Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/interrupt.h>			/* For in_interrupt() */
  30#include <linux/delay.h>
  31#include <linux/smp.h>
  32#include <linux/security.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/aio.h>
  36#include <linux/syscalls.h>
  37#include <linux/kexec.h>
  38#include <linux/kdb.h>
  39#include <linux/ratelimit.h>
  40#include <linux/kmsg_dump.h>
  41#include <linux/syslog.h>
  42#include <linux/cpu.h>
  43#include <linux/notifier.h>
  44#include <linux/rculist.h>
  45#include <linux/poll.h>
  46#include <linux/irq_work.h>
  47#include <linux/utsname.h>
  48
  49#include <asm/uaccess.h>
  50
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/printk.h>
  53
  54#include "console_cmdline.h"
  55#include "braille.h"
  56
  57/* printk's without a loglevel use this.. */
  58#define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
  59
  60/* We show everything that is MORE important than this.. */
  61#define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
  62#define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
  63
  64int console_printk[4] = {
  65	DEFAULT_CONSOLE_LOGLEVEL,	/* console_loglevel */
  66	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
  67	MINIMUM_CONSOLE_LOGLEVEL,	/* minimum_console_loglevel */
  68	DEFAULT_CONSOLE_LOGLEVEL,	/* default_console_loglevel */
  69};
  70
  71/*
  72 * Low level drivers may need that to know if they can schedule in
  73 * their unblank() callback or not. So let's export it.
  74 */
  75int oops_in_progress;
  76EXPORT_SYMBOL(oops_in_progress);
  77
  78/*
  79 * console_sem protects the console_drivers list, and also
  80 * provides serialisation for access to the entire console
  81 * driver system.
  82 */
  83static DEFINE_SEMAPHORE(console_sem);
  84struct console *console_drivers;
  85EXPORT_SYMBOL_GPL(console_drivers);
  86
  87#ifdef CONFIG_LOCKDEP
  88static struct lockdep_map console_lock_dep_map = {
  89	.name = "console_lock"
  90};
  91#endif
  92
  93/*
  94 * This is used for debugging the mess that is the VT code by
  95 * keeping track if we have the console semaphore held. It's
  96 * definitely not the perfect debug tool (we don't know if _WE_
  97 * hold it are racing, but it helps tracking those weird code
  98 * path in the console code where we end up in places I want
  99 * locked without the console sempahore held
 100 */
 101static int console_locked, console_suspended;
 102
 103/*
 104 * If exclusive_console is non-NULL then only this console is to be printed to.
 105 */
 106static struct console *exclusive_console;
 107
 108/*
 109 *	Array of consoles built from command line options (console=)
 110 */
 111
 112#define MAX_CMDLINECONSOLES 8
 113
 114static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 115
 116static int selected_console = -1;
 117static int preferred_console = -1;
 118int console_set_on_cmdline;
 119EXPORT_SYMBOL(console_set_on_cmdline);
 120
 121/* Flag: console code may call schedule() */
 122static int console_may_schedule;
 123
 124/*
 125 * The printk log buffer consists of a chain of concatenated variable
 126 * length records. Every record starts with a record header, containing
 127 * the overall length of the record.
 128 *
 129 * The heads to the first and last entry in the buffer, as well as the
 130 * sequence numbers of these both entries are maintained when messages
 131 * are stored..
 132 *
 133 * If the heads indicate available messages, the length in the header
 134 * tells the start next message. A length == 0 for the next message
 135 * indicates a wrap-around to the beginning of the buffer.
 136 *
 137 * Every record carries the monotonic timestamp in microseconds, as well as
 138 * the standard userspace syslog level and syslog facility. The usual
 139 * kernel messages use LOG_KERN; userspace-injected messages always carry
 140 * a matching syslog facility, by default LOG_USER. The origin of every
 141 * message can be reliably determined that way.
 142 *
 143 * The human readable log message directly follows the message header. The
 144 * length of the message text is stored in the header, the stored message
 145 * is not terminated.
 146 *
 147 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 148 * to provide userspace with a machine-readable message context.
 149 *
 150 * Examples for well-defined, commonly used property names are:
 151 *   DEVICE=b12:8               device identifier
 152 *                                b12:8         block dev_t
 153 *                                c127:3        char dev_t
 154 *                                n8            netdev ifindex
 155 *                                +sound:card0  subsystem:devname
 156 *   SUBSYSTEM=pci              driver-core subsystem name
 157 *
 158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 159 * follows directly after a '=' character. Every property is terminated by
 160 * a '\0' character. The last property is not terminated.
 161 *
 162 * Example of a message structure:
 163 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 164 *   0008  34 00                        record is 52 bytes long
 165 *   000a        0b 00                  text is 11 bytes long
 166 *   000c              1f 00            dictionary is 23 bytes long
 167 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 168 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 169 *         69 6e 65                     "ine"
 170 *   001b           44 45 56 49 43      "DEVIC"
 171 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 172 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 173 *         67                           "g"
 174 *   0032     00 00 00                  padding to next message header
 175 *
 176 * The 'struct printk_log' buffer header must never be directly exported to
 177 * userspace, it is a kernel-private implementation detail that might
 178 * need to be changed in the future, when the requirements change.
 179 *
 180 * /dev/kmsg exports the structured data in the following line format:
 181 *   "level,sequnum,timestamp;<message text>\n"
 182 *
 183 * The optional key/value pairs are attached as continuation lines starting
 184 * with a space character and terminated by a newline. All possible
 185 * non-prinatable characters are escaped in the "\xff" notation.
 186 *
 187 * Users of the export format should ignore possible additional values
 188 * separated by ',', and find the message after the ';' character.
 189 */
 190
 191enum log_flags {
 192	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 193	LOG_NEWLINE	= 2,	/* text ended with a newline */
 194	LOG_PREFIX	= 4,	/* text started with a prefix */
 195	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 196};
 197
 198struct printk_log {
 199	u64 ts_nsec;		/* timestamp in nanoseconds */
 200	u16 len;		/* length of entire record */
 201	u16 text_len;		/* length of text buffer */
 202	u16 dict_len;		/* length of dictionary buffer */
 203	u8 facility;		/* syslog facility */
 204	u8 flags:5;		/* internal record flags */
 205	u8 level:3;		/* syslog level */
 206};
 207
 208/*
 209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
 210 * used in interesting ways to provide interlocking in console_unlock();
 211 */
 212static DEFINE_RAW_SPINLOCK(logbuf_lock);
 213
 214#ifdef CONFIG_PRINTK
 215DECLARE_WAIT_QUEUE_HEAD(log_wait);
 216/* the next printk record to read by syslog(READ) or /proc/kmsg */
 217static u64 syslog_seq;
 218static u32 syslog_idx;
 219static enum log_flags syslog_prev;
 220static size_t syslog_partial;
 221
 222/* index and sequence number of the first record stored in the buffer */
 223static u64 log_first_seq;
 224static u32 log_first_idx;
 225
 226/* index and sequence number of the next record to store in the buffer */
 227static u64 log_next_seq;
 228static u32 log_next_idx;
 229
 230/* the next printk record to write to the console */
 231static u64 console_seq;
 232static u32 console_idx;
 233static enum log_flags console_prev;
 234
 235/* the next printk record to read after the last 'clear' command */
 236static u64 clear_seq;
 237static u32 clear_idx;
 238
 239#define PREFIX_MAX		32
 240#define LOG_LINE_MAX		1024 - PREFIX_MAX
 241
 242/* record buffer */
 243#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
 244#define LOG_ALIGN 4
 245#else
 246#define LOG_ALIGN __alignof__(struct printk_log)
 247#endif
 248#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 249static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 250static char *log_buf = __log_buf;
 251static u32 log_buf_len = __LOG_BUF_LEN;
 252
 253/* cpu currently holding logbuf_lock */
 254static volatile unsigned int logbuf_cpu = UINT_MAX;
 255
 256/* human readable text of the record */
 257static char *log_text(const struct printk_log *msg)
 258{
 259	return (char *)msg + sizeof(struct printk_log);
 260}
 261
 262/* optional key/value pair dictionary attached to the record */
 263static char *log_dict(const struct printk_log *msg)
 264{
 265	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 266}
 267
 268/* get record by index; idx must point to valid msg */
 269static struct printk_log *log_from_idx(u32 idx)
 270{
 271	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 272
 273	/*
 274	 * A length == 0 record is the end of buffer marker. Wrap around and
 275	 * read the message at the start of the buffer.
 276	 */
 277	if (!msg->len)
 278		return (struct printk_log *)log_buf;
 279	return msg;
 280}
 281
 282/* get next record; idx must point to valid msg */
 283static u32 log_next(u32 idx)
 284{
 285	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 286
 287	/* length == 0 indicates the end of the buffer; wrap */
 288	/*
 289	 * A length == 0 record is the end of buffer marker. Wrap around and
 290	 * read the message at the start of the buffer as *this* one, and
 291	 * return the one after that.
 292	 */
 293	if (!msg->len) {
 294		msg = (struct printk_log *)log_buf;
 295		return msg->len;
 296	}
 297	return idx + msg->len;
 298}
 299
 300/* insert record into the buffer, discard old ones, update heads */
 301static void log_store(int facility, int level,
 302		      enum log_flags flags, u64 ts_nsec,
 303		      const char *dict, u16 dict_len,
 304		      const char *text, u16 text_len)
 305{
 306	struct printk_log *msg;
 307	u32 size, pad_len;
 308
 309	/* number of '\0' padding bytes to next message */
 310	size = sizeof(struct printk_log) + text_len + dict_len;
 311	pad_len = (-size) & (LOG_ALIGN - 1);
 312	size += pad_len;
 313
 314	while (log_first_seq < log_next_seq) {
 315		u32 free;
 316
 317		if (log_next_idx > log_first_idx)
 318			free = max(log_buf_len - log_next_idx, log_first_idx);
 319		else
 320			free = log_first_idx - log_next_idx;
 321
 322		if (free >= size + sizeof(struct printk_log))
 323			break;
 324
 325		/* drop old messages until we have enough contiuous space */
 326		log_first_idx = log_next(log_first_idx);
 327		log_first_seq++;
 328	}
 329
 330	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 331		/*
 332		 * This message + an additional empty header does not fit
 333		 * at the end of the buffer. Add an empty header with len == 0
 334		 * to signify a wrap around.
 335		 */
 336		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 337		log_next_idx = 0;
 338	}
 339
 340	/* fill message */
 341	msg = (struct printk_log *)(log_buf + log_next_idx);
 342	memcpy(log_text(msg), text, text_len);
 343	msg->text_len = text_len;
 344	memcpy(log_dict(msg), dict, dict_len);
 345	msg->dict_len = dict_len;
 346	msg->facility = facility;
 347	msg->level = level & 7;
 348	msg->flags = flags & 0x1f;
 349	if (ts_nsec > 0)
 350		msg->ts_nsec = ts_nsec;
 351	else
 352		msg->ts_nsec = local_clock();
 353	memset(log_dict(msg) + dict_len, 0, pad_len);
 354	msg->len = size;
 355
 356	/* insert message */
 357	log_next_idx += msg->len;
 358	log_next_seq++;
 359}
 360
 361#ifdef CONFIG_SECURITY_DMESG_RESTRICT
 362int dmesg_restrict = 1;
 363#else
 364int dmesg_restrict;
 365#endif
 366
 367static int syslog_action_restricted(int type)
 368{
 369	if (dmesg_restrict)
 370		return 1;
 371	/*
 372	 * Unless restricted, we allow "read all" and "get buffer size"
 373	 * for everybody.
 374	 */
 375	return type != SYSLOG_ACTION_READ_ALL &&
 376	       type != SYSLOG_ACTION_SIZE_BUFFER;
 377}
 378
 379static int check_syslog_permissions(int type, bool from_file)
 380{
 381	/*
 382	 * If this is from /proc/kmsg and we've already opened it, then we've
 383	 * already done the capabilities checks at open time.
 384	 */
 385	if (from_file && type != SYSLOG_ACTION_OPEN)
 386		return 0;
 387
 388	if (syslog_action_restricted(type)) {
 389		if (capable(CAP_SYSLOG))
 390			return 0;
 391		/*
 392		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 393		 * a warning.
 394		 */
 395		if (capable(CAP_SYS_ADMIN)) {
 396			pr_warn_once("%s (%d): Attempt to access syslog with "
 397				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 398				     "(deprecated).\n",
 399				 current->comm, task_pid_nr(current));
 400			return 0;
 401		}
 402		return -EPERM;
 403	}
 404	return security_syslog(type);
 405}
 406
 407
 408/* /dev/kmsg - userspace message inject/listen interface */
 409struct devkmsg_user {
 410	u64 seq;
 411	u32 idx;
 412	enum log_flags prev;
 413	struct mutex lock;
 414	char buf[8192];
 415};
 416
 417static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
 418			      unsigned long count, loff_t pos)
 419{
 420	char *buf, *line;
 421	int i;
 422	int level = default_message_loglevel;
 423	int facility = 1;	/* LOG_USER */
 424	size_t len = iov_length(iv, count);
 425	ssize_t ret = len;
 426
 427	if (len > LOG_LINE_MAX)
 428		return -EINVAL;
 429	buf = kmalloc(len+1, GFP_KERNEL);
 430	if (buf == NULL)
 431		return -ENOMEM;
 432
 433	line = buf;
 434	for (i = 0; i < count; i++) {
 435		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
 436			ret = -EFAULT;
 437			goto out;
 438		}
 439		line += iv[i].iov_len;
 440	}
 441
 442	/*
 443	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 444	 * the decimal value represents 32bit, the lower 3 bit are the log
 445	 * level, the rest are the log facility.
 446	 *
 447	 * If no prefix or no userspace facility is specified, we
 448	 * enforce LOG_USER, to be able to reliably distinguish
 449	 * kernel-generated messages from userspace-injected ones.
 450	 */
 451	line = buf;
 452	if (line[0] == '<') {
 453		char *endp = NULL;
 454
 455		i = simple_strtoul(line+1, &endp, 10);
 456		if (endp && endp[0] == '>') {
 457			level = i & 7;
 458			if (i >> 3)
 459				facility = i >> 3;
 460			endp++;
 461			len -= endp - line;
 462			line = endp;
 463		}
 464	}
 465	line[len] = '\0';
 466
 467	printk_emit(facility, level, NULL, 0, "%s", line);
 468out:
 469	kfree(buf);
 470	return ret;
 471}
 472
 473static ssize_t devkmsg_read(struct file *file, char __user *buf,
 474			    size_t count, loff_t *ppos)
 475{
 476	struct devkmsg_user *user = file->private_data;
 477	struct printk_log *msg;
 478	u64 ts_usec;
 479	size_t i;
 480	char cont = '-';
 481	size_t len;
 482	ssize_t ret;
 483
 484	if (!user)
 485		return -EBADF;
 486
 487	ret = mutex_lock_interruptible(&user->lock);
 488	if (ret)
 489		return ret;
 490	raw_spin_lock_irq(&logbuf_lock);
 491	while (user->seq == log_next_seq) {
 492		if (file->f_flags & O_NONBLOCK) {
 493			ret = -EAGAIN;
 494			raw_spin_unlock_irq(&logbuf_lock);
 495			goto out;
 496		}
 497
 498		raw_spin_unlock_irq(&logbuf_lock);
 499		ret = wait_event_interruptible(log_wait,
 500					       user->seq != log_next_seq);
 501		if (ret)
 502			goto out;
 503		raw_spin_lock_irq(&logbuf_lock);
 504	}
 505
 506	if (user->seq < log_first_seq) {
 507		/* our last seen message is gone, return error and reset */
 508		user->idx = log_first_idx;
 509		user->seq = log_first_seq;
 510		ret = -EPIPE;
 511		raw_spin_unlock_irq(&logbuf_lock);
 512		goto out;
 513	}
 514
 515	msg = log_from_idx(user->idx);
 516	ts_usec = msg->ts_nsec;
 517	do_div(ts_usec, 1000);
 518
 519	/*
 520	 * If we couldn't merge continuation line fragments during the print,
 521	 * export the stored flags to allow an optional external merge of the
 522	 * records. Merging the records isn't always neccessarily correct, like
 523	 * when we hit a race during printing. In most cases though, it produces
 524	 * better readable output. 'c' in the record flags mark the first
 525	 * fragment of a line, '+' the following.
 526	 */
 527	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
 528		cont = 'c';
 529	else if ((msg->flags & LOG_CONT) ||
 530		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 531		cont = '+';
 532
 533	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
 534		      (msg->facility << 3) | msg->level,
 535		      user->seq, ts_usec, cont);
 536	user->prev = msg->flags;
 537
 538	/* escape non-printable characters */
 539	for (i = 0; i < msg->text_len; i++) {
 540		unsigned char c = log_text(msg)[i];
 541
 542		if (c < ' ' || c >= 127 || c == '\\')
 543			len += sprintf(user->buf + len, "\\x%02x", c);
 544		else
 545			user->buf[len++] = c;
 546	}
 547	user->buf[len++] = '\n';
 548
 549	if (msg->dict_len) {
 550		bool line = true;
 551
 552		for (i = 0; i < msg->dict_len; i++) {
 553			unsigned char c = log_dict(msg)[i];
 554
 555			if (line) {
 556				user->buf[len++] = ' ';
 557				line = false;
 558			}
 559
 560			if (c == '\0') {
 561				user->buf[len++] = '\n';
 562				line = true;
 563				continue;
 564			}
 565
 566			if (c < ' ' || c >= 127 || c == '\\') {
 567				len += sprintf(user->buf + len, "\\x%02x", c);
 568				continue;
 569			}
 570
 571			user->buf[len++] = c;
 572		}
 573		user->buf[len++] = '\n';
 574	}
 575
 576	user->idx = log_next(user->idx);
 577	user->seq++;
 578	raw_spin_unlock_irq(&logbuf_lock);
 579
 580	if (len > count) {
 581		ret = -EINVAL;
 582		goto out;
 583	}
 584
 585	if (copy_to_user(buf, user->buf, len)) {
 586		ret = -EFAULT;
 587		goto out;
 588	}
 589	ret = len;
 590out:
 591	mutex_unlock(&user->lock);
 592	return ret;
 593}
 594
 595static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 596{
 597	struct devkmsg_user *user = file->private_data;
 598	loff_t ret = 0;
 599
 600	if (!user)
 601		return -EBADF;
 602	if (offset)
 603		return -ESPIPE;
 604
 605	raw_spin_lock_irq(&logbuf_lock);
 606	switch (whence) {
 607	case SEEK_SET:
 608		/* the first record */
 609		user->idx = log_first_idx;
 610		user->seq = log_first_seq;
 611		break;
 612	case SEEK_DATA:
 613		/*
 614		 * The first record after the last SYSLOG_ACTION_CLEAR,
 615		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 616		 * changes no global state, and does not clear anything.
 617		 */
 618		user->idx = clear_idx;
 619		user->seq = clear_seq;
 620		break;
 621	case SEEK_END:
 622		/* after the last record */
 623		user->idx = log_next_idx;
 624		user->seq = log_next_seq;
 625		break;
 626	default:
 627		ret = -EINVAL;
 628	}
 629	raw_spin_unlock_irq(&logbuf_lock);
 630	return ret;
 631}
 632
 633static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 634{
 635	struct devkmsg_user *user = file->private_data;
 636	int ret = 0;
 637
 638	if (!user)
 639		return POLLERR|POLLNVAL;
 640
 641	poll_wait(file, &log_wait, wait);
 642
 643	raw_spin_lock_irq(&logbuf_lock);
 644	if (user->seq < log_next_seq) {
 645		/* return error when data has vanished underneath us */
 646		if (user->seq < log_first_seq)
 647			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 648		else
 649			ret = POLLIN|POLLRDNORM;
 650	}
 651	raw_spin_unlock_irq(&logbuf_lock);
 652
 653	return ret;
 654}
 655
 656static int devkmsg_open(struct inode *inode, struct file *file)
 657{
 658	struct devkmsg_user *user;
 659	int err;
 660
 661	/* write-only does not need any file context */
 662	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
 663		return 0;
 664
 665	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 666				       SYSLOG_FROM_READER);
 667	if (err)
 668		return err;
 669
 670	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 671	if (!user)
 672		return -ENOMEM;
 673
 674	mutex_init(&user->lock);
 675
 676	raw_spin_lock_irq(&logbuf_lock);
 677	user->idx = log_first_idx;
 678	user->seq = log_first_seq;
 679	raw_spin_unlock_irq(&logbuf_lock);
 680
 681	file->private_data = user;
 682	return 0;
 683}
 684
 685static int devkmsg_release(struct inode *inode, struct file *file)
 686{
 687	struct devkmsg_user *user = file->private_data;
 688
 689	if (!user)
 690		return 0;
 691
 692	mutex_destroy(&user->lock);
 693	kfree(user);
 694	return 0;
 695}
 696
 697const struct file_operations kmsg_fops = {
 698	.open = devkmsg_open,
 699	.read = devkmsg_read,
 700	.aio_write = devkmsg_writev,
 701	.llseek = devkmsg_llseek,
 702	.poll = devkmsg_poll,
 703	.release = devkmsg_release,
 704};
 705
 706#ifdef CONFIG_KEXEC
 707/*
 708 * This appends the listed symbols to /proc/vmcore
 709 *
 710 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 711 * obtain access to symbols that are otherwise very difficult to locate.  These
 712 * symbols are specifically used so that utilities can access and extract the
 713 * dmesg log from a vmcore file after a crash.
 714 */
 715void log_buf_kexec_setup(void)
 716{
 717	VMCOREINFO_SYMBOL(log_buf);
 718	VMCOREINFO_SYMBOL(log_buf_len);
 719	VMCOREINFO_SYMBOL(log_first_idx);
 720	VMCOREINFO_SYMBOL(log_next_idx);
 721	/*
 722	 * Export struct printk_log size and field offsets. User space tools can
 723	 * parse it and detect any changes to structure down the line.
 724	 */
 725	VMCOREINFO_STRUCT_SIZE(printk_log);
 726	VMCOREINFO_OFFSET(printk_log, ts_nsec);
 727	VMCOREINFO_OFFSET(printk_log, len);
 728	VMCOREINFO_OFFSET(printk_log, text_len);
 729	VMCOREINFO_OFFSET(printk_log, dict_len);
 730}
 731#endif
 732
 733/* requested log_buf_len from kernel cmdline */
 734static unsigned long __initdata new_log_buf_len;
 735
 736/* save requested log_buf_len since it's too early to process it */
 737static int __init log_buf_len_setup(char *str)
 738{
 739	unsigned size = memparse(str, &str);
 740
 741	if (size)
 742		size = roundup_pow_of_two(size);
 743	if (size > log_buf_len)
 744		new_log_buf_len = size;
 745
 746	return 0;
 747}
 748early_param("log_buf_len", log_buf_len_setup);
 749
 750void __init setup_log_buf(int early)
 751{
 752	unsigned long flags;
 753	char *new_log_buf;
 754	int free;
 755
 756	if (!new_log_buf_len)
 757		return;
 758
 759	if (early) {
 760		new_log_buf =
 761			memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
 762	} else {
 763		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
 764	}
 765
 766	if (unlikely(!new_log_buf)) {
 767		pr_err("log_buf_len: %ld bytes not available\n",
 768			new_log_buf_len);
 769		return;
 770	}
 771
 772	raw_spin_lock_irqsave(&logbuf_lock, flags);
 773	log_buf_len = new_log_buf_len;
 774	log_buf = new_log_buf;
 775	new_log_buf_len = 0;
 776	free = __LOG_BUF_LEN - log_next_idx;
 777	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
 778	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 779
 780	pr_info("log_buf_len: %d\n", log_buf_len);
 781	pr_info("early log buf free: %d(%d%%)\n",
 782		free, (free * 100) / __LOG_BUF_LEN);
 783}
 784
 785static bool __read_mostly ignore_loglevel;
 786
 787static int __init ignore_loglevel_setup(char *str)
 788{
 789	ignore_loglevel = 1;
 790	pr_info("debug: ignoring loglevel setting.\n");
 791
 792	return 0;
 793}
 794
 795early_param("ignore_loglevel", ignore_loglevel_setup);
 796module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
 797MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
 798	"print all kernel messages to the console.");
 799
 800#ifdef CONFIG_BOOT_PRINTK_DELAY
 801
 802static int boot_delay; /* msecs delay after each printk during bootup */
 803static unsigned long long loops_per_msec;	/* based on boot_delay */
 804
 805static int __init boot_delay_setup(char *str)
 806{
 807	unsigned long lpj;
 808
 809	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
 810	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
 811
 812	get_option(&str, &boot_delay);
 813	if (boot_delay > 10 * 1000)
 814		boot_delay = 0;
 815
 816	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
 817		"HZ: %d, loops_per_msec: %llu\n",
 818		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
 819	return 0;
 820}
 821early_param("boot_delay", boot_delay_setup);
 822
 823static void boot_delay_msec(int level)
 824{
 825	unsigned long long k;
 826	unsigned long timeout;
 827
 828	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
 829		|| (level >= console_loglevel && !ignore_loglevel)) {
 830		return;
 831	}
 832
 833	k = (unsigned long long)loops_per_msec * boot_delay;
 834
 835	timeout = jiffies + msecs_to_jiffies(boot_delay);
 836	while (k) {
 837		k--;
 838		cpu_relax();
 839		/*
 840		 * use (volatile) jiffies to prevent
 841		 * compiler reduction; loop termination via jiffies
 842		 * is secondary and may or may not happen.
 843		 */
 844		if (time_after(jiffies, timeout))
 845			break;
 846		touch_nmi_watchdog();
 847	}
 848}
 849#else
 850static inline void boot_delay_msec(int level)
 851{
 852}
 853#endif
 854
 855#if defined(CONFIG_PRINTK_TIME)
 856static bool printk_time = 1;
 857#else
 858static bool printk_time;
 859#endif
 860module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
 861
 862static size_t print_time(u64 ts, char *buf)
 863{
 864	unsigned long rem_nsec;
 865
 866	if (!printk_time)
 867		return 0;
 868
 869	rem_nsec = do_div(ts, 1000000000);
 870
 871	if (!buf)
 872		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
 873
 874	return sprintf(buf, "[%5lu.%06lu] ",
 875		       (unsigned long)ts, rem_nsec / 1000);
 876}
 877
 878static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 879{
 880	size_t len = 0;
 881	unsigned int prefix = (msg->facility << 3) | msg->level;
 882
 883	if (syslog) {
 884		if (buf) {
 885			len += sprintf(buf, "<%u>", prefix);
 886		} else {
 887			len += 3;
 888			if (prefix > 999)
 889				len += 3;
 890			else if (prefix > 99)
 891				len += 2;
 892			else if (prefix > 9)
 893				len++;
 894		}
 895	}
 896
 897	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
 898	return len;
 899}
 900
 901static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
 902			     bool syslog, char *buf, size_t size)
 903{
 904	const char *text = log_text(msg);
 905	size_t text_size = msg->text_len;
 906	bool prefix = true;
 907	bool newline = true;
 908	size_t len = 0;
 909
 910	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
 911		prefix = false;
 912
 913	if (msg->flags & LOG_CONT) {
 914		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
 915			prefix = false;
 916
 917		if (!(msg->flags & LOG_NEWLINE))
 918			newline = false;
 919	}
 920
 921	do {
 922		const char *next = memchr(text, '\n', text_size);
 923		size_t text_len;
 924
 925		if (next) {
 926			text_len = next - text;
 927			next++;
 928			text_size -= next - text;
 929		} else {
 930			text_len = text_size;
 931		}
 932
 933		if (buf) {
 934			if (print_prefix(msg, syslog, NULL) +
 935			    text_len + 1 >= size - len)
 936				break;
 937
 938			if (prefix)
 939				len += print_prefix(msg, syslog, buf + len);
 940			memcpy(buf + len, text, text_len);
 941			len += text_len;
 942			if (next || newline)
 943				buf[len++] = '\n';
 944		} else {
 945			/* SYSLOG_ACTION_* buffer size only calculation */
 946			if (prefix)
 947				len += print_prefix(msg, syslog, NULL);
 948			len += text_len;
 949			if (next || newline)
 950				len++;
 951		}
 952
 953		prefix = true;
 954		text = next;
 955	} while (text);
 956
 957	return len;
 958}
 959
 960static int syslog_print(char __user *buf, int size)
 961{
 962	char *text;
 963	struct printk_log *msg;
 964	int len = 0;
 965
 966	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
 967	if (!text)
 968		return -ENOMEM;
 969
 970	while (size > 0) {
 971		size_t n;
 972		size_t skip;
 973
 974		raw_spin_lock_irq(&logbuf_lock);
 975		if (syslog_seq < log_first_seq) {
 976			/* messages are gone, move to first one */
 977			syslog_seq = log_first_seq;
 978			syslog_idx = log_first_idx;
 979			syslog_prev = 0;
 980			syslog_partial = 0;
 981		}
 982		if (syslog_seq == log_next_seq) {
 983			raw_spin_unlock_irq(&logbuf_lock);
 984			break;
 985		}
 986
 987		skip = syslog_partial;
 988		msg = log_from_idx(syslog_idx);
 989		n = msg_print_text(msg, syslog_prev, true, text,
 990				   LOG_LINE_MAX + PREFIX_MAX);
 991		if (n - syslog_partial <= size) {
 992			/* message fits into buffer, move forward */
 993			syslog_idx = log_next(syslog_idx);
 994			syslog_seq++;
 995			syslog_prev = msg->flags;
 996			n -= syslog_partial;
 997			syslog_partial = 0;
 998		} else if (!len){
 999			/* partial read(), remember position */
1000			n = size;
1001			syslog_partial += n;
1002		} else
1003			n = 0;
1004		raw_spin_unlock_irq(&logbuf_lock);
1005
1006		if (!n)
1007			break;
1008
1009		if (copy_to_user(buf, text + skip, n)) {
1010			if (!len)
1011				len = -EFAULT;
1012			break;
1013		}
1014
1015		len += n;
1016		size -= n;
1017		buf += n;
1018	}
1019
1020	kfree(text);
1021	return len;
1022}
1023
1024static int syslog_print_all(char __user *buf, int size, bool clear)
1025{
1026	char *text;
1027	int len = 0;
1028
1029	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1030	if (!text)
1031		return -ENOMEM;
1032
1033	raw_spin_lock_irq(&logbuf_lock);
1034	if (buf) {
1035		u64 next_seq;
1036		u64 seq;
1037		u32 idx;
1038		enum log_flags prev;
1039
1040		if (clear_seq < log_first_seq) {
1041			/* messages are gone, move to first available one */
1042			clear_seq = log_first_seq;
1043			clear_idx = log_first_idx;
1044		}
1045
1046		/*
1047		 * Find first record that fits, including all following records,
1048		 * into the user-provided buffer for this dump.
1049		 */
1050		seq = clear_seq;
1051		idx = clear_idx;
1052		prev = 0;
1053		while (seq < log_next_seq) {
1054			struct printk_log *msg = log_from_idx(idx);
1055
1056			len += msg_print_text(msg, prev, true, NULL, 0);
1057			prev = msg->flags;
1058			idx = log_next(idx);
1059			seq++;
1060		}
1061
1062		/* move first record forward until length fits into the buffer */
1063		seq = clear_seq;
1064		idx = clear_idx;
1065		prev = 0;
1066		while (len > size && seq < log_next_seq) {
1067			struct printk_log *msg = log_from_idx(idx);
1068
1069			len -= msg_print_text(msg, prev, true, NULL, 0);
1070			prev = msg->flags;
1071			idx = log_next(idx);
1072			seq++;
1073		}
1074
1075		/* last message fitting into this dump */
1076		next_seq = log_next_seq;
1077
1078		len = 0;
1079		while (len >= 0 && seq < next_seq) {
1080			struct printk_log *msg = log_from_idx(idx);
1081			int textlen;
1082
1083			textlen = msg_print_text(msg, prev, true, text,
1084						 LOG_LINE_MAX + PREFIX_MAX);
1085			if (textlen < 0) {
1086				len = textlen;
1087				break;
1088			}
1089			idx = log_next(idx);
1090			seq++;
1091			prev = msg->flags;
1092
1093			raw_spin_unlock_irq(&logbuf_lock);
1094			if (copy_to_user(buf + len, text, textlen))
1095				len = -EFAULT;
1096			else
1097				len += textlen;
1098			raw_spin_lock_irq(&logbuf_lock);
1099
1100			if (seq < log_first_seq) {
1101				/* messages are gone, move to next one */
1102				seq = log_first_seq;
1103				idx = log_first_idx;
1104				prev = 0;
1105			}
1106		}
1107	}
1108
1109	if (clear) {
1110		clear_seq = log_next_seq;
1111		clear_idx = log_next_idx;
1112	}
1113	raw_spin_unlock_irq(&logbuf_lock);
1114
1115	kfree(text);
1116	return len;
1117}
1118
1119int do_syslog(int type, char __user *buf, int len, bool from_file)
1120{
1121	bool clear = false;
1122	static int saved_console_loglevel = -1;
1123	int error;
1124
1125	error = check_syslog_permissions(type, from_file);
1126	if (error)
1127		goto out;
1128
1129	error = security_syslog(type);
1130	if (error)
1131		return error;
1132
1133	switch (type) {
1134	case SYSLOG_ACTION_CLOSE:	/* Close log */
1135		break;
1136	case SYSLOG_ACTION_OPEN:	/* Open log */
1137		break;
1138	case SYSLOG_ACTION_READ:	/* Read from log */
1139		error = -EINVAL;
1140		if (!buf || len < 0)
1141			goto out;
1142		error = 0;
1143		if (!len)
1144			goto out;
1145		if (!access_ok(VERIFY_WRITE, buf, len)) {
1146			error = -EFAULT;
1147			goto out;
1148		}
1149		error = wait_event_interruptible(log_wait,
1150						 syslog_seq != log_next_seq);
1151		if (error)
1152			goto out;
1153		error = syslog_print(buf, len);
1154		break;
1155	/* Read/clear last kernel messages */
1156	case SYSLOG_ACTION_READ_CLEAR:
1157		clear = true;
1158		/* FALL THRU */
1159	/* Read last kernel messages */
1160	case SYSLOG_ACTION_READ_ALL:
1161		error = -EINVAL;
1162		if (!buf || len < 0)
1163			goto out;
1164		error = 0;
1165		if (!len)
1166			goto out;
1167		if (!access_ok(VERIFY_WRITE, buf, len)) {
1168			error = -EFAULT;
1169			goto out;
1170		}
1171		error = syslog_print_all(buf, len, clear);
1172		break;
1173	/* Clear ring buffer */
1174	case SYSLOG_ACTION_CLEAR:
1175		syslog_print_all(NULL, 0, true);
1176		break;
1177	/* Disable logging to console */
1178	case SYSLOG_ACTION_CONSOLE_OFF:
1179		if (saved_console_loglevel == -1)
1180			saved_console_loglevel = console_loglevel;
1181		console_loglevel = minimum_console_loglevel;
1182		break;
1183	/* Enable logging to console */
1184	case SYSLOG_ACTION_CONSOLE_ON:
1185		if (saved_console_loglevel != -1) {
1186			console_loglevel = saved_console_loglevel;
1187			saved_console_loglevel = -1;
1188		}
1189		break;
1190	/* Set level of messages printed to console */
1191	case SYSLOG_ACTION_CONSOLE_LEVEL:
1192		error = -EINVAL;
1193		if (len < 1 || len > 8)
1194			goto out;
1195		if (len < minimum_console_loglevel)
1196			len = minimum_console_loglevel;
1197		console_loglevel = len;
1198		/* Implicitly re-enable logging to console */
1199		saved_console_loglevel = -1;
1200		error = 0;
1201		break;
1202	/* Number of chars in the log buffer */
1203	case SYSLOG_ACTION_SIZE_UNREAD:
1204		raw_spin_lock_irq(&logbuf_lock);
1205		if (syslog_seq < log_first_seq) {
1206			/* messages are gone, move to first one */
1207			syslog_seq = log_first_seq;
1208			syslog_idx = log_first_idx;
1209			syslog_prev = 0;
1210			syslog_partial = 0;
1211		}
1212		if (from_file) {
1213			/*
1214			 * Short-cut for poll(/"proc/kmsg") which simply checks
1215			 * for pending data, not the size; return the count of
1216			 * records, not the length.
1217			 */
1218			error = log_next_idx - syslog_idx;
1219		} else {
1220			u64 seq = syslog_seq;
1221			u32 idx = syslog_idx;
1222			enum log_flags prev = syslog_prev;
1223
1224			error = 0;
1225			while (seq < log_next_seq) {
1226				struct printk_log *msg = log_from_idx(idx);
1227
1228				error += msg_print_text(msg, prev, true, NULL, 0);
1229				idx = log_next(idx);
1230				seq++;
1231				prev = msg->flags;
1232			}
1233			error -= syslog_partial;
1234		}
1235		raw_spin_unlock_irq(&logbuf_lock);
1236		break;
1237	/* Size of the log buffer */
1238	case SYSLOG_ACTION_SIZE_BUFFER:
1239		error = log_buf_len;
1240		break;
1241	default:
1242		error = -EINVAL;
1243		break;
1244	}
1245out:
1246	return error;
1247}
1248
1249SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1250{
1251	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1252}
1253
1254/*
1255 * Call the console drivers, asking them to write out
1256 * log_buf[start] to log_buf[end - 1].
1257 * The console_lock must be held.
1258 */
1259static void call_console_drivers(int level, const char *text, size_t len)
1260{
1261	struct console *con;
1262
1263	trace_console(text, len);
1264
1265	if (level >= console_loglevel && !ignore_loglevel)
1266		return;
1267	if (!console_drivers)
1268		return;
1269
1270	for_each_console(con) {
1271		if (exclusive_console && con != exclusive_console)
1272			continue;
1273		if (!(con->flags & CON_ENABLED))
1274			continue;
1275		if (!con->write)
1276			continue;
1277		if (!cpu_online(smp_processor_id()) &&
1278		    !(con->flags & CON_ANYTIME))
1279			continue;
1280		con->write(con, text, len);
1281	}
1282}
1283
1284/*
1285 * Zap console related locks when oopsing. Only zap at most once
1286 * every 10 seconds, to leave time for slow consoles to print a
1287 * full oops.
1288 */
1289static void zap_locks(void)
1290{
1291	static unsigned long oops_timestamp;
1292
1293	if (time_after_eq(jiffies, oops_timestamp) &&
1294			!time_after(jiffies, oops_timestamp + 30 * HZ))
1295		return;
1296
1297	oops_timestamp = jiffies;
1298
1299	debug_locks_off();
1300	/* If a crash is occurring, make sure we can't deadlock */
1301	raw_spin_lock_init(&logbuf_lock);
1302	/* And make sure that we print immediately */
1303	sema_init(&console_sem, 1);
1304}
1305
1306/* Check if we have any console registered that can be called early in boot. */
1307static int have_callable_console(void)
1308{
1309	struct console *con;
1310
1311	for_each_console(con)
1312		if (con->flags & CON_ANYTIME)
1313			return 1;
1314
1315	return 0;
1316}
1317
1318/*
1319 * Can we actually use the console at this time on this cpu?
1320 *
1321 * Console drivers may assume that per-cpu resources have
1322 * been allocated. So unless they're explicitly marked as
1323 * being able to cope (CON_ANYTIME) don't call them until
1324 * this CPU is officially up.
1325 */
1326static inline int can_use_console(unsigned int cpu)
1327{
1328	return cpu_online(cpu) || have_callable_console();
1329}
1330
1331/*
1332 * Try to get console ownership to actually show the kernel
1333 * messages from a 'printk'. Return true (and with the
1334 * console_lock held, and 'console_locked' set) if it
1335 * is successful, false otherwise.
1336 *
1337 * This gets called with the 'logbuf_lock' spinlock held and
1338 * interrupts disabled. It should return with 'lockbuf_lock'
1339 * released but interrupts still disabled.
1340 */
1341static int console_trylock_for_printk(unsigned int cpu)
1342	__releases(&logbuf_lock)
1343{
1344	int retval = 0, wake = 0;
1345
1346	if (console_trylock()) {
1347		retval = 1;
1348
1349		/*
1350		 * If we can't use the console, we need to release
1351		 * the console semaphore by hand to avoid flushing
1352		 * the buffer. We need to hold the console semaphore
1353		 * in order to do this test safely.
1354		 */
1355		if (!can_use_console(cpu)) {
1356			console_locked = 0;
1357			wake = 1;
1358			retval = 0;
1359		}
1360	}
1361	logbuf_cpu = UINT_MAX;
1362	raw_spin_unlock(&logbuf_lock);
1363	if (wake)
1364		up(&console_sem);
1365	return retval;
1366}
1367
1368int printk_delay_msec __read_mostly;
1369
1370static inline void printk_delay(void)
1371{
1372	if (unlikely(printk_delay_msec)) {
1373		int m = printk_delay_msec;
1374
1375		while (m--) {
1376			mdelay(1);
1377			touch_nmi_watchdog();
1378		}
1379	}
1380}
1381
1382/*
1383 * Continuation lines are buffered, and not committed to the record buffer
1384 * until the line is complete, or a race forces it. The line fragments
1385 * though, are printed immediately to the consoles to ensure everything has
1386 * reached the console in case of a kernel crash.
1387 */
1388static struct cont {
1389	char buf[LOG_LINE_MAX];
1390	size_t len;			/* length == 0 means unused buffer */
1391	size_t cons;			/* bytes written to console */
1392	struct task_struct *owner;	/* task of first print*/
1393	u64 ts_nsec;			/* time of first print */
1394	u8 level;			/* log level of first message */
1395	u8 facility;			/* log level of first message */
1396	enum log_flags flags;		/* prefix, newline flags */
1397	bool flushed:1;			/* buffer sealed and committed */
1398} cont;
1399
1400static void cont_flush(enum log_flags flags)
1401{
1402	if (cont.flushed)
1403		return;
1404	if (cont.len == 0)
1405		return;
1406
1407	if (cont.cons) {
1408		/*
1409		 * If a fragment of this line was directly flushed to the
1410		 * console; wait for the console to pick up the rest of the
1411		 * line. LOG_NOCONS suppresses a duplicated output.
1412		 */
1413		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1414			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1415		cont.flags = flags;
1416		cont.flushed = true;
1417	} else {
1418		/*
1419		 * If no fragment of this line ever reached the console,
1420		 * just submit it to the store and free the buffer.
1421		 */
1422		log_store(cont.facility, cont.level, flags, 0,
1423			  NULL, 0, cont.buf, cont.len);
1424		cont.len = 0;
1425	}
1426}
1427
1428static bool cont_add(int facility, int level, const char *text, size_t len)
1429{
1430	if (cont.len && cont.flushed)
1431		return false;
1432
1433	if (cont.len + len > sizeof(cont.buf)) {
1434		/* the line gets too long, split it up in separate records */
1435		cont_flush(LOG_CONT);
1436		return false;
1437	}
1438
1439	if (!cont.len) {
1440		cont.facility = facility;
1441		cont.level = level;
1442		cont.owner = current;
1443		cont.ts_nsec = local_clock();
1444		cont.flags = 0;
1445		cont.cons = 0;
1446		cont.flushed = false;
1447	}
1448
1449	memcpy(cont.buf + cont.len, text, len);
1450	cont.len += len;
1451
1452	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1453		cont_flush(LOG_CONT);
1454
1455	return true;
1456}
1457
1458static size_t cont_print_text(char *text, size_t size)
1459{
1460	size_t textlen = 0;
1461	size_t len;
1462
1463	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1464		textlen += print_time(cont.ts_nsec, text);
1465		size -= textlen;
1466	}
1467
1468	len = cont.len - cont.cons;
1469	if (len > 0) {
1470		if (len+1 > size)
1471			len = size-1;
1472		memcpy(text + textlen, cont.buf + cont.cons, len);
1473		textlen += len;
1474		cont.cons = cont.len;
1475	}
1476
1477	if (cont.flushed) {
1478		if (cont.flags & LOG_NEWLINE)
1479			text[textlen++] = '\n';
1480		/* got everything, release buffer */
1481		cont.len = 0;
1482	}
1483	return textlen;
1484}
1485
1486asmlinkage int vprintk_emit(int facility, int level,
1487			    const char *dict, size_t dictlen,
1488			    const char *fmt, va_list args)
1489{
1490	static int recursion_bug;
1491	static char textbuf[LOG_LINE_MAX];
1492	char *text = textbuf;
1493	size_t text_len;
1494	enum log_flags lflags = 0;
1495	unsigned long flags;
1496	int this_cpu;
1497	int printed_len = 0;
1498
1499	boot_delay_msec(level);
1500	printk_delay();
1501
1502	/* This stops the holder of console_sem just where we want him */
1503	local_irq_save(flags);
1504	this_cpu = smp_processor_id();
1505
1506	/*
1507	 * Ouch, printk recursed into itself!
1508	 */
1509	if (unlikely(logbuf_cpu == this_cpu)) {
1510		/*
1511		 * If a crash is occurring during printk() on this CPU,
1512		 * then try to get the crash message out but make sure
1513		 * we can't deadlock. Otherwise just return to avoid the
1514		 * recursion and return - but flag the recursion so that
1515		 * it can be printed at the next appropriate moment:
1516		 */
1517		if (!oops_in_progress && !lockdep_recursing(current)) {
1518			recursion_bug = 1;
1519			goto out_restore_irqs;
1520		}
1521		zap_locks();
1522	}
1523
1524	lockdep_off();
1525	raw_spin_lock(&logbuf_lock);
1526	logbuf_cpu = this_cpu;
1527
1528	if (recursion_bug) {
1529		static const char recursion_msg[] =
1530			"BUG: recent printk recursion!";
1531
1532		recursion_bug = 0;
1533		printed_len += strlen(recursion_msg);
1534		/* emit KERN_CRIT message */
1535		log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1536			  NULL, 0, recursion_msg, printed_len);
1537	}
1538
1539	/*
1540	 * The printf needs to come first; we need the syslog
1541	 * prefix which might be passed-in as a parameter.
1542	 */
1543	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1544
1545	/* mark and strip a trailing newline */
1546	if (text_len && text[text_len-1] == '\n') {
1547		text_len--;
1548		lflags |= LOG_NEWLINE;
1549	}
1550
1551	/* strip kernel syslog prefix and extract log level or control flags */
1552	if (facility == 0) {
1553		int kern_level = printk_get_level(text);
1554
1555		if (kern_level) {
1556			const char *end_of_header = printk_skip_level(text);
1557			switch (kern_level) {
1558			case '0' ... '7':
1559				if (level == -1)
1560					level = kern_level - '0';
1561			case 'd':	/* KERN_DEFAULT */
1562				lflags |= LOG_PREFIX;
1563			}
1564			/*
1565			 * No need to check length here because vscnprintf
1566			 * put '\0' at the end of the string. Only valid and
1567			 * newly printed level is detected.
1568			 */
1569			text_len -= end_of_header - text;
1570			text = (char *)end_of_header;
1571		}
1572	}
1573
1574	if (level == -1)
1575		level = default_message_loglevel;
1576
1577	if (dict)
1578		lflags |= LOG_PREFIX|LOG_NEWLINE;
1579
1580	if (!(lflags & LOG_NEWLINE)) {
1581		/*
1582		 * Flush the conflicting buffer. An earlier newline was missing,
1583		 * or another task also prints continuation lines.
1584		 */
1585		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1586			cont_flush(LOG_NEWLINE);
1587
1588		/* buffer line if possible, otherwise store it right away */
1589		if (!cont_add(facility, level, text, text_len))
1590			log_store(facility, level, lflags | LOG_CONT, 0,
1591				  dict, dictlen, text, text_len);
1592	} else {
1593		bool stored = false;
1594
1595		/*
1596		 * If an earlier newline was missing and it was the same task,
1597		 * either merge it with the current buffer and flush, or if
1598		 * there was a race with interrupts (prefix == true) then just
1599		 * flush it out and store this line separately.
1600		 * If the preceding printk was from a different task and missed
1601		 * a newline, flush and append the newline.
1602		 */
1603		if (cont.len) {
1604			if (cont.owner == current && !(lflags & LOG_PREFIX))
1605				stored = cont_add(facility, level, text,
1606						  text_len);
1607			cont_flush(LOG_NEWLINE);
1608		}
1609
1610		if (!stored)
1611			log_store(facility, level, lflags, 0,
1612				  dict, dictlen, text, text_len);
1613	}
1614	printed_len += text_len;
1615
1616	/*
1617	 * Try to acquire and then immediately release the console semaphore.
1618	 * The release will print out buffers and wake up /dev/kmsg and syslog()
1619	 * users.
1620	 *
1621	 * The console_trylock_for_printk() function will release 'logbuf_lock'
1622	 * regardless of whether it actually gets the console semaphore or not.
1623	 */
1624	if (console_trylock_for_printk(this_cpu))
1625		console_unlock();
1626
1627	lockdep_on();
1628out_restore_irqs:
1629	local_irq_restore(flags);
1630
1631	return printed_len;
1632}
1633EXPORT_SYMBOL(vprintk_emit);
1634
1635asmlinkage int vprintk(const char *fmt, va_list args)
1636{
1637	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1638}
1639EXPORT_SYMBOL(vprintk);
1640
1641asmlinkage int printk_emit(int facility, int level,
1642			   const char *dict, size_t dictlen,
1643			   const char *fmt, ...)
1644{
1645	va_list args;
1646	int r;
1647
1648	va_start(args, fmt);
1649	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1650	va_end(args);
1651
1652	return r;
1653}
1654EXPORT_SYMBOL(printk_emit);
1655
1656/**
1657 * printk - print a kernel message
1658 * @fmt: format string
1659 *
1660 * This is printk(). It can be called from any context. We want it to work.
1661 *
1662 * We try to grab the console_lock. If we succeed, it's easy - we log the
1663 * output and call the console drivers.  If we fail to get the semaphore, we
1664 * place the output into the log buffer and return. The current holder of
1665 * the console_sem will notice the new output in console_unlock(); and will
1666 * send it to the consoles before releasing the lock.
1667 *
1668 * One effect of this deferred printing is that code which calls printk() and
1669 * then changes console_loglevel may break. This is because console_loglevel
1670 * is inspected when the actual printing occurs.
1671 *
1672 * See also:
1673 * printf(3)
1674 *
1675 * See the vsnprintf() documentation for format string extensions over C99.
1676 */
1677asmlinkage __visible int printk(const char *fmt, ...)
1678{
1679	va_list args;
1680	int r;
1681
1682#ifdef CONFIG_KGDB_KDB
1683	if (unlikely(kdb_trap_printk)) {
1684		va_start(args, fmt);
1685		r = vkdb_printf(fmt, args);
1686		va_end(args);
1687		return r;
1688	}
1689#endif
1690	va_start(args, fmt);
1691	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1692	va_end(args);
1693
1694	return r;
1695}
1696EXPORT_SYMBOL(printk);
1697
1698#else /* CONFIG_PRINTK */
1699
1700#define LOG_LINE_MAX		0
1701#define PREFIX_MAX		0
1702#define LOG_LINE_MAX 0
1703static u64 syslog_seq;
1704static u32 syslog_idx;
1705static u64 console_seq;
1706static u32 console_idx;
1707static enum log_flags syslog_prev;
1708static u64 log_first_seq;
1709static u32 log_first_idx;
1710static u64 log_next_seq;
1711static enum log_flags console_prev;
1712static struct cont {
1713	size_t len;
1714	size_t cons;
1715	u8 level;
1716	bool flushed:1;
1717} cont;
1718static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1719static u32 log_next(u32 idx) { return 0; }
1720static void call_console_drivers(int level, const char *text, size_t len) {}
1721static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1722			     bool syslog, char *buf, size_t size) { return 0; }
1723static size_t cont_print_text(char *text, size_t size) { return 0; }
1724
1725#endif /* CONFIG_PRINTK */
1726
1727#ifdef CONFIG_EARLY_PRINTK
1728struct console *early_console;
1729
1730void early_vprintk(const char *fmt, va_list ap)
1731{
1732	if (early_console) {
1733		char buf[512];
1734		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1735
1736		early_console->write(early_console, buf, n);
1737	}
1738}
1739
1740asmlinkage __visible void early_printk(const char *fmt, ...)
1741{
1742	va_list ap;
1743
1744	va_start(ap, fmt);
1745	early_vprintk(fmt, ap);
1746	va_end(ap);
1747}
1748#endif
1749
1750static int __add_preferred_console(char *name, int idx, char *options,
1751				   char *brl_options)
1752{
1753	struct console_cmdline *c;
1754	int i;
1755
1756	/*
1757	 *	See if this tty is not yet registered, and
1758	 *	if we have a slot free.
1759	 */
1760	for (i = 0, c = console_cmdline;
1761	     i < MAX_CMDLINECONSOLES && c->name[0];
1762	     i++, c++) {
1763		if (strcmp(c->name, name) == 0 && c->index == idx) {
1764			if (!brl_options)
1765				selected_console = i;
1766			return 0;
1767		}
1768	}
1769	if (i == MAX_CMDLINECONSOLES)
1770		return -E2BIG;
1771	if (!brl_options)
1772		selected_console = i;
1773	strlcpy(c->name, name, sizeof(c->name));
1774	c->options = options;
1775	braille_set_options(c, brl_options);
1776
1777	c->index = idx;
1778	return 0;
1779}
1780/*
1781 * Set up a list of consoles.  Called from init/main.c
1782 */
1783static int __init console_setup(char *str)
1784{
1785	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1786	char *s, *options, *brl_options = NULL;
1787	int idx;
1788
1789	if (_braille_console_setup(&str, &brl_options))
1790		return 1;
1791
1792	/*
1793	 * Decode str into name, index, options.
1794	 */
1795	if (str[0] >= '0' && str[0] <= '9') {
1796		strcpy(buf, "ttyS");
1797		strncpy(buf + 4, str, sizeof(buf) - 5);
1798	} else {
1799		strncpy(buf, str, sizeof(buf) - 1);
1800	}
1801	buf[sizeof(buf) - 1] = 0;
1802	if ((options = strchr(str, ',')) != NULL)
1803		*(options++) = 0;
1804#ifdef __sparc__
1805	if (!strcmp(str, "ttya"))
1806		strcpy(buf, "ttyS0");
1807	if (!strcmp(str, "ttyb"))
1808		strcpy(buf, "ttyS1");
1809#endif
1810	for (s = buf; *s; s++)
1811		if ((*s >= '0' && *s <= '9') || *s == ',')
1812			break;
1813	idx = simple_strtoul(s, NULL, 10);
1814	*s = 0;
1815
1816	__add_preferred_console(buf, idx, options, brl_options);
1817	console_set_on_cmdline = 1;
1818	return 1;
1819}
1820__setup("console=", console_setup);
1821
1822/**
1823 * add_preferred_console - add a device to the list of preferred consoles.
1824 * @name: device name
1825 * @idx: device index
1826 * @options: options for this console
1827 *
1828 * The last preferred console added will be used for kernel messages
1829 * and stdin/out/err for init.  Normally this is used by console_setup
1830 * above to handle user-supplied console arguments; however it can also
1831 * be used by arch-specific code either to override the user or more
1832 * commonly to provide a default console (ie from PROM variables) when
1833 * the user has not supplied one.
1834 */
1835int add_preferred_console(char *name, int idx, char *options)
1836{
1837	return __add_preferred_console(name, idx, options, NULL);
1838}
1839
1840int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1841{
1842	struct console_cmdline *c;
1843	int i;
1844
1845	for (i = 0, c = console_cmdline;
1846	     i < MAX_CMDLINECONSOLES && c->name[0];
1847	     i++, c++)
1848		if (strcmp(c->name, name) == 0 && c->index == idx) {
1849			strlcpy(c->name, name_new, sizeof(c->name));
1850			c->name[sizeof(c->name) - 1] = 0;
1851			c->options = options;
1852			c->index = idx_new;
1853			return i;
1854		}
1855	/* not found */
1856	return -1;
1857}
1858
1859bool console_suspend_enabled = 1;
1860EXPORT_SYMBOL(console_suspend_enabled);
1861
1862static int __init console_suspend_disable(char *str)
1863{
1864	console_suspend_enabled = 0;
1865	return 1;
1866}
1867__setup("no_console_suspend", console_suspend_disable);
1868module_param_named(console_suspend, console_suspend_enabled,
1869		bool, S_IRUGO | S_IWUSR);
1870MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1871	" and hibernate operations");
1872
1873/**
1874 * suspend_console - suspend the console subsystem
1875 *
1876 * This disables printk() while we go into suspend states
1877 */
1878void suspend_console(void)
1879{
1880	if (!console_suspend_enabled)
1881		return;
1882	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1883	console_lock();
1884	console_suspended = 1;
1885	up(&console_sem);
1886	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
1887}
1888
1889void resume_console(void)
1890{
1891	if (!console_suspend_enabled)
1892		return;
1893	down(&console_sem);
1894	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1895	console_suspended = 0;
1896	console_unlock();
1897}
1898
1899/**
1900 * console_cpu_notify - print deferred console messages after CPU hotplug
1901 * @self: notifier struct
1902 * @action: CPU hotplug event
1903 * @hcpu: unused
1904 *
1905 * If printk() is called from a CPU that is not online yet, the messages
1906 * will be spooled but will not show up on the console.  This function is
1907 * called when a new CPU comes online (or fails to come up), and ensures
1908 * that any such output gets printed.
1909 */
1910static int console_cpu_notify(struct notifier_block *self,
1911	unsigned long action, void *hcpu)
1912{
1913	switch (action) {
1914	case CPU_ONLINE:
1915	case CPU_DEAD:
1916	case CPU_DOWN_FAILED:
1917	case CPU_UP_CANCELED:
1918		console_lock();
1919		console_unlock();
1920	}
1921	return NOTIFY_OK;
1922}
1923
1924/**
1925 * console_lock - lock the console system for exclusive use.
1926 *
1927 * Acquires a lock which guarantees that the caller has
1928 * exclusive access to the console system and the console_drivers list.
1929 *
1930 * Can sleep, returns nothing.
1931 */
1932void console_lock(void)
1933{
1934	might_sleep();
1935
1936	down(&console_sem);
1937	if (console_suspended)
1938		return;
1939	console_locked = 1;
1940	console_may_schedule = 1;
1941	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1942}
1943EXPORT_SYMBOL(console_lock);
1944
1945/**
1946 * console_trylock - try to lock the console system for exclusive use.
1947 *
1948 * Tried to acquire a lock which guarantees that the caller has
1949 * exclusive access to the console system and the console_drivers list.
1950 *
1951 * returns 1 on success, and 0 on failure to acquire the lock.
1952 */
1953int console_trylock(void)
1954{
1955	if (down_trylock(&console_sem))
1956		return 0;
1957	if (console_suspended) {
1958		up(&console_sem);
1959		return 0;
1960	}
1961	console_locked = 1;
1962	console_may_schedule = 0;
1963	mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1964	return 1;
1965}
1966EXPORT_SYMBOL(console_trylock);
1967
1968int is_console_locked(void)
1969{
1970	return console_locked;
1971}
1972
1973static void console_cont_flush(char *text, size_t size)
1974{
1975	unsigned long flags;
1976	size_t len;
1977
1978	raw_spin_lock_irqsave(&logbuf_lock, flags);
1979
1980	if (!cont.len)
1981		goto out;
1982
1983	/*
1984	 * We still queue earlier records, likely because the console was
1985	 * busy. The earlier ones need to be printed before this one, we
1986	 * did not flush any fragment so far, so just let it queue up.
1987	 */
1988	if (console_seq < log_next_seq && !cont.cons)
1989		goto out;
1990
1991	len = cont_print_text(text, size);
1992	raw_spin_unlock(&logbuf_lock);
1993	stop_critical_timings();
1994	call_console_drivers(cont.level, text, len);
1995	start_critical_timings();
1996	local_irq_restore(flags);
1997	return;
1998out:
1999	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2000}
2001
2002/**
2003 * console_unlock - unlock the console system
2004 *
2005 * Releases the console_lock which the caller holds on the console system
2006 * and the console driver list.
2007 *
2008 * While the console_lock was held, console output may have been buffered
2009 * by printk().  If this is the case, console_unlock(); emits
2010 * the output prior to releasing the lock.
2011 *
2012 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2013 *
2014 * console_unlock(); may be called from any context.
2015 */
2016void console_unlock(void)
2017{
2018	static char text[LOG_LINE_MAX + PREFIX_MAX];
2019	static u64 seen_seq;
2020	unsigned long flags;
2021	bool wake_klogd = false;
2022	bool retry;
2023
2024	if (console_suspended) {
2025		up(&console_sem);
2026		return;
2027	}
2028
2029	console_may_schedule = 0;
2030
2031	/* flush buffered message fragment immediately to console */
2032	console_cont_flush(text, sizeof(text));
2033again:
2034	for (;;) {
2035		struct printk_log *msg;
2036		size_t len;
2037		int level;
2038
2039		raw_spin_lock_irqsave(&logbuf_lock, flags);
2040		if (seen_seq != log_next_seq) {
2041			wake_klogd = true;
2042			seen_seq = log_next_seq;
2043		}
2044
2045		if (console_seq < log_first_seq) {
2046			/* messages are gone, move to first one */
2047			console_seq = log_first_seq;
2048			console_idx = log_first_idx;
2049			console_prev = 0;
2050		}
2051skip:
2052		if (console_seq == log_next_seq)
2053			break;
2054
2055		msg = log_from_idx(console_idx);
2056		if (msg->flags & LOG_NOCONS) {
2057			/*
2058			 * Skip record we have buffered and already printed
2059			 * directly to the console when we received it.
2060			 */
2061			console_idx = log_next(console_idx);
2062			console_seq++;
2063			/*
2064			 * We will get here again when we register a new
2065			 * CON_PRINTBUFFER console. Clear the flag so we
2066			 * will properly dump everything later.
2067			 */
2068			msg->flags &= ~LOG_NOCONS;
2069			console_prev = msg->flags;
2070			goto skip;
2071		}
2072
2073		level = msg->level;
2074		len = msg_print_text(msg, console_prev, false,
2075				     text, sizeof(text));
2076		console_idx = log_next(console_idx);
2077		console_seq++;
2078		console_prev = msg->flags;
2079		raw_spin_unlock(&logbuf_lock);
2080
2081		stop_critical_timings();	/* don't trace print latency */
2082		call_console_drivers(level, text, len);
2083		start_critical_timings();
2084		local_irq_restore(flags);
2085	}
2086	console_locked = 0;
2087	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2088
2089	/* Release the exclusive_console once it is used */
2090	if (unlikely(exclusive_console))
2091		exclusive_console = NULL;
2092
2093	raw_spin_unlock(&logbuf_lock);
2094
2095	up(&console_sem);
2096
2097	/*
2098	 * Someone could have filled up the buffer again, so re-check if there's
2099	 * something to flush. In case we cannot trylock the console_sem again,
2100	 * there's a new owner and the console_unlock() from them will do the
2101	 * flush, no worries.
2102	 */
2103	raw_spin_lock(&logbuf_lock);
2104	retry = console_seq != log_next_seq;
2105	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2106
2107	if (retry && console_trylock())
2108		goto again;
2109
2110	if (wake_klogd)
2111		wake_up_klogd();
2112}
2113EXPORT_SYMBOL(console_unlock);
2114
2115/**
2116 * console_conditional_schedule - yield the CPU if required
2117 *
2118 * If the console code is currently allowed to sleep, and
2119 * if this CPU should yield the CPU to another task, do
2120 * so here.
2121 *
2122 * Must be called within console_lock();.
2123 */
2124void __sched console_conditional_schedule(void)
2125{
2126	if (console_may_schedule)
2127		cond_resched();
2128}
2129EXPORT_SYMBOL(console_conditional_schedule);
2130
2131void console_unblank(void)
2132{
2133	struct console *c;
2134
2135	/*
2136	 * console_unblank can no longer be called in interrupt context unless
2137	 * oops_in_progress is set to 1..
2138	 */
2139	if (oops_in_progress) {
2140		if (down_trylock(&console_sem) != 0)
2141			return;
2142	} else
2143		console_lock();
2144
2145	console_locked = 1;
2146	console_may_schedule = 0;
2147	for_each_console(c)
2148		if ((c->flags & CON_ENABLED) && c->unblank)
2149			c->unblank();
2150	console_unlock();
2151}
2152
2153/*
2154 * Return the console tty driver structure and its associated index
2155 */
2156struct tty_driver *console_device(int *index)
2157{
2158	struct console *c;
2159	struct tty_driver *driver = NULL;
2160
2161	console_lock();
2162	for_each_console(c) {
2163		if (!c->device)
2164			continue;
2165		driver = c->device(c, index);
2166		if (driver)
2167			break;
2168	}
2169	console_unlock();
2170	return driver;
2171}
2172
2173/*
2174 * Prevent further output on the passed console device so that (for example)
2175 * serial drivers can disable console output before suspending a port, and can
2176 * re-enable output afterwards.
2177 */
2178void console_stop(struct console *console)
2179{
2180	console_lock();
2181	console->flags &= ~CON_ENABLED;
2182	console_unlock();
2183}
2184EXPORT_SYMBOL(console_stop);
2185
2186void console_start(struct console *console)
2187{
2188	console_lock();
2189	console->flags |= CON_ENABLED;
2190	console_unlock();
2191}
2192EXPORT_SYMBOL(console_start);
2193
2194static int __read_mostly keep_bootcon;
2195
2196static int __init keep_bootcon_setup(char *str)
2197{
2198	keep_bootcon = 1;
2199	pr_info("debug: skip boot console de-registration.\n");
2200
2201	return 0;
2202}
2203
2204early_param("keep_bootcon", keep_bootcon_setup);
2205
2206/*
2207 * The console driver calls this routine during kernel initialization
2208 * to register the console printing procedure with printk() and to
2209 * print any messages that were printed by the kernel before the
2210 * console driver was initialized.
2211 *
2212 * This can happen pretty early during the boot process (because of
2213 * early_printk) - sometimes before setup_arch() completes - be careful
2214 * of what kernel features are used - they may not be initialised yet.
2215 *
2216 * There are two types of consoles - bootconsoles (early_printk) and
2217 * "real" consoles (everything which is not a bootconsole) which are
2218 * handled differently.
2219 *  - Any number of bootconsoles can be registered at any time.
2220 *  - As soon as a "real" console is registered, all bootconsoles
2221 *    will be unregistered automatically.
2222 *  - Once a "real" console is registered, any attempt to register a
2223 *    bootconsoles will be rejected
2224 */
2225void register_console(struct console *newcon)
2226{
2227	int i;
2228	unsigned long flags;
2229	struct console *bcon = NULL;
2230	struct console_cmdline *c;
2231
2232	if (console_drivers)
2233		for_each_console(bcon)
2234			if (WARN(bcon == newcon,
2235					"console '%s%d' already registered\n",
2236					bcon->name, bcon->index))
2237				return;
2238
2239	/*
2240	 * before we register a new CON_BOOT console, make sure we don't
2241	 * already have a valid console
2242	 */
2243	if (console_drivers && newcon->flags & CON_BOOT) {
2244		/* find the last or real console */
2245		for_each_console(bcon) {
2246			if (!(bcon->flags & CON_BOOT)) {
2247				pr_info("Too late to register bootconsole %s%d\n",
2248					newcon->name, newcon->index);
2249				return;
2250			}
2251		}
2252	}
2253
2254	if (console_drivers && console_drivers->flags & CON_BOOT)
2255		bcon = console_drivers;
2256
2257	if (preferred_console < 0 || bcon || !console_drivers)
2258		preferred_console = selected_console;
2259
2260	if (newcon->early_setup)
2261		newcon->early_setup();
2262
2263	/*
2264	 *	See if we want to use this console driver. If we
2265	 *	didn't select a console we take the first one
2266	 *	that registers here.
2267	 */
2268	if (preferred_console < 0) {
2269		if (newcon->index < 0)
2270			newcon->index = 0;
2271		if (newcon->setup == NULL ||
2272		    newcon->setup(newcon, NULL) == 0) {
2273			newcon->flags |= CON_ENABLED;
2274			if (newcon->device) {
2275				newcon->flags |= CON_CONSDEV;
2276				preferred_console = 0;
2277			}
2278		}
2279	}
2280
2281	/*
2282	 *	See if this console matches one we selected on
2283	 *	the command line.
2284	 */
2285	for (i = 0, c = console_cmdline;
2286	     i < MAX_CMDLINECONSOLES && c->name[0];
2287	     i++, c++) {
2288		if (strcmp(c->name, newcon->name) != 0)
2289			continue;
2290		if (newcon->index >= 0 &&
2291		    newcon->index != c->index)
2292			continue;
2293		if (newcon->index < 0)
2294			newcon->index = c->index;
2295
2296		if (_braille_register_console(newcon, c))
2297			return;
2298
2299		if (newcon->setup &&
2300		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2301			break;
2302		newcon->flags |= CON_ENABLED;
2303		newcon->index = c->index;
2304		if (i == selected_console) {
2305			newcon->flags |= CON_CONSDEV;
2306			preferred_console = selected_console;
2307		}
2308		break;
2309	}
2310
2311	if (!(newcon->flags & CON_ENABLED))
2312		return;
2313
2314	/*
2315	 * If we have a bootconsole, and are switching to a real console,
2316	 * don't print everything out again, since when the boot console, and
2317	 * the real console are the same physical device, it's annoying to
2318	 * see the beginning boot messages twice
2319	 */
2320	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2321		newcon->flags &= ~CON_PRINTBUFFER;
2322
2323	/*
2324	 *	Put this console in the list - keep the
2325	 *	preferred driver at the head of the list.
2326	 */
2327	console_lock();
2328	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2329		newcon->next = console_drivers;
2330		console_drivers = newcon;
2331		if (newcon->next)
2332			newcon->next->flags &= ~CON_CONSDEV;
2333	} else {
2334		newcon->next = console_drivers->next;
2335		console_drivers->next = newcon;
2336	}
2337	if (newcon->flags & CON_PRINTBUFFER) {
2338		/*
2339		 * console_unlock(); will print out the buffered messages
2340		 * for us.
2341		 */
2342		raw_spin_lock_irqsave(&logbuf_lock, flags);
2343		console_seq = syslog_seq;
2344		console_idx = syslog_idx;
2345		console_prev = syslog_prev;
2346		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2347		/*
2348		 * We're about to replay the log buffer.  Only do this to the
2349		 * just-registered console to avoid excessive message spam to
2350		 * the already-registered consoles.
2351		 */
2352		exclusive_console = newcon;
2353	}
2354	console_unlock();
2355	console_sysfs_notify();
2356
2357	/*
2358	 * By unregistering the bootconsoles after we enable the real console
2359	 * we get the "console xxx enabled" message on all the consoles -
2360	 * boot consoles, real consoles, etc - this is to ensure that end
2361	 * users know there might be something in the kernel's log buffer that
2362	 * went to the bootconsole (that they do not see on the real console)
2363	 */
2364	pr_info("%sconsole [%s%d] enabled\n",
2365		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2366		newcon->name, newcon->index);
2367	if (bcon &&
2368	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2369	    !keep_bootcon) {
2370		/* We need to iterate through all boot consoles, to make
2371		 * sure we print everything out, before we unregister them.
2372		 */
2373		for_each_console(bcon)
2374			if (bcon->flags & CON_BOOT)
2375				unregister_console(bcon);
2376	}
2377}
2378EXPORT_SYMBOL(register_console);
2379
2380int unregister_console(struct console *console)
2381{
2382        struct console *a, *b;
2383	int res;
2384
2385	pr_info("%sconsole [%s%d] disabled\n",
2386		(console->flags & CON_BOOT) ? "boot" : "" ,
2387		console->name, console->index);
2388
2389	res = _braille_unregister_console(console);
2390	if (res)
2391		return res;
2392
2393	res = 1;
2394	console_lock();
2395	if (console_drivers == console) {
2396		console_drivers=console->next;
2397		res = 0;
2398	} else if (console_drivers) {
2399		for (a=console_drivers->next, b=console_drivers ;
2400		     a; b=a, a=b->next) {
2401			if (a == console) {
2402				b->next = a->next;
2403				res = 0;
2404				break;
2405			}
2406		}
2407	}
2408
2409	/*
2410	 * If this isn't the last console and it has CON_CONSDEV set, we
2411	 * need to set it on the next preferred console.
2412	 */
2413	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2414		console_drivers->flags |= CON_CONSDEV;
2415
2416	console_unlock();
2417	console_sysfs_notify();
2418	return res;
2419}
2420EXPORT_SYMBOL(unregister_console);
2421
2422static int __init printk_late_init(void)
2423{
2424	struct console *con;
2425
2426	for_each_console(con) {
2427		if (!keep_bootcon && con->flags & CON_BOOT) {
2428			unregister_console(con);
2429		}
2430	}
2431	hotcpu_notifier(console_cpu_notify, 0);
2432	return 0;
2433}
2434late_initcall(printk_late_init);
2435
2436#if defined CONFIG_PRINTK
2437/*
2438 * Delayed printk version, for scheduler-internal messages:
2439 */
2440#define PRINTK_BUF_SIZE		512
2441
2442#define PRINTK_PENDING_WAKEUP	0x01
2443#define PRINTK_PENDING_SCHED	0x02
2444
2445static DEFINE_PER_CPU(int, printk_pending);
2446static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2447
2448static void wake_up_klogd_work_func(struct irq_work *irq_work)
2449{
2450	int pending = __this_cpu_xchg(printk_pending, 0);
2451
2452	if (pending & PRINTK_PENDING_SCHED) {
2453		char *buf = __get_cpu_var(printk_sched_buf);
2454		pr_warn("[sched_delayed] %s", buf);
2455	}
2456
2457	if (pending & PRINTK_PENDING_WAKEUP)
2458		wake_up_interruptible(&log_wait);
2459}
2460
2461static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2462	.func = wake_up_klogd_work_func,
2463	.flags = IRQ_WORK_LAZY,
2464};
2465
2466void wake_up_klogd(void)
2467{
2468	preempt_disable();
2469	if (waitqueue_active(&log_wait)) {
2470		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2471		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2472	}
2473	preempt_enable();
2474}
2475
2476int printk_sched(const char *fmt, ...)
2477{
2478	unsigned long flags;
2479	va_list args;
2480	char *buf;
2481	int r;
2482
2483	local_irq_save(flags);
2484	buf = __get_cpu_var(printk_sched_buf);
2485
2486	va_start(args, fmt);
2487	r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2488	va_end(args);
2489
2490	__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2491	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2492	local_irq_restore(flags);
2493
2494	return r;
2495}
2496
2497/*
2498 * printk rate limiting, lifted from the networking subsystem.
2499 *
2500 * This enforces a rate limit: not more than 10 kernel messages
2501 * every 5s to make a denial-of-service attack impossible.
2502 */
2503DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2504
2505int __printk_ratelimit(const char *func)
2506{
2507	return ___ratelimit(&printk_ratelimit_state, func);
2508}
2509EXPORT_SYMBOL(__printk_ratelimit);
2510
2511/**
2512 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2513 * @caller_jiffies: pointer to caller's state
2514 * @interval_msecs: minimum interval between prints
2515 *
2516 * printk_timed_ratelimit() returns true if more than @interval_msecs
2517 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2518 * returned true.
2519 */
2520bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2521			unsigned int interval_msecs)
2522{
2523	if (*caller_jiffies == 0
2524			|| !time_in_range(jiffies, *caller_jiffies,
2525					*caller_jiffies
2526					+ msecs_to_jiffies(interval_msecs))) {
2527		*caller_jiffies = jiffies;
2528		return true;
2529	}
2530	return false;
2531}
2532EXPORT_SYMBOL(printk_timed_ratelimit);
2533
2534static DEFINE_SPINLOCK(dump_list_lock);
2535static LIST_HEAD(dump_list);
2536
2537/**
2538 * kmsg_dump_register - register a kernel log dumper.
2539 * @dumper: pointer to the kmsg_dumper structure
2540 *
2541 * Adds a kernel log dumper to the system. The dump callback in the
2542 * structure will be called when the kernel oopses or panics and must be
2543 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2544 */
2545int kmsg_dump_register(struct kmsg_dumper *dumper)
2546{
2547	unsigned long flags;
2548	int err = -EBUSY;
2549
2550	/* The dump callback needs to be set */
2551	if (!dumper->dump)
2552		return -EINVAL;
2553
2554	spin_lock_irqsave(&dump_list_lock, flags);
2555	/* Don't allow registering multiple times */
2556	if (!dumper->registered) {
2557		dumper->registered = 1;
2558		list_add_tail_rcu(&dumper->list, &dump_list);
2559		err = 0;
2560	}
2561	spin_unlock_irqrestore(&dump_list_lock, flags);
2562
2563	return err;
2564}
2565EXPORT_SYMBOL_GPL(kmsg_dump_register);
2566
2567/**
2568 * kmsg_dump_unregister - unregister a kmsg dumper.
2569 * @dumper: pointer to the kmsg_dumper structure
2570 *
2571 * Removes a dump device from the system. Returns zero on success and
2572 * %-EINVAL otherwise.
2573 */
2574int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2575{
2576	unsigned long flags;
2577	int err = -EINVAL;
2578
2579	spin_lock_irqsave(&dump_list_lock, flags);
2580	if (dumper->registered) {
2581		dumper->registered = 0;
2582		list_del_rcu(&dumper->list);
2583		err = 0;
2584	}
2585	spin_unlock_irqrestore(&dump_list_lock, flags);
2586	synchronize_rcu();
2587
2588	return err;
2589}
2590EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2591
2592static bool always_kmsg_dump;
2593module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2594
2595/**
2596 * kmsg_dump - dump kernel log to kernel message dumpers.
2597 * @reason: the reason (oops, panic etc) for dumping
2598 *
2599 * Call each of the registered dumper's dump() callback, which can
2600 * retrieve the kmsg records with kmsg_dump_get_line() or
2601 * kmsg_dump_get_buffer().
2602 */
2603void kmsg_dump(enum kmsg_dump_reason reason)
2604{
2605	struct kmsg_dumper *dumper;
2606	unsigned long flags;
2607
2608	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2609		return;
2610
2611	rcu_read_lock();
2612	list_for_each_entry_rcu(dumper, &dump_list, list) {
2613		if (dumper->max_reason && reason > dumper->max_reason)
2614			continue;
2615
2616		/* initialize iterator with data about the stored records */
2617		dumper->active = true;
2618
2619		raw_spin_lock_irqsave(&logbuf_lock, flags);
2620		dumper->cur_seq = clear_seq;
2621		dumper->cur_idx = clear_idx;
2622		dumper->next_seq = log_next_seq;
2623		dumper->next_idx = log_next_idx;
2624		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2625
2626		/* invoke dumper which will iterate over records */
2627		dumper->dump(dumper, reason);
2628
2629		/* reset iterator */
2630		dumper->active = false;
2631	}
2632	rcu_read_unlock();
2633}
2634
2635/**
2636 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2637 * @dumper: registered kmsg dumper
2638 * @syslog: include the "<4>" prefixes
2639 * @line: buffer to copy the line to
2640 * @size: maximum size of the buffer
2641 * @len: length of line placed into buffer
2642 *
2643 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2644 * record, and copy one record into the provided buffer.
2645 *
2646 * Consecutive calls will return the next available record moving
2647 * towards the end of the buffer with the youngest messages.
2648 *
2649 * A return value of FALSE indicates that there are no more records to
2650 * read.
2651 *
2652 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2653 */
2654bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2655			       char *line, size_t size, size_t *len)
2656{
2657	struct printk_log *msg;
2658	size_t l = 0;
2659	bool ret = false;
2660
2661	if (!dumper->active)
2662		goto out;
2663
2664	if (dumper->cur_seq < log_first_seq) {
2665		/* messages are gone, move to first available one */
2666		dumper->cur_seq = log_first_seq;
2667		dumper->cur_idx = log_first_idx;
2668	}
2669
2670	/* last entry */
2671	if (dumper->cur_seq >= log_next_seq)
2672		goto out;
2673
2674	msg = log_from_idx(dumper->cur_idx);
2675	l = msg_print_text(msg, 0, syslog, line, size);
2676
2677	dumper->cur_idx = log_next(dumper->cur_idx);
2678	dumper->cur_seq++;
2679	ret = true;
2680out:
2681	if (len)
2682		*len = l;
2683	return ret;
2684}
2685
2686/**
2687 * kmsg_dump_get_line - retrieve one kmsg log line
2688 * @dumper: registered kmsg dumper
2689 * @syslog: include the "<4>" prefixes
2690 * @line: buffer to copy the line to
2691 * @size: maximum size of the buffer
2692 * @len: length of line placed into buffer
2693 *
2694 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2695 * record, and copy one record into the provided buffer.
2696 *
2697 * Consecutive calls will return the next available record moving
2698 * towards the end of the buffer with the youngest messages.
2699 *
2700 * A return value of FALSE indicates that there are no more records to
2701 * read.
2702 */
2703bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2704			char *line, size_t size, size_t *len)
2705{
2706	unsigned long flags;
2707	bool ret;
2708
2709	raw_spin_lock_irqsave(&logbuf_lock, flags);
2710	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2711	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2712
2713	return ret;
2714}
2715EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2716
2717/**
2718 * kmsg_dump_get_buffer - copy kmsg log lines
2719 * @dumper: registered kmsg dumper
2720 * @syslog: include the "<4>" prefixes
2721 * @buf: buffer to copy the line to
2722 * @size: maximum size of the buffer
2723 * @len: length of line placed into buffer
2724 *
2725 * Start at the end of the kmsg buffer and fill the provided buffer
2726 * with as many of the the *youngest* kmsg records that fit into it.
2727 * If the buffer is large enough, all available kmsg records will be
2728 * copied with a single call.
2729 *
2730 * Consecutive calls will fill the buffer with the next block of
2731 * available older records, not including the earlier retrieved ones.
2732 *
2733 * A return value of FALSE indicates that there are no more records to
2734 * read.
2735 */
2736bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2737			  char *buf, size_t size, size_t *len)
2738{
2739	unsigned long flags;
2740	u64 seq;
2741	u32 idx;
2742	u64 next_seq;
2743	u32 next_idx;
2744	enum log_flags prev;
2745	size_t l = 0;
2746	bool ret = false;
2747
2748	if (!dumper->active)
2749		goto out;
2750
2751	raw_spin_lock_irqsave(&logbuf_lock, flags);
2752	if (dumper->cur_seq < log_first_seq) {
2753		/* messages are gone, move to first available one */
2754		dumper->cur_seq = log_first_seq;
2755		dumper->cur_idx = log_first_idx;
2756	}
2757
2758	/* last entry */
2759	if (dumper->cur_seq >= dumper->next_seq) {
2760		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2761		goto out;
2762	}
2763
2764	/* calculate length of entire buffer */
2765	seq = dumper->cur_seq;
2766	idx = dumper->cur_idx;
2767	prev = 0;
2768	while (seq < dumper->next_seq) {
2769		struct printk_log *msg = log_from_idx(idx);
2770
2771		l += msg_print_text(msg, prev, true, NULL, 0);
2772		idx = log_next(idx);
2773		seq++;
2774		prev = msg->flags;
2775	}
2776
2777	/* move first record forward until length fits into the buffer */
2778	seq = dumper->cur_seq;
2779	idx = dumper->cur_idx;
2780	prev = 0;
2781	while (l > size && seq < dumper->next_seq) {
2782		struct printk_log *msg = log_from_idx(idx);
2783
2784		l -= msg_print_text(msg, prev, true, NULL, 0);
2785		idx = log_next(idx);
2786		seq++;
2787		prev = msg->flags;
2788	}
2789
2790	/* last message in next interation */
2791	next_seq = seq;
2792	next_idx = idx;
2793
2794	l = 0;
2795	while (seq < dumper->next_seq) {
2796		struct printk_log *msg = log_from_idx(idx);
2797
2798		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2799		idx = log_next(idx);
2800		seq++;
2801		prev = msg->flags;
2802	}
2803
2804	dumper->next_seq = next_seq;
2805	dumper->next_idx = next_idx;
2806	ret = true;
2807	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2808out:
2809	if (len)
2810		*len = l;
2811	return ret;
2812}
2813EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2814
2815/**
2816 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2817 * @dumper: registered kmsg dumper
2818 *
2819 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2820 * kmsg_dump_get_buffer() can be called again and used multiple
2821 * times within the same dumper.dump() callback.
2822 *
2823 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2824 */
2825void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2826{
2827	dumper->cur_seq = clear_seq;
2828	dumper->cur_idx = clear_idx;
2829	dumper->next_seq = log_next_seq;
2830	dumper->next_idx = log_next_idx;
2831}
2832
2833/**
2834 * kmsg_dump_rewind - reset the interator
2835 * @dumper: registered kmsg dumper
2836 *
2837 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2838 * kmsg_dump_get_buffer() can be called again and used multiple
2839 * times within the same dumper.dump() callback.
2840 */
2841void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2842{
2843	unsigned long flags;
2844
2845	raw_spin_lock_irqsave(&logbuf_lock, flags);
2846	kmsg_dump_rewind_nolock(dumper);
2847	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2848}
2849EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2850
2851static char dump_stack_arch_desc_str[128];
2852
2853/**
2854 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2855 * @fmt: printf-style format string
2856 * @...: arguments for the format string
2857 *
2858 * The configured string will be printed right after utsname during task
2859 * dumps.  Usually used to add arch-specific system identifiers.  If an
2860 * arch wants to make use of such an ID string, it should initialize this
2861 * as soon as possible during boot.
2862 */
2863void __init dump_stack_set_arch_desc(const char *fmt, ...)
2864{
2865	va_list args;
2866
2867	va_start(args, fmt);
2868	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2869		  fmt, args);
2870	va_end(args);
2871}
2872
2873/**
2874 * dump_stack_print_info - print generic debug info for dump_stack()
2875 * @log_lvl: log level
2876 *
2877 * Arch-specific dump_stack() implementations can use this function to
2878 * print out the same debug information as the generic dump_stack().
2879 */
2880void dump_stack_print_info(const char *log_lvl)
2881{
2882	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2883	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2884	       print_tainted(), init_utsname()->release,
2885	       (int)strcspn(init_utsname()->version, " "),
2886	       init_utsname()->version);
2887
2888	if (dump_stack_arch_desc_str[0] != '\0')
2889		printk("%sHardware name: %s\n",
2890		       log_lvl, dump_stack_arch_desc_str);
2891
2892	print_worker_info(log_lvl, current);
2893}
2894
2895/**
2896 * show_regs_print_info - print generic debug info for show_regs()
2897 * @log_lvl: log level
2898 *
2899 * show_regs() implementations can use this function to print out generic
2900 * debug information.
2901 */
2902void show_regs_print_info(const char *log_lvl)
2903{
2904	dump_stack_print_info(log_lvl);
2905
2906	printk("%stask: %p ti: %p task.ti: %p\n",
2907	       log_lvl, current, current_thread_info(),
2908	       task_thread_info(current));
2909}
2910
2911#endif