Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.15
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *	based on kernel/timer.c
  24 *
  25 *	Help, testing, suggestions, bugfixes, improvements were
  26 *	provided by:
  27 *
  28 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *	et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/sched/sysctl.h>
  48#include <linux/sched/rt.h>
  49#include <linux/sched/deadline.h>
  50#include <linux/timer.h>
  51#include <linux/freezer.h>
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/timer.h>
  56
  57/*
  58 * The timer bases:
  59 *
  60 * There are more clockids then hrtimer bases. Thus, we index
  61 * into the timer bases by the hrtimer_base_type enum. When trying
  62 * to reach a base using a clockid, hrtimer_clockid_to_base()
  63 * is used to convert from clockid to the proper hrtimer_base_type.
  64 */
  65DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  66{
  67
  68	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  69	.clock_base =
  70	{
  71		{
  72			.index = HRTIMER_BASE_MONOTONIC,
  73			.clockid = CLOCK_MONOTONIC,
  74			.get_time = &ktime_get,
  75			.resolution = KTIME_LOW_RES,
  76		},
  77		{
  78			.index = HRTIMER_BASE_REALTIME,
  79			.clockid = CLOCK_REALTIME,
  80			.get_time = &ktime_get_real,
  81			.resolution = KTIME_LOW_RES,
  82		},
  83		{
  84			.index = HRTIMER_BASE_BOOTTIME,
  85			.clockid = CLOCK_BOOTTIME,
  86			.get_time = &ktime_get_boottime,
  87			.resolution = KTIME_LOW_RES,
  88		},
  89		{
  90			.index = HRTIMER_BASE_TAI,
  91			.clockid = CLOCK_TAI,
  92			.get_time = &ktime_get_clocktai,
  93			.resolution = KTIME_LOW_RES,
  94		},
  95	}
  96};
  97
  98static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  99	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
 100	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
 101	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
 102	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
 103};
 104
 105static inline int hrtimer_clockid_to_base(clockid_t clock_id)
 106{
 107	return hrtimer_clock_to_base_table[clock_id];
 108}
 109
 110
 111/*
 112 * Get the coarse grained time at the softirq based on xtime and
 113 * wall_to_monotonic.
 114 */
 115static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 116{
 117	ktime_t xtim, mono, boot;
 118	struct timespec xts, tom, slp;
 119	s32 tai_offset;
 120
 121	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
 122	tai_offset = timekeeping_get_tai_offset();
 123
 124	xtim = timespec_to_ktime(xts);
 125	mono = ktime_add(xtim, timespec_to_ktime(tom));
 126	boot = ktime_add(mono, timespec_to_ktime(slp));
 127	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
 128	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
 129	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
 130	base->clock_base[HRTIMER_BASE_TAI].softirq_time =
 131				ktime_add(xtim,	ktime_set(tai_offset, 0));
 132}
 133
 134/*
 135 * Functions and macros which are different for UP/SMP systems are kept in a
 136 * single place
 137 */
 138#ifdef CONFIG_SMP
 139
 140/*
 141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 142 * means that all timers which are tied to this base via timer->base are
 143 * locked, and the base itself is locked too.
 144 *
 145 * So __run_timers/migrate_timers can safely modify all timers which could
 146 * be found on the lists/queues.
 147 *
 148 * When the timer's base is locked, and the timer removed from list, it is
 149 * possible to set timer->base = NULL and drop the lock: the timer remains
 150 * locked.
 151 */
 152static
 153struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 154					     unsigned long *flags)
 155{
 156	struct hrtimer_clock_base *base;
 157
 158	for (;;) {
 159		base = timer->base;
 160		if (likely(base != NULL)) {
 161			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 162			if (likely(base == timer->base))
 163				return base;
 164			/* The timer has migrated to another CPU: */
 165			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 166		}
 167		cpu_relax();
 168	}
 169}
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 171/*
 172 * With HIGHRES=y we do not migrate the timer when it is expiring
 173 * before the next event on the target cpu because we cannot reprogram
 174 * the target cpu hardware and we would cause it to fire late.
 175 *
 176 * Called with cpu_base->lock of target cpu held.
 177 */
 178static int
 179hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 180{
 181#ifdef CONFIG_HIGH_RES_TIMERS
 182	ktime_t expires;
 183
 184	if (!new_base->cpu_base->hres_active)
 185		return 0;
 186
 187	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 188	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 189#else
 190	return 0;
 191#endif
 192}
 193
 194/*
 195 * Switch the timer base to the current CPU when possible.
 196 */
 197static inline struct hrtimer_clock_base *
 198switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 199		    int pinned)
 200{
 201	struct hrtimer_clock_base *new_base;
 202	struct hrtimer_cpu_base *new_cpu_base;
 203	int this_cpu = smp_processor_id();
 204	int cpu = get_nohz_timer_target(pinned);
 205	int basenum = base->index;
 206
 207again:
 208	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
 209	new_base = &new_cpu_base->clock_base[basenum];
 210
 211	if (base != new_base) {
 212		/*
 213		 * We are trying to move timer to new_base.
 214		 * However we can't change timer's base while it is running,
 215		 * so we keep it on the same CPU. No hassle vs. reprogramming
 216		 * the event source in the high resolution case. The softirq
 217		 * code will take care of this when the timer function has
 218		 * completed. There is no conflict as we hold the lock until
 219		 * the timer is enqueued.
 220		 */
 221		if (unlikely(hrtimer_callback_running(timer)))
 222			return base;
 223
 224		/* See the comment in lock_timer_base() */
 225		timer->base = NULL;
 226		raw_spin_unlock(&base->cpu_base->lock);
 227		raw_spin_lock(&new_base->cpu_base->lock);
 228
 229		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 230			cpu = this_cpu;
 231			raw_spin_unlock(&new_base->cpu_base->lock);
 232			raw_spin_lock(&base->cpu_base->lock);
 233			timer->base = base;
 234			goto again;
 235		}
 236		timer->base = new_base;
 237	} else {
 238		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 239			cpu = this_cpu;
 240			goto again;
 241		}
 242	}
 243	return new_base;
 244}
 245
 246#else /* CONFIG_SMP */
 247
 248static inline struct hrtimer_clock_base *
 249lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 250{
 251	struct hrtimer_clock_base *base = timer->base;
 252
 253	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 254
 255	return base;
 256}
 257
 258# define switch_hrtimer_base(t, b, p)	(b)
 259
 260#endif	/* !CONFIG_SMP */
 261
 262/*
 263 * Functions for the union type storage format of ktime_t which are
 264 * too large for inlining:
 265 */
 266#if BITS_PER_LONG < 64
 267# ifndef CONFIG_KTIME_SCALAR
 268/**
 269 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 270 * @kt:		addend
 271 * @nsec:	the scalar nsec value to add
 272 *
 273 * Returns the sum of kt and nsec in ktime_t format
 274 */
 275ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
 276{
 277	ktime_t tmp;
 278
 279	if (likely(nsec < NSEC_PER_SEC)) {
 280		tmp.tv64 = nsec;
 281	} else {
 282		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 283
 284		/* Make sure nsec fits into long */
 285		if (unlikely(nsec > KTIME_SEC_MAX))
 286			return (ktime_t){ .tv64 = KTIME_MAX };
 287
 288		tmp = ktime_set((long)nsec, rem);
 289	}
 290
 291	return ktime_add(kt, tmp);
 292}
 293
 294EXPORT_SYMBOL_GPL(ktime_add_ns);
 295
 296/**
 297 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 298 * @kt:		minuend
 299 * @nsec:	the scalar nsec value to subtract
 300 *
 301 * Returns the subtraction of @nsec from @kt in ktime_t format
 302 */
 303ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
 304{
 305	ktime_t tmp;
 306
 307	if (likely(nsec < NSEC_PER_SEC)) {
 308		tmp.tv64 = nsec;
 309	} else {
 310		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 311
 312		tmp = ktime_set((long)nsec, rem);
 313	}
 314
 315	return ktime_sub(kt, tmp);
 316}
 317
 318EXPORT_SYMBOL_GPL(ktime_sub_ns);
 319# endif /* !CONFIG_KTIME_SCALAR */
 320
 321/*
 322 * Divide a ktime value by a nanosecond value
 323 */
 324u64 ktime_divns(const ktime_t kt, s64 div)
 325{
 326	u64 dclc;
 327	int sft = 0;
 328
 329	dclc = ktime_to_ns(kt);
 330	/* Make sure the divisor is less than 2^32: */
 331	while (div >> 32) {
 332		sft++;
 333		div >>= 1;
 334	}
 335	dclc >>= sft;
 336	do_div(dclc, (unsigned long) div);
 337
 338	return dclc;
 339}
 340#endif /* BITS_PER_LONG >= 64 */
 341
 342/*
 343 * Add two ktime values and do a safety check for overflow:
 344 */
 345ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 346{
 347	ktime_t res = ktime_add(lhs, rhs);
 348
 349	/*
 350	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 351	 * return to user space in a timespec:
 352	 */
 353	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 354		res = ktime_set(KTIME_SEC_MAX, 0);
 355
 356	return res;
 357}
 358
 359EXPORT_SYMBOL_GPL(ktime_add_safe);
 360
 361#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 362
 363static struct debug_obj_descr hrtimer_debug_descr;
 364
 365static void *hrtimer_debug_hint(void *addr)
 366{
 367	return ((struct hrtimer *) addr)->function;
 368}
 369
 370/*
 371 * fixup_init is called when:
 372 * - an active object is initialized
 373 */
 374static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 375{
 376	struct hrtimer *timer = addr;
 377
 378	switch (state) {
 379	case ODEBUG_STATE_ACTIVE:
 380		hrtimer_cancel(timer);
 381		debug_object_init(timer, &hrtimer_debug_descr);
 382		return 1;
 383	default:
 384		return 0;
 385	}
 386}
 387
 388/*
 389 * fixup_activate is called when:
 390 * - an active object is activated
 391 * - an unknown object is activated (might be a statically initialized object)
 392 */
 393static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 394{
 395	switch (state) {
 396
 397	case ODEBUG_STATE_NOTAVAILABLE:
 398		WARN_ON_ONCE(1);
 399		return 0;
 400
 401	case ODEBUG_STATE_ACTIVE:
 402		WARN_ON(1);
 403
 404	default:
 405		return 0;
 406	}
 407}
 408
 409/*
 410 * fixup_free is called when:
 411 * - an active object is freed
 412 */
 413static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 414{
 415	struct hrtimer *timer = addr;
 416
 417	switch (state) {
 418	case ODEBUG_STATE_ACTIVE:
 419		hrtimer_cancel(timer);
 420		debug_object_free(timer, &hrtimer_debug_descr);
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425}
 426
 427static struct debug_obj_descr hrtimer_debug_descr = {
 428	.name		= "hrtimer",
 429	.debug_hint	= hrtimer_debug_hint,
 430	.fixup_init	= hrtimer_fixup_init,
 431	.fixup_activate	= hrtimer_fixup_activate,
 432	.fixup_free	= hrtimer_fixup_free,
 433};
 434
 435static inline void debug_hrtimer_init(struct hrtimer *timer)
 436{
 437	debug_object_init(timer, &hrtimer_debug_descr);
 438}
 439
 440static inline void debug_hrtimer_activate(struct hrtimer *timer)
 441{
 442	debug_object_activate(timer, &hrtimer_debug_descr);
 443}
 444
 445static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 446{
 447	debug_object_deactivate(timer, &hrtimer_debug_descr);
 448}
 449
 450static inline void debug_hrtimer_free(struct hrtimer *timer)
 451{
 452	debug_object_free(timer, &hrtimer_debug_descr);
 453}
 454
 455static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 456			   enum hrtimer_mode mode);
 457
 458void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 459			   enum hrtimer_mode mode)
 460{
 461	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 462	__hrtimer_init(timer, clock_id, mode);
 463}
 464EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 465
 466void destroy_hrtimer_on_stack(struct hrtimer *timer)
 467{
 468	debug_object_free(timer, &hrtimer_debug_descr);
 469}
 470
 471#else
 472static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 473static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 474static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 475#endif
 476
 477static inline void
 478debug_init(struct hrtimer *timer, clockid_t clockid,
 479	   enum hrtimer_mode mode)
 480{
 481	debug_hrtimer_init(timer);
 482	trace_hrtimer_init(timer, clockid, mode);
 483}
 484
 485static inline void debug_activate(struct hrtimer *timer)
 486{
 487	debug_hrtimer_activate(timer);
 488	trace_hrtimer_start(timer);
 489}
 490
 491static inline void debug_deactivate(struct hrtimer *timer)
 492{
 493	debug_hrtimer_deactivate(timer);
 494	trace_hrtimer_cancel(timer);
 495}
 496
 497/* High resolution timer related functions */
 498#ifdef CONFIG_HIGH_RES_TIMERS
 499
 500/*
 501 * High resolution timer enabled ?
 502 */
 503static int hrtimer_hres_enabled __read_mostly  = 1;
 504
 505/*
 506 * Enable / Disable high resolution mode
 507 */
 508static int __init setup_hrtimer_hres(char *str)
 509{
 510	if (!strcmp(str, "off"))
 511		hrtimer_hres_enabled = 0;
 512	else if (!strcmp(str, "on"))
 513		hrtimer_hres_enabled = 1;
 514	else
 515		return 0;
 516	return 1;
 517}
 518
 519__setup("highres=", setup_hrtimer_hres);
 520
 521/*
 522 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 523 */
 524static inline int hrtimer_is_hres_enabled(void)
 525{
 526	return hrtimer_hres_enabled;
 527}
 528
 529/*
 530 * Is the high resolution mode active ?
 531 */
 532static inline int hrtimer_hres_active(void)
 533{
 534	return __this_cpu_read(hrtimer_bases.hres_active);
 535}
 536
 537/*
 538 * Reprogram the event source with checking both queues for the
 539 * next event
 540 * Called with interrupts disabled and base->lock held
 541 */
 542static void
 543hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 544{
 545	int i;
 546	struct hrtimer_clock_base *base = cpu_base->clock_base;
 547	ktime_t expires, expires_next;
 548
 549	expires_next.tv64 = KTIME_MAX;
 550
 551	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 552		struct hrtimer *timer;
 553		struct timerqueue_node *next;
 554
 555		next = timerqueue_getnext(&base->active);
 556		if (!next)
 557			continue;
 558		timer = container_of(next, struct hrtimer, node);
 559
 560		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 561		/*
 562		 * clock_was_set() has changed base->offset so the
 563		 * result might be negative. Fix it up to prevent a
 564		 * false positive in clockevents_program_event()
 565		 */
 566		if (expires.tv64 < 0)
 567			expires.tv64 = 0;
 568		if (expires.tv64 < expires_next.tv64)
 569			expires_next = expires;
 570	}
 571
 572	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 573		return;
 574
 575	cpu_base->expires_next.tv64 = expires_next.tv64;
 576
 577	/*
 578	 * If a hang was detected in the last timer interrupt then we
 579	 * leave the hang delay active in the hardware. We want the
 580	 * system to make progress. That also prevents the following
 581	 * scenario:
 582	 * T1 expires 50ms from now
 583	 * T2 expires 5s from now
 584	 *
 585	 * T1 is removed, so this code is called and would reprogram
 586	 * the hardware to 5s from now. Any hrtimer_start after that
 587	 * will not reprogram the hardware due to hang_detected being
 588	 * set. So we'd effectivly block all timers until the T2 event
 589	 * fires.
 590	 */
 591	if (cpu_base->hang_detected)
 592		return;
 593
 594	if (cpu_base->expires_next.tv64 != KTIME_MAX)
 595		tick_program_event(cpu_base->expires_next, 1);
 596}
 597
 598/*
 599 * Shared reprogramming for clock_realtime and clock_monotonic
 600 *
 601 * When a timer is enqueued and expires earlier than the already enqueued
 602 * timers, we have to check, whether it expires earlier than the timer for
 603 * which the clock event device was armed.
 604 *
 605 * Called with interrupts disabled and base->cpu_base.lock held
 606 */
 607static int hrtimer_reprogram(struct hrtimer *timer,
 608			     struct hrtimer_clock_base *base)
 609{
 610	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 611	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 612	int res;
 613
 614	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 615
 616	/*
 617	 * When the callback is running, we do not reprogram the clock event
 618	 * device. The timer callback is either running on a different CPU or
 619	 * the callback is executed in the hrtimer_interrupt context. The
 620	 * reprogramming is handled either by the softirq, which called the
 621	 * callback or at the end of the hrtimer_interrupt.
 622	 */
 623	if (hrtimer_callback_running(timer))
 624		return 0;
 625
 626	/*
 627	 * CLOCK_REALTIME timer might be requested with an absolute
 628	 * expiry time which is less than base->offset. Nothing wrong
 629	 * about that, just avoid to call into the tick code, which
 630	 * has now objections against negative expiry values.
 631	 */
 632	if (expires.tv64 < 0)
 633		return -ETIME;
 634
 635	if (expires.tv64 >= cpu_base->expires_next.tv64)
 636		return 0;
 637
 638	/*
 639	 * If a hang was detected in the last timer interrupt then we
 640	 * do not schedule a timer which is earlier than the expiry
 641	 * which we enforced in the hang detection. We want the system
 642	 * to make progress.
 643	 */
 644	if (cpu_base->hang_detected)
 645		return 0;
 646
 647	/*
 648	 * Clockevents returns -ETIME, when the event was in the past.
 649	 */
 650	res = tick_program_event(expires, 0);
 651	if (!IS_ERR_VALUE(res))
 652		cpu_base->expires_next = expires;
 653	return res;
 654}
 655
 656/*
 657 * Initialize the high resolution related parts of cpu_base
 658 */
 659static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 660{
 661	base->expires_next.tv64 = KTIME_MAX;
 662	base->hres_active = 0;
 663}
 664
 665/*
 666 * When High resolution timers are active, try to reprogram. Note, that in case
 667 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 668 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 669 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 670 */
 671static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 672					    struct hrtimer_clock_base *base)
 
 673{
 674	return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
 
 
 
 
 
 
 
 
 
 
 
 675}
 676
 677static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 678{
 679	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 680	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 681	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 682
 683	return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
 684}
 685
 686/*
 687 * Retrigger next event is called after clock was set
 688 *
 689 * Called with interrupts disabled via on_each_cpu()
 690 */
 691static void retrigger_next_event(void *arg)
 692{
 693	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
 694
 695	if (!hrtimer_hres_active())
 696		return;
 697
 698	raw_spin_lock(&base->lock);
 699	hrtimer_update_base(base);
 700	hrtimer_force_reprogram(base, 0);
 701	raw_spin_unlock(&base->lock);
 702}
 703
 704/*
 705 * Switch to high resolution mode
 706 */
 707static int hrtimer_switch_to_hres(void)
 708{
 709	int i, cpu = smp_processor_id();
 710	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 711	unsigned long flags;
 712
 713	if (base->hres_active)
 714		return 1;
 715
 716	local_irq_save(flags);
 717
 718	if (tick_init_highres()) {
 719		local_irq_restore(flags);
 720		printk(KERN_WARNING "Could not switch to high resolution "
 721				    "mode on CPU %d\n", cpu);
 722		return 0;
 723	}
 724	base->hres_active = 1;
 725	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
 726		base->clock_base[i].resolution = KTIME_HIGH_RES;
 727
 728	tick_setup_sched_timer();
 729	/* "Retrigger" the interrupt to get things going */
 730	retrigger_next_event(NULL);
 731	local_irq_restore(flags);
 732	return 1;
 733}
 734
 735static void clock_was_set_work(struct work_struct *work)
 736{
 737	clock_was_set();
 738}
 739
 740static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 741
 742/*
 743 * Called from timekeeping and resume code to reprogramm the hrtimer
 744 * interrupt device on all cpus.
 
 745 */
 746void clock_was_set_delayed(void)
 747{
 748	schedule_work(&hrtimer_work);
 
 
 
 749}
 750
 751#else
 752
 753static inline int hrtimer_hres_active(void) { return 0; }
 754static inline int hrtimer_is_hres_enabled(void) { return 0; }
 755static inline int hrtimer_switch_to_hres(void) { return 0; }
 756static inline void
 757hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 758static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 759					    struct hrtimer_clock_base *base)
 
 760{
 761	return 0;
 762}
 763static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 764static inline void retrigger_next_event(void *arg) { }
 765
 766#endif /* CONFIG_HIGH_RES_TIMERS */
 767
 768/*
 769 * Clock realtime was set
 770 *
 771 * Change the offset of the realtime clock vs. the monotonic
 772 * clock.
 773 *
 774 * We might have to reprogram the high resolution timer interrupt. On
 775 * SMP we call the architecture specific code to retrigger _all_ high
 776 * resolution timer interrupts. On UP we just disable interrupts and
 777 * call the high resolution interrupt code.
 778 */
 779void clock_was_set(void)
 780{
 781#ifdef CONFIG_HIGH_RES_TIMERS
 782	/* Retrigger the CPU local events everywhere */
 783	on_each_cpu(retrigger_next_event, NULL, 1);
 784#endif
 785	timerfd_clock_was_set();
 786}
 787
 788/*
 789 * During resume we might have to reprogram the high resolution timer
 790 * interrupt on all online CPUs.  However, all other CPUs will be
 791 * stopped with IRQs interrupts disabled so the clock_was_set() call
 792 * must be deferred.
 793 */
 794void hrtimers_resume(void)
 795{
 796	WARN_ONCE(!irqs_disabled(),
 797		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 798
 799	/* Retrigger on the local CPU */
 800	retrigger_next_event(NULL);
 801	/* And schedule a retrigger for all others */
 802	clock_was_set_delayed();
 803}
 804
 805static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 806{
 807#ifdef CONFIG_TIMER_STATS
 808	if (timer->start_site)
 809		return;
 810	timer->start_site = __builtin_return_address(0);
 811	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 812	timer->start_pid = current->pid;
 813#endif
 814}
 815
 816static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 817{
 818#ifdef CONFIG_TIMER_STATS
 819	timer->start_site = NULL;
 820#endif
 821}
 822
 823static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 824{
 825#ifdef CONFIG_TIMER_STATS
 826	if (likely(!timer_stats_active))
 827		return;
 828	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 829				 timer->function, timer->start_comm, 0);
 830#endif
 831}
 832
 833/*
 834 * Counterpart to lock_hrtimer_base above:
 835 */
 836static inline
 837void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 838{
 839	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 840}
 841
 842/**
 843 * hrtimer_forward - forward the timer expiry
 844 * @timer:	hrtimer to forward
 845 * @now:	forward past this time
 846 * @interval:	the interval to forward
 847 *
 848 * Forward the timer expiry so it will expire in the future.
 849 * Returns the number of overruns.
 850 */
 851u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 852{
 853	u64 orun = 1;
 854	ktime_t delta;
 855
 856	delta = ktime_sub(now, hrtimer_get_expires(timer));
 857
 858	if (delta.tv64 < 0)
 859		return 0;
 860
 861	if (interval.tv64 < timer->base->resolution.tv64)
 862		interval.tv64 = timer->base->resolution.tv64;
 863
 864	if (unlikely(delta.tv64 >= interval.tv64)) {
 865		s64 incr = ktime_to_ns(interval);
 866
 867		orun = ktime_divns(delta, incr);
 868		hrtimer_add_expires_ns(timer, incr * orun);
 869		if (hrtimer_get_expires_tv64(timer) > now.tv64)
 870			return orun;
 871		/*
 872		 * This (and the ktime_add() below) is the
 873		 * correction for exact:
 874		 */
 875		orun++;
 876	}
 877	hrtimer_add_expires(timer, interval);
 878
 879	return orun;
 880}
 881EXPORT_SYMBOL_GPL(hrtimer_forward);
 882
 883/*
 884 * enqueue_hrtimer - internal function to (re)start a timer
 885 *
 886 * The timer is inserted in expiry order. Insertion into the
 887 * red black tree is O(log(n)). Must hold the base lock.
 888 *
 889 * Returns 1 when the new timer is the leftmost timer in the tree.
 890 */
 891static int enqueue_hrtimer(struct hrtimer *timer,
 892			   struct hrtimer_clock_base *base)
 893{
 894	debug_activate(timer);
 895
 896	timerqueue_add(&base->active, &timer->node);
 897	base->cpu_base->active_bases |= 1 << base->index;
 898
 899	/*
 900	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 901	 * state of a possibly running callback.
 902	 */
 903	timer->state |= HRTIMER_STATE_ENQUEUED;
 904
 905	return (&timer->node == base->active.next);
 906}
 907
 908/*
 909 * __remove_hrtimer - internal function to remove a timer
 910 *
 911 * Caller must hold the base lock.
 912 *
 913 * High resolution timer mode reprograms the clock event device when the
 914 * timer is the one which expires next. The caller can disable this by setting
 915 * reprogram to zero. This is useful, when the context does a reprogramming
 916 * anyway (e.g. timer interrupt)
 917 */
 918static void __remove_hrtimer(struct hrtimer *timer,
 919			     struct hrtimer_clock_base *base,
 920			     unsigned long newstate, int reprogram)
 921{
 922	struct timerqueue_node *next_timer;
 923	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
 924		goto out;
 925
 926	next_timer = timerqueue_getnext(&base->active);
 927	timerqueue_del(&base->active, &timer->node);
 928	if (&timer->node == next_timer) {
 929#ifdef CONFIG_HIGH_RES_TIMERS
 930		/* Reprogram the clock event device. if enabled */
 931		if (reprogram && hrtimer_hres_active()) {
 932			ktime_t expires;
 933
 934			expires = ktime_sub(hrtimer_get_expires(timer),
 935					    base->offset);
 936			if (base->cpu_base->expires_next.tv64 == expires.tv64)
 937				hrtimer_force_reprogram(base->cpu_base, 1);
 938		}
 939#endif
 940	}
 941	if (!timerqueue_getnext(&base->active))
 942		base->cpu_base->active_bases &= ~(1 << base->index);
 943out:
 944	timer->state = newstate;
 945}
 946
 947/*
 948 * remove hrtimer, called with base lock held
 949 */
 950static inline int
 951remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 952{
 953	if (hrtimer_is_queued(timer)) {
 954		unsigned long state;
 955		int reprogram;
 956
 957		/*
 958		 * Remove the timer and force reprogramming when high
 959		 * resolution mode is active and the timer is on the current
 960		 * CPU. If we remove a timer on another CPU, reprogramming is
 961		 * skipped. The interrupt event on this CPU is fired and
 962		 * reprogramming happens in the interrupt handler. This is a
 963		 * rare case and less expensive than a smp call.
 964		 */
 965		debug_deactivate(timer);
 966		timer_stats_hrtimer_clear_start_info(timer);
 967		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
 968		/*
 969		 * We must preserve the CALLBACK state flag here,
 970		 * otherwise we could move the timer base in
 971		 * switch_hrtimer_base.
 972		 */
 973		state = timer->state & HRTIMER_STATE_CALLBACK;
 974		__remove_hrtimer(timer, base, state, reprogram);
 975		return 1;
 976	}
 977	return 0;
 978}
 979
 980int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 981		unsigned long delta_ns, const enum hrtimer_mode mode,
 982		int wakeup)
 983{
 984	struct hrtimer_clock_base *base, *new_base;
 985	unsigned long flags;
 986	int ret, leftmost;
 987
 988	base = lock_hrtimer_base(timer, &flags);
 989
 990	/* Remove an active timer from the queue: */
 991	ret = remove_hrtimer(timer, base);
 992
 
 
 
 993	if (mode & HRTIMER_MODE_REL) {
 994		tim = ktime_add_safe(tim, base->get_time());
 995		/*
 996		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 997		 * to signal that they simply return xtime in
 998		 * do_gettimeoffset(). In this case we want to round up by
 999		 * resolution when starting a relative timer, to avoid short
1000		 * timeouts. This will go away with the GTOD framework.
1001		 */
1002#ifdef CONFIG_TIME_LOW_RES
1003		tim = ktime_add_safe(tim, base->resolution);
1004#endif
1005	}
1006
1007	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1008
1009	/* Switch the timer base, if necessary: */
1010	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1011
1012	timer_stats_hrtimer_set_start_info(timer);
1013
1014	leftmost = enqueue_hrtimer(timer, new_base);
1015
1016	/*
1017	 * Only allow reprogramming if the new base is on this CPU.
1018	 * (it might still be on another CPU if the timer was pending)
1019	 *
1020	 * XXX send_remote_softirq() ?
1021	 */
1022	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1023		&& hrtimer_enqueue_reprogram(timer, new_base)) {
1024		if (wakeup) {
1025			/*
1026			 * We need to drop cpu_base->lock to avoid a
1027			 * lock ordering issue vs. rq->lock.
1028			 */
1029			raw_spin_unlock(&new_base->cpu_base->lock);
1030			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1031			local_irq_restore(flags);
1032			return ret;
1033		} else {
1034			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1035		}
1036	}
1037
1038	unlock_hrtimer_base(timer, &flags);
1039
1040	return ret;
1041}
1042
1043/**
1044 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1045 * @timer:	the timer to be added
1046 * @tim:	expiry time
1047 * @delta_ns:	"slack" range for the timer
1048 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1049 *		relative (HRTIMER_MODE_REL)
1050 *
1051 * Returns:
1052 *  0 on success
1053 *  1 when the timer was active
1054 */
1055int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1056		unsigned long delta_ns, const enum hrtimer_mode mode)
1057{
1058	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1059}
1060EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1061
1062/**
1063 * hrtimer_start - (re)start an hrtimer on the current CPU
1064 * @timer:	the timer to be added
1065 * @tim:	expiry time
1066 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1067 *		relative (HRTIMER_MODE_REL)
1068 *
1069 * Returns:
1070 *  0 on success
1071 *  1 when the timer was active
1072 */
1073int
1074hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1075{
1076	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1077}
1078EXPORT_SYMBOL_GPL(hrtimer_start);
1079
1080
1081/**
1082 * hrtimer_try_to_cancel - try to deactivate a timer
1083 * @timer:	hrtimer to stop
1084 *
1085 * Returns:
1086 *  0 when the timer was not active
1087 *  1 when the timer was active
1088 * -1 when the timer is currently excuting the callback function and
1089 *    cannot be stopped
1090 */
1091int hrtimer_try_to_cancel(struct hrtimer *timer)
1092{
1093	struct hrtimer_clock_base *base;
1094	unsigned long flags;
1095	int ret = -1;
1096
1097	base = lock_hrtimer_base(timer, &flags);
1098
1099	if (!hrtimer_callback_running(timer))
1100		ret = remove_hrtimer(timer, base);
1101
1102	unlock_hrtimer_base(timer, &flags);
1103
1104	return ret;
1105
1106}
1107EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1108
1109/**
1110 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1111 * @timer:	the timer to be cancelled
1112 *
1113 * Returns:
1114 *  0 when the timer was not active
1115 *  1 when the timer was active
1116 */
1117int hrtimer_cancel(struct hrtimer *timer)
1118{
1119	for (;;) {
1120		int ret = hrtimer_try_to_cancel(timer);
1121
1122		if (ret >= 0)
1123			return ret;
1124		cpu_relax();
1125	}
1126}
1127EXPORT_SYMBOL_GPL(hrtimer_cancel);
1128
1129/**
1130 * hrtimer_get_remaining - get remaining time for the timer
1131 * @timer:	the timer to read
1132 */
1133ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1134{
1135	unsigned long flags;
1136	ktime_t rem;
1137
1138	lock_hrtimer_base(timer, &flags);
1139	rem = hrtimer_expires_remaining(timer);
1140	unlock_hrtimer_base(timer, &flags);
1141
1142	return rem;
1143}
1144EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1145
1146#ifdef CONFIG_NO_HZ_COMMON
1147/**
1148 * hrtimer_get_next_event - get the time until next expiry event
1149 *
1150 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1151 * is pending.
1152 */
1153ktime_t hrtimer_get_next_event(void)
1154{
1155	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1156	struct hrtimer_clock_base *base = cpu_base->clock_base;
1157	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1158	unsigned long flags;
1159	int i;
1160
1161	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1162
1163	if (!hrtimer_hres_active()) {
1164		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1165			struct hrtimer *timer;
1166			struct timerqueue_node *next;
1167
1168			next = timerqueue_getnext(&base->active);
1169			if (!next)
1170				continue;
1171
1172			timer = container_of(next, struct hrtimer, node);
1173			delta.tv64 = hrtimer_get_expires_tv64(timer);
1174			delta = ktime_sub(delta, base->get_time());
1175			if (delta.tv64 < mindelta.tv64)
1176				mindelta.tv64 = delta.tv64;
1177		}
1178	}
1179
1180	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1181
1182	if (mindelta.tv64 < 0)
1183		mindelta.tv64 = 0;
1184	return mindelta;
1185}
1186#endif
1187
1188static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1189			   enum hrtimer_mode mode)
1190{
1191	struct hrtimer_cpu_base *cpu_base;
1192	int base;
1193
1194	memset(timer, 0, sizeof(struct hrtimer));
1195
1196	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1197
1198	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1199		clock_id = CLOCK_MONOTONIC;
1200
1201	base = hrtimer_clockid_to_base(clock_id);
1202	timer->base = &cpu_base->clock_base[base];
1203	timerqueue_init(&timer->node);
1204
1205#ifdef CONFIG_TIMER_STATS
1206	timer->start_site = NULL;
1207	timer->start_pid = -1;
1208	memset(timer->start_comm, 0, TASK_COMM_LEN);
1209#endif
1210}
1211
1212/**
1213 * hrtimer_init - initialize a timer to the given clock
1214 * @timer:	the timer to be initialized
1215 * @clock_id:	the clock to be used
1216 * @mode:	timer mode abs/rel
1217 */
1218void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1219		  enum hrtimer_mode mode)
1220{
1221	debug_init(timer, clock_id, mode);
1222	__hrtimer_init(timer, clock_id, mode);
1223}
1224EXPORT_SYMBOL_GPL(hrtimer_init);
1225
1226/**
1227 * hrtimer_get_res - get the timer resolution for a clock
1228 * @which_clock: which clock to query
1229 * @tp:		 pointer to timespec variable to store the resolution
1230 *
1231 * Store the resolution of the clock selected by @which_clock in the
1232 * variable pointed to by @tp.
1233 */
1234int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1235{
1236	struct hrtimer_cpu_base *cpu_base;
1237	int base = hrtimer_clockid_to_base(which_clock);
1238
1239	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1240	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1241
1242	return 0;
1243}
1244EXPORT_SYMBOL_GPL(hrtimer_get_res);
1245
1246static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1247{
1248	struct hrtimer_clock_base *base = timer->base;
1249	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1250	enum hrtimer_restart (*fn)(struct hrtimer *);
1251	int restart;
1252
1253	WARN_ON(!irqs_disabled());
1254
1255	debug_deactivate(timer);
1256	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1257	timer_stats_account_hrtimer(timer);
1258	fn = timer->function;
1259
1260	/*
1261	 * Because we run timers from hardirq context, there is no chance
1262	 * they get migrated to another cpu, therefore its safe to unlock
1263	 * the timer base.
1264	 */
1265	raw_spin_unlock(&cpu_base->lock);
1266	trace_hrtimer_expire_entry(timer, now);
1267	restart = fn(timer);
1268	trace_hrtimer_expire_exit(timer);
1269	raw_spin_lock(&cpu_base->lock);
1270
1271	/*
1272	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1273	 * we do not reprogramm the event hardware. Happens either in
1274	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1275	 */
1276	if (restart != HRTIMER_NORESTART) {
1277		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1278		enqueue_hrtimer(timer, base);
1279	}
1280
1281	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1282
1283	timer->state &= ~HRTIMER_STATE_CALLBACK;
1284}
1285
1286#ifdef CONFIG_HIGH_RES_TIMERS
1287
1288/*
1289 * High resolution timer interrupt
1290 * Called with interrupts disabled
1291 */
1292void hrtimer_interrupt(struct clock_event_device *dev)
1293{
1294	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1295	ktime_t expires_next, now, entry_time, delta;
1296	int i, retries = 0;
1297
1298	BUG_ON(!cpu_base->hres_active);
1299	cpu_base->nr_events++;
1300	dev->next_event.tv64 = KTIME_MAX;
1301
1302	raw_spin_lock(&cpu_base->lock);
1303	entry_time = now = hrtimer_update_base(cpu_base);
1304retry:
1305	expires_next.tv64 = KTIME_MAX;
1306	/*
1307	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1308	 * held to prevent that a timer is enqueued in our queue via
1309	 * the migration code. This does not affect enqueueing of
1310	 * timers which run their callback and need to be requeued on
1311	 * this CPU.
1312	 */
1313	cpu_base->expires_next.tv64 = KTIME_MAX;
1314
1315	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1316		struct hrtimer_clock_base *base;
1317		struct timerqueue_node *node;
1318		ktime_t basenow;
1319
1320		if (!(cpu_base->active_bases & (1 << i)))
1321			continue;
1322
1323		base = cpu_base->clock_base + i;
1324		basenow = ktime_add(now, base->offset);
1325
1326		while ((node = timerqueue_getnext(&base->active))) {
1327			struct hrtimer *timer;
1328
1329			timer = container_of(node, struct hrtimer, node);
1330
1331			/*
1332			 * The immediate goal for using the softexpires is
1333			 * minimizing wakeups, not running timers at the
1334			 * earliest interrupt after their soft expiration.
1335			 * This allows us to avoid using a Priority Search
1336			 * Tree, which can answer a stabbing querry for
1337			 * overlapping intervals and instead use the simple
1338			 * BST we already have.
1339			 * We don't add extra wakeups by delaying timers that
1340			 * are right-of a not yet expired timer, because that
1341			 * timer will have to trigger a wakeup anyway.
1342			 */
1343
1344			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1345				ktime_t expires;
1346
1347				expires = ktime_sub(hrtimer_get_expires(timer),
1348						    base->offset);
1349				if (expires.tv64 < 0)
1350					expires.tv64 = KTIME_MAX;
1351				if (expires.tv64 < expires_next.tv64)
1352					expires_next = expires;
1353				break;
1354			}
1355
1356			__run_hrtimer(timer, &basenow);
1357		}
1358	}
1359
1360	/*
1361	 * Store the new expiry value so the migration code can verify
1362	 * against it.
1363	 */
1364	cpu_base->expires_next = expires_next;
1365	raw_spin_unlock(&cpu_base->lock);
1366
1367	/* Reprogramming necessary ? */
1368	if (expires_next.tv64 == KTIME_MAX ||
1369	    !tick_program_event(expires_next, 0)) {
1370		cpu_base->hang_detected = 0;
1371		return;
1372	}
1373
1374	/*
1375	 * The next timer was already expired due to:
1376	 * - tracing
1377	 * - long lasting callbacks
1378	 * - being scheduled away when running in a VM
1379	 *
1380	 * We need to prevent that we loop forever in the hrtimer
1381	 * interrupt routine. We give it 3 attempts to avoid
1382	 * overreacting on some spurious event.
1383	 *
1384	 * Acquire base lock for updating the offsets and retrieving
1385	 * the current time.
1386	 */
1387	raw_spin_lock(&cpu_base->lock);
1388	now = hrtimer_update_base(cpu_base);
1389	cpu_base->nr_retries++;
1390	if (++retries < 3)
1391		goto retry;
1392	/*
1393	 * Give the system a chance to do something else than looping
1394	 * here. We stored the entry time, so we know exactly how long
1395	 * we spent here. We schedule the next event this amount of
1396	 * time away.
1397	 */
1398	cpu_base->nr_hangs++;
1399	cpu_base->hang_detected = 1;
1400	raw_spin_unlock(&cpu_base->lock);
1401	delta = ktime_sub(now, entry_time);
1402	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1403		cpu_base->max_hang_time = delta;
1404	/*
1405	 * Limit it to a sensible value as we enforce a longer
1406	 * delay. Give the CPU at least 100ms to catch up.
1407	 */
1408	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1409		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1410	else
1411		expires_next = ktime_add(now, delta);
1412	tick_program_event(expires_next, 1);
1413	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1414		    ktime_to_ns(delta));
1415}
1416
1417/*
1418 * local version of hrtimer_peek_ahead_timers() called with interrupts
1419 * disabled.
1420 */
1421static void __hrtimer_peek_ahead_timers(void)
1422{
1423	struct tick_device *td;
1424
1425	if (!hrtimer_hres_active())
1426		return;
1427
1428	td = &__get_cpu_var(tick_cpu_device);
1429	if (td && td->evtdev)
1430		hrtimer_interrupt(td->evtdev);
1431}
1432
1433/**
1434 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1435 *
1436 * hrtimer_peek_ahead_timers will peek at the timer queue of
1437 * the current cpu and check if there are any timers for which
1438 * the soft expires time has passed. If any such timers exist,
1439 * they are run immediately and then removed from the timer queue.
1440 *
1441 */
1442void hrtimer_peek_ahead_timers(void)
1443{
1444	unsigned long flags;
1445
1446	local_irq_save(flags);
1447	__hrtimer_peek_ahead_timers();
1448	local_irq_restore(flags);
1449}
1450
1451static void run_hrtimer_softirq(struct softirq_action *h)
1452{
 
 
 
 
 
 
 
1453	hrtimer_peek_ahead_timers();
1454}
1455
1456#else /* CONFIG_HIGH_RES_TIMERS */
1457
1458static inline void __hrtimer_peek_ahead_timers(void) { }
1459
1460#endif	/* !CONFIG_HIGH_RES_TIMERS */
1461
1462/*
1463 * Called from timer softirq every jiffy, expire hrtimers:
1464 *
1465 * For HRT its the fall back code to run the softirq in the timer
1466 * softirq context in case the hrtimer initialization failed or has
1467 * not been done yet.
1468 */
1469void hrtimer_run_pending(void)
1470{
1471	if (hrtimer_hres_active())
1472		return;
1473
1474	/*
1475	 * This _is_ ugly: We have to check in the softirq context,
1476	 * whether we can switch to highres and / or nohz mode. The
1477	 * clocksource switch happens in the timer interrupt with
1478	 * xtime_lock held. Notification from there only sets the
1479	 * check bit in the tick_oneshot code, otherwise we might
1480	 * deadlock vs. xtime_lock.
1481	 */
1482	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1483		hrtimer_switch_to_hres();
1484}
1485
1486/*
1487 * Called from hardirq context every jiffy
1488 */
1489void hrtimer_run_queues(void)
1490{
1491	struct timerqueue_node *node;
1492	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1493	struct hrtimer_clock_base *base;
1494	int index, gettime = 1;
1495
1496	if (hrtimer_hres_active())
1497		return;
1498
1499	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1500		base = &cpu_base->clock_base[index];
1501		if (!timerqueue_getnext(&base->active))
1502			continue;
1503
1504		if (gettime) {
1505			hrtimer_get_softirq_time(cpu_base);
1506			gettime = 0;
1507		}
1508
1509		raw_spin_lock(&cpu_base->lock);
1510
1511		while ((node = timerqueue_getnext(&base->active))) {
1512			struct hrtimer *timer;
1513
1514			timer = container_of(node, struct hrtimer, node);
1515			if (base->softirq_time.tv64 <=
1516					hrtimer_get_expires_tv64(timer))
1517				break;
1518
1519			__run_hrtimer(timer, &base->softirq_time);
1520		}
1521		raw_spin_unlock(&cpu_base->lock);
1522	}
1523}
1524
1525/*
1526 * Sleep related functions:
1527 */
1528static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1529{
1530	struct hrtimer_sleeper *t =
1531		container_of(timer, struct hrtimer_sleeper, timer);
1532	struct task_struct *task = t->task;
1533
1534	t->task = NULL;
1535	if (task)
1536		wake_up_process(task);
1537
1538	return HRTIMER_NORESTART;
1539}
1540
1541void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1542{
1543	sl->timer.function = hrtimer_wakeup;
1544	sl->task = task;
1545}
1546EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1547
1548static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1549{
1550	hrtimer_init_sleeper(t, current);
1551
1552	do {
1553		set_current_state(TASK_INTERRUPTIBLE);
1554		hrtimer_start_expires(&t->timer, mode);
1555		if (!hrtimer_active(&t->timer))
1556			t->task = NULL;
1557
1558		if (likely(t->task))
1559			freezable_schedule();
1560
1561		hrtimer_cancel(&t->timer);
1562		mode = HRTIMER_MODE_ABS;
1563
1564	} while (t->task && !signal_pending(current));
1565
1566	__set_current_state(TASK_RUNNING);
1567
1568	return t->task == NULL;
1569}
1570
1571static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1572{
1573	struct timespec rmt;
1574	ktime_t rem;
1575
1576	rem = hrtimer_expires_remaining(timer);
1577	if (rem.tv64 <= 0)
1578		return 0;
1579	rmt = ktime_to_timespec(rem);
1580
1581	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1582		return -EFAULT;
1583
1584	return 1;
1585}
1586
1587long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1588{
1589	struct hrtimer_sleeper t;
1590	struct timespec __user  *rmtp;
1591	int ret = 0;
1592
1593	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1594				HRTIMER_MODE_ABS);
1595	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1596
1597	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1598		goto out;
1599
1600	rmtp = restart->nanosleep.rmtp;
1601	if (rmtp) {
1602		ret = update_rmtp(&t.timer, rmtp);
1603		if (ret <= 0)
1604			goto out;
1605	}
1606
1607	/* The other values in restart are already filled in */
1608	ret = -ERESTART_RESTARTBLOCK;
1609out:
1610	destroy_hrtimer_on_stack(&t.timer);
1611	return ret;
1612}
1613
1614long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1615		       const enum hrtimer_mode mode, const clockid_t clockid)
1616{
1617	struct restart_block *restart;
1618	struct hrtimer_sleeper t;
1619	int ret = 0;
1620	unsigned long slack;
1621
1622	slack = current->timer_slack_ns;
1623	if (dl_task(current) || rt_task(current))
1624		slack = 0;
1625
1626	hrtimer_init_on_stack(&t.timer, clockid, mode);
1627	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1628	if (do_nanosleep(&t, mode))
1629		goto out;
1630
1631	/* Absolute timers do not update the rmtp value and restart: */
1632	if (mode == HRTIMER_MODE_ABS) {
1633		ret = -ERESTARTNOHAND;
1634		goto out;
1635	}
1636
1637	if (rmtp) {
1638		ret = update_rmtp(&t.timer, rmtp);
1639		if (ret <= 0)
1640			goto out;
1641	}
1642
1643	restart = &current_thread_info()->restart_block;
1644	restart->fn = hrtimer_nanosleep_restart;
1645	restart->nanosleep.clockid = t.timer.base->clockid;
1646	restart->nanosleep.rmtp = rmtp;
1647	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1648
1649	ret = -ERESTART_RESTARTBLOCK;
1650out:
1651	destroy_hrtimer_on_stack(&t.timer);
1652	return ret;
1653}
1654
1655SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1656		struct timespec __user *, rmtp)
1657{
1658	struct timespec tu;
1659
1660	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1661		return -EFAULT;
1662
1663	if (!timespec_valid(&tu))
1664		return -EINVAL;
1665
1666	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1667}
1668
1669/*
1670 * Functions related to boot-time initialization:
1671 */
1672static void init_hrtimers_cpu(int cpu)
1673{
1674	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1675	int i;
1676
 
 
1677	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1678		cpu_base->clock_base[i].cpu_base = cpu_base;
1679		timerqueue_init_head(&cpu_base->clock_base[i].active);
1680	}
1681
1682	hrtimer_init_hres(cpu_base);
1683}
1684
1685#ifdef CONFIG_HOTPLUG_CPU
1686
1687static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1688				struct hrtimer_clock_base *new_base)
1689{
1690	struct hrtimer *timer;
1691	struct timerqueue_node *node;
1692
1693	while ((node = timerqueue_getnext(&old_base->active))) {
1694		timer = container_of(node, struct hrtimer, node);
1695		BUG_ON(hrtimer_callback_running(timer));
1696		debug_deactivate(timer);
1697
1698		/*
1699		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1700		 * timer could be seen as !active and just vanish away
1701		 * under us on another CPU
1702		 */
1703		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1704		timer->base = new_base;
1705		/*
1706		 * Enqueue the timers on the new cpu. This does not
1707		 * reprogram the event device in case the timer
1708		 * expires before the earliest on this CPU, but we run
1709		 * hrtimer_interrupt after we migrated everything to
1710		 * sort out already expired timers and reprogram the
1711		 * event device.
1712		 */
1713		enqueue_hrtimer(timer, new_base);
1714
1715		/* Clear the migration state bit */
1716		timer->state &= ~HRTIMER_STATE_MIGRATE;
1717	}
1718}
1719
1720static void migrate_hrtimers(int scpu)
1721{
1722	struct hrtimer_cpu_base *old_base, *new_base;
1723	int i;
1724
1725	BUG_ON(cpu_online(scpu));
1726	tick_cancel_sched_timer(scpu);
1727
1728	local_irq_disable();
1729	old_base = &per_cpu(hrtimer_bases, scpu);
1730	new_base = &__get_cpu_var(hrtimer_bases);
1731	/*
1732	 * The caller is globally serialized and nobody else
1733	 * takes two locks at once, deadlock is not possible.
1734	 */
1735	raw_spin_lock(&new_base->lock);
1736	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1737
1738	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1739		migrate_hrtimer_list(&old_base->clock_base[i],
1740				     &new_base->clock_base[i]);
1741	}
1742
1743	raw_spin_unlock(&old_base->lock);
1744	raw_spin_unlock(&new_base->lock);
1745
1746	/* Check, if we got expired work to do */
1747	__hrtimer_peek_ahead_timers();
1748	local_irq_enable();
1749}
1750
1751#endif /* CONFIG_HOTPLUG_CPU */
1752
1753static int hrtimer_cpu_notify(struct notifier_block *self,
1754					unsigned long action, void *hcpu)
1755{
1756	int scpu = (long)hcpu;
1757
1758	switch (action) {
1759
1760	case CPU_UP_PREPARE:
1761	case CPU_UP_PREPARE_FROZEN:
1762		init_hrtimers_cpu(scpu);
1763		break;
1764
1765#ifdef CONFIG_HOTPLUG_CPU
1766	case CPU_DYING:
1767	case CPU_DYING_FROZEN:
1768		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1769		break;
1770	case CPU_DEAD:
1771	case CPU_DEAD_FROZEN:
1772	{
1773		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1774		migrate_hrtimers(scpu);
1775		break;
1776	}
1777#endif
1778
1779	default:
1780		break;
1781	}
1782
1783	return NOTIFY_OK;
1784}
1785
1786static struct notifier_block hrtimers_nb = {
1787	.notifier_call = hrtimer_cpu_notify,
1788};
1789
1790void __init hrtimers_init(void)
1791{
1792	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1793			  (void *)(long)smp_processor_id());
1794	register_cpu_notifier(&hrtimers_nb);
1795#ifdef CONFIG_HIGH_RES_TIMERS
1796	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1797#endif
1798}
1799
1800/**
1801 * schedule_hrtimeout_range_clock - sleep until timeout
1802 * @expires:	timeout value (ktime_t)
1803 * @delta:	slack in expires timeout (ktime_t)
1804 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1805 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1806 */
1807int __sched
1808schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1809			       const enum hrtimer_mode mode, int clock)
1810{
1811	struct hrtimer_sleeper t;
1812
1813	/*
1814	 * Optimize when a zero timeout value is given. It does not
1815	 * matter whether this is an absolute or a relative time.
1816	 */
1817	if (expires && !expires->tv64) {
1818		__set_current_state(TASK_RUNNING);
1819		return 0;
1820	}
1821
1822	/*
1823	 * A NULL parameter means "infinite"
1824	 */
1825	if (!expires) {
1826		schedule();
1827		__set_current_state(TASK_RUNNING);
1828		return -EINTR;
1829	}
1830
1831	hrtimer_init_on_stack(&t.timer, clock, mode);
1832	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1833
1834	hrtimer_init_sleeper(&t, current);
1835
1836	hrtimer_start_expires(&t.timer, mode);
1837	if (!hrtimer_active(&t.timer))
1838		t.task = NULL;
1839
1840	if (likely(t.task))
1841		schedule();
1842
1843	hrtimer_cancel(&t.timer);
1844	destroy_hrtimer_on_stack(&t.timer);
1845
1846	__set_current_state(TASK_RUNNING);
1847
1848	return !t.task ? 0 : -EINTR;
1849}
1850
1851/**
1852 * schedule_hrtimeout_range - sleep until timeout
1853 * @expires:	timeout value (ktime_t)
1854 * @delta:	slack in expires timeout (ktime_t)
1855 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1856 *
1857 * Make the current task sleep until the given expiry time has
1858 * elapsed. The routine will return immediately unless
1859 * the current task state has been set (see set_current_state()).
1860 *
1861 * The @delta argument gives the kernel the freedom to schedule the
1862 * actual wakeup to a time that is both power and performance friendly.
1863 * The kernel give the normal best effort behavior for "@expires+@delta",
1864 * but may decide to fire the timer earlier, but no earlier than @expires.
1865 *
1866 * You can set the task state as follows -
1867 *
1868 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1869 * pass before the routine returns.
1870 *
1871 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1872 * delivered to the current task.
1873 *
1874 * The current task state is guaranteed to be TASK_RUNNING when this
1875 * routine returns.
1876 *
1877 * Returns 0 when the timer has expired otherwise -EINTR
1878 */
1879int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1880				     const enum hrtimer_mode mode)
1881{
1882	return schedule_hrtimeout_range_clock(expires, delta, mode,
1883					      CLOCK_MONOTONIC);
1884}
1885EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1886
1887/**
1888 * schedule_hrtimeout - sleep until timeout
1889 * @expires:	timeout value (ktime_t)
1890 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1891 *
1892 * Make the current task sleep until the given expiry time has
1893 * elapsed. The routine will return immediately unless
1894 * the current task state has been set (see set_current_state()).
1895 *
1896 * You can set the task state as follows -
1897 *
1898 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1899 * pass before the routine returns.
1900 *
1901 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1902 * delivered to the current task.
1903 *
1904 * The current task state is guaranteed to be TASK_RUNNING when this
1905 * routine returns.
1906 *
1907 * Returns 0 when the timer has expired otherwise -EINTR
1908 */
1909int __sched schedule_hrtimeout(ktime_t *expires,
1910			       const enum hrtimer_mode mode)
1911{
1912	return schedule_hrtimeout_range(expires, 0, mode);
1913}
1914EXPORT_SYMBOL_GPL(schedule_hrtimeout);
v3.5.6
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *	based on kernel/timer.c
  24 *
  25 *	Help, testing, suggestions, bugfixes, improvements were
  26 *	provided by:
  27 *
  28 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *	et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
 
 
 
  47#include <linux/timer.h>
 
  48
  49#include <asm/uaccess.h>
  50
  51#include <trace/events/timer.h>
  52
  53/*
  54 * The timer bases:
  55 *
  56 * There are more clockids then hrtimer bases. Thus, we index
  57 * into the timer bases by the hrtimer_base_type enum. When trying
  58 * to reach a base using a clockid, hrtimer_clockid_to_base()
  59 * is used to convert from clockid to the proper hrtimer_base_type.
  60 */
  61DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  62{
  63
 
  64	.clock_base =
  65	{
  66		{
  67			.index = HRTIMER_BASE_MONOTONIC,
  68			.clockid = CLOCK_MONOTONIC,
  69			.get_time = &ktime_get,
  70			.resolution = KTIME_LOW_RES,
  71		},
  72		{
  73			.index = HRTIMER_BASE_REALTIME,
  74			.clockid = CLOCK_REALTIME,
  75			.get_time = &ktime_get_real,
  76			.resolution = KTIME_LOW_RES,
  77		},
  78		{
  79			.index = HRTIMER_BASE_BOOTTIME,
  80			.clockid = CLOCK_BOOTTIME,
  81			.get_time = &ktime_get_boottime,
  82			.resolution = KTIME_LOW_RES,
  83		},
 
 
 
 
 
 
  84	}
  85};
  86
  87static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  88	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
  89	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
  90	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
 
  91};
  92
  93static inline int hrtimer_clockid_to_base(clockid_t clock_id)
  94{
  95	return hrtimer_clock_to_base_table[clock_id];
  96}
  97
  98
  99/*
 100 * Get the coarse grained time at the softirq based on xtime and
 101 * wall_to_monotonic.
 102 */
 103static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 104{
 105	ktime_t xtim, mono, boot;
 106	struct timespec xts, tom, slp;
 
 107
 108	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
 
 109
 110	xtim = timespec_to_ktime(xts);
 111	mono = ktime_add(xtim, timespec_to_ktime(tom));
 112	boot = ktime_add(mono, timespec_to_ktime(slp));
 113	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
 114	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
 115	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
 
 
 116}
 117
 118/*
 119 * Functions and macros which are different for UP/SMP systems are kept in a
 120 * single place
 121 */
 122#ifdef CONFIG_SMP
 123
 124/*
 125 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 126 * means that all timers which are tied to this base via timer->base are
 127 * locked, and the base itself is locked too.
 128 *
 129 * So __run_timers/migrate_timers can safely modify all timers which could
 130 * be found on the lists/queues.
 131 *
 132 * When the timer's base is locked, and the timer removed from list, it is
 133 * possible to set timer->base = NULL and drop the lock: the timer remains
 134 * locked.
 135 */
 136static
 137struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 138					     unsigned long *flags)
 139{
 140	struct hrtimer_clock_base *base;
 141
 142	for (;;) {
 143		base = timer->base;
 144		if (likely(base != NULL)) {
 145			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 146			if (likely(base == timer->base))
 147				return base;
 148			/* The timer has migrated to another CPU: */
 149			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 150		}
 151		cpu_relax();
 152	}
 153}
 154
 155
 156/*
 157 * Get the preferred target CPU for NOHZ
 158 */
 159static int hrtimer_get_target(int this_cpu, int pinned)
 160{
 161#ifdef CONFIG_NO_HZ
 162	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
 163		return get_nohz_timer_target();
 164#endif
 165	return this_cpu;
 166}
 167
 168/*
 169 * With HIGHRES=y we do not migrate the timer when it is expiring
 170 * before the next event on the target cpu because we cannot reprogram
 171 * the target cpu hardware and we would cause it to fire late.
 172 *
 173 * Called with cpu_base->lock of target cpu held.
 174 */
 175static int
 176hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 177{
 178#ifdef CONFIG_HIGH_RES_TIMERS
 179	ktime_t expires;
 180
 181	if (!new_base->cpu_base->hres_active)
 182		return 0;
 183
 184	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 185	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 186#else
 187	return 0;
 188#endif
 189}
 190
 191/*
 192 * Switch the timer base to the current CPU when possible.
 193 */
 194static inline struct hrtimer_clock_base *
 195switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 196		    int pinned)
 197{
 198	struct hrtimer_clock_base *new_base;
 199	struct hrtimer_cpu_base *new_cpu_base;
 200	int this_cpu = smp_processor_id();
 201	int cpu = hrtimer_get_target(this_cpu, pinned);
 202	int basenum = base->index;
 203
 204again:
 205	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
 206	new_base = &new_cpu_base->clock_base[basenum];
 207
 208	if (base != new_base) {
 209		/*
 210		 * We are trying to move timer to new_base.
 211		 * However we can't change timer's base while it is running,
 212		 * so we keep it on the same CPU. No hassle vs. reprogramming
 213		 * the event source in the high resolution case. The softirq
 214		 * code will take care of this when the timer function has
 215		 * completed. There is no conflict as we hold the lock until
 216		 * the timer is enqueued.
 217		 */
 218		if (unlikely(hrtimer_callback_running(timer)))
 219			return base;
 220
 221		/* See the comment in lock_timer_base() */
 222		timer->base = NULL;
 223		raw_spin_unlock(&base->cpu_base->lock);
 224		raw_spin_lock(&new_base->cpu_base->lock);
 225
 226		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
 227			cpu = this_cpu;
 228			raw_spin_unlock(&new_base->cpu_base->lock);
 229			raw_spin_lock(&base->cpu_base->lock);
 230			timer->base = base;
 231			goto again;
 232		}
 233		timer->base = new_base;
 
 
 
 
 
 234	}
 235	return new_base;
 236}
 237
 238#else /* CONFIG_SMP */
 239
 240static inline struct hrtimer_clock_base *
 241lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 242{
 243	struct hrtimer_clock_base *base = timer->base;
 244
 245	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 246
 247	return base;
 248}
 249
 250# define switch_hrtimer_base(t, b, p)	(b)
 251
 252#endif	/* !CONFIG_SMP */
 253
 254/*
 255 * Functions for the union type storage format of ktime_t which are
 256 * too large for inlining:
 257 */
 258#if BITS_PER_LONG < 64
 259# ifndef CONFIG_KTIME_SCALAR
 260/**
 261 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 262 * @kt:		addend
 263 * @nsec:	the scalar nsec value to add
 264 *
 265 * Returns the sum of kt and nsec in ktime_t format
 266 */
 267ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
 268{
 269	ktime_t tmp;
 270
 271	if (likely(nsec < NSEC_PER_SEC)) {
 272		tmp.tv64 = nsec;
 273	} else {
 274		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 275
 
 
 
 
 276		tmp = ktime_set((long)nsec, rem);
 277	}
 278
 279	return ktime_add(kt, tmp);
 280}
 281
 282EXPORT_SYMBOL_GPL(ktime_add_ns);
 283
 284/**
 285 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 286 * @kt:		minuend
 287 * @nsec:	the scalar nsec value to subtract
 288 *
 289 * Returns the subtraction of @nsec from @kt in ktime_t format
 290 */
 291ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
 292{
 293	ktime_t tmp;
 294
 295	if (likely(nsec < NSEC_PER_SEC)) {
 296		tmp.tv64 = nsec;
 297	} else {
 298		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 299
 300		tmp = ktime_set((long)nsec, rem);
 301	}
 302
 303	return ktime_sub(kt, tmp);
 304}
 305
 306EXPORT_SYMBOL_GPL(ktime_sub_ns);
 307# endif /* !CONFIG_KTIME_SCALAR */
 308
 309/*
 310 * Divide a ktime value by a nanosecond value
 311 */
 312u64 ktime_divns(const ktime_t kt, s64 div)
 313{
 314	u64 dclc;
 315	int sft = 0;
 316
 317	dclc = ktime_to_ns(kt);
 318	/* Make sure the divisor is less than 2^32: */
 319	while (div >> 32) {
 320		sft++;
 321		div >>= 1;
 322	}
 323	dclc >>= sft;
 324	do_div(dclc, (unsigned long) div);
 325
 326	return dclc;
 327}
 328#endif /* BITS_PER_LONG >= 64 */
 329
 330/*
 331 * Add two ktime values and do a safety check for overflow:
 332 */
 333ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 334{
 335	ktime_t res = ktime_add(lhs, rhs);
 336
 337	/*
 338	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 339	 * return to user space in a timespec:
 340	 */
 341	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 342		res = ktime_set(KTIME_SEC_MAX, 0);
 343
 344	return res;
 345}
 346
 347EXPORT_SYMBOL_GPL(ktime_add_safe);
 348
 349#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 350
 351static struct debug_obj_descr hrtimer_debug_descr;
 352
 353static void *hrtimer_debug_hint(void *addr)
 354{
 355	return ((struct hrtimer *) addr)->function;
 356}
 357
 358/*
 359 * fixup_init is called when:
 360 * - an active object is initialized
 361 */
 362static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 363{
 364	struct hrtimer *timer = addr;
 365
 366	switch (state) {
 367	case ODEBUG_STATE_ACTIVE:
 368		hrtimer_cancel(timer);
 369		debug_object_init(timer, &hrtimer_debug_descr);
 370		return 1;
 371	default:
 372		return 0;
 373	}
 374}
 375
 376/*
 377 * fixup_activate is called when:
 378 * - an active object is activated
 379 * - an unknown object is activated (might be a statically initialized object)
 380 */
 381static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 382{
 383	switch (state) {
 384
 385	case ODEBUG_STATE_NOTAVAILABLE:
 386		WARN_ON_ONCE(1);
 387		return 0;
 388
 389	case ODEBUG_STATE_ACTIVE:
 390		WARN_ON(1);
 391
 392	default:
 393		return 0;
 394	}
 395}
 396
 397/*
 398 * fixup_free is called when:
 399 * - an active object is freed
 400 */
 401static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 402{
 403	struct hrtimer *timer = addr;
 404
 405	switch (state) {
 406	case ODEBUG_STATE_ACTIVE:
 407		hrtimer_cancel(timer);
 408		debug_object_free(timer, &hrtimer_debug_descr);
 409		return 1;
 410	default:
 411		return 0;
 412	}
 413}
 414
 415static struct debug_obj_descr hrtimer_debug_descr = {
 416	.name		= "hrtimer",
 417	.debug_hint	= hrtimer_debug_hint,
 418	.fixup_init	= hrtimer_fixup_init,
 419	.fixup_activate	= hrtimer_fixup_activate,
 420	.fixup_free	= hrtimer_fixup_free,
 421};
 422
 423static inline void debug_hrtimer_init(struct hrtimer *timer)
 424{
 425	debug_object_init(timer, &hrtimer_debug_descr);
 426}
 427
 428static inline void debug_hrtimer_activate(struct hrtimer *timer)
 429{
 430	debug_object_activate(timer, &hrtimer_debug_descr);
 431}
 432
 433static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 434{
 435	debug_object_deactivate(timer, &hrtimer_debug_descr);
 436}
 437
 438static inline void debug_hrtimer_free(struct hrtimer *timer)
 439{
 440	debug_object_free(timer, &hrtimer_debug_descr);
 441}
 442
 443static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 444			   enum hrtimer_mode mode);
 445
 446void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 447			   enum hrtimer_mode mode)
 448{
 449	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 450	__hrtimer_init(timer, clock_id, mode);
 451}
 452EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 453
 454void destroy_hrtimer_on_stack(struct hrtimer *timer)
 455{
 456	debug_object_free(timer, &hrtimer_debug_descr);
 457}
 458
 459#else
 460static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 461static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 463#endif
 464
 465static inline void
 466debug_init(struct hrtimer *timer, clockid_t clockid,
 467	   enum hrtimer_mode mode)
 468{
 469	debug_hrtimer_init(timer);
 470	trace_hrtimer_init(timer, clockid, mode);
 471}
 472
 473static inline void debug_activate(struct hrtimer *timer)
 474{
 475	debug_hrtimer_activate(timer);
 476	trace_hrtimer_start(timer);
 477}
 478
 479static inline void debug_deactivate(struct hrtimer *timer)
 480{
 481	debug_hrtimer_deactivate(timer);
 482	trace_hrtimer_cancel(timer);
 483}
 484
 485/* High resolution timer related functions */
 486#ifdef CONFIG_HIGH_RES_TIMERS
 487
 488/*
 489 * High resolution timer enabled ?
 490 */
 491static int hrtimer_hres_enabled __read_mostly  = 1;
 492
 493/*
 494 * Enable / Disable high resolution mode
 495 */
 496static int __init setup_hrtimer_hres(char *str)
 497{
 498	if (!strcmp(str, "off"))
 499		hrtimer_hres_enabled = 0;
 500	else if (!strcmp(str, "on"))
 501		hrtimer_hres_enabled = 1;
 502	else
 503		return 0;
 504	return 1;
 505}
 506
 507__setup("highres=", setup_hrtimer_hres);
 508
 509/*
 510 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 511 */
 512static inline int hrtimer_is_hres_enabled(void)
 513{
 514	return hrtimer_hres_enabled;
 515}
 516
 517/*
 518 * Is the high resolution mode active ?
 519 */
 520static inline int hrtimer_hres_active(void)
 521{
 522	return __this_cpu_read(hrtimer_bases.hres_active);
 523}
 524
 525/*
 526 * Reprogram the event source with checking both queues for the
 527 * next event
 528 * Called with interrupts disabled and base->lock held
 529 */
 530static void
 531hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 532{
 533	int i;
 534	struct hrtimer_clock_base *base = cpu_base->clock_base;
 535	ktime_t expires, expires_next;
 536
 537	expires_next.tv64 = KTIME_MAX;
 538
 539	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 540		struct hrtimer *timer;
 541		struct timerqueue_node *next;
 542
 543		next = timerqueue_getnext(&base->active);
 544		if (!next)
 545			continue;
 546		timer = container_of(next, struct hrtimer, node);
 547
 548		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 549		/*
 550		 * clock_was_set() has changed base->offset so the
 551		 * result might be negative. Fix it up to prevent a
 552		 * false positive in clockevents_program_event()
 553		 */
 554		if (expires.tv64 < 0)
 555			expires.tv64 = 0;
 556		if (expires.tv64 < expires_next.tv64)
 557			expires_next = expires;
 558	}
 559
 560	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 561		return;
 562
 563	cpu_base->expires_next.tv64 = expires_next.tv64;
 564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565	if (cpu_base->expires_next.tv64 != KTIME_MAX)
 566		tick_program_event(cpu_base->expires_next, 1);
 567}
 568
 569/*
 570 * Shared reprogramming for clock_realtime and clock_monotonic
 571 *
 572 * When a timer is enqueued and expires earlier than the already enqueued
 573 * timers, we have to check, whether it expires earlier than the timer for
 574 * which the clock event device was armed.
 575 *
 576 * Called with interrupts disabled and base->cpu_base.lock held
 577 */
 578static int hrtimer_reprogram(struct hrtimer *timer,
 579			     struct hrtimer_clock_base *base)
 580{
 581	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 582	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 583	int res;
 584
 585	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 586
 587	/*
 588	 * When the callback is running, we do not reprogram the clock event
 589	 * device. The timer callback is either running on a different CPU or
 590	 * the callback is executed in the hrtimer_interrupt context. The
 591	 * reprogramming is handled either by the softirq, which called the
 592	 * callback or at the end of the hrtimer_interrupt.
 593	 */
 594	if (hrtimer_callback_running(timer))
 595		return 0;
 596
 597	/*
 598	 * CLOCK_REALTIME timer might be requested with an absolute
 599	 * expiry time which is less than base->offset. Nothing wrong
 600	 * about that, just avoid to call into the tick code, which
 601	 * has now objections against negative expiry values.
 602	 */
 603	if (expires.tv64 < 0)
 604		return -ETIME;
 605
 606	if (expires.tv64 >= cpu_base->expires_next.tv64)
 607		return 0;
 608
 609	/*
 610	 * If a hang was detected in the last timer interrupt then we
 611	 * do not schedule a timer which is earlier than the expiry
 612	 * which we enforced in the hang detection. We want the system
 613	 * to make progress.
 614	 */
 615	if (cpu_base->hang_detected)
 616		return 0;
 617
 618	/*
 619	 * Clockevents returns -ETIME, when the event was in the past.
 620	 */
 621	res = tick_program_event(expires, 0);
 622	if (!IS_ERR_VALUE(res))
 623		cpu_base->expires_next = expires;
 624	return res;
 625}
 626
 627/*
 628 * Initialize the high resolution related parts of cpu_base
 629 */
 630static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 631{
 632	base->expires_next.tv64 = KTIME_MAX;
 633	base->hres_active = 0;
 634}
 635
 636/*
 637 * When High resolution timers are active, try to reprogram. Note, that in case
 638 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 639 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 640 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 641 */
 642static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 643					    struct hrtimer_clock_base *base,
 644					    int wakeup)
 645{
 646	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
 647		if (wakeup) {
 648			raw_spin_unlock(&base->cpu_base->lock);
 649			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 650			raw_spin_lock(&base->cpu_base->lock);
 651		} else
 652			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 653
 654		return 1;
 655	}
 656
 657	return 0;
 658}
 659
 660static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 661{
 662	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 663	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 
 664
 665	return ktime_get_update_offsets(offs_real, offs_boot);
 666}
 667
 668/*
 669 * Retrigger next event is called after clock was set
 670 *
 671 * Called with interrupts disabled via on_each_cpu()
 672 */
 673static void retrigger_next_event(void *arg)
 674{
 675	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
 676
 677	if (!hrtimer_hres_active())
 678		return;
 679
 680	raw_spin_lock(&base->lock);
 681	hrtimer_update_base(base);
 682	hrtimer_force_reprogram(base, 0);
 683	raw_spin_unlock(&base->lock);
 684}
 685
 686/*
 687 * Switch to high resolution mode
 688 */
 689static int hrtimer_switch_to_hres(void)
 690{
 691	int i, cpu = smp_processor_id();
 692	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 693	unsigned long flags;
 694
 695	if (base->hres_active)
 696		return 1;
 697
 698	local_irq_save(flags);
 699
 700	if (tick_init_highres()) {
 701		local_irq_restore(flags);
 702		printk(KERN_WARNING "Could not switch to high resolution "
 703				    "mode on CPU %d\n", cpu);
 704		return 0;
 705	}
 706	base->hres_active = 1;
 707	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
 708		base->clock_base[i].resolution = KTIME_HIGH_RES;
 709
 710	tick_setup_sched_timer();
 711	/* "Retrigger" the interrupt to get things going */
 712	retrigger_next_event(NULL);
 713	local_irq_restore(flags);
 714	return 1;
 715}
 716
 
 
 
 
 
 
 
 717/*
 718 * Called from timekeeping code to reprogramm the hrtimer interrupt
 719 * device. If called from the timer interrupt context we defer it to
 720 * softirq context.
 721 */
 722void clock_was_set_delayed(void)
 723{
 724	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 725
 726	cpu_base->clock_was_set = 1;
 727	__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
 728}
 729
 730#else
 731
 732static inline int hrtimer_hres_active(void) { return 0; }
 733static inline int hrtimer_is_hres_enabled(void) { return 0; }
 734static inline int hrtimer_switch_to_hres(void) { return 0; }
 735static inline void
 736hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 737static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 738					    struct hrtimer_clock_base *base,
 739					    int wakeup)
 740{
 741	return 0;
 742}
 743static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 744static inline void retrigger_next_event(void *arg) { }
 745
 746#endif /* CONFIG_HIGH_RES_TIMERS */
 747
 748/*
 749 * Clock realtime was set
 750 *
 751 * Change the offset of the realtime clock vs. the monotonic
 752 * clock.
 753 *
 754 * We might have to reprogram the high resolution timer interrupt. On
 755 * SMP we call the architecture specific code to retrigger _all_ high
 756 * resolution timer interrupts. On UP we just disable interrupts and
 757 * call the high resolution interrupt code.
 758 */
 759void clock_was_set(void)
 760{
 761#ifdef CONFIG_HIGH_RES_TIMERS
 762	/* Retrigger the CPU local events everywhere */
 763	on_each_cpu(retrigger_next_event, NULL, 1);
 764#endif
 765	timerfd_clock_was_set();
 766}
 767
 768/*
 769 * During resume we might have to reprogram the high resolution timer
 770 * interrupt (on the local CPU):
 
 
 771 */
 772void hrtimers_resume(void)
 773{
 774	WARN_ONCE(!irqs_disabled(),
 775		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 776
 
 777	retrigger_next_event(NULL);
 778	timerfd_clock_was_set();
 
 779}
 780
 781static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 782{
 783#ifdef CONFIG_TIMER_STATS
 784	if (timer->start_site)
 785		return;
 786	timer->start_site = __builtin_return_address(0);
 787	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 788	timer->start_pid = current->pid;
 789#endif
 790}
 791
 792static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 793{
 794#ifdef CONFIG_TIMER_STATS
 795	timer->start_site = NULL;
 796#endif
 797}
 798
 799static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 800{
 801#ifdef CONFIG_TIMER_STATS
 802	if (likely(!timer_stats_active))
 803		return;
 804	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 805				 timer->function, timer->start_comm, 0);
 806#endif
 807}
 808
 809/*
 810 * Counterpart to lock_hrtimer_base above:
 811 */
 812static inline
 813void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 814{
 815	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 816}
 817
 818/**
 819 * hrtimer_forward - forward the timer expiry
 820 * @timer:	hrtimer to forward
 821 * @now:	forward past this time
 822 * @interval:	the interval to forward
 823 *
 824 * Forward the timer expiry so it will expire in the future.
 825 * Returns the number of overruns.
 826 */
 827u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 828{
 829	u64 orun = 1;
 830	ktime_t delta;
 831
 832	delta = ktime_sub(now, hrtimer_get_expires(timer));
 833
 834	if (delta.tv64 < 0)
 835		return 0;
 836
 837	if (interval.tv64 < timer->base->resolution.tv64)
 838		interval.tv64 = timer->base->resolution.tv64;
 839
 840	if (unlikely(delta.tv64 >= interval.tv64)) {
 841		s64 incr = ktime_to_ns(interval);
 842
 843		orun = ktime_divns(delta, incr);
 844		hrtimer_add_expires_ns(timer, incr * orun);
 845		if (hrtimer_get_expires_tv64(timer) > now.tv64)
 846			return orun;
 847		/*
 848		 * This (and the ktime_add() below) is the
 849		 * correction for exact:
 850		 */
 851		orun++;
 852	}
 853	hrtimer_add_expires(timer, interval);
 854
 855	return orun;
 856}
 857EXPORT_SYMBOL_GPL(hrtimer_forward);
 858
 859/*
 860 * enqueue_hrtimer - internal function to (re)start a timer
 861 *
 862 * The timer is inserted in expiry order. Insertion into the
 863 * red black tree is O(log(n)). Must hold the base lock.
 864 *
 865 * Returns 1 when the new timer is the leftmost timer in the tree.
 866 */
 867static int enqueue_hrtimer(struct hrtimer *timer,
 868			   struct hrtimer_clock_base *base)
 869{
 870	debug_activate(timer);
 871
 872	timerqueue_add(&base->active, &timer->node);
 873	base->cpu_base->active_bases |= 1 << base->index;
 874
 875	/*
 876	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 877	 * state of a possibly running callback.
 878	 */
 879	timer->state |= HRTIMER_STATE_ENQUEUED;
 880
 881	return (&timer->node == base->active.next);
 882}
 883
 884/*
 885 * __remove_hrtimer - internal function to remove a timer
 886 *
 887 * Caller must hold the base lock.
 888 *
 889 * High resolution timer mode reprograms the clock event device when the
 890 * timer is the one which expires next. The caller can disable this by setting
 891 * reprogram to zero. This is useful, when the context does a reprogramming
 892 * anyway (e.g. timer interrupt)
 893 */
 894static void __remove_hrtimer(struct hrtimer *timer,
 895			     struct hrtimer_clock_base *base,
 896			     unsigned long newstate, int reprogram)
 897{
 898	struct timerqueue_node *next_timer;
 899	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
 900		goto out;
 901
 902	next_timer = timerqueue_getnext(&base->active);
 903	timerqueue_del(&base->active, &timer->node);
 904	if (&timer->node == next_timer) {
 905#ifdef CONFIG_HIGH_RES_TIMERS
 906		/* Reprogram the clock event device. if enabled */
 907		if (reprogram && hrtimer_hres_active()) {
 908			ktime_t expires;
 909
 910			expires = ktime_sub(hrtimer_get_expires(timer),
 911					    base->offset);
 912			if (base->cpu_base->expires_next.tv64 == expires.tv64)
 913				hrtimer_force_reprogram(base->cpu_base, 1);
 914		}
 915#endif
 916	}
 917	if (!timerqueue_getnext(&base->active))
 918		base->cpu_base->active_bases &= ~(1 << base->index);
 919out:
 920	timer->state = newstate;
 921}
 922
 923/*
 924 * remove hrtimer, called with base lock held
 925 */
 926static inline int
 927remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 928{
 929	if (hrtimer_is_queued(timer)) {
 930		unsigned long state;
 931		int reprogram;
 932
 933		/*
 934		 * Remove the timer and force reprogramming when high
 935		 * resolution mode is active and the timer is on the current
 936		 * CPU. If we remove a timer on another CPU, reprogramming is
 937		 * skipped. The interrupt event on this CPU is fired and
 938		 * reprogramming happens in the interrupt handler. This is a
 939		 * rare case and less expensive than a smp call.
 940		 */
 941		debug_deactivate(timer);
 942		timer_stats_hrtimer_clear_start_info(timer);
 943		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
 944		/*
 945		 * We must preserve the CALLBACK state flag here,
 946		 * otherwise we could move the timer base in
 947		 * switch_hrtimer_base.
 948		 */
 949		state = timer->state & HRTIMER_STATE_CALLBACK;
 950		__remove_hrtimer(timer, base, state, reprogram);
 951		return 1;
 952	}
 953	return 0;
 954}
 955
 956int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 957		unsigned long delta_ns, const enum hrtimer_mode mode,
 958		int wakeup)
 959{
 960	struct hrtimer_clock_base *base, *new_base;
 961	unsigned long flags;
 962	int ret, leftmost;
 963
 964	base = lock_hrtimer_base(timer, &flags);
 965
 966	/* Remove an active timer from the queue: */
 967	ret = remove_hrtimer(timer, base);
 968
 969	/* Switch the timer base, if necessary: */
 970	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 971
 972	if (mode & HRTIMER_MODE_REL) {
 973		tim = ktime_add_safe(tim, new_base->get_time());
 974		/*
 975		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 976		 * to signal that they simply return xtime in
 977		 * do_gettimeoffset(). In this case we want to round up by
 978		 * resolution when starting a relative timer, to avoid short
 979		 * timeouts. This will go away with the GTOD framework.
 980		 */
 981#ifdef CONFIG_TIME_LOW_RES
 982		tim = ktime_add_safe(tim, base->resolution);
 983#endif
 984	}
 985
 986	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 987
 
 
 
 988	timer_stats_hrtimer_set_start_info(timer);
 989
 990	leftmost = enqueue_hrtimer(timer, new_base);
 991
 992	/*
 993	 * Only allow reprogramming if the new base is on this CPU.
 994	 * (it might still be on another CPU if the timer was pending)
 995	 *
 996	 * XXX send_remote_softirq() ?
 997	 */
 998	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
 999		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
 
 
 
 
 
 
 
 
 
 
 
 
 
1000
1001	unlock_hrtimer_base(timer, &flags);
1002
1003	return ret;
1004}
1005
1006/**
1007 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1008 * @timer:	the timer to be added
1009 * @tim:	expiry time
1010 * @delta_ns:	"slack" range for the timer
1011 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 
1012 *
1013 * Returns:
1014 *  0 on success
1015 *  1 when the timer was active
1016 */
1017int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1018		unsigned long delta_ns, const enum hrtimer_mode mode)
1019{
1020	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1021}
1022EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1023
1024/**
1025 * hrtimer_start - (re)start an hrtimer on the current CPU
1026 * @timer:	the timer to be added
1027 * @tim:	expiry time
1028 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 
1029 *
1030 * Returns:
1031 *  0 on success
1032 *  1 when the timer was active
1033 */
1034int
1035hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1036{
1037	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1038}
1039EXPORT_SYMBOL_GPL(hrtimer_start);
1040
1041
1042/**
1043 * hrtimer_try_to_cancel - try to deactivate a timer
1044 * @timer:	hrtimer to stop
1045 *
1046 * Returns:
1047 *  0 when the timer was not active
1048 *  1 when the timer was active
1049 * -1 when the timer is currently excuting the callback function and
1050 *    cannot be stopped
1051 */
1052int hrtimer_try_to_cancel(struct hrtimer *timer)
1053{
1054	struct hrtimer_clock_base *base;
1055	unsigned long flags;
1056	int ret = -1;
1057
1058	base = lock_hrtimer_base(timer, &flags);
1059
1060	if (!hrtimer_callback_running(timer))
1061		ret = remove_hrtimer(timer, base);
1062
1063	unlock_hrtimer_base(timer, &flags);
1064
1065	return ret;
1066
1067}
1068EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1069
1070/**
1071 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1072 * @timer:	the timer to be cancelled
1073 *
1074 * Returns:
1075 *  0 when the timer was not active
1076 *  1 when the timer was active
1077 */
1078int hrtimer_cancel(struct hrtimer *timer)
1079{
1080	for (;;) {
1081		int ret = hrtimer_try_to_cancel(timer);
1082
1083		if (ret >= 0)
1084			return ret;
1085		cpu_relax();
1086	}
1087}
1088EXPORT_SYMBOL_GPL(hrtimer_cancel);
1089
1090/**
1091 * hrtimer_get_remaining - get remaining time for the timer
1092 * @timer:	the timer to read
1093 */
1094ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1095{
1096	unsigned long flags;
1097	ktime_t rem;
1098
1099	lock_hrtimer_base(timer, &flags);
1100	rem = hrtimer_expires_remaining(timer);
1101	unlock_hrtimer_base(timer, &flags);
1102
1103	return rem;
1104}
1105EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1106
1107#ifdef CONFIG_NO_HZ
1108/**
1109 * hrtimer_get_next_event - get the time until next expiry event
1110 *
1111 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1112 * is pending.
1113 */
1114ktime_t hrtimer_get_next_event(void)
1115{
1116	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1117	struct hrtimer_clock_base *base = cpu_base->clock_base;
1118	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1119	unsigned long flags;
1120	int i;
1121
1122	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1123
1124	if (!hrtimer_hres_active()) {
1125		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1126			struct hrtimer *timer;
1127			struct timerqueue_node *next;
1128
1129			next = timerqueue_getnext(&base->active);
1130			if (!next)
1131				continue;
1132
1133			timer = container_of(next, struct hrtimer, node);
1134			delta.tv64 = hrtimer_get_expires_tv64(timer);
1135			delta = ktime_sub(delta, base->get_time());
1136			if (delta.tv64 < mindelta.tv64)
1137				mindelta.tv64 = delta.tv64;
1138		}
1139	}
1140
1141	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1142
1143	if (mindelta.tv64 < 0)
1144		mindelta.tv64 = 0;
1145	return mindelta;
1146}
1147#endif
1148
1149static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1150			   enum hrtimer_mode mode)
1151{
1152	struct hrtimer_cpu_base *cpu_base;
1153	int base;
1154
1155	memset(timer, 0, sizeof(struct hrtimer));
1156
1157	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1158
1159	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1160		clock_id = CLOCK_MONOTONIC;
1161
1162	base = hrtimer_clockid_to_base(clock_id);
1163	timer->base = &cpu_base->clock_base[base];
1164	timerqueue_init(&timer->node);
1165
1166#ifdef CONFIG_TIMER_STATS
1167	timer->start_site = NULL;
1168	timer->start_pid = -1;
1169	memset(timer->start_comm, 0, TASK_COMM_LEN);
1170#endif
1171}
1172
1173/**
1174 * hrtimer_init - initialize a timer to the given clock
1175 * @timer:	the timer to be initialized
1176 * @clock_id:	the clock to be used
1177 * @mode:	timer mode abs/rel
1178 */
1179void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1180		  enum hrtimer_mode mode)
1181{
1182	debug_init(timer, clock_id, mode);
1183	__hrtimer_init(timer, clock_id, mode);
1184}
1185EXPORT_SYMBOL_GPL(hrtimer_init);
1186
1187/**
1188 * hrtimer_get_res - get the timer resolution for a clock
1189 * @which_clock: which clock to query
1190 * @tp:		 pointer to timespec variable to store the resolution
1191 *
1192 * Store the resolution of the clock selected by @which_clock in the
1193 * variable pointed to by @tp.
1194 */
1195int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1196{
1197	struct hrtimer_cpu_base *cpu_base;
1198	int base = hrtimer_clockid_to_base(which_clock);
1199
1200	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1201	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1202
1203	return 0;
1204}
1205EXPORT_SYMBOL_GPL(hrtimer_get_res);
1206
1207static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1208{
1209	struct hrtimer_clock_base *base = timer->base;
1210	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1211	enum hrtimer_restart (*fn)(struct hrtimer *);
1212	int restart;
1213
1214	WARN_ON(!irqs_disabled());
1215
1216	debug_deactivate(timer);
1217	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1218	timer_stats_account_hrtimer(timer);
1219	fn = timer->function;
1220
1221	/*
1222	 * Because we run timers from hardirq context, there is no chance
1223	 * they get migrated to another cpu, therefore its safe to unlock
1224	 * the timer base.
1225	 */
1226	raw_spin_unlock(&cpu_base->lock);
1227	trace_hrtimer_expire_entry(timer, now);
1228	restart = fn(timer);
1229	trace_hrtimer_expire_exit(timer);
1230	raw_spin_lock(&cpu_base->lock);
1231
1232	/*
1233	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1234	 * we do not reprogramm the event hardware. Happens either in
1235	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1236	 */
1237	if (restart != HRTIMER_NORESTART) {
1238		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1239		enqueue_hrtimer(timer, base);
1240	}
1241
1242	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1243
1244	timer->state &= ~HRTIMER_STATE_CALLBACK;
1245}
1246
1247#ifdef CONFIG_HIGH_RES_TIMERS
1248
1249/*
1250 * High resolution timer interrupt
1251 * Called with interrupts disabled
1252 */
1253void hrtimer_interrupt(struct clock_event_device *dev)
1254{
1255	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1256	ktime_t expires_next, now, entry_time, delta;
1257	int i, retries = 0;
1258
1259	BUG_ON(!cpu_base->hres_active);
1260	cpu_base->nr_events++;
1261	dev->next_event.tv64 = KTIME_MAX;
1262
1263	raw_spin_lock(&cpu_base->lock);
1264	entry_time = now = hrtimer_update_base(cpu_base);
1265retry:
1266	expires_next.tv64 = KTIME_MAX;
1267	/*
1268	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1269	 * held to prevent that a timer is enqueued in our queue via
1270	 * the migration code. This does not affect enqueueing of
1271	 * timers which run their callback and need to be requeued on
1272	 * this CPU.
1273	 */
1274	cpu_base->expires_next.tv64 = KTIME_MAX;
1275
1276	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1277		struct hrtimer_clock_base *base;
1278		struct timerqueue_node *node;
1279		ktime_t basenow;
1280
1281		if (!(cpu_base->active_bases & (1 << i)))
1282			continue;
1283
1284		base = cpu_base->clock_base + i;
1285		basenow = ktime_add(now, base->offset);
1286
1287		while ((node = timerqueue_getnext(&base->active))) {
1288			struct hrtimer *timer;
1289
1290			timer = container_of(node, struct hrtimer, node);
1291
1292			/*
1293			 * The immediate goal for using the softexpires is
1294			 * minimizing wakeups, not running timers at the
1295			 * earliest interrupt after their soft expiration.
1296			 * This allows us to avoid using a Priority Search
1297			 * Tree, which can answer a stabbing querry for
1298			 * overlapping intervals and instead use the simple
1299			 * BST we already have.
1300			 * We don't add extra wakeups by delaying timers that
1301			 * are right-of a not yet expired timer, because that
1302			 * timer will have to trigger a wakeup anyway.
1303			 */
1304
1305			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1306				ktime_t expires;
1307
1308				expires = ktime_sub(hrtimer_get_expires(timer),
1309						    base->offset);
 
 
1310				if (expires.tv64 < expires_next.tv64)
1311					expires_next = expires;
1312				break;
1313			}
1314
1315			__run_hrtimer(timer, &basenow);
1316		}
1317	}
1318
1319	/*
1320	 * Store the new expiry value so the migration code can verify
1321	 * against it.
1322	 */
1323	cpu_base->expires_next = expires_next;
1324	raw_spin_unlock(&cpu_base->lock);
1325
1326	/* Reprogramming necessary ? */
1327	if (expires_next.tv64 == KTIME_MAX ||
1328	    !tick_program_event(expires_next, 0)) {
1329		cpu_base->hang_detected = 0;
1330		return;
1331	}
1332
1333	/*
1334	 * The next timer was already expired due to:
1335	 * - tracing
1336	 * - long lasting callbacks
1337	 * - being scheduled away when running in a VM
1338	 *
1339	 * We need to prevent that we loop forever in the hrtimer
1340	 * interrupt routine. We give it 3 attempts to avoid
1341	 * overreacting on some spurious event.
1342	 *
1343	 * Acquire base lock for updating the offsets and retrieving
1344	 * the current time.
1345	 */
1346	raw_spin_lock(&cpu_base->lock);
1347	now = hrtimer_update_base(cpu_base);
1348	cpu_base->nr_retries++;
1349	if (++retries < 3)
1350		goto retry;
1351	/*
1352	 * Give the system a chance to do something else than looping
1353	 * here. We stored the entry time, so we know exactly how long
1354	 * we spent here. We schedule the next event this amount of
1355	 * time away.
1356	 */
1357	cpu_base->nr_hangs++;
1358	cpu_base->hang_detected = 1;
1359	raw_spin_unlock(&cpu_base->lock);
1360	delta = ktime_sub(now, entry_time);
1361	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1362		cpu_base->max_hang_time = delta;
1363	/*
1364	 * Limit it to a sensible value as we enforce a longer
1365	 * delay. Give the CPU at least 100ms to catch up.
1366	 */
1367	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1368		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1369	else
1370		expires_next = ktime_add(now, delta);
1371	tick_program_event(expires_next, 1);
1372	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1373		    ktime_to_ns(delta));
1374}
1375
1376/*
1377 * local version of hrtimer_peek_ahead_timers() called with interrupts
1378 * disabled.
1379 */
1380static void __hrtimer_peek_ahead_timers(void)
1381{
1382	struct tick_device *td;
1383
1384	if (!hrtimer_hres_active())
1385		return;
1386
1387	td = &__get_cpu_var(tick_cpu_device);
1388	if (td && td->evtdev)
1389		hrtimer_interrupt(td->evtdev);
1390}
1391
1392/**
1393 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1394 *
1395 * hrtimer_peek_ahead_timers will peek at the timer queue of
1396 * the current cpu and check if there are any timers for which
1397 * the soft expires time has passed. If any such timers exist,
1398 * they are run immediately and then removed from the timer queue.
1399 *
1400 */
1401void hrtimer_peek_ahead_timers(void)
1402{
1403	unsigned long flags;
1404
1405	local_irq_save(flags);
1406	__hrtimer_peek_ahead_timers();
1407	local_irq_restore(flags);
1408}
1409
1410static void run_hrtimer_softirq(struct softirq_action *h)
1411{
1412	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1413
1414	if (cpu_base->clock_was_set) {
1415		cpu_base->clock_was_set = 0;
1416		clock_was_set();
1417	}
1418
1419	hrtimer_peek_ahead_timers();
1420}
1421
1422#else /* CONFIG_HIGH_RES_TIMERS */
1423
1424static inline void __hrtimer_peek_ahead_timers(void) { }
1425
1426#endif	/* !CONFIG_HIGH_RES_TIMERS */
1427
1428/*
1429 * Called from timer softirq every jiffy, expire hrtimers:
1430 *
1431 * For HRT its the fall back code to run the softirq in the timer
1432 * softirq context in case the hrtimer initialization failed or has
1433 * not been done yet.
1434 */
1435void hrtimer_run_pending(void)
1436{
1437	if (hrtimer_hres_active())
1438		return;
1439
1440	/*
1441	 * This _is_ ugly: We have to check in the softirq context,
1442	 * whether we can switch to highres and / or nohz mode. The
1443	 * clocksource switch happens in the timer interrupt with
1444	 * xtime_lock held. Notification from there only sets the
1445	 * check bit in the tick_oneshot code, otherwise we might
1446	 * deadlock vs. xtime_lock.
1447	 */
1448	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1449		hrtimer_switch_to_hres();
1450}
1451
1452/*
1453 * Called from hardirq context every jiffy
1454 */
1455void hrtimer_run_queues(void)
1456{
1457	struct timerqueue_node *node;
1458	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1459	struct hrtimer_clock_base *base;
1460	int index, gettime = 1;
1461
1462	if (hrtimer_hres_active())
1463		return;
1464
1465	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1466		base = &cpu_base->clock_base[index];
1467		if (!timerqueue_getnext(&base->active))
1468			continue;
1469
1470		if (gettime) {
1471			hrtimer_get_softirq_time(cpu_base);
1472			gettime = 0;
1473		}
1474
1475		raw_spin_lock(&cpu_base->lock);
1476
1477		while ((node = timerqueue_getnext(&base->active))) {
1478			struct hrtimer *timer;
1479
1480			timer = container_of(node, struct hrtimer, node);
1481			if (base->softirq_time.tv64 <=
1482					hrtimer_get_expires_tv64(timer))
1483				break;
1484
1485			__run_hrtimer(timer, &base->softirq_time);
1486		}
1487		raw_spin_unlock(&cpu_base->lock);
1488	}
1489}
1490
1491/*
1492 * Sleep related functions:
1493 */
1494static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1495{
1496	struct hrtimer_sleeper *t =
1497		container_of(timer, struct hrtimer_sleeper, timer);
1498	struct task_struct *task = t->task;
1499
1500	t->task = NULL;
1501	if (task)
1502		wake_up_process(task);
1503
1504	return HRTIMER_NORESTART;
1505}
1506
1507void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1508{
1509	sl->timer.function = hrtimer_wakeup;
1510	sl->task = task;
1511}
1512EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1513
1514static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1515{
1516	hrtimer_init_sleeper(t, current);
1517
1518	do {
1519		set_current_state(TASK_INTERRUPTIBLE);
1520		hrtimer_start_expires(&t->timer, mode);
1521		if (!hrtimer_active(&t->timer))
1522			t->task = NULL;
1523
1524		if (likely(t->task))
1525			schedule();
1526
1527		hrtimer_cancel(&t->timer);
1528		mode = HRTIMER_MODE_ABS;
1529
1530	} while (t->task && !signal_pending(current));
1531
1532	__set_current_state(TASK_RUNNING);
1533
1534	return t->task == NULL;
1535}
1536
1537static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1538{
1539	struct timespec rmt;
1540	ktime_t rem;
1541
1542	rem = hrtimer_expires_remaining(timer);
1543	if (rem.tv64 <= 0)
1544		return 0;
1545	rmt = ktime_to_timespec(rem);
1546
1547	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1548		return -EFAULT;
1549
1550	return 1;
1551}
1552
1553long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1554{
1555	struct hrtimer_sleeper t;
1556	struct timespec __user  *rmtp;
1557	int ret = 0;
1558
1559	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1560				HRTIMER_MODE_ABS);
1561	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1562
1563	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1564		goto out;
1565
1566	rmtp = restart->nanosleep.rmtp;
1567	if (rmtp) {
1568		ret = update_rmtp(&t.timer, rmtp);
1569		if (ret <= 0)
1570			goto out;
1571	}
1572
1573	/* The other values in restart are already filled in */
1574	ret = -ERESTART_RESTARTBLOCK;
1575out:
1576	destroy_hrtimer_on_stack(&t.timer);
1577	return ret;
1578}
1579
1580long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1581		       const enum hrtimer_mode mode, const clockid_t clockid)
1582{
1583	struct restart_block *restart;
1584	struct hrtimer_sleeper t;
1585	int ret = 0;
1586	unsigned long slack;
1587
1588	slack = current->timer_slack_ns;
1589	if (rt_task(current))
1590		slack = 0;
1591
1592	hrtimer_init_on_stack(&t.timer, clockid, mode);
1593	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1594	if (do_nanosleep(&t, mode))
1595		goto out;
1596
1597	/* Absolute timers do not update the rmtp value and restart: */
1598	if (mode == HRTIMER_MODE_ABS) {
1599		ret = -ERESTARTNOHAND;
1600		goto out;
1601	}
1602
1603	if (rmtp) {
1604		ret = update_rmtp(&t.timer, rmtp);
1605		if (ret <= 0)
1606			goto out;
1607	}
1608
1609	restart = &current_thread_info()->restart_block;
1610	restart->fn = hrtimer_nanosleep_restart;
1611	restart->nanosleep.clockid = t.timer.base->clockid;
1612	restart->nanosleep.rmtp = rmtp;
1613	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1614
1615	ret = -ERESTART_RESTARTBLOCK;
1616out:
1617	destroy_hrtimer_on_stack(&t.timer);
1618	return ret;
1619}
1620
1621SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1622		struct timespec __user *, rmtp)
1623{
1624	struct timespec tu;
1625
1626	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1627		return -EFAULT;
1628
1629	if (!timespec_valid(&tu))
1630		return -EINVAL;
1631
1632	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1633}
1634
1635/*
1636 * Functions related to boot-time initialization:
1637 */
1638static void __cpuinit init_hrtimers_cpu(int cpu)
1639{
1640	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1641	int i;
1642
1643	raw_spin_lock_init(&cpu_base->lock);
1644
1645	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1646		cpu_base->clock_base[i].cpu_base = cpu_base;
1647		timerqueue_init_head(&cpu_base->clock_base[i].active);
1648	}
1649
1650	hrtimer_init_hres(cpu_base);
1651}
1652
1653#ifdef CONFIG_HOTPLUG_CPU
1654
1655static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1656				struct hrtimer_clock_base *new_base)
1657{
1658	struct hrtimer *timer;
1659	struct timerqueue_node *node;
1660
1661	while ((node = timerqueue_getnext(&old_base->active))) {
1662		timer = container_of(node, struct hrtimer, node);
1663		BUG_ON(hrtimer_callback_running(timer));
1664		debug_deactivate(timer);
1665
1666		/*
1667		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1668		 * timer could be seen as !active and just vanish away
1669		 * under us on another CPU
1670		 */
1671		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1672		timer->base = new_base;
1673		/*
1674		 * Enqueue the timers on the new cpu. This does not
1675		 * reprogram the event device in case the timer
1676		 * expires before the earliest on this CPU, but we run
1677		 * hrtimer_interrupt after we migrated everything to
1678		 * sort out already expired timers and reprogram the
1679		 * event device.
1680		 */
1681		enqueue_hrtimer(timer, new_base);
1682
1683		/* Clear the migration state bit */
1684		timer->state &= ~HRTIMER_STATE_MIGRATE;
1685	}
1686}
1687
1688static void migrate_hrtimers(int scpu)
1689{
1690	struct hrtimer_cpu_base *old_base, *new_base;
1691	int i;
1692
1693	BUG_ON(cpu_online(scpu));
1694	tick_cancel_sched_timer(scpu);
1695
1696	local_irq_disable();
1697	old_base = &per_cpu(hrtimer_bases, scpu);
1698	new_base = &__get_cpu_var(hrtimer_bases);
1699	/*
1700	 * The caller is globally serialized and nobody else
1701	 * takes two locks at once, deadlock is not possible.
1702	 */
1703	raw_spin_lock(&new_base->lock);
1704	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1705
1706	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1707		migrate_hrtimer_list(&old_base->clock_base[i],
1708				     &new_base->clock_base[i]);
1709	}
1710
1711	raw_spin_unlock(&old_base->lock);
1712	raw_spin_unlock(&new_base->lock);
1713
1714	/* Check, if we got expired work to do */
1715	__hrtimer_peek_ahead_timers();
1716	local_irq_enable();
1717}
1718
1719#endif /* CONFIG_HOTPLUG_CPU */
1720
1721static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1722					unsigned long action, void *hcpu)
1723{
1724	int scpu = (long)hcpu;
1725
1726	switch (action) {
1727
1728	case CPU_UP_PREPARE:
1729	case CPU_UP_PREPARE_FROZEN:
1730		init_hrtimers_cpu(scpu);
1731		break;
1732
1733#ifdef CONFIG_HOTPLUG_CPU
1734	case CPU_DYING:
1735	case CPU_DYING_FROZEN:
1736		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1737		break;
1738	case CPU_DEAD:
1739	case CPU_DEAD_FROZEN:
1740	{
1741		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1742		migrate_hrtimers(scpu);
1743		break;
1744	}
1745#endif
1746
1747	default:
1748		break;
1749	}
1750
1751	return NOTIFY_OK;
1752}
1753
1754static struct notifier_block __cpuinitdata hrtimers_nb = {
1755	.notifier_call = hrtimer_cpu_notify,
1756};
1757
1758void __init hrtimers_init(void)
1759{
1760	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1761			  (void *)(long)smp_processor_id());
1762	register_cpu_notifier(&hrtimers_nb);
1763#ifdef CONFIG_HIGH_RES_TIMERS
1764	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1765#endif
1766}
1767
1768/**
1769 * schedule_hrtimeout_range_clock - sleep until timeout
1770 * @expires:	timeout value (ktime_t)
1771 * @delta:	slack in expires timeout (ktime_t)
1772 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1773 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1774 */
1775int __sched
1776schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1777			       const enum hrtimer_mode mode, int clock)
1778{
1779	struct hrtimer_sleeper t;
1780
1781	/*
1782	 * Optimize when a zero timeout value is given. It does not
1783	 * matter whether this is an absolute or a relative time.
1784	 */
1785	if (expires && !expires->tv64) {
1786		__set_current_state(TASK_RUNNING);
1787		return 0;
1788	}
1789
1790	/*
1791	 * A NULL parameter means "infinite"
1792	 */
1793	if (!expires) {
1794		schedule();
1795		__set_current_state(TASK_RUNNING);
1796		return -EINTR;
1797	}
1798
1799	hrtimer_init_on_stack(&t.timer, clock, mode);
1800	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1801
1802	hrtimer_init_sleeper(&t, current);
1803
1804	hrtimer_start_expires(&t.timer, mode);
1805	if (!hrtimer_active(&t.timer))
1806		t.task = NULL;
1807
1808	if (likely(t.task))
1809		schedule();
1810
1811	hrtimer_cancel(&t.timer);
1812	destroy_hrtimer_on_stack(&t.timer);
1813
1814	__set_current_state(TASK_RUNNING);
1815
1816	return !t.task ? 0 : -EINTR;
1817}
1818
1819/**
1820 * schedule_hrtimeout_range - sleep until timeout
1821 * @expires:	timeout value (ktime_t)
1822 * @delta:	slack in expires timeout (ktime_t)
1823 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1824 *
1825 * Make the current task sleep until the given expiry time has
1826 * elapsed. The routine will return immediately unless
1827 * the current task state has been set (see set_current_state()).
1828 *
1829 * The @delta argument gives the kernel the freedom to schedule the
1830 * actual wakeup to a time that is both power and performance friendly.
1831 * The kernel give the normal best effort behavior for "@expires+@delta",
1832 * but may decide to fire the timer earlier, but no earlier than @expires.
1833 *
1834 * You can set the task state as follows -
1835 *
1836 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1837 * pass before the routine returns.
1838 *
1839 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1840 * delivered to the current task.
1841 *
1842 * The current task state is guaranteed to be TASK_RUNNING when this
1843 * routine returns.
1844 *
1845 * Returns 0 when the timer has expired otherwise -EINTR
1846 */
1847int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1848				     const enum hrtimer_mode mode)
1849{
1850	return schedule_hrtimeout_range_clock(expires, delta, mode,
1851					      CLOCK_MONOTONIC);
1852}
1853EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1854
1855/**
1856 * schedule_hrtimeout - sleep until timeout
1857 * @expires:	timeout value (ktime_t)
1858 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1859 *
1860 * Make the current task sleep until the given expiry time has
1861 * elapsed. The routine will return immediately unless
1862 * the current task state has been set (see set_current_state()).
1863 *
1864 * You can set the task state as follows -
1865 *
1866 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1867 * pass before the routine returns.
1868 *
1869 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1870 * delivered to the current task.
1871 *
1872 * The current task state is guaranteed to be TASK_RUNNING when this
1873 * routine returns.
1874 *
1875 * Returns 0 when the timer has expired otherwise -EINTR
1876 */
1877int __sched schedule_hrtimeout(ktime_t *expires,
1878			       const enum hrtimer_mode mode)
1879{
1880	return schedule_hrtimeout_range(expires, 0, mode);
1881}
1882EXPORT_SYMBOL_GPL(schedule_hrtimeout);