Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
   3 *
   4 * started by Ingo Molnar and Thomas Gleixner.
   5 *
   6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
   8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
   9 *  Copyright (C) 2006 Esben Nielsen
  10 *
  11 *  See Documentation/rt-mutex-design.txt for details.
  12 */
  13#include <linux/spinlock.h>
  14#include <linux/export.h>
  15#include <linux/sched.h>
  16#include <linux/sched/rt.h>
  17#include <linux/sched/deadline.h>
  18#include <linux/timer.h>
  19
  20#include "rtmutex_common.h"
  21
  22/*
  23 * lock->owner state tracking:
  24 *
  25 * lock->owner holds the task_struct pointer of the owner. Bit 0
  26 * is used to keep track of the "lock has waiters" state.
  27 *
  28 * owner	bit0
  29 * NULL		0	lock is free (fast acquire possible)
  30 * NULL		1	lock is free and has waiters and the top waiter
  31 *				is going to take the lock*
  32 * taskpointer	0	lock is held (fast release possible)
  33 * taskpointer	1	lock is held and has waiters**
  34 *
  35 * The fast atomic compare exchange based acquire and release is only
  36 * possible when bit 0 of lock->owner is 0.
  37 *
  38 * (*) It also can be a transitional state when grabbing the lock
  39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
  40 * we need to set the bit0 before looking at the lock, and the owner may be
  41 * NULL in this small time, hence this can be a transitional state.
  42 *
  43 * (**) There is a small time when bit 0 is set but there are no
  44 * waiters. This can happen when grabbing the lock in the slow path.
  45 * To prevent a cmpxchg of the owner releasing the lock, we need to
  46 * set this bit before looking at the lock.
  47 */
  48
  49static void
  50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
  51{
  52	unsigned long val = (unsigned long)owner;
  53
  54	if (rt_mutex_has_waiters(lock))
  55		val |= RT_MUTEX_HAS_WAITERS;
  56
  57	lock->owner = (struct task_struct *)val;
  58}
  59
  60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
  61{
  62	lock->owner = (struct task_struct *)
  63			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
  64}
  65
  66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
  67{
  68	if (!rt_mutex_has_waiters(lock))
  69		clear_rt_mutex_waiters(lock);
  70}
  71
  72/*
  73 * We can speed up the acquire/release, if the architecture
  74 * supports cmpxchg and if there's no debugging state to be set up
  75 */
  76#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
  77# define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
  78static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
  79{
  80	unsigned long owner, *p = (unsigned long *) &lock->owner;
  81
  82	do {
  83		owner = *p;
  84	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
  85}
  86#else
  87# define rt_mutex_cmpxchg(l,c,n)	(0)
  88static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
  89{
  90	lock->owner = (struct task_struct *)
  91			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
  92}
  93#endif
  94
  95static inline int
  96rt_mutex_waiter_less(struct rt_mutex_waiter *left,
  97		     struct rt_mutex_waiter *right)
  98{
  99	if (left->prio < right->prio)
 100		return 1;
 101
 102	/*
 103	 * If both waiters have dl_prio(), we check the deadlines of the
 104	 * associated tasks.
 105	 * If left waiter has a dl_prio(), and we didn't return 1 above,
 106	 * then right waiter has a dl_prio() too.
 107	 */
 108	if (dl_prio(left->prio))
 109		return (left->task->dl.deadline < right->task->dl.deadline);
 110
 111	return 0;
 112}
 113
 114static void
 115rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 116{
 117	struct rb_node **link = &lock->waiters.rb_node;
 118	struct rb_node *parent = NULL;
 119	struct rt_mutex_waiter *entry;
 120	int leftmost = 1;
 121
 122	while (*link) {
 123		parent = *link;
 124		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
 125		if (rt_mutex_waiter_less(waiter, entry)) {
 126			link = &parent->rb_left;
 127		} else {
 128			link = &parent->rb_right;
 129			leftmost = 0;
 130		}
 131	}
 132
 133	if (leftmost)
 134		lock->waiters_leftmost = &waiter->tree_entry;
 135
 136	rb_link_node(&waiter->tree_entry, parent, link);
 137	rb_insert_color(&waiter->tree_entry, &lock->waiters);
 138}
 139
 140static void
 141rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 142{
 143	if (RB_EMPTY_NODE(&waiter->tree_entry))
 144		return;
 145
 146	if (lock->waiters_leftmost == &waiter->tree_entry)
 147		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
 148
 149	rb_erase(&waiter->tree_entry, &lock->waiters);
 150	RB_CLEAR_NODE(&waiter->tree_entry);
 151}
 152
 153static void
 154rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 155{
 156	struct rb_node **link = &task->pi_waiters.rb_node;
 157	struct rb_node *parent = NULL;
 158	struct rt_mutex_waiter *entry;
 159	int leftmost = 1;
 160
 161	while (*link) {
 162		parent = *link;
 163		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
 164		if (rt_mutex_waiter_less(waiter, entry)) {
 165			link = &parent->rb_left;
 166		} else {
 167			link = &parent->rb_right;
 168			leftmost = 0;
 169		}
 170	}
 171
 172	if (leftmost)
 173		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
 174
 175	rb_link_node(&waiter->pi_tree_entry, parent, link);
 176	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
 177}
 178
 179static void
 180rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 181{
 182	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
 183		return;
 184
 185	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
 186		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
 187
 188	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
 189	RB_CLEAR_NODE(&waiter->pi_tree_entry);
 190}
 191
 192/*
 193 * Calculate task priority from the waiter tree priority
 194 *
 195 * Return task->normal_prio when the waiter tree is empty or when
 196 * the waiter is not allowed to do priority boosting
 197 */
 198int rt_mutex_getprio(struct task_struct *task)
 199{
 200	if (likely(!task_has_pi_waiters(task)))
 201		return task->normal_prio;
 202
 203	return min(task_top_pi_waiter(task)->prio,
 204		   task->normal_prio);
 205}
 206
 207struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
 208{
 209	if (likely(!task_has_pi_waiters(task)))
 210		return NULL;
 211
 212	return task_top_pi_waiter(task)->task;
 213}
 214
 215/*
 216 * Called by sched_setscheduler() to check whether the priority change
 217 * is overruled by a possible priority boosting.
 218 */
 219int rt_mutex_check_prio(struct task_struct *task, int newprio)
 220{
 221	if (!task_has_pi_waiters(task))
 222		return 0;
 223
 224	return task_top_pi_waiter(task)->task->prio <= newprio;
 225}
 226
 227/*
 228 * Adjust the priority of a task, after its pi_waiters got modified.
 229 *
 230 * This can be both boosting and unboosting. task->pi_lock must be held.
 231 */
 232static void __rt_mutex_adjust_prio(struct task_struct *task)
 233{
 234	int prio = rt_mutex_getprio(task);
 235
 236	if (task->prio != prio || dl_prio(prio))
 237		rt_mutex_setprio(task, prio);
 238}
 239
 240/*
 241 * Adjust task priority (undo boosting). Called from the exit path of
 242 * rt_mutex_slowunlock() and rt_mutex_slowlock().
 243 *
 244 * (Note: We do this outside of the protection of lock->wait_lock to
 245 * allow the lock to be taken while or before we readjust the priority
 246 * of task. We do not use the spin_xx_mutex() variants here as we are
 247 * outside of the debug path.)
 248 */
 249static void rt_mutex_adjust_prio(struct task_struct *task)
 250{
 251	unsigned long flags;
 252
 253	raw_spin_lock_irqsave(&task->pi_lock, flags);
 254	__rt_mutex_adjust_prio(task);
 255	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 256}
 257
 258/*
 259 * Max number of times we'll walk the boosting chain:
 260 */
 261int max_lock_depth = 1024;
 262
 263/*
 264 * Adjust the priority chain. Also used for deadlock detection.
 265 * Decreases task's usage by one - may thus free the task.
 266 *
 267 * @task: the task owning the mutex (owner) for which a chain walk is probably
 268 *	  needed
 269 * @deadlock_detect: do we have to carry out deadlock detection?
 270 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
 271 * 	       things for a task that has just got its priority adjusted, and
 272 *	       is waiting on a mutex)
 273 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
 274 *		 its priority to the mutex owner (can be NULL in the case
 275 *		 depicted above or if the top waiter is gone away and we are
 276 *		 actually deboosting the owner)
 277 * @top_task: the current top waiter
 278 *
 279 * Returns 0 or -EDEADLK.
 280 */
 281static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 282				      int deadlock_detect,
 283				      struct rt_mutex *orig_lock,
 284				      struct rt_mutex_waiter *orig_waiter,
 285				      struct task_struct *top_task)
 286{
 287	struct rt_mutex *lock;
 288	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
 289	int detect_deadlock, ret = 0, depth = 0;
 290	unsigned long flags;
 291
 292	detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
 293							 deadlock_detect);
 294
 295	/*
 296	 * The (de)boosting is a step by step approach with a lot of
 297	 * pitfalls. We want this to be preemptible and we want hold a
 298	 * maximum of two locks per step. So we have to check
 299	 * carefully whether things change under us.
 300	 */
 301 again:
 302	if (++depth > max_lock_depth) {
 303		static int prev_max;
 304
 305		/*
 306		 * Print this only once. If the admin changes the limit,
 307		 * print a new message when reaching the limit again.
 308		 */
 309		if (prev_max != max_lock_depth) {
 310			prev_max = max_lock_depth;
 311			printk(KERN_WARNING "Maximum lock depth %d reached "
 312			       "task: %s (%d)\n", max_lock_depth,
 313			       top_task->comm, task_pid_nr(top_task));
 314		}
 315		put_task_struct(task);
 316
 317		return deadlock_detect ? -EDEADLK : 0;
 318	}
 319 retry:
 320	/*
 321	 * Task can not go away as we did a get_task() before !
 322	 */
 323	raw_spin_lock_irqsave(&task->pi_lock, flags);
 324
 325	waiter = task->pi_blocked_on;
 326	/*
 327	 * Check whether the end of the boosting chain has been
 328	 * reached or the state of the chain has changed while we
 329	 * dropped the locks.
 330	 */
 331	if (!waiter)
 332		goto out_unlock_pi;
 333
 334	/*
 335	 * Check the orig_waiter state. After we dropped the locks,
 336	 * the previous owner of the lock might have released the lock.
 337	 */
 338	if (orig_waiter && !rt_mutex_owner(orig_lock))
 339		goto out_unlock_pi;
 340
 341	/*
 342	 * Drop out, when the task has no waiters. Note,
 343	 * top_waiter can be NULL, when we are in the deboosting
 344	 * mode!
 345	 */
 346	if (top_waiter) {
 347		if (!task_has_pi_waiters(task))
 348			goto out_unlock_pi;
 349		/*
 350		 * If deadlock detection is off, we stop here if we
 351		 * are not the top pi waiter of the task.
 352		 */
 353		if (!detect_deadlock && top_waiter != task_top_pi_waiter(task))
 354			goto out_unlock_pi;
 355	}
 356
 357	/*
 358	 * When deadlock detection is off then we check, if further
 359	 * priority adjustment is necessary.
 360	 */
 361	if (!detect_deadlock && waiter->prio == task->prio)
 362		goto out_unlock_pi;
 363
 364	lock = waiter->lock;
 365	if (!raw_spin_trylock(&lock->wait_lock)) {
 366		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 367		cpu_relax();
 368		goto retry;
 369	}
 370
 371	/*
 372	 * Deadlock detection. If the lock is the same as the original
 373	 * lock which caused us to walk the lock chain or if the
 374	 * current lock is owned by the task which initiated the chain
 375	 * walk, we detected a deadlock.
 376	 */
 377	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
 378		debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
 379		raw_spin_unlock(&lock->wait_lock);
 380		ret = deadlock_detect ? -EDEADLK : 0;
 381		goto out_unlock_pi;
 382	}
 383
 384	top_waiter = rt_mutex_top_waiter(lock);
 385
 386	/* Requeue the waiter */
 387	rt_mutex_dequeue(lock, waiter);
 388	waiter->prio = task->prio;
 389	rt_mutex_enqueue(lock, waiter);
 390
 391	/* Release the task */
 392	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 393	if (!rt_mutex_owner(lock)) {
 394		/*
 395		 * If the requeue above changed the top waiter, then we need
 396		 * to wake the new top waiter up to try to get the lock.
 397		 */
 398
 399		if (top_waiter != rt_mutex_top_waiter(lock))
 400			wake_up_process(rt_mutex_top_waiter(lock)->task);
 401		raw_spin_unlock(&lock->wait_lock);
 402		goto out_put_task;
 403	}
 404	put_task_struct(task);
 405
 406	/* Grab the next task */
 407	task = rt_mutex_owner(lock);
 408	get_task_struct(task);
 409	raw_spin_lock_irqsave(&task->pi_lock, flags);
 410
 411	if (waiter == rt_mutex_top_waiter(lock)) {
 412		/* Boost the owner */
 413		rt_mutex_dequeue_pi(task, top_waiter);
 414		rt_mutex_enqueue_pi(task, waiter);
 415		__rt_mutex_adjust_prio(task);
 416
 417	} else if (top_waiter == waiter) {
 418		/* Deboost the owner */
 419		rt_mutex_dequeue_pi(task, waiter);
 420		waiter = rt_mutex_top_waiter(lock);
 421		rt_mutex_enqueue_pi(task, waiter);
 422		__rt_mutex_adjust_prio(task);
 423	}
 424
 425	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 426
 427	top_waiter = rt_mutex_top_waiter(lock);
 428	raw_spin_unlock(&lock->wait_lock);
 429
 430	if (!detect_deadlock && waiter != top_waiter)
 431		goto out_put_task;
 432
 433	goto again;
 434
 435 out_unlock_pi:
 436	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 437 out_put_task:
 438	put_task_struct(task);
 439
 440	return ret;
 441}
 442
 443/*
 444 * Try to take an rt-mutex
 445 *
 446 * Must be called with lock->wait_lock held.
 447 *
 448 * @lock:   the lock to be acquired.
 449 * @task:   the task which wants to acquire the lock
 450 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
 451 */
 452static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 453		struct rt_mutex_waiter *waiter)
 454{
 455	/*
 456	 * We have to be careful here if the atomic speedups are
 457	 * enabled, such that, when
 458	 *  - no other waiter is on the lock
 459	 *  - the lock has been released since we did the cmpxchg
 460	 * the lock can be released or taken while we are doing the
 461	 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
 462	 *
 463	 * The atomic acquire/release aware variant of
 464	 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
 465	 * the WAITERS bit, the atomic release / acquire can not
 466	 * happen anymore and lock->wait_lock protects us from the
 467	 * non-atomic case.
 468	 *
 469	 * Note, that this might set lock->owner =
 470	 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
 471	 * any more. This is fixed up when we take the ownership.
 472	 * This is the transitional state explained at the top of this file.
 473	 */
 474	mark_rt_mutex_waiters(lock);
 475
 476	if (rt_mutex_owner(lock))
 477		return 0;
 478
 479	/*
 480	 * It will get the lock because of one of these conditions:
 481	 * 1) there is no waiter
 482	 * 2) higher priority than waiters
 483	 * 3) it is top waiter
 484	 */
 485	if (rt_mutex_has_waiters(lock)) {
 486		if (task->prio >= rt_mutex_top_waiter(lock)->prio) {
 487			if (!waiter || waiter != rt_mutex_top_waiter(lock))
 488				return 0;
 489		}
 490	}
 491
 492	if (waiter || rt_mutex_has_waiters(lock)) {
 493		unsigned long flags;
 494		struct rt_mutex_waiter *top;
 495
 496		raw_spin_lock_irqsave(&task->pi_lock, flags);
 497
 498		/* remove the queued waiter. */
 499		if (waiter) {
 500			rt_mutex_dequeue(lock, waiter);
 501			task->pi_blocked_on = NULL;
 502		}
 503
 504		/*
 505		 * We have to enqueue the top waiter(if it exists) into
 506		 * task->pi_waiters list.
 507		 */
 508		if (rt_mutex_has_waiters(lock)) {
 509			top = rt_mutex_top_waiter(lock);
 510			rt_mutex_enqueue_pi(task, top);
 511		}
 512		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 513	}
 514
 515	/* We got the lock. */
 516	debug_rt_mutex_lock(lock);
 517
 518	rt_mutex_set_owner(lock, task);
 519
 520	rt_mutex_deadlock_account_lock(lock, task);
 521
 522	return 1;
 523}
 524
 525/*
 526 * Task blocks on lock.
 527 *
 528 * Prepare waiter and propagate pi chain
 529 *
 530 * This must be called with lock->wait_lock held.
 531 */
 532static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 533				   struct rt_mutex_waiter *waiter,
 534				   struct task_struct *task,
 535				   int detect_deadlock)
 536{
 537	struct task_struct *owner = rt_mutex_owner(lock);
 538	struct rt_mutex_waiter *top_waiter = waiter;
 539	unsigned long flags;
 540	int chain_walk = 0, res;
 541
 542	/*
 543	 * Early deadlock detection. We really don't want the task to
 544	 * enqueue on itself just to untangle the mess later. It's not
 545	 * only an optimization. We drop the locks, so another waiter
 546	 * can come in before the chain walk detects the deadlock. So
 547	 * the other will detect the deadlock and return -EDEADLOCK,
 548	 * which is wrong, as the other waiter is not in a deadlock
 549	 * situation.
 550	 */
 551	if (detect_deadlock && owner == task)
 552		return -EDEADLK;
 553
 554	raw_spin_lock_irqsave(&task->pi_lock, flags);
 555	__rt_mutex_adjust_prio(task);
 556	waiter->task = task;
 557	waiter->lock = lock;
 558	waiter->prio = task->prio;
 559
 560	/* Get the top priority waiter on the lock */
 561	if (rt_mutex_has_waiters(lock))
 562		top_waiter = rt_mutex_top_waiter(lock);
 563	rt_mutex_enqueue(lock, waiter);
 564
 565	task->pi_blocked_on = waiter;
 566
 567	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 568
 569	if (!owner)
 570		return 0;
 571
 572	if (waiter == rt_mutex_top_waiter(lock)) {
 573		raw_spin_lock_irqsave(&owner->pi_lock, flags);
 574		rt_mutex_dequeue_pi(owner, top_waiter);
 575		rt_mutex_enqueue_pi(owner, waiter);
 576
 577		__rt_mutex_adjust_prio(owner);
 578		if (owner->pi_blocked_on)
 579			chain_walk = 1;
 580		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
 581	}
 582	else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
 583		chain_walk = 1;
 584
 585	if (!chain_walk)
 586		return 0;
 587
 588	/*
 589	 * The owner can't disappear while holding a lock,
 590	 * so the owner struct is protected by wait_lock.
 591	 * Gets dropped in rt_mutex_adjust_prio_chain()!
 592	 */
 593	get_task_struct(owner);
 594
 595	raw_spin_unlock(&lock->wait_lock);
 596
 597	res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
 598					 task);
 599
 600	raw_spin_lock(&lock->wait_lock);
 601
 602	return res;
 603}
 604
 605/*
 606 * Wake up the next waiter on the lock.
 607 *
 608 * Remove the top waiter from the current tasks waiter list and wake it up.
 609 *
 610 * Called with lock->wait_lock held.
 611 */
 612static void wakeup_next_waiter(struct rt_mutex *lock)
 613{
 614	struct rt_mutex_waiter *waiter;
 615	unsigned long flags;
 616
 617	raw_spin_lock_irqsave(&current->pi_lock, flags);
 618
 619	waiter = rt_mutex_top_waiter(lock);
 620
 621	/*
 622	 * Remove it from current->pi_waiters. We do not adjust a
 623	 * possible priority boost right now. We execute wakeup in the
 624	 * boosted mode and go back to normal after releasing
 625	 * lock->wait_lock.
 626	 */
 627	rt_mutex_dequeue_pi(current, waiter);
 628
 629	rt_mutex_set_owner(lock, NULL);
 630
 631	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
 632
 633	wake_up_process(waiter->task);
 634}
 635
 636/*
 637 * Remove a waiter from a lock and give up
 638 *
 639 * Must be called with lock->wait_lock held and
 640 * have just failed to try_to_take_rt_mutex().
 641 */
 642static void remove_waiter(struct rt_mutex *lock,
 643			  struct rt_mutex_waiter *waiter)
 644{
 645	int first = (waiter == rt_mutex_top_waiter(lock));
 646	struct task_struct *owner = rt_mutex_owner(lock);
 647	unsigned long flags;
 648	int chain_walk = 0;
 649
 650	raw_spin_lock_irqsave(&current->pi_lock, flags);
 651	rt_mutex_dequeue(lock, waiter);
 652	current->pi_blocked_on = NULL;
 653	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
 654
 655	if (!owner)
 656		return;
 657
 658	if (first) {
 659
 660		raw_spin_lock_irqsave(&owner->pi_lock, flags);
 661
 662		rt_mutex_dequeue_pi(owner, waiter);
 663
 664		if (rt_mutex_has_waiters(lock)) {
 665			struct rt_mutex_waiter *next;
 666
 667			next = rt_mutex_top_waiter(lock);
 668			rt_mutex_enqueue_pi(owner, next);
 669		}
 670		__rt_mutex_adjust_prio(owner);
 671
 672		if (owner->pi_blocked_on)
 673			chain_walk = 1;
 674
 675		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
 676	}
 677
 678	if (!chain_walk)
 679		return;
 680
 681	/* gets dropped in rt_mutex_adjust_prio_chain()! */
 682	get_task_struct(owner);
 683
 684	raw_spin_unlock(&lock->wait_lock);
 685
 686	rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
 687
 688	raw_spin_lock(&lock->wait_lock);
 689}
 690
 691/*
 692 * Recheck the pi chain, in case we got a priority setting
 693 *
 694 * Called from sched_setscheduler
 695 */
 696void rt_mutex_adjust_pi(struct task_struct *task)
 697{
 698	struct rt_mutex_waiter *waiter;
 699	unsigned long flags;
 700
 701	raw_spin_lock_irqsave(&task->pi_lock, flags);
 702
 703	waiter = task->pi_blocked_on;
 704	if (!waiter || (waiter->prio == task->prio &&
 705			!dl_prio(task->prio))) {
 706		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 707		return;
 708	}
 709
 710	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 711
 712	/* gets dropped in rt_mutex_adjust_prio_chain()! */
 713	get_task_struct(task);
 714	rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
 715}
 716
 717/**
 718 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
 719 * @lock:		 the rt_mutex to take
 720 * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
 721 * 			 or TASK_UNINTERRUPTIBLE)
 722 * @timeout:		 the pre-initialized and started timer, or NULL for none
 723 * @waiter:		 the pre-initialized rt_mutex_waiter
 724 *
 725 * lock->wait_lock must be held by the caller.
 726 */
 727static int __sched
 728__rt_mutex_slowlock(struct rt_mutex *lock, int state,
 729		    struct hrtimer_sleeper *timeout,
 730		    struct rt_mutex_waiter *waiter)
 731{
 732	int ret = 0;
 733
 734	for (;;) {
 735		/* Try to acquire the lock: */
 736		if (try_to_take_rt_mutex(lock, current, waiter))
 737			break;
 738
 739		/*
 740		 * TASK_INTERRUPTIBLE checks for signals and
 741		 * timeout. Ignored otherwise.
 742		 */
 743		if (unlikely(state == TASK_INTERRUPTIBLE)) {
 744			/* Signal pending? */
 745			if (signal_pending(current))
 746				ret = -EINTR;
 747			if (timeout && !timeout->task)
 748				ret = -ETIMEDOUT;
 749			if (ret)
 750				break;
 751		}
 752
 753		raw_spin_unlock(&lock->wait_lock);
 754
 755		debug_rt_mutex_print_deadlock(waiter);
 756
 757		schedule_rt_mutex(lock);
 758
 759		raw_spin_lock(&lock->wait_lock);
 760		set_current_state(state);
 761	}
 762
 763	return ret;
 764}
 765
 766/*
 767 * Slow path lock function:
 768 */
 769static int __sched
 770rt_mutex_slowlock(struct rt_mutex *lock, int state,
 771		  struct hrtimer_sleeper *timeout,
 772		  int detect_deadlock)
 773{
 774	struct rt_mutex_waiter waiter;
 775	int ret = 0;
 776
 777	debug_rt_mutex_init_waiter(&waiter);
 778	RB_CLEAR_NODE(&waiter.pi_tree_entry);
 779	RB_CLEAR_NODE(&waiter.tree_entry);
 780
 781	raw_spin_lock(&lock->wait_lock);
 782
 783	/* Try to acquire the lock again: */
 784	if (try_to_take_rt_mutex(lock, current, NULL)) {
 785		raw_spin_unlock(&lock->wait_lock);
 786		return 0;
 787	}
 788
 789	set_current_state(state);
 790
 791	/* Setup the timer, when timeout != NULL */
 792	if (unlikely(timeout)) {
 793		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
 794		if (!hrtimer_active(&timeout->timer))
 795			timeout->task = NULL;
 796	}
 797
 798	ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
 799
 800	if (likely(!ret))
 801		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
 802
 803	set_current_state(TASK_RUNNING);
 804
 805	if (unlikely(ret))
 806		remove_waiter(lock, &waiter);
 807
 808	/*
 809	 * try_to_take_rt_mutex() sets the waiter bit
 810	 * unconditionally. We might have to fix that up.
 811	 */
 812	fixup_rt_mutex_waiters(lock);
 813
 814	raw_spin_unlock(&lock->wait_lock);
 815
 816	/* Remove pending timer: */
 817	if (unlikely(timeout))
 818		hrtimer_cancel(&timeout->timer);
 819
 820	debug_rt_mutex_free_waiter(&waiter);
 821
 822	return ret;
 823}
 824
 825/*
 826 * Slow path try-lock function:
 827 */
 828static inline int
 829rt_mutex_slowtrylock(struct rt_mutex *lock)
 830{
 831	int ret = 0;
 832
 833	raw_spin_lock(&lock->wait_lock);
 834
 835	if (likely(rt_mutex_owner(lock) != current)) {
 836
 837		ret = try_to_take_rt_mutex(lock, current, NULL);
 838		/*
 839		 * try_to_take_rt_mutex() sets the lock waiters
 840		 * bit unconditionally. Clean this up.
 841		 */
 842		fixup_rt_mutex_waiters(lock);
 843	}
 844
 845	raw_spin_unlock(&lock->wait_lock);
 846
 847	return ret;
 848}
 849
 850/*
 851 * Slow path to release a rt-mutex:
 852 */
 853static void __sched
 854rt_mutex_slowunlock(struct rt_mutex *lock)
 855{
 856	raw_spin_lock(&lock->wait_lock);
 857
 858	debug_rt_mutex_unlock(lock);
 859
 860	rt_mutex_deadlock_account_unlock(current);
 861
 862	if (!rt_mutex_has_waiters(lock)) {
 863		lock->owner = NULL;
 864		raw_spin_unlock(&lock->wait_lock);
 865		return;
 866	}
 867
 868	wakeup_next_waiter(lock);
 869
 870	raw_spin_unlock(&lock->wait_lock);
 871
 872	/* Undo pi boosting if necessary: */
 873	rt_mutex_adjust_prio(current);
 874}
 875
 876/*
 877 * debug aware fast / slowpath lock,trylock,unlock
 878 *
 879 * The atomic acquire/release ops are compiled away, when either the
 880 * architecture does not support cmpxchg or when debugging is enabled.
 881 */
 882static inline int
 883rt_mutex_fastlock(struct rt_mutex *lock, int state,
 884		  int detect_deadlock,
 885		  int (*slowfn)(struct rt_mutex *lock, int state,
 886				struct hrtimer_sleeper *timeout,
 887				int detect_deadlock))
 888{
 889	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
 890		rt_mutex_deadlock_account_lock(lock, current);
 891		return 0;
 892	} else
 893		return slowfn(lock, state, NULL, detect_deadlock);
 894}
 895
 896static inline int
 897rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
 898			struct hrtimer_sleeper *timeout, int detect_deadlock,
 899			int (*slowfn)(struct rt_mutex *lock, int state,
 900				      struct hrtimer_sleeper *timeout,
 901				      int detect_deadlock))
 902{
 903	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
 904		rt_mutex_deadlock_account_lock(lock, current);
 905		return 0;
 906	} else
 907		return slowfn(lock, state, timeout, detect_deadlock);
 908}
 909
 910static inline int
 911rt_mutex_fasttrylock(struct rt_mutex *lock,
 912		     int (*slowfn)(struct rt_mutex *lock))
 913{
 914	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
 915		rt_mutex_deadlock_account_lock(lock, current);
 916		return 1;
 917	}
 918	return slowfn(lock);
 919}
 920
 921static inline void
 922rt_mutex_fastunlock(struct rt_mutex *lock,
 923		    void (*slowfn)(struct rt_mutex *lock))
 924{
 925	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
 926		rt_mutex_deadlock_account_unlock(current);
 927	else
 928		slowfn(lock);
 929}
 930
 931/**
 932 * rt_mutex_lock - lock a rt_mutex
 933 *
 934 * @lock: the rt_mutex to be locked
 935 */
 936void __sched rt_mutex_lock(struct rt_mutex *lock)
 937{
 938	might_sleep();
 939
 940	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
 941}
 942EXPORT_SYMBOL_GPL(rt_mutex_lock);
 943
 944/**
 945 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
 946 *
 947 * @lock: 		the rt_mutex to be locked
 948 * @detect_deadlock:	deadlock detection on/off
 949 *
 950 * Returns:
 951 *  0 		on success
 952 * -EINTR 	when interrupted by a signal
 953 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
 954 */
 955int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
 956						 int detect_deadlock)
 957{
 958	might_sleep();
 959
 960	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
 961				 detect_deadlock, rt_mutex_slowlock);
 962}
 963EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
 964
 965/**
 966 * rt_mutex_timed_lock - lock a rt_mutex interruptible
 967 *			the timeout structure is provided
 968 *			by the caller
 969 *
 970 * @lock: 		the rt_mutex to be locked
 971 * @timeout:		timeout structure or NULL (no timeout)
 972 * @detect_deadlock:	deadlock detection on/off
 973 *
 974 * Returns:
 975 *  0 		on success
 976 * -EINTR 	when interrupted by a signal
 977 * -ETIMEDOUT	when the timeout expired
 978 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
 979 */
 980int
 981rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
 982		    int detect_deadlock)
 983{
 984	might_sleep();
 985
 986	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
 987				       detect_deadlock, rt_mutex_slowlock);
 988}
 989EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
 990
 991/**
 992 * rt_mutex_trylock - try to lock a rt_mutex
 993 *
 994 * @lock:	the rt_mutex to be locked
 995 *
 996 * Returns 1 on success and 0 on contention
 997 */
 998int __sched rt_mutex_trylock(struct rt_mutex *lock)
 999{
1000	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1001}
1002EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1003
1004/**
1005 * rt_mutex_unlock - unlock a rt_mutex
1006 *
1007 * @lock: the rt_mutex to be unlocked
1008 */
1009void __sched rt_mutex_unlock(struct rt_mutex *lock)
1010{
1011	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1012}
1013EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1014
1015/**
1016 * rt_mutex_destroy - mark a mutex unusable
1017 * @lock: the mutex to be destroyed
1018 *
1019 * This function marks the mutex uninitialized, and any subsequent
1020 * use of the mutex is forbidden. The mutex must not be locked when
1021 * this function is called.
1022 */
1023void rt_mutex_destroy(struct rt_mutex *lock)
1024{
1025	WARN_ON(rt_mutex_is_locked(lock));
1026#ifdef CONFIG_DEBUG_RT_MUTEXES
1027	lock->magic = NULL;
1028#endif
1029}
1030
1031EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1032
1033/**
1034 * __rt_mutex_init - initialize the rt lock
1035 *
1036 * @lock: the rt lock to be initialized
1037 *
1038 * Initialize the rt lock to unlocked state.
1039 *
1040 * Initializing of a locked rt lock is not allowed
1041 */
1042void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1043{
1044	lock->owner = NULL;
1045	raw_spin_lock_init(&lock->wait_lock);
1046	lock->waiters = RB_ROOT;
1047	lock->waiters_leftmost = NULL;
1048
1049	debug_rt_mutex_init(lock, name);
1050}
1051EXPORT_SYMBOL_GPL(__rt_mutex_init);
1052
1053/**
1054 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1055 *				proxy owner
1056 *
1057 * @lock: 	the rt_mutex to be locked
1058 * @proxy_owner:the task to set as owner
1059 *
1060 * No locking. Caller has to do serializing itself
1061 * Special API call for PI-futex support
1062 */
1063void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1064				struct task_struct *proxy_owner)
1065{
1066	__rt_mutex_init(lock, NULL);
1067	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1068	rt_mutex_set_owner(lock, proxy_owner);
1069	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1070}
1071
1072/**
1073 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1074 *
1075 * @lock: 	the rt_mutex to be locked
1076 *
1077 * No locking. Caller has to do serializing itself
1078 * Special API call for PI-futex support
1079 */
1080void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1081			   struct task_struct *proxy_owner)
1082{
1083	debug_rt_mutex_proxy_unlock(lock);
1084	rt_mutex_set_owner(lock, NULL);
1085	rt_mutex_deadlock_account_unlock(proxy_owner);
1086}
1087
1088/**
1089 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1090 * @lock:		the rt_mutex to take
1091 * @waiter:		the pre-initialized rt_mutex_waiter
1092 * @task:		the task to prepare
1093 * @detect_deadlock:	perform deadlock detection (1) or not (0)
1094 *
1095 * Returns:
1096 *  0 - task blocked on lock
1097 *  1 - acquired the lock for task, caller should wake it up
1098 * <0 - error
1099 *
1100 * Special API call for FUTEX_REQUEUE_PI support.
1101 */
1102int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1103			      struct rt_mutex_waiter *waiter,
1104			      struct task_struct *task, int detect_deadlock)
1105{
1106	int ret;
1107
1108	raw_spin_lock(&lock->wait_lock);
1109
1110	if (try_to_take_rt_mutex(lock, task, NULL)) {
1111		raw_spin_unlock(&lock->wait_lock);
1112		return 1;
1113	}
1114
1115	ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
1116
1117	if (ret && !rt_mutex_owner(lock)) {
1118		/*
1119		 * Reset the return value. We might have
1120		 * returned with -EDEADLK and the owner
1121		 * released the lock while we were walking the
1122		 * pi chain.  Let the waiter sort it out.
1123		 */
1124		ret = 0;
1125	}
1126
1127	if (unlikely(ret))
1128		remove_waiter(lock, waiter);
1129
1130	raw_spin_unlock(&lock->wait_lock);
1131
1132	debug_rt_mutex_print_deadlock(waiter);
1133
1134	return ret;
1135}
1136
1137/**
1138 * rt_mutex_next_owner - return the next owner of the lock
1139 *
1140 * @lock: the rt lock query
1141 *
1142 * Returns the next owner of the lock or NULL
1143 *
1144 * Caller has to serialize against other accessors to the lock
1145 * itself.
1146 *
1147 * Special API call for PI-futex support
1148 */
1149struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1150{
1151	if (!rt_mutex_has_waiters(lock))
1152		return NULL;
1153
1154	return rt_mutex_top_waiter(lock)->task;
1155}
1156
1157/**
1158 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1159 * @lock:		the rt_mutex we were woken on
1160 * @to:			the timeout, null if none. hrtimer should already have
1161 * 			been started.
1162 * @waiter:		the pre-initialized rt_mutex_waiter
1163 * @detect_deadlock:	perform deadlock detection (1) or not (0)
1164 *
1165 * Complete the lock acquisition started our behalf by another thread.
1166 *
1167 * Returns:
1168 *  0 - success
1169 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1170 *
1171 * Special API call for PI-futex requeue support
1172 */
1173int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1174			       struct hrtimer_sleeper *to,
1175			       struct rt_mutex_waiter *waiter,
1176			       int detect_deadlock)
1177{
1178	int ret;
1179
1180	raw_spin_lock(&lock->wait_lock);
1181
1182	set_current_state(TASK_INTERRUPTIBLE);
1183
1184	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1185
1186	set_current_state(TASK_RUNNING);
1187
1188	if (unlikely(ret))
1189		remove_waiter(lock, waiter);
1190
1191	/*
1192	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1193	 * have to fix that up.
1194	 */
1195	fixup_rt_mutex_waiters(lock);
1196
1197	raw_spin_unlock(&lock->wait_lock);
1198
1199	return ret;
1200}