time, this idle
3314 * task is booting the system).  After this function is called, the
3315 * idle tasks are prohibited from containing RCU read-side critical
3316 * sections.  This function also enables RCU lockdep checking.
3317 */
3318void rcu_scheduler_starting(void)
3319{
3320	WARN_ON(num_online_cpus() != 1);
3321	WARN_ON(nr_context_switches() > 0);
3322	rcu_scheduler_active = 1;
3323}
3324
3325/*
3326 * Compute the per-level fanout, either using the exact fanout specified
3327 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3328 */
3329#ifdef CONFIG_RCU_FANOUT_EXACT
3330static void __init rcu_init_levelspread(struct rcu_state *rsp)
3331{
3332	int i;
3333
3334	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3335	for (i = rcu_num_lvls - 2; i >= 0; i--)
3336		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3337}
3338#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3339static void __init rcu_init_levelspread(struct rcu_state *rsp)
3340{
3341	int ccur;
3342	int cprv;
3343	int i;
3344
3345	cprv = nr_cpu_ids;
3346	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3347		ccur = rsp->levelcnt[i];
3348		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3349		cprv = ccur;
3350	}
3351}
3352#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3353
3354/*
3355 * Helper function for rcu_init() that initializes one rcu_state structure.
3356 */
3357static void __init rcu_init_one(struct rcu_state *rsp,
3358		struct rcu_data __percpu *rda)
3359{
3360	static char *buf[] = { "rcu_node_0",
3361			       "rcu_node_1",
3362			       "rcu_node_2",
3363			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
3364	static char *fqs[] = { "rcu_node_fqs_0",
3365			       "rcu_node_fqs_1",
3366			       "rcu_node_fqs_2",
3367			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3368	int cpustride = 1;
3369	int i;
3370	int j;
3371	struct rcu_node *rnp;
3372
3373	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3374
3375	/* Silence gcc 4.8 warning about array index out of range. */
3376	if (rcu_num_lvls > RCU_NUM_LVLS)
3377		panic("rcu_init_one: rcu_num_lvls overflow");
3378
3379	/* Initialize the level-tracking arrays. */
3380
3381	for (i = 0; i < rcu_num_lvls; i++)
3382		rsp->levelcnt[i] = num_rcu_lvl[i];
3383	for (i = 1; i < rcu_num_lvls; i++)
3384		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3385	rcu_init_levelspread(rsp);
3386
3387	/* Initialize the elements themselves, starting from the leaves. */
3388
3389	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3390		cpustride *= rsp->levelspread[i];
3391		rnp = rsp->level[i];
3392		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3393			raw_spin_lock_init(&rnp->lock);
3394			lockdep_set_class_and_name(&rnp->lock,
3395						   &rcu_node_class[i], buf[i]);
3396			raw_spin_lock_init(&rnp->fqslock);
3397			lockdep_set_class_and_name(&rnp->fqslock,
3398						   &rcu_fqs_class[i], fqs[i]);
3399			rnp->gpnum = rsp->gpnum;
3400			rnp->completed = rsp->completed;
3401			rnp->qsmask = 0;
3402			rnp->qsmaskinit = 0;
3403			rnp->grplo = j * cpustride;
3404			rnp->grphi = (j + 1) * cpustride - 1;
3405			if (rnp->grphi >= NR_CPUS)
3406				rnp->grphi = NR_CPUS - 1;
3407			if (i == 0) {
3408				rnp->grpnum = 0;
3409				rnp->grpmask = 0;
3410				rnp->parent = NULL;
3411			} else {
3412				rnp->grpnum = j % rsp->levelspread[i - 1];
3413				rnp->grpmask = 1UL << rnp->grpnum;
3414				rnp->parent = rsp->level[i - 1] +
3415					      j / rsp->levelspread[i - 1];
3416			}
3417			rnp->level = i;
3418			INIT_LIST_HEAD(&rnp->blkd_tasks);
3419			rcu_init_one_nocb(rnp);
3420		}
3421	}
3422
3423	rsp->rda = rda;
3424	init_waitqueue_head(&rsp->gp_wq);
3425	init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3426	rnp = rsp->level[rcu_num_lvls - 1];
3427	for_each_possible_cpu(i) {
3428		while (i > rnp->grphi)
3429			rnp++;
3430		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3431		rcu_boot_init_percpu_data(i, rsp);
3432	}
3433	list_add(&rsp->flavors, &rcu_struct_flavors);
3434}
3435
3436/*
3437 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3438 * replace the definitions in tree.h because those are needed to size
3439 * the ->node array in the rcu_state structure.
3440 */
3441static void __init rcu_init_geometry(void)
3442{
3443	ulong d;
3444	int i;
3445	int j;
3446	int n = nr_cpu_ids;
3447	int rcu_capacity[MAX_RCU_LVLS + 1];
3448
3449	/*
3450	 * Initialize any unspecified boot parameters.
3451	 * The default values of jiffies_till_first_fqs and
3452	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3453	 * value, which is a function of HZ, then adding one for each
3454	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3455	 */
3456	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3457	if (jiffies_till_first_fqs == ULONG_MAX)
3458		jiffies_till_first_fqs = d;
3459	if (jiffies_till_next_fqs == ULONG_MAX)
3460		jiffies_till_next_fqs = d;
3461
3462	/* If the compile-time values are accurate, just leave. */
3463	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3464	    nr_cpu_ids == NR_CPUS)
3465		return;
3466	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3467		rcu_fanout_leaf, nr_cpu_ids);
3468
3469	/*
3470	 * Compute number of nodes that can be handled an rcu_node tree
3471	 * with the given number of levels.  Setting rcu_capacity[0] makes
3472	 * some of the arithmetic easier.
3473	 */
3474	rcu_capacity[0] = 1;
3475	rcu_capacity[1] = rcu_fanout_leaf;
3476	for (i = 2; i <= MAX_RCU_LVLS; i++)
3477		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3478
3479	/*
3480	 * The boot-time rcu_fanout_leaf parameter is only permitted
3481	 * to increase the leaf-level fanout, not decrease it.  Of course,
3482	 * the leaf-level fanout cannot exceed the number of bits in
3483	 * the rcu_node masks.  Finally, the tree must be able to accommodate
3484	 * the configured number of CPUs.  Complain and fall back to the
3485	 * compile-time values if these limits are exceeded.
3486	 */
3487	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3488	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3489	    n > rcu_capacity[MAX_RCU_LVLS]) {
3490		WARN_ON(1);
3491		return;
3492	}
3493
3494	/* Calculate the number of rcu_nodes at each level of the tree. */
3495	for (i = 1; i <= MAX_RCU_LVLS; i++)
3496		if (n <= rcu_capacity[i]) {
3497			for (j = 0; j <= i; j++)
3498				num_rcu_lvl[j] =
3499					DIV_ROUND_UP(n, rcu_capacity[i - j]);
3500			rcu_num_lvls = i;
3501			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3502				num_rcu_lvl[j] = 0;
3503			break;
3504		}
3505
3506	/* Calculate the total number of rcu_node structures. */
3507	rcu_num_nodes = 0;
3508	for (i = 0; i <= MAX_RCU_LVLS; i++)
3509		rcu_num_nodes += num_rcu_lvl[i];
3510	rcu_num_nodes -= n;
3511}
3512
3513void __init rcu_init(void)
3514{
3515	int cpu;
3516
3517	rcu_bootup_announce();
3518	rcu_init_geometry();
3519	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3520	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3521	__rcu_init_preempt();
3522	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3523
3524	/*
3525	 * We don't need protection against CPU-hotplug here because
3526	 * this is called early in boot, before either interrupts
3527	 * or the scheduler are operational.
3528	 */
3529	cpu_notifier(rcu_cpu_notify, 0);
3530	pm_notifier(rcu_pm_notify, 0);
3531	for_each_online_cpu(cpu)
3532		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3533}
3534
3535#include "tree_plugin.h"