Linux Audio

Check our new training course

Loading...
v3.15
  1#include "audit.h"
  2#include <linux/fsnotify_backend.h>
  3#include <linux/namei.h>
  4#include <linux/mount.h>
  5#include <linux/kthread.h>
  6#include <linux/slab.h>
  7
  8struct audit_tree;
  9struct audit_chunk;
 10
 11struct audit_tree {
 12	atomic_t count;
 13	int goner;
 14	struct audit_chunk *root;
 15	struct list_head chunks;
 16	struct list_head rules;
 17	struct list_head list;
 18	struct list_head same_root;
 19	struct rcu_head head;
 20	char pathname[];
 21};
 22
 23struct audit_chunk {
 24	struct list_head hash;
 25	struct fsnotify_mark mark;
 26	struct list_head trees;		/* with root here */
 27	int dead;
 28	int count;
 29	atomic_long_t refs;
 30	struct rcu_head head;
 31	struct node {
 32		struct list_head list;
 33		struct audit_tree *owner;
 34		unsigned index;		/* index; upper bit indicates 'will prune' */
 35	} owners[];
 36};
 37
 38static LIST_HEAD(tree_list);
 39static LIST_HEAD(prune_list);
 40
 41/*
 42 * One struct chunk is attached to each inode of interest.
 43 * We replace struct chunk on tagging/untagging.
 44 * Rules have pointer to struct audit_tree.
 45 * Rules have struct list_head rlist forming a list of rules over
 46 * the same tree.
 47 * References to struct chunk are collected at audit_inode{,_child}()
 48 * time and used in AUDIT_TREE rule matching.
 49 * These references are dropped at the same time we are calling
 50 * audit_free_names(), etc.
 51 *
 52 * Cyclic lists galore:
 53 * tree.chunks anchors chunk.owners[].list			hash_lock
 54 * tree.rules anchors rule.rlist				audit_filter_mutex
 55 * chunk.trees anchors tree.same_root				hash_lock
 56 * chunk.hash is a hash with middle bits of watch.inode as
 57 * a hash function.						RCU, hash_lock
 58 *
 59 * tree is refcounted; one reference for "some rules on rules_list refer to
 60 * it", one for each chunk with pointer to it.
 61 *
 62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
 63 * of watch contributes 1 to .refs).
 64 *
 65 * node.index allows to get from node.list to containing chunk.
 66 * MSB of that sucker is stolen to mark taggings that we might have to
 67 * revert - several operations have very unpleasant cleanup logics and
 68 * that makes a difference.  Some.
 69 */
 70
 71static struct fsnotify_group *audit_tree_group;
 72
 73static struct audit_tree *alloc_tree(const char *s)
 74{
 75	struct audit_tree *tree;
 76
 77	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
 78	if (tree) {
 79		atomic_set(&tree->count, 1);
 80		tree->goner = 0;
 81		INIT_LIST_HEAD(&tree->chunks);
 82		INIT_LIST_HEAD(&tree->rules);
 83		INIT_LIST_HEAD(&tree->list);
 84		INIT_LIST_HEAD(&tree->same_root);
 85		tree->root = NULL;
 86		strcpy(tree->pathname, s);
 87	}
 88	return tree;
 89}
 90
 91static inline void get_tree(struct audit_tree *tree)
 92{
 93	atomic_inc(&tree->count);
 94}
 95
 96static inline void put_tree(struct audit_tree *tree)
 97{
 98	if (atomic_dec_and_test(&tree->count))
 99		kfree_rcu(tree, head);
100}
101
102/* to avoid bringing the entire thing in audit.h */
103const char *audit_tree_path(struct audit_tree *tree)
104{
105	return tree->pathname;
106}
107
108static void free_chunk(struct audit_chunk *chunk)
109{
110	int i;
111
112	for (i = 0; i < chunk->count; i++) {
113		if (chunk->owners[i].owner)
114			put_tree(chunk->owners[i].owner);
115	}
116	kfree(chunk);
117}
118
119void audit_put_chunk(struct audit_chunk *chunk)
120{
121	if (atomic_long_dec_and_test(&chunk->refs))
122		free_chunk(chunk);
123}
124
125static void __put_chunk(struct rcu_head *rcu)
126{
127	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128	audit_put_chunk(chunk);
129}
130
131static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
132{
133	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134	call_rcu(&chunk->head, __put_chunk);
135}
136
137static struct audit_chunk *alloc_chunk(int count)
138{
139	struct audit_chunk *chunk;
140	size_t size;
141	int i;
142
143	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144	chunk = kzalloc(size, GFP_KERNEL);
145	if (!chunk)
146		return NULL;
147
148	INIT_LIST_HEAD(&chunk->hash);
149	INIT_LIST_HEAD(&chunk->trees);
150	chunk->count = count;
151	atomic_long_set(&chunk->refs, 1);
152	for (i = 0; i < count; i++) {
153		INIT_LIST_HEAD(&chunk->owners[i].list);
154		chunk->owners[i].index = i;
155	}
156	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157	return chunk;
158}
159
160enum {HASH_SIZE = 128};
161static struct list_head chunk_hash_heads[HASH_SIZE];
162static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
163
164static inline struct list_head *chunk_hash(const struct inode *inode)
165{
166	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167	return chunk_hash_heads + n % HASH_SIZE;
168}
169
170/* hash_lock & entry->lock is held by caller */
171static void insert_hash(struct audit_chunk *chunk)
172{
173	struct fsnotify_mark *entry = &chunk->mark;
174	struct list_head *list;
175
176	if (!entry->i.inode)
177		return;
178	list = chunk_hash(entry->i.inode);
179	list_add_rcu(&chunk->hash, list);
180}
181
182/* called under rcu_read_lock */
183struct audit_chunk *audit_tree_lookup(const struct inode *inode)
184{
185	struct list_head *list = chunk_hash(inode);
186	struct audit_chunk *p;
187
188	list_for_each_entry_rcu(p, list, hash) {
189		/* mark.inode may have gone NULL, but who cares? */
190		if (p->mark.i.inode == inode) {
191			atomic_long_inc(&p->refs);
192			return p;
193		}
194	}
195	return NULL;
196}
197
198int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
199{
200	int n;
201	for (n = 0; n < chunk->count; n++)
202		if (chunk->owners[n].owner == tree)
203			return 1;
204	return 0;
205}
206
207/* tagging and untagging inodes with trees */
208
209static struct audit_chunk *find_chunk(struct node *p)
210{
211	int index = p->index & ~(1U<<31);
212	p -= index;
213	return container_of(p, struct audit_chunk, owners[0]);
214}
215
216static void untag_chunk(struct node *p)
217{
218	struct audit_chunk *chunk = find_chunk(p);
219	struct fsnotify_mark *entry = &chunk->mark;
220	struct audit_chunk *new = NULL;
221	struct audit_tree *owner;
222	int size = chunk->count - 1;
223	int i, j;
224
225	fsnotify_get_mark(entry);
226
227	spin_unlock(&hash_lock);
228
229	if (size)
230		new = alloc_chunk(size);
231
232	spin_lock(&entry->lock);
233	if (chunk->dead || !entry->i.inode) {
234		spin_unlock(&entry->lock);
235		if (new)
236			free_chunk(new);
237		goto out;
238	}
239
240	owner = p->owner;
241
242	if (!size) {
243		chunk->dead = 1;
244		spin_lock(&hash_lock);
245		list_del_init(&chunk->trees);
246		if (owner->root == chunk)
247			owner->root = NULL;
248		list_del_init(&p->list);
249		list_del_rcu(&chunk->hash);
250		spin_unlock(&hash_lock);
251		spin_unlock(&entry->lock);
252		fsnotify_destroy_mark(entry, audit_tree_group);
253		goto out;
254	}
255
256	if (!new)
257		goto Fallback;
258
259	fsnotify_duplicate_mark(&new->mark, entry);
260	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
261		fsnotify_put_mark(&new->mark);
262		goto Fallback;
263	}
264
265	chunk->dead = 1;
266	spin_lock(&hash_lock);
267	list_replace_init(&chunk->trees, &new->trees);
268	if (owner->root == chunk) {
269		list_del_init(&owner->same_root);
270		owner->root = NULL;
271	}
272
273	for (i = j = 0; j <= size; i++, j++) {
274		struct audit_tree *s;
275		if (&chunk->owners[j] == p) {
276			list_del_init(&p->list);
277			i--;
278			continue;
279		}
280		s = chunk->owners[j].owner;
281		new->owners[i].owner = s;
282		new->owners[i].index = chunk->owners[j].index - j + i;
283		if (!s) /* result of earlier fallback */
284			continue;
285		get_tree(s);
286		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
287	}
288
289	list_replace_rcu(&chunk->hash, &new->hash);
290	list_for_each_entry(owner, &new->trees, same_root)
291		owner->root = new;
292	spin_unlock(&hash_lock);
293	spin_unlock(&entry->lock);
294	fsnotify_destroy_mark(entry, audit_tree_group);
295	fsnotify_put_mark(&new->mark);	/* drop initial reference */
296	goto out;
297
298Fallback:
299	// do the best we can
300	spin_lock(&hash_lock);
301	if (owner->root == chunk) {
302		list_del_init(&owner->same_root);
303		owner->root = NULL;
304	}
305	list_del_init(&p->list);
306	p->owner = NULL;
307	put_tree(owner);
308	spin_unlock(&hash_lock);
309	spin_unlock(&entry->lock);
310out:
311	fsnotify_put_mark(entry);
312	spin_lock(&hash_lock);
313}
314
315static int create_chunk(struct inode *inode, struct audit_tree *tree)
316{
317	struct fsnotify_mark *entry;
318	struct audit_chunk *chunk = alloc_chunk(1);
319	if (!chunk)
320		return -ENOMEM;
321
322	entry = &chunk->mark;
323	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
324		fsnotify_put_mark(entry);
325		return -ENOSPC;
326	}
327
328	spin_lock(&entry->lock);
329	spin_lock(&hash_lock);
330	if (tree->goner) {
331		spin_unlock(&hash_lock);
332		chunk->dead = 1;
333		spin_unlock(&entry->lock);
334		fsnotify_destroy_mark(entry, audit_tree_group);
 
335		fsnotify_put_mark(entry);
336		return 0;
337	}
338	chunk->owners[0].index = (1U << 31);
339	chunk->owners[0].owner = tree;
340	get_tree(tree);
341	list_add(&chunk->owners[0].list, &tree->chunks);
342	if (!tree->root) {
343		tree->root = chunk;
344		list_add(&tree->same_root, &chunk->trees);
345	}
346	insert_hash(chunk);
347	spin_unlock(&hash_lock);
348	spin_unlock(&entry->lock);
349	fsnotify_put_mark(entry);	/* drop initial reference */
350	return 0;
351}
352
353/* the first tagged inode becomes root of tree */
354static int tag_chunk(struct inode *inode, struct audit_tree *tree)
355{
356	struct fsnotify_mark *old_entry, *chunk_entry;
357	struct audit_tree *owner;
358	struct audit_chunk *chunk, *old;
359	struct node *p;
360	int n;
361
362	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
363	if (!old_entry)
364		return create_chunk(inode, tree);
365
366	old = container_of(old_entry, struct audit_chunk, mark);
367
368	/* are we already there? */
369	spin_lock(&hash_lock);
370	for (n = 0; n < old->count; n++) {
371		if (old->owners[n].owner == tree) {
372			spin_unlock(&hash_lock);
373			fsnotify_put_mark(old_entry);
374			return 0;
375		}
376	}
377	spin_unlock(&hash_lock);
378
379	chunk = alloc_chunk(old->count + 1);
380	if (!chunk) {
381		fsnotify_put_mark(old_entry);
382		return -ENOMEM;
383	}
384
385	chunk_entry = &chunk->mark;
386
387	spin_lock(&old_entry->lock);
388	if (!old_entry->i.inode) {
389		/* old_entry is being shot, lets just lie */
390		spin_unlock(&old_entry->lock);
391		fsnotify_put_mark(old_entry);
392		free_chunk(chunk);
393		return -ENOENT;
394	}
395
396	fsnotify_duplicate_mark(chunk_entry, old_entry);
397	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
398		spin_unlock(&old_entry->lock);
399		fsnotify_put_mark(chunk_entry);
400		fsnotify_put_mark(old_entry);
401		return -ENOSPC;
402	}
403
404	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
405	spin_lock(&chunk_entry->lock);
406	spin_lock(&hash_lock);
407
408	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
409	if (tree->goner) {
410		spin_unlock(&hash_lock);
411		chunk->dead = 1;
412		spin_unlock(&chunk_entry->lock);
413		spin_unlock(&old_entry->lock);
414
415		fsnotify_destroy_mark(chunk_entry, audit_tree_group);
 
416
417		fsnotify_put_mark(chunk_entry);
418		fsnotify_put_mark(old_entry);
419		return 0;
420	}
421	list_replace_init(&old->trees, &chunk->trees);
422	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
423		struct audit_tree *s = old->owners[n].owner;
424		p->owner = s;
425		p->index = old->owners[n].index;
426		if (!s) /* result of fallback in untag */
427			continue;
428		get_tree(s);
429		list_replace_init(&old->owners[n].list, &p->list);
430	}
431	p->index = (chunk->count - 1) | (1U<<31);
432	p->owner = tree;
433	get_tree(tree);
434	list_add(&p->list, &tree->chunks);
435	list_replace_rcu(&old->hash, &chunk->hash);
436	list_for_each_entry(owner, &chunk->trees, same_root)
437		owner->root = chunk;
438	old->dead = 1;
439	if (!tree->root) {
440		tree->root = chunk;
441		list_add(&tree->same_root, &chunk->trees);
442	}
443	spin_unlock(&hash_lock);
444	spin_unlock(&chunk_entry->lock);
445	spin_unlock(&old_entry->lock);
446	fsnotify_destroy_mark(old_entry, audit_tree_group);
447	fsnotify_put_mark(chunk_entry);	/* drop initial reference */
448	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
449	return 0;
450}
451
452static void audit_log_remove_rule(struct audit_krule *rule)
453{
454	struct audit_buffer *ab;
455
456	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
457	if (unlikely(!ab))
458		return;
459	audit_log_format(ab, "op=");
460	audit_log_string(ab, "remove rule");
461	audit_log_format(ab, " dir=");
462	audit_log_untrustedstring(ab, rule->tree->pathname);
463	audit_log_key(ab, rule->filterkey);
464	audit_log_format(ab, " list=%d res=1", rule->listnr);
465	audit_log_end(ab);
466}
467
468static void kill_rules(struct audit_tree *tree)
469{
470	struct audit_krule *rule, *next;
471	struct audit_entry *entry;
 
472
473	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
474		entry = container_of(rule, struct audit_entry, rule);
475
476		list_del_init(&rule->rlist);
477		if (rule->tree) {
478			/* not a half-baked one */
479			audit_log_remove_rule(rule);
 
 
 
 
 
 
 
480			rule->tree = NULL;
481			list_del_rcu(&entry->list);
482			list_del(&entry->rule.list);
483			call_rcu(&entry->rcu, audit_free_rule_rcu);
484		}
485	}
486}
487
488/*
489 * finish killing struct audit_tree
490 */
491static void prune_one(struct audit_tree *victim)
492{
493	spin_lock(&hash_lock);
494	while (!list_empty(&victim->chunks)) {
495		struct node *p;
496
497		p = list_entry(victim->chunks.next, struct node, list);
498
499		untag_chunk(p);
500	}
501	spin_unlock(&hash_lock);
502	put_tree(victim);
503}
504
505/* trim the uncommitted chunks from tree */
506
507static void trim_marked(struct audit_tree *tree)
508{
509	struct list_head *p, *q;
510	spin_lock(&hash_lock);
511	if (tree->goner) {
512		spin_unlock(&hash_lock);
513		return;
514	}
515	/* reorder */
516	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
517		struct node *node = list_entry(p, struct node, list);
518		q = p->next;
519		if (node->index & (1U<<31)) {
520			list_del_init(p);
521			list_add(p, &tree->chunks);
522		}
523	}
524
525	while (!list_empty(&tree->chunks)) {
526		struct node *node;
527
528		node = list_entry(tree->chunks.next, struct node, list);
529
530		/* have we run out of marked? */
531		if (!(node->index & (1U<<31)))
532			break;
533
534		untag_chunk(node);
535	}
536	if (!tree->root && !tree->goner) {
537		tree->goner = 1;
538		spin_unlock(&hash_lock);
539		mutex_lock(&audit_filter_mutex);
540		kill_rules(tree);
541		list_del_init(&tree->list);
542		mutex_unlock(&audit_filter_mutex);
543		prune_one(tree);
544	} else {
545		spin_unlock(&hash_lock);
546	}
547}
548
549static void audit_schedule_prune(void);
550
551/* called with audit_filter_mutex */
552int audit_remove_tree_rule(struct audit_krule *rule)
553{
554	struct audit_tree *tree;
555	tree = rule->tree;
556	if (tree) {
557		spin_lock(&hash_lock);
558		list_del_init(&rule->rlist);
559		if (list_empty(&tree->rules) && !tree->goner) {
560			tree->root = NULL;
561			list_del_init(&tree->same_root);
562			tree->goner = 1;
563			list_move(&tree->list, &prune_list);
564			rule->tree = NULL;
565			spin_unlock(&hash_lock);
566			audit_schedule_prune();
567			return 1;
568		}
569		rule->tree = NULL;
570		spin_unlock(&hash_lock);
571		return 1;
572	}
573	return 0;
574}
575
576static int compare_root(struct vfsmount *mnt, void *arg)
577{
578	return mnt->mnt_root->d_inode == arg;
579}
580
581void audit_trim_trees(void)
582{
583	struct list_head cursor;
584
585	mutex_lock(&audit_filter_mutex);
586	list_add(&cursor, &tree_list);
587	while (cursor.next != &tree_list) {
588		struct audit_tree *tree;
589		struct path path;
590		struct vfsmount *root_mnt;
591		struct node *node;
592		int err;
593
594		tree = container_of(cursor.next, struct audit_tree, list);
595		get_tree(tree);
596		list_del(&cursor);
597		list_add(&cursor, &tree->list);
598		mutex_unlock(&audit_filter_mutex);
599
600		err = kern_path(tree->pathname, 0, &path);
601		if (err)
602			goto skip_it;
603
604		root_mnt = collect_mounts(&path);
605		path_put(&path);
606		if (IS_ERR(root_mnt))
607			goto skip_it;
608
609		spin_lock(&hash_lock);
610		list_for_each_entry(node, &tree->chunks, list) {
611			struct audit_chunk *chunk = find_chunk(node);
612			/* this could be NULL if the watch is dying else where... */
613			struct inode *inode = chunk->mark.i.inode;
614			node->index |= 1U<<31;
615			if (iterate_mounts(compare_root, inode, root_mnt))
616				node->index &= ~(1U<<31);
617		}
618		spin_unlock(&hash_lock);
619		trim_marked(tree);
 
620		drop_collected_mounts(root_mnt);
621skip_it:
622		put_tree(tree);
623		mutex_lock(&audit_filter_mutex);
624	}
625	list_del(&cursor);
626	mutex_unlock(&audit_filter_mutex);
627}
628
629int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
630{
631
632	if (pathname[0] != '/' ||
633	    rule->listnr != AUDIT_FILTER_EXIT ||
634	    op != Audit_equal ||
635	    rule->inode_f || rule->watch || rule->tree)
636		return -EINVAL;
637	rule->tree = alloc_tree(pathname);
638	if (!rule->tree)
639		return -ENOMEM;
640	return 0;
641}
642
643void audit_put_tree(struct audit_tree *tree)
644{
645	put_tree(tree);
646}
647
648static int tag_mount(struct vfsmount *mnt, void *arg)
649{
650	return tag_chunk(mnt->mnt_root->d_inode, arg);
651}
652
653/* called with audit_filter_mutex */
654int audit_add_tree_rule(struct audit_krule *rule)
655{
656	struct audit_tree *seed = rule->tree, *tree;
657	struct path path;
658	struct vfsmount *mnt;
659	int err;
660
661	rule->tree = NULL;
662	list_for_each_entry(tree, &tree_list, list) {
663		if (!strcmp(seed->pathname, tree->pathname)) {
664			put_tree(seed);
665			rule->tree = tree;
666			list_add(&rule->rlist, &tree->rules);
667			return 0;
668		}
669	}
670	tree = seed;
671	list_add(&tree->list, &tree_list);
672	list_add(&rule->rlist, &tree->rules);
673	/* do not set rule->tree yet */
674	mutex_unlock(&audit_filter_mutex);
675
676	err = kern_path(tree->pathname, 0, &path);
677	if (err)
678		goto Err;
679	mnt = collect_mounts(&path);
680	path_put(&path);
681	if (IS_ERR(mnt)) {
682		err = PTR_ERR(mnt);
683		goto Err;
684	}
685
686	get_tree(tree);
687	err = iterate_mounts(tag_mount, tree, mnt);
688	drop_collected_mounts(mnt);
689
690	if (!err) {
691		struct node *node;
692		spin_lock(&hash_lock);
693		list_for_each_entry(node, &tree->chunks, list)
694			node->index &= ~(1U<<31);
695		spin_unlock(&hash_lock);
696	} else {
697		trim_marked(tree);
698		goto Err;
699	}
700
701	mutex_lock(&audit_filter_mutex);
702	if (list_empty(&rule->rlist)) {
703		put_tree(tree);
704		return -ENOENT;
705	}
706	rule->tree = tree;
707	put_tree(tree);
708
709	return 0;
710Err:
711	mutex_lock(&audit_filter_mutex);
712	list_del_init(&tree->list);
713	list_del_init(&tree->rules);
714	put_tree(tree);
715	return err;
716}
717
718int audit_tag_tree(char *old, char *new)
719{
720	struct list_head cursor, barrier;
721	int failed = 0;
722	struct path path1, path2;
723	struct vfsmount *tagged;
724	int err;
725
726	err = kern_path(new, 0, &path2);
727	if (err)
728		return err;
729	tagged = collect_mounts(&path2);
730	path_put(&path2);
731	if (IS_ERR(tagged))
732		return PTR_ERR(tagged);
733
734	err = kern_path(old, 0, &path1);
735	if (err) {
736		drop_collected_mounts(tagged);
737		return err;
738	}
739
740	mutex_lock(&audit_filter_mutex);
741	list_add(&barrier, &tree_list);
742	list_add(&cursor, &barrier);
743
744	while (cursor.next != &tree_list) {
745		struct audit_tree *tree;
746		int good_one = 0;
747
748		tree = container_of(cursor.next, struct audit_tree, list);
749		get_tree(tree);
750		list_del(&cursor);
751		list_add(&cursor, &tree->list);
752		mutex_unlock(&audit_filter_mutex);
753
754		err = kern_path(tree->pathname, 0, &path2);
755		if (!err) {
756			good_one = path_is_under(&path1, &path2);
757			path_put(&path2);
758		}
759
760		if (!good_one) {
761			put_tree(tree);
762			mutex_lock(&audit_filter_mutex);
763			continue;
764		}
765
766		failed = iterate_mounts(tag_mount, tree, tagged);
767		if (failed) {
768			put_tree(tree);
769			mutex_lock(&audit_filter_mutex);
770			break;
771		}
772
773		mutex_lock(&audit_filter_mutex);
774		spin_lock(&hash_lock);
775		if (!tree->goner) {
776			list_del(&tree->list);
777			list_add(&tree->list, &tree_list);
778		}
779		spin_unlock(&hash_lock);
780		put_tree(tree);
781	}
782
783	while (barrier.prev != &tree_list) {
784		struct audit_tree *tree;
785
786		tree = container_of(barrier.prev, struct audit_tree, list);
787		get_tree(tree);
788		list_del(&tree->list);
789		list_add(&tree->list, &barrier);
790		mutex_unlock(&audit_filter_mutex);
791
792		if (!failed) {
793			struct node *node;
794			spin_lock(&hash_lock);
795			list_for_each_entry(node, &tree->chunks, list)
796				node->index &= ~(1U<<31);
797			spin_unlock(&hash_lock);
798		} else {
799			trim_marked(tree);
800		}
801
802		put_tree(tree);
803		mutex_lock(&audit_filter_mutex);
804	}
805	list_del(&barrier);
806	list_del(&cursor);
807	mutex_unlock(&audit_filter_mutex);
808	path_put(&path1);
809	drop_collected_mounts(tagged);
810	return failed;
811}
812
813/*
814 * That gets run when evict_chunk() ends up needing to kill audit_tree.
815 * Runs from a separate thread.
816 */
817static int prune_tree_thread(void *unused)
818{
819	mutex_lock(&audit_cmd_mutex);
820	mutex_lock(&audit_filter_mutex);
821
822	while (!list_empty(&prune_list)) {
823		struct audit_tree *victim;
824
825		victim = list_entry(prune_list.next, struct audit_tree, list);
826		list_del_init(&victim->list);
827
828		mutex_unlock(&audit_filter_mutex);
829
830		prune_one(victim);
831
832		mutex_lock(&audit_filter_mutex);
833	}
834
835	mutex_unlock(&audit_filter_mutex);
836	mutex_unlock(&audit_cmd_mutex);
837	return 0;
838}
839
840static void audit_schedule_prune(void)
841{
842	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
843}
844
845/*
846 * ... and that one is done if evict_chunk() decides to delay until the end
847 * of syscall.  Runs synchronously.
848 */
849void audit_kill_trees(struct list_head *list)
850{
851	mutex_lock(&audit_cmd_mutex);
852	mutex_lock(&audit_filter_mutex);
853
854	while (!list_empty(list)) {
855		struct audit_tree *victim;
856
857		victim = list_entry(list->next, struct audit_tree, list);
858		kill_rules(victim);
859		list_del_init(&victim->list);
860
861		mutex_unlock(&audit_filter_mutex);
862
863		prune_one(victim);
864
865		mutex_lock(&audit_filter_mutex);
866	}
867
868	mutex_unlock(&audit_filter_mutex);
869	mutex_unlock(&audit_cmd_mutex);
870}
871
872/*
873 *  Here comes the stuff asynchronous to auditctl operations
874 */
875
876static void evict_chunk(struct audit_chunk *chunk)
877{
878	struct audit_tree *owner;
879	struct list_head *postponed = audit_killed_trees();
880	int need_prune = 0;
881	int n;
882
883	if (chunk->dead)
884		return;
885
886	chunk->dead = 1;
887	mutex_lock(&audit_filter_mutex);
888	spin_lock(&hash_lock);
889	while (!list_empty(&chunk->trees)) {
890		owner = list_entry(chunk->trees.next,
891				   struct audit_tree, same_root);
892		owner->goner = 1;
893		owner->root = NULL;
894		list_del_init(&owner->same_root);
895		spin_unlock(&hash_lock);
896		if (!postponed) {
897			kill_rules(owner);
898			list_move(&owner->list, &prune_list);
899			need_prune = 1;
900		} else {
901			list_move(&owner->list, postponed);
902		}
903		spin_lock(&hash_lock);
904	}
905	list_del_rcu(&chunk->hash);
906	for (n = 0; n < chunk->count; n++)
907		list_del_init(&chunk->owners[n].list);
908	spin_unlock(&hash_lock);
909	if (need_prune)
910		audit_schedule_prune();
911	mutex_unlock(&audit_filter_mutex);
912}
913
914static int audit_tree_handle_event(struct fsnotify_group *group,
915				   struct inode *to_tell,
916				   struct fsnotify_mark *inode_mark,
917				   struct fsnotify_mark *vfsmount_mark,
918				   u32 mask, void *data, int data_type,
919				   const unsigned char *file_name, u32 cookie)
920{
921	return 0;
 
922}
923
924static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
925{
926	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
927
928	evict_chunk(chunk);
 
 
929
930	/*
931	 * We are guaranteed to have at least one reference to the mark from
932	 * either the inode or the caller of fsnotify_destroy_mark().
933	 */
934	BUG_ON(atomic_read(&entry->refcnt) < 1);
 
935}
936
937static const struct fsnotify_ops audit_tree_ops = {
938	.handle_event = audit_tree_handle_event,
 
 
 
939	.freeing_mark = audit_tree_freeing_mark,
940};
941
942static int __init audit_tree_init(void)
943{
944	int i;
945
946	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
947	if (IS_ERR(audit_tree_group))
948		audit_panic("cannot initialize fsnotify group for rectree watches");
949
950	for (i = 0; i < HASH_SIZE; i++)
951		INIT_LIST_HEAD(&chunk_hash_heads[i]);
952
953	return 0;
954}
955__initcall(audit_tree_init);
v3.5.6
  1#include "audit.h"
  2#include <linux/fsnotify_backend.h>
  3#include <linux/namei.h>
  4#include <linux/mount.h>
  5#include <linux/kthread.h>
  6#include <linux/slab.h>
  7
  8struct audit_tree;
  9struct audit_chunk;
 10
 11struct audit_tree {
 12	atomic_t count;
 13	int goner;
 14	struct audit_chunk *root;
 15	struct list_head chunks;
 16	struct list_head rules;
 17	struct list_head list;
 18	struct list_head same_root;
 19	struct rcu_head head;
 20	char pathname[];
 21};
 22
 23struct audit_chunk {
 24	struct list_head hash;
 25	struct fsnotify_mark mark;
 26	struct list_head trees;		/* with root here */
 27	int dead;
 28	int count;
 29	atomic_long_t refs;
 30	struct rcu_head head;
 31	struct node {
 32		struct list_head list;
 33		struct audit_tree *owner;
 34		unsigned index;		/* index; upper bit indicates 'will prune' */
 35	} owners[];
 36};
 37
 38static LIST_HEAD(tree_list);
 39static LIST_HEAD(prune_list);
 40
 41/*
 42 * One struct chunk is attached to each inode of interest.
 43 * We replace struct chunk on tagging/untagging.
 44 * Rules have pointer to struct audit_tree.
 45 * Rules have struct list_head rlist forming a list of rules over
 46 * the same tree.
 47 * References to struct chunk are collected at audit_inode{,_child}()
 48 * time and used in AUDIT_TREE rule matching.
 49 * These references are dropped at the same time we are calling
 50 * audit_free_names(), etc.
 51 *
 52 * Cyclic lists galore:
 53 * tree.chunks anchors chunk.owners[].list			hash_lock
 54 * tree.rules anchors rule.rlist				audit_filter_mutex
 55 * chunk.trees anchors tree.same_root				hash_lock
 56 * chunk.hash is a hash with middle bits of watch.inode as
 57 * a hash function.						RCU, hash_lock
 58 *
 59 * tree is refcounted; one reference for "some rules on rules_list refer to
 60 * it", one for each chunk with pointer to it.
 61 *
 62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
 63 * of watch contributes 1 to .refs).
 64 *
 65 * node.index allows to get from node.list to containing chunk.
 66 * MSB of that sucker is stolen to mark taggings that we might have to
 67 * revert - several operations have very unpleasant cleanup logics and
 68 * that makes a difference.  Some.
 69 */
 70
 71static struct fsnotify_group *audit_tree_group;
 72
 73static struct audit_tree *alloc_tree(const char *s)
 74{
 75	struct audit_tree *tree;
 76
 77	tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
 78	if (tree) {
 79		atomic_set(&tree->count, 1);
 80		tree->goner = 0;
 81		INIT_LIST_HEAD(&tree->chunks);
 82		INIT_LIST_HEAD(&tree->rules);
 83		INIT_LIST_HEAD(&tree->list);
 84		INIT_LIST_HEAD(&tree->same_root);
 85		tree->root = NULL;
 86		strcpy(tree->pathname, s);
 87	}
 88	return tree;
 89}
 90
 91static inline void get_tree(struct audit_tree *tree)
 92{
 93	atomic_inc(&tree->count);
 94}
 95
 96static inline void put_tree(struct audit_tree *tree)
 97{
 98	if (atomic_dec_and_test(&tree->count))
 99		kfree_rcu(tree, head);
100}
101
102/* to avoid bringing the entire thing in audit.h */
103const char *audit_tree_path(struct audit_tree *tree)
104{
105	return tree->pathname;
106}
107
108static void free_chunk(struct audit_chunk *chunk)
109{
110	int i;
111
112	for (i = 0; i < chunk->count; i++) {
113		if (chunk->owners[i].owner)
114			put_tree(chunk->owners[i].owner);
115	}
116	kfree(chunk);
117}
118
119void audit_put_chunk(struct audit_chunk *chunk)
120{
121	if (atomic_long_dec_and_test(&chunk->refs))
122		free_chunk(chunk);
123}
124
125static void __put_chunk(struct rcu_head *rcu)
126{
127	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128	audit_put_chunk(chunk);
129}
130
131static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
132{
133	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134	call_rcu(&chunk->head, __put_chunk);
135}
136
137static struct audit_chunk *alloc_chunk(int count)
138{
139	struct audit_chunk *chunk;
140	size_t size;
141	int i;
142
143	size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144	chunk = kzalloc(size, GFP_KERNEL);
145	if (!chunk)
146		return NULL;
147
148	INIT_LIST_HEAD(&chunk->hash);
149	INIT_LIST_HEAD(&chunk->trees);
150	chunk->count = count;
151	atomic_long_set(&chunk->refs, 1);
152	for (i = 0; i < count; i++) {
153		INIT_LIST_HEAD(&chunk->owners[i].list);
154		chunk->owners[i].index = i;
155	}
156	fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157	return chunk;
158}
159
160enum {HASH_SIZE = 128};
161static struct list_head chunk_hash_heads[HASH_SIZE];
162static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
163
164static inline struct list_head *chunk_hash(const struct inode *inode)
165{
166	unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167	return chunk_hash_heads + n % HASH_SIZE;
168}
169
170/* hash_lock & entry->lock is held by caller */
171static void insert_hash(struct audit_chunk *chunk)
172{
173	struct fsnotify_mark *entry = &chunk->mark;
174	struct list_head *list;
175
176	if (!entry->i.inode)
177		return;
178	list = chunk_hash(entry->i.inode);
179	list_add_rcu(&chunk->hash, list);
180}
181
182/* called under rcu_read_lock */
183struct audit_chunk *audit_tree_lookup(const struct inode *inode)
184{
185	struct list_head *list = chunk_hash(inode);
186	struct audit_chunk *p;
187
188	list_for_each_entry_rcu(p, list, hash) {
189		/* mark.inode may have gone NULL, but who cares? */
190		if (p->mark.i.inode == inode) {
191			atomic_long_inc(&p->refs);
192			return p;
193		}
194	}
195	return NULL;
196}
197
198int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
199{
200	int n;
201	for (n = 0; n < chunk->count; n++)
202		if (chunk->owners[n].owner == tree)
203			return 1;
204	return 0;
205}
206
207/* tagging and untagging inodes with trees */
208
209static struct audit_chunk *find_chunk(struct node *p)
210{
211	int index = p->index & ~(1U<<31);
212	p -= index;
213	return container_of(p, struct audit_chunk, owners[0]);
214}
215
216static void untag_chunk(struct node *p)
217{
218	struct audit_chunk *chunk = find_chunk(p);
219	struct fsnotify_mark *entry = &chunk->mark;
220	struct audit_chunk *new = NULL;
221	struct audit_tree *owner;
222	int size = chunk->count - 1;
223	int i, j;
224
225	fsnotify_get_mark(entry);
226
227	spin_unlock(&hash_lock);
228
229	if (size)
230		new = alloc_chunk(size);
231
232	spin_lock(&entry->lock);
233	if (chunk->dead || !entry->i.inode) {
234		spin_unlock(&entry->lock);
235		if (new)
236			free_chunk(new);
237		goto out;
238	}
239
240	owner = p->owner;
241
242	if (!size) {
243		chunk->dead = 1;
244		spin_lock(&hash_lock);
245		list_del_init(&chunk->trees);
246		if (owner->root == chunk)
247			owner->root = NULL;
248		list_del_init(&p->list);
249		list_del_rcu(&chunk->hash);
250		spin_unlock(&hash_lock);
251		spin_unlock(&entry->lock);
252		fsnotify_destroy_mark(entry);
253		goto out;
254	}
255
256	if (!new)
257		goto Fallback;
258
259	fsnotify_duplicate_mark(&new->mark, entry);
260	if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
261		fsnotify_put_mark(&new->mark);
262		goto Fallback;
263	}
264
265	chunk->dead = 1;
266	spin_lock(&hash_lock);
267	list_replace_init(&chunk->trees, &new->trees);
268	if (owner->root == chunk) {
269		list_del_init(&owner->same_root);
270		owner->root = NULL;
271	}
272
273	for (i = j = 0; j <= size; i++, j++) {
274		struct audit_tree *s;
275		if (&chunk->owners[j] == p) {
276			list_del_init(&p->list);
277			i--;
278			continue;
279		}
280		s = chunk->owners[j].owner;
281		new->owners[i].owner = s;
282		new->owners[i].index = chunk->owners[j].index - j + i;
283		if (!s) /* result of earlier fallback */
284			continue;
285		get_tree(s);
286		list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
287	}
288
289	list_replace_rcu(&chunk->hash, &new->hash);
290	list_for_each_entry(owner, &new->trees, same_root)
291		owner->root = new;
292	spin_unlock(&hash_lock);
293	spin_unlock(&entry->lock);
294	fsnotify_destroy_mark(entry);
 
295	goto out;
296
297Fallback:
298	// do the best we can
299	spin_lock(&hash_lock);
300	if (owner->root == chunk) {
301		list_del_init(&owner->same_root);
302		owner->root = NULL;
303	}
304	list_del_init(&p->list);
305	p->owner = NULL;
306	put_tree(owner);
307	spin_unlock(&hash_lock);
308	spin_unlock(&entry->lock);
309out:
310	fsnotify_put_mark(entry);
311	spin_lock(&hash_lock);
312}
313
314static int create_chunk(struct inode *inode, struct audit_tree *tree)
315{
316	struct fsnotify_mark *entry;
317	struct audit_chunk *chunk = alloc_chunk(1);
318	if (!chunk)
319		return -ENOMEM;
320
321	entry = &chunk->mark;
322	if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
323		fsnotify_put_mark(entry);
324		return -ENOSPC;
325	}
326
327	spin_lock(&entry->lock);
328	spin_lock(&hash_lock);
329	if (tree->goner) {
330		spin_unlock(&hash_lock);
331		chunk->dead = 1;
332		spin_unlock(&entry->lock);
333		fsnotify_get_mark(entry);
334		fsnotify_destroy_mark(entry);
335		fsnotify_put_mark(entry);
336		return 0;
337	}
338	chunk->owners[0].index = (1U << 31);
339	chunk->owners[0].owner = tree;
340	get_tree(tree);
341	list_add(&chunk->owners[0].list, &tree->chunks);
342	if (!tree->root) {
343		tree->root = chunk;
344		list_add(&tree->same_root, &chunk->trees);
345	}
346	insert_hash(chunk);
347	spin_unlock(&hash_lock);
348	spin_unlock(&entry->lock);
 
349	return 0;
350}
351
352/* the first tagged inode becomes root of tree */
353static int tag_chunk(struct inode *inode, struct audit_tree *tree)
354{
355	struct fsnotify_mark *old_entry, *chunk_entry;
356	struct audit_tree *owner;
357	struct audit_chunk *chunk, *old;
358	struct node *p;
359	int n;
360
361	old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
362	if (!old_entry)
363		return create_chunk(inode, tree);
364
365	old = container_of(old_entry, struct audit_chunk, mark);
366
367	/* are we already there? */
368	spin_lock(&hash_lock);
369	for (n = 0; n < old->count; n++) {
370		if (old->owners[n].owner == tree) {
371			spin_unlock(&hash_lock);
372			fsnotify_put_mark(old_entry);
373			return 0;
374		}
375	}
376	spin_unlock(&hash_lock);
377
378	chunk = alloc_chunk(old->count + 1);
379	if (!chunk) {
380		fsnotify_put_mark(old_entry);
381		return -ENOMEM;
382	}
383
384	chunk_entry = &chunk->mark;
385
386	spin_lock(&old_entry->lock);
387	if (!old_entry->i.inode) {
388		/* old_entry is being shot, lets just lie */
389		spin_unlock(&old_entry->lock);
390		fsnotify_put_mark(old_entry);
391		free_chunk(chunk);
392		return -ENOENT;
393	}
394
395	fsnotify_duplicate_mark(chunk_entry, old_entry);
396	if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
397		spin_unlock(&old_entry->lock);
398		fsnotify_put_mark(chunk_entry);
399		fsnotify_put_mark(old_entry);
400		return -ENOSPC;
401	}
402
403	/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
404	spin_lock(&chunk_entry->lock);
405	spin_lock(&hash_lock);
406
407	/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
408	if (tree->goner) {
409		spin_unlock(&hash_lock);
410		chunk->dead = 1;
411		spin_unlock(&chunk_entry->lock);
412		spin_unlock(&old_entry->lock);
413
414		fsnotify_get_mark(chunk_entry);
415		fsnotify_destroy_mark(chunk_entry);
416
417		fsnotify_put_mark(chunk_entry);
418		fsnotify_put_mark(old_entry);
419		return 0;
420	}
421	list_replace_init(&old->trees, &chunk->trees);
422	for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
423		struct audit_tree *s = old->owners[n].owner;
424		p->owner = s;
425		p->index = old->owners[n].index;
426		if (!s) /* result of fallback in untag */
427			continue;
428		get_tree(s);
429		list_replace_init(&old->owners[n].list, &p->list);
430	}
431	p->index = (chunk->count - 1) | (1U<<31);
432	p->owner = tree;
433	get_tree(tree);
434	list_add(&p->list, &tree->chunks);
435	list_replace_rcu(&old->hash, &chunk->hash);
436	list_for_each_entry(owner, &chunk->trees, same_root)
437		owner->root = chunk;
438	old->dead = 1;
439	if (!tree->root) {
440		tree->root = chunk;
441		list_add(&tree->same_root, &chunk->trees);
442	}
443	spin_unlock(&hash_lock);
444	spin_unlock(&chunk_entry->lock);
445	spin_unlock(&old_entry->lock);
446	fsnotify_destroy_mark(old_entry);
 
447	fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
448	return 0;
449}
450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451static void kill_rules(struct audit_tree *tree)
452{
453	struct audit_krule *rule, *next;
454	struct audit_entry *entry;
455	struct audit_buffer *ab;
456
457	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
458		entry = container_of(rule, struct audit_entry, rule);
459
460		list_del_init(&rule->rlist);
461		if (rule->tree) {
462			/* not a half-baked one */
463			ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
464			audit_log_format(ab, "op=");
465			audit_log_string(ab, "remove rule");
466			audit_log_format(ab, " dir=");
467			audit_log_untrustedstring(ab, rule->tree->pathname);
468			audit_log_key(ab, rule->filterkey);
469			audit_log_format(ab, " list=%d res=1", rule->listnr);
470			audit_log_end(ab);
471			rule->tree = NULL;
472			list_del_rcu(&entry->list);
473			list_del(&entry->rule.list);
474			call_rcu(&entry->rcu, audit_free_rule_rcu);
475		}
476	}
477}
478
479/*
480 * finish killing struct audit_tree
481 */
482static void prune_one(struct audit_tree *victim)
483{
484	spin_lock(&hash_lock);
485	while (!list_empty(&victim->chunks)) {
486		struct node *p;
487
488		p = list_entry(victim->chunks.next, struct node, list);
489
490		untag_chunk(p);
491	}
492	spin_unlock(&hash_lock);
493	put_tree(victim);
494}
495
496/* trim the uncommitted chunks from tree */
497
498static void trim_marked(struct audit_tree *tree)
499{
500	struct list_head *p, *q;
501	spin_lock(&hash_lock);
502	if (tree->goner) {
503		spin_unlock(&hash_lock);
504		return;
505	}
506	/* reorder */
507	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
508		struct node *node = list_entry(p, struct node, list);
509		q = p->next;
510		if (node->index & (1U<<31)) {
511			list_del_init(p);
512			list_add(p, &tree->chunks);
513		}
514	}
515
516	while (!list_empty(&tree->chunks)) {
517		struct node *node;
518
519		node = list_entry(tree->chunks.next, struct node, list);
520
521		/* have we run out of marked? */
522		if (!(node->index & (1U<<31)))
523			break;
524
525		untag_chunk(node);
526	}
527	if (!tree->root && !tree->goner) {
528		tree->goner = 1;
529		spin_unlock(&hash_lock);
530		mutex_lock(&audit_filter_mutex);
531		kill_rules(tree);
532		list_del_init(&tree->list);
533		mutex_unlock(&audit_filter_mutex);
534		prune_one(tree);
535	} else {
536		spin_unlock(&hash_lock);
537	}
538}
539
540static void audit_schedule_prune(void);
541
542/* called with audit_filter_mutex */
543int audit_remove_tree_rule(struct audit_krule *rule)
544{
545	struct audit_tree *tree;
546	tree = rule->tree;
547	if (tree) {
548		spin_lock(&hash_lock);
549		list_del_init(&rule->rlist);
550		if (list_empty(&tree->rules) && !tree->goner) {
551			tree->root = NULL;
552			list_del_init(&tree->same_root);
553			tree->goner = 1;
554			list_move(&tree->list, &prune_list);
555			rule->tree = NULL;
556			spin_unlock(&hash_lock);
557			audit_schedule_prune();
558			return 1;
559		}
560		rule->tree = NULL;
561		spin_unlock(&hash_lock);
562		return 1;
563	}
564	return 0;
565}
566
567static int compare_root(struct vfsmount *mnt, void *arg)
568{
569	return mnt->mnt_root->d_inode == arg;
570}
571
572void audit_trim_trees(void)
573{
574	struct list_head cursor;
575
576	mutex_lock(&audit_filter_mutex);
577	list_add(&cursor, &tree_list);
578	while (cursor.next != &tree_list) {
579		struct audit_tree *tree;
580		struct path path;
581		struct vfsmount *root_mnt;
582		struct node *node;
583		int err;
584
585		tree = container_of(cursor.next, struct audit_tree, list);
586		get_tree(tree);
587		list_del(&cursor);
588		list_add(&cursor, &tree->list);
589		mutex_unlock(&audit_filter_mutex);
590
591		err = kern_path(tree->pathname, 0, &path);
592		if (err)
593			goto skip_it;
594
595		root_mnt = collect_mounts(&path);
596		path_put(&path);
597		if (!root_mnt)
598			goto skip_it;
599
600		spin_lock(&hash_lock);
601		list_for_each_entry(node, &tree->chunks, list) {
602			struct audit_chunk *chunk = find_chunk(node);
603			/* this could be NULL if the watch is dying else where... */
604			struct inode *inode = chunk->mark.i.inode;
605			node->index |= 1U<<31;
606			if (iterate_mounts(compare_root, inode, root_mnt))
607				node->index &= ~(1U<<31);
608		}
609		spin_unlock(&hash_lock);
610		trim_marked(tree);
611		put_tree(tree);
612		drop_collected_mounts(root_mnt);
613skip_it:
 
614		mutex_lock(&audit_filter_mutex);
615	}
616	list_del(&cursor);
617	mutex_unlock(&audit_filter_mutex);
618}
619
620int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
621{
622
623	if (pathname[0] != '/' ||
624	    rule->listnr != AUDIT_FILTER_EXIT ||
625	    op != Audit_equal ||
626	    rule->inode_f || rule->watch || rule->tree)
627		return -EINVAL;
628	rule->tree = alloc_tree(pathname);
629	if (!rule->tree)
630		return -ENOMEM;
631	return 0;
632}
633
634void audit_put_tree(struct audit_tree *tree)
635{
636	put_tree(tree);
637}
638
639static int tag_mount(struct vfsmount *mnt, void *arg)
640{
641	return tag_chunk(mnt->mnt_root->d_inode, arg);
642}
643
644/* called with audit_filter_mutex */
645int audit_add_tree_rule(struct audit_krule *rule)
646{
647	struct audit_tree *seed = rule->tree, *tree;
648	struct path path;
649	struct vfsmount *mnt;
650	int err;
651
 
652	list_for_each_entry(tree, &tree_list, list) {
653		if (!strcmp(seed->pathname, tree->pathname)) {
654			put_tree(seed);
655			rule->tree = tree;
656			list_add(&rule->rlist, &tree->rules);
657			return 0;
658		}
659	}
660	tree = seed;
661	list_add(&tree->list, &tree_list);
662	list_add(&rule->rlist, &tree->rules);
663	/* do not set rule->tree yet */
664	mutex_unlock(&audit_filter_mutex);
665
666	err = kern_path(tree->pathname, 0, &path);
667	if (err)
668		goto Err;
669	mnt = collect_mounts(&path);
670	path_put(&path);
671	if (!mnt) {
672		err = -ENOMEM;
673		goto Err;
674	}
675
676	get_tree(tree);
677	err = iterate_mounts(tag_mount, tree, mnt);
678	drop_collected_mounts(mnt);
679
680	if (!err) {
681		struct node *node;
682		spin_lock(&hash_lock);
683		list_for_each_entry(node, &tree->chunks, list)
684			node->index &= ~(1U<<31);
685		spin_unlock(&hash_lock);
686	} else {
687		trim_marked(tree);
688		goto Err;
689	}
690
691	mutex_lock(&audit_filter_mutex);
692	if (list_empty(&rule->rlist)) {
693		put_tree(tree);
694		return -ENOENT;
695	}
696	rule->tree = tree;
697	put_tree(tree);
698
699	return 0;
700Err:
701	mutex_lock(&audit_filter_mutex);
702	list_del_init(&tree->list);
703	list_del_init(&tree->rules);
704	put_tree(tree);
705	return err;
706}
707
708int audit_tag_tree(char *old, char *new)
709{
710	struct list_head cursor, barrier;
711	int failed = 0;
712	struct path path1, path2;
713	struct vfsmount *tagged;
714	int err;
715
716	err = kern_path(new, 0, &path2);
717	if (err)
718		return err;
719	tagged = collect_mounts(&path2);
720	path_put(&path2);
721	if (!tagged)
722		return -ENOMEM;
723
724	err = kern_path(old, 0, &path1);
725	if (err) {
726		drop_collected_mounts(tagged);
727		return err;
728	}
729
730	mutex_lock(&audit_filter_mutex);
731	list_add(&barrier, &tree_list);
732	list_add(&cursor, &barrier);
733
734	while (cursor.next != &tree_list) {
735		struct audit_tree *tree;
736		int good_one = 0;
737
738		tree = container_of(cursor.next, struct audit_tree, list);
739		get_tree(tree);
740		list_del(&cursor);
741		list_add(&cursor, &tree->list);
742		mutex_unlock(&audit_filter_mutex);
743
744		err = kern_path(tree->pathname, 0, &path2);
745		if (!err) {
746			good_one = path_is_under(&path1, &path2);
747			path_put(&path2);
748		}
749
750		if (!good_one) {
751			put_tree(tree);
752			mutex_lock(&audit_filter_mutex);
753			continue;
754		}
755
756		failed = iterate_mounts(tag_mount, tree, tagged);
757		if (failed) {
758			put_tree(tree);
759			mutex_lock(&audit_filter_mutex);
760			break;
761		}
762
763		mutex_lock(&audit_filter_mutex);
764		spin_lock(&hash_lock);
765		if (!tree->goner) {
766			list_del(&tree->list);
767			list_add(&tree->list, &tree_list);
768		}
769		spin_unlock(&hash_lock);
770		put_tree(tree);
771	}
772
773	while (barrier.prev != &tree_list) {
774		struct audit_tree *tree;
775
776		tree = container_of(barrier.prev, struct audit_tree, list);
777		get_tree(tree);
778		list_del(&tree->list);
779		list_add(&tree->list, &barrier);
780		mutex_unlock(&audit_filter_mutex);
781
782		if (!failed) {
783			struct node *node;
784			spin_lock(&hash_lock);
785			list_for_each_entry(node, &tree->chunks, list)
786				node->index &= ~(1U<<31);
787			spin_unlock(&hash_lock);
788		} else {
789			trim_marked(tree);
790		}
791
792		put_tree(tree);
793		mutex_lock(&audit_filter_mutex);
794	}
795	list_del(&barrier);
796	list_del(&cursor);
797	mutex_unlock(&audit_filter_mutex);
798	path_put(&path1);
799	drop_collected_mounts(tagged);
800	return failed;
801}
802
803/*
804 * That gets run when evict_chunk() ends up needing to kill audit_tree.
805 * Runs from a separate thread.
806 */
807static int prune_tree_thread(void *unused)
808{
809	mutex_lock(&audit_cmd_mutex);
810	mutex_lock(&audit_filter_mutex);
811
812	while (!list_empty(&prune_list)) {
813		struct audit_tree *victim;
814
815		victim = list_entry(prune_list.next, struct audit_tree, list);
816		list_del_init(&victim->list);
817
818		mutex_unlock(&audit_filter_mutex);
819
820		prune_one(victim);
821
822		mutex_lock(&audit_filter_mutex);
823	}
824
825	mutex_unlock(&audit_filter_mutex);
826	mutex_unlock(&audit_cmd_mutex);
827	return 0;
828}
829
830static void audit_schedule_prune(void)
831{
832	kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
833}
834
835/*
836 * ... and that one is done if evict_chunk() decides to delay until the end
837 * of syscall.  Runs synchronously.
838 */
839void audit_kill_trees(struct list_head *list)
840{
841	mutex_lock(&audit_cmd_mutex);
842	mutex_lock(&audit_filter_mutex);
843
844	while (!list_empty(list)) {
845		struct audit_tree *victim;
846
847		victim = list_entry(list->next, struct audit_tree, list);
848		kill_rules(victim);
849		list_del_init(&victim->list);
850
851		mutex_unlock(&audit_filter_mutex);
852
853		prune_one(victim);
854
855		mutex_lock(&audit_filter_mutex);
856	}
857
858	mutex_unlock(&audit_filter_mutex);
859	mutex_unlock(&audit_cmd_mutex);
860}
861
862/*
863 *  Here comes the stuff asynchronous to auditctl operations
864 */
865
866static void evict_chunk(struct audit_chunk *chunk)
867{
868	struct audit_tree *owner;
869	struct list_head *postponed = audit_killed_trees();
870	int need_prune = 0;
871	int n;
872
873	if (chunk->dead)
874		return;
875
876	chunk->dead = 1;
877	mutex_lock(&audit_filter_mutex);
878	spin_lock(&hash_lock);
879	while (!list_empty(&chunk->trees)) {
880		owner = list_entry(chunk->trees.next,
881				   struct audit_tree, same_root);
882		owner->goner = 1;
883		owner->root = NULL;
884		list_del_init(&owner->same_root);
885		spin_unlock(&hash_lock);
886		if (!postponed) {
887			kill_rules(owner);
888			list_move(&owner->list, &prune_list);
889			need_prune = 1;
890		} else {
891			list_move(&owner->list, postponed);
892		}
893		spin_lock(&hash_lock);
894	}
895	list_del_rcu(&chunk->hash);
896	for (n = 0; n < chunk->count; n++)
897		list_del_init(&chunk->owners[n].list);
898	spin_unlock(&hash_lock);
899	if (need_prune)
900		audit_schedule_prune();
901	mutex_unlock(&audit_filter_mutex);
902}
903
904static int audit_tree_handle_event(struct fsnotify_group *group,
 
905				   struct fsnotify_mark *inode_mark,
906				   struct fsnotify_mark *vfsmonut_mark,
907				   struct fsnotify_event *event)
 
908{
909	BUG();
910	return -EOPNOTSUPP;
911}
912
913static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
914{
915	struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
916
917	evict_chunk(chunk);
918	fsnotify_put_mark(entry);
919}
920
921static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
922				  struct fsnotify_mark *inode_mark,
923				  struct fsnotify_mark *vfsmount_mark,
924				  __u32 mask, void *data, int data_type)
925{
926	return false;
927}
928
929static const struct fsnotify_ops audit_tree_ops = {
930	.handle_event = audit_tree_handle_event,
931	.should_send_event = audit_tree_send_event,
932	.free_group_priv = NULL,
933	.free_event_priv = NULL,
934	.freeing_mark = audit_tree_freeing_mark,
935};
936
937static int __init audit_tree_init(void)
938{
939	int i;
940
941	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
942	if (IS_ERR(audit_tree_group))
943		audit_panic("cannot initialize fsnotify group for rectree watches");
944
945	for (i = 0; i < HASH_SIZE; i++)
946		INIT_LIST_HEAD(&chunk_hash_heads[i]);
947
948	return 0;
949}
950__initcall(audit_tree_init);