Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  19 *
  20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21 */
  22/*
  23 *  linux/fs/ext2/super.c
  24 *
  25 * Copyright (C) 1992, 1993, 1994, 1995
  26 * Remy Card (card@masi.ibp.fr)
  27 * Laboratoire MASI - Institut Blaise Pascal
  28 * Universite Pierre et Marie Curie (Paris VI)
  29 *
  30 *  from
  31 *
  32 *  linux/fs/minix/inode.c
  33 *
  34 *  Copyright (C) 1991, 1992  Linus Torvalds
  35 *
  36 *  Big-endian to little-endian byte-swapping/bitmaps by
  37 *        David S. Miller (davem@caip.rutgers.edu), 1995
  38 */
  39
  40#include <linux/module.h>
  41#include <linux/string.h>
  42#include <linux/slab.h>
  43#include <linux/init.h>
  44#include <linux/blkdev.h>
  45#include <linux/parser.h>
  46#include <linux/crc32.h>
  47#include <linux/vfs.h>
  48#include <linux/writeback.h>
  49#include <linux/seq_file.h>
  50#include <linux/mount.h>
  51#include "nilfs.h"
  52#include "export.h"
  53#include "mdt.h"
  54#include "alloc.h"
  55#include "btree.h"
  56#include "btnode.h"
  57#include "page.h"
  58#include "cpfile.h"
  59#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  60#include "ifile.h"
  61#include "dat.h"
  62#include "segment.h"
  63#include "segbuf.h"
  64
  65MODULE_AUTHOR("NTT Corp.");
  66MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  67		   "(NILFS)");
  68MODULE_LICENSE("GPL");
  69
  70static struct kmem_cache *nilfs_inode_cachep;
  71struct kmem_cache *nilfs_transaction_cachep;
  72struct kmem_cache *nilfs_segbuf_cachep;
  73struct kmem_cache *nilfs_btree_path_cache;
  74
  75static int nilfs_setup_super(struct super_block *sb, int is_mount);
  76static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  77
  78static void nilfs_set_error(struct super_block *sb)
  79{
  80	struct the_nilfs *nilfs = sb->s_fs_info;
  81	struct nilfs_super_block **sbp;
  82
  83	down_write(&nilfs->ns_sem);
  84	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  85		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  86		sbp = nilfs_prepare_super(sb, 0);
  87		if (likely(sbp)) {
  88			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  89			if (sbp[1])
  90				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  91			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
  92		}
  93	}
  94	up_write(&nilfs->ns_sem);
  95}
  96
  97/**
  98 * nilfs_error() - report failure condition on a filesystem
  99 *
 100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
 101 * reporting an error message.  It should be called when NILFS detects
 102 * incoherences or defects of meta data on disk.  As for sustainable
 103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
 104 * function should be used instead.
 105 *
 106 * The segment constructor must not call this function because it can
 107 * kill itself.
 108 */
 109void nilfs_error(struct super_block *sb, const char *function,
 110		 const char *fmt, ...)
 111{
 112	struct the_nilfs *nilfs = sb->s_fs_info;
 113	struct va_format vaf;
 114	va_list args;
 115
 116	va_start(args, fmt);
 117
 118	vaf.fmt = fmt;
 119	vaf.va = &args;
 120
 121	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 122	       sb->s_id, function, &vaf);
 123
 124	va_end(args);
 125
 126	if (!(sb->s_flags & MS_RDONLY)) {
 127		nilfs_set_error(sb);
 128
 129		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 130			printk(KERN_CRIT "Remounting filesystem read-only\n");
 131			sb->s_flags |= MS_RDONLY;
 132		}
 133	}
 134
 135	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 136		panic("NILFS (device %s): panic forced after error\n",
 137		      sb->s_id);
 138}
 139
 140void nilfs_warning(struct super_block *sb, const char *function,
 141		   const char *fmt, ...)
 142{
 143	struct va_format vaf;
 144	va_list args;
 145
 146	va_start(args, fmt);
 147
 148	vaf.fmt = fmt;
 149	vaf.va = &args;
 150
 151	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
 152	       sb->s_id, function, &vaf);
 153
 154	va_end(args);
 155}
 156
 157
 158struct inode *nilfs_alloc_inode(struct super_block *sb)
 159{
 160	struct nilfs_inode_info *ii;
 161
 162	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 163	if (!ii)
 164		return NULL;
 165	ii->i_bh = NULL;
 166	ii->i_state = 0;
 167	ii->i_cno = 0;
 168	ii->vfs_inode.i_version = 1;
 169	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi);
 170	return &ii->vfs_inode;
 171}
 172
 173static void nilfs_i_callback(struct rcu_head *head)
 174{
 175	struct inode *inode = container_of(head, struct inode, i_rcu);
 176	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
 177
 178	if (mdi) {
 179		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
 180		kfree(mdi);
 181	}
 182	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 183}
 184
 185void nilfs_destroy_inode(struct inode *inode)
 186{
 187	call_rcu(&inode->i_rcu, nilfs_i_callback);
 188}
 189
 190static int nilfs_sync_super(struct super_block *sb, int flag)
 191{
 192	struct the_nilfs *nilfs = sb->s_fs_info;
 193	int err;
 194
 195 retry:
 196	set_buffer_dirty(nilfs->ns_sbh[0]);
 197	if (nilfs_test_opt(nilfs, BARRIER)) {
 198		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 199					  WRITE_SYNC | WRITE_FLUSH_FUA);
 200	} else {
 201		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 202	}
 203
 204	if (unlikely(err)) {
 205		printk(KERN_ERR
 206		       "NILFS: unable to write superblock (err=%d)\n", err);
 207		if (err == -EIO && nilfs->ns_sbh[1]) {
 208			/*
 209			 * sbp[0] points to newer log than sbp[1],
 210			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 211			 */
 212			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 213			       nilfs->ns_sbsize);
 214			nilfs_fall_back_super_block(nilfs);
 215			goto retry;
 216		}
 217	} else {
 218		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 219
 220		nilfs->ns_sbwcount++;
 221
 222		/*
 223		 * The latest segment becomes trailable from the position
 224		 * written in superblock.
 225		 */
 226		clear_nilfs_discontinued(nilfs);
 227
 228		/* update GC protection for recent segments */
 229		if (nilfs->ns_sbh[1]) {
 230			if (flag == NILFS_SB_COMMIT_ALL) {
 231				set_buffer_dirty(nilfs->ns_sbh[1]);
 232				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 233					goto out;
 234			}
 235			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 236			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 237				sbp = nilfs->ns_sbp[1];
 238		}
 239
 240		spin_lock(&nilfs->ns_last_segment_lock);
 241		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 242		spin_unlock(&nilfs->ns_last_segment_lock);
 243	}
 244 out:
 245	return err;
 246}
 247
 248void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 249			  struct the_nilfs *nilfs)
 250{
 251	sector_t nfreeblocks;
 252
 253	/* nilfs->ns_sem must be locked by the caller. */
 254	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 255	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 256
 257	spin_lock(&nilfs->ns_last_segment_lock);
 258	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 259	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 260	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 261	spin_unlock(&nilfs->ns_last_segment_lock);
 262}
 263
 264struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 265					       int flip)
 266{
 267	struct the_nilfs *nilfs = sb->s_fs_info;
 268	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 269
 270	/* nilfs->ns_sem must be locked by the caller. */
 271	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 272		if (sbp[1] &&
 273		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 274			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 275		} else {
 276			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
 277			       sb->s_id);
 278			return NULL;
 279		}
 280	} else if (sbp[1] &&
 281		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 282			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 283	}
 284
 285	if (flip && sbp[1])
 286		nilfs_swap_super_block(nilfs);
 287
 288	return sbp;
 289}
 290
 291int nilfs_commit_super(struct super_block *sb, int flag)
 292{
 293	struct the_nilfs *nilfs = sb->s_fs_info;
 294	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 295	time_t t;
 296
 297	/* nilfs->ns_sem must be locked by the caller. */
 298	t = get_seconds();
 299	nilfs->ns_sbwtime = t;
 300	sbp[0]->s_wtime = cpu_to_le64(t);
 301	sbp[0]->s_sum = 0;
 302	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 303					     (unsigned char *)sbp[0],
 304					     nilfs->ns_sbsize));
 305	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 306		sbp[1]->s_wtime = sbp[0]->s_wtime;
 307		sbp[1]->s_sum = 0;
 308		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 309					    (unsigned char *)sbp[1],
 310					    nilfs->ns_sbsize));
 311	}
 312	clear_nilfs_sb_dirty(nilfs);
 313	return nilfs_sync_super(sb, flag);
 314}
 315
 316/**
 317 * nilfs_cleanup_super() - write filesystem state for cleanup
 318 * @sb: super block instance to be unmounted or degraded to read-only
 319 *
 320 * This function restores state flags in the on-disk super block.
 321 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 322 * filesystem was not clean previously.
 323 */
 324int nilfs_cleanup_super(struct super_block *sb)
 325{
 326	struct the_nilfs *nilfs = sb->s_fs_info;
 327	struct nilfs_super_block **sbp;
 328	int flag = NILFS_SB_COMMIT;
 329	int ret = -EIO;
 330
 331	sbp = nilfs_prepare_super(sb, 0);
 332	if (sbp) {
 333		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 334		nilfs_set_log_cursor(sbp[0], nilfs);
 335		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 336			/*
 337			 * make the "clean" flag also to the opposite
 338			 * super block if both super blocks point to
 339			 * the same checkpoint.
 340			 */
 341			sbp[1]->s_state = sbp[0]->s_state;
 342			flag = NILFS_SB_COMMIT_ALL;
 343		}
 344		ret = nilfs_commit_super(sb, flag);
 345	}
 346	return ret;
 347}
 348
 349/**
 350 * nilfs_move_2nd_super - relocate secondary super block
 351 * @sb: super block instance
 352 * @sb2off: new offset of the secondary super block (in bytes)
 353 */
 354static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 355{
 356	struct the_nilfs *nilfs = sb->s_fs_info;
 357	struct buffer_head *nsbh;
 358	struct nilfs_super_block *nsbp;
 359	sector_t blocknr, newblocknr;
 360	unsigned long offset;
 361	int sb2i = -1;  /* array index of the secondary superblock */
 362	int ret = 0;
 363
 364	/* nilfs->ns_sem must be locked by the caller. */
 365	if (nilfs->ns_sbh[1] &&
 366	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 367		sb2i = 1;
 368		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 369	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 370		sb2i = 0;
 371		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 372	}
 373	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 374		goto out;  /* super block location is unchanged */
 375
 376	/* Get new super block buffer */
 377	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 378	offset = sb2off & (nilfs->ns_blocksize - 1);
 379	nsbh = sb_getblk(sb, newblocknr);
 380	if (!nsbh) {
 381		printk(KERN_WARNING
 382		       "NILFS warning: unable to move secondary superblock "
 383		       "to block %llu\n", (unsigned long long)newblocknr);
 384		ret = -EIO;
 385		goto out;
 386	}
 387	nsbp = (void *)nsbh->b_data + offset;
 388	memset(nsbp, 0, nilfs->ns_blocksize);
 389
 390	if (sb2i >= 0) {
 391		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 392		brelse(nilfs->ns_sbh[sb2i]);
 393		nilfs->ns_sbh[sb2i] = nsbh;
 394		nilfs->ns_sbp[sb2i] = nsbp;
 395	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 396		/* secondary super block will be restored to index 1 */
 397		nilfs->ns_sbh[1] = nsbh;
 398		nilfs->ns_sbp[1] = nsbp;
 399	} else {
 400		brelse(nsbh);
 401	}
 402out:
 403	return ret;
 404}
 405
 406/**
 407 * nilfs_resize_fs - resize the filesystem
 408 * @sb: super block instance
 409 * @newsize: new size of the filesystem (in bytes)
 410 */
 411int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 412{
 413	struct the_nilfs *nilfs = sb->s_fs_info;
 414	struct nilfs_super_block **sbp;
 415	__u64 devsize, newnsegs;
 416	loff_t sb2off;
 417	int ret;
 418
 419	ret = -ERANGE;
 420	devsize = i_size_read(sb->s_bdev->bd_inode);
 421	if (newsize > devsize)
 422		goto out;
 423
 424	/*
 425	 * Write lock is required to protect some functions depending
 426	 * on the number of segments, the number of reserved segments,
 427	 * and so forth.
 428	 */
 429	down_write(&nilfs->ns_segctor_sem);
 430
 431	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 432	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 433	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 434
 435	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 436	up_write(&nilfs->ns_segctor_sem);
 437	if (ret < 0)
 438		goto out;
 439
 440	ret = nilfs_construct_segment(sb);
 441	if (ret < 0)
 442		goto out;
 443
 444	down_write(&nilfs->ns_sem);
 445	nilfs_move_2nd_super(sb, sb2off);
 446	ret = -EIO;
 447	sbp = nilfs_prepare_super(sb, 0);
 448	if (likely(sbp)) {
 449		nilfs_set_log_cursor(sbp[0], nilfs);
 450		/*
 451		 * Drop NILFS_RESIZE_FS flag for compatibility with
 452		 * mount-time resize which may be implemented in a
 453		 * future release.
 454		 */
 455		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 456					      ~NILFS_RESIZE_FS);
 457		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 458		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 459		if (sbp[1])
 460			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 461		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 462	}
 463	up_write(&nilfs->ns_sem);
 464
 465	/*
 466	 * Reset the range of allocatable segments last.  This order
 467	 * is important in the case of expansion because the secondary
 468	 * superblock must be protected from log write until migration
 469	 * completes.
 470	 */
 471	if (!ret)
 472		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 473out:
 474	return ret;
 475}
 476
 477static void nilfs_put_super(struct super_block *sb)
 478{
 479	struct the_nilfs *nilfs = sb->s_fs_info;
 480
 481	nilfs_detach_log_writer(sb);
 482
 483	if (!(sb->s_flags & MS_RDONLY)) {
 484		down_write(&nilfs->ns_sem);
 485		nilfs_cleanup_super(sb);
 486		up_write(&nilfs->ns_sem);
 487	}
 488
 489	iput(nilfs->ns_sufile);
 490	iput(nilfs->ns_cpfile);
 491	iput(nilfs->ns_dat);
 492
 493	destroy_nilfs(nilfs);
 494	sb->s_fs_info = NULL;
 495}
 496
 497static int nilfs_sync_fs(struct super_block *sb, int wait)
 498{
 499	struct the_nilfs *nilfs = sb->s_fs_info;
 500	struct nilfs_super_block **sbp;
 501	int err = 0;
 502
 503	/* This function is called when super block should be written back */
 504	if (wait)
 505		err = nilfs_construct_segment(sb);
 506
 507	down_write(&nilfs->ns_sem);
 508	if (nilfs_sb_dirty(nilfs)) {
 509		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 510		if (likely(sbp)) {
 511			nilfs_set_log_cursor(sbp[0], nilfs);
 512			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 513		}
 514	}
 515	up_write(&nilfs->ns_sem);
 516
 517	return err;
 518}
 519
 520int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 521			    struct nilfs_root **rootp)
 522{
 523	struct the_nilfs *nilfs = sb->s_fs_info;
 524	struct nilfs_root *root;
 525	struct nilfs_checkpoint *raw_cp;
 526	struct buffer_head *bh_cp;
 527	int err = -ENOMEM;
 528
 529	root = nilfs_find_or_create_root(
 530		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 531	if (!root)
 532		return err;
 533
 534	if (root->ifile)
 535		goto reuse; /* already attached checkpoint */
 536
 537	down_read(&nilfs->ns_segctor_sem);
 538	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 539					  &bh_cp);
 540	up_read(&nilfs->ns_segctor_sem);
 541	if (unlikely(err)) {
 542		if (err == -ENOENT || err == -EINVAL) {
 543			printk(KERN_ERR
 544			       "NILFS: Invalid checkpoint "
 545			       "(checkpoint number=%llu)\n",
 546			       (unsigned long long)cno);
 547			err = -EINVAL;
 548		}
 549		goto failed;
 550	}
 551
 552	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 553			       &raw_cp->cp_ifile_inode, &root->ifile);
 554	if (err)
 555		goto failed_bh;
 556
 557	atomic64_set(&root->inodes_count,
 558			le64_to_cpu(raw_cp->cp_inodes_count));
 559	atomic64_set(&root->blocks_count,
 560			le64_to_cpu(raw_cp->cp_blocks_count));
 561
 562	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 563
 564 reuse:
 565	*rootp = root;
 566	return 0;
 567
 568 failed_bh:
 569	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 570 failed:
 571	nilfs_put_root(root);
 572
 573	return err;
 574}
 575
 576static int nilfs_freeze(struct super_block *sb)
 577{
 578	struct the_nilfs *nilfs = sb->s_fs_info;
 579	int err;
 580
 581	if (sb->s_flags & MS_RDONLY)
 582		return 0;
 583
 584	/* Mark super block clean */
 585	down_write(&nilfs->ns_sem);
 586	err = nilfs_cleanup_super(sb);
 587	up_write(&nilfs->ns_sem);
 588	return err;
 589}
 590
 591static int nilfs_unfreeze(struct super_block *sb)
 592{
 593	struct the_nilfs *nilfs = sb->s_fs_info;
 594
 595	if (sb->s_flags & MS_RDONLY)
 596		return 0;
 597
 598	down_write(&nilfs->ns_sem);
 599	nilfs_setup_super(sb, false);
 600	up_write(&nilfs->ns_sem);
 601	return 0;
 602}
 603
 604static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 605{
 606	struct super_block *sb = dentry->d_sb;
 607	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
 608	struct the_nilfs *nilfs = root->nilfs;
 609	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 610	unsigned long long blocks;
 611	unsigned long overhead;
 612	unsigned long nrsvblocks;
 613	sector_t nfreeblocks;
 614	u64 nmaxinodes, nfreeinodes;
 615	int err;
 616
 617	/*
 618	 * Compute all of the segment blocks
 619	 *
 620	 * The blocks before first segment and after last segment
 621	 * are excluded.
 622	 */
 623	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 624		- nilfs->ns_first_data_block;
 625	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 626
 627	/*
 628	 * Compute the overhead
 629	 *
 630	 * When distributing meta data blocks outside segment structure,
 631	 * We must count them as the overhead.
 632	 */
 633	overhead = 0;
 634
 635	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 636	if (unlikely(err))
 637		return err;
 638
 639	err = nilfs_ifile_count_free_inodes(root->ifile,
 640					    &nmaxinodes, &nfreeinodes);
 641	if (unlikely(err)) {
 642		printk(KERN_WARNING
 643			"NILFS warning: fail to count free inodes: err %d.\n",
 644			err);
 645		if (err == -ERANGE) {
 646			/*
 647			 * If nilfs_palloc_count_max_entries() returns
 648			 * -ERANGE error code then we simply treat
 649			 * curent inodes count as maximum possible and
 650			 * zero as free inodes value.
 651			 */
 652			nmaxinodes = atomic64_read(&root->inodes_count);
 653			nfreeinodes = 0;
 654			err = 0;
 655		} else
 656			return err;
 657	}
 658
 659	buf->f_type = NILFS_SUPER_MAGIC;
 660	buf->f_bsize = sb->s_blocksize;
 661	buf->f_blocks = blocks - overhead;
 662	buf->f_bfree = nfreeblocks;
 663	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 664		(buf->f_bfree - nrsvblocks) : 0;
 665	buf->f_files = nmaxinodes;
 666	buf->f_ffree = nfreeinodes;
 667	buf->f_namelen = NILFS_NAME_LEN;
 668	buf->f_fsid.val[0] = (u32)id;
 669	buf->f_fsid.val[1] = (u32)(id >> 32);
 670
 671	return 0;
 672}
 673
 674static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 675{
 676	struct super_block *sb = dentry->d_sb;
 677	struct the_nilfs *nilfs = sb->s_fs_info;
 678	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
 679
 680	if (!nilfs_test_opt(nilfs, BARRIER))
 681		seq_puts(seq, ",nobarrier");
 682	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 683		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 684	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 685		seq_puts(seq, ",errors=panic");
 686	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 687		seq_puts(seq, ",errors=continue");
 688	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 689		seq_puts(seq, ",order=strict");
 690	if (nilfs_test_opt(nilfs, NORECOVERY))
 691		seq_puts(seq, ",norecovery");
 692	if (nilfs_test_opt(nilfs, DISCARD))
 693		seq_puts(seq, ",discard");
 694
 695	return 0;
 696}
 697
 698static const struct super_operations nilfs_sops = {
 699	.alloc_inode    = nilfs_alloc_inode,
 700	.destroy_inode  = nilfs_destroy_inode,
 701	.dirty_inode    = nilfs_dirty_inode,
 
 
 
 702	.evict_inode    = nilfs_evict_inode,
 703	.put_super      = nilfs_put_super,
 
 704	.sync_fs        = nilfs_sync_fs,
 705	.freeze_fs	= nilfs_freeze,
 706	.unfreeze_fs	= nilfs_unfreeze,
 
 
 707	.statfs         = nilfs_statfs,
 708	.remount_fs     = nilfs_remount,
 
 709	.show_options = nilfs_show_options
 710};
 711
 712enum {
 713	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 714	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 715	Opt_discard, Opt_nodiscard, Opt_err,
 716};
 717
 718static match_table_t tokens = {
 719	{Opt_err_cont, "errors=continue"},
 720	{Opt_err_panic, "errors=panic"},
 721	{Opt_err_ro, "errors=remount-ro"},
 722	{Opt_barrier, "barrier"},
 723	{Opt_nobarrier, "nobarrier"},
 724	{Opt_snapshot, "cp=%u"},
 725	{Opt_order, "order=%s"},
 726	{Opt_norecovery, "norecovery"},
 727	{Opt_discard, "discard"},
 728	{Opt_nodiscard, "nodiscard"},
 729	{Opt_err, NULL}
 730};
 731
 732static int parse_options(char *options, struct super_block *sb, int is_remount)
 733{
 734	struct the_nilfs *nilfs = sb->s_fs_info;
 735	char *p;
 736	substring_t args[MAX_OPT_ARGS];
 737
 738	if (!options)
 739		return 1;
 740
 741	while ((p = strsep(&options, ",")) != NULL) {
 742		int token;
 743		if (!*p)
 744			continue;
 745
 746		token = match_token(p, tokens, args);
 747		switch (token) {
 748		case Opt_barrier:
 749			nilfs_set_opt(nilfs, BARRIER);
 750			break;
 751		case Opt_nobarrier:
 752			nilfs_clear_opt(nilfs, BARRIER);
 753			break;
 754		case Opt_order:
 755			if (strcmp(args[0].from, "relaxed") == 0)
 756				/* Ordered data semantics */
 757				nilfs_clear_opt(nilfs, STRICT_ORDER);
 758			else if (strcmp(args[0].from, "strict") == 0)
 759				/* Strict in-order semantics */
 760				nilfs_set_opt(nilfs, STRICT_ORDER);
 761			else
 762				return 0;
 763			break;
 764		case Opt_err_panic:
 765			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 766			break;
 767		case Opt_err_ro:
 768			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 769			break;
 770		case Opt_err_cont:
 771			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 772			break;
 773		case Opt_snapshot:
 774			if (is_remount) {
 775				printk(KERN_ERR
 776				       "NILFS: \"%s\" option is invalid "
 777				       "for remount.\n", p);
 778				return 0;
 779			}
 780			break;
 781		case Opt_norecovery:
 782			nilfs_set_opt(nilfs, NORECOVERY);
 783			break;
 784		case Opt_discard:
 785			nilfs_set_opt(nilfs, DISCARD);
 786			break;
 787		case Opt_nodiscard:
 788			nilfs_clear_opt(nilfs, DISCARD);
 789			break;
 790		default:
 791			printk(KERN_ERR
 792			       "NILFS: Unrecognized mount option \"%s\"\n", p);
 793			return 0;
 794		}
 795	}
 796	return 1;
 797}
 798
 799static inline void
 800nilfs_set_default_options(struct super_block *sb,
 801			  struct nilfs_super_block *sbp)
 802{
 803	struct the_nilfs *nilfs = sb->s_fs_info;
 804
 805	nilfs->ns_mount_opt =
 806		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 807}
 808
 809static int nilfs_setup_super(struct super_block *sb, int is_mount)
 810{
 811	struct the_nilfs *nilfs = sb->s_fs_info;
 812	struct nilfs_super_block **sbp;
 813	int max_mnt_count;
 814	int mnt_count;
 815
 816	/* nilfs->ns_sem must be locked by the caller. */
 817	sbp = nilfs_prepare_super(sb, 0);
 818	if (!sbp)
 819		return -EIO;
 820
 821	if (!is_mount)
 822		goto skip_mount_setup;
 823
 824	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 825	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 826
 827	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 828		printk(KERN_WARNING
 829		       "NILFS warning: mounting fs with errors\n");
 830#if 0
 831	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 832		printk(KERN_WARNING
 833		       "NILFS warning: maximal mount count reached\n");
 834#endif
 835	}
 836	if (!max_mnt_count)
 837		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 838
 839	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 840	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 841
 842skip_mount_setup:
 843	sbp[0]->s_state =
 844		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 845	/* synchronize sbp[1] with sbp[0] */
 846	if (sbp[1])
 847		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 848	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 849}
 850
 851struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 852						 u64 pos, int blocksize,
 853						 struct buffer_head **pbh)
 854{
 855	unsigned long long sb_index = pos;
 856	unsigned long offset;
 857
 858	offset = do_div(sb_index, blocksize);
 859	*pbh = sb_bread(sb, sb_index);
 860	if (!*pbh)
 861		return NULL;
 862	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 863}
 864
 865int nilfs_store_magic_and_option(struct super_block *sb,
 866				 struct nilfs_super_block *sbp,
 867				 char *data)
 868{
 869	struct the_nilfs *nilfs = sb->s_fs_info;
 870
 871	sb->s_magic = le16_to_cpu(sbp->s_magic);
 872
 873	/* FS independent flags */
 874#ifdef NILFS_ATIME_DISABLE
 875	sb->s_flags |= MS_NOATIME;
 876#endif
 877
 878	nilfs_set_default_options(sb, sbp);
 879
 880	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 881	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 882	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 883	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 884
 885	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
 886}
 887
 888int nilfs_check_feature_compatibility(struct super_block *sb,
 889				      struct nilfs_super_block *sbp)
 890{
 891	__u64 features;
 892
 893	features = le64_to_cpu(sbp->s_feature_incompat) &
 894		~NILFS_FEATURE_INCOMPAT_SUPP;
 895	if (features) {
 896		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
 897		       "optional features (%llx)\n",
 898		       (unsigned long long)features);
 899		return -EINVAL;
 900	}
 901	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 902		~NILFS_FEATURE_COMPAT_RO_SUPP;
 903	if (!(sb->s_flags & MS_RDONLY) && features) {
 904		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
 905		       "unsupported optional features (%llx)\n",
 906		       (unsigned long long)features);
 907		return -EINVAL;
 908	}
 909	return 0;
 910}
 911
 912static int nilfs_get_root_dentry(struct super_block *sb,
 913				 struct nilfs_root *root,
 914				 struct dentry **root_dentry)
 915{
 916	struct inode *inode;
 917	struct dentry *dentry;
 918	int ret = 0;
 919
 920	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 921	if (IS_ERR(inode)) {
 922		printk(KERN_ERR "NILFS: get root inode failed\n");
 923		ret = PTR_ERR(inode);
 924		goto out;
 925	}
 926	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 927		iput(inode);
 928		printk(KERN_ERR "NILFS: corrupt root inode.\n");
 929		ret = -EINVAL;
 930		goto out;
 931	}
 932
 933	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 934		dentry = d_find_alias(inode);
 935		if (!dentry) {
 936			dentry = d_make_root(inode);
 937			if (!dentry) {
 938				ret = -ENOMEM;
 939				goto failed_dentry;
 940			}
 941		} else {
 942			iput(inode);
 943		}
 944	} else {
 945		dentry = d_obtain_alias(inode);
 946		if (IS_ERR(dentry)) {
 947			ret = PTR_ERR(dentry);
 948			goto failed_dentry;
 949		}
 950	}
 951	*root_dentry = dentry;
 952 out:
 953	return ret;
 954
 955 failed_dentry:
 956	printk(KERN_ERR "NILFS: get root dentry failed\n");
 957	goto out;
 958}
 959
 960static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 961				 struct dentry **root_dentry)
 962{
 963	struct the_nilfs *nilfs = s->s_fs_info;
 964	struct nilfs_root *root;
 965	int ret;
 966
 967	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 968
 969	down_read(&nilfs->ns_segctor_sem);
 970	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 971	up_read(&nilfs->ns_segctor_sem);
 972	if (ret < 0) {
 973		ret = (ret == -ENOENT) ? -EINVAL : ret;
 974		goto out;
 975	} else if (!ret) {
 976		printk(KERN_ERR "NILFS: The specified checkpoint is "
 977		       "not a snapshot (checkpoint number=%llu).\n",
 978		       (unsigned long long)cno);
 979		ret = -EINVAL;
 980		goto out;
 981	}
 982
 983	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 984	if (ret) {
 985		printk(KERN_ERR "NILFS: error loading snapshot "
 986		       "(checkpoint number=%llu).\n",
 987	       (unsigned long long)cno);
 988		goto out;
 989	}
 990	ret = nilfs_get_root_dentry(s, root, root_dentry);
 991	nilfs_put_root(root);
 992 out:
 993	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 994	return ret;
 995}
 996
 
 
 
 
 
 997/**
 998 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 999 * @root_dentry: root dentry of the tree to be shrunk
1000 *
1001 * This function returns true if the tree was in-use.
1002 */
1003static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1004{
 
 
1005	shrink_dcache_parent(root_dentry);
1006	return d_count(root_dentry) > 1;
1007}
1008
1009int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1010{
1011	struct the_nilfs *nilfs = sb->s_fs_info;
1012	struct nilfs_root *root;
1013	struct inode *inode;
1014	struct dentry *dentry;
1015	int ret;
1016
1017	if (cno < 0 || cno > nilfs->ns_cno)
1018		return false;
1019
1020	if (cno >= nilfs_last_cno(nilfs))
1021		return true;	/* protect recent checkpoints */
1022
1023	ret = false;
1024	root = nilfs_lookup_root(nilfs, cno);
1025	if (root) {
1026		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1027		if (inode) {
1028			dentry = d_find_alias(inode);
1029			if (dentry) {
1030				ret = nilfs_tree_is_busy(dentry);
 
1031				dput(dentry);
1032			}
1033			iput(inode);
1034		}
1035		nilfs_put_root(root);
1036	}
1037	return ret;
1038}
1039
1040/**
1041 * nilfs_fill_super() - initialize a super block instance
1042 * @sb: super_block
1043 * @data: mount options
1044 * @silent: silent mode flag
1045 *
1046 * This function is called exclusively by nilfs->ns_mount_mutex.
1047 * So, the recovery process is protected from other simultaneous mounts.
1048 */
1049static int
1050nilfs_fill_super(struct super_block *sb, void *data, int silent)
1051{
1052	struct the_nilfs *nilfs;
1053	struct nilfs_root *fsroot;
1054	struct backing_dev_info *bdi;
1055	__u64 cno;
1056	int err;
1057
1058	nilfs = alloc_nilfs(sb->s_bdev);
1059	if (!nilfs)
1060		return -ENOMEM;
1061
1062	sb->s_fs_info = nilfs;
1063
1064	err = init_nilfs(nilfs, sb, (char *)data);
1065	if (err)
1066		goto failed_nilfs;
1067
1068	sb->s_op = &nilfs_sops;
1069	sb->s_export_op = &nilfs_export_ops;
1070	sb->s_root = NULL;
1071	sb->s_time_gran = 1;
1072	sb->s_max_links = NILFS_LINK_MAX;
1073
1074	bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1075	sb->s_bdi = bdi ? : &default_backing_dev_info;
1076
1077	err = load_nilfs(nilfs, sb);
1078	if (err)
1079		goto failed_nilfs;
1080
1081	cno = nilfs_last_cno(nilfs);
1082	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1083	if (err) {
1084		printk(KERN_ERR "NILFS: error loading last checkpoint "
1085		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
1086		goto failed_unload;
1087	}
1088
1089	if (!(sb->s_flags & MS_RDONLY)) {
1090		err = nilfs_attach_log_writer(sb, fsroot);
1091		if (err)
1092			goto failed_checkpoint;
1093	}
1094
1095	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1096	if (err)
1097		goto failed_segctor;
1098
1099	nilfs_put_root(fsroot);
1100
1101	if (!(sb->s_flags & MS_RDONLY)) {
1102		down_write(&nilfs->ns_sem);
1103		nilfs_setup_super(sb, true);
1104		up_write(&nilfs->ns_sem);
1105	}
1106
1107	return 0;
1108
1109 failed_segctor:
1110	nilfs_detach_log_writer(sb);
1111
1112 failed_checkpoint:
1113	nilfs_put_root(fsroot);
1114
1115 failed_unload:
1116	iput(nilfs->ns_sufile);
1117	iput(nilfs->ns_cpfile);
1118	iput(nilfs->ns_dat);
1119
1120 failed_nilfs:
1121	destroy_nilfs(nilfs);
1122	return err;
1123}
1124
1125static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1126{
1127	struct the_nilfs *nilfs = sb->s_fs_info;
1128	unsigned long old_sb_flags;
1129	unsigned long old_mount_opt;
1130	int err;
1131
1132	sync_filesystem(sb);
1133	old_sb_flags = sb->s_flags;
1134	old_mount_opt = nilfs->ns_mount_opt;
1135
1136	if (!parse_options(data, sb, 1)) {
1137		err = -EINVAL;
1138		goto restore_opts;
1139	}
1140	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1141
1142	err = -EINVAL;
1143
1144	if (!nilfs_valid_fs(nilfs)) {
1145		printk(KERN_WARNING "NILFS (device %s): couldn't "
1146		       "remount because the filesystem is in an "
1147		       "incomplete recovery state.\n", sb->s_id);
1148		goto restore_opts;
1149	}
1150
1151	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1152		goto out;
1153	if (*flags & MS_RDONLY) {
1154		/* Shutting down log writer */
1155		nilfs_detach_log_writer(sb);
1156		sb->s_flags |= MS_RDONLY;
1157
1158		/*
1159		 * Remounting a valid RW partition RDONLY, so set
1160		 * the RDONLY flag and then mark the partition as valid again.
1161		 */
1162		down_write(&nilfs->ns_sem);
1163		nilfs_cleanup_super(sb);
1164		up_write(&nilfs->ns_sem);
1165	} else {
1166		__u64 features;
1167		struct nilfs_root *root;
1168
1169		/*
1170		 * Mounting a RDONLY partition read-write, so reread and
1171		 * store the current valid flag.  (It may have been changed
1172		 * by fsck since we originally mounted the partition.)
1173		 */
1174		down_read(&nilfs->ns_sem);
1175		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1176			~NILFS_FEATURE_COMPAT_RO_SUPP;
1177		up_read(&nilfs->ns_sem);
1178		if (features) {
1179			printk(KERN_WARNING "NILFS (device %s): couldn't "
1180			       "remount RDWR because of unsupported optional "
1181			       "features (%llx)\n",
1182			       sb->s_id, (unsigned long long)features);
1183			err = -EROFS;
1184			goto restore_opts;
1185		}
1186
1187		sb->s_flags &= ~MS_RDONLY;
1188
1189		root = NILFS_I(sb->s_root->d_inode)->i_root;
1190		err = nilfs_attach_log_writer(sb, root);
1191		if (err)
1192			goto restore_opts;
1193
1194		down_write(&nilfs->ns_sem);
1195		nilfs_setup_super(sb, true);
1196		up_write(&nilfs->ns_sem);
1197	}
1198 out:
1199	return 0;
1200
1201 restore_opts:
1202	sb->s_flags = old_sb_flags;
1203	nilfs->ns_mount_opt = old_mount_opt;
1204	return err;
1205}
1206
1207struct nilfs_super_data {
1208	struct block_device *bdev;
1209	__u64 cno;
1210	int flags;
1211};
1212
1213/**
1214 * nilfs_identify - pre-read mount options needed to identify mount instance
1215 * @data: mount options
1216 * @sd: nilfs_super_data
1217 */
1218static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1219{
1220	char *p, *options = data;
1221	substring_t args[MAX_OPT_ARGS];
1222	int token;
1223	int ret = 0;
1224
1225	do {
1226		p = strsep(&options, ",");
1227		if (p != NULL && *p) {
1228			token = match_token(p, tokens, args);
1229			if (token == Opt_snapshot) {
1230				if (!(sd->flags & MS_RDONLY)) {
1231					ret++;
1232				} else {
1233					sd->cno = simple_strtoull(args[0].from,
1234								  NULL, 0);
1235					/*
1236					 * No need to see the end pointer;
1237					 * match_token() has done syntax
1238					 * checking.
1239					 */
1240					if (sd->cno == 0)
1241						ret++;
1242				}
1243			}
1244			if (ret)
1245				printk(KERN_ERR
1246				       "NILFS: invalid mount option: %s\n", p);
1247		}
1248		if (!options)
1249			break;
1250		BUG_ON(options == data);
1251		*(options - 1) = ',';
1252	} while (!ret);
1253	return ret;
1254}
1255
1256static int nilfs_set_bdev_super(struct super_block *s, void *data)
1257{
1258	s->s_bdev = data;
1259	s->s_dev = s->s_bdev->bd_dev;
1260	return 0;
1261}
1262
1263static int nilfs_test_bdev_super(struct super_block *s, void *data)
1264{
1265	return (void *)s->s_bdev == data;
1266}
1267
1268static struct dentry *
1269nilfs_mount(struct file_system_type *fs_type, int flags,
1270	     const char *dev_name, void *data)
1271{
1272	struct nilfs_super_data sd;
1273	struct super_block *s;
1274	fmode_t mode = FMODE_READ | FMODE_EXCL;
1275	struct dentry *root_dentry;
1276	int err, s_new = false;
1277
1278	if (!(flags & MS_RDONLY))
1279		mode |= FMODE_WRITE;
1280
1281	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1282	if (IS_ERR(sd.bdev))
1283		return ERR_CAST(sd.bdev);
1284
1285	sd.cno = 0;
1286	sd.flags = flags;
1287	if (nilfs_identify((char *)data, &sd)) {
1288		err = -EINVAL;
1289		goto failed;
1290	}
1291
1292	/*
1293	 * once the super is inserted into the list by sget, s_umount
1294	 * will protect the lockfs code from trying to start a snapshot
1295	 * while we are mounting
1296	 */
1297	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1298	if (sd.bdev->bd_fsfreeze_count > 0) {
1299		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1300		err = -EBUSY;
1301		goto failed;
1302	}
1303	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1304		 sd.bdev);
1305	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1306	if (IS_ERR(s)) {
1307		err = PTR_ERR(s);
1308		goto failed;
1309	}
1310
1311	if (!s->s_root) {
1312		char b[BDEVNAME_SIZE];
1313
1314		s_new = true;
1315
1316		/* New superblock instance created */
 
1317		s->s_mode = mode;
1318		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1319		sb_set_blocksize(s, block_size(sd.bdev));
1320
1321		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1322		if (err)
1323			goto failed_super;
1324
1325		s->s_flags |= MS_ACTIVE;
1326	} else if (!sd.cno) {
1327		if (nilfs_tree_is_busy(s->s_root)) {
1328			if ((flags ^ s->s_flags) & MS_RDONLY) {
 
 
 
1329				printk(KERN_ERR "NILFS: the device already "
1330				       "has a %s mount.\n",
1331				       (s->s_flags & MS_RDONLY) ?
1332				       "read-only" : "read/write");
1333				err = -EBUSY;
1334				goto failed_super;
1335			}
1336		} else {
 
1337			/*
1338			 * Try remount to setup mount states if the current
1339			 * tree is not mounted and only snapshots use this sb.
1340			 */
1341			err = nilfs_remount(s, &flags, data);
1342			if (err)
1343				goto failed_super;
1344		}
1345	}
1346
1347	if (sd.cno) {
1348		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1349		if (err)
1350			goto failed_super;
1351	} else {
1352		root_dentry = dget(s->s_root);
1353	}
1354
1355	if (!s_new)
1356		blkdev_put(sd.bdev, mode);
1357
1358	return root_dentry;
1359
1360 failed_super:
1361	deactivate_locked_super(s);
1362
1363 failed:
1364	if (!s_new)
1365		blkdev_put(sd.bdev, mode);
1366	return ERR_PTR(err);
1367}
1368
1369struct file_system_type nilfs_fs_type = {
1370	.owner    = THIS_MODULE,
1371	.name     = "nilfs2",
1372	.mount    = nilfs_mount,
1373	.kill_sb  = kill_block_super,
1374	.fs_flags = FS_REQUIRES_DEV,
1375};
1376MODULE_ALIAS_FS("nilfs2");
1377
1378static void nilfs_inode_init_once(void *obj)
1379{
1380	struct nilfs_inode_info *ii = obj;
1381
1382	INIT_LIST_HEAD(&ii->i_dirty);
1383#ifdef CONFIG_NILFS_XATTR
1384	init_rwsem(&ii->xattr_sem);
1385#endif
1386	address_space_init_once(&ii->i_btnode_cache);
1387	ii->i_bmap = &ii->i_bmap_data;
1388	inode_init_once(&ii->vfs_inode);
1389}
1390
1391static void nilfs_segbuf_init_once(void *obj)
1392{
1393	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1394}
1395
1396static void nilfs_destroy_cachep(void)
1397{
1398	/*
1399	 * Make sure all delayed rcu free inodes are flushed before we
1400	 * destroy cache.
1401	 */
1402	rcu_barrier();
1403
1404	if (nilfs_inode_cachep)
1405		kmem_cache_destroy(nilfs_inode_cachep);
1406	if (nilfs_transaction_cachep)
1407		kmem_cache_destroy(nilfs_transaction_cachep);
1408	if (nilfs_segbuf_cachep)
1409		kmem_cache_destroy(nilfs_segbuf_cachep);
1410	if (nilfs_btree_path_cache)
1411		kmem_cache_destroy(nilfs_btree_path_cache);
1412}
1413
1414static int __init nilfs_init_cachep(void)
1415{
1416	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1417			sizeof(struct nilfs_inode_info), 0,
1418			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1419	if (!nilfs_inode_cachep)
1420		goto fail;
1421
1422	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1423			sizeof(struct nilfs_transaction_info), 0,
1424			SLAB_RECLAIM_ACCOUNT, NULL);
1425	if (!nilfs_transaction_cachep)
1426		goto fail;
1427
1428	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1429			sizeof(struct nilfs_segment_buffer), 0,
1430			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1431	if (!nilfs_segbuf_cachep)
1432		goto fail;
1433
1434	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1435			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1436			0, 0, NULL);
1437	if (!nilfs_btree_path_cache)
1438		goto fail;
1439
1440	return 0;
1441
1442fail:
1443	nilfs_destroy_cachep();
1444	return -ENOMEM;
1445}
1446
1447static int __init init_nilfs_fs(void)
1448{
1449	int err;
1450
1451	err = nilfs_init_cachep();
1452	if (err)
1453		goto fail;
1454
1455	err = register_filesystem(&nilfs_fs_type);
1456	if (err)
1457		goto free_cachep;
1458
1459	printk(KERN_INFO "NILFS version 2 loaded\n");
1460	return 0;
1461
1462free_cachep:
1463	nilfs_destroy_cachep();
1464fail:
1465	return err;
1466}
1467
1468static void __exit exit_nilfs_fs(void)
1469{
1470	nilfs_destroy_cachep();
1471	unregister_filesystem(&nilfs_fs_type);
1472}
1473
1474module_init(init_nilfs_fs)
1475module_exit(exit_nilfs_fs)
v3.5.6
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  19 *
  20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21 */
  22/*
  23 *  linux/fs/ext2/super.c
  24 *
  25 * Copyright (C) 1992, 1993, 1994, 1995
  26 * Remy Card (card@masi.ibp.fr)
  27 * Laboratoire MASI - Institut Blaise Pascal
  28 * Universite Pierre et Marie Curie (Paris VI)
  29 *
  30 *  from
  31 *
  32 *  linux/fs/minix/inode.c
  33 *
  34 *  Copyright (C) 1991, 1992  Linus Torvalds
  35 *
  36 *  Big-endian to little-endian byte-swapping/bitmaps by
  37 *        David S. Miller (davem@caip.rutgers.edu), 1995
  38 */
  39
  40#include <linux/module.h>
  41#include <linux/string.h>
  42#include <linux/slab.h>
  43#include <linux/init.h>
  44#include <linux/blkdev.h>
  45#include <linux/parser.h>
  46#include <linux/crc32.h>
  47#include <linux/vfs.h>
  48#include <linux/writeback.h>
  49#include <linux/seq_file.h>
  50#include <linux/mount.h>
  51#include "nilfs.h"
  52#include "export.h"
  53#include "mdt.h"
  54#include "alloc.h"
  55#include "btree.h"
  56#include "btnode.h"
  57#include "page.h"
  58#include "cpfile.h"
  59#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  60#include "ifile.h"
  61#include "dat.h"
  62#include "segment.h"
  63#include "segbuf.h"
  64
  65MODULE_AUTHOR("NTT Corp.");
  66MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  67		   "(NILFS)");
  68MODULE_LICENSE("GPL");
  69
  70static struct kmem_cache *nilfs_inode_cachep;
  71struct kmem_cache *nilfs_transaction_cachep;
  72struct kmem_cache *nilfs_segbuf_cachep;
  73struct kmem_cache *nilfs_btree_path_cache;
  74
  75static int nilfs_setup_super(struct super_block *sb, int is_mount);
  76static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  77
  78static void nilfs_set_error(struct super_block *sb)
  79{
  80	struct the_nilfs *nilfs = sb->s_fs_info;
  81	struct nilfs_super_block **sbp;
  82
  83	down_write(&nilfs->ns_sem);
  84	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  85		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  86		sbp = nilfs_prepare_super(sb, 0);
  87		if (likely(sbp)) {
  88			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  89			if (sbp[1])
  90				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  91			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
  92		}
  93	}
  94	up_write(&nilfs->ns_sem);
  95}
  96
  97/**
  98 * nilfs_error() - report failure condition on a filesystem
  99 *
 100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
 101 * reporting an error message.  It should be called when NILFS detects
 102 * incoherences or defects of meta data on disk.  As for sustainable
 103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
 104 * function should be used instead.
 105 *
 106 * The segment constructor must not call this function because it can
 107 * kill itself.
 108 */
 109void nilfs_error(struct super_block *sb, const char *function,
 110		 const char *fmt, ...)
 111{
 112	struct the_nilfs *nilfs = sb->s_fs_info;
 113	struct va_format vaf;
 114	va_list args;
 115
 116	va_start(args, fmt);
 117
 118	vaf.fmt = fmt;
 119	vaf.va = &args;
 120
 121	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 122	       sb->s_id, function, &vaf);
 123
 124	va_end(args);
 125
 126	if (!(sb->s_flags & MS_RDONLY)) {
 127		nilfs_set_error(sb);
 128
 129		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 130			printk(KERN_CRIT "Remounting filesystem read-only\n");
 131			sb->s_flags |= MS_RDONLY;
 132		}
 133	}
 134
 135	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 136		panic("NILFS (device %s): panic forced after error\n",
 137		      sb->s_id);
 138}
 139
 140void nilfs_warning(struct super_block *sb, const char *function,
 141		   const char *fmt, ...)
 142{
 143	struct va_format vaf;
 144	va_list args;
 145
 146	va_start(args, fmt);
 147
 148	vaf.fmt = fmt;
 149	vaf.va = &args;
 150
 151	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
 152	       sb->s_id, function, &vaf);
 153
 154	va_end(args);
 155}
 156
 157
 158struct inode *nilfs_alloc_inode(struct super_block *sb)
 159{
 160	struct nilfs_inode_info *ii;
 161
 162	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 163	if (!ii)
 164		return NULL;
 165	ii->i_bh = NULL;
 166	ii->i_state = 0;
 167	ii->i_cno = 0;
 168	ii->vfs_inode.i_version = 1;
 169	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi);
 170	return &ii->vfs_inode;
 171}
 172
 173static void nilfs_i_callback(struct rcu_head *head)
 174{
 175	struct inode *inode = container_of(head, struct inode, i_rcu);
 176	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
 177
 178	if (mdi) {
 179		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
 180		kfree(mdi);
 181	}
 182	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 183}
 184
 185void nilfs_destroy_inode(struct inode *inode)
 186{
 187	call_rcu(&inode->i_rcu, nilfs_i_callback);
 188}
 189
 190static int nilfs_sync_super(struct super_block *sb, int flag)
 191{
 192	struct the_nilfs *nilfs = sb->s_fs_info;
 193	int err;
 194
 195 retry:
 196	set_buffer_dirty(nilfs->ns_sbh[0]);
 197	if (nilfs_test_opt(nilfs, BARRIER)) {
 198		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 199					  WRITE_SYNC | WRITE_FLUSH_FUA);
 200	} else {
 201		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 202	}
 203
 204	if (unlikely(err)) {
 205		printk(KERN_ERR
 206		       "NILFS: unable to write superblock (err=%d)\n", err);
 207		if (err == -EIO && nilfs->ns_sbh[1]) {
 208			/*
 209			 * sbp[0] points to newer log than sbp[1],
 210			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 211			 */
 212			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 213			       nilfs->ns_sbsize);
 214			nilfs_fall_back_super_block(nilfs);
 215			goto retry;
 216		}
 217	} else {
 218		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 219
 220		nilfs->ns_sbwcount++;
 221
 222		/*
 223		 * The latest segment becomes trailable from the position
 224		 * written in superblock.
 225		 */
 226		clear_nilfs_discontinued(nilfs);
 227
 228		/* update GC protection for recent segments */
 229		if (nilfs->ns_sbh[1]) {
 230			if (flag == NILFS_SB_COMMIT_ALL) {
 231				set_buffer_dirty(nilfs->ns_sbh[1]);
 232				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 233					goto out;
 234			}
 235			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 236			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 237				sbp = nilfs->ns_sbp[1];
 238		}
 239
 240		spin_lock(&nilfs->ns_last_segment_lock);
 241		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 242		spin_unlock(&nilfs->ns_last_segment_lock);
 243	}
 244 out:
 245	return err;
 246}
 247
 248void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 249			  struct the_nilfs *nilfs)
 250{
 251	sector_t nfreeblocks;
 252
 253	/* nilfs->ns_sem must be locked by the caller. */
 254	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 255	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 256
 257	spin_lock(&nilfs->ns_last_segment_lock);
 258	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 259	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 260	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 261	spin_unlock(&nilfs->ns_last_segment_lock);
 262}
 263
 264struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 265					       int flip)
 266{
 267	struct the_nilfs *nilfs = sb->s_fs_info;
 268	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 269
 270	/* nilfs->ns_sem must be locked by the caller. */
 271	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 272		if (sbp[1] &&
 273		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 274			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 275		} else {
 276			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
 277			       sb->s_id);
 278			return NULL;
 279		}
 280	} else if (sbp[1] &&
 281		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 282			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 283	}
 284
 285	if (flip && sbp[1])
 286		nilfs_swap_super_block(nilfs);
 287
 288	return sbp;
 289}
 290
 291int nilfs_commit_super(struct super_block *sb, int flag)
 292{
 293	struct the_nilfs *nilfs = sb->s_fs_info;
 294	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 295	time_t t;
 296
 297	/* nilfs->ns_sem must be locked by the caller. */
 298	t = get_seconds();
 299	nilfs->ns_sbwtime = t;
 300	sbp[0]->s_wtime = cpu_to_le64(t);
 301	sbp[0]->s_sum = 0;
 302	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 303					     (unsigned char *)sbp[0],
 304					     nilfs->ns_sbsize));
 305	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 306		sbp[1]->s_wtime = sbp[0]->s_wtime;
 307		sbp[1]->s_sum = 0;
 308		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 309					    (unsigned char *)sbp[1],
 310					    nilfs->ns_sbsize));
 311	}
 312	clear_nilfs_sb_dirty(nilfs);
 313	return nilfs_sync_super(sb, flag);
 314}
 315
 316/**
 317 * nilfs_cleanup_super() - write filesystem state for cleanup
 318 * @sb: super block instance to be unmounted or degraded to read-only
 319 *
 320 * This function restores state flags in the on-disk super block.
 321 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 322 * filesystem was not clean previously.
 323 */
 324int nilfs_cleanup_super(struct super_block *sb)
 325{
 326	struct the_nilfs *nilfs = sb->s_fs_info;
 327	struct nilfs_super_block **sbp;
 328	int flag = NILFS_SB_COMMIT;
 329	int ret = -EIO;
 330
 331	sbp = nilfs_prepare_super(sb, 0);
 332	if (sbp) {
 333		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 334		nilfs_set_log_cursor(sbp[0], nilfs);
 335		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 336			/*
 337			 * make the "clean" flag also to the opposite
 338			 * super block if both super blocks point to
 339			 * the same checkpoint.
 340			 */
 341			sbp[1]->s_state = sbp[0]->s_state;
 342			flag = NILFS_SB_COMMIT_ALL;
 343		}
 344		ret = nilfs_commit_super(sb, flag);
 345	}
 346	return ret;
 347}
 348
 349/**
 350 * nilfs_move_2nd_super - relocate secondary super block
 351 * @sb: super block instance
 352 * @sb2off: new offset of the secondary super block (in bytes)
 353 */
 354static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 355{
 356	struct the_nilfs *nilfs = sb->s_fs_info;
 357	struct buffer_head *nsbh;
 358	struct nilfs_super_block *nsbp;
 359	sector_t blocknr, newblocknr;
 360	unsigned long offset;
 361	int sb2i = -1;  /* array index of the secondary superblock */
 362	int ret = 0;
 363
 364	/* nilfs->ns_sem must be locked by the caller. */
 365	if (nilfs->ns_sbh[1] &&
 366	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 367		sb2i = 1;
 368		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 369	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 370		sb2i = 0;
 371		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 372	}
 373	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 374		goto out;  /* super block location is unchanged */
 375
 376	/* Get new super block buffer */
 377	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 378	offset = sb2off & (nilfs->ns_blocksize - 1);
 379	nsbh = sb_getblk(sb, newblocknr);
 380	if (!nsbh) {
 381		printk(KERN_WARNING
 382		       "NILFS warning: unable to move secondary superblock "
 383		       "to block %llu\n", (unsigned long long)newblocknr);
 384		ret = -EIO;
 385		goto out;
 386	}
 387	nsbp = (void *)nsbh->b_data + offset;
 388	memset(nsbp, 0, nilfs->ns_blocksize);
 389
 390	if (sb2i >= 0) {
 391		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 392		brelse(nilfs->ns_sbh[sb2i]);
 393		nilfs->ns_sbh[sb2i] = nsbh;
 394		nilfs->ns_sbp[sb2i] = nsbp;
 395	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 396		/* secondary super block will be restored to index 1 */
 397		nilfs->ns_sbh[1] = nsbh;
 398		nilfs->ns_sbp[1] = nsbp;
 399	} else {
 400		brelse(nsbh);
 401	}
 402out:
 403	return ret;
 404}
 405
 406/**
 407 * nilfs_resize_fs - resize the filesystem
 408 * @sb: super block instance
 409 * @newsize: new size of the filesystem (in bytes)
 410 */
 411int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 412{
 413	struct the_nilfs *nilfs = sb->s_fs_info;
 414	struct nilfs_super_block **sbp;
 415	__u64 devsize, newnsegs;
 416	loff_t sb2off;
 417	int ret;
 418
 419	ret = -ERANGE;
 420	devsize = i_size_read(sb->s_bdev->bd_inode);
 421	if (newsize > devsize)
 422		goto out;
 423
 424	/*
 425	 * Write lock is required to protect some functions depending
 426	 * on the number of segments, the number of reserved segments,
 427	 * and so forth.
 428	 */
 429	down_write(&nilfs->ns_segctor_sem);
 430
 431	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 432	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 433	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 434
 435	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 436	up_write(&nilfs->ns_segctor_sem);
 437	if (ret < 0)
 438		goto out;
 439
 440	ret = nilfs_construct_segment(sb);
 441	if (ret < 0)
 442		goto out;
 443
 444	down_write(&nilfs->ns_sem);
 445	nilfs_move_2nd_super(sb, sb2off);
 446	ret = -EIO;
 447	sbp = nilfs_prepare_super(sb, 0);
 448	if (likely(sbp)) {
 449		nilfs_set_log_cursor(sbp[0], nilfs);
 450		/*
 451		 * Drop NILFS_RESIZE_FS flag for compatibility with
 452		 * mount-time resize which may be implemented in a
 453		 * future release.
 454		 */
 455		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 456					      ~NILFS_RESIZE_FS);
 457		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 458		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 459		if (sbp[1])
 460			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 461		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 462	}
 463	up_write(&nilfs->ns_sem);
 464
 465	/*
 466	 * Reset the range of allocatable segments last.  This order
 467	 * is important in the case of expansion because the secondary
 468	 * superblock must be protected from log write until migration
 469	 * completes.
 470	 */
 471	if (!ret)
 472		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 473out:
 474	return ret;
 475}
 476
 477static void nilfs_put_super(struct super_block *sb)
 478{
 479	struct the_nilfs *nilfs = sb->s_fs_info;
 480
 481	nilfs_detach_log_writer(sb);
 482
 483	if (!(sb->s_flags & MS_RDONLY)) {
 484		down_write(&nilfs->ns_sem);
 485		nilfs_cleanup_super(sb);
 486		up_write(&nilfs->ns_sem);
 487	}
 488
 489	iput(nilfs->ns_sufile);
 490	iput(nilfs->ns_cpfile);
 491	iput(nilfs->ns_dat);
 492
 493	destroy_nilfs(nilfs);
 494	sb->s_fs_info = NULL;
 495}
 496
 497static int nilfs_sync_fs(struct super_block *sb, int wait)
 498{
 499	struct the_nilfs *nilfs = sb->s_fs_info;
 500	struct nilfs_super_block **sbp;
 501	int err = 0;
 502
 503	/* This function is called when super block should be written back */
 504	if (wait)
 505		err = nilfs_construct_segment(sb);
 506
 507	down_write(&nilfs->ns_sem);
 508	if (nilfs_sb_dirty(nilfs)) {
 509		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 510		if (likely(sbp)) {
 511			nilfs_set_log_cursor(sbp[0], nilfs);
 512			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 513		}
 514	}
 515	up_write(&nilfs->ns_sem);
 516
 517	return err;
 518}
 519
 520int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 521			    struct nilfs_root **rootp)
 522{
 523	struct the_nilfs *nilfs = sb->s_fs_info;
 524	struct nilfs_root *root;
 525	struct nilfs_checkpoint *raw_cp;
 526	struct buffer_head *bh_cp;
 527	int err = -ENOMEM;
 528
 529	root = nilfs_find_or_create_root(
 530		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 531	if (!root)
 532		return err;
 533
 534	if (root->ifile)
 535		goto reuse; /* already attached checkpoint */
 536
 537	down_read(&nilfs->ns_segctor_sem);
 538	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 539					  &bh_cp);
 540	up_read(&nilfs->ns_segctor_sem);
 541	if (unlikely(err)) {
 542		if (err == -ENOENT || err == -EINVAL) {
 543			printk(KERN_ERR
 544			       "NILFS: Invalid checkpoint "
 545			       "(checkpoint number=%llu)\n",
 546			       (unsigned long long)cno);
 547			err = -EINVAL;
 548		}
 549		goto failed;
 550	}
 551
 552	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 553			       &raw_cp->cp_ifile_inode, &root->ifile);
 554	if (err)
 555		goto failed_bh;
 556
 557	atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
 558	atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
 
 
 559
 560	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 561
 562 reuse:
 563	*rootp = root;
 564	return 0;
 565
 566 failed_bh:
 567	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 568 failed:
 569	nilfs_put_root(root);
 570
 571	return err;
 572}
 573
 574static int nilfs_freeze(struct super_block *sb)
 575{
 576	struct the_nilfs *nilfs = sb->s_fs_info;
 577	int err;
 578
 579	if (sb->s_flags & MS_RDONLY)
 580		return 0;
 581
 582	/* Mark super block clean */
 583	down_write(&nilfs->ns_sem);
 584	err = nilfs_cleanup_super(sb);
 585	up_write(&nilfs->ns_sem);
 586	return err;
 587}
 588
 589static int nilfs_unfreeze(struct super_block *sb)
 590{
 591	struct the_nilfs *nilfs = sb->s_fs_info;
 592
 593	if (sb->s_flags & MS_RDONLY)
 594		return 0;
 595
 596	down_write(&nilfs->ns_sem);
 597	nilfs_setup_super(sb, false);
 598	up_write(&nilfs->ns_sem);
 599	return 0;
 600}
 601
 602static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 603{
 604	struct super_block *sb = dentry->d_sb;
 605	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
 606	struct the_nilfs *nilfs = root->nilfs;
 607	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 608	unsigned long long blocks;
 609	unsigned long overhead;
 610	unsigned long nrsvblocks;
 611	sector_t nfreeblocks;
 
 612	int err;
 613
 614	/*
 615	 * Compute all of the segment blocks
 616	 *
 617	 * The blocks before first segment and after last segment
 618	 * are excluded.
 619	 */
 620	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 621		- nilfs->ns_first_data_block;
 622	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 623
 624	/*
 625	 * Compute the overhead
 626	 *
 627	 * When distributing meta data blocks outside segment structure,
 628	 * We must count them as the overhead.
 629	 */
 630	overhead = 0;
 631
 632	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 633	if (unlikely(err))
 634		return err;
 635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	buf->f_type = NILFS_SUPER_MAGIC;
 637	buf->f_bsize = sb->s_blocksize;
 638	buf->f_blocks = blocks - overhead;
 639	buf->f_bfree = nfreeblocks;
 640	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 641		(buf->f_bfree - nrsvblocks) : 0;
 642	buf->f_files = atomic_read(&root->inodes_count);
 643	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
 644	buf->f_namelen = NILFS_NAME_LEN;
 645	buf->f_fsid.val[0] = (u32)id;
 646	buf->f_fsid.val[1] = (u32)(id >> 32);
 647
 648	return 0;
 649}
 650
 651static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 652{
 653	struct super_block *sb = dentry->d_sb;
 654	struct the_nilfs *nilfs = sb->s_fs_info;
 655	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
 656
 657	if (!nilfs_test_opt(nilfs, BARRIER))
 658		seq_puts(seq, ",nobarrier");
 659	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 660		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 661	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 662		seq_puts(seq, ",errors=panic");
 663	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 664		seq_puts(seq, ",errors=continue");
 665	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 666		seq_puts(seq, ",order=strict");
 667	if (nilfs_test_opt(nilfs, NORECOVERY))
 668		seq_puts(seq, ",norecovery");
 669	if (nilfs_test_opt(nilfs, DISCARD))
 670		seq_puts(seq, ",discard");
 671
 672	return 0;
 673}
 674
 675static const struct super_operations nilfs_sops = {
 676	.alloc_inode    = nilfs_alloc_inode,
 677	.destroy_inode  = nilfs_destroy_inode,
 678	.dirty_inode    = nilfs_dirty_inode,
 679	/* .write_inode    = nilfs_write_inode, */
 680	/* .put_inode      = nilfs_put_inode, */
 681	/* .drop_inode	  = nilfs_drop_inode, */
 682	.evict_inode    = nilfs_evict_inode,
 683	.put_super      = nilfs_put_super,
 684	/* .write_super    = nilfs_write_super, */
 685	.sync_fs        = nilfs_sync_fs,
 686	.freeze_fs	= nilfs_freeze,
 687	.unfreeze_fs	= nilfs_unfreeze,
 688	/* .write_super_lockfs */
 689	/* .unlockfs */
 690	.statfs         = nilfs_statfs,
 691	.remount_fs     = nilfs_remount,
 692	/* .umount_begin */
 693	.show_options = nilfs_show_options
 694};
 695
 696enum {
 697	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 698	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 699	Opt_discard, Opt_nodiscard, Opt_err,
 700};
 701
 702static match_table_t tokens = {
 703	{Opt_err_cont, "errors=continue"},
 704	{Opt_err_panic, "errors=panic"},
 705	{Opt_err_ro, "errors=remount-ro"},
 706	{Opt_barrier, "barrier"},
 707	{Opt_nobarrier, "nobarrier"},
 708	{Opt_snapshot, "cp=%u"},
 709	{Opt_order, "order=%s"},
 710	{Opt_norecovery, "norecovery"},
 711	{Opt_discard, "discard"},
 712	{Opt_nodiscard, "nodiscard"},
 713	{Opt_err, NULL}
 714};
 715
 716static int parse_options(char *options, struct super_block *sb, int is_remount)
 717{
 718	struct the_nilfs *nilfs = sb->s_fs_info;
 719	char *p;
 720	substring_t args[MAX_OPT_ARGS];
 721
 722	if (!options)
 723		return 1;
 724
 725	while ((p = strsep(&options, ",")) != NULL) {
 726		int token;
 727		if (!*p)
 728			continue;
 729
 730		token = match_token(p, tokens, args);
 731		switch (token) {
 732		case Opt_barrier:
 733			nilfs_set_opt(nilfs, BARRIER);
 734			break;
 735		case Opt_nobarrier:
 736			nilfs_clear_opt(nilfs, BARRIER);
 737			break;
 738		case Opt_order:
 739			if (strcmp(args[0].from, "relaxed") == 0)
 740				/* Ordered data semantics */
 741				nilfs_clear_opt(nilfs, STRICT_ORDER);
 742			else if (strcmp(args[0].from, "strict") == 0)
 743				/* Strict in-order semantics */
 744				nilfs_set_opt(nilfs, STRICT_ORDER);
 745			else
 746				return 0;
 747			break;
 748		case Opt_err_panic:
 749			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 750			break;
 751		case Opt_err_ro:
 752			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 753			break;
 754		case Opt_err_cont:
 755			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 756			break;
 757		case Opt_snapshot:
 758			if (is_remount) {
 759				printk(KERN_ERR
 760				       "NILFS: \"%s\" option is invalid "
 761				       "for remount.\n", p);
 762				return 0;
 763			}
 764			break;
 765		case Opt_norecovery:
 766			nilfs_set_opt(nilfs, NORECOVERY);
 767			break;
 768		case Opt_discard:
 769			nilfs_set_opt(nilfs, DISCARD);
 770			break;
 771		case Opt_nodiscard:
 772			nilfs_clear_opt(nilfs, DISCARD);
 773			break;
 774		default:
 775			printk(KERN_ERR
 776			       "NILFS: Unrecognized mount option \"%s\"\n", p);
 777			return 0;
 778		}
 779	}
 780	return 1;
 781}
 782
 783static inline void
 784nilfs_set_default_options(struct super_block *sb,
 785			  struct nilfs_super_block *sbp)
 786{
 787	struct the_nilfs *nilfs = sb->s_fs_info;
 788
 789	nilfs->ns_mount_opt =
 790		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 791}
 792
 793static int nilfs_setup_super(struct super_block *sb, int is_mount)
 794{
 795	struct the_nilfs *nilfs = sb->s_fs_info;
 796	struct nilfs_super_block **sbp;
 797	int max_mnt_count;
 798	int mnt_count;
 799
 800	/* nilfs->ns_sem must be locked by the caller. */
 801	sbp = nilfs_prepare_super(sb, 0);
 802	if (!sbp)
 803		return -EIO;
 804
 805	if (!is_mount)
 806		goto skip_mount_setup;
 807
 808	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 809	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 810
 811	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 812		printk(KERN_WARNING
 813		       "NILFS warning: mounting fs with errors\n");
 814#if 0
 815	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 816		printk(KERN_WARNING
 817		       "NILFS warning: maximal mount count reached\n");
 818#endif
 819	}
 820	if (!max_mnt_count)
 821		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 822
 823	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 824	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 825
 826skip_mount_setup:
 827	sbp[0]->s_state =
 828		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 829	/* synchronize sbp[1] with sbp[0] */
 830	if (sbp[1])
 831		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 832	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 833}
 834
 835struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 836						 u64 pos, int blocksize,
 837						 struct buffer_head **pbh)
 838{
 839	unsigned long long sb_index = pos;
 840	unsigned long offset;
 841
 842	offset = do_div(sb_index, blocksize);
 843	*pbh = sb_bread(sb, sb_index);
 844	if (!*pbh)
 845		return NULL;
 846	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 847}
 848
 849int nilfs_store_magic_and_option(struct super_block *sb,
 850				 struct nilfs_super_block *sbp,
 851				 char *data)
 852{
 853	struct the_nilfs *nilfs = sb->s_fs_info;
 854
 855	sb->s_magic = le16_to_cpu(sbp->s_magic);
 856
 857	/* FS independent flags */
 858#ifdef NILFS_ATIME_DISABLE
 859	sb->s_flags |= MS_NOATIME;
 860#endif
 861
 862	nilfs_set_default_options(sb, sbp);
 863
 864	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 865	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 866	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 867	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 868
 869	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
 870}
 871
 872int nilfs_check_feature_compatibility(struct super_block *sb,
 873				      struct nilfs_super_block *sbp)
 874{
 875	__u64 features;
 876
 877	features = le64_to_cpu(sbp->s_feature_incompat) &
 878		~NILFS_FEATURE_INCOMPAT_SUPP;
 879	if (features) {
 880		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
 881		       "optional features (%llx)\n",
 882		       (unsigned long long)features);
 883		return -EINVAL;
 884	}
 885	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 886		~NILFS_FEATURE_COMPAT_RO_SUPP;
 887	if (!(sb->s_flags & MS_RDONLY) && features) {
 888		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
 889		       "unsupported optional features (%llx)\n",
 890		       (unsigned long long)features);
 891		return -EINVAL;
 892	}
 893	return 0;
 894}
 895
 896static int nilfs_get_root_dentry(struct super_block *sb,
 897				 struct nilfs_root *root,
 898				 struct dentry **root_dentry)
 899{
 900	struct inode *inode;
 901	struct dentry *dentry;
 902	int ret = 0;
 903
 904	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 905	if (IS_ERR(inode)) {
 906		printk(KERN_ERR "NILFS: get root inode failed\n");
 907		ret = PTR_ERR(inode);
 908		goto out;
 909	}
 910	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 911		iput(inode);
 912		printk(KERN_ERR "NILFS: corrupt root inode.\n");
 913		ret = -EINVAL;
 914		goto out;
 915	}
 916
 917	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 918		dentry = d_find_alias(inode);
 919		if (!dentry) {
 920			dentry = d_make_root(inode);
 921			if (!dentry) {
 922				ret = -ENOMEM;
 923				goto failed_dentry;
 924			}
 925		} else {
 926			iput(inode);
 927		}
 928	} else {
 929		dentry = d_obtain_alias(inode);
 930		if (IS_ERR(dentry)) {
 931			ret = PTR_ERR(dentry);
 932			goto failed_dentry;
 933		}
 934	}
 935	*root_dentry = dentry;
 936 out:
 937	return ret;
 938
 939 failed_dentry:
 940	printk(KERN_ERR "NILFS: get root dentry failed\n");
 941	goto out;
 942}
 943
 944static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 945				 struct dentry **root_dentry)
 946{
 947	struct the_nilfs *nilfs = s->s_fs_info;
 948	struct nilfs_root *root;
 949	int ret;
 950
 951	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 952
 953	down_read(&nilfs->ns_segctor_sem);
 954	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 955	up_read(&nilfs->ns_segctor_sem);
 956	if (ret < 0) {
 957		ret = (ret == -ENOENT) ? -EINVAL : ret;
 958		goto out;
 959	} else if (!ret) {
 960		printk(KERN_ERR "NILFS: The specified checkpoint is "
 961		       "not a snapshot (checkpoint number=%llu).\n",
 962		       (unsigned long long)cno);
 963		ret = -EINVAL;
 964		goto out;
 965	}
 966
 967	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 968	if (ret) {
 969		printk(KERN_ERR "NILFS: error loading snapshot "
 970		       "(checkpoint number=%llu).\n",
 971	       (unsigned long long)cno);
 972		goto out;
 973	}
 974	ret = nilfs_get_root_dentry(s, root, root_dentry);
 975	nilfs_put_root(root);
 976 out:
 977	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 978	return ret;
 979}
 980
 981static int nilfs_tree_was_touched(struct dentry *root_dentry)
 982{
 983	return root_dentry->d_count > 1;
 984}
 985
 986/**
 987 * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint
 988 * @root_dentry: root dentry of the tree to be shrunk
 989 *
 990 * This function returns true if the tree was in-use.
 991 */
 992static int nilfs_try_to_shrink_tree(struct dentry *root_dentry)
 993{
 994	if (have_submounts(root_dentry))
 995		return true;
 996	shrink_dcache_parent(root_dentry);
 997	return nilfs_tree_was_touched(root_dentry);
 998}
 999
1000int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1001{
1002	struct the_nilfs *nilfs = sb->s_fs_info;
1003	struct nilfs_root *root;
1004	struct inode *inode;
1005	struct dentry *dentry;
1006	int ret;
1007
1008	if (cno < 0 || cno > nilfs->ns_cno)
1009		return false;
1010
1011	if (cno >= nilfs_last_cno(nilfs))
1012		return true;	/* protect recent checkpoints */
1013
1014	ret = false;
1015	root = nilfs_lookup_root(nilfs, cno);
1016	if (root) {
1017		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1018		if (inode) {
1019			dentry = d_find_alias(inode);
1020			if (dentry) {
1021				if (nilfs_tree_was_touched(dentry))
1022					ret = nilfs_try_to_shrink_tree(dentry);
1023				dput(dentry);
1024			}
1025			iput(inode);
1026		}
1027		nilfs_put_root(root);
1028	}
1029	return ret;
1030}
1031
1032/**
1033 * nilfs_fill_super() - initialize a super block instance
1034 * @sb: super_block
1035 * @data: mount options
1036 * @silent: silent mode flag
1037 *
1038 * This function is called exclusively by nilfs->ns_mount_mutex.
1039 * So, the recovery process is protected from other simultaneous mounts.
1040 */
1041static int
1042nilfs_fill_super(struct super_block *sb, void *data, int silent)
1043{
1044	struct the_nilfs *nilfs;
1045	struct nilfs_root *fsroot;
1046	struct backing_dev_info *bdi;
1047	__u64 cno;
1048	int err;
1049
1050	nilfs = alloc_nilfs(sb->s_bdev);
1051	if (!nilfs)
1052		return -ENOMEM;
1053
1054	sb->s_fs_info = nilfs;
1055
1056	err = init_nilfs(nilfs, sb, (char *)data);
1057	if (err)
1058		goto failed_nilfs;
1059
1060	sb->s_op = &nilfs_sops;
1061	sb->s_export_op = &nilfs_export_ops;
1062	sb->s_root = NULL;
1063	sb->s_time_gran = 1;
1064	sb->s_max_links = NILFS_LINK_MAX;
1065
1066	bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1067	sb->s_bdi = bdi ? : &default_backing_dev_info;
1068
1069	err = load_nilfs(nilfs, sb);
1070	if (err)
1071		goto failed_nilfs;
1072
1073	cno = nilfs_last_cno(nilfs);
1074	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1075	if (err) {
1076		printk(KERN_ERR "NILFS: error loading last checkpoint "
1077		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
1078		goto failed_unload;
1079	}
1080
1081	if (!(sb->s_flags & MS_RDONLY)) {
1082		err = nilfs_attach_log_writer(sb, fsroot);
1083		if (err)
1084			goto failed_checkpoint;
1085	}
1086
1087	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1088	if (err)
1089		goto failed_segctor;
1090
1091	nilfs_put_root(fsroot);
1092
1093	if (!(sb->s_flags & MS_RDONLY)) {
1094		down_write(&nilfs->ns_sem);
1095		nilfs_setup_super(sb, true);
1096		up_write(&nilfs->ns_sem);
1097	}
1098
1099	return 0;
1100
1101 failed_segctor:
1102	nilfs_detach_log_writer(sb);
1103
1104 failed_checkpoint:
1105	nilfs_put_root(fsroot);
1106
1107 failed_unload:
1108	iput(nilfs->ns_sufile);
1109	iput(nilfs->ns_cpfile);
1110	iput(nilfs->ns_dat);
1111
1112 failed_nilfs:
1113	destroy_nilfs(nilfs);
1114	return err;
1115}
1116
1117static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1118{
1119	struct the_nilfs *nilfs = sb->s_fs_info;
1120	unsigned long old_sb_flags;
1121	unsigned long old_mount_opt;
1122	int err;
1123
 
1124	old_sb_flags = sb->s_flags;
1125	old_mount_opt = nilfs->ns_mount_opt;
1126
1127	if (!parse_options(data, sb, 1)) {
1128		err = -EINVAL;
1129		goto restore_opts;
1130	}
1131	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1132
1133	err = -EINVAL;
1134
1135	if (!nilfs_valid_fs(nilfs)) {
1136		printk(KERN_WARNING "NILFS (device %s): couldn't "
1137		       "remount because the filesystem is in an "
1138		       "incomplete recovery state.\n", sb->s_id);
1139		goto restore_opts;
1140	}
1141
1142	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1143		goto out;
1144	if (*flags & MS_RDONLY) {
1145		/* Shutting down log writer */
1146		nilfs_detach_log_writer(sb);
1147		sb->s_flags |= MS_RDONLY;
1148
1149		/*
1150		 * Remounting a valid RW partition RDONLY, so set
1151		 * the RDONLY flag and then mark the partition as valid again.
1152		 */
1153		down_write(&nilfs->ns_sem);
1154		nilfs_cleanup_super(sb);
1155		up_write(&nilfs->ns_sem);
1156	} else {
1157		__u64 features;
1158		struct nilfs_root *root;
1159
1160		/*
1161		 * Mounting a RDONLY partition read-write, so reread and
1162		 * store the current valid flag.  (It may have been changed
1163		 * by fsck since we originally mounted the partition.)
1164		 */
1165		down_read(&nilfs->ns_sem);
1166		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1167			~NILFS_FEATURE_COMPAT_RO_SUPP;
1168		up_read(&nilfs->ns_sem);
1169		if (features) {
1170			printk(KERN_WARNING "NILFS (device %s): couldn't "
1171			       "remount RDWR because of unsupported optional "
1172			       "features (%llx)\n",
1173			       sb->s_id, (unsigned long long)features);
1174			err = -EROFS;
1175			goto restore_opts;
1176		}
1177
1178		sb->s_flags &= ~MS_RDONLY;
1179
1180		root = NILFS_I(sb->s_root->d_inode)->i_root;
1181		err = nilfs_attach_log_writer(sb, root);
1182		if (err)
1183			goto restore_opts;
1184
1185		down_write(&nilfs->ns_sem);
1186		nilfs_setup_super(sb, true);
1187		up_write(&nilfs->ns_sem);
1188	}
1189 out:
1190	return 0;
1191
1192 restore_opts:
1193	sb->s_flags = old_sb_flags;
1194	nilfs->ns_mount_opt = old_mount_opt;
1195	return err;
1196}
1197
1198struct nilfs_super_data {
1199	struct block_device *bdev;
1200	__u64 cno;
1201	int flags;
1202};
1203
1204/**
1205 * nilfs_identify - pre-read mount options needed to identify mount instance
1206 * @data: mount options
1207 * @sd: nilfs_super_data
1208 */
1209static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1210{
1211	char *p, *options = data;
1212	substring_t args[MAX_OPT_ARGS];
1213	int token;
1214	int ret = 0;
1215
1216	do {
1217		p = strsep(&options, ",");
1218		if (p != NULL && *p) {
1219			token = match_token(p, tokens, args);
1220			if (token == Opt_snapshot) {
1221				if (!(sd->flags & MS_RDONLY)) {
1222					ret++;
1223				} else {
1224					sd->cno = simple_strtoull(args[0].from,
1225								  NULL, 0);
1226					/*
1227					 * No need to see the end pointer;
1228					 * match_token() has done syntax
1229					 * checking.
1230					 */
1231					if (sd->cno == 0)
1232						ret++;
1233				}
1234			}
1235			if (ret)
1236				printk(KERN_ERR
1237				       "NILFS: invalid mount option: %s\n", p);
1238		}
1239		if (!options)
1240			break;
1241		BUG_ON(options == data);
1242		*(options - 1) = ',';
1243	} while (!ret);
1244	return ret;
1245}
1246
1247static int nilfs_set_bdev_super(struct super_block *s, void *data)
1248{
1249	s->s_bdev = data;
1250	s->s_dev = s->s_bdev->bd_dev;
1251	return 0;
1252}
1253
1254static int nilfs_test_bdev_super(struct super_block *s, void *data)
1255{
1256	return (void *)s->s_bdev == data;
1257}
1258
1259static struct dentry *
1260nilfs_mount(struct file_system_type *fs_type, int flags,
1261	     const char *dev_name, void *data)
1262{
1263	struct nilfs_super_data sd;
1264	struct super_block *s;
1265	fmode_t mode = FMODE_READ | FMODE_EXCL;
1266	struct dentry *root_dentry;
1267	int err, s_new = false;
1268
1269	if (!(flags & MS_RDONLY))
1270		mode |= FMODE_WRITE;
1271
1272	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1273	if (IS_ERR(sd.bdev))
1274		return ERR_CAST(sd.bdev);
1275
1276	sd.cno = 0;
1277	sd.flags = flags;
1278	if (nilfs_identify((char *)data, &sd)) {
1279		err = -EINVAL;
1280		goto failed;
1281	}
1282
1283	/*
1284	 * once the super is inserted into the list by sget, s_umount
1285	 * will protect the lockfs code from trying to start a snapshot
1286	 * while we are mounting
1287	 */
1288	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1289	if (sd.bdev->bd_fsfreeze_count > 0) {
1290		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1291		err = -EBUSY;
1292		goto failed;
1293	}
1294	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev);
 
1295	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1296	if (IS_ERR(s)) {
1297		err = PTR_ERR(s);
1298		goto failed;
1299	}
1300
1301	if (!s->s_root) {
1302		char b[BDEVNAME_SIZE];
1303
1304		s_new = true;
1305
1306		/* New superblock instance created */
1307		s->s_flags = flags;
1308		s->s_mode = mode;
1309		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1310		sb_set_blocksize(s, block_size(sd.bdev));
1311
1312		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1313		if (err)
1314			goto failed_super;
1315
1316		s->s_flags |= MS_ACTIVE;
1317	} else if (!sd.cno) {
1318		int busy = false;
1319
1320		if (nilfs_tree_was_touched(s->s_root)) {
1321			busy = nilfs_try_to_shrink_tree(s->s_root);
1322			if (busy && (flags ^ s->s_flags) & MS_RDONLY) {
1323				printk(KERN_ERR "NILFS: the device already "
1324				       "has a %s mount.\n",
1325				       (s->s_flags & MS_RDONLY) ?
1326				       "read-only" : "read/write");
1327				err = -EBUSY;
1328				goto failed_super;
1329			}
1330		}
1331		if (!busy) {
1332			/*
1333			 * Try remount to setup mount states if the current
1334			 * tree is not mounted and only snapshots use this sb.
1335			 */
1336			err = nilfs_remount(s, &flags, data);
1337			if (err)
1338				goto failed_super;
1339		}
1340	}
1341
1342	if (sd.cno) {
1343		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1344		if (err)
1345			goto failed_super;
1346	} else {
1347		root_dentry = dget(s->s_root);
1348	}
1349
1350	if (!s_new)
1351		blkdev_put(sd.bdev, mode);
1352
1353	return root_dentry;
1354
1355 failed_super:
1356	deactivate_locked_super(s);
1357
1358 failed:
1359	if (!s_new)
1360		blkdev_put(sd.bdev, mode);
1361	return ERR_PTR(err);
1362}
1363
1364struct file_system_type nilfs_fs_type = {
1365	.owner    = THIS_MODULE,
1366	.name     = "nilfs2",
1367	.mount    = nilfs_mount,
1368	.kill_sb  = kill_block_super,
1369	.fs_flags = FS_REQUIRES_DEV,
1370};
 
1371
1372static void nilfs_inode_init_once(void *obj)
1373{
1374	struct nilfs_inode_info *ii = obj;
1375
1376	INIT_LIST_HEAD(&ii->i_dirty);
1377#ifdef CONFIG_NILFS_XATTR
1378	init_rwsem(&ii->xattr_sem);
1379#endif
1380	address_space_init_once(&ii->i_btnode_cache);
1381	ii->i_bmap = &ii->i_bmap_data;
1382	inode_init_once(&ii->vfs_inode);
1383}
1384
1385static void nilfs_segbuf_init_once(void *obj)
1386{
1387	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1388}
1389
1390static void nilfs_destroy_cachep(void)
1391{
 
 
 
 
 
 
1392	if (nilfs_inode_cachep)
1393		kmem_cache_destroy(nilfs_inode_cachep);
1394	if (nilfs_transaction_cachep)
1395		kmem_cache_destroy(nilfs_transaction_cachep);
1396	if (nilfs_segbuf_cachep)
1397		kmem_cache_destroy(nilfs_segbuf_cachep);
1398	if (nilfs_btree_path_cache)
1399		kmem_cache_destroy(nilfs_btree_path_cache);
1400}
1401
1402static int __init nilfs_init_cachep(void)
1403{
1404	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1405			sizeof(struct nilfs_inode_info), 0,
1406			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1407	if (!nilfs_inode_cachep)
1408		goto fail;
1409
1410	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1411			sizeof(struct nilfs_transaction_info), 0,
1412			SLAB_RECLAIM_ACCOUNT, NULL);
1413	if (!nilfs_transaction_cachep)
1414		goto fail;
1415
1416	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1417			sizeof(struct nilfs_segment_buffer), 0,
1418			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1419	if (!nilfs_segbuf_cachep)
1420		goto fail;
1421
1422	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1423			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1424			0, 0, NULL);
1425	if (!nilfs_btree_path_cache)
1426		goto fail;
1427
1428	return 0;
1429
1430fail:
1431	nilfs_destroy_cachep();
1432	return -ENOMEM;
1433}
1434
1435static int __init init_nilfs_fs(void)
1436{
1437	int err;
1438
1439	err = nilfs_init_cachep();
1440	if (err)
1441		goto fail;
1442
1443	err = register_filesystem(&nilfs_fs_type);
1444	if (err)
1445		goto free_cachep;
1446
1447	printk(KERN_INFO "NILFS version 2 loaded\n");
1448	return 0;
1449
1450free_cachep:
1451	nilfs_destroy_cachep();
1452fail:
1453	return err;
1454}
1455
1456static void __exit exit_nilfs_fs(void)
1457{
1458	nilfs_destroy_cachep();
1459	unregister_filesystem(&nilfs_fs_type);
1460}
1461
1462module_init(init_nilfs_fs)
1463module_exit(exit_nilfs_fs)