Loading...
1#include <linux/ceph/ceph_debug.h>
2
3#include <linux/fs.h>
4#include <linux/kernel.h>
5#include <linux/sched.h>
6#include <linux/slab.h>
7#include <linux/vmalloc.h>
8#include <linux/wait.h>
9#include <linux/writeback.h>
10
11#include "super.h"
12#include "mds_client.h"
13#include "cache.h"
14#include <linux/ceph/decode.h>
15#include <linux/ceph/messenger.h>
16
17/*
18 * Capability management
19 *
20 * The Ceph metadata servers control client access to inode metadata
21 * and file data by issuing capabilities, granting clients permission
22 * to read and/or write both inode field and file data to OSDs
23 * (storage nodes). Each capability consists of a set of bits
24 * indicating which operations are allowed.
25 *
26 * If the client holds a *_SHARED cap, the client has a coherent value
27 * that can be safely read from the cached inode.
28 *
29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
30 * client is allowed to change inode attributes (e.g., file size,
31 * mtime), note its dirty state in the ceph_cap, and asynchronously
32 * flush that metadata change to the MDS.
33 *
34 * In the event of a conflicting operation (perhaps by another
35 * client), the MDS will revoke the conflicting client capabilities.
36 *
37 * In order for a client to cache an inode, it must hold a capability
38 * with at least one MDS server. When inodes are released, release
39 * notifications are batched and periodically sent en masse to the MDS
40 * cluster to release server state.
41 */
42
43
44/*
45 * Generate readable cap strings for debugging output.
46 */
47#define MAX_CAP_STR 20
48static char cap_str[MAX_CAP_STR][40];
49static DEFINE_SPINLOCK(cap_str_lock);
50static int last_cap_str;
51
52static char *gcap_string(char *s, int c)
53{
54 if (c & CEPH_CAP_GSHARED)
55 *s++ = 's';
56 if (c & CEPH_CAP_GEXCL)
57 *s++ = 'x';
58 if (c & CEPH_CAP_GCACHE)
59 *s++ = 'c';
60 if (c & CEPH_CAP_GRD)
61 *s++ = 'r';
62 if (c & CEPH_CAP_GWR)
63 *s++ = 'w';
64 if (c & CEPH_CAP_GBUFFER)
65 *s++ = 'b';
66 if (c & CEPH_CAP_GLAZYIO)
67 *s++ = 'l';
68 return s;
69}
70
71const char *ceph_cap_string(int caps)
72{
73 int i;
74 char *s;
75 int c;
76
77 spin_lock(&cap_str_lock);
78 i = last_cap_str++;
79 if (last_cap_str == MAX_CAP_STR)
80 last_cap_str = 0;
81 spin_unlock(&cap_str_lock);
82
83 s = cap_str[i];
84
85 if (caps & CEPH_CAP_PIN)
86 *s++ = 'p';
87
88 c = (caps >> CEPH_CAP_SAUTH) & 3;
89 if (c) {
90 *s++ = 'A';
91 s = gcap_string(s, c);
92 }
93
94 c = (caps >> CEPH_CAP_SLINK) & 3;
95 if (c) {
96 *s++ = 'L';
97 s = gcap_string(s, c);
98 }
99
100 c = (caps >> CEPH_CAP_SXATTR) & 3;
101 if (c) {
102 *s++ = 'X';
103 s = gcap_string(s, c);
104 }
105
106 c = caps >> CEPH_CAP_SFILE;
107 if (c) {
108 *s++ = 'F';
109 s = gcap_string(s, c);
110 }
111
112 if (s == cap_str[i])
113 *s++ = '-';
114 *s = 0;
115 return cap_str[i];
116}
117
118void ceph_caps_init(struct ceph_mds_client *mdsc)
119{
120 INIT_LIST_HEAD(&mdsc->caps_list);
121 spin_lock_init(&mdsc->caps_list_lock);
122}
123
124void ceph_caps_finalize(struct ceph_mds_client *mdsc)
125{
126 struct ceph_cap *cap;
127
128 spin_lock(&mdsc->caps_list_lock);
129 while (!list_empty(&mdsc->caps_list)) {
130 cap = list_first_entry(&mdsc->caps_list,
131 struct ceph_cap, caps_item);
132 list_del(&cap->caps_item);
133 kmem_cache_free(ceph_cap_cachep, cap);
134 }
135 mdsc->caps_total_count = 0;
136 mdsc->caps_avail_count = 0;
137 mdsc->caps_use_count = 0;
138 mdsc->caps_reserve_count = 0;
139 mdsc->caps_min_count = 0;
140 spin_unlock(&mdsc->caps_list_lock);
141}
142
143void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
144{
145 spin_lock(&mdsc->caps_list_lock);
146 mdsc->caps_min_count += delta;
147 BUG_ON(mdsc->caps_min_count < 0);
148 spin_unlock(&mdsc->caps_list_lock);
149}
150
151void ceph_reserve_caps(struct ceph_mds_client *mdsc,
152 struct ceph_cap_reservation *ctx, int need)
153{
154 int i;
155 struct ceph_cap *cap;
156 int have;
157 int alloc = 0;
158 LIST_HEAD(newcaps);
159
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
161
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
174
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap)
178 break;
179 list_add(&cap->caps_item, &newcaps);
180 alloc++;
181 }
182 /* we didn't manage to reserve as much as we needed */
183 if (have + alloc != need)
184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
185 ctx, need, have + alloc);
186
187 spin_lock(&mdsc->caps_list_lock);
188 mdsc->caps_total_count += alloc;
189 mdsc->caps_reserve_count += alloc;
190 list_splice(&newcaps, &mdsc->caps_list);
191
192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
193 mdsc->caps_reserve_count +
194 mdsc->caps_avail_count);
195 spin_unlock(&mdsc->caps_list_lock);
196
197 ctx->count = need;
198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
199 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
200 mdsc->caps_reserve_count, mdsc->caps_avail_count);
201}
202
203int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
204 struct ceph_cap_reservation *ctx)
205{
206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
207 if (ctx->count) {
208 spin_lock(&mdsc->caps_list_lock);
209 BUG_ON(mdsc->caps_reserve_count < ctx->count);
210 mdsc->caps_reserve_count -= ctx->count;
211 mdsc->caps_avail_count += ctx->count;
212 ctx->count = 0;
213 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
214 mdsc->caps_total_count, mdsc->caps_use_count,
215 mdsc->caps_reserve_count, mdsc->caps_avail_count);
216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
217 mdsc->caps_reserve_count +
218 mdsc->caps_avail_count);
219 spin_unlock(&mdsc->caps_list_lock);
220 }
221 return 0;
222}
223
224static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
225 struct ceph_cap_reservation *ctx)
226{
227 struct ceph_cap *cap = NULL;
228
229 /* temporary, until we do something about cap import/export */
230 if (!ctx) {
231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
232 if (cap) {
233 spin_lock(&mdsc->caps_list_lock);
234 mdsc->caps_use_count++;
235 mdsc->caps_total_count++;
236 spin_unlock(&mdsc->caps_list_lock);
237 }
238 return cap;
239 }
240
241 spin_lock(&mdsc->caps_list_lock);
242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
244 mdsc->caps_reserve_count, mdsc->caps_avail_count);
245 BUG_ON(!ctx->count);
246 BUG_ON(ctx->count > mdsc->caps_reserve_count);
247 BUG_ON(list_empty(&mdsc->caps_list));
248
249 ctx->count--;
250 mdsc->caps_reserve_count--;
251 mdsc->caps_use_count++;
252
253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
254 list_del(&cap->caps_item);
255
256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
257 mdsc->caps_reserve_count + mdsc->caps_avail_count);
258 spin_unlock(&mdsc->caps_list_lock);
259 return cap;
260}
261
262void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
263{
264 spin_lock(&mdsc->caps_list_lock);
265 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
266 cap, mdsc->caps_total_count, mdsc->caps_use_count,
267 mdsc->caps_reserve_count, mdsc->caps_avail_count);
268 mdsc->caps_use_count--;
269 /*
270 * Keep some preallocated caps around (ceph_min_count), to
271 * avoid lots of free/alloc churn.
272 */
273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
274 mdsc->caps_min_count) {
275 mdsc->caps_total_count--;
276 kmem_cache_free(ceph_cap_cachep, cap);
277 } else {
278 mdsc->caps_avail_count++;
279 list_add(&cap->caps_item, &mdsc->caps_list);
280 }
281
282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
283 mdsc->caps_reserve_count + mdsc->caps_avail_count);
284 spin_unlock(&mdsc->caps_list_lock);
285}
286
287void ceph_reservation_status(struct ceph_fs_client *fsc,
288 int *total, int *avail, int *used, int *reserved,
289 int *min)
290{
291 struct ceph_mds_client *mdsc = fsc->mdsc;
292
293 if (total)
294 *total = mdsc->caps_total_count;
295 if (avail)
296 *avail = mdsc->caps_avail_count;
297 if (used)
298 *used = mdsc->caps_use_count;
299 if (reserved)
300 *reserved = mdsc->caps_reserve_count;
301 if (min)
302 *min = mdsc->caps_min_count;
303}
304
305/*
306 * Find ceph_cap for given mds, if any.
307 *
308 * Called with i_ceph_lock held.
309 */
310static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
311{
312 struct ceph_cap *cap;
313 struct rb_node *n = ci->i_caps.rb_node;
314
315 while (n) {
316 cap = rb_entry(n, struct ceph_cap, ci_node);
317 if (mds < cap->mds)
318 n = n->rb_left;
319 else if (mds > cap->mds)
320 n = n->rb_right;
321 else
322 return cap;
323 }
324 return NULL;
325}
326
327struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
328{
329 struct ceph_cap *cap;
330
331 spin_lock(&ci->i_ceph_lock);
332 cap = __get_cap_for_mds(ci, mds);
333 spin_unlock(&ci->i_ceph_lock);
334 return cap;
335}
336
337/*
338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
339 */
340static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
341{
342 struct ceph_cap *cap;
343 int mds = -1;
344 struct rb_node *p;
345
346 /* prefer mds with WR|BUFFER|EXCL caps */
347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
348 cap = rb_entry(p, struct ceph_cap, ci_node);
349 mds = cap->mds;
350 if (cap->issued & (CEPH_CAP_FILE_WR |
351 CEPH_CAP_FILE_BUFFER |
352 CEPH_CAP_FILE_EXCL))
353 break;
354 }
355 return mds;
356}
357
358int ceph_get_cap_mds(struct inode *inode)
359{
360 struct ceph_inode_info *ci = ceph_inode(inode);
361 int mds;
362 spin_lock(&ci->i_ceph_lock);
363 mds = __ceph_get_cap_mds(ceph_inode(inode));
364 spin_unlock(&ci->i_ceph_lock);
365 return mds;
366}
367
368/*
369 * Called under i_ceph_lock.
370 */
371static void __insert_cap_node(struct ceph_inode_info *ci,
372 struct ceph_cap *new)
373{
374 struct rb_node **p = &ci->i_caps.rb_node;
375 struct rb_node *parent = NULL;
376 struct ceph_cap *cap = NULL;
377
378 while (*p) {
379 parent = *p;
380 cap = rb_entry(parent, struct ceph_cap, ci_node);
381 if (new->mds < cap->mds)
382 p = &(*p)->rb_left;
383 else if (new->mds > cap->mds)
384 p = &(*p)->rb_right;
385 else
386 BUG();
387 }
388
389 rb_link_node(&new->ci_node, parent, p);
390 rb_insert_color(&new->ci_node, &ci->i_caps);
391}
392
393/*
394 * (re)set cap hold timeouts, which control the delayed release
395 * of unused caps back to the MDS. Should be called on cap use.
396 */
397static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
398 struct ceph_inode_info *ci)
399{
400 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
401
402 ci->i_hold_caps_min = round_jiffies(jiffies +
403 ma->caps_wanted_delay_min * HZ);
404 ci->i_hold_caps_max = round_jiffies(jiffies +
405 ma->caps_wanted_delay_max * HZ);
406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
408}
409
410/*
411 * (Re)queue cap at the end of the delayed cap release list.
412 *
413 * If I_FLUSH is set, leave the inode at the front of the list.
414 *
415 * Caller holds i_ceph_lock
416 * -> we take mdsc->cap_delay_lock
417 */
418static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
419 struct ceph_inode_info *ci)
420{
421 __cap_set_timeouts(mdsc, ci);
422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
423 ci->i_ceph_flags, ci->i_hold_caps_max);
424 if (!mdsc->stopping) {
425 spin_lock(&mdsc->cap_delay_lock);
426 if (!list_empty(&ci->i_cap_delay_list)) {
427 if (ci->i_ceph_flags & CEPH_I_FLUSH)
428 goto no_change;
429 list_del_init(&ci->i_cap_delay_list);
430 }
431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
432no_change:
433 spin_unlock(&mdsc->cap_delay_lock);
434 }
435}
436
437/*
438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
439 * indicating we should send a cap message to flush dirty metadata
440 * asap, and move to the front of the delayed cap list.
441 */
442static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
443 struct ceph_inode_info *ci)
444{
445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
446 spin_lock(&mdsc->cap_delay_lock);
447 ci->i_ceph_flags |= CEPH_I_FLUSH;
448 if (!list_empty(&ci->i_cap_delay_list))
449 list_del_init(&ci->i_cap_delay_list);
450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
451 spin_unlock(&mdsc->cap_delay_lock);
452}
453
454/*
455 * Cancel delayed work on cap.
456 *
457 * Caller must hold i_ceph_lock.
458 */
459static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
460 struct ceph_inode_info *ci)
461{
462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
463 if (list_empty(&ci->i_cap_delay_list))
464 return;
465 spin_lock(&mdsc->cap_delay_lock);
466 list_del_init(&ci->i_cap_delay_list);
467 spin_unlock(&mdsc->cap_delay_lock);
468}
469
470/*
471 * Common issue checks for add_cap, handle_cap_grant.
472 */
473static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
474 unsigned issued)
475{
476 unsigned had = __ceph_caps_issued(ci, NULL);
477
478 /*
479 * Each time we receive FILE_CACHE anew, we increment
480 * i_rdcache_gen.
481 */
482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
484 ci->i_rdcache_gen++;
485 }
486
487 /*
488 * if we are newly issued FILE_SHARED, mark dir not complete; we
489 * don't know what happened to this directory while we didn't
490 * have the cap.
491 */
492 if ((issued & CEPH_CAP_FILE_SHARED) &&
493 (had & CEPH_CAP_FILE_SHARED) == 0) {
494 ci->i_shared_gen++;
495 if (S_ISDIR(ci->vfs_inode.i_mode)) {
496 dout(" marking %p NOT complete\n", &ci->vfs_inode);
497 __ceph_dir_clear_complete(ci);
498 }
499 }
500}
501
502/*
503 * Add a capability under the given MDS session.
504 *
505 * Caller should hold session snap_rwsem (read) and s_mutex.
506 *
507 * @fmode is the open file mode, if we are opening a file, otherwise
508 * it is < 0. (This is so we can atomically add the cap and add an
509 * open file reference to it.)
510 */
511int ceph_add_cap(struct inode *inode,
512 struct ceph_mds_session *session, u64 cap_id,
513 int fmode, unsigned issued, unsigned wanted,
514 unsigned seq, unsigned mseq, u64 realmino, int flags,
515 struct ceph_cap_reservation *caps_reservation)
516{
517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
518 struct ceph_inode_info *ci = ceph_inode(inode);
519 struct ceph_cap *new_cap = NULL;
520 struct ceph_cap *cap;
521 int mds = session->s_mds;
522 int actual_wanted;
523
524 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
525 session->s_mds, cap_id, ceph_cap_string(issued), seq);
526
527 /*
528 * If we are opening the file, include file mode wanted bits
529 * in wanted.
530 */
531 if (fmode >= 0)
532 wanted |= ceph_caps_for_mode(fmode);
533
534retry:
535 spin_lock(&ci->i_ceph_lock);
536 cap = __get_cap_for_mds(ci, mds);
537 if (!cap) {
538 if (new_cap) {
539 cap = new_cap;
540 new_cap = NULL;
541 } else {
542 spin_unlock(&ci->i_ceph_lock);
543 new_cap = get_cap(mdsc, caps_reservation);
544 if (new_cap == NULL)
545 return -ENOMEM;
546 goto retry;
547 }
548
549 cap->issued = 0;
550 cap->implemented = 0;
551 cap->mds = mds;
552 cap->mds_wanted = 0;
553 cap->mseq = 0;
554
555 cap->ci = ci;
556 __insert_cap_node(ci, cap);
557
558 /* add to session cap list */
559 cap->session = session;
560 spin_lock(&session->s_cap_lock);
561 list_add_tail(&cap->session_caps, &session->s_caps);
562 session->s_nr_caps++;
563 spin_unlock(&session->s_cap_lock);
564 } else {
565 if (new_cap)
566 ceph_put_cap(mdsc, new_cap);
567
568 /*
569 * auth mds of the inode changed. we received the cap export
570 * message, but still haven't received the cap import message.
571 * handle_cap_export() updated the new auth MDS' cap.
572 *
573 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing
574 * a message that was send before the cap import message. So
575 * don't remove caps.
576 */
577 if (ceph_seq_cmp(seq, cap->seq) <= 0) {
578 WARN_ON(cap != ci->i_auth_cap);
579 WARN_ON(cap->cap_id != cap_id);
580 seq = cap->seq;
581 mseq = cap->mseq;
582 issued |= cap->issued;
583 flags |= CEPH_CAP_FLAG_AUTH;
584 }
585 }
586
587 if (!ci->i_snap_realm) {
588 /*
589 * add this inode to the appropriate snap realm
590 */
591 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
592 realmino);
593 if (realm) {
594 ceph_get_snap_realm(mdsc, realm);
595 spin_lock(&realm->inodes_with_caps_lock);
596 ci->i_snap_realm = realm;
597 list_add(&ci->i_snap_realm_item,
598 &realm->inodes_with_caps);
599 spin_unlock(&realm->inodes_with_caps_lock);
600 } else {
601 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
602 realmino);
603 WARN_ON(!realm);
604 }
605 }
606
607 __check_cap_issue(ci, cap, issued);
608
609 /*
610 * If we are issued caps we don't want, or the mds' wanted
611 * value appears to be off, queue a check so we'll release
612 * later and/or update the mds wanted value.
613 */
614 actual_wanted = __ceph_caps_wanted(ci);
615 if ((wanted & ~actual_wanted) ||
616 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
617 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
618 ceph_cap_string(issued), ceph_cap_string(wanted),
619 ceph_cap_string(actual_wanted));
620 __cap_delay_requeue(mdsc, ci);
621 }
622
623 if (flags & CEPH_CAP_FLAG_AUTH) {
624 if (ci->i_auth_cap == NULL ||
625 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) {
626 ci->i_auth_cap = cap;
627 cap->mds_wanted = wanted;
628 }
629 ci->i_cap_exporting_issued = 0;
630 } else {
631 WARN_ON(ci->i_auth_cap == cap);
632 }
633
634 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
635 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
636 ceph_cap_string(issued|cap->issued), seq, mds);
637 cap->cap_id = cap_id;
638 cap->issued = issued;
639 cap->implemented |= issued;
640 if (ceph_seq_cmp(mseq, cap->mseq) > 0)
641 cap->mds_wanted = wanted;
642 else
643 cap->mds_wanted |= wanted;
644 cap->seq = seq;
645 cap->issue_seq = seq;
646 cap->mseq = mseq;
647 cap->cap_gen = session->s_cap_gen;
648
649 if (fmode >= 0)
650 __ceph_get_fmode(ci, fmode);
651 spin_unlock(&ci->i_ceph_lock);
652 wake_up_all(&ci->i_cap_wq);
653 return 0;
654}
655
656/*
657 * Return true if cap has not timed out and belongs to the current
658 * generation of the MDS session (i.e. has not gone 'stale' due to
659 * us losing touch with the mds).
660 */
661static int __cap_is_valid(struct ceph_cap *cap)
662{
663 unsigned long ttl;
664 u32 gen;
665
666 spin_lock(&cap->session->s_gen_ttl_lock);
667 gen = cap->session->s_cap_gen;
668 ttl = cap->session->s_cap_ttl;
669 spin_unlock(&cap->session->s_gen_ttl_lock);
670
671 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
672 dout("__cap_is_valid %p cap %p issued %s "
673 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
674 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
675 return 0;
676 }
677
678 return 1;
679}
680
681/*
682 * Return set of valid cap bits issued to us. Note that caps time
683 * out, and may be invalidated in bulk if the client session times out
684 * and session->s_cap_gen is bumped.
685 */
686int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
687{
688 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
689 struct ceph_cap *cap;
690 struct rb_node *p;
691
692 if (implemented)
693 *implemented = 0;
694 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
695 cap = rb_entry(p, struct ceph_cap, ci_node);
696 if (!__cap_is_valid(cap))
697 continue;
698 dout("__ceph_caps_issued %p cap %p issued %s\n",
699 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
700 have |= cap->issued;
701 if (implemented)
702 *implemented |= cap->implemented;
703 }
704 /*
705 * exclude caps issued by non-auth MDS, but are been revoking
706 * by the auth MDS. The non-auth MDS should be revoking/exporting
707 * these caps, but the message is delayed.
708 */
709 if (ci->i_auth_cap) {
710 cap = ci->i_auth_cap;
711 have &= ~cap->implemented | cap->issued;
712 }
713 return have;
714}
715
716/*
717 * Get cap bits issued by caps other than @ocap
718 */
719int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
720{
721 int have = ci->i_snap_caps;
722 struct ceph_cap *cap;
723 struct rb_node *p;
724
725 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
726 cap = rb_entry(p, struct ceph_cap, ci_node);
727 if (cap == ocap)
728 continue;
729 if (!__cap_is_valid(cap))
730 continue;
731 have |= cap->issued;
732 }
733 return have;
734}
735
736/*
737 * Move a cap to the end of the LRU (oldest caps at list head, newest
738 * at list tail).
739 */
740static void __touch_cap(struct ceph_cap *cap)
741{
742 struct ceph_mds_session *s = cap->session;
743
744 spin_lock(&s->s_cap_lock);
745 if (s->s_cap_iterator == NULL) {
746 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
747 s->s_mds);
748 list_move_tail(&cap->session_caps, &s->s_caps);
749 } else {
750 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
751 &cap->ci->vfs_inode, cap, s->s_mds);
752 }
753 spin_unlock(&s->s_cap_lock);
754}
755
756/*
757 * Check if we hold the given mask. If so, move the cap(s) to the
758 * front of their respective LRUs. (This is the preferred way for
759 * callers to check for caps they want.)
760 */
761int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
762{
763 struct ceph_cap *cap;
764 struct rb_node *p;
765 int have = ci->i_snap_caps;
766
767 if ((have & mask) == mask) {
768 dout("__ceph_caps_issued_mask %p snap issued %s"
769 " (mask %s)\n", &ci->vfs_inode,
770 ceph_cap_string(have),
771 ceph_cap_string(mask));
772 return 1;
773 }
774
775 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
776 cap = rb_entry(p, struct ceph_cap, ci_node);
777 if (!__cap_is_valid(cap))
778 continue;
779 if ((cap->issued & mask) == mask) {
780 dout("__ceph_caps_issued_mask %p cap %p issued %s"
781 " (mask %s)\n", &ci->vfs_inode, cap,
782 ceph_cap_string(cap->issued),
783 ceph_cap_string(mask));
784 if (touch)
785 __touch_cap(cap);
786 return 1;
787 }
788
789 /* does a combination of caps satisfy mask? */
790 have |= cap->issued;
791 if ((have & mask) == mask) {
792 dout("__ceph_caps_issued_mask %p combo issued %s"
793 " (mask %s)\n", &ci->vfs_inode,
794 ceph_cap_string(cap->issued),
795 ceph_cap_string(mask));
796 if (touch) {
797 struct rb_node *q;
798
799 /* touch this + preceding caps */
800 __touch_cap(cap);
801 for (q = rb_first(&ci->i_caps); q != p;
802 q = rb_next(q)) {
803 cap = rb_entry(q, struct ceph_cap,
804 ci_node);
805 if (!__cap_is_valid(cap))
806 continue;
807 __touch_cap(cap);
808 }
809 }
810 return 1;
811 }
812 }
813
814 return 0;
815}
816
817/*
818 * Return true if mask caps are currently being revoked by an MDS.
819 */
820int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
821 struct ceph_cap *ocap, int mask)
822{
823 struct ceph_cap *cap;
824 struct rb_node *p;
825
826 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
827 cap = rb_entry(p, struct ceph_cap, ci_node);
828 if (cap != ocap &&
829 (cap->implemented & ~cap->issued & mask))
830 return 1;
831 }
832 return 0;
833}
834
835int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
836{
837 struct inode *inode = &ci->vfs_inode;
838 int ret;
839
840 spin_lock(&ci->i_ceph_lock);
841 ret = __ceph_caps_revoking_other(ci, NULL, mask);
842 spin_unlock(&ci->i_ceph_lock);
843 dout("ceph_caps_revoking %p %s = %d\n", inode,
844 ceph_cap_string(mask), ret);
845 return ret;
846}
847
848int __ceph_caps_used(struct ceph_inode_info *ci)
849{
850 int used = 0;
851 if (ci->i_pin_ref)
852 used |= CEPH_CAP_PIN;
853 if (ci->i_rd_ref)
854 used |= CEPH_CAP_FILE_RD;
855 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
856 used |= CEPH_CAP_FILE_CACHE;
857 if (ci->i_wr_ref)
858 used |= CEPH_CAP_FILE_WR;
859 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
860 used |= CEPH_CAP_FILE_BUFFER;
861 return used;
862}
863
864/*
865 * wanted, by virtue of open file modes
866 */
867int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
868{
869 int want = 0;
870 int mode;
871 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
872 if (ci->i_nr_by_mode[mode])
873 want |= ceph_caps_for_mode(mode);
874 return want;
875}
876
877/*
878 * Return caps we have registered with the MDS(s) as 'wanted'.
879 */
880int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
881{
882 struct ceph_cap *cap;
883 struct rb_node *p;
884 int mds_wanted = 0;
885
886 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
887 cap = rb_entry(p, struct ceph_cap, ci_node);
888 if (!__cap_is_valid(cap))
889 continue;
890 if (cap == ci->i_auth_cap)
891 mds_wanted |= cap->mds_wanted;
892 else
893 mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR);
894 }
895 return mds_wanted;
896}
897
898/*
899 * called under i_ceph_lock
900 */
901static int __ceph_is_any_caps(struct ceph_inode_info *ci)
902{
903 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_issued;
904}
905
906int ceph_is_any_caps(struct inode *inode)
907{
908 struct ceph_inode_info *ci = ceph_inode(inode);
909 int ret;
910
911 spin_lock(&ci->i_ceph_lock);
912 ret = __ceph_is_any_caps(ci);
913 spin_unlock(&ci->i_ceph_lock);
914
915 return ret;
916}
917
918/*
919 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
920 *
921 * caller should hold i_ceph_lock.
922 * caller will not hold session s_mutex if called from destroy_inode.
923 */
924void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
925{
926 struct ceph_mds_session *session = cap->session;
927 struct ceph_inode_info *ci = cap->ci;
928 struct ceph_mds_client *mdsc =
929 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
930 int removed = 0;
931
932 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
933
934 /* remove from session list */
935 spin_lock(&session->s_cap_lock);
936 /*
937 * s_cap_reconnect is protected by s_cap_lock. no one changes
938 * s_cap_gen while session is in the reconnect state.
939 */
940 if (queue_release &&
941 (!session->s_cap_reconnect ||
942 cap->cap_gen == session->s_cap_gen))
943 __queue_cap_release(session, ci->i_vino.ino, cap->cap_id,
944 cap->mseq, cap->issue_seq);
945
946 if (session->s_cap_iterator == cap) {
947 /* not yet, we are iterating over this very cap */
948 dout("__ceph_remove_cap delaying %p removal from session %p\n",
949 cap, cap->session);
950 } else {
951 list_del_init(&cap->session_caps);
952 session->s_nr_caps--;
953 cap->session = NULL;
954 removed = 1;
955 }
956 /* protect backpointer with s_cap_lock: see iterate_session_caps */
957 cap->ci = NULL;
958 spin_unlock(&session->s_cap_lock);
959
960 /* remove from inode list */
961 rb_erase(&cap->ci_node, &ci->i_caps);
962 if (ci->i_auth_cap == cap)
963 ci->i_auth_cap = NULL;
964
965 if (removed)
966 ceph_put_cap(mdsc, cap);
967
968 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
969 struct ceph_snap_realm *realm = ci->i_snap_realm;
970 spin_lock(&realm->inodes_with_caps_lock);
971 list_del_init(&ci->i_snap_realm_item);
972 ci->i_snap_realm_counter++;
973 ci->i_snap_realm = NULL;
974 spin_unlock(&realm->inodes_with_caps_lock);
975 ceph_put_snap_realm(mdsc, realm);
976 }
977 if (!__ceph_is_any_real_caps(ci))
978 __cap_delay_cancel(mdsc, ci);
979}
980
981/*
982 * Build and send a cap message to the given MDS.
983 *
984 * Caller should be holding s_mutex.
985 */
986static int send_cap_msg(struct ceph_mds_session *session,
987 u64 ino, u64 cid, int op,
988 int caps, int wanted, int dirty,
989 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
990 u64 size, u64 max_size,
991 struct timespec *mtime, struct timespec *atime,
992 u64 time_warp_seq,
993 kuid_t uid, kgid_t gid, umode_t mode,
994 u64 xattr_version,
995 struct ceph_buffer *xattrs_buf,
996 u64 follows)
997{
998 struct ceph_mds_caps *fc;
999 struct ceph_msg *msg;
1000
1001 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
1002 " seq %u/%u mseq %u follows %lld size %llu/%llu"
1003 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
1004 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
1005 ceph_cap_string(dirty),
1006 seq, issue_seq, mseq, follows, size, max_size,
1007 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
1008
1009 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
1010 if (!msg)
1011 return -ENOMEM;
1012
1013 msg->hdr.tid = cpu_to_le64(flush_tid);
1014
1015 fc = msg->front.iov_base;
1016 memset(fc, 0, sizeof(*fc));
1017
1018 fc->cap_id = cpu_to_le64(cid);
1019 fc->op = cpu_to_le32(op);
1020 fc->seq = cpu_to_le32(seq);
1021 fc->issue_seq = cpu_to_le32(issue_seq);
1022 fc->migrate_seq = cpu_to_le32(mseq);
1023 fc->caps = cpu_to_le32(caps);
1024 fc->wanted = cpu_to_le32(wanted);
1025 fc->dirty = cpu_to_le32(dirty);
1026 fc->ino = cpu_to_le64(ino);
1027 fc->snap_follows = cpu_to_le64(follows);
1028
1029 fc->size = cpu_to_le64(size);
1030 fc->max_size = cpu_to_le64(max_size);
1031 if (mtime)
1032 ceph_encode_timespec(&fc->mtime, mtime);
1033 if (atime)
1034 ceph_encode_timespec(&fc->atime, atime);
1035 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1036
1037 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1038 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1039 fc->mode = cpu_to_le32(mode);
1040
1041 fc->xattr_version = cpu_to_le64(xattr_version);
1042 if (xattrs_buf) {
1043 msg->middle = ceph_buffer_get(xattrs_buf);
1044 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1045 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1046 }
1047
1048 ceph_con_send(&session->s_con, msg);
1049 return 0;
1050}
1051
1052void __queue_cap_release(struct ceph_mds_session *session,
1053 u64 ino, u64 cap_id, u32 migrate_seq,
1054 u32 issue_seq)
1055{
1056 struct ceph_msg *msg;
1057 struct ceph_mds_cap_release *head;
1058 struct ceph_mds_cap_item *item;
1059
1060 BUG_ON(!session->s_num_cap_releases);
1061 msg = list_first_entry(&session->s_cap_releases,
1062 struct ceph_msg, list_head);
1063
1064 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1065 ino, session->s_mds, msg, session->s_num_cap_releases);
1066
1067 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1068 head = msg->front.iov_base;
1069 le32_add_cpu(&head->num, 1);
1070 item = msg->front.iov_base + msg->front.iov_len;
1071 item->ino = cpu_to_le64(ino);
1072 item->cap_id = cpu_to_le64(cap_id);
1073 item->migrate_seq = cpu_to_le32(migrate_seq);
1074 item->seq = cpu_to_le32(issue_seq);
1075
1076 session->s_num_cap_releases--;
1077
1078 msg->front.iov_len += sizeof(*item);
1079 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1080 dout(" release msg %p full\n", msg);
1081 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1082 } else {
1083 dout(" release msg %p at %d/%d (%d)\n", msg,
1084 (int)le32_to_cpu(head->num),
1085 (int)CEPH_CAPS_PER_RELEASE,
1086 (int)msg->front.iov_len);
1087 }
1088}
1089
1090/*
1091 * Queue cap releases when an inode is dropped from our cache. Since
1092 * inode is about to be destroyed, there is no need for i_ceph_lock.
1093 */
1094void ceph_queue_caps_release(struct inode *inode)
1095{
1096 struct ceph_inode_info *ci = ceph_inode(inode);
1097 struct rb_node *p;
1098
1099 p = rb_first(&ci->i_caps);
1100 while (p) {
1101 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1102 p = rb_next(p);
1103 __ceph_remove_cap(cap, true);
1104 }
1105}
1106
1107/*
1108 * Send a cap msg on the given inode. Update our caps state, then
1109 * drop i_ceph_lock and send the message.
1110 *
1111 * Make note of max_size reported/requested from mds, revoked caps
1112 * that have now been implemented.
1113 *
1114 * Make half-hearted attempt ot to invalidate page cache if we are
1115 * dropping RDCACHE. Note that this will leave behind locked pages
1116 * that we'll then need to deal with elsewhere.
1117 *
1118 * Return non-zero if delayed release, or we experienced an error
1119 * such that the caller should requeue + retry later.
1120 *
1121 * called with i_ceph_lock, then drops it.
1122 * caller should hold snap_rwsem (read), s_mutex.
1123 */
1124static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1125 int op, int used, int want, int retain, int flushing,
1126 unsigned *pflush_tid)
1127 __releases(cap->ci->i_ceph_lock)
1128{
1129 struct ceph_inode_info *ci = cap->ci;
1130 struct inode *inode = &ci->vfs_inode;
1131 u64 cap_id = cap->cap_id;
1132 int held, revoking, dropping, keep;
1133 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1134 u64 size, max_size;
1135 struct timespec mtime, atime;
1136 int wake = 0;
1137 umode_t mode;
1138 kuid_t uid;
1139 kgid_t gid;
1140 struct ceph_mds_session *session;
1141 u64 xattr_version = 0;
1142 struct ceph_buffer *xattr_blob = NULL;
1143 int delayed = 0;
1144 u64 flush_tid = 0;
1145 int i;
1146 int ret;
1147
1148 held = cap->issued | cap->implemented;
1149 revoking = cap->implemented & ~cap->issued;
1150 retain &= ~revoking;
1151 dropping = cap->issued & ~retain;
1152
1153 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1154 inode, cap, cap->session,
1155 ceph_cap_string(held), ceph_cap_string(held & retain),
1156 ceph_cap_string(revoking));
1157 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1158
1159 session = cap->session;
1160
1161 /* don't release wanted unless we've waited a bit. */
1162 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1163 time_before(jiffies, ci->i_hold_caps_min)) {
1164 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1165 ceph_cap_string(cap->issued),
1166 ceph_cap_string(cap->issued & retain),
1167 ceph_cap_string(cap->mds_wanted),
1168 ceph_cap_string(want));
1169 want |= cap->mds_wanted;
1170 retain |= cap->issued;
1171 delayed = 1;
1172 }
1173 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1174
1175 cap->issued &= retain; /* drop bits we don't want */
1176 if (cap->implemented & ~cap->issued) {
1177 /*
1178 * Wake up any waiters on wanted -> needed transition.
1179 * This is due to the weird transition from buffered
1180 * to sync IO... we need to flush dirty pages _before_
1181 * allowing sync writes to avoid reordering.
1182 */
1183 wake = 1;
1184 }
1185 cap->implemented &= cap->issued | used;
1186 cap->mds_wanted = want;
1187
1188 if (flushing) {
1189 /*
1190 * assign a tid for flush operations so we can avoid
1191 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1192 * clean type races. track latest tid for every bit
1193 * so we can handle flush AxFw, flush Fw, and have the
1194 * first ack clean Ax.
1195 */
1196 flush_tid = ++ci->i_cap_flush_last_tid;
1197 if (pflush_tid)
1198 *pflush_tid = flush_tid;
1199 dout(" cap_flush_tid %d\n", (int)flush_tid);
1200 for (i = 0; i < CEPH_CAP_BITS; i++)
1201 if (flushing & (1 << i))
1202 ci->i_cap_flush_tid[i] = flush_tid;
1203
1204 follows = ci->i_head_snapc->seq;
1205 } else {
1206 follows = 0;
1207 }
1208
1209 keep = cap->implemented;
1210 seq = cap->seq;
1211 issue_seq = cap->issue_seq;
1212 mseq = cap->mseq;
1213 size = inode->i_size;
1214 ci->i_reported_size = size;
1215 max_size = ci->i_wanted_max_size;
1216 ci->i_requested_max_size = max_size;
1217 mtime = inode->i_mtime;
1218 atime = inode->i_atime;
1219 time_warp_seq = ci->i_time_warp_seq;
1220 uid = inode->i_uid;
1221 gid = inode->i_gid;
1222 mode = inode->i_mode;
1223
1224 if (flushing & CEPH_CAP_XATTR_EXCL) {
1225 __ceph_build_xattrs_blob(ci);
1226 xattr_blob = ci->i_xattrs.blob;
1227 xattr_version = ci->i_xattrs.version;
1228 }
1229
1230 spin_unlock(&ci->i_ceph_lock);
1231
1232 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1233 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1234 size, max_size, &mtime, &atime, time_warp_seq,
1235 uid, gid, mode, xattr_version, xattr_blob,
1236 follows);
1237 if (ret < 0) {
1238 dout("error sending cap msg, must requeue %p\n", inode);
1239 delayed = 1;
1240 }
1241
1242 if (wake)
1243 wake_up_all(&ci->i_cap_wq);
1244
1245 return delayed;
1246}
1247
1248/*
1249 * When a snapshot is taken, clients accumulate dirty metadata on
1250 * inodes with capabilities in ceph_cap_snaps to describe the file
1251 * state at the time the snapshot was taken. This must be flushed
1252 * asynchronously back to the MDS once sync writes complete and dirty
1253 * data is written out.
1254 *
1255 * Unless @again is true, skip cap_snaps that were already sent to
1256 * the MDS (i.e., during this session).
1257 *
1258 * Called under i_ceph_lock. Takes s_mutex as needed.
1259 */
1260void __ceph_flush_snaps(struct ceph_inode_info *ci,
1261 struct ceph_mds_session **psession,
1262 int again)
1263 __releases(ci->i_ceph_lock)
1264 __acquires(ci->i_ceph_lock)
1265{
1266 struct inode *inode = &ci->vfs_inode;
1267 int mds;
1268 struct ceph_cap_snap *capsnap;
1269 u32 mseq;
1270 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1271 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1272 session->s_mutex */
1273 u64 next_follows = 0; /* keep track of how far we've gotten through the
1274 i_cap_snaps list, and skip these entries next time
1275 around to avoid an infinite loop */
1276
1277 if (psession)
1278 session = *psession;
1279
1280 dout("__flush_snaps %p\n", inode);
1281retry:
1282 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1283 /* avoid an infiniute loop after retry */
1284 if (capsnap->follows < next_follows)
1285 continue;
1286 /*
1287 * we need to wait for sync writes to complete and for dirty
1288 * pages to be written out.
1289 */
1290 if (capsnap->dirty_pages || capsnap->writing)
1291 break;
1292
1293 /*
1294 * if cap writeback already occurred, we should have dropped
1295 * the capsnap in ceph_put_wrbuffer_cap_refs.
1296 */
1297 BUG_ON(capsnap->dirty == 0);
1298
1299 /* pick mds, take s_mutex */
1300 if (ci->i_auth_cap == NULL) {
1301 dout("no auth cap (migrating?), doing nothing\n");
1302 goto out;
1303 }
1304
1305 /* only flush each capsnap once */
1306 if (!again && !list_empty(&capsnap->flushing_item)) {
1307 dout("already flushed %p, skipping\n", capsnap);
1308 continue;
1309 }
1310
1311 mds = ci->i_auth_cap->session->s_mds;
1312 mseq = ci->i_auth_cap->mseq;
1313
1314 if (session && session->s_mds != mds) {
1315 dout("oops, wrong session %p mutex\n", session);
1316 mutex_unlock(&session->s_mutex);
1317 ceph_put_mds_session(session);
1318 session = NULL;
1319 }
1320 if (!session) {
1321 spin_unlock(&ci->i_ceph_lock);
1322 mutex_lock(&mdsc->mutex);
1323 session = __ceph_lookup_mds_session(mdsc, mds);
1324 mutex_unlock(&mdsc->mutex);
1325 if (session) {
1326 dout("inverting session/ino locks on %p\n",
1327 session);
1328 mutex_lock(&session->s_mutex);
1329 }
1330 /*
1331 * if session == NULL, we raced against a cap
1332 * deletion or migration. retry, and we'll
1333 * get a better @mds value next time.
1334 */
1335 spin_lock(&ci->i_ceph_lock);
1336 goto retry;
1337 }
1338
1339 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1340 atomic_inc(&capsnap->nref);
1341 if (!list_empty(&capsnap->flushing_item))
1342 list_del_init(&capsnap->flushing_item);
1343 list_add_tail(&capsnap->flushing_item,
1344 &session->s_cap_snaps_flushing);
1345 spin_unlock(&ci->i_ceph_lock);
1346
1347 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1348 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1349 send_cap_msg(session, ceph_vino(inode).ino, 0,
1350 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1351 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1352 capsnap->size, 0,
1353 &capsnap->mtime, &capsnap->atime,
1354 capsnap->time_warp_seq,
1355 capsnap->uid, capsnap->gid, capsnap->mode,
1356 capsnap->xattr_version, capsnap->xattr_blob,
1357 capsnap->follows);
1358
1359 next_follows = capsnap->follows + 1;
1360 ceph_put_cap_snap(capsnap);
1361
1362 spin_lock(&ci->i_ceph_lock);
1363 goto retry;
1364 }
1365
1366 /* we flushed them all; remove this inode from the queue */
1367 spin_lock(&mdsc->snap_flush_lock);
1368 list_del_init(&ci->i_snap_flush_item);
1369 spin_unlock(&mdsc->snap_flush_lock);
1370
1371out:
1372 if (psession)
1373 *psession = session;
1374 else if (session) {
1375 mutex_unlock(&session->s_mutex);
1376 ceph_put_mds_session(session);
1377 }
1378}
1379
1380static void ceph_flush_snaps(struct ceph_inode_info *ci)
1381{
1382 spin_lock(&ci->i_ceph_lock);
1383 __ceph_flush_snaps(ci, NULL, 0);
1384 spin_unlock(&ci->i_ceph_lock);
1385}
1386
1387/*
1388 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1389 * Caller is then responsible for calling __mark_inode_dirty with the
1390 * returned flags value.
1391 */
1392int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1393{
1394 struct ceph_mds_client *mdsc =
1395 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1396 struct inode *inode = &ci->vfs_inode;
1397 int was = ci->i_dirty_caps;
1398 int dirty = 0;
1399
1400 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1401 ceph_cap_string(mask), ceph_cap_string(was),
1402 ceph_cap_string(was | mask));
1403 ci->i_dirty_caps |= mask;
1404 if (was == 0) {
1405 if (!ci->i_head_snapc)
1406 ci->i_head_snapc = ceph_get_snap_context(
1407 ci->i_snap_realm->cached_context);
1408 dout(" inode %p now dirty snapc %p auth cap %p\n",
1409 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1410 WARN_ON(!ci->i_auth_cap);
1411 BUG_ON(!list_empty(&ci->i_dirty_item));
1412 spin_lock(&mdsc->cap_dirty_lock);
1413 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1414 spin_unlock(&mdsc->cap_dirty_lock);
1415 if (ci->i_flushing_caps == 0) {
1416 ihold(inode);
1417 dirty |= I_DIRTY_SYNC;
1418 }
1419 }
1420 BUG_ON(list_empty(&ci->i_dirty_item));
1421 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1422 (mask & CEPH_CAP_FILE_BUFFER))
1423 dirty |= I_DIRTY_DATASYNC;
1424 __cap_delay_requeue(mdsc, ci);
1425 return dirty;
1426}
1427
1428/*
1429 * Add dirty inode to the flushing list. Assigned a seq number so we
1430 * can wait for caps to flush without starving.
1431 *
1432 * Called under i_ceph_lock.
1433 */
1434static int __mark_caps_flushing(struct inode *inode,
1435 struct ceph_mds_session *session)
1436{
1437 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1438 struct ceph_inode_info *ci = ceph_inode(inode);
1439 int flushing;
1440
1441 BUG_ON(ci->i_dirty_caps == 0);
1442 BUG_ON(list_empty(&ci->i_dirty_item));
1443
1444 flushing = ci->i_dirty_caps;
1445 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1446 ceph_cap_string(flushing),
1447 ceph_cap_string(ci->i_flushing_caps),
1448 ceph_cap_string(ci->i_flushing_caps | flushing));
1449 ci->i_flushing_caps |= flushing;
1450 ci->i_dirty_caps = 0;
1451 dout(" inode %p now !dirty\n", inode);
1452
1453 spin_lock(&mdsc->cap_dirty_lock);
1454 list_del_init(&ci->i_dirty_item);
1455
1456 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1457 if (list_empty(&ci->i_flushing_item)) {
1458 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1459 mdsc->num_cap_flushing++;
1460 dout(" inode %p now flushing seq %lld\n", inode,
1461 ci->i_cap_flush_seq);
1462 } else {
1463 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1464 dout(" inode %p now flushing (more) seq %lld\n", inode,
1465 ci->i_cap_flush_seq);
1466 }
1467 spin_unlock(&mdsc->cap_dirty_lock);
1468
1469 return flushing;
1470}
1471
1472/*
1473 * try to invalidate mapping pages without blocking.
1474 */
1475static int try_nonblocking_invalidate(struct inode *inode)
1476{
1477 struct ceph_inode_info *ci = ceph_inode(inode);
1478 u32 invalidating_gen = ci->i_rdcache_gen;
1479
1480 spin_unlock(&ci->i_ceph_lock);
1481 invalidate_mapping_pages(&inode->i_data, 0, -1);
1482 spin_lock(&ci->i_ceph_lock);
1483
1484 if (inode->i_data.nrpages == 0 &&
1485 invalidating_gen == ci->i_rdcache_gen) {
1486 /* success. */
1487 dout("try_nonblocking_invalidate %p success\n", inode);
1488 /* save any racing async invalidate some trouble */
1489 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1490 return 0;
1491 }
1492 dout("try_nonblocking_invalidate %p failed\n", inode);
1493 return -1;
1494}
1495
1496/*
1497 * Swiss army knife function to examine currently used and wanted
1498 * versus held caps. Release, flush, ack revoked caps to mds as
1499 * appropriate.
1500 *
1501 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1502 * cap release further.
1503 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1504 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1505 * further delay.
1506 */
1507void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1508 struct ceph_mds_session *session)
1509{
1510 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1511 struct ceph_mds_client *mdsc = fsc->mdsc;
1512 struct inode *inode = &ci->vfs_inode;
1513 struct ceph_cap *cap;
1514 int file_wanted, used, cap_used;
1515 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1516 int issued, implemented, want, retain, revoking, flushing = 0;
1517 int mds = -1; /* keep track of how far we've gone through i_caps list
1518 to avoid an infinite loop on retry */
1519 struct rb_node *p;
1520 int tried_invalidate = 0;
1521 int delayed = 0, sent = 0, force_requeue = 0, num;
1522 int queue_invalidate = 0;
1523 int is_delayed = flags & CHECK_CAPS_NODELAY;
1524
1525 /* if we are unmounting, flush any unused caps immediately. */
1526 if (mdsc->stopping)
1527 is_delayed = 1;
1528
1529 spin_lock(&ci->i_ceph_lock);
1530
1531 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1532 flags |= CHECK_CAPS_FLUSH;
1533
1534 /* flush snaps first time around only */
1535 if (!list_empty(&ci->i_cap_snaps))
1536 __ceph_flush_snaps(ci, &session, 0);
1537 goto retry_locked;
1538retry:
1539 spin_lock(&ci->i_ceph_lock);
1540retry_locked:
1541 file_wanted = __ceph_caps_file_wanted(ci);
1542 used = __ceph_caps_used(ci);
1543 want = file_wanted | used;
1544 issued = __ceph_caps_issued(ci, &implemented);
1545 revoking = implemented & ~issued;
1546
1547 retain = want | CEPH_CAP_PIN;
1548 if (!mdsc->stopping && inode->i_nlink > 0) {
1549 if (want) {
1550 retain |= CEPH_CAP_ANY; /* be greedy */
1551 } else {
1552 retain |= CEPH_CAP_ANY_SHARED;
1553 /*
1554 * keep RD only if we didn't have the file open RW,
1555 * because then the mds would revoke it anyway to
1556 * journal max_size=0.
1557 */
1558 if (ci->i_max_size == 0)
1559 retain |= CEPH_CAP_ANY_RD;
1560 }
1561 }
1562
1563 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1564 " issued %s revoking %s retain %s %s%s%s\n", inode,
1565 ceph_cap_string(file_wanted),
1566 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1567 ceph_cap_string(ci->i_flushing_caps),
1568 ceph_cap_string(issued), ceph_cap_string(revoking),
1569 ceph_cap_string(retain),
1570 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1571 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1572 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1573
1574 /*
1575 * If we no longer need to hold onto old our caps, and we may
1576 * have cached pages, but don't want them, then try to invalidate.
1577 * If we fail, it's because pages are locked.... try again later.
1578 */
1579 if ((!is_delayed || mdsc->stopping) &&
1580 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1581 inode->i_data.nrpages && /* have cached pages */
1582 (file_wanted == 0 || /* no open files */
1583 (revoking & (CEPH_CAP_FILE_CACHE|
1584 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1585 !tried_invalidate) {
1586 dout("check_caps trying to invalidate on %p\n", inode);
1587 if (try_nonblocking_invalidate(inode) < 0) {
1588 if (revoking & (CEPH_CAP_FILE_CACHE|
1589 CEPH_CAP_FILE_LAZYIO)) {
1590 dout("check_caps queuing invalidate\n");
1591 queue_invalidate = 1;
1592 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1593 } else {
1594 dout("check_caps failed to invalidate pages\n");
1595 /* we failed to invalidate pages. check these
1596 caps again later. */
1597 force_requeue = 1;
1598 __cap_set_timeouts(mdsc, ci);
1599 }
1600 }
1601 tried_invalidate = 1;
1602 goto retry_locked;
1603 }
1604
1605 num = 0;
1606 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1607 cap = rb_entry(p, struct ceph_cap, ci_node);
1608 num++;
1609
1610 /* avoid looping forever */
1611 if (mds >= cap->mds ||
1612 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1613 continue;
1614
1615 /* NOTE: no side-effects allowed, until we take s_mutex */
1616
1617 cap_used = used;
1618 if (ci->i_auth_cap && cap != ci->i_auth_cap)
1619 cap_used &= ~ci->i_auth_cap->issued;
1620
1621 revoking = cap->implemented & ~cap->issued;
1622 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1623 cap->mds, cap, ceph_cap_string(cap->issued),
1624 ceph_cap_string(cap_used),
1625 ceph_cap_string(cap->implemented),
1626 ceph_cap_string(revoking));
1627
1628 if (cap == ci->i_auth_cap &&
1629 (cap->issued & CEPH_CAP_FILE_WR)) {
1630 /* request larger max_size from MDS? */
1631 if (ci->i_wanted_max_size > ci->i_max_size &&
1632 ci->i_wanted_max_size > ci->i_requested_max_size) {
1633 dout("requesting new max_size\n");
1634 goto ack;
1635 }
1636
1637 /* approaching file_max? */
1638 if ((inode->i_size << 1) >= ci->i_max_size &&
1639 (ci->i_reported_size << 1) < ci->i_max_size) {
1640 dout("i_size approaching max_size\n");
1641 goto ack;
1642 }
1643 }
1644 /* flush anything dirty? */
1645 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1646 ci->i_dirty_caps) {
1647 dout("flushing dirty caps\n");
1648 goto ack;
1649 }
1650
1651 /* completed revocation? going down and there are no caps? */
1652 if (revoking && (revoking & cap_used) == 0) {
1653 dout("completed revocation of %s\n",
1654 ceph_cap_string(cap->implemented & ~cap->issued));
1655 goto ack;
1656 }
1657
1658 /* want more caps from mds? */
1659 if (want & ~(cap->mds_wanted | cap->issued))
1660 goto ack;
1661
1662 /* things we might delay */
1663 if ((cap->issued & ~retain) == 0 &&
1664 cap->mds_wanted == want)
1665 continue; /* nope, all good */
1666
1667 if (is_delayed)
1668 goto ack;
1669
1670 /* delay? */
1671 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1672 time_before(jiffies, ci->i_hold_caps_max)) {
1673 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1674 ceph_cap_string(cap->issued),
1675 ceph_cap_string(cap->issued & retain),
1676 ceph_cap_string(cap->mds_wanted),
1677 ceph_cap_string(want));
1678 delayed++;
1679 continue;
1680 }
1681
1682ack:
1683 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1684 dout(" skipping %p I_NOFLUSH set\n", inode);
1685 continue;
1686 }
1687
1688 if (session && session != cap->session) {
1689 dout("oops, wrong session %p mutex\n", session);
1690 mutex_unlock(&session->s_mutex);
1691 session = NULL;
1692 }
1693 if (!session) {
1694 session = cap->session;
1695 if (mutex_trylock(&session->s_mutex) == 0) {
1696 dout("inverting session/ino locks on %p\n",
1697 session);
1698 spin_unlock(&ci->i_ceph_lock);
1699 if (took_snap_rwsem) {
1700 up_read(&mdsc->snap_rwsem);
1701 took_snap_rwsem = 0;
1702 }
1703 mutex_lock(&session->s_mutex);
1704 goto retry;
1705 }
1706 }
1707 /* take snap_rwsem after session mutex */
1708 if (!took_snap_rwsem) {
1709 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1710 dout("inverting snap/in locks on %p\n",
1711 inode);
1712 spin_unlock(&ci->i_ceph_lock);
1713 down_read(&mdsc->snap_rwsem);
1714 took_snap_rwsem = 1;
1715 goto retry;
1716 }
1717 took_snap_rwsem = 1;
1718 }
1719
1720 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1721 flushing = __mark_caps_flushing(inode, session);
1722 else
1723 flushing = 0;
1724
1725 mds = cap->mds; /* remember mds, so we don't repeat */
1726 sent++;
1727
1728 /* __send_cap drops i_ceph_lock */
1729 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1730 want, retain, flushing, NULL);
1731 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1732 }
1733
1734 /*
1735 * Reschedule delayed caps release if we delayed anything,
1736 * otherwise cancel.
1737 */
1738 if (delayed && is_delayed)
1739 force_requeue = 1; /* __send_cap delayed release; requeue */
1740 if (!delayed && !is_delayed)
1741 __cap_delay_cancel(mdsc, ci);
1742 else if (!is_delayed || force_requeue)
1743 __cap_delay_requeue(mdsc, ci);
1744
1745 spin_unlock(&ci->i_ceph_lock);
1746
1747 if (queue_invalidate)
1748 ceph_queue_invalidate(inode);
1749
1750 if (session)
1751 mutex_unlock(&session->s_mutex);
1752 if (took_snap_rwsem)
1753 up_read(&mdsc->snap_rwsem);
1754}
1755
1756/*
1757 * Try to flush dirty caps back to the auth mds.
1758 */
1759static int try_flush_caps(struct inode *inode, unsigned *flush_tid)
1760{
1761 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1762 struct ceph_inode_info *ci = ceph_inode(inode);
1763 int flushing = 0;
1764 struct ceph_mds_session *session = NULL;
1765
1766retry:
1767 spin_lock(&ci->i_ceph_lock);
1768 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1769 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1770 goto out;
1771 }
1772 if (ci->i_dirty_caps && ci->i_auth_cap) {
1773 struct ceph_cap *cap = ci->i_auth_cap;
1774 int used = __ceph_caps_used(ci);
1775 int want = __ceph_caps_wanted(ci);
1776 int delayed;
1777
1778 if (!session || session != cap->session) {
1779 spin_unlock(&ci->i_ceph_lock);
1780 if (session)
1781 mutex_unlock(&session->s_mutex);
1782 session = cap->session;
1783 mutex_lock(&session->s_mutex);
1784 goto retry;
1785 }
1786 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1787 goto out;
1788
1789 flushing = __mark_caps_flushing(inode, session);
1790
1791 /* __send_cap drops i_ceph_lock */
1792 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1793 cap->issued | cap->implemented, flushing,
1794 flush_tid);
1795 if (!delayed)
1796 goto out_unlocked;
1797
1798 spin_lock(&ci->i_ceph_lock);
1799 __cap_delay_requeue(mdsc, ci);
1800 }
1801out:
1802 spin_unlock(&ci->i_ceph_lock);
1803out_unlocked:
1804 if (session)
1805 mutex_unlock(&session->s_mutex);
1806 return flushing;
1807}
1808
1809/*
1810 * Return true if we've flushed caps through the given flush_tid.
1811 */
1812static int caps_are_flushed(struct inode *inode, unsigned tid)
1813{
1814 struct ceph_inode_info *ci = ceph_inode(inode);
1815 int i, ret = 1;
1816
1817 spin_lock(&ci->i_ceph_lock);
1818 for (i = 0; i < CEPH_CAP_BITS; i++)
1819 if ((ci->i_flushing_caps & (1 << i)) &&
1820 ci->i_cap_flush_tid[i] <= tid) {
1821 /* still flushing this bit */
1822 ret = 0;
1823 break;
1824 }
1825 spin_unlock(&ci->i_ceph_lock);
1826 return ret;
1827}
1828
1829/*
1830 * Wait on any unsafe replies for the given inode. First wait on the
1831 * newest request, and make that the upper bound. Then, if there are
1832 * more requests, keep waiting on the oldest as long as it is still older
1833 * than the original request.
1834 */
1835static void sync_write_wait(struct inode *inode)
1836{
1837 struct ceph_inode_info *ci = ceph_inode(inode);
1838 struct list_head *head = &ci->i_unsafe_writes;
1839 struct ceph_osd_request *req;
1840 u64 last_tid;
1841
1842 spin_lock(&ci->i_unsafe_lock);
1843 if (list_empty(head))
1844 goto out;
1845
1846 /* set upper bound as _last_ entry in chain */
1847 req = list_entry(head->prev, struct ceph_osd_request,
1848 r_unsafe_item);
1849 last_tid = req->r_tid;
1850
1851 do {
1852 ceph_osdc_get_request(req);
1853 spin_unlock(&ci->i_unsafe_lock);
1854 dout("sync_write_wait on tid %llu (until %llu)\n",
1855 req->r_tid, last_tid);
1856 wait_for_completion(&req->r_safe_completion);
1857 spin_lock(&ci->i_unsafe_lock);
1858 ceph_osdc_put_request(req);
1859
1860 /*
1861 * from here on look at first entry in chain, since we
1862 * only want to wait for anything older than last_tid
1863 */
1864 if (list_empty(head))
1865 break;
1866 req = list_entry(head->next, struct ceph_osd_request,
1867 r_unsafe_item);
1868 } while (req->r_tid < last_tid);
1869out:
1870 spin_unlock(&ci->i_unsafe_lock);
1871}
1872
1873int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1874{
1875 struct inode *inode = file->f_mapping->host;
1876 struct ceph_inode_info *ci = ceph_inode(inode);
1877 unsigned flush_tid;
1878 int ret;
1879 int dirty;
1880
1881 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1882 sync_write_wait(inode);
1883
1884 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1885 if (ret < 0)
1886 return ret;
1887 mutex_lock(&inode->i_mutex);
1888
1889 dirty = try_flush_caps(inode, &flush_tid);
1890 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1891
1892 /*
1893 * only wait on non-file metadata writeback (the mds
1894 * can recover size and mtime, so we don't need to
1895 * wait for that)
1896 */
1897 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1898 dout("fsync waiting for flush_tid %u\n", flush_tid);
1899 ret = wait_event_interruptible(ci->i_cap_wq,
1900 caps_are_flushed(inode, flush_tid));
1901 }
1902
1903 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1904 mutex_unlock(&inode->i_mutex);
1905 return ret;
1906}
1907
1908/*
1909 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1910 * queue inode for flush but don't do so immediately, because we can
1911 * get by with fewer MDS messages if we wait for data writeback to
1912 * complete first.
1913 */
1914int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1915{
1916 struct ceph_inode_info *ci = ceph_inode(inode);
1917 unsigned flush_tid;
1918 int err = 0;
1919 int dirty;
1920 int wait = wbc->sync_mode == WB_SYNC_ALL;
1921
1922 dout("write_inode %p wait=%d\n", inode, wait);
1923 if (wait) {
1924 dirty = try_flush_caps(inode, &flush_tid);
1925 if (dirty)
1926 err = wait_event_interruptible(ci->i_cap_wq,
1927 caps_are_flushed(inode, flush_tid));
1928 } else {
1929 struct ceph_mds_client *mdsc =
1930 ceph_sb_to_client(inode->i_sb)->mdsc;
1931
1932 spin_lock(&ci->i_ceph_lock);
1933 if (__ceph_caps_dirty(ci))
1934 __cap_delay_requeue_front(mdsc, ci);
1935 spin_unlock(&ci->i_ceph_lock);
1936 }
1937 return err;
1938}
1939
1940/*
1941 * After a recovering MDS goes active, we need to resend any caps
1942 * we were flushing.
1943 *
1944 * Caller holds session->s_mutex.
1945 */
1946static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1947 struct ceph_mds_session *session)
1948{
1949 struct ceph_cap_snap *capsnap;
1950
1951 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1952 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1953 flushing_item) {
1954 struct ceph_inode_info *ci = capsnap->ci;
1955 struct inode *inode = &ci->vfs_inode;
1956 struct ceph_cap *cap;
1957
1958 spin_lock(&ci->i_ceph_lock);
1959 cap = ci->i_auth_cap;
1960 if (cap && cap->session == session) {
1961 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1962 cap, capsnap);
1963 __ceph_flush_snaps(ci, &session, 1);
1964 } else {
1965 pr_err("%p auth cap %p not mds%d ???\n", inode,
1966 cap, session->s_mds);
1967 }
1968 spin_unlock(&ci->i_ceph_lock);
1969 }
1970}
1971
1972void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1973 struct ceph_mds_session *session)
1974{
1975 struct ceph_inode_info *ci;
1976
1977 kick_flushing_capsnaps(mdsc, session);
1978
1979 dout("kick_flushing_caps mds%d\n", session->s_mds);
1980 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1981 struct inode *inode = &ci->vfs_inode;
1982 struct ceph_cap *cap;
1983 int delayed = 0;
1984
1985 spin_lock(&ci->i_ceph_lock);
1986 cap = ci->i_auth_cap;
1987 if (cap && cap->session == session) {
1988 dout("kick_flushing_caps %p cap %p %s\n", inode,
1989 cap, ceph_cap_string(ci->i_flushing_caps));
1990 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1991 __ceph_caps_used(ci),
1992 __ceph_caps_wanted(ci),
1993 cap->issued | cap->implemented,
1994 ci->i_flushing_caps, NULL);
1995 if (delayed) {
1996 spin_lock(&ci->i_ceph_lock);
1997 __cap_delay_requeue(mdsc, ci);
1998 spin_unlock(&ci->i_ceph_lock);
1999 }
2000 } else {
2001 pr_err("%p auth cap %p not mds%d ???\n", inode,
2002 cap, session->s_mds);
2003 spin_unlock(&ci->i_ceph_lock);
2004 }
2005 }
2006}
2007
2008static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
2009 struct ceph_mds_session *session,
2010 struct inode *inode)
2011{
2012 struct ceph_inode_info *ci = ceph_inode(inode);
2013 struct ceph_cap *cap;
2014 int delayed = 0;
2015
2016 spin_lock(&ci->i_ceph_lock);
2017 cap = ci->i_auth_cap;
2018 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
2019 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
2020
2021 __ceph_flush_snaps(ci, &session, 1);
2022
2023 if (ci->i_flushing_caps) {
2024 spin_lock(&mdsc->cap_dirty_lock);
2025 list_move_tail(&ci->i_flushing_item,
2026 &cap->session->s_cap_flushing);
2027 spin_unlock(&mdsc->cap_dirty_lock);
2028
2029 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2030 __ceph_caps_used(ci),
2031 __ceph_caps_wanted(ci),
2032 cap->issued | cap->implemented,
2033 ci->i_flushing_caps, NULL);
2034 if (delayed) {
2035 spin_lock(&ci->i_ceph_lock);
2036 __cap_delay_requeue(mdsc, ci);
2037 spin_unlock(&ci->i_ceph_lock);
2038 }
2039 } else {
2040 spin_unlock(&ci->i_ceph_lock);
2041 }
2042}
2043
2044
2045/*
2046 * Take references to capabilities we hold, so that we don't release
2047 * them to the MDS prematurely.
2048 *
2049 * Protected by i_ceph_lock.
2050 */
2051static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2052{
2053 if (got & CEPH_CAP_PIN)
2054 ci->i_pin_ref++;
2055 if (got & CEPH_CAP_FILE_RD)
2056 ci->i_rd_ref++;
2057 if (got & CEPH_CAP_FILE_CACHE)
2058 ci->i_rdcache_ref++;
2059 if (got & CEPH_CAP_FILE_WR)
2060 ci->i_wr_ref++;
2061 if (got & CEPH_CAP_FILE_BUFFER) {
2062 if (ci->i_wb_ref == 0)
2063 ihold(&ci->vfs_inode);
2064 ci->i_wb_ref++;
2065 dout("__take_cap_refs %p wb %d -> %d (?)\n",
2066 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2067 }
2068}
2069
2070/*
2071 * Try to grab cap references. Specify those refs we @want, and the
2072 * minimal set we @need. Also include the larger offset we are writing
2073 * to (when applicable), and check against max_size here as well.
2074 * Note that caller is responsible for ensuring max_size increases are
2075 * requested from the MDS.
2076 */
2077static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2078 int *got, loff_t endoff, int *check_max, int *err)
2079{
2080 struct inode *inode = &ci->vfs_inode;
2081 int ret = 0;
2082 int have, implemented;
2083 int file_wanted;
2084
2085 dout("get_cap_refs %p need %s want %s\n", inode,
2086 ceph_cap_string(need), ceph_cap_string(want));
2087 spin_lock(&ci->i_ceph_lock);
2088
2089 /* make sure file is actually open */
2090 file_wanted = __ceph_caps_file_wanted(ci);
2091 if ((file_wanted & need) == 0) {
2092 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2093 ceph_cap_string(need), ceph_cap_string(file_wanted));
2094 *err = -EBADF;
2095 ret = 1;
2096 goto out;
2097 }
2098
2099 /* finish pending truncate */
2100 while (ci->i_truncate_pending) {
2101 spin_unlock(&ci->i_ceph_lock);
2102 __ceph_do_pending_vmtruncate(inode);
2103 spin_lock(&ci->i_ceph_lock);
2104 }
2105
2106 have = __ceph_caps_issued(ci, &implemented);
2107
2108 if (have & need & CEPH_CAP_FILE_WR) {
2109 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2110 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2111 inode, endoff, ci->i_max_size);
2112 if (endoff > ci->i_requested_max_size) {
2113 *check_max = 1;
2114 ret = 1;
2115 }
2116 goto out;
2117 }
2118 /*
2119 * If a sync write is in progress, we must wait, so that we
2120 * can get a final snapshot value for size+mtime.
2121 */
2122 if (__ceph_have_pending_cap_snap(ci)) {
2123 dout("get_cap_refs %p cap_snap_pending\n", inode);
2124 goto out;
2125 }
2126 }
2127
2128 if ((have & need) == need) {
2129 /*
2130 * Look at (implemented & ~have & not) so that we keep waiting
2131 * on transition from wanted -> needed caps. This is needed
2132 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2133 * going before a prior buffered writeback happens.
2134 */
2135 int not = want & ~(have & need);
2136 int revoking = implemented & ~have;
2137 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2138 inode, ceph_cap_string(have), ceph_cap_string(not),
2139 ceph_cap_string(revoking));
2140 if ((revoking & not) == 0) {
2141 *got = need | (have & want);
2142 __take_cap_refs(ci, *got);
2143 ret = 1;
2144 }
2145 } else {
2146 dout("get_cap_refs %p have %s needed %s\n", inode,
2147 ceph_cap_string(have), ceph_cap_string(need));
2148 }
2149out:
2150 spin_unlock(&ci->i_ceph_lock);
2151 dout("get_cap_refs %p ret %d got %s\n", inode,
2152 ret, ceph_cap_string(*got));
2153 return ret;
2154}
2155
2156/*
2157 * Check the offset we are writing up to against our current
2158 * max_size. If necessary, tell the MDS we want to write to
2159 * a larger offset.
2160 */
2161static void check_max_size(struct inode *inode, loff_t endoff)
2162{
2163 struct ceph_inode_info *ci = ceph_inode(inode);
2164 int check = 0;
2165
2166 /* do we need to explicitly request a larger max_size? */
2167 spin_lock(&ci->i_ceph_lock);
2168 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
2169 dout("write %p at large endoff %llu, req max_size\n",
2170 inode, endoff);
2171 ci->i_wanted_max_size = endoff;
2172 }
2173 /* duplicate ceph_check_caps()'s logic */
2174 if (ci->i_auth_cap &&
2175 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
2176 ci->i_wanted_max_size > ci->i_max_size &&
2177 ci->i_wanted_max_size > ci->i_requested_max_size)
2178 check = 1;
2179 spin_unlock(&ci->i_ceph_lock);
2180 if (check)
2181 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2182}
2183
2184/*
2185 * Wait for caps, and take cap references. If we can't get a WR cap
2186 * due to a small max_size, make sure we check_max_size (and possibly
2187 * ask the mds) so we don't get hung up indefinitely.
2188 */
2189int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2190 loff_t endoff)
2191{
2192 int check_max, ret, err;
2193
2194retry:
2195 if (endoff > 0)
2196 check_max_size(&ci->vfs_inode, endoff);
2197 check_max = 0;
2198 err = 0;
2199 ret = wait_event_interruptible(ci->i_cap_wq,
2200 try_get_cap_refs(ci, need, want,
2201 got, endoff,
2202 &check_max, &err));
2203 if (err)
2204 ret = err;
2205 if (check_max)
2206 goto retry;
2207 return ret;
2208}
2209
2210/*
2211 * Take cap refs. Caller must already know we hold at least one ref
2212 * on the caps in question or we don't know this is safe.
2213 */
2214void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2215{
2216 spin_lock(&ci->i_ceph_lock);
2217 __take_cap_refs(ci, caps);
2218 spin_unlock(&ci->i_ceph_lock);
2219}
2220
2221/*
2222 * Release cap refs.
2223 *
2224 * If we released the last ref on any given cap, call ceph_check_caps
2225 * to release (or schedule a release).
2226 *
2227 * If we are releasing a WR cap (from a sync write), finalize any affected
2228 * cap_snap, and wake up any waiters.
2229 */
2230void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2231{
2232 struct inode *inode = &ci->vfs_inode;
2233 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2234 struct ceph_cap_snap *capsnap;
2235
2236 spin_lock(&ci->i_ceph_lock);
2237 if (had & CEPH_CAP_PIN)
2238 --ci->i_pin_ref;
2239 if (had & CEPH_CAP_FILE_RD)
2240 if (--ci->i_rd_ref == 0)
2241 last++;
2242 if (had & CEPH_CAP_FILE_CACHE)
2243 if (--ci->i_rdcache_ref == 0)
2244 last++;
2245 if (had & CEPH_CAP_FILE_BUFFER) {
2246 if (--ci->i_wb_ref == 0) {
2247 last++;
2248 put++;
2249 }
2250 dout("put_cap_refs %p wb %d -> %d (?)\n",
2251 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2252 }
2253 if (had & CEPH_CAP_FILE_WR)
2254 if (--ci->i_wr_ref == 0) {
2255 last++;
2256 if (!list_empty(&ci->i_cap_snaps)) {
2257 capsnap = list_first_entry(&ci->i_cap_snaps,
2258 struct ceph_cap_snap,
2259 ci_item);
2260 if (capsnap->writing) {
2261 capsnap->writing = 0;
2262 flushsnaps =
2263 __ceph_finish_cap_snap(ci,
2264 capsnap);
2265 wake = 1;
2266 }
2267 }
2268 }
2269 spin_unlock(&ci->i_ceph_lock);
2270
2271 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2272 last ? " last" : "", put ? " put" : "");
2273
2274 if (last && !flushsnaps)
2275 ceph_check_caps(ci, 0, NULL);
2276 else if (flushsnaps)
2277 ceph_flush_snaps(ci);
2278 if (wake)
2279 wake_up_all(&ci->i_cap_wq);
2280 if (put)
2281 iput(inode);
2282}
2283
2284/*
2285 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2286 * context. Adjust per-snap dirty page accounting as appropriate.
2287 * Once all dirty data for a cap_snap is flushed, flush snapped file
2288 * metadata back to the MDS. If we dropped the last ref, call
2289 * ceph_check_caps.
2290 */
2291void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2292 struct ceph_snap_context *snapc)
2293{
2294 struct inode *inode = &ci->vfs_inode;
2295 int last = 0;
2296 int complete_capsnap = 0;
2297 int drop_capsnap = 0;
2298 int found = 0;
2299 struct ceph_cap_snap *capsnap = NULL;
2300
2301 spin_lock(&ci->i_ceph_lock);
2302 ci->i_wrbuffer_ref -= nr;
2303 last = !ci->i_wrbuffer_ref;
2304
2305 if (ci->i_head_snapc == snapc) {
2306 ci->i_wrbuffer_ref_head -= nr;
2307 if (ci->i_wrbuffer_ref_head == 0 &&
2308 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2309 BUG_ON(!ci->i_head_snapc);
2310 ceph_put_snap_context(ci->i_head_snapc);
2311 ci->i_head_snapc = NULL;
2312 }
2313 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2314 inode,
2315 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2316 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2317 last ? " LAST" : "");
2318 } else {
2319 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2320 if (capsnap->context == snapc) {
2321 found = 1;
2322 break;
2323 }
2324 }
2325 BUG_ON(!found);
2326 capsnap->dirty_pages -= nr;
2327 if (capsnap->dirty_pages == 0) {
2328 complete_capsnap = 1;
2329 if (capsnap->dirty == 0)
2330 /* cap writeback completed before we created
2331 * the cap_snap; no FLUSHSNAP is needed */
2332 drop_capsnap = 1;
2333 }
2334 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2335 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2336 inode, capsnap, capsnap->context->seq,
2337 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2338 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2339 last ? " (wrbuffer last)" : "",
2340 complete_capsnap ? " (complete capsnap)" : "",
2341 drop_capsnap ? " (drop capsnap)" : "");
2342 if (drop_capsnap) {
2343 ceph_put_snap_context(capsnap->context);
2344 list_del(&capsnap->ci_item);
2345 list_del(&capsnap->flushing_item);
2346 ceph_put_cap_snap(capsnap);
2347 }
2348 }
2349
2350 spin_unlock(&ci->i_ceph_lock);
2351
2352 if (last) {
2353 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2354 iput(inode);
2355 } else if (complete_capsnap) {
2356 ceph_flush_snaps(ci);
2357 wake_up_all(&ci->i_cap_wq);
2358 }
2359 if (drop_capsnap)
2360 iput(inode);
2361}
2362
2363/*
2364 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
2365 */
2366static void invalidate_aliases(struct inode *inode)
2367{
2368 struct dentry *dn, *prev = NULL;
2369
2370 dout("invalidate_aliases inode %p\n", inode);
2371 d_prune_aliases(inode);
2372 /*
2373 * For non-directory inode, d_find_alias() only returns
2374 * hashed dentry. After calling d_invalidate(), the
2375 * dentry becomes unhashed.
2376 *
2377 * For directory inode, d_find_alias() can return
2378 * unhashed dentry. But directory inode should have
2379 * one alias at most.
2380 */
2381 while ((dn = d_find_alias(inode))) {
2382 if (dn == prev) {
2383 dput(dn);
2384 break;
2385 }
2386 d_invalidate(dn);
2387 if (prev)
2388 dput(prev);
2389 prev = dn;
2390 }
2391 if (prev)
2392 dput(prev);
2393}
2394
2395/*
2396 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2397 * actually be a revocation if it specifies a smaller cap set.)
2398 *
2399 * caller holds s_mutex and i_ceph_lock, we drop both.
2400 *
2401 * return value:
2402 * 0 - ok
2403 * 1 - check_caps on auth cap only (writeback)
2404 * 2 - check_caps (ack revoke)
2405 */
2406static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2407 struct ceph_mds_session *session,
2408 struct ceph_cap *cap,
2409 struct ceph_buffer *xattr_buf)
2410 __releases(ci->i_ceph_lock)
2411{
2412 struct ceph_inode_info *ci = ceph_inode(inode);
2413 int mds = session->s_mds;
2414 int seq = le32_to_cpu(grant->seq);
2415 int newcaps = le32_to_cpu(grant->caps);
2416 int issued, implemented, used, wanted, dirty;
2417 u64 size = le64_to_cpu(grant->size);
2418 u64 max_size = le64_to_cpu(grant->max_size);
2419 struct timespec mtime, atime, ctime;
2420 int check_caps = 0;
2421 int wake = 0;
2422 int writeback = 0;
2423 int queue_invalidate = 0;
2424 int deleted_inode = 0;
2425 int queue_revalidate = 0;
2426
2427 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2428 inode, cap, mds, seq, ceph_cap_string(newcaps));
2429 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2430 inode->i_size);
2431
2432
2433 /*
2434 * auth mds of the inode changed. we received the cap export message,
2435 * but still haven't received the cap import message. handle_cap_export
2436 * updated the new auth MDS' cap.
2437 *
2438 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message
2439 * that was sent before the cap import message. So don't remove caps.
2440 */
2441 if (ceph_seq_cmp(seq, cap->seq) <= 0) {
2442 WARN_ON(cap != ci->i_auth_cap);
2443 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id));
2444 seq = cap->seq;
2445 newcaps |= cap->issued;
2446 }
2447
2448 /*
2449 * If CACHE is being revoked, and we have no dirty buffers,
2450 * try to invalidate (once). (If there are dirty buffers, we
2451 * will invalidate _after_ writeback.)
2452 */
2453 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2454 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2455 !ci->i_wrbuffer_ref) {
2456 if (try_nonblocking_invalidate(inode)) {
2457 /* there were locked pages.. invalidate later
2458 in a separate thread. */
2459 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2460 queue_invalidate = 1;
2461 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2462 }
2463 }
2464
2465 ceph_fscache_invalidate(inode);
2466 }
2467
2468 /* side effects now are allowed */
2469
2470 issued = __ceph_caps_issued(ci, &implemented);
2471 issued |= implemented | __ceph_caps_dirty(ci);
2472
2473 cap->cap_gen = session->s_cap_gen;
2474 cap->seq = seq;
2475
2476 __check_cap_issue(ci, cap, newcaps);
2477
2478 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2479 inode->i_mode = le32_to_cpu(grant->mode);
2480 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2481 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2482 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2483 from_kuid(&init_user_ns, inode->i_uid),
2484 from_kgid(&init_user_ns, inode->i_gid));
2485 }
2486
2487 if ((issued & CEPH_CAP_LINK_EXCL) == 0) {
2488 set_nlink(inode, le32_to_cpu(grant->nlink));
2489 if (inode->i_nlink == 0 &&
2490 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
2491 deleted_inode = 1;
2492 }
2493
2494 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2495 int len = le32_to_cpu(grant->xattr_len);
2496 u64 version = le64_to_cpu(grant->xattr_version);
2497
2498 if (version > ci->i_xattrs.version) {
2499 dout(" got new xattrs v%llu on %p len %d\n",
2500 version, inode, len);
2501 if (ci->i_xattrs.blob)
2502 ceph_buffer_put(ci->i_xattrs.blob);
2503 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2504 ci->i_xattrs.version = version;
2505 ceph_forget_all_cached_acls(inode);
2506 }
2507 }
2508
2509 /* Do we need to revalidate our fscache cookie. Don't bother on the
2510 * first cache cap as we already validate at cookie creation time. */
2511 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
2512 queue_revalidate = 1;
2513
2514 /* size/ctime/mtime/atime? */
2515 ceph_fill_file_size(inode, issued,
2516 le32_to_cpu(grant->truncate_seq),
2517 le64_to_cpu(grant->truncate_size), size);
2518 ceph_decode_timespec(&mtime, &grant->mtime);
2519 ceph_decode_timespec(&atime, &grant->atime);
2520 ceph_decode_timespec(&ctime, &grant->ctime);
2521 ceph_fill_file_time(inode, issued,
2522 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2523 &atime);
2524
2525
2526 /* file layout may have changed */
2527 ci->i_layout = grant->layout;
2528
2529 /* max size increase? */
2530 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2531 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2532 ci->i_max_size = max_size;
2533 if (max_size >= ci->i_wanted_max_size) {
2534 ci->i_wanted_max_size = 0; /* reset */
2535 ci->i_requested_max_size = 0;
2536 }
2537 wake = 1;
2538 }
2539
2540 /* check cap bits */
2541 wanted = __ceph_caps_wanted(ci);
2542 used = __ceph_caps_used(ci);
2543 dirty = __ceph_caps_dirty(ci);
2544 dout(" my wanted = %s, used = %s, dirty %s\n",
2545 ceph_cap_string(wanted),
2546 ceph_cap_string(used),
2547 ceph_cap_string(dirty));
2548 if (wanted != le32_to_cpu(grant->wanted)) {
2549 dout("mds wanted %s -> %s\n",
2550 ceph_cap_string(le32_to_cpu(grant->wanted)),
2551 ceph_cap_string(wanted));
2552 /* imported cap may not have correct mds_wanted */
2553 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2554 check_caps = 1;
2555 }
2556
2557 /* revocation, grant, or no-op? */
2558 if (cap->issued & ~newcaps) {
2559 int revoking = cap->issued & ~newcaps;
2560
2561 dout("revocation: %s -> %s (revoking %s)\n",
2562 ceph_cap_string(cap->issued),
2563 ceph_cap_string(newcaps),
2564 ceph_cap_string(revoking));
2565 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2566 writeback = 1; /* initiate writeback; will delay ack */
2567 else if (revoking == CEPH_CAP_FILE_CACHE &&
2568 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2569 queue_invalidate)
2570 ; /* do nothing yet, invalidation will be queued */
2571 else if (cap == ci->i_auth_cap)
2572 check_caps = 1; /* check auth cap only */
2573 else
2574 check_caps = 2; /* check all caps */
2575 cap->issued = newcaps;
2576 cap->implemented |= newcaps;
2577 } else if (cap->issued == newcaps) {
2578 dout("caps unchanged: %s -> %s\n",
2579 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2580 } else {
2581 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2582 ceph_cap_string(newcaps));
2583 /* non-auth MDS is revoking the newly grant caps ? */
2584 if (cap == ci->i_auth_cap &&
2585 __ceph_caps_revoking_other(ci, cap, newcaps))
2586 check_caps = 2;
2587
2588 cap->issued = newcaps;
2589 cap->implemented |= newcaps; /* add bits only, to
2590 * avoid stepping on a
2591 * pending revocation */
2592 wake = 1;
2593 }
2594 BUG_ON(cap->issued & ~cap->implemented);
2595
2596 spin_unlock(&ci->i_ceph_lock);
2597
2598 if (writeback)
2599 /*
2600 * queue inode for writeback: we can't actually call
2601 * filemap_write_and_wait, etc. from message handler
2602 * context.
2603 */
2604 ceph_queue_writeback(inode);
2605 if (queue_invalidate)
2606 ceph_queue_invalidate(inode);
2607 if (deleted_inode)
2608 invalidate_aliases(inode);
2609 if (queue_revalidate)
2610 ceph_queue_revalidate(inode);
2611 if (wake)
2612 wake_up_all(&ci->i_cap_wq);
2613
2614 if (check_caps == 1)
2615 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2616 session);
2617 else if (check_caps == 2)
2618 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2619 else
2620 mutex_unlock(&session->s_mutex);
2621}
2622
2623/*
2624 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2625 * MDS has been safely committed.
2626 */
2627static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2628 struct ceph_mds_caps *m,
2629 struct ceph_mds_session *session,
2630 struct ceph_cap *cap)
2631 __releases(ci->i_ceph_lock)
2632{
2633 struct ceph_inode_info *ci = ceph_inode(inode);
2634 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2635 unsigned seq = le32_to_cpu(m->seq);
2636 int dirty = le32_to_cpu(m->dirty);
2637 int cleaned = 0;
2638 int drop = 0;
2639 int i;
2640
2641 for (i = 0; i < CEPH_CAP_BITS; i++)
2642 if ((dirty & (1 << i)) &&
2643 flush_tid == ci->i_cap_flush_tid[i])
2644 cleaned |= 1 << i;
2645
2646 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2647 " flushing %s -> %s\n",
2648 inode, session->s_mds, seq, ceph_cap_string(dirty),
2649 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2650 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2651
2652 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2653 goto out;
2654
2655 ci->i_flushing_caps &= ~cleaned;
2656
2657 spin_lock(&mdsc->cap_dirty_lock);
2658 if (ci->i_flushing_caps == 0) {
2659 list_del_init(&ci->i_flushing_item);
2660 if (!list_empty(&session->s_cap_flushing))
2661 dout(" mds%d still flushing cap on %p\n",
2662 session->s_mds,
2663 &list_entry(session->s_cap_flushing.next,
2664 struct ceph_inode_info,
2665 i_flushing_item)->vfs_inode);
2666 mdsc->num_cap_flushing--;
2667 wake_up_all(&mdsc->cap_flushing_wq);
2668 dout(" inode %p now !flushing\n", inode);
2669
2670 if (ci->i_dirty_caps == 0) {
2671 dout(" inode %p now clean\n", inode);
2672 BUG_ON(!list_empty(&ci->i_dirty_item));
2673 drop = 1;
2674 if (ci->i_wrbuffer_ref_head == 0) {
2675 BUG_ON(!ci->i_head_snapc);
2676 ceph_put_snap_context(ci->i_head_snapc);
2677 ci->i_head_snapc = NULL;
2678 }
2679 } else {
2680 BUG_ON(list_empty(&ci->i_dirty_item));
2681 }
2682 }
2683 spin_unlock(&mdsc->cap_dirty_lock);
2684 wake_up_all(&ci->i_cap_wq);
2685
2686out:
2687 spin_unlock(&ci->i_ceph_lock);
2688 if (drop)
2689 iput(inode);
2690}
2691
2692/*
2693 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2694 * throw away our cap_snap.
2695 *
2696 * Caller hold s_mutex.
2697 */
2698static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2699 struct ceph_mds_caps *m,
2700 struct ceph_mds_session *session)
2701{
2702 struct ceph_inode_info *ci = ceph_inode(inode);
2703 u64 follows = le64_to_cpu(m->snap_follows);
2704 struct ceph_cap_snap *capsnap;
2705 int drop = 0;
2706
2707 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2708 inode, ci, session->s_mds, follows);
2709
2710 spin_lock(&ci->i_ceph_lock);
2711 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2712 if (capsnap->follows == follows) {
2713 if (capsnap->flush_tid != flush_tid) {
2714 dout(" cap_snap %p follows %lld tid %lld !="
2715 " %lld\n", capsnap, follows,
2716 flush_tid, capsnap->flush_tid);
2717 break;
2718 }
2719 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2720 dout(" removing %p cap_snap %p follows %lld\n",
2721 inode, capsnap, follows);
2722 ceph_put_snap_context(capsnap->context);
2723 list_del(&capsnap->ci_item);
2724 list_del(&capsnap->flushing_item);
2725 ceph_put_cap_snap(capsnap);
2726 drop = 1;
2727 break;
2728 } else {
2729 dout(" skipping cap_snap %p follows %lld\n",
2730 capsnap, capsnap->follows);
2731 }
2732 }
2733 spin_unlock(&ci->i_ceph_lock);
2734 if (drop)
2735 iput(inode);
2736}
2737
2738/*
2739 * Handle TRUNC from MDS, indicating file truncation.
2740 *
2741 * caller hold s_mutex.
2742 */
2743static void handle_cap_trunc(struct inode *inode,
2744 struct ceph_mds_caps *trunc,
2745 struct ceph_mds_session *session)
2746 __releases(ci->i_ceph_lock)
2747{
2748 struct ceph_inode_info *ci = ceph_inode(inode);
2749 int mds = session->s_mds;
2750 int seq = le32_to_cpu(trunc->seq);
2751 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2752 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2753 u64 size = le64_to_cpu(trunc->size);
2754 int implemented = 0;
2755 int dirty = __ceph_caps_dirty(ci);
2756 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2757 int queue_trunc = 0;
2758
2759 issued |= implemented | dirty;
2760
2761 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2762 inode, mds, seq, truncate_size, truncate_seq);
2763 queue_trunc = ceph_fill_file_size(inode, issued,
2764 truncate_seq, truncate_size, size);
2765 spin_unlock(&ci->i_ceph_lock);
2766
2767 if (queue_trunc) {
2768 ceph_queue_vmtruncate(inode);
2769 ceph_fscache_invalidate(inode);
2770 }
2771}
2772
2773/*
2774 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2775 * different one. If we are the most recent migration we've seen (as
2776 * indicated by mseq), make note of the migrating cap bits for the
2777 * duration (until we see the corresponding IMPORT).
2778 *
2779 * caller holds s_mutex
2780 */
2781static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2782 struct ceph_mds_cap_peer *ph,
2783 struct ceph_mds_session *session)
2784{
2785 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2786 struct ceph_mds_session *tsession = NULL;
2787 struct ceph_cap *cap, *tcap;
2788 struct ceph_inode_info *ci = ceph_inode(inode);
2789 u64 t_cap_id;
2790 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2791 unsigned t_seq, t_mseq;
2792 int target, issued;
2793 int mds = session->s_mds;
2794
2795 if (ph) {
2796 t_cap_id = le64_to_cpu(ph->cap_id);
2797 t_seq = le32_to_cpu(ph->seq);
2798 t_mseq = le32_to_cpu(ph->mseq);
2799 target = le32_to_cpu(ph->mds);
2800 } else {
2801 t_cap_id = t_seq = t_mseq = 0;
2802 target = -1;
2803 }
2804
2805 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n",
2806 inode, ci, mds, mseq, target);
2807retry:
2808 spin_lock(&ci->i_ceph_lock);
2809 cap = __get_cap_for_mds(ci, mds);
2810 if (!cap)
2811 goto out_unlock;
2812
2813 if (target < 0) {
2814 __ceph_remove_cap(cap, false);
2815 goto out_unlock;
2816 }
2817
2818 /*
2819 * now we know we haven't received the cap import message yet
2820 * because the exported cap still exist.
2821 */
2822
2823 issued = cap->issued;
2824 WARN_ON(issued != cap->implemented);
2825
2826 tcap = __get_cap_for_mds(ci, target);
2827 if (tcap) {
2828 /* already have caps from the target */
2829 if (tcap->cap_id != t_cap_id ||
2830 ceph_seq_cmp(tcap->seq, t_seq) < 0) {
2831 dout(" updating import cap %p mds%d\n", tcap, target);
2832 tcap->cap_id = t_cap_id;
2833 tcap->seq = t_seq - 1;
2834 tcap->issue_seq = t_seq - 1;
2835 tcap->mseq = t_mseq;
2836 tcap->issued |= issued;
2837 tcap->implemented |= issued;
2838 if (cap == ci->i_auth_cap)
2839 ci->i_auth_cap = tcap;
2840 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) {
2841 spin_lock(&mdsc->cap_dirty_lock);
2842 list_move_tail(&ci->i_flushing_item,
2843 &tcap->session->s_cap_flushing);
2844 spin_unlock(&mdsc->cap_dirty_lock);
2845 }
2846 }
2847 __ceph_remove_cap(cap, false);
2848 goto out_unlock;
2849 }
2850
2851 if (tsession) {
2852 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0;
2853 spin_unlock(&ci->i_ceph_lock);
2854 /* add placeholder for the export tagert */
2855 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0,
2856 t_seq - 1, t_mseq, (u64)-1, flag, NULL);
2857 goto retry;
2858 }
2859
2860 spin_unlock(&ci->i_ceph_lock);
2861 mutex_unlock(&session->s_mutex);
2862
2863 /* open target session */
2864 tsession = ceph_mdsc_open_export_target_session(mdsc, target);
2865 if (!IS_ERR(tsession)) {
2866 if (mds > target) {
2867 mutex_lock(&session->s_mutex);
2868 mutex_lock_nested(&tsession->s_mutex,
2869 SINGLE_DEPTH_NESTING);
2870 } else {
2871 mutex_lock(&tsession->s_mutex);
2872 mutex_lock_nested(&session->s_mutex,
2873 SINGLE_DEPTH_NESTING);
2874 }
2875 ceph_add_cap_releases(mdsc, tsession);
2876 } else {
2877 WARN_ON(1);
2878 tsession = NULL;
2879 target = -1;
2880 }
2881 goto retry;
2882
2883out_unlock:
2884 spin_unlock(&ci->i_ceph_lock);
2885 mutex_unlock(&session->s_mutex);
2886 if (tsession) {
2887 mutex_unlock(&tsession->s_mutex);
2888 ceph_put_mds_session(tsession);
2889 }
2890}
2891
2892/*
2893 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2894 * clean them up.
2895 *
2896 * caller holds s_mutex.
2897 */
2898static void handle_cap_import(struct ceph_mds_client *mdsc,
2899 struct inode *inode, struct ceph_mds_caps *im,
2900 struct ceph_mds_cap_peer *ph,
2901 struct ceph_mds_session *session,
2902 void *snaptrace, int snaptrace_len)
2903{
2904 struct ceph_inode_info *ci = ceph_inode(inode);
2905 struct ceph_cap *cap;
2906 int mds = session->s_mds;
2907 unsigned issued = le32_to_cpu(im->caps);
2908 unsigned wanted = le32_to_cpu(im->wanted);
2909 unsigned seq = le32_to_cpu(im->seq);
2910 unsigned mseq = le32_to_cpu(im->migrate_seq);
2911 u64 realmino = le64_to_cpu(im->realm);
2912 u64 cap_id = le64_to_cpu(im->cap_id);
2913 u64 p_cap_id;
2914 int peer;
2915
2916 if (ph) {
2917 p_cap_id = le64_to_cpu(ph->cap_id);
2918 peer = le32_to_cpu(ph->mds);
2919 } else {
2920 p_cap_id = 0;
2921 peer = -1;
2922 }
2923
2924 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n",
2925 inode, ci, mds, mseq, peer);
2926
2927 spin_lock(&ci->i_ceph_lock);
2928 cap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL;
2929 if (cap && cap->cap_id == p_cap_id) {
2930 dout(" remove export cap %p mds%d flags %d\n",
2931 cap, peer, ph->flags);
2932 if ((ph->flags & CEPH_CAP_FLAG_AUTH) &&
2933 (cap->seq != le32_to_cpu(ph->seq) ||
2934 cap->mseq != le32_to_cpu(ph->mseq))) {
2935 pr_err("handle_cap_import: mismatched seq/mseq: "
2936 "ino (%llx.%llx) mds%d seq %d mseq %d "
2937 "importer mds%d has peer seq %d mseq %d\n",
2938 ceph_vinop(inode), peer, cap->seq,
2939 cap->mseq, mds, le32_to_cpu(ph->seq),
2940 le32_to_cpu(ph->mseq));
2941 }
2942 ci->i_cap_exporting_issued = cap->issued;
2943 __ceph_remove_cap(cap, (ph->flags & CEPH_CAP_FLAG_RELEASE));
2944 }
2945
2946 /* make sure we re-request max_size, if necessary */
2947 ci->i_wanted_max_size = 0;
2948 ci->i_requested_max_size = 0;
2949 spin_unlock(&ci->i_ceph_lock);
2950
2951 down_write(&mdsc->snap_rwsem);
2952 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2953 false);
2954 downgrade_write(&mdsc->snap_rwsem);
2955 ceph_add_cap(inode, session, cap_id, -1,
2956 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2957 NULL /* no caps context */);
2958 kick_flushing_inode_caps(mdsc, session, inode);
2959 up_read(&mdsc->snap_rwsem);
2960
2961}
2962
2963/*
2964 * Handle a caps message from the MDS.
2965 *
2966 * Identify the appropriate session, inode, and call the right handler
2967 * based on the cap op.
2968 */
2969void ceph_handle_caps(struct ceph_mds_session *session,
2970 struct ceph_msg *msg)
2971{
2972 struct ceph_mds_client *mdsc = session->s_mdsc;
2973 struct super_block *sb = mdsc->fsc->sb;
2974 struct inode *inode;
2975 struct ceph_inode_info *ci;
2976 struct ceph_cap *cap;
2977 struct ceph_mds_caps *h;
2978 struct ceph_mds_cap_peer *peer = NULL;
2979 int mds = session->s_mds;
2980 int op;
2981 u32 seq, mseq;
2982 struct ceph_vino vino;
2983 u64 cap_id;
2984 u64 size, max_size;
2985 u64 tid;
2986 void *snaptrace;
2987 size_t snaptrace_len;
2988 void *flock;
2989 void *end;
2990 u32 flock_len;
2991
2992 dout("handle_caps from mds%d\n", mds);
2993
2994 /* decode */
2995 end = msg->front.iov_base + msg->front.iov_len;
2996 tid = le64_to_cpu(msg->hdr.tid);
2997 if (msg->front.iov_len < sizeof(*h))
2998 goto bad;
2999 h = msg->front.iov_base;
3000 op = le32_to_cpu(h->op);
3001 vino.ino = le64_to_cpu(h->ino);
3002 vino.snap = CEPH_NOSNAP;
3003 cap_id = le64_to_cpu(h->cap_id);
3004 seq = le32_to_cpu(h->seq);
3005 mseq = le32_to_cpu(h->migrate_seq);
3006 size = le64_to_cpu(h->size);
3007 max_size = le64_to_cpu(h->max_size);
3008
3009 snaptrace = h + 1;
3010 snaptrace_len = le32_to_cpu(h->snap_trace_len);
3011
3012 if (le16_to_cpu(msg->hdr.version) >= 2) {
3013 void *p = snaptrace + snaptrace_len;
3014 ceph_decode_32_safe(&p, end, flock_len, bad);
3015 if (p + flock_len > end)
3016 goto bad;
3017 flock = p;
3018 } else {
3019 flock = NULL;
3020 flock_len = 0;
3021 }
3022
3023 if (le16_to_cpu(msg->hdr.version) >= 3) {
3024 if (op == CEPH_CAP_OP_IMPORT) {
3025 void *p = flock + flock_len;
3026 if (p + sizeof(*peer) > end)
3027 goto bad;
3028 peer = p;
3029 } else if (op == CEPH_CAP_OP_EXPORT) {
3030 /* recorded in unused fields */
3031 peer = (void *)&h->size;
3032 }
3033 }
3034
3035 mutex_lock(&session->s_mutex);
3036 session->s_seq++;
3037 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
3038 (unsigned)seq);
3039
3040 if (op == CEPH_CAP_OP_IMPORT)
3041 ceph_add_cap_releases(mdsc, session);
3042
3043 /* lookup ino */
3044 inode = ceph_find_inode(sb, vino);
3045 ci = ceph_inode(inode);
3046 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
3047 vino.snap, inode);
3048 if (!inode) {
3049 dout(" i don't have ino %llx\n", vino.ino);
3050
3051 if (op == CEPH_CAP_OP_IMPORT) {
3052 spin_lock(&session->s_cap_lock);
3053 __queue_cap_release(session, vino.ino, cap_id,
3054 mseq, seq);
3055 spin_unlock(&session->s_cap_lock);
3056 }
3057 goto flush_cap_releases;
3058 }
3059
3060 /* these will work even if we don't have a cap yet */
3061 switch (op) {
3062 case CEPH_CAP_OP_FLUSHSNAP_ACK:
3063 handle_cap_flushsnap_ack(inode, tid, h, session);
3064 goto done;
3065
3066 case CEPH_CAP_OP_EXPORT:
3067 handle_cap_export(inode, h, peer, session);
3068 goto done_unlocked;
3069
3070 case CEPH_CAP_OP_IMPORT:
3071 handle_cap_import(mdsc, inode, h, peer, session,
3072 snaptrace, snaptrace_len);
3073 }
3074
3075 /* the rest require a cap */
3076 spin_lock(&ci->i_ceph_lock);
3077 cap = __get_cap_for_mds(ceph_inode(inode), mds);
3078 if (!cap) {
3079 dout(" no cap on %p ino %llx.%llx from mds%d\n",
3080 inode, ceph_ino(inode), ceph_snap(inode), mds);
3081 spin_unlock(&ci->i_ceph_lock);
3082 goto flush_cap_releases;
3083 }
3084
3085 /* note that each of these drops i_ceph_lock for us */
3086 switch (op) {
3087 case CEPH_CAP_OP_REVOKE:
3088 case CEPH_CAP_OP_GRANT:
3089 case CEPH_CAP_OP_IMPORT:
3090 handle_cap_grant(inode, h, session, cap, msg->middle);
3091 goto done_unlocked;
3092
3093 case CEPH_CAP_OP_FLUSH_ACK:
3094 handle_cap_flush_ack(inode, tid, h, session, cap);
3095 break;
3096
3097 case CEPH_CAP_OP_TRUNC:
3098 handle_cap_trunc(inode, h, session);
3099 break;
3100
3101 default:
3102 spin_unlock(&ci->i_ceph_lock);
3103 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
3104 ceph_cap_op_name(op));
3105 }
3106
3107 goto done;
3108
3109flush_cap_releases:
3110 /*
3111 * send any full release message to try to move things
3112 * along for the mds (who clearly thinks we still have this
3113 * cap).
3114 */
3115 ceph_add_cap_releases(mdsc, session);
3116 ceph_send_cap_releases(mdsc, session);
3117
3118done:
3119 mutex_unlock(&session->s_mutex);
3120done_unlocked:
3121 if (inode)
3122 iput(inode);
3123 return;
3124
3125bad:
3126 pr_err("ceph_handle_caps: corrupt message\n");
3127 ceph_msg_dump(msg);
3128 return;
3129}
3130
3131/*
3132 * Delayed work handler to process end of delayed cap release LRU list.
3133 */
3134void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
3135{
3136 struct ceph_inode_info *ci;
3137 int flags = CHECK_CAPS_NODELAY;
3138
3139 dout("check_delayed_caps\n");
3140 while (1) {
3141 spin_lock(&mdsc->cap_delay_lock);
3142 if (list_empty(&mdsc->cap_delay_list))
3143 break;
3144 ci = list_first_entry(&mdsc->cap_delay_list,
3145 struct ceph_inode_info,
3146 i_cap_delay_list);
3147 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
3148 time_before(jiffies, ci->i_hold_caps_max))
3149 break;
3150 list_del_init(&ci->i_cap_delay_list);
3151 spin_unlock(&mdsc->cap_delay_lock);
3152 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
3153 ceph_check_caps(ci, flags, NULL);
3154 }
3155 spin_unlock(&mdsc->cap_delay_lock);
3156}
3157
3158/*
3159 * Flush all dirty caps to the mds
3160 */
3161void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
3162{
3163 struct ceph_inode_info *ci;
3164 struct inode *inode;
3165
3166 dout("flush_dirty_caps\n");
3167 spin_lock(&mdsc->cap_dirty_lock);
3168 while (!list_empty(&mdsc->cap_dirty)) {
3169 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3170 i_dirty_item);
3171 inode = &ci->vfs_inode;
3172 ihold(inode);
3173 dout("flush_dirty_caps %p\n", inode);
3174 spin_unlock(&mdsc->cap_dirty_lock);
3175 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3176 iput(inode);
3177 spin_lock(&mdsc->cap_dirty_lock);
3178 }
3179 spin_unlock(&mdsc->cap_dirty_lock);
3180 dout("flush_dirty_caps done\n");
3181}
3182
3183/*
3184 * Drop open file reference. If we were the last open file,
3185 * we may need to release capabilities to the MDS (or schedule
3186 * their delayed release).
3187 */
3188void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3189{
3190 struct inode *inode = &ci->vfs_inode;
3191 int last = 0;
3192
3193 spin_lock(&ci->i_ceph_lock);
3194 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3195 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3196 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3197 if (--ci->i_nr_by_mode[fmode] == 0)
3198 last++;
3199 spin_unlock(&ci->i_ceph_lock);
3200
3201 if (last && ci->i_vino.snap == CEPH_NOSNAP)
3202 ceph_check_caps(ci, 0, NULL);
3203}
3204
3205/*
3206 * Helpers for embedding cap and dentry lease releases into mds
3207 * requests.
3208 *
3209 * @force is used by dentry_release (below) to force inclusion of a
3210 * record for the directory inode, even when there aren't any caps to
3211 * drop.
3212 */
3213int ceph_encode_inode_release(void **p, struct inode *inode,
3214 int mds, int drop, int unless, int force)
3215{
3216 struct ceph_inode_info *ci = ceph_inode(inode);
3217 struct ceph_cap *cap;
3218 struct ceph_mds_request_release *rel = *p;
3219 int used, dirty;
3220 int ret = 0;
3221
3222 spin_lock(&ci->i_ceph_lock);
3223 used = __ceph_caps_used(ci);
3224 dirty = __ceph_caps_dirty(ci);
3225
3226 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3227 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3228 ceph_cap_string(unless));
3229
3230 /* only drop unused, clean caps */
3231 drop &= ~(used | dirty);
3232
3233 cap = __get_cap_for_mds(ci, mds);
3234 if (cap && __cap_is_valid(cap)) {
3235 if (force ||
3236 ((cap->issued & drop) &&
3237 (cap->issued & unless) == 0)) {
3238 if ((cap->issued & drop) &&
3239 (cap->issued & unless) == 0) {
3240 int wanted = __ceph_caps_wanted(ci);
3241 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3242 wanted |= cap->mds_wanted;
3243 dout("encode_inode_release %p cap %p "
3244 "%s -> %s, wanted %s -> %s\n", inode, cap,
3245 ceph_cap_string(cap->issued),
3246 ceph_cap_string(cap->issued & ~drop),
3247 ceph_cap_string(cap->mds_wanted),
3248 ceph_cap_string(wanted));
3249
3250 cap->issued &= ~drop;
3251 cap->implemented &= ~drop;
3252 cap->mds_wanted = wanted;
3253 } else {
3254 dout("encode_inode_release %p cap %p %s"
3255 " (force)\n", inode, cap,
3256 ceph_cap_string(cap->issued));
3257 }
3258
3259 rel->ino = cpu_to_le64(ceph_ino(inode));
3260 rel->cap_id = cpu_to_le64(cap->cap_id);
3261 rel->seq = cpu_to_le32(cap->seq);
3262 rel->issue_seq = cpu_to_le32(cap->issue_seq),
3263 rel->mseq = cpu_to_le32(cap->mseq);
3264 rel->caps = cpu_to_le32(cap->implemented);
3265 rel->wanted = cpu_to_le32(cap->mds_wanted);
3266 rel->dname_len = 0;
3267 rel->dname_seq = 0;
3268 *p += sizeof(*rel);
3269 ret = 1;
3270 } else {
3271 dout("encode_inode_release %p cap %p %s\n",
3272 inode, cap, ceph_cap_string(cap->issued));
3273 }
3274 }
3275 spin_unlock(&ci->i_ceph_lock);
3276 return ret;
3277}
3278
3279int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3280 int mds, int drop, int unless)
3281{
3282 struct inode *dir = dentry->d_parent->d_inode;
3283 struct ceph_mds_request_release *rel = *p;
3284 struct ceph_dentry_info *di = ceph_dentry(dentry);
3285 int force = 0;
3286 int ret;
3287
3288 /*
3289 * force an record for the directory caps if we have a dentry lease.
3290 * this is racy (can't take i_ceph_lock and d_lock together), but it
3291 * doesn't have to be perfect; the mds will revoke anything we don't
3292 * release.
3293 */
3294 spin_lock(&dentry->d_lock);
3295 if (di->lease_session && di->lease_session->s_mds == mds)
3296 force = 1;
3297 spin_unlock(&dentry->d_lock);
3298
3299 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3300
3301 spin_lock(&dentry->d_lock);
3302 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3303 dout("encode_dentry_release %p mds%d seq %d\n",
3304 dentry, mds, (int)di->lease_seq);
3305 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3306 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3307 *p += dentry->d_name.len;
3308 rel->dname_seq = cpu_to_le32(di->lease_seq);
3309 __ceph_mdsc_drop_dentry_lease(dentry);
3310 }
3311 spin_unlock(&dentry->d_lock);
3312 return ret;
3313}
1#include <linux/ceph/ceph_debug.h>
2
3#include <linux/fs.h>
4#include <linux/kernel.h>
5#include <linux/sched.h>
6#include <linux/slab.h>
7#include <linux/vmalloc.h>
8#include <linux/wait.h>
9#include <linux/writeback.h>
10
11#include "super.h"
12#include "mds_client.h"
13#include <linux/ceph/decode.h>
14#include <linux/ceph/messenger.h>
15
16/*
17 * Capability management
18 *
19 * The Ceph metadata servers control client access to inode metadata
20 * and file data by issuing capabilities, granting clients permission
21 * to read and/or write both inode field and file data to OSDs
22 * (storage nodes). Each capability consists of a set of bits
23 * indicating which operations are allowed.
24 *
25 * If the client holds a *_SHARED cap, the client has a coherent value
26 * that can be safely read from the cached inode.
27 *
28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
29 * client is allowed to change inode attributes (e.g., file size,
30 * mtime), note its dirty state in the ceph_cap, and asynchronously
31 * flush that metadata change to the MDS.
32 *
33 * In the event of a conflicting operation (perhaps by another
34 * client), the MDS will revoke the conflicting client capabilities.
35 *
36 * In order for a client to cache an inode, it must hold a capability
37 * with at least one MDS server. When inodes are released, release
38 * notifications are batched and periodically sent en masse to the MDS
39 * cluster to release server state.
40 */
41
42
43/*
44 * Generate readable cap strings for debugging output.
45 */
46#define MAX_CAP_STR 20
47static char cap_str[MAX_CAP_STR][40];
48static DEFINE_SPINLOCK(cap_str_lock);
49static int last_cap_str;
50
51static char *gcap_string(char *s, int c)
52{
53 if (c & CEPH_CAP_GSHARED)
54 *s++ = 's';
55 if (c & CEPH_CAP_GEXCL)
56 *s++ = 'x';
57 if (c & CEPH_CAP_GCACHE)
58 *s++ = 'c';
59 if (c & CEPH_CAP_GRD)
60 *s++ = 'r';
61 if (c & CEPH_CAP_GWR)
62 *s++ = 'w';
63 if (c & CEPH_CAP_GBUFFER)
64 *s++ = 'b';
65 if (c & CEPH_CAP_GLAZYIO)
66 *s++ = 'l';
67 return s;
68}
69
70const char *ceph_cap_string(int caps)
71{
72 int i;
73 char *s;
74 int c;
75
76 spin_lock(&cap_str_lock);
77 i = last_cap_str++;
78 if (last_cap_str == MAX_CAP_STR)
79 last_cap_str = 0;
80 spin_unlock(&cap_str_lock);
81
82 s = cap_str[i];
83
84 if (caps & CEPH_CAP_PIN)
85 *s++ = 'p';
86
87 c = (caps >> CEPH_CAP_SAUTH) & 3;
88 if (c) {
89 *s++ = 'A';
90 s = gcap_string(s, c);
91 }
92
93 c = (caps >> CEPH_CAP_SLINK) & 3;
94 if (c) {
95 *s++ = 'L';
96 s = gcap_string(s, c);
97 }
98
99 c = (caps >> CEPH_CAP_SXATTR) & 3;
100 if (c) {
101 *s++ = 'X';
102 s = gcap_string(s, c);
103 }
104
105 c = caps >> CEPH_CAP_SFILE;
106 if (c) {
107 *s++ = 'F';
108 s = gcap_string(s, c);
109 }
110
111 if (s == cap_str[i])
112 *s++ = '-';
113 *s = 0;
114 return cap_str[i];
115}
116
117void ceph_caps_init(struct ceph_mds_client *mdsc)
118{
119 INIT_LIST_HEAD(&mdsc->caps_list);
120 spin_lock_init(&mdsc->caps_list_lock);
121}
122
123void ceph_caps_finalize(struct ceph_mds_client *mdsc)
124{
125 struct ceph_cap *cap;
126
127 spin_lock(&mdsc->caps_list_lock);
128 while (!list_empty(&mdsc->caps_list)) {
129 cap = list_first_entry(&mdsc->caps_list,
130 struct ceph_cap, caps_item);
131 list_del(&cap->caps_item);
132 kmem_cache_free(ceph_cap_cachep, cap);
133 }
134 mdsc->caps_total_count = 0;
135 mdsc->caps_avail_count = 0;
136 mdsc->caps_use_count = 0;
137 mdsc->caps_reserve_count = 0;
138 mdsc->caps_min_count = 0;
139 spin_unlock(&mdsc->caps_list_lock);
140}
141
142void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
143{
144 spin_lock(&mdsc->caps_list_lock);
145 mdsc->caps_min_count += delta;
146 BUG_ON(mdsc->caps_min_count < 0);
147 spin_unlock(&mdsc->caps_list_lock);
148}
149
150int ceph_reserve_caps(struct ceph_mds_client *mdsc,
151 struct ceph_cap_reservation *ctx, int need)
152{
153 int i;
154 struct ceph_cap *cap;
155 int have;
156 int alloc = 0;
157 LIST_HEAD(newcaps);
158 int ret = 0;
159
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
161
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
174
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap) {
178 ret = -ENOMEM;
179 goto out_alloc_count;
180 }
181 list_add(&cap->caps_item, &newcaps);
182 alloc++;
183 }
184 BUG_ON(have + alloc != need);
185
186 spin_lock(&mdsc->caps_list_lock);
187 mdsc->caps_total_count += alloc;
188 mdsc->caps_reserve_count += alloc;
189 list_splice(&newcaps, &mdsc->caps_list);
190
191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
192 mdsc->caps_reserve_count +
193 mdsc->caps_avail_count);
194 spin_unlock(&mdsc->caps_list_lock);
195
196 ctx->count = need;
197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
198 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
199 mdsc->caps_reserve_count, mdsc->caps_avail_count);
200 return 0;
201
202out_alloc_count:
203 /* we didn't manage to reserve as much as we needed */
204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
205 ctx, need, have);
206 return ret;
207}
208
209int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
210 struct ceph_cap_reservation *ctx)
211{
212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
213 if (ctx->count) {
214 spin_lock(&mdsc->caps_list_lock);
215 BUG_ON(mdsc->caps_reserve_count < ctx->count);
216 mdsc->caps_reserve_count -= ctx->count;
217 mdsc->caps_avail_count += ctx->count;
218 ctx->count = 0;
219 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
220 mdsc->caps_total_count, mdsc->caps_use_count,
221 mdsc->caps_reserve_count, mdsc->caps_avail_count);
222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
223 mdsc->caps_reserve_count +
224 mdsc->caps_avail_count);
225 spin_unlock(&mdsc->caps_list_lock);
226 }
227 return 0;
228}
229
230static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
231 struct ceph_cap_reservation *ctx)
232{
233 struct ceph_cap *cap = NULL;
234
235 /* temporary, until we do something about cap import/export */
236 if (!ctx) {
237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
238 if (cap) {
239 mdsc->caps_use_count++;
240 mdsc->caps_total_count++;
241 }
242 return cap;
243 }
244
245 spin_lock(&mdsc->caps_list_lock);
246 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
247 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
248 mdsc->caps_reserve_count, mdsc->caps_avail_count);
249 BUG_ON(!ctx->count);
250 BUG_ON(ctx->count > mdsc->caps_reserve_count);
251 BUG_ON(list_empty(&mdsc->caps_list));
252
253 ctx->count--;
254 mdsc->caps_reserve_count--;
255 mdsc->caps_use_count++;
256
257 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
258 list_del(&cap->caps_item);
259
260 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
261 mdsc->caps_reserve_count + mdsc->caps_avail_count);
262 spin_unlock(&mdsc->caps_list_lock);
263 return cap;
264}
265
266void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
267{
268 spin_lock(&mdsc->caps_list_lock);
269 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
270 cap, mdsc->caps_total_count, mdsc->caps_use_count,
271 mdsc->caps_reserve_count, mdsc->caps_avail_count);
272 mdsc->caps_use_count--;
273 /*
274 * Keep some preallocated caps around (ceph_min_count), to
275 * avoid lots of free/alloc churn.
276 */
277 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
278 mdsc->caps_min_count) {
279 mdsc->caps_total_count--;
280 kmem_cache_free(ceph_cap_cachep, cap);
281 } else {
282 mdsc->caps_avail_count++;
283 list_add(&cap->caps_item, &mdsc->caps_list);
284 }
285
286 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
287 mdsc->caps_reserve_count + mdsc->caps_avail_count);
288 spin_unlock(&mdsc->caps_list_lock);
289}
290
291void ceph_reservation_status(struct ceph_fs_client *fsc,
292 int *total, int *avail, int *used, int *reserved,
293 int *min)
294{
295 struct ceph_mds_client *mdsc = fsc->mdsc;
296
297 if (total)
298 *total = mdsc->caps_total_count;
299 if (avail)
300 *avail = mdsc->caps_avail_count;
301 if (used)
302 *used = mdsc->caps_use_count;
303 if (reserved)
304 *reserved = mdsc->caps_reserve_count;
305 if (min)
306 *min = mdsc->caps_min_count;
307}
308
309/*
310 * Find ceph_cap for given mds, if any.
311 *
312 * Called with i_ceph_lock held.
313 */
314static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
315{
316 struct ceph_cap *cap;
317 struct rb_node *n = ci->i_caps.rb_node;
318
319 while (n) {
320 cap = rb_entry(n, struct ceph_cap, ci_node);
321 if (mds < cap->mds)
322 n = n->rb_left;
323 else if (mds > cap->mds)
324 n = n->rb_right;
325 else
326 return cap;
327 }
328 return NULL;
329}
330
331struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
332{
333 struct ceph_cap *cap;
334
335 spin_lock(&ci->i_ceph_lock);
336 cap = __get_cap_for_mds(ci, mds);
337 spin_unlock(&ci->i_ceph_lock);
338 return cap;
339}
340
341/*
342 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
343 */
344static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
345{
346 struct ceph_cap *cap;
347 int mds = -1;
348 struct rb_node *p;
349
350 /* prefer mds with WR|BUFFER|EXCL caps */
351 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
352 cap = rb_entry(p, struct ceph_cap, ci_node);
353 mds = cap->mds;
354 if (cap->issued & (CEPH_CAP_FILE_WR |
355 CEPH_CAP_FILE_BUFFER |
356 CEPH_CAP_FILE_EXCL))
357 break;
358 }
359 return mds;
360}
361
362int ceph_get_cap_mds(struct inode *inode)
363{
364 struct ceph_inode_info *ci = ceph_inode(inode);
365 int mds;
366 spin_lock(&ci->i_ceph_lock);
367 mds = __ceph_get_cap_mds(ceph_inode(inode));
368 spin_unlock(&ci->i_ceph_lock);
369 return mds;
370}
371
372/*
373 * Called under i_ceph_lock.
374 */
375static void __insert_cap_node(struct ceph_inode_info *ci,
376 struct ceph_cap *new)
377{
378 struct rb_node **p = &ci->i_caps.rb_node;
379 struct rb_node *parent = NULL;
380 struct ceph_cap *cap = NULL;
381
382 while (*p) {
383 parent = *p;
384 cap = rb_entry(parent, struct ceph_cap, ci_node);
385 if (new->mds < cap->mds)
386 p = &(*p)->rb_left;
387 else if (new->mds > cap->mds)
388 p = &(*p)->rb_right;
389 else
390 BUG();
391 }
392
393 rb_link_node(&new->ci_node, parent, p);
394 rb_insert_color(&new->ci_node, &ci->i_caps);
395}
396
397/*
398 * (re)set cap hold timeouts, which control the delayed release
399 * of unused caps back to the MDS. Should be called on cap use.
400 */
401static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
402 struct ceph_inode_info *ci)
403{
404 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
405
406 ci->i_hold_caps_min = round_jiffies(jiffies +
407 ma->caps_wanted_delay_min * HZ);
408 ci->i_hold_caps_max = round_jiffies(jiffies +
409 ma->caps_wanted_delay_max * HZ);
410 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
411 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
412}
413
414/*
415 * (Re)queue cap at the end of the delayed cap release list.
416 *
417 * If I_FLUSH is set, leave the inode at the front of the list.
418 *
419 * Caller holds i_ceph_lock
420 * -> we take mdsc->cap_delay_lock
421 */
422static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
423 struct ceph_inode_info *ci)
424{
425 __cap_set_timeouts(mdsc, ci);
426 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
427 ci->i_ceph_flags, ci->i_hold_caps_max);
428 if (!mdsc->stopping) {
429 spin_lock(&mdsc->cap_delay_lock);
430 if (!list_empty(&ci->i_cap_delay_list)) {
431 if (ci->i_ceph_flags & CEPH_I_FLUSH)
432 goto no_change;
433 list_del_init(&ci->i_cap_delay_list);
434 }
435 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
436no_change:
437 spin_unlock(&mdsc->cap_delay_lock);
438 }
439}
440
441/*
442 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
443 * indicating we should send a cap message to flush dirty metadata
444 * asap, and move to the front of the delayed cap list.
445 */
446static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
447 struct ceph_inode_info *ci)
448{
449 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
450 spin_lock(&mdsc->cap_delay_lock);
451 ci->i_ceph_flags |= CEPH_I_FLUSH;
452 if (!list_empty(&ci->i_cap_delay_list))
453 list_del_init(&ci->i_cap_delay_list);
454 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
455 spin_unlock(&mdsc->cap_delay_lock);
456}
457
458/*
459 * Cancel delayed work on cap.
460 *
461 * Caller must hold i_ceph_lock.
462 */
463static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
464 struct ceph_inode_info *ci)
465{
466 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
467 if (list_empty(&ci->i_cap_delay_list))
468 return;
469 spin_lock(&mdsc->cap_delay_lock);
470 list_del_init(&ci->i_cap_delay_list);
471 spin_unlock(&mdsc->cap_delay_lock);
472}
473
474/*
475 * Common issue checks for add_cap, handle_cap_grant.
476 */
477static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
478 unsigned issued)
479{
480 unsigned had = __ceph_caps_issued(ci, NULL);
481
482 /*
483 * Each time we receive FILE_CACHE anew, we increment
484 * i_rdcache_gen.
485 */
486 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
487 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0)
488 ci->i_rdcache_gen++;
489
490 /*
491 * if we are newly issued FILE_SHARED, clear D_COMPLETE; we
492 * don't know what happened to this directory while we didn't
493 * have the cap.
494 */
495 if ((issued & CEPH_CAP_FILE_SHARED) &&
496 (had & CEPH_CAP_FILE_SHARED) == 0) {
497 ci->i_shared_gen++;
498 if (S_ISDIR(ci->vfs_inode.i_mode))
499 ceph_dir_clear_complete(&ci->vfs_inode);
500 }
501}
502
503/*
504 * Add a capability under the given MDS session.
505 *
506 * Caller should hold session snap_rwsem (read) and s_mutex.
507 *
508 * @fmode is the open file mode, if we are opening a file, otherwise
509 * it is < 0. (This is so we can atomically add the cap and add an
510 * open file reference to it.)
511 */
512int ceph_add_cap(struct inode *inode,
513 struct ceph_mds_session *session, u64 cap_id,
514 int fmode, unsigned issued, unsigned wanted,
515 unsigned seq, unsigned mseq, u64 realmino, int flags,
516 struct ceph_cap_reservation *caps_reservation)
517{
518 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
519 struct ceph_inode_info *ci = ceph_inode(inode);
520 struct ceph_cap *new_cap = NULL;
521 struct ceph_cap *cap;
522 int mds = session->s_mds;
523 int actual_wanted;
524
525 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
526 session->s_mds, cap_id, ceph_cap_string(issued), seq);
527
528 /*
529 * If we are opening the file, include file mode wanted bits
530 * in wanted.
531 */
532 if (fmode >= 0)
533 wanted |= ceph_caps_for_mode(fmode);
534
535retry:
536 spin_lock(&ci->i_ceph_lock);
537 cap = __get_cap_for_mds(ci, mds);
538 if (!cap) {
539 if (new_cap) {
540 cap = new_cap;
541 new_cap = NULL;
542 } else {
543 spin_unlock(&ci->i_ceph_lock);
544 new_cap = get_cap(mdsc, caps_reservation);
545 if (new_cap == NULL)
546 return -ENOMEM;
547 goto retry;
548 }
549
550 cap->issued = 0;
551 cap->implemented = 0;
552 cap->mds = mds;
553 cap->mds_wanted = 0;
554
555 cap->ci = ci;
556 __insert_cap_node(ci, cap);
557
558 /* clear out old exporting info? (i.e. on cap import) */
559 if (ci->i_cap_exporting_mds == mds) {
560 ci->i_cap_exporting_issued = 0;
561 ci->i_cap_exporting_mseq = 0;
562 ci->i_cap_exporting_mds = -1;
563 }
564
565 /* add to session cap list */
566 cap->session = session;
567 spin_lock(&session->s_cap_lock);
568 list_add_tail(&cap->session_caps, &session->s_caps);
569 session->s_nr_caps++;
570 spin_unlock(&session->s_cap_lock);
571 } else if (new_cap)
572 ceph_put_cap(mdsc, new_cap);
573
574 if (!ci->i_snap_realm) {
575 /*
576 * add this inode to the appropriate snap realm
577 */
578 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
579 realmino);
580 if (realm) {
581 ceph_get_snap_realm(mdsc, realm);
582 spin_lock(&realm->inodes_with_caps_lock);
583 ci->i_snap_realm = realm;
584 list_add(&ci->i_snap_realm_item,
585 &realm->inodes_with_caps);
586 spin_unlock(&realm->inodes_with_caps_lock);
587 } else {
588 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
589 realmino);
590 WARN_ON(!realm);
591 }
592 }
593
594 __check_cap_issue(ci, cap, issued);
595
596 /*
597 * If we are issued caps we don't want, or the mds' wanted
598 * value appears to be off, queue a check so we'll release
599 * later and/or update the mds wanted value.
600 */
601 actual_wanted = __ceph_caps_wanted(ci);
602 if ((wanted & ~actual_wanted) ||
603 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
604 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
605 ceph_cap_string(issued), ceph_cap_string(wanted),
606 ceph_cap_string(actual_wanted));
607 __cap_delay_requeue(mdsc, ci);
608 }
609
610 if (flags & CEPH_CAP_FLAG_AUTH)
611 ci->i_auth_cap = cap;
612 else if (ci->i_auth_cap == cap)
613 ci->i_auth_cap = NULL;
614
615 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
616 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
617 ceph_cap_string(issued|cap->issued), seq, mds);
618 cap->cap_id = cap_id;
619 cap->issued = issued;
620 cap->implemented |= issued;
621 cap->mds_wanted |= wanted;
622 cap->seq = seq;
623 cap->issue_seq = seq;
624 cap->mseq = mseq;
625 cap->cap_gen = session->s_cap_gen;
626
627 if (fmode >= 0)
628 __ceph_get_fmode(ci, fmode);
629 spin_unlock(&ci->i_ceph_lock);
630 wake_up_all(&ci->i_cap_wq);
631 return 0;
632}
633
634/*
635 * Return true if cap has not timed out and belongs to the current
636 * generation of the MDS session (i.e. has not gone 'stale' due to
637 * us losing touch with the mds).
638 */
639static int __cap_is_valid(struct ceph_cap *cap)
640{
641 unsigned long ttl;
642 u32 gen;
643
644 spin_lock(&cap->session->s_gen_ttl_lock);
645 gen = cap->session->s_cap_gen;
646 ttl = cap->session->s_cap_ttl;
647 spin_unlock(&cap->session->s_gen_ttl_lock);
648
649 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
650 dout("__cap_is_valid %p cap %p issued %s "
651 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
652 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
653 return 0;
654 }
655
656 return 1;
657}
658
659/*
660 * Return set of valid cap bits issued to us. Note that caps time
661 * out, and may be invalidated in bulk if the client session times out
662 * and session->s_cap_gen is bumped.
663 */
664int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
665{
666 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
667 struct ceph_cap *cap;
668 struct rb_node *p;
669
670 if (implemented)
671 *implemented = 0;
672 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
673 cap = rb_entry(p, struct ceph_cap, ci_node);
674 if (!__cap_is_valid(cap))
675 continue;
676 dout("__ceph_caps_issued %p cap %p issued %s\n",
677 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
678 have |= cap->issued;
679 if (implemented)
680 *implemented |= cap->implemented;
681 }
682 return have;
683}
684
685/*
686 * Get cap bits issued by caps other than @ocap
687 */
688int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
689{
690 int have = ci->i_snap_caps;
691 struct ceph_cap *cap;
692 struct rb_node *p;
693
694 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
695 cap = rb_entry(p, struct ceph_cap, ci_node);
696 if (cap == ocap)
697 continue;
698 if (!__cap_is_valid(cap))
699 continue;
700 have |= cap->issued;
701 }
702 return have;
703}
704
705/*
706 * Move a cap to the end of the LRU (oldest caps at list head, newest
707 * at list tail).
708 */
709static void __touch_cap(struct ceph_cap *cap)
710{
711 struct ceph_mds_session *s = cap->session;
712
713 spin_lock(&s->s_cap_lock);
714 if (s->s_cap_iterator == NULL) {
715 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
716 s->s_mds);
717 list_move_tail(&cap->session_caps, &s->s_caps);
718 } else {
719 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
720 &cap->ci->vfs_inode, cap, s->s_mds);
721 }
722 spin_unlock(&s->s_cap_lock);
723}
724
725/*
726 * Check if we hold the given mask. If so, move the cap(s) to the
727 * front of their respective LRUs. (This is the preferred way for
728 * callers to check for caps they want.)
729 */
730int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
731{
732 struct ceph_cap *cap;
733 struct rb_node *p;
734 int have = ci->i_snap_caps;
735
736 if ((have & mask) == mask) {
737 dout("__ceph_caps_issued_mask %p snap issued %s"
738 " (mask %s)\n", &ci->vfs_inode,
739 ceph_cap_string(have),
740 ceph_cap_string(mask));
741 return 1;
742 }
743
744 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
745 cap = rb_entry(p, struct ceph_cap, ci_node);
746 if (!__cap_is_valid(cap))
747 continue;
748 if ((cap->issued & mask) == mask) {
749 dout("__ceph_caps_issued_mask %p cap %p issued %s"
750 " (mask %s)\n", &ci->vfs_inode, cap,
751 ceph_cap_string(cap->issued),
752 ceph_cap_string(mask));
753 if (touch)
754 __touch_cap(cap);
755 return 1;
756 }
757
758 /* does a combination of caps satisfy mask? */
759 have |= cap->issued;
760 if ((have & mask) == mask) {
761 dout("__ceph_caps_issued_mask %p combo issued %s"
762 " (mask %s)\n", &ci->vfs_inode,
763 ceph_cap_string(cap->issued),
764 ceph_cap_string(mask));
765 if (touch) {
766 struct rb_node *q;
767
768 /* touch this + preceding caps */
769 __touch_cap(cap);
770 for (q = rb_first(&ci->i_caps); q != p;
771 q = rb_next(q)) {
772 cap = rb_entry(q, struct ceph_cap,
773 ci_node);
774 if (!__cap_is_valid(cap))
775 continue;
776 __touch_cap(cap);
777 }
778 }
779 return 1;
780 }
781 }
782
783 return 0;
784}
785
786/*
787 * Return true if mask caps are currently being revoked by an MDS.
788 */
789int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
790{
791 struct inode *inode = &ci->vfs_inode;
792 struct ceph_cap *cap;
793 struct rb_node *p;
794 int ret = 0;
795
796 spin_lock(&ci->i_ceph_lock);
797 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
798 cap = rb_entry(p, struct ceph_cap, ci_node);
799 if (__cap_is_valid(cap) &&
800 (cap->implemented & ~cap->issued & mask)) {
801 ret = 1;
802 break;
803 }
804 }
805 spin_unlock(&ci->i_ceph_lock);
806 dout("ceph_caps_revoking %p %s = %d\n", inode,
807 ceph_cap_string(mask), ret);
808 return ret;
809}
810
811int __ceph_caps_used(struct ceph_inode_info *ci)
812{
813 int used = 0;
814 if (ci->i_pin_ref)
815 used |= CEPH_CAP_PIN;
816 if (ci->i_rd_ref)
817 used |= CEPH_CAP_FILE_RD;
818 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
819 used |= CEPH_CAP_FILE_CACHE;
820 if (ci->i_wr_ref)
821 used |= CEPH_CAP_FILE_WR;
822 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
823 used |= CEPH_CAP_FILE_BUFFER;
824 return used;
825}
826
827/*
828 * wanted, by virtue of open file modes
829 */
830int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
831{
832 int want = 0;
833 int mode;
834 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
835 if (ci->i_nr_by_mode[mode])
836 want |= ceph_caps_for_mode(mode);
837 return want;
838}
839
840/*
841 * Return caps we have registered with the MDS(s) as 'wanted'.
842 */
843int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
844{
845 struct ceph_cap *cap;
846 struct rb_node *p;
847 int mds_wanted = 0;
848
849 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
850 cap = rb_entry(p, struct ceph_cap, ci_node);
851 if (!__cap_is_valid(cap))
852 continue;
853 mds_wanted |= cap->mds_wanted;
854 }
855 return mds_wanted;
856}
857
858/*
859 * called under i_ceph_lock
860 */
861static int __ceph_is_any_caps(struct ceph_inode_info *ci)
862{
863 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
864}
865
866/*
867 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
868 *
869 * caller should hold i_ceph_lock.
870 * caller will not hold session s_mutex if called from destroy_inode.
871 */
872void __ceph_remove_cap(struct ceph_cap *cap)
873{
874 struct ceph_mds_session *session = cap->session;
875 struct ceph_inode_info *ci = cap->ci;
876 struct ceph_mds_client *mdsc =
877 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
878 int removed = 0;
879
880 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
881
882 /* remove from session list */
883 spin_lock(&session->s_cap_lock);
884 if (session->s_cap_iterator == cap) {
885 /* not yet, we are iterating over this very cap */
886 dout("__ceph_remove_cap delaying %p removal from session %p\n",
887 cap, cap->session);
888 } else {
889 list_del_init(&cap->session_caps);
890 session->s_nr_caps--;
891 cap->session = NULL;
892 removed = 1;
893 }
894 /* protect backpointer with s_cap_lock: see iterate_session_caps */
895 cap->ci = NULL;
896 spin_unlock(&session->s_cap_lock);
897
898 /* remove from inode list */
899 rb_erase(&cap->ci_node, &ci->i_caps);
900 if (ci->i_auth_cap == cap)
901 ci->i_auth_cap = NULL;
902
903 if (removed)
904 ceph_put_cap(mdsc, cap);
905
906 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
907 struct ceph_snap_realm *realm = ci->i_snap_realm;
908 spin_lock(&realm->inodes_with_caps_lock);
909 list_del_init(&ci->i_snap_realm_item);
910 ci->i_snap_realm_counter++;
911 ci->i_snap_realm = NULL;
912 spin_unlock(&realm->inodes_with_caps_lock);
913 ceph_put_snap_realm(mdsc, realm);
914 }
915 if (!__ceph_is_any_real_caps(ci))
916 __cap_delay_cancel(mdsc, ci);
917}
918
919/*
920 * Build and send a cap message to the given MDS.
921 *
922 * Caller should be holding s_mutex.
923 */
924static int send_cap_msg(struct ceph_mds_session *session,
925 u64 ino, u64 cid, int op,
926 int caps, int wanted, int dirty,
927 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
928 u64 size, u64 max_size,
929 struct timespec *mtime, struct timespec *atime,
930 u64 time_warp_seq,
931 uid_t uid, gid_t gid, umode_t mode,
932 u64 xattr_version,
933 struct ceph_buffer *xattrs_buf,
934 u64 follows)
935{
936 struct ceph_mds_caps *fc;
937 struct ceph_msg *msg;
938
939 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
940 " seq %u/%u mseq %u follows %lld size %llu/%llu"
941 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
942 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
943 ceph_cap_string(dirty),
944 seq, issue_seq, mseq, follows, size, max_size,
945 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
946
947 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
948 if (!msg)
949 return -ENOMEM;
950
951 msg->hdr.tid = cpu_to_le64(flush_tid);
952
953 fc = msg->front.iov_base;
954 memset(fc, 0, sizeof(*fc));
955
956 fc->cap_id = cpu_to_le64(cid);
957 fc->op = cpu_to_le32(op);
958 fc->seq = cpu_to_le32(seq);
959 fc->issue_seq = cpu_to_le32(issue_seq);
960 fc->migrate_seq = cpu_to_le32(mseq);
961 fc->caps = cpu_to_le32(caps);
962 fc->wanted = cpu_to_le32(wanted);
963 fc->dirty = cpu_to_le32(dirty);
964 fc->ino = cpu_to_le64(ino);
965 fc->snap_follows = cpu_to_le64(follows);
966
967 fc->size = cpu_to_le64(size);
968 fc->max_size = cpu_to_le64(max_size);
969 if (mtime)
970 ceph_encode_timespec(&fc->mtime, mtime);
971 if (atime)
972 ceph_encode_timespec(&fc->atime, atime);
973 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
974
975 fc->uid = cpu_to_le32(uid);
976 fc->gid = cpu_to_le32(gid);
977 fc->mode = cpu_to_le32(mode);
978
979 fc->xattr_version = cpu_to_le64(xattr_version);
980 if (xattrs_buf) {
981 msg->middle = ceph_buffer_get(xattrs_buf);
982 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
983 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
984 }
985
986 ceph_con_send(&session->s_con, msg);
987 return 0;
988}
989
990static void __queue_cap_release(struct ceph_mds_session *session,
991 u64 ino, u64 cap_id, u32 migrate_seq,
992 u32 issue_seq)
993{
994 struct ceph_msg *msg;
995 struct ceph_mds_cap_release *head;
996 struct ceph_mds_cap_item *item;
997
998 spin_lock(&session->s_cap_lock);
999 BUG_ON(!session->s_num_cap_releases);
1000 msg = list_first_entry(&session->s_cap_releases,
1001 struct ceph_msg, list_head);
1002
1003 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1004 ino, session->s_mds, msg, session->s_num_cap_releases);
1005
1006 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1007 head = msg->front.iov_base;
1008 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
1009 item = msg->front.iov_base + msg->front.iov_len;
1010 item->ino = cpu_to_le64(ino);
1011 item->cap_id = cpu_to_le64(cap_id);
1012 item->migrate_seq = cpu_to_le32(migrate_seq);
1013 item->seq = cpu_to_le32(issue_seq);
1014
1015 session->s_num_cap_releases--;
1016
1017 msg->front.iov_len += sizeof(*item);
1018 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1019 dout(" release msg %p full\n", msg);
1020 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1021 } else {
1022 dout(" release msg %p at %d/%d (%d)\n", msg,
1023 (int)le32_to_cpu(head->num),
1024 (int)CEPH_CAPS_PER_RELEASE,
1025 (int)msg->front.iov_len);
1026 }
1027 spin_unlock(&session->s_cap_lock);
1028}
1029
1030/*
1031 * Queue cap releases when an inode is dropped from our cache. Since
1032 * inode is about to be destroyed, there is no need for i_ceph_lock.
1033 */
1034void ceph_queue_caps_release(struct inode *inode)
1035{
1036 struct ceph_inode_info *ci = ceph_inode(inode);
1037 struct rb_node *p;
1038
1039 p = rb_first(&ci->i_caps);
1040 while (p) {
1041 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1042 struct ceph_mds_session *session = cap->session;
1043
1044 __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1045 cap->mseq, cap->issue_seq);
1046 p = rb_next(p);
1047 __ceph_remove_cap(cap);
1048 }
1049}
1050
1051/*
1052 * Send a cap msg on the given inode. Update our caps state, then
1053 * drop i_ceph_lock and send the message.
1054 *
1055 * Make note of max_size reported/requested from mds, revoked caps
1056 * that have now been implemented.
1057 *
1058 * Make half-hearted attempt ot to invalidate page cache if we are
1059 * dropping RDCACHE. Note that this will leave behind locked pages
1060 * that we'll then need to deal with elsewhere.
1061 *
1062 * Return non-zero if delayed release, or we experienced an error
1063 * such that the caller should requeue + retry later.
1064 *
1065 * called with i_ceph_lock, then drops it.
1066 * caller should hold snap_rwsem (read), s_mutex.
1067 */
1068static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1069 int op, int used, int want, int retain, int flushing,
1070 unsigned *pflush_tid)
1071 __releases(cap->ci->i_ceph_lock)
1072{
1073 struct ceph_inode_info *ci = cap->ci;
1074 struct inode *inode = &ci->vfs_inode;
1075 u64 cap_id = cap->cap_id;
1076 int held, revoking, dropping, keep;
1077 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1078 u64 size, max_size;
1079 struct timespec mtime, atime;
1080 int wake = 0;
1081 umode_t mode;
1082 uid_t uid;
1083 gid_t gid;
1084 struct ceph_mds_session *session;
1085 u64 xattr_version = 0;
1086 struct ceph_buffer *xattr_blob = NULL;
1087 int delayed = 0;
1088 u64 flush_tid = 0;
1089 int i;
1090 int ret;
1091
1092 held = cap->issued | cap->implemented;
1093 revoking = cap->implemented & ~cap->issued;
1094 retain &= ~revoking;
1095 dropping = cap->issued & ~retain;
1096
1097 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1098 inode, cap, cap->session,
1099 ceph_cap_string(held), ceph_cap_string(held & retain),
1100 ceph_cap_string(revoking));
1101 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1102
1103 session = cap->session;
1104
1105 /* don't release wanted unless we've waited a bit. */
1106 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1107 time_before(jiffies, ci->i_hold_caps_min)) {
1108 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1109 ceph_cap_string(cap->issued),
1110 ceph_cap_string(cap->issued & retain),
1111 ceph_cap_string(cap->mds_wanted),
1112 ceph_cap_string(want));
1113 want |= cap->mds_wanted;
1114 retain |= cap->issued;
1115 delayed = 1;
1116 }
1117 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1118
1119 cap->issued &= retain; /* drop bits we don't want */
1120 if (cap->implemented & ~cap->issued) {
1121 /*
1122 * Wake up any waiters on wanted -> needed transition.
1123 * This is due to the weird transition from buffered
1124 * to sync IO... we need to flush dirty pages _before_
1125 * allowing sync writes to avoid reordering.
1126 */
1127 wake = 1;
1128 }
1129 cap->implemented &= cap->issued | used;
1130 cap->mds_wanted = want;
1131
1132 if (flushing) {
1133 /*
1134 * assign a tid for flush operations so we can avoid
1135 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1136 * clean type races. track latest tid for every bit
1137 * so we can handle flush AxFw, flush Fw, and have the
1138 * first ack clean Ax.
1139 */
1140 flush_tid = ++ci->i_cap_flush_last_tid;
1141 if (pflush_tid)
1142 *pflush_tid = flush_tid;
1143 dout(" cap_flush_tid %d\n", (int)flush_tid);
1144 for (i = 0; i < CEPH_CAP_BITS; i++)
1145 if (flushing & (1 << i))
1146 ci->i_cap_flush_tid[i] = flush_tid;
1147
1148 follows = ci->i_head_snapc->seq;
1149 } else {
1150 follows = 0;
1151 }
1152
1153 keep = cap->implemented;
1154 seq = cap->seq;
1155 issue_seq = cap->issue_seq;
1156 mseq = cap->mseq;
1157 size = inode->i_size;
1158 ci->i_reported_size = size;
1159 max_size = ci->i_wanted_max_size;
1160 ci->i_requested_max_size = max_size;
1161 mtime = inode->i_mtime;
1162 atime = inode->i_atime;
1163 time_warp_seq = ci->i_time_warp_seq;
1164 uid = inode->i_uid;
1165 gid = inode->i_gid;
1166 mode = inode->i_mode;
1167
1168 if (flushing & CEPH_CAP_XATTR_EXCL) {
1169 __ceph_build_xattrs_blob(ci);
1170 xattr_blob = ci->i_xattrs.blob;
1171 xattr_version = ci->i_xattrs.version;
1172 }
1173
1174 spin_unlock(&ci->i_ceph_lock);
1175
1176 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1177 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1178 size, max_size, &mtime, &atime, time_warp_seq,
1179 uid, gid, mode, xattr_version, xattr_blob,
1180 follows);
1181 if (ret < 0) {
1182 dout("error sending cap msg, must requeue %p\n", inode);
1183 delayed = 1;
1184 }
1185
1186 if (wake)
1187 wake_up_all(&ci->i_cap_wq);
1188
1189 return delayed;
1190}
1191
1192/*
1193 * When a snapshot is taken, clients accumulate dirty metadata on
1194 * inodes with capabilities in ceph_cap_snaps to describe the file
1195 * state at the time the snapshot was taken. This must be flushed
1196 * asynchronously back to the MDS once sync writes complete and dirty
1197 * data is written out.
1198 *
1199 * Unless @again is true, skip cap_snaps that were already sent to
1200 * the MDS (i.e., during this session).
1201 *
1202 * Called under i_ceph_lock. Takes s_mutex as needed.
1203 */
1204void __ceph_flush_snaps(struct ceph_inode_info *ci,
1205 struct ceph_mds_session **psession,
1206 int again)
1207 __releases(ci->i_ceph_lock)
1208 __acquires(ci->i_ceph_lock)
1209{
1210 struct inode *inode = &ci->vfs_inode;
1211 int mds;
1212 struct ceph_cap_snap *capsnap;
1213 u32 mseq;
1214 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1215 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1216 session->s_mutex */
1217 u64 next_follows = 0; /* keep track of how far we've gotten through the
1218 i_cap_snaps list, and skip these entries next time
1219 around to avoid an infinite loop */
1220
1221 if (psession)
1222 session = *psession;
1223
1224 dout("__flush_snaps %p\n", inode);
1225retry:
1226 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1227 /* avoid an infiniute loop after retry */
1228 if (capsnap->follows < next_follows)
1229 continue;
1230 /*
1231 * we need to wait for sync writes to complete and for dirty
1232 * pages to be written out.
1233 */
1234 if (capsnap->dirty_pages || capsnap->writing)
1235 break;
1236
1237 /*
1238 * if cap writeback already occurred, we should have dropped
1239 * the capsnap in ceph_put_wrbuffer_cap_refs.
1240 */
1241 BUG_ON(capsnap->dirty == 0);
1242
1243 /* pick mds, take s_mutex */
1244 if (ci->i_auth_cap == NULL) {
1245 dout("no auth cap (migrating?), doing nothing\n");
1246 goto out;
1247 }
1248
1249 /* only flush each capsnap once */
1250 if (!again && !list_empty(&capsnap->flushing_item)) {
1251 dout("already flushed %p, skipping\n", capsnap);
1252 continue;
1253 }
1254
1255 mds = ci->i_auth_cap->session->s_mds;
1256 mseq = ci->i_auth_cap->mseq;
1257
1258 if (session && session->s_mds != mds) {
1259 dout("oops, wrong session %p mutex\n", session);
1260 mutex_unlock(&session->s_mutex);
1261 ceph_put_mds_session(session);
1262 session = NULL;
1263 }
1264 if (!session) {
1265 spin_unlock(&ci->i_ceph_lock);
1266 mutex_lock(&mdsc->mutex);
1267 session = __ceph_lookup_mds_session(mdsc, mds);
1268 mutex_unlock(&mdsc->mutex);
1269 if (session) {
1270 dout("inverting session/ino locks on %p\n",
1271 session);
1272 mutex_lock(&session->s_mutex);
1273 }
1274 /*
1275 * if session == NULL, we raced against a cap
1276 * deletion or migration. retry, and we'll
1277 * get a better @mds value next time.
1278 */
1279 spin_lock(&ci->i_ceph_lock);
1280 goto retry;
1281 }
1282
1283 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1284 atomic_inc(&capsnap->nref);
1285 if (!list_empty(&capsnap->flushing_item))
1286 list_del_init(&capsnap->flushing_item);
1287 list_add_tail(&capsnap->flushing_item,
1288 &session->s_cap_snaps_flushing);
1289 spin_unlock(&ci->i_ceph_lock);
1290
1291 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1292 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1293 send_cap_msg(session, ceph_vino(inode).ino, 0,
1294 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1295 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1296 capsnap->size, 0,
1297 &capsnap->mtime, &capsnap->atime,
1298 capsnap->time_warp_seq,
1299 capsnap->uid, capsnap->gid, capsnap->mode,
1300 capsnap->xattr_version, capsnap->xattr_blob,
1301 capsnap->follows);
1302
1303 next_follows = capsnap->follows + 1;
1304 ceph_put_cap_snap(capsnap);
1305
1306 spin_lock(&ci->i_ceph_lock);
1307 goto retry;
1308 }
1309
1310 /* we flushed them all; remove this inode from the queue */
1311 spin_lock(&mdsc->snap_flush_lock);
1312 list_del_init(&ci->i_snap_flush_item);
1313 spin_unlock(&mdsc->snap_flush_lock);
1314
1315out:
1316 if (psession)
1317 *psession = session;
1318 else if (session) {
1319 mutex_unlock(&session->s_mutex);
1320 ceph_put_mds_session(session);
1321 }
1322}
1323
1324static void ceph_flush_snaps(struct ceph_inode_info *ci)
1325{
1326 spin_lock(&ci->i_ceph_lock);
1327 __ceph_flush_snaps(ci, NULL, 0);
1328 spin_unlock(&ci->i_ceph_lock);
1329}
1330
1331/*
1332 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1333 * Caller is then responsible for calling __mark_inode_dirty with the
1334 * returned flags value.
1335 */
1336int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1337{
1338 struct ceph_mds_client *mdsc =
1339 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1340 struct inode *inode = &ci->vfs_inode;
1341 int was = ci->i_dirty_caps;
1342 int dirty = 0;
1343
1344 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1345 ceph_cap_string(mask), ceph_cap_string(was),
1346 ceph_cap_string(was | mask));
1347 ci->i_dirty_caps |= mask;
1348 if (was == 0) {
1349 if (!ci->i_head_snapc)
1350 ci->i_head_snapc = ceph_get_snap_context(
1351 ci->i_snap_realm->cached_context);
1352 dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode,
1353 ci->i_head_snapc);
1354 BUG_ON(!list_empty(&ci->i_dirty_item));
1355 spin_lock(&mdsc->cap_dirty_lock);
1356 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1357 spin_unlock(&mdsc->cap_dirty_lock);
1358 if (ci->i_flushing_caps == 0) {
1359 ihold(inode);
1360 dirty |= I_DIRTY_SYNC;
1361 }
1362 }
1363 BUG_ON(list_empty(&ci->i_dirty_item));
1364 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1365 (mask & CEPH_CAP_FILE_BUFFER))
1366 dirty |= I_DIRTY_DATASYNC;
1367 __cap_delay_requeue(mdsc, ci);
1368 return dirty;
1369}
1370
1371/*
1372 * Add dirty inode to the flushing list. Assigned a seq number so we
1373 * can wait for caps to flush without starving.
1374 *
1375 * Called under i_ceph_lock.
1376 */
1377static int __mark_caps_flushing(struct inode *inode,
1378 struct ceph_mds_session *session)
1379{
1380 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1381 struct ceph_inode_info *ci = ceph_inode(inode);
1382 int flushing;
1383
1384 BUG_ON(ci->i_dirty_caps == 0);
1385 BUG_ON(list_empty(&ci->i_dirty_item));
1386
1387 flushing = ci->i_dirty_caps;
1388 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1389 ceph_cap_string(flushing),
1390 ceph_cap_string(ci->i_flushing_caps),
1391 ceph_cap_string(ci->i_flushing_caps | flushing));
1392 ci->i_flushing_caps |= flushing;
1393 ci->i_dirty_caps = 0;
1394 dout(" inode %p now !dirty\n", inode);
1395
1396 spin_lock(&mdsc->cap_dirty_lock);
1397 list_del_init(&ci->i_dirty_item);
1398
1399 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1400 if (list_empty(&ci->i_flushing_item)) {
1401 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1402 mdsc->num_cap_flushing++;
1403 dout(" inode %p now flushing seq %lld\n", inode,
1404 ci->i_cap_flush_seq);
1405 } else {
1406 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1407 dout(" inode %p now flushing (more) seq %lld\n", inode,
1408 ci->i_cap_flush_seq);
1409 }
1410 spin_unlock(&mdsc->cap_dirty_lock);
1411
1412 return flushing;
1413}
1414
1415/*
1416 * try to invalidate mapping pages without blocking.
1417 */
1418static int try_nonblocking_invalidate(struct inode *inode)
1419{
1420 struct ceph_inode_info *ci = ceph_inode(inode);
1421 u32 invalidating_gen = ci->i_rdcache_gen;
1422
1423 spin_unlock(&ci->i_ceph_lock);
1424 invalidate_mapping_pages(&inode->i_data, 0, -1);
1425 spin_lock(&ci->i_ceph_lock);
1426
1427 if (inode->i_data.nrpages == 0 &&
1428 invalidating_gen == ci->i_rdcache_gen) {
1429 /* success. */
1430 dout("try_nonblocking_invalidate %p success\n", inode);
1431 /* save any racing async invalidate some trouble */
1432 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1433 return 0;
1434 }
1435 dout("try_nonblocking_invalidate %p failed\n", inode);
1436 return -1;
1437}
1438
1439/*
1440 * Swiss army knife function to examine currently used and wanted
1441 * versus held caps. Release, flush, ack revoked caps to mds as
1442 * appropriate.
1443 *
1444 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1445 * cap release further.
1446 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1447 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1448 * further delay.
1449 */
1450void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1451 struct ceph_mds_session *session)
1452{
1453 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1454 struct ceph_mds_client *mdsc = fsc->mdsc;
1455 struct inode *inode = &ci->vfs_inode;
1456 struct ceph_cap *cap;
1457 int file_wanted, used;
1458 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1459 int issued, implemented, want, retain, revoking, flushing = 0;
1460 int mds = -1; /* keep track of how far we've gone through i_caps list
1461 to avoid an infinite loop on retry */
1462 struct rb_node *p;
1463 int tried_invalidate = 0;
1464 int delayed = 0, sent = 0, force_requeue = 0, num;
1465 int queue_invalidate = 0;
1466 int is_delayed = flags & CHECK_CAPS_NODELAY;
1467
1468 /* if we are unmounting, flush any unused caps immediately. */
1469 if (mdsc->stopping)
1470 is_delayed = 1;
1471
1472 spin_lock(&ci->i_ceph_lock);
1473
1474 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1475 flags |= CHECK_CAPS_FLUSH;
1476
1477 /* flush snaps first time around only */
1478 if (!list_empty(&ci->i_cap_snaps))
1479 __ceph_flush_snaps(ci, &session, 0);
1480 goto retry_locked;
1481retry:
1482 spin_lock(&ci->i_ceph_lock);
1483retry_locked:
1484 file_wanted = __ceph_caps_file_wanted(ci);
1485 used = __ceph_caps_used(ci);
1486 want = file_wanted | used;
1487 issued = __ceph_caps_issued(ci, &implemented);
1488 revoking = implemented & ~issued;
1489
1490 retain = want | CEPH_CAP_PIN;
1491 if (!mdsc->stopping && inode->i_nlink > 0) {
1492 if (want) {
1493 retain |= CEPH_CAP_ANY; /* be greedy */
1494 } else {
1495 retain |= CEPH_CAP_ANY_SHARED;
1496 /*
1497 * keep RD only if we didn't have the file open RW,
1498 * because then the mds would revoke it anyway to
1499 * journal max_size=0.
1500 */
1501 if (ci->i_max_size == 0)
1502 retain |= CEPH_CAP_ANY_RD;
1503 }
1504 }
1505
1506 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1507 " issued %s revoking %s retain %s %s%s%s\n", inode,
1508 ceph_cap_string(file_wanted),
1509 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1510 ceph_cap_string(ci->i_flushing_caps),
1511 ceph_cap_string(issued), ceph_cap_string(revoking),
1512 ceph_cap_string(retain),
1513 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1514 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1515 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1516
1517 /*
1518 * If we no longer need to hold onto old our caps, and we may
1519 * have cached pages, but don't want them, then try to invalidate.
1520 * If we fail, it's because pages are locked.... try again later.
1521 */
1522 if ((!is_delayed || mdsc->stopping) &&
1523 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1524 inode->i_data.nrpages && /* have cached pages */
1525 (file_wanted == 0 || /* no open files */
1526 (revoking & (CEPH_CAP_FILE_CACHE|
1527 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1528 !tried_invalidate) {
1529 dout("check_caps trying to invalidate on %p\n", inode);
1530 if (try_nonblocking_invalidate(inode) < 0) {
1531 if (revoking & (CEPH_CAP_FILE_CACHE|
1532 CEPH_CAP_FILE_LAZYIO)) {
1533 dout("check_caps queuing invalidate\n");
1534 queue_invalidate = 1;
1535 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1536 } else {
1537 dout("check_caps failed to invalidate pages\n");
1538 /* we failed to invalidate pages. check these
1539 caps again later. */
1540 force_requeue = 1;
1541 __cap_set_timeouts(mdsc, ci);
1542 }
1543 }
1544 tried_invalidate = 1;
1545 goto retry_locked;
1546 }
1547
1548 num = 0;
1549 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1550 cap = rb_entry(p, struct ceph_cap, ci_node);
1551 num++;
1552
1553 /* avoid looping forever */
1554 if (mds >= cap->mds ||
1555 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1556 continue;
1557
1558 /* NOTE: no side-effects allowed, until we take s_mutex */
1559
1560 revoking = cap->implemented & ~cap->issued;
1561 dout(" mds%d cap %p issued %s implemented %s revoking %s\n",
1562 cap->mds, cap, ceph_cap_string(cap->issued),
1563 ceph_cap_string(cap->implemented),
1564 ceph_cap_string(revoking));
1565
1566 if (cap == ci->i_auth_cap &&
1567 (cap->issued & CEPH_CAP_FILE_WR)) {
1568 /* request larger max_size from MDS? */
1569 if (ci->i_wanted_max_size > ci->i_max_size &&
1570 ci->i_wanted_max_size > ci->i_requested_max_size) {
1571 dout("requesting new max_size\n");
1572 goto ack;
1573 }
1574
1575 /* approaching file_max? */
1576 if ((inode->i_size << 1) >= ci->i_max_size &&
1577 (ci->i_reported_size << 1) < ci->i_max_size) {
1578 dout("i_size approaching max_size\n");
1579 goto ack;
1580 }
1581 }
1582 /* flush anything dirty? */
1583 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1584 ci->i_dirty_caps) {
1585 dout("flushing dirty caps\n");
1586 goto ack;
1587 }
1588
1589 /* completed revocation? going down and there are no caps? */
1590 if (revoking && (revoking & used) == 0) {
1591 dout("completed revocation of %s\n",
1592 ceph_cap_string(cap->implemented & ~cap->issued));
1593 goto ack;
1594 }
1595
1596 /* want more caps from mds? */
1597 if (want & ~(cap->mds_wanted | cap->issued))
1598 goto ack;
1599
1600 /* things we might delay */
1601 if ((cap->issued & ~retain) == 0 &&
1602 cap->mds_wanted == want)
1603 continue; /* nope, all good */
1604
1605 if (is_delayed)
1606 goto ack;
1607
1608 /* delay? */
1609 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1610 time_before(jiffies, ci->i_hold_caps_max)) {
1611 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1612 ceph_cap_string(cap->issued),
1613 ceph_cap_string(cap->issued & retain),
1614 ceph_cap_string(cap->mds_wanted),
1615 ceph_cap_string(want));
1616 delayed++;
1617 continue;
1618 }
1619
1620ack:
1621 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1622 dout(" skipping %p I_NOFLUSH set\n", inode);
1623 continue;
1624 }
1625
1626 if (session && session != cap->session) {
1627 dout("oops, wrong session %p mutex\n", session);
1628 mutex_unlock(&session->s_mutex);
1629 session = NULL;
1630 }
1631 if (!session) {
1632 session = cap->session;
1633 if (mutex_trylock(&session->s_mutex) == 0) {
1634 dout("inverting session/ino locks on %p\n",
1635 session);
1636 spin_unlock(&ci->i_ceph_lock);
1637 if (took_snap_rwsem) {
1638 up_read(&mdsc->snap_rwsem);
1639 took_snap_rwsem = 0;
1640 }
1641 mutex_lock(&session->s_mutex);
1642 goto retry;
1643 }
1644 }
1645 /* take snap_rwsem after session mutex */
1646 if (!took_snap_rwsem) {
1647 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1648 dout("inverting snap/in locks on %p\n",
1649 inode);
1650 spin_unlock(&ci->i_ceph_lock);
1651 down_read(&mdsc->snap_rwsem);
1652 took_snap_rwsem = 1;
1653 goto retry;
1654 }
1655 took_snap_rwsem = 1;
1656 }
1657
1658 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1659 flushing = __mark_caps_flushing(inode, session);
1660 else
1661 flushing = 0;
1662
1663 mds = cap->mds; /* remember mds, so we don't repeat */
1664 sent++;
1665
1666 /* __send_cap drops i_ceph_lock */
1667 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1668 retain, flushing, NULL);
1669 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1670 }
1671
1672 /*
1673 * Reschedule delayed caps release if we delayed anything,
1674 * otherwise cancel.
1675 */
1676 if (delayed && is_delayed)
1677 force_requeue = 1; /* __send_cap delayed release; requeue */
1678 if (!delayed && !is_delayed)
1679 __cap_delay_cancel(mdsc, ci);
1680 else if (!is_delayed || force_requeue)
1681 __cap_delay_requeue(mdsc, ci);
1682
1683 spin_unlock(&ci->i_ceph_lock);
1684
1685 if (queue_invalidate)
1686 ceph_queue_invalidate(inode);
1687
1688 if (session)
1689 mutex_unlock(&session->s_mutex);
1690 if (took_snap_rwsem)
1691 up_read(&mdsc->snap_rwsem);
1692}
1693
1694/*
1695 * Try to flush dirty caps back to the auth mds.
1696 */
1697static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1698 unsigned *flush_tid)
1699{
1700 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1701 struct ceph_inode_info *ci = ceph_inode(inode);
1702 int unlock_session = session ? 0 : 1;
1703 int flushing = 0;
1704
1705retry:
1706 spin_lock(&ci->i_ceph_lock);
1707 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1708 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1709 goto out;
1710 }
1711 if (ci->i_dirty_caps && ci->i_auth_cap) {
1712 struct ceph_cap *cap = ci->i_auth_cap;
1713 int used = __ceph_caps_used(ci);
1714 int want = __ceph_caps_wanted(ci);
1715 int delayed;
1716
1717 if (!session) {
1718 spin_unlock(&ci->i_ceph_lock);
1719 session = cap->session;
1720 mutex_lock(&session->s_mutex);
1721 goto retry;
1722 }
1723 BUG_ON(session != cap->session);
1724 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1725 goto out;
1726
1727 flushing = __mark_caps_flushing(inode, session);
1728
1729 /* __send_cap drops i_ceph_lock */
1730 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1731 cap->issued | cap->implemented, flushing,
1732 flush_tid);
1733 if (!delayed)
1734 goto out_unlocked;
1735
1736 spin_lock(&ci->i_ceph_lock);
1737 __cap_delay_requeue(mdsc, ci);
1738 }
1739out:
1740 spin_unlock(&ci->i_ceph_lock);
1741out_unlocked:
1742 if (session && unlock_session)
1743 mutex_unlock(&session->s_mutex);
1744 return flushing;
1745}
1746
1747/*
1748 * Return true if we've flushed caps through the given flush_tid.
1749 */
1750static int caps_are_flushed(struct inode *inode, unsigned tid)
1751{
1752 struct ceph_inode_info *ci = ceph_inode(inode);
1753 int i, ret = 1;
1754
1755 spin_lock(&ci->i_ceph_lock);
1756 for (i = 0; i < CEPH_CAP_BITS; i++)
1757 if ((ci->i_flushing_caps & (1 << i)) &&
1758 ci->i_cap_flush_tid[i] <= tid) {
1759 /* still flushing this bit */
1760 ret = 0;
1761 break;
1762 }
1763 spin_unlock(&ci->i_ceph_lock);
1764 return ret;
1765}
1766
1767/*
1768 * Wait on any unsafe replies for the given inode. First wait on the
1769 * newest request, and make that the upper bound. Then, if there are
1770 * more requests, keep waiting on the oldest as long as it is still older
1771 * than the original request.
1772 */
1773static void sync_write_wait(struct inode *inode)
1774{
1775 struct ceph_inode_info *ci = ceph_inode(inode);
1776 struct list_head *head = &ci->i_unsafe_writes;
1777 struct ceph_osd_request *req;
1778 u64 last_tid;
1779
1780 spin_lock(&ci->i_unsafe_lock);
1781 if (list_empty(head))
1782 goto out;
1783
1784 /* set upper bound as _last_ entry in chain */
1785 req = list_entry(head->prev, struct ceph_osd_request,
1786 r_unsafe_item);
1787 last_tid = req->r_tid;
1788
1789 do {
1790 ceph_osdc_get_request(req);
1791 spin_unlock(&ci->i_unsafe_lock);
1792 dout("sync_write_wait on tid %llu (until %llu)\n",
1793 req->r_tid, last_tid);
1794 wait_for_completion(&req->r_safe_completion);
1795 spin_lock(&ci->i_unsafe_lock);
1796 ceph_osdc_put_request(req);
1797
1798 /*
1799 * from here on look at first entry in chain, since we
1800 * only want to wait for anything older than last_tid
1801 */
1802 if (list_empty(head))
1803 break;
1804 req = list_entry(head->next, struct ceph_osd_request,
1805 r_unsafe_item);
1806 } while (req->r_tid < last_tid);
1807out:
1808 spin_unlock(&ci->i_unsafe_lock);
1809}
1810
1811int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1812{
1813 struct inode *inode = file->f_mapping->host;
1814 struct ceph_inode_info *ci = ceph_inode(inode);
1815 unsigned flush_tid;
1816 int ret;
1817 int dirty;
1818
1819 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1820 sync_write_wait(inode);
1821
1822 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1823 if (ret < 0)
1824 return ret;
1825 mutex_lock(&inode->i_mutex);
1826
1827 dirty = try_flush_caps(inode, NULL, &flush_tid);
1828 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1829
1830 /*
1831 * only wait on non-file metadata writeback (the mds
1832 * can recover size and mtime, so we don't need to
1833 * wait for that)
1834 */
1835 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1836 dout("fsync waiting for flush_tid %u\n", flush_tid);
1837 ret = wait_event_interruptible(ci->i_cap_wq,
1838 caps_are_flushed(inode, flush_tid));
1839 }
1840
1841 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1842 mutex_unlock(&inode->i_mutex);
1843 return ret;
1844}
1845
1846/*
1847 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1848 * queue inode for flush but don't do so immediately, because we can
1849 * get by with fewer MDS messages if we wait for data writeback to
1850 * complete first.
1851 */
1852int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1853{
1854 struct ceph_inode_info *ci = ceph_inode(inode);
1855 unsigned flush_tid;
1856 int err = 0;
1857 int dirty;
1858 int wait = wbc->sync_mode == WB_SYNC_ALL;
1859
1860 dout("write_inode %p wait=%d\n", inode, wait);
1861 if (wait) {
1862 dirty = try_flush_caps(inode, NULL, &flush_tid);
1863 if (dirty)
1864 err = wait_event_interruptible(ci->i_cap_wq,
1865 caps_are_flushed(inode, flush_tid));
1866 } else {
1867 struct ceph_mds_client *mdsc =
1868 ceph_sb_to_client(inode->i_sb)->mdsc;
1869
1870 spin_lock(&ci->i_ceph_lock);
1871 if (__ceph_caps_dirty(ci))
1872 __cap_delay_requeue_front(mdsc, ci);
1873 spin_unlock(&ci->i_ceph_lock);
1874 }
1875 return err;
1876}
1877
1878/*
1879 * After a recovering MDS goes active, we need to resend any caps
1880 * we were flushing.
1881 *
1882 * Caller holds session->s_mutex.
1883 */
1884static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1885 struct ceph_mds_session *session)
1886{
1887 struct ceph_cap_snap *capsnap;
1888
1889 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1890 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1891 flushing_item) {
1892 struct ceph_inode_info *ci = capsnap->ci;
1893 struct inode *inode = &ci->vfs_inode;
1894 struct ceph_cap *cap;
1895
1896 spin_lock(&ci->i_ceph_lock);
1897 cap = ci->i_auth_cap;
1898 if (cap && cap->session == session) {
1899 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1900 cap, capsnap);
1901 __ceph_flush_snaps(ci, &session, 1);
1902 } else {
1903 pr_err("%p auth cap %p not mds%d ???\n", inode,
1904 cap, session->s_mds);
1905 }
1906 spin_unlock(&ci->i_ceph_lock);
1907 }
1908}
1909
1910void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1911 struct ceph_mds_session *session)
1912{
1913 struct ceph_inode_info *ci;
1914
1915 kick_flushing_capsnaps(mdsc, session);
1916
1917 dout("kick_flushing_caps mds%d\n", session->s_mds);
1918 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1919 struct inode *inode = &ci->vfs_inode;
1920 struct ceph_cap *cap;
1921 int delayed = 0;
1922
1923 spin_lock(&ci->i_ceph_lock);
1924 cap = ci->i_auth_cap;
1925 if (cap && cap->session == session) {
1926 dout("kick_flushing_caps %p cap %p %s\n", inode,
1927 cap, ceph_cap_string(ci->i_flushing_caps));
1928 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1929 __ceph_caps_used(ci),
1930 __ceph_caps_wanted(ci),
1931 cap->issued | cap->implemented,
1932 ci->i_flushing_caps, NULL);
1933 if (delayed) {
1934 spin_lock(&ci->i_ceph_lock);
1935 __cap_delay_requeue(mdsc, ci);
1936 spin_unlock(&ci->i_ceph_lock);
1937 }
1938 } else {
1939 pr_err("%p auth cap %p not mds%d ???\n", inode,
1940 cap, session->s_mds);
1941 spin_unlock(&ci->i_ceph_lock);
1942 }
1943 }
1944}
1945
1946static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1947 struct ceph_mds_session *session,
1948 struct inode *inode)
1949{
1950 struct ceph_inode_info *ci = ceph_inode(inode);
1951 struct ceph_cap *cap;
1952 int delayed = 0;
1953
1954 spin_lock(&ci->i_ceph_lock);
1955 cap = ci->i_auth_cap;
1956 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1957 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
1958 __ceph_flush_snaps(ci, &session, 1);
1959 if (ci->i_flushing_caps) {
1960 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1961 __ceph_caps_used(ci),
1962 __ceph_caps_wanted(ci),
1963 cap->issued | cap->implemented,
1964 ci->i_flushing_caps, NULL);
1965 if (delayed) {
1966 spin_lock(&ci->i_ceph_lock);
1967 __cap_delay_requeue(mdsc, ci);
1968 spin_unlock(&ci->i_ceph_lock);
1969 }
1970 } else {
1971 spin_unlock(&ci->i_ceph_lock);
1972 }
1973}
1974
1975
1976/*
1977 * Take references to capabilities we hold, so that we don't release
1978 * them to the MDS prematurely.
1979 *
1980 * Protected by i_ceph_lock.
1981 */
1982static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1983{
1984 if (got & CEPH_CAP_PIN)
1985 ci->i_pin_ref++;
1986 if (got & CEPH_CAP_FILE_RD)
1987 ci->i_rd_ref++;
1988 if (got & CEPH_CAP_FILE_CACHE)
1989 ci->i_rdcache_ref++;
1990 if (got & CEPH_CAP_FILE_WR)
1991 ci->i_wr_ref++;
1992 if (got & CEPH_CAP_FILE_BUFFER) {
1993 if (ci->i_wb_ref == 0)
1994 ihold(&ci->vfs_inode);
1995 ci->i_wb_ref++;
1996 dout("__take_cap_refs %p wb %d -> %d (?)\n",
1997 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
1998 }
1999}
2000
2001/*
2002 * Try to grab cap references. Specify those refs we @want, and the
2003 * minimal set we @need. Also include the larger offset we are writing
2004 * to (when applicable), and check against max_size here as well.
2005 * Note that caller is responsible for ensuring max_size increases are
2006 * requested from the MDS.
2007 */
2008static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2009 int *got, loff_t endoff, int *check_max, int *err)
2010{
2011 struct inode *inode = &ci->vfs_inode;
2012 int ret = 0;
2013 int have, implemented;
2014 int file_wanted;
2015
2016 dout("get_cap_refs %p need %s want %s\n", inode,
2017 ceph_cap_string(need), ceph_cap_string(want));
2018 spin_lock(&ci->i_ceph_lock);
2019
2020 /* make sure file is actually open */
2021 file_wanted = __ceph_caps_file_wanted(ci);
2022 if ((file_wanted & need) == 0) {
2023 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2024 ceph_cap_string(need), ceph_cap_string(file_wanted));
2025 *err = -EBADF;
2026 ret = 1;
2027 goto out;
2028 }
2029
2030 if (need & CEPH_CAP_FILE_WR) {
2031 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2032 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2033 inode, endoff, ci->i_max_size);
2034 if (endoff > ci->i_wanted_max_size) {
2035 *check_max = 1;
2036 ret = 1;
2037 }
2038 goto out;
2039 }
2040 /*
2041 * If a sync write is in progress, we must wait, so that we
2042 * can get a final snapshot value for size+mtime.
2043 */
2044 if (__ceph_have_pending_cap_snap(ci)) {
2045 dout("get_cap_refs %p cap_snap_pending\n", inode);
2046 goto out;
2047 }
2048 }
2049 have = __ceph_caps_issued(ci, &implemented);
2050
2051 /*
2052 * disallow writes while a truncate is pending
2053 */
2054 if (ci->i_truncate_pending)
2055 have &= ~CEPH_CAP_FILE_WR;
2056
2057 if ((have & need) == need) {
2058 /*
2059 * Look at (implemented & ~have & not) so that we keep waiting
2060 * on transition from wanted -> needed caps. This is needed
2061 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2062 * going before a prior buffered writeback happens.
2063 */
2064 int not = want & ~(have & need);
2065 int revoking = implemented & ~have;
2066 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2067 inode, ceph_cap_string(have), ceph_cap_string(not),
2068 ceph_cap_string(revoking));
2069 if ((revoking & not) == 0) {
2070 *got = need | (have & want);
2071 __take_cap_refs(ci, *got);
2072 ret = 1;
2073 }
2074 } else {
2075 dout("get_cap_refs %p have %s needed %s\n", inode,
2076 ceph_cap_string(have), ceph_cap_string(need));
2077 }
2078out:
2079 spin_unlock(&ci->i_ceph_lock);
2080 dout("get_cap_refs %p ret %d got %s\n", inode,
2081 ret, ceph_cap_string(*got));
2082 return ret;
2083}
2084
2085/*
2086 * Check the offset we are writing up to against our current
2087 * max_size. If necessary, tell the MDS we want to write to
2088 * a larger offset.
2089 */
2090static void check_max_size(struct inode *inode, loff_t endoff)
2091{
2092 struct ceph_inode_info *ci = ceph_inode(inode);
2093 int check = 0;
2094
2095 /* do we need to explicitly request a larger max_size? */
2096 spin_lock(&ci->i_ceph_lock);
2097 if ((endoff >= ci->i_max_size ||
2098 endoff > (inode->i_size << 1)) &&
2099 endoff > ci->i_wanted_max_size) {
2100 dout("write %p at large endoff %llu, req max_size\n",
2101 inode, endoff);
2102 ci->i_wanted_max_size = endoff;
2103 check = 1;
2104 }
2105 spin_unlock(&ci->i_ceph_lock);
2106 if (check)
2107 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2108}
2109
2110/*
2111 * Wait for caps, and take cap references. If we can't get a WR cap
2112 * due to a small max_size, make sure we check_max_size (and possibly
2113 * ask the mds) so we don't get hung up indefinitely.
2114 */
2115int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2116 loff_t endoff)
2117{
2118 int check_max, ret, err;
2119
2120retry:
2121 if (endoff > 0)
2122 check_max_size(&ci->vfs_inode, endoff);
2123 check_max = 0;
2124 err = 0;
2125 ret = wait_event_interruptible(ci->i_cap_wq,
2126 try_get_cap_refs(ci, need, want,
2127 got, endoff,
2128 &check_max, &err));
2129 if (err)
2130 ret = err;
2131 if (check_max)
2132 goto retry;
2133 return ret;
2134}
2135
2136/*
2137 * Take cap refs. Caller must already know we hold at least one ref
2138 * on the caps in question or we don't know this is safe.
2139 */
2140void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2141{
2142 spin_lock(&ci->i_ceph_lock);
2143 __take_cap_refs(ci, caps);
2144 spin_unlock(&ci->i_ceph_lock);
2145}
2146
2147/*
2148 * Release cap refs.
2149 *
2150 * If we released the last ref on any given cap, call ceph_check_caps
2151 * to release (or schedule a release).
2152 *
2153 * If we are releasing a WR cap (from a sync write), finalize any affected
2154 * cap_snap, and wake up any waiters.
2155 */
2156void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2157{
2158 struct inode *inode = &ci->vfs_inode;
2159 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2160 struct ceph_cap_snap *capsnap;
2161
2162 spin_lock(&ci->i_ceph_lock);
2163 if (had & CEPH_CAP_PIN)
2164 --ci->i_pin_ref;
2165 if (had & CEPH_CAP_FILE_RD)
2166 if (--ci->i_rd_ref == 0)
2167 last++;
2168 if (had & CEPH_CAP_FILE_CACHE)
2169 if (--ci->i_rdcache_ref == 0)
2170 last++;
2171 if (had & CEPH_CAP_FILE_BUFFER) {
2172 if (--ci->i_wb_ref == 0) {
2173 last++;
2174 put++;
2175 }
2176 dout("put_cap_refs %p wb %d -> %d (?)\n",
2177 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2178 }
2179 if (had & CEPH_CAP_FILE_WR)
2180 if (--ci->i_wr_ref == 0) {
2181 last++;
2182 if (!list_empty(&ci->i_cap_snaps)) {
2183 capsnap = list_first_entry(&ci->i_cap_snaps,
2184 struct ceph_cap_snap,
2185 ci_item);
2186 if (capsnap->writing) {
2187 capsnap->writing = 0;
2188 flushsnaps =
2189 __ceph_finish_cap_snap(ci,
2190 capsnap);
2191 wake = 1;
2192 }
2193 }
2194 }
2195 spin_unlock(&ci->i_ceph_lock);
2196
2197 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2198 last ? " last" : "", put ? " put" : "");
2199
2200 if (last && !flushsnaps)
2201 ceph_check_caps(ci, 0, NULL);
2202 else if (flushsnaps)
2203 ceph_flush_snaps(ci);
2204 if (wake)
2205 wake_up_all(&ci->i_cap_wq);
2206 if (put)
2207 iput(inode);
2208}
2209
2210/*
2211 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2212 * context. Adjust per-snap dirty page accounting as appropriate.
2213 * Once all dirty data for a cap_snap is flushed, flush snapped file
2214 * metadata back to the MDS. If we dropped the last ref, call
2215 * ceph_check_caps.
2216 */
2217void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2218 struct ceph_snap_context *snapc)
2219{
2220 struct inode *inode = &ci->vfs_inode;
2221 int last = 0;
2222 int complete_capsnap = 0;
2223 int drop_capsnap = 0;
2224 int found = 0;
2225 struct ceph_cap_snap *capsnap = NULL;
2226
2227 spin_lock(&ci->i_ceph_lock);
2228 ci->i_wrbuffer_ref -= nr;
2229 last = !ci->i_wrbuffer_ref;
2230
2231 if (ci->i_head_snapc == snapc) {
2232 ci->i_wrbuffer_ref_head -= nr;
2233 if (ci->i_wrbuffer_ref_head == 0 &&
2234 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2235 BUG_ON(!ci->i_head_snapc);
2236 ceph_put_snap_context(ci->i_head_snapc);
2237 ci->i_head_snapc = NULL;
2238 }
2239 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2240 inode,
2241 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2242 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2243 last ? " LAST" : "");
2244 } else {
2245 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2246 if (capsnap->context == snapc) {
2247 found = 1;
2248 break;
2249 }
2250 }
2251 BUG_ON(!found);
2252 capsnap->dirty_pages -= nr;
2253 if (capsnap->dirty_pages == 0) {
2254 complete_capsnap = 1;
2255 if (capsnap->dirty == 0)
2256 /* cap writeback completed before we created
2257 * the cap_snap; no FLUSHSNAP is needed */
2258 drop_capsnap = 1;
2259 }
2260 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2261 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2262 inode, capsnap, capsnap->context->seq,
2263 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2264 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2265 last ? " (wrbuffer last)" : "",
2266 complete_capsnap ? " (complete capsnap)" : "",
2267 drop_capsnap ? " (drop capsnap)" : "");
2268 if (drop_capsnap) {
2269 ceph_put_snap_context(capsnap->context);
2270 list_del(&capsnap->ci_item);
2271 list_del(&capsnap->flushing_item);
2272 ceph_put_cap_snap(capsnap);
2273 }
2274 }
2275
2276 spin_unlock(&ci->i_ceph_lock);
2277
2278 if (last) {
2279 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2280 iput(inode);
2281 } else if (complete_capsnap) {
2282 ceph_flush_snaps(ci);
2283 wake_up_all(&ci->i_cap_wq);
2284 }
2285 if (drop_capsnap)
2286 iput(inode);
2287}
2288
2289/*
2290 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2291 * actually be a revocation if it specifies a smaller cap set.)
2292 *
2293 * caller holds s_mutex and i_ceph_lock, we drop both.
2294 *
2295 * return value:
2296 * 0 - ok
2297 * 1 - check_caps on auth cap only (writeback)
2298 * 2 - check_caps (ack revoke)
2299 */
2300static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2301 struct ceph_mds_session *session,
2302 struct ceph_cap *cap,
2303 struct ceph_buffer *xattr_buf)
2304 __releases(ci->i_ceph_lock)
2305{
2306 struct ceph_inode_info *ci = ceph_inode(inode);
2307 int mds = session->s_mds;
2308 int seq = le32_to_cpu(grant->seq);
2309 int newcaps = le32_to_cpu(grant->caps);
2310 int issued, implemented, used, wanted, dirty;
2311 u64 size = le64_to_cpu(grant->size);
2312 u64 max_size = le64_to_cpu(grant->max_size);
2313 struct timespec mtime, atime, ctime;
2314 int check_caps = 0;
2315 int wake = 0;
2316 int writeback = 0;
2317 int revoked_rdcache = 0;
2318 int queue_invalidate = 0;
2319
2320 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2321 inode, cap, mds, seq, ceph_cap_string(newcaps));
2322 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2323 inode->i_size);
2324
2325 /*
2326 * If CACHE is being revoked, and we have no dirty buffers,
2327 * try to invalidate (once). (If there are dirty buffers, we
2328 * will invalidate _after_ writeback.)
2329 */
2330 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2331 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2332 !ci->i_wrbuffer_ref) {
2333 if (try_nonblocking_invalidate(inode) == 0) {
2334 revoked_rdcache = 1;
2335 } else {
2336 /* there were locked pages.. invalidate later
2337 in a separate thread. */
2338 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2339 queue_invalidate = 1;
2340 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2341 }
2342 }
2343 }
2344
2345 /* side effects now are allowed */
2346
2347 issued = __ceph_caps_issued(ci, &implemented);
2348 issued |= implemented | __ceph_caps_dirty(ci);
2349
2350 cap->cap_gen = session->s_cap_gen;
2351
2352 __check_cap_issue(ci, cap, newcaps);
2353
2354 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2355 inode->i_mode = le32_to_cpu(grant->mode);
2356 inode->i_uid = le32_to_cpu(grant->uid);
2357 inode->i_gid = le32_to_cpu(grant->gid);
2358 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2359 inode->i_uid, inode->i_gid);
2360 }
2361
2362 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2363 set_nlink(inode, le32_to_cpu(grant->nlink));
2364
2365 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2366 int len = le32_to_cpu(grant->xattr_len);
2367 u64 version = le64_to_cpu(grant->xattr_version);
2368
2369 if (version > ci->i_xattrs.version) {
2370 dout(" got new xattrs v%llu on %p len %d\n",
2371 version, inode, len);
2372 if (ci->i_xattrs.blob)
2373 ceph_buffer_put(ci->i_xattrs.blob);
2374 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2375 ci->i_xattrs.version = version;
2376 }
2377 }
2378
2379 /* size/ctime/mtime/atime? */
2380 ceph_fill_file_size(inode, issued,
2381 le32_to_cpu(grant->truncate_seq),
2382 le64_to_cpu(grant->truncate_size), size);
2383 ceph_decode_timespec(&mtime, &grant->mtime);
2384 ceph_decode_timespec(&atime, &grant->atime);
2385 ceph_decode_timespec(&ctime, &grant->ctime);
2386 ceph_fill_file_time(inode, issued,
2387 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2388 &atime);
2389
2390 /* max size increase? */
2391 if (max_size != ci->i_max_size) {
2392 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2393 ci->i_max_size = max_size;
2394 if (max_size >= ci->i_wanted_max_size) {
2395 ci->i_wanted_max_size = 0; /* reset */
2396 ci->i_requested_max_size = 0;
2397 }
2398 wake = 1;
2399 }
2400
2401 /* check cap bits */
2402 wanted = __ceph_caps_wanted(ci);
2403 used = __ceph_caps_used(ci);
2404 dirty = __ceph_caps_dirty(ci);
2405 dout(" my wanted = %s, used = %s, dirty %s\n",
2406 ceph_cap_string(wanted),
2407 ceph_cap_string(used),
2408 ceph_cap_string(dirty));
2409 if (wanted != le32_to_cpu(grant->wanted)) {
2410 dout("mds wanted %s -> %s\n",
2411 ceph_cap_string(le32_to_cpu(grant->wanted)),
2412 ceph_cap_string(wanted));
2413 grant->wanted = cpu_to_le32(wanted);
2414 }
2415
2416 cap->seq = seq;
2417
2418 /* file layout may have changed */
2419 ci->i_layout = grant->layout;
2420
2421 /* revocation, grant, or no-op? */
2422 if (cap->issued & ~newcaps) {
2423 int revoking = cap->issued & ~newcaps;
2424
2425 dout("revocation: %s -> %s (revoking %s)\n",
2426 ceph_cap_string(cap->issued),
2427 ceph_cap_string(newcaps),
2428 ceph_cap_string(revoking));
2429 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2430 writeback = 1; /* initiate writeback; will delay ack */
2431 else if (revoking == CEPH_CAP_FILE_CACHE &&
2432 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2433 queue_invalidate)
2434 ; /* do nothing yet, invalidation will be queued */
2435 else if (cap == ci->i_auth_cap)
2436 check_caps = 1; /* check auth cap only */
2437 else
2438 check_caps = 2; /* check all caps */
2439 cap->issued = newcaps;
2440 cap->implemented |= newcaps;
2441 } else if (cap->issued == newcaps) {
2442 dout("caps unchanged: %s -> %s\n",
2443 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2444 } else {
2445 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2446 ceph_cap_string(newcaps));
2447 cap->issued = newcaps;
2448 cap->implemented |= newcaps; /* add bits only, to
2449 * avoid stepping on a
2450 * pending revocation */
2451 wake = 1;
2452 }
2453 BUG_ON(cap->issued & ~cap->implemented);
2454
2455 spin_unlock(&ci->i_ceph_lock);
2456 if (writeback)
2457 /*
2458 * queue inode for writeback: we can't actually call
2459 * filemap_write_and_wait, etc. from message handler
2460 * context.
2461 */
2462 ceph_queue_writeback(inode);
2463 if (queue_invalidate)
2464 ceph_queue_invalidate(inode);
2465 if (wake)
2466 wake_up_all(&ci->i_cap_wq);
2467
2468 if (check_caps == 1)
2469 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2470 session);
2471 else if (check_caps == 2)
2472 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2473 else
2474 mutex_unlock(&session->s_mutex);
2475}
2476
2477/*
2478 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2479 * MDS has been safely committed.
2480 */
2481static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2482 struct ceph_mds_caps *m,
2483 struct ceph_mds_session *session,
2484 struct ceph_cap *cap)
2485 __releases(ci->i_ceph_lock)
2486{
2487 struct ceph_inode_info *ci = ceph_inode(inode);
2488 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2489 unsigned seq = le32_to_cpu(m->seq);
2490 int dirty = le32_to_cpu(m->dirty);
2491 int cleaned = 0;
2492 int drop = 0;
2493 int i;
2494
2495 for (i = 0; i < CEPH_CAP_BITS; i++)
2496 if ((dirty & (1 << i)) &&
2497 flush_tid == ci->i_cap_flush_tid[i])
2498 cleaned |= 1 << i;
2499
2500 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2501 " flushing %s -> %s\n",
2502 inode, session->s_mds, seq, ceph_cap_string(dirty),
2503 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2504 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2505
2506 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2507 goto out;
2508
2509 ci->i_flushing_caps &= ~cleaned;
2510
2511 spin_lock(&mdsc->cap_dirty_lock);
2512 if (ci->i_flushing_caps == 0) {
2513 list_del_init(&ci->i_flushing_item);
2514 if (!list_empty(&session->s_cap_flushing))
2515 dout(" mds%d still flushing cap on %p\n",
2516 session->s_mds,
2517 &list_entry(session->s_cap_flushing.next,
2518 struct ceph_inode_info,
2519 i_flushing_item)->vfs_inode);
2520 mdsc->num_cap_flushing--;
2521 wake_up_all(&mdsc->cap_flushing_wq);
2522 dout(" inode %p now !flushing\n", inode);
2523
2524 if (ci->i_dirty_caps == 0) {
2525 dout(" inode %p now clean\n", inode);
2526 BUG_ON(!list_empty(&ci->i_dirty_item));
2527 drop = 1;
2528 if (ci->i_wrbuffer_ref_head == 0) {
2529 BUG_ON(!ci->i_head_snapc);
2530 ceph_put_snap_context(ci->i_head_snapc);
2531 ci->i_head_snapc = NULL;
2532 }
2533 } else {
2534 BUG_ON(list_empty(&ci->i_dirty_item));
2535 }
2536 }
2537 spin_unlock(&mdsc->cap_dirty_lock);
2538 wake_up_all(&ci->i_cap_wq);
2539
2540out:
2541 spin_unlock(&ci->i_ceph_lock);
2542 if (drop)
2543 iput(inode);
2544}
2545
2546/*
2547 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2548 * throw away our cap_snap.
2549 *
2550 * Caller hold s_mutex.
2551 */
2552static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2553 struct ceph_mds_caps *m,
2554 struct ceph_mds_session *session)
2555{
2556 struct ceph_inode_info *ci = ceph_inode(inode);
2557 u64 follows = le64_to_cpu(m->snap_follows);
2558 struct ceph_cap_snap *capsnap;
2559 int drop = 0;
2560
2561 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2562 inode, ci, session->s_mds, follows);
2563
2564 spin_lock(&ci->i_ceph_lock);
2565 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2566 if (capsnap->follows == follows) {
2567 if (capsnap->flush_tid != flush_tid) {
2568 dout(" cap_snap %p follows %lld tid %lld !="
2569 " %lld\n", capsnap, follows,
2570 flush_tid, capsnap->flush_tid);
2571 break;
2572 }
2573 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2574 dout(" removing %p cap_snap %p follows %lld\n",
2575 inode, capsnap, follows);
2576 ceph_put_snap_context(capsnap->context);
2577 list_del(&capsnap->ci_item);
2578 list_del(&capsnap->flushing_item);
2579 ceph_put_cap_snap(capsnap);
2580 drop = 1;
2581 break;
2582 } else {
2583 dout(" skipping cap_snap %p follows %lld\n",
2584 capsnap, capsnap->follows);
2585 }
2586 }
2587 spin_unlock(&ci->i_ceph_lock);
2588 if (drop)
2589 iput(inode);
2590}
2591
2592/*
2593 * Handle TRUNC from MDS, indicating file truncation.
2594 *
2595 * caller hold s_mutex.
2596 */
2597static void handle_cap_trunc(struct inode *inode,
2598 struct ceph_mds_caps *trunc,
2599 struct ceph_mds_session *session)
2600 __releases(ci->i_ceph_lock)
2601{
2602 struct ceph_inode_info *ci = ceph_inode(inode);
2603 int mds = session->s_mds;
2604 int seq = le32_to_cpu(trunc->seq);
2605 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2606 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2607 u64 size = le64_to_cpu(trunc->size);
2608 int implemented = 0;
2609 int dirty = __ceph_caps_dirty(ci);
2610 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2611 int queue_trunc = 0;
2612
2613 issued |= implemented | dirty;
2614
2615 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2616 inode, mds, seq, truncate_size, truncate_seq);
2617 queue_trunc = ceph_fill_file_size(inode, issued,
2618 truncate_seq, truncate_size, size);
2619 spin_unlock(&ci->i_ceph_lock);
2620
2621 if (queue_trunc)
2622 ceph_queue_vmtruncate(inode);
2623}
2624
2625/*
2626 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2627 * different one. If we are the most recent migration we've seen (as
2628 * indicated by mseq), make note of the migrating cap bits for the
2629 * duration (until we see the corresponding IMPORT).
2630 *
2631 * caller holds s_mutex
2632 */
2633static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2634 struct ceph_mds_session *session,
2635 int *open_target_sessions)
2636{
2637 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2638 struct ceph_inode_info *ci = ceph_inode(inode);
2639 int mds = session->s_mds;
2640 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2641 struct ceph_cap *cap = NULL, *t;
2642 struct rb_node *p;
2643 int remember = 1;
2644
2645 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2646 inode, ci, mds, mseq);
2647
2648 spin_lock(&ci->i_ceph_lock);
2649
2650 /* make sure we haven't seen a higher mseq */
2651 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2652 t = rb_entry(p, struct ceph_cap, ci_node);
2653 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2654 dout(" higher mseq on cap from mds%d\n",
2655 t->session->s_mds);
2656 remember = 0;
2657 }
2658 if (t->session->s_mds == mds)
2659 cap = t;
2660 }
2661
2662 if (cap) {
2663 if (remember) {
2664 /* make note */
2665 ci->i_cap_exporting_mds = mds;
2666 ci->i_cap_exporting_mseq = mseq;
2667 ci->i_cap_exporting_issued = cap->issued;
2668
2669 /*
2670 * make sure we have open sessions with all possible
2671 * export targets, so that we get the matching IMPORT
2672 */
2673 *open_target_sessions = 1;
2674
2675 /*
2676 * we can't flush dirty caps that we've seen the
2677 * EXPORT but no IMPORT for
2678 */
2679 spin_lock(&mdsc->cap_dirty_lock);
2680 if (!list_empty(&ci->i_dirty_item)) {
2681 dout(" moving %p to cap_dirty_migrating\n",
2682 inode);
2683 list_move(&ci->i_dirty_item,
2684 &mdsc->cap_dirty_migrating);
2685 }
2686 spin_unlock(&mdsc->cap_dirty_lock);
2687 }
2688 __ceph_remove_cap(cap);
2689 }
2690 /* else, we already released it */
2691
2692 spin_unlock(&ci->i_ceph_lock);
2693}
2694
2695/*
2696 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2697 * clean them up.
2698 *
2699 * caller holds s_mutex.
2700 */
2701static void handle_cap_import(struct ceph_mds_client *mdsc,
2702 struct inode *inode, struct ceph_mds_caps *im,
2703 struct ceph_mds_session *session,
2704 void *snaptrace, int snaptrace_len)
2705{
2706 struct ceph_inode_info *ci = ceph_inode(inode);
2707 int mds = session->s_mds;
2708 unsigned issued = le32_to_cpu(im->caps);
2709 unsigned wanted = le32_to_cpu(im->wanted);
2710 unsigned seq = le32_to_cpu(im->seq);
2711 unsigned mseq = le32_to_cpu(im->migrate_seq);
2712 u64 realmino = le64_to_cpu(im->realm);
2713 u64 cap_id = le64_to_cpu(im->cap_id);
2714
2715 if (ci->i_cap_exporting_mds >= 0 &&
2716 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2717 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2718 " - cleared exporting from mds%d\n",
2719 inode, ci, mds, mseq,
2720 ci->i_cap_exporting_mds);
2721 ci->i_cap_exporting_issued = 0;
2722 ci->i_cap_exporting_mseq = 0;
2723 ci->i_cap_exporting_mds = -1;
2724
2725 spin_lock(&mdsc->cap_dirty_lock);
2726 if (!list_empty(&ci->i_dirty_item)) {
2727 dout(" moving %p back to cap_dirty\n", inode);
2728 list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2729 }
2730 spin_unlock(&mdsc->cap_dirty_lock);
2731 } else {
2732 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2733 inode, ci, mds, mseq);
2734 }
2735
2736 down_write(&mdsc->snap_rwsem);
2737 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2738 false);
2739 downgrade_write(&mdsc->snap_rwsem);
2740 ceph_add_cap(inode, session, cap_id, -1,
2741 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2742 NULL /* no caps context */);
2743 kick_flushing_inode_caps(mdsc, session, inode);
2744 up_read(&mdsc->snap_rwsem);
2745
2746 /* make sure we re-request max_size, if necessary */
2747 spin_lock(&ci->i_ceph_lock);
2748 ci->i_requested_max_size = 0;
2749 spin_unlock(&ci->i_ceph_lock);
2750}
2751
2752/*
2753 * Handle a caps message from the MDS.
2754 *
2755 * Identify the appropriate session, inode, and call the right handler
2756 * based on the cap op.
2757 */
2758void ceph_handle_caps(struct ceph_mds_session *session,
2759 struct ceph_msg *msg)
2760{
2761 struct ceph_mds_client *mdsc = session->s_mdsc;
2762 struct super_block *sb = mdsc->fsc->sb;
2763 struct inode *inode;
2764 struct ceph_inode_info *ci;
2765 struct ceph_cap *cap;
2766 struct ceph_mds_caps *h;
2767 int mds = session->s_mds;
2768 int op;
2769 u32 seq, mseq;
2770 struct ceph_vino vino;
2771 u64 cap_id;
2772 u64 size, max_size;
2773 u64 tid;
2774 void *snaptrace;
2775 size_t snaptrace_len;
2776 void *flock;
2777 u32 flock_len;
2778 int open_target_sessions = 0;
2779
2780 dout("handle_caps from mds%d\n", mds);
2781
2782 /* decode */
2783 tid = le64_to_cpu(msg->hdr.tid);
2784 if (msg->front.iov_len < sizeof(*h))
2785 goto bad;
2786 h = msg->front.iov_base;
2787 op = le32_to_cpu(h->op);
2788 vino.ino = le64_to_cpu(h->ino);
2789 vino.snap = CEPH_NOSNAP;
2790 cap_id = le64_to_cpu(h->cap_id);
2791 seq = le32_to_cpu(h->seq);
2792 mseq = le32_to_cpu(h->migrate_seq);
2793 size = le64_to_cpu(h->size);
2794 max_size = le64_to_cpu(h->max_size);
2795
2796 snaptrace = h + 1;
2797 snaptrace_len = le32_to_cpu(h->snap_trace_len);
2798
2799 if (le16_to_cpu(msg->hdr.version) >= 2) {
2800 void *p, *end;
2801
2802 p = snaptrace + snaptrace_len;
2803 end = msg->front.iov_base + msg->front.iov_len;
2804 ceph_decode_32_safe(&p, end, flock_len, bad);
2805 flock = p;
2806 } else {
2807 flock = NULL;
2808 flock_len = 0;
2809 }
2810
2811 mutex_lock(&session->s_mutex);
2812 session->s_seq++;
2813 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2814 (unsigned)seq);
2815
2816 /* lookup ino */
2817 inode = ceph_find_inode(sb, vino);
2818 ci = ceph_inode(inode);
2819 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2820 vino.snap, inode);
2821 if (!inode) {
2822 dout(" i don't have ino %llx\n", vino.ino);
2823
2824 if (op == CEPH_CAP_OP_IMPORT)
2825 __queue_cap_release(session, vino.ino, cap_id,
2826 mseq, seq);
2827 goto flush_cap_releases;
2828 }
2829
2830 /* these will work even if we don't have a cap yet */
2831 switch (op) {
2832 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2833 handle_cap_flushsnap_ack(inode, tid, h, session);
2834 goto done;
2835
2836 case CEPH_CAP_OP_EXPORT:
2837 handle_cap_export(inode, h, session, &open_target_sessions);
2838 goto done;
2839
2840 case CEPH_CAP_OP_IMPORT:
2841 handle_cap_import(mdsc, inode, h, session,
2842 snaptrace, snaptrace_len);
2843 ceph_check_caps(ceph_inode(inode), 0, session);
2844 goto done_unlocked;
2845 }
2846
2847 /* the rest require a cap */
2848 spin_lock(&ci->i_ceph_lock);
2849 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2850 if (!cap) {
2851 dout(" no cap on %p ino %llx.%llx from mds%d\n",
2852 inode, ceph_ino(inode), ceph_snap(inode), mds);
2853 spin_unlock(&ci->i_ceph_lock);
2854 goto flush_cap_releases;
2855 }
2856
2857 /* note that each of these drops i_ceph_lock for us */
2858 switch (op) {
2859 case CEPH_CAP_OP_REVOKE:
2860 case CEPH_CAP_OP_GRANT:
2861 handle_cap_grant(inode, h, session, cap, msg->middle);
2862 goto done_unlocked;
2863
2864 case CEPH_CAP_OP_FLUSH_ACK:
2865 handle_cap_flush_ack(inode, tid, h, session, cap);
2866 break;
2867
2868 case CEPH_CAP_OP_TRUNC:
2869 handle_cap_trunc(inode, h, session);
2870 break;
2871
2872 default:
2873 spin_unlock(&ci->i_ceph_lock);
2874 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2875 ceph_cap_op_name(op));
2876 }
2877
2878 goto done;
2879
2880flush_cap_releases:
2881 /*
2882 * send any full release message to try to move things
2883 * along for the mds (who clearly thinks we still have this
2884 * cap).
2885 */
2886 ceph_add_cap_releases(mdsc, session);
2887 ceph_send_cap_releases(mdsc, session);
2888
2889done:
2890 mutex_unlock(&session->s_mutex);
2891done_unlocked:
2892 if (inode)
2893 iput(inode);
2894 if (open_target_sessions)
2895 ceph_mdsc_open_export_target_sessions(mdsc, session);
2896 return;
2897
2898bad:
2899 pr_err("ceph_handle_caps: corrupt message\n");
2900 ceph_msg_dump(msg);
2901 return;
2902}
2903
2904/*
2905 * Delayed work handler to process end of delayed cap release LRU list.
2906 */
2907void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2908{
2909 struct ceph_inode_info *ci;
2910 int flags = CHECK_CAPS_NODELAY;
2911
2912 dout("check_delayed_caps\n");
2913 while (1) {
2914 spin_lock(&mdsc->cap_delay_lock);
2915 if (list_empty(&mdsc->cap_delay_list))
2916 break;
2917 ci = list_first_entry(&mdsc->cap_delay_list,
2918 struct ceph_inode_info,
2919 i_cap_delay_list);
2920 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2921 time_before(jiffies, ci->i_hold_caps_max))
2922 break;
2923 list_del_init(&ci->i_cap_delay_list);
2924 spin_unlock(&mdsc->cap_delay_lock);
2925 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2926 ceph_check_caps(ci, flags, NULL);
2927 }
2928 spin_unlock(&mdsc->cap_delay_lock);
2929}
2930
2931/*
2932 * Flush all dirty caps to the mds
2933 */
2934void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2935{
2936 struct ceph_inode_info *ci;
2937 struct inode *inode;
2938
2939 dout("flush_dirty_caps\n");
2940 spin_lock(&mdsc->cap_dirty_lock);
2941 while (!list_empty(&mdsc->cap_dirty)) {
2942 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
2943 i_dirty_item);
2944 inode = &ci->vfs_inode;
2945 ihold(inode);
2946 dout("flush_dirty_caps %p\n", inode);
2947 spin_unlock(&mdsc->cap_dirty_lock);
2948 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
2949 iput(inode);
2950 spin_lock(&mdsc->cap_dirty_lock);
2951 }
2952 spin_unlock(&mdsc->cap_dirty_lock);
2953 dout("flush_dirty_caps done\n");
2954}
2955
2956/*
2957 * Drop open file reference. If we were the last open file,
2958 * we may need to release capabilities to the MDS (or schedule
2959 * their delayed release).
2960 */
2961void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2962{
2963 struct inode *inode = &ci->vfs_inode;
2964 int last = 0;
2965
2966 spin_lock(&ci->i_ceph_lock);
2967 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2968 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2969 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2970 if (--ci->i_nr_by_mode[fmode] == 0)
2971 last++;
2972 spin_unlock(&ci->i_ceph_lock);
2973
2974 if (last && ci->i_vino.snap == CEPH_NOSNAP)
2975 ceph_check_caps(ci, 0, NULL);
2976}
2977
2978/*
2979 * Helpers for embedding cap and dentry lease releases into mds
2980 * requests.
2981 *
2982 * @force is used by dentry_release (below) to force inclusion of a
2983 * record for the directory inode, even when there aren't any caps to
2984 * drop.
2985 */
2986int ceph_encode_inode_release(void **p, struct inode *inode,
2987 int mds, int drop, int unless, int force)
2988{
2989 struct ceph_inode_info *ci = ceph_inode(inode);
2990 struct ceph_cap *cap;
2991 struct ceph_mds_request_release *rel = *p;
2992 int used, dirty;
2993 int ret = 0;
2994
2995 spin_lock(&ci->i_ceph_lock);
2996 used = __ceph_caps_used(ci);
2997 dirty = __ceph_caps_dirty(ci);
2998
2999 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3000 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3001 ceph_cap_string(unless));
3002
3003 /* only drop unused, clean caps */
3004 drop &= ~(used | dirty);
3005
3006 cap = __get_cap_for_mds(ci, mds);
3007 if (cap && __cap_is_valid(cap)) {
3008 if (force ||
3009 ((cap->issued & drop) &&
3010 (cap->issued & unless) == 0)) {
3011 if ((cap->issued & drop) &&
3012 (cap->issued & unless) == 0) {
3013 dout("encode_inode_release %p cap %p %s -> "
3014 "%s\n", inode, cap,
3015 ceph_cap_string(cap->issued),
3016 ceph_cap_string(cap->issued & ~drop));
3017 cap->issued &= ~drop;
3018 cap->implemented &= ~drop;
3019 if (ci->i_ceph_flags & CEPH_I_NODELAY) {
3020 int wanted = __ceph_caps_wanted(ci);
3021 dout(" wanted %s -> %s (act %s)\n",
3022 ceph_cap_string(cap->mds_wanted),
3023 ceph_cap_string(cap->mds_wanted &
3024 ~wanted),
3025 ceph_cap_string(wanted));
3026 cap->mds_wanted &= wanted;
3027 }
3028 } else {
3029 dout("encode_inode_release %p cap %p %s"
3030 " (force)\n", inode, cap,
3031 ceph_cap_string(cap->issued));
3032 }
3033
3034 rel->ino = cpu_to_le64(ceph_ino(inode));
3035 rel->cap_id = cpu_to_le64(cap->cap_id);
3036 rel->seq = cpu_to_le32(cap->seq);
3037 rel->issue_seq = cpu_to_le32(cap->issue_seq),
3038 rel->mseq = cpu_to_le32(cap->mseq);
3039 rel->caps = cpu_to_le32(cap->issued);
3040 rel->wanted = cpu_to_le32(cap->mds_wanted);
3041 rel->dname_len = 0;
3042 rel->dname_seq = 0;
3043 *p += sizeof(*rel);
3044 ret = 1;
3045 } else {
3046 dout("encode_inode_release %p cap %p %s\n",
3047 inode, cap, ceph_cap_string(cap->issued));
3048 }
3049 }
3050 spin_unlock(&ci->i_ceph_lock);
3051 return ret;
3052}
3053
3054int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3055 int mds, int drop, int unless)
3056{
3057 struct inode *dir = dentry->d_parent->d_inode;
3058 struct ceph_mds_request_release *rel = *p;
3059 struct ceph_dentry_info *di = ceph_dentry(dentry);
3060 int force = 0;
3061 int ret;
3062
3063 /*
3064 * force an record for the directory caps if we have a dentry lease.
3065 * this is racy (can't take i_ceph_lock and d_lock together), but it
3066 * doesn't have to be perfect; the mds will revoke anything we don't
3067 * release.
3068 */
3069 spin_lock(&dentry->d_lock);
3070 if (di->lease_session && di->lease_session->s_mds == mds)
3071 force = 1;
3072 spin_unlock(&dentry->d_lock);
3073
3074 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3075
3076 spin_lock(&dentry->d_lock);
3077 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3078 dout("encode_dentry_release %p mds%d seq %d\n",
3079 dentry, mds, (int)di->lease_seq);
3080 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3081 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3082 *p += dentry->d_name.len;
3083 rel->dname_seq = cpu_to_le32(di->lease_seq);
3084 __ceph_mdsc_drop_dentry_lease(dentry);
3085 }
3086 spin_unlock(&dentry->d_lock);
3087 return ret;
3088}