Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/aio.h>
  28#include <linux/falloc.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/statfs.h>
  32#include <linux/compat.h>
  33#include <linux/slab.h>
  34#include <linux/btrfs.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
 
  39#include "print-tree.h"
  40#include "tree-log.h"
  41#include "locking.h"
  42#include "volumes.h"
  43
  44static struct kmem_cache *btrfs_inode_defrag_cachep;
  45/*
  46 * when auto defrag is enabled we
  47 * queue up these defrag structs to remember which
  48 * inodes need defragging passes
  49 */
  50struct inode_defrag {
  51	struct rb_node rb_node;
  52	/* objectid */
  53	u64 ino;
  54	/*
  55	 * transid where the defrag was added, we search for
  56	 * extents newer than this
  57	 */
  58	u64 transid;
  59
  60	/* root objectid */
  61	u64 root;
  62
  63	/* last offset we were able to defrag */
  64	u64 last_offset;
  65
  66	/* if we've wrapped around back to zero once already */
  67	int cycled;
  68};
  69
  70static int __compare_inode_defrag(struct inode_defrag *defrag1,
  71				  struct inode_defrag *defrag2)
  72{
  73	if (defrag1->root > defrag2->root)
  74		return 1;
  75	else if (defrag1->root < defrag2->root)
  76		return -1;
  77	else if (defrag1->ino > defrag2->ino)
  78		return 1;
  79	else if (defrag1->ino < defrag2->ino)
  80		return -1;
  81	else
  82		return 0;
  83}
  84
  85/* pop a record for an inode into the defrag tree.  The lock
  86 * must be held already
  87 *
  88 * If you're inserting a record for an older transid than an
  89 * existing record, the transid already in the tree is lowered
  90 *
  91 * If an existing record is found the defrag item you
  92 * pass in is freed
  93 */
  94static int __btrfs_add_inode_defrag(struct inode *inode,
  95				    struct inode_defrag *defrag)
  96{
  97	struct btrfs_root *root = BTRFS_I(inode)->root;
  98	struct inode_defrag *entry;
  99	struct rb_node **p;
 100	struct rb_node *parent = NULL;
 101	int ret;
 102
 103	p = &root->fs_info->defrag_inodes.rb_node;
 104	while (*p) {
 105		parent = *p;
 106		entry = rb_entry(parent, struct inode_defrag, rb_node);
 107
 108		ret = __compare_inode_defrag(defrag, entry);
 109		if (ret < 0)
 110			p = &parent->rb_left;
 111		else if (ret > 0)
 112			p = &parent->rb_right;
 113		else {
 114			/* if we're reinserting an entry for
 115			 * an old defrag run, make sure to
 116			 * lower the transid of our existing record
 117			 */
 118			if (defrag->transid < entry->transid)
 119				entry->transid = defrag->transid;
 120			if (defrag->last_offset > entry->last_offset)
 121				entry->last_offset = defrag->last_offset;
 122			return -EEXIST;
 123		}
 124	}
 125	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 126	rb_link_node(&defrag->rb_node, parent, p);
 127	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 128	return 0;
 129}
 130
 131static inline int __need_auto_defrag(struct btrfs_root *root)
 132{
 133	if (!btrfs_test_opt(root, AUTO_DEFRAG))
 134		return 0;
 135
 136	if (btrfs_fs_closing(root->fs_info))
 137		return 0;
 
 138
 139	return 1;
 140}
 141
 142/*
 143 * insert a defrag record for this inode if auto defrag is
 144 * enabled
 145 */
 146int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 147			   struct inode *inode)
 148{
 149	struct btrfs_root *root = BTRFS_I(inode)->root;
 150	struct inode_defrag *defrag;
 151	u64 transid;
 152	int ret;
 153
 154	if (!__need_auto_defrag(root))
 
 
 
 155		return 0;
 156
 157	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 158		return 0;
 159
 160	if (trans)
 161		transid = trans->transid;
 162	else
 163		transid = BTRFS_I(inode)->root->last_trans;
 164
 165	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 166	if (!defrag)
 167		return -ENOMEM;
 168
 169	defrag->ino = btrfs_ino(inode);
 170	defrag->transid = transid;
 171	defrag->root = root->root_key.objectid;
 172
 173	spin_lock(&root->fs_info->defrag_inodes_lock);
 174	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 175		/*
 176		 * If we set IN_DEFRAG flag and evict the inode from memory,
 177		 * and then re-read this inode, this new inode doesn't have
 178		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 179		 */
 180		ret = __btrfs_add_inode_defrag(inode, defrag);
 181		if (ret)
 182			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 183	} else {
 184		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 185	}
 186	spin_unlock(&root->fs_info->defrag_inodes_lock);
 187	return 0;
 188}
 189
 190/*
 191 * Requeue the defrag object. If there is a defrag object that points to
 192 * the same inode in the tree, we will merge them together (by
 193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 194 */
 195static void btrfs_requeue_inode_defrag(struct inode *inode,
 196				       struct inode_defrag *defrag)
 197{
 198	struct btrfs_root *root = BTRFS_I(inode)->root;
 199	int ret;
 200
 201	if (!__need_auto_defrag(root))
 202		goto out;
 203
 204	/*
 205	 * Here we don't check the IN_DEFRAG flag, because we need merge
 206	 * them together.
 207	 */
 208	spin_lock(&root->fs_info->defrag_inodes_lock);
 209	ret = __btrfs_add_inode_defrag(inode, defrag);
 210	spin_unlock(&root->fs_info->defrag_inodes_lock);
 211	if (ret)
 212		goto out;
 213	return;
 214out:
 215	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 216}
 217
 218/*
 219 * pick the defragable inode that we want, if it doesn't exist, we will get
 220 * the next one.
 221 */
 222static struct inode_defrag *
 223btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 
 224{
 225	struct inode_defrag *entry = NULL;
 226	struct inode_defrag tmp;
 227	struct rb_node *p;
 228	struct rb_node *parent = NULL;
 229	int ret;
 230
 231	tmp.ino = ino;
 232	tmp.root = root;
 233
 234	spin_lock(&fs_info->defrag_inodes_lock);
 235	p = fs_info->defrag_inodes.rb_node;
 236	while (p) {
 237		parent = p;
 238		entry = rb_entry(parent, struct inode_defrag, rb_node);
 239
 240		ret = __compare_inode_defrag(&tmp, entry);
 241		if (ret < 0)
 242			p = parent->rb_left;
 243		else if (ret > 0)
 244			p = parent->rb_right;
 245		else
 246			goto out;
 247	}
 248
 249	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 250		parent = rb_next(parent);
 251		if (parent)
 252			entry = rb_entry(parent, struct inode_defrag, rb_node);
 253		else
 254			entry = NULL;
 255	}
 256out:
 257	if (entry)
 258		rb_erase(parent, &fs_info->defrag_inodes);
 259	spin_unlock(&fs_info->defrag_inodes_lock);
 260	return entry;
 261}
 262
 263void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 264{
 265	struct inode_defrag *defrag;
 266	struct rb_node *node;
 267
 268	spin_lock(&fs_info->defrag_inodes_lock);
 269	node = rb_first(&fs_info->defrag_inodes);
 270	while (node) {
 271		rb_erase(node, &fs_info->defrag_inodes);
 272		defrag = rb_entry(node, struct inode_defrag, rb_node);
 273		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 274
 275		if (need_resched()) {
 276			spin_unlock(&fs_info->defrag_inodes_lock);
 277			cond_resched();
 278			spin_lock(&fs_info->defrag_inodes_lock);
 279		}
 280
 281		node = rb_first(&fs_info->defrag_inodes);
 282	}
 283	spin_unlock(&fs_info->defrag_inodes_lock);
 284}
 285
 286#define BTRFS_DEFRAG_BATCH	1024
 287
 288static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 289				    struct inode_defrag *defrag)
 290{
 291	struct btrfs_root *inode_root;
 292	struct inode *inode;
 293	struct btrfs_key key;
 294	struct btrfs_ioctl_defrag_range_args range;
 295	int num_defrag;
 296	int index;
 297	int ret;
 298
 299	/* get the inode */
 300	key.objectid = defrag->root;
 301	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 302	key.offset = (u64)-1;
 303
 304	index = srcu_read_lock(&fs_info->subvol_srcu);
 305
 306	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 307	if (IS_ERR(inode_root)) {
 308		ret = PTR_ERR(inode_root);
 309		goto cleanup;
 310	}
 311
 312	key.objectid = defrag->ino;
 313	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
 314	key.offset = 0;
 315	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 316	if (IS_ERR(inode)) {
 317		ret = PTR_ERR(inode);
 318		goto cleanup;
 319	}
 320	srcu_read_unlock(&fs_info->subvol_srcu, index);
 321
 322	/* do a chunk of defrag */
 323	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 324	memset(&range, 0, sizeof(range));
 325	range.len = (u64)-1;
 326	range.start = defrag->last_offset;
 327
 328	sb_start_write(fs_info->sb);
 329	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 330				       BTRFS_DEFRAG_BATCH);
 331	sb_end_write(fs_info->sb);
 332	/*
 333	 * if we filled the whole defrag batch, there
 334	 * must be more work to do.  Queue this defrag
 335	 * again
 336	 */
 337	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 338		defrag->last_offset = range.start;
 339		btrfs_requeue_inode_defrag(inode, defrag);
 340	} else if (defrag->last_offset && !defrag->cycled) {
 341		/*
 342		 * we didn't fill our defrag batch, but
 343		 * we didn't start at zero.  Make sure we loop
 344		 * around to the start of the file.
 345		 */
 346		defrag->last_offset = 0;
 347		defrag->cycled = 1;
 348		btrfs_requeue_inode_defrag(inode, defrag);
 349	} else {
 350		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 351	}
 352
 353	iput(inode);
 354	return 0;
 355cleanup:
 356	srcu_read_unlock(&fs_info->subvol_srcu, index);
 357	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 358	return ret;
 359}
 360
 361/*
 362 * run through the list of inodes in the FS that need
 363 * defragging
 364 */
 365int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 366{
 367	struct inode_defrag *defrag;
 
 
 
 
 
 368	u64 first_ino = 0;
 369	u64 root_objectid = 0;
 
 
 370
 371	atomic_inc(&fs_info->defrag_running);
 372	while (1) {
 373		/* Pause the auto defragger. */
 374		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 375			     &fs_info->fs_state))
 376			break;
 377
 378		if (!__need_auto_defrag(fs_info->tree_root))
 379			break;
 
 
 380
 381		/* find an inode to defrag */
 382		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 383						 first_ino);
 384		if (!defrag) {
 385			if (root_objectid || first_ino) {
 
 
 
 386				root_objectid = 0;
 387				first_ino = 0;
 388				continue;
 389			} else {
 390				break;
 391			}
 392		}
 393
 
 394		first_ino = defrag->ino + 1;
 395		root_objectid = defrag->root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396
 397		__btrfs_run_defrag_inode(fs_info, defrag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398	}
 
 
 399	atomic_dec(&fs_info->defrag_running);
 400
 401	/*
 402	 * during unmount, we use the transaction_wait queue to
 403	 * wait for the defragger to stop
 404	 */
 405	wake_up(&fs_info->transaction_wait);
 406	return 0;
 407}
 408
 409/* simple helper to fault in pages and copy.  This should go away
 410 * and be replaced with calls into generic code.
 411 */
 412static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
 413					 size_t write_bytes,
 414					 struct page **prepared_pages,
 415					 struct iov_iter *i)
 416{
 417	size_t copied = 0;
 418	size_t total_copied = 0;
 419	int pg = 0;
 420	int offset = pos & (PAGE_CACHE_SIZE - 1);
 421
 422	while (write_bytes > 0) {
 423		size_t count = min_t(size_t,
 424				     PAGE_CACHE_SIZE - offset, write_bytes);
 425		struct page *page = prepared_pages[pg];
 426		/*
 427		 * Copy data from userspace to the current page
 
 
 
 428		 */
 
 429		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 
 430
 431		/* Flush processor's dcache for this page */
 432		flush_dcache_page(page);
 433
 434		/*
 435		 * if we get a partial write, we can end up with
 436		 * partially up to date pages.  These add
 437		 * a lot of complexity, so make sure they don't
 438		 * happen by forcing this copy to be retried.
 439		 *
 440		 * The rest of the btrfs_file_write code will fall
 441		 * back to page at a time copies after we return 0.
 442		 */
 443		if (!PageUptodate(page) && copied < count)
 444			copied = 0;
 445
 446		iov_iter_advance(i, copied);
 447		write_bytes -= copied;
 448		total_copied += copied;
 449
 450		/* Return to btrfs_file_aio_write to fault page */
 451		if (unlikely(copied == 0))
 452			break;
 453
 454		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
 455			offset += copied;
 456		} else {
 457			pg++;
 458			offset = 0;
 459		}
 460	}
 461	return total_copied;
 462}
 463
 464/*
 465 * unlocks pages after btrfs_file_write is done with them
 466 */
 467static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 468{
 469	size_t i;
 470	for (i = 0; i < num_pages; i++) {
 471		/* page checked is some magic around finding pages that
 472		 * have been modified without going through btrfs_set_page_dirty
 473		 * clear it here
 474		 */
 475		ClearPageChecked(pages[i]);
 476		unlock_page(pages[i]);
 477		mark_page_accessed(pages[i]);
 478		page_cache_release(pages[i]);
 479	}
 480}
 481
 482/*
 483 * after copy_from_user, pages need to be dirtied and we need to make
 484 * sure holes are created between the current EOF and the start of
 485 * any next extents (if required).
 486 *
 487 * this also makes the decision about creating an inline extent vs
 488 * doing real data extents, marking pages dirty and delalloc as required.
 489 */
 490int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 491			     struct page **pages, size_t num_pages,
 492			     loff_t pos, size_t write_bytes,
 493			     struct extent_state **cached)
 494{
 495	int err = 0;
 496	int i;
 497	u64 num_bytes;
 498	u64 start_pos;
 499	u64 end_of_last_block;
 500	u64 end_pos = pos + write_bytes;
 501	loff_t isize = i_size_read(inode);
 502
 503	start_pos = pos & ~((u64)root->sectorsize - 1);
 504	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
 
 505
 506	end_of_last_block = start_pos + num_bytes - 1;
 507	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 508					cached);
 509	if (err)
 510		return err;
 511
 512	for (i = 0; i < num_pages; i++) {
 513		struct page *p = pages[i];
 514		SetPageUptodate(p);
 515		ClearPageChecked(p);
 516		set_page_dirty(p);
 517	}
 518
 519	/*
 520	 * we've only changed i_size in ram, and we haven't updated
 521	 * the disk i_size.  There is no need to log the inode
 522	 * at this time.
 523	 */
 524	if (end_pos > isize)
 525		i_size_write(inode, end_pos);
 526	return 0;
 527}
 528
 529/*
 530 * this drops all the extents in the cache that intersect the range
 531 * [start, end].  Existing extents are split as required.
 532 */
 533void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 534			     int skip_pinned)
 535{
 536	struct extent_map *em;
 537	struct extent_map *split = NULL;
 538	struct extent_map *split2 = NULL;
 539	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 540	u64 len = end - start + 1;
 541	u64 gen;
 542	int ret;
 543	int testend = 1;
 544	unsigned long flags;
 545	int compressed = 0;
 546	bool modified;
 547
 548	WARN_ON(end < start);
 549	if (end == (u64)-1) {
 550		len = (u64)-1;
 551		testend = 0;
 552	}
 553	while (1) {
 554		int no_splits = 0;
 555
 556		modified = false;
 557		if (!split)
 558			split = alloc_extent_map();
 559		if (!split2)
 560			split2 = alloc_extent_map();
 561		if (!split || !split2)
 562			no_splits = 1;
 563
 564		write_lock(&em_tree->lock);
 565		em = lookup_extent_mapping(em_tree, start, len);
 566		if (!em) {
 567			write_unlock(&em_tree->lock);
 568			break;
 569		}
 570		flags = em->flags;
 571		gen = em->generation;
 572		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 573			if (testend && em->start + em->len >= start + len) {
 574				free_extent_map(em);
 575				write_unlock(&em_tree->lock);
 576				break;
 577			}
 578			start = em->start + em->len;
 579			if (testend)
 580				len = start + len - (em->start + em->len);
 581			free_extent_map(em);
 582			write_unlock(&em_tree->lock);
 583			continue;
 584		}
 585		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 586		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 587		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 588		modified = !list_empty(&em->list);
 589		if (no_splits)
 590			goto next;
 591
 592		if (em->start < start) {
 
 593			split->start = em->start;
 594			split->len = start - em->start;
 
 
 595
 596			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 597				split->orig_start = em->orig_start;
 598				split->block_start = em->block_start;
 599
 600				if (compressed)
 601					split->block_len = em->block_len;
 602				else
 603					split->block_len = split->len;
 604				split->orig_block_len = max(split->block_len,
 605						em->orig_block_len);
 606				split->ram_bytes = em->ram_bytes;
 607			} else {
 608				split->orig_start = split->start;
 609				split->block_len = 0;
 610				split->block_start = em->block_start;
 611				split->orig_block_len = 0;
 612				split->ram_bytes = split->len;
 613			}
 614
 615			split->generation = gen;
 616			split->bdev = em->bdev;
 617			split->flags = flags;
 618			split->compress_type = em->compress_type;
 619			replace_extent_mapping(em_tree, em, split, modified);
 
 620			free_extent_map(split);
 621			split = split2;
 622			split2 = NULL;
 623		}
 624		if (testend && em->start + em->len > start + len) {
 
 625			u64 diff = start + len - em->start;
 626
 627			split->start = start + len;
 628			split->len = em->start + em->len - (start + len);
 629			split->bdev = em->bdev;
 630			split->flags = flags;
 631			split->compress_type = em->compress_type;
 632			split->generation = gen;
 633
 634			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 635				split->orig_block_len = max(em->block_len,
 636						    em->orig_block_len);
 637
 638				split->ram_bytes = em->ram_bytes;
 639				if (compressed) {
 640					split->block_len = em->block_len;
 641					split->block_start = em->block_start;
 642					split->orig_start = em->orig_start;
 643				} else {
 644					split->block_len = split->len;
 645					split->block_start = em->block_start
 646						+ diff;
 647					split->orig_start = em->orig_start;
 648				}
 649			} else {
 650				split->ram_bytes = split->len;
 
 651				split->orig_start = split->start;
 652				split->block_len = 0;
 653				split->block_start = em->block_start;
 654				split->orig_block_len = 0;
 655			}
 656
 657			if (extent_map_in_tree(em)) {
 658				replace_extent_mapping(em_tree, em, split,
 659						       modified);
 660			} else {
 661				ret = add_extent_mapping(em_tree, split,
 662							 modified);
 663				ASSERT(ret == 0); /* Logic error */
 664			}
 665			free_extent_map(split);
 666			split = NULL;
 667		}
 668next:
 669		if (extent_map_in_tree(em))
 670			remove_extent_mapping(em_tree, em);
 671		write_unlock(&em_tree->lock);
 672
 673		/* once for us */
 674		free_extent_map(em);
 675		/* once for the tree*/
 676		free_extent_map(em);
 677	}
 678	if (split)
 679		free_extent_map(split);
 680	if (split2)
 681		free_extent_map(split2);
 
 682}
 683
 684/*
 685 * this is very complex, but the basic idea is to drop all extents
 686 * in the range start - end.  hint_block is filled in with a block number
 687 * that would be a good hint to the block allocator for this file.
 688 *
 689 * If an extent intersects the range but is not entirely inside the range
 690 * it is either truncated or split.  Anything entirely inside the range
 691 * is deleted from the tree.
 692 */
 693int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 694			 struct btrfs_root *root, struct inode *inode,
 695			 struct btrfs_path *path, u64 start, u64 end,
 696			 u64 *drop_end, int drop_cache,
 697			 int replace_extent,
 698			 u32 extent_item_size,
 699			 int *key_inserted)
 700{
 
 701	struct extent_buffer *leaf;
 702	struct btrfs_file_extent_item *fi;
 
 703	struct btrfs_key key;
 704	struct btrfs_key new_key;
 705	u64 ino = btrfs_ino(inode);
 706	u64 search_start = start;
 707	u64 disk_bytenr = 0;
 708	u64 num_bytes = 0;
 709	u64 extent_offset = 0;
 710	u64 extent_end = 0;
 711	int del_nr = 0;
 712	int del_slot = 0;
 713	int extent_type;
 714	int recow;
 715	int ret;
 716	int modify_tree = -1;
 717	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
 718	int found = 0;
 719	int leafs_visited = 0;
 720
 721	if (drop_cache)
 722		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 723
 724	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 
 
 
 
 725		modify_tree = 0;
 726
 727	while (1) {
 728		recow = 0;
 729		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 730					       search_start, modify_tree);
 731		if (ret < 0)
 732			break;
 733		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 734			leaf = path->nodes[0];
 735			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 736			if (key.objectid == ino &&
 737			    key.type == BTRFS_EXTENT_DATA_KEY)
 738				path->slots[0]--;
 739		}
 740		ret = 0;
 741		leafs_visited++;
 742next_slot:
 743		leaf = path->nodes[0];
 744		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 745			BUG_ON(del_nr > 0);
 746			ret = btrfs_next_leaf(root, path);
 747			if (ret < 0)
 748				break;
 749			if (ret > 0) {
 750				ret = 0;
 751				break;
 752			}
 753			leafs_visited++;
 754			leaf = path->nodes[0];
 755			recow = 1;
 756		}
 757
 758		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 759		if (key.objectid > ino ||
 760		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 761			break;
 762
 763		fi = btrfs_item_ptr(leaf, path->slots[0],
 764				    struct btrfs_file_extent_item);
 765		extent_type = btrfs_file_extent_type(leaf, fi);
 766
 767		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 768		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 769			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 770			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 771			extent_offset = btrfs_file_extent_offset(leaf, fi);
 772			extent_end = key.offset +
 773				btrfs_file_extent_num_bytes(leaf, fi);
 774		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 775			extent_end = key.offset +
 776				btrfs_file_extent_inline_len(leaf,
 777						     path->slots[0], fi);
 778		} else {
 779			WARN_ON(1);
 780			extent_end = search_start;
 781		}
 782
 783		if (extent_end <= search_start) {
 784			path->slots[0]++;
 785			goto next_slot;
 786		}
 787
 788		found = 1;
 789		search_start = max(key.offset, start);
 790		if (recow || !modify_tree) {
 791			modify_tree = -1;
 792			btrfs_release_path(path);
 793			continue;
 794		}
 795
 796		/*
 797		 *     | - range to drop - |
 798		 *  | -------- extent -------- |
 799		 */
 800		if (start > key.offset && end < extent_end) {
 801			BUG_ON(del_nr > 0);
 802			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 803				ret = -EOPNOTSUPP;
 804				break;
 805			}
 806
 807			memcpy(&new_key, &key, sizeof(new_key));
 808			new_key.offset = start;
 809			ret = btrfs_duplicate_item(trans, root, path,
 810						   &new_key);
 811			if (ret == -EAGAIN) {
 812				btrfs_release_path(path);
 813				continue;
 814			}
 815			if (ret < 0)
 816				break;
 817
 818			leaf = path->nodes[0];
 819			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 820					    struct btrfs_file_extent_item);
 821			btrfs_set_file_extent_num_bytes(leaf, fi,
 822							start - key.offset);
 823
 824			fi = btrfs_item_ptr(leaf, path->slots[0],
 825					    struct btrfs_file_extent_item);
 826
 827			extent_offset += start - key.offset;
 828			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 829			btrfs_set_file_extent_num_bytes(leaf, fi,
 830							extent_end - start);
 831			btrfs_mark_buffer_dirty(leaf);
 832
 833			if (update_refs && disk_bytenr > 0) {
 834				ret = btrfs_inc_extent_ref(trans, root,
 835						disk_bytenr, num_bytes, 0,
 836						root->root_key.objectid,
 837						new_key.objectid,
 838						start - extent_offset, 0);
 839				BUG_ON(ret); /* -ENOMEM */
 
 840			}
 841			key.offset = start;
 842		}
 843		/*
 844		 *  | ---- range to drop ----- |
 845		 *      | -------- extent -------- |
 846		 */
 847		if (start <= key.offset && end < extent_end) {
 848			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 849				ret = -EOPNOTSUPP;
 850				break;
 851			}
 852
 853			memcpy(&new_key, &key, sizeof(new_key));
 854			new_key.offset = end;
 855			btrfs_set_item_key_safe(root, path, &new_key);
 856
 857			extent_offset += end - key.offset;
 858			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 859			btrfs_set_file_extent_num_bytes(leaf, fi,
 860							extent_end - end);
 861			btrfs_mark_buffer_dirty(leaf);
 862			if (update_refs && disk_bytenr > 0)
 863				inode_sub_bytes(inode, end - key.offset);
 
 
 864			break;
 865		}
 866
 867		search_start = extent_end;
 868		/*
 869		 *       | ---- range to drop ----- |
 870		 *  | -------- extent -------- |
 871		 */
 872		if (start > key.offset && end >= extent_end) {
 873			BUG_ON(del_nr > 0);
 874			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 875				ret = -EOPNOTSUPP;
 876				break;
 877			}
 878
 879			btrfs_set_file_extent_num_bytes(leaf, fi,
 880							start - key.offset);
 881			btrfs_mark_buffer_dirty(leaf);
 882			if (update_refs && disk_bytenr > 0)
 883				inode_sub_bytes(inode, extent_end - start);
 
 
 884			if (end == extent_end)
 885				break;
 886
 887			path->slots[0]++;
 888			goto next_slot;
 889		}
 890
 891		/*
 892		 *  | ---- range to drop ----- |
 893		 *    | ------ extent ------ |
 894		 */
 895		if (start <= key.offset && end >= extent_end) {
 896			if (del_nr == 0) {
 897				del_slot = path->slots[0];
 898				del_nr = 1;
 899			} else {
 900				BUG_ON(del_slot + del_nr != path->slots[0]);
 901				del_nr++;
 902			}
 903
 904			if (update_refs &&
 905			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 906				inode_sub_bytes(inode,
 907						extent_end - key.offset);
 908				extent_end = ALIGN(extent_end,
 909						   root->sectorsize);
 910			} else if (update_refs && disk_bytenr > 0) {
 911				ret = btrfs_free_extent(trans, root,
 912						disk_bytenr, num_bytes, 0,
 913						root->root_key.objectid,
 914						key.objectid, key.offset -
 915						extent_offset, 0);
 916				BUG_ON(ret); /* -ENOMEM */
 917				inode_sub_bytes(inode,
 918						extent_end - key.offset);
 
 919			}
 920
 921			if (end == extent_end)
 922				break;
 923
 924			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 925				path->slots[0]++;
 926				goto next_slot;
 927			}
 928
 929			ret = btrfs_del_items(trans, root, path, del_slot,
 930					      del_nr);
 931			if (ret) {
 932				btrfs_abort_transaction(trans, root, ret);
 933				break;
 934			}
 935
 936			del_nr = 0;
 937			del_slot = 0;
 938
 939			btrfs_release_path(path);
 940			continue;
 941		}
 942
 943		BUG_ON(1);
 944	}
 945
 946	if (!ret && del_nr > 0) {
 947		/*
 948		 * Set path->slots[0] to first slot, so that after the delete
 949		 * if items are move off from our leaf to its immediate left or
 950		 * right neighbor leafs, we end up with a correct and adjusted
 951		 * path->slots[0] for our insertion (if replace_extent != 0).
 952		 */
 953		path->slots[0] = del_slot;
 954		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 955		if (ret)
 956			btrfs_abort_transaction(trans, root, ret);
 957	}
 958
 959	leaf = path->nodes[0];
 960	/*
 961	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 962	 * which case it unlocked our path, so check path->locks[0] matches a
 963	 * write lock.
 964	 */
 965	if (!ret && replace_extent && leafs_visited == 1 &&
 966	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 967	     path->locks[0] == BTRFS_WRITE_LOCK) &&
 968	    btrfs_leaf_free_space(root, leaf) >=
 969	    sizeof(struct btrfs_item) + extent_item_size) {
 970
 971		key.objectid = ino;
 972		key.type = BTRFS_EXTENT_DATA_KEY;
 973		key.offset = start;
 974		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 975			struct btrfs_key slot_key;
 976
 977			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 978			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 979				path->slots[0]++;
 980		}
 981		setup_items_for_insert(root, path, &key,
 982				       &extent_item_size,
 983				       extent_item_size,
 984				       sizeof(struct btrfs_item) +
 985				       extent_item_size, 1);
 986		*key_inserted = 1;
 987	}
 988
 989	if (!replace_extent || !(*key_inserted))
 990		btrfs_release_path(path);
 991	if (drop_end)
 992		*drop_end = found ? min(end, extent_end) : end;
 993	return ret;
 994}
 995
 996int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 997		       struct btrfs_root *root, struct inode *inode, u64 start,
 998		       u64 end, int drop_cache)
 999{
1000	struct btrfs_path *path;
1001	int ret;
1002
1003	path = btrfs_alloc_path();
1004	if (!path)
1005		return -ENOMEM;
1006	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1007				   drop_cache, 0, 0, NULL);
1008	btrfs_free_path(path);
1009	return ret;
1010}
1011
1012static int extent_mergeable(struct extent_buffer *leaf, int slot,
1013			    u64 objectid, u64 bytenr, u64 orig_offset,
1014			    u64 *start, u64 *end)
1015{
1016	struct btrfs_file_extent_item *fi;
1017	struct btrfs_key key;
1018	u64 extent_end;
1019
1020	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1021		return 0;
1022
1023	btrfs_item_key_to_cpu(leaf, &key, slot);
1024	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1025		return 0;
1026
1027	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1028	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1029	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1030	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1031	    btrfs_file_extent_compression(leaf, fi) ||
1032	    btrfs_file_extent_encryption(leaf, fi) ||
1033	    btrfs_file_extent_other_encoding(leaf, fi))
1034		return 0;
1035
1036	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1037	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1038		return 0;
1039
1040	*start = key.offset;
1041	*end = extent_end;
1042	return 1;
1043}
1044
1045/*
1046 * Mark extent in the range start - end as written.
1047 *
1048 * This changes extent type from 'pre-allocated' to 'regular'. If only
1049 * part of extent is marked as written, the extent will be split into
1050 * two or three.
1051 */
1052int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1053			      struct inode *inode, u64 start, u64 end)
1054{
1055	struct btrfs_root *root = BTRFS_I(inode)->root;
1056	struct extent_buffer *leaf;
1057	struct btrfs_path *path;
1058	struct btrfs_file_extent_item *fi;
1059	struct btrfs_key key;
1060	struct btrfs_key new_key;
1061	u64 bytenr;
1062	u64 num_bytes;
1063	u64 extent_end;
1064	u64 orig_offset;
1065	u64 other_start;
1066	u64 other_end;
1067	u64 split;
1068	int del_nr = 0;
1069	int del_slot = 0;
1070	int recow;
1071	int ret;
1072	u64 ino = btrfs_ino(inode);
1073
 
 
1074	path = btrfs_alloc_path();
1075	if (!path)
1076		return -ENOMEM;
1077again:
1078	recow = 0;
1079	split = start;
1080	key.objectid = ino;
1081	key.type = BTRFS_EXTENT_DATA_KEY;
1082	key.offset = split;
1083
1084	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1085	if (ret < 0)
1086		goto out;
1087	if (ret > 0 && path->slots[0] > 0)
1088		path->slots[0]--;
1089
1090	leaf = path->nodes[0];
1091	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1092	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1093	fi = btrfs_item_ptr(leaf, path->slots[0],
1094			    struct btrfs_file_extent_item);
1095	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1096	       BTRFS_FILE_EXTENT_PREALLOC);
1097	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1098	BUG_ON(key.offset > start || extent_end < end);
1099
1100	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1101	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1102	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1103	memcpy(&new_key, &key, sizeof(new_key));
1104
1105	if (start == key.offset && end < extent_end) {
1106		other_start = 0;
1107		other_end = start;
1108		if (extent_mergeable(leaf, path->slots[0] - 1,
1109				     ino, bytenr, orig_offset,
1110				     &other_start, &other_end)) {
1111			new_key.offset = end;
1112			btrfs_set_item_key_safe(root, path, &new_key);
1113			fi = btrfs_item_ptr(leaf, path->slots[0],
1114					    struct btrfs_file_extent_item);
1115			btrfs_set_file_extent_generation(leaf, fi,
1116							 trans->transid);
1117			btrfs_set_file_extent_num_bytes(leaf, fi,
1118							extent_end - end);
1119			btrfs_set_file_extent_offset(leaf, fi,
1120						     end - orig_offset);
1121			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1122					    struct btrfs_file_extent_item);
1123			btrfs_set_file_extent_generation(leaf, fi,
1124							 trans->transid);
1125			btrfs_set_file_extent_num_bytes(leaf, fi,
1126							end - other_start);
1127			btrfs_mark_buffer_dirty(leaf);
1128			goto out;
1129		}
1130	}
1131
1132	if (start > key.offset && end == extent_end) {
1133		other_start = end;
1134		other_end = 0;
1135		if (extent_mergeable(leaf, path->slots[0] + 1,
1136				     ino, bytenr, orig_offset,
1137				     &other_start, &other_end)) {
1138			fi = btrfs_item_ptr(leaf, path->slots[0],
1139					    struct btrfs_file_extent_item);
1140			btrfs_set_file_extent_num_bytes(leaf, fi,
1141							start - key.offset);
1142			btrfs_set_file_extent_generation(leaf, fi,
1143							 trans->transid);
1144			path->slots[0]++;
1145			new_key.offset = start;
1146			btrfs_set_item_key_safe(root, path, &new_key);
1147
1148			fi = btrfs_item_ptr(leaf, path->slots[0],
1149					    struct btrfs_file_extent_item);
1150			btrfs_set_file_extent_generation(leaf, fi,
1151							 trans->transid);
1152			btrfs_set_file_extent_num_bytes(leaf, fi,
1153							other_end - start);
1154			btrfs_set_file_extent_offset(leaf, fi,
1155						     start - orig_offset);
1156			btrfs_mark_buffer_dirty(leaf);
1157			goto out;
1158		}
1159	}
1160
1161	while (start > key.offset || end < extent_end) {
1162		if (key.offset == start)
1163			split = end;
1164
1165		new_key.offset = split;
1166		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1167		if (ret == -EAGAIN) {
1168			btrfs_release_path(path);
1169			goto again;
1170		}
1171		if (ret < 0) {
1172			btrfs_abort_transaction(trans, root, ret);
1173			goto out;
1174		}
1175
1176		leaf = path->nodes[0];
1177		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1178				    struct btrfs_file_extent_item);
1179		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1180		btrfs_set_file_extent_num_bytes(leaf, fi,
1181						split - key.offset);
1182
1183		fi = btrfs_item_ptr(leaf, path->slots[0],
1184				    struct btrfs_file_extent_item);
1185
1186		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1187		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1188		btrfs_set_file_extent_num_bytes(leaf, fi,
1189						extent_end - split);
1190		btrfs_mark_buffer_dirty(leaf);
1191
1192		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1193					   root->root_key.objectid,
1194					   ino, orig_offset, 0);
1195		BUG_ON(ret); /* -ENOMEM */
1196
1197		if (split == start) {
1198			key.offset = start;
1199		} else {
1200			BUG_ON(start != key.offset);
1201			path->slots[0]--;
1202			extent_end = end;
1203		}
1204		recow = 1;
1205	}
1206
1207	other_start = end;
1208	other_end = 0;
1209	if (extent_mergeable(leaf, path->slots[0] + 1,
1210			     ino, bytenr, orig_offset,
1211			     &other_start, &other_end)) {
1212		if (recow) {
1213			btrfs_release_path(path);
1214			goto again;
1215		}
1216		extent_end = other_end;
1217		del_slot = path->slots[0] + 1;
1218		del_nr++;
1219		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1220					0, root->root_key.objectid,
1221					ino, orig_offset, 0);
1222		BUG_ON(ret); /* -ENOMEM */
1223	}
1224	other_start = 0;
1225	other_end = start;
1226	if (extent_mergeable(leaf, path->slots[0] - 1,
1227			     ino, bytenr, orig_offset,
1228			     &other_start, &other_end)) {
1229		if (recow) {
1230			btrfs_release_path(path);
1231			goto again;
1232		}
1233		key.offset = other_start;
1234		del_slot = path->slots[0];
1235		del_nr++;
1236		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1237					0, root->root_key.objectid,
1238					ino, orig_offset, 0);
1239		BUG_ON(ret); /* -ENOMEM */
1240	}
1241	if (del_nr == 0) {
1242		fi = btrfs_item_ptr(leaf, path->slots[0],
1243			   struct btrfs_file_extent_item);
1244		btrfs_set_file_extent_type(leaf, fi,
1245					   BTRFS_FILE_EXTENT_REG);
1246		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1247		btrfs_mark_buffer_dirty(leaf);
1248	} else {
1249		fi = btrfs_item_ptr(leaf, del_slot - 1,
1250			   struct btrfs_file_extent_item);
1251		btrfs_set_file_extent_type(leaf, fi,
1252					   BTRFS_FILE_EXTENT_REG);
1253		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1254		btrfs_set_file_extent_num_bytes(leaf, fi,
1255						extent_end - key.offset);
1256		btrfs_mark_buffer_dirty(leaf);
1257
1258		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1259		if (ret < 0) {
1260			btrfs_abort_transaction(trans, root, ret);
1261			goto out;
1262		}
1263	}
1264out:
1265	btrfs_free_path(path);
1266	return 0;
1267}
1268
1269/*
1270 * on error we return an unlocked page and the error value
1271 * on success we return a locked page and 0
1272 */
1273static int prepare_uptodate_page(struct page *page, u64 pos,
1274				 bool force_uptodate)
1275{
1276	int ret = 0;
1277
1278	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1279	    !PageUptodate(page)) {
1280		ret = btrfs_readpage(NULL, page);
1281		if (ret)
1282			return ret;
1283		lock_page(page);
1284		if (!PageUptodate(page)) {
1285			unlock_page(page);
1286			return -EIO;
1287		}
1288	}
1289	return 0;
1290}
1291
1292/*
1293 * this just gets pages into the page cache and locks them down.
 
 
1294 */
1295static noinline int prepare_pages(struct inode *inode, struct page **pages,
1296				  size_t num_pages, loff_t pos,
1297				  size_t write_bytes, bool force_uptodate)
 
1298{
 
1299	int i;
1300	unsigned long index = pos >> PAGE_CACHE_SHIFT;
 
1301	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1302	int err = 0;
1303	int faili;
 
 
 
 
 
1304
 
1305	for (i = 0; i < num_pages; i++) {
1306		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1307					       mask | __GFP_WRITE);
1308		if (!pages[i]) {
1309			faili = i - 1;
1310			err = -ENOMEM;
1311			goto fail;
1312		}
1313
1314		if (i == 0)
1315			err = prepare_uptodate_page(pages[i], pos,
1316						    force_uptodate);
1317		if (i == num_pages - 1)
1318			err = prepare_uptodate_page(pages[i],
1319						    pos + write_bytes, false);
1320		if (err) {
1321			page_cache_release(pages[i]);
1322			faili = i - 1;
1323			goto fail;
1324		}
1325		wait_on_page_writeback(pages[i]);
1326	}
1327
1328	return 0;
1329fail:
1330	while (faili >= 0) {
1331		unlock_page(pages[faili]);
1332		page_cache_release(pages[faili]);
1333		faili--;
1334	}
1335	return err;
1336
1337}
1338
1339/*
1340 * This function locks the extent and properly waits for data=ordered extents
1341 * to finish before allowing the pages to be modified if need.
1342 *
1343 * The return value:
1344 * 1 - the extent is locked
1345 * 0 - the extent is not locked, and everything is OK
1346 * -EAGAIN - need re-prepare the pages
1347 * the other < 0 number - Something wrong happens
1348 */
1349static noinline int
1350lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1351				size_t num_pages, loff_t pos,
1352				u64 *lockstart, u64 *lockend,
1353				struct extent_state **cached_state)
1354{
1355	u64 start_pos;
1356	u64 last_pos;
1357	int i;
1358	int ret = 0;
1359
1360	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1361	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1362
1363	if (start_pos < inode->i_size) {
1364		struct btrfs_ordered_extent *ordered;
1365		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1366				 start_pos, last_pos, 0, cached_state);
1367		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1368						     last_pos - start_pos + 1);
1369		if (ordered &&
1370		    ordered->file_offset + ordered->len > start_pos &&
1371		    ordered->file_offset <= last_pos) {
 
1372			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1373					     start_pos, last_pos,
1374					     cached_state, GFP_NOFS);
1375			for (i = 0; i < num_pages; i++) {
1376				unlock_page(pages[i]);
1377				page_cache_release(pages[i]);
1378			}
1379			btrfs_start_ordered_extent(inode, ordered, 1);
1380			btrfs_put_ordered_extent(ordered);
1381			return -EAGAIN;
1382		}
1383		if (ordered)
1384			btrfs_put_ordered_extent(ordered);
1385
1386		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1387				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1388				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1389				  0, 0, cached_state, GFP_NOFS);
1390		*lockstart = start_pos;
1391		*lockend = last_pos;
1392		ret = 1;
1393	}
1394
1395	for (i = 0; i < num_pages; i++) {
1396		if (clear_page_dirty_for_io(pages[i]))
1397			account_page_redirty(pages[i]);
1398		set_page_extent_mapped(pages[i]);
1399		WARN_ON(!PageLocked(pages[i]));
1400	}
1401
1402	return ret;
1403}
1404
1405static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1406				    size_t *write_bytes)
1407{
1408	struct btrfs_root *root = BTRFS_I(inode)->root;
1409	struct btrfs_ordered_extent *ordered;
1410	u64 lockstart, lockend;
1411	u64 num_bytes;
1412	int ret;
1413
1414	ret = btrfs_start_nocow_write(root);
1415	if (!ret)
1416		return -ENOSPC;
1417
1418	lockstart = round_down(pos, root->sectorsize);
1419	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1420
1421	while (1) {
1422		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1423		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1424						     lockend - lockstart + 1);
1425		if (!ordered) {
1426			break;
1427		}
1428		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1429		btrfs_start_ordered_extent(inode, ordered, 1);
1430		btrfs_put_ordered_extent(ordered);
1431	}
1432
1433	num_bytes = lockend - lockstart + 1;
1434	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1435	if (ret <= 0) {
1436		ret = 0;
1437		btrfs_end_nocow_write(root);
1438	} else {
1439		*write_bytes = min_t(size_t, *write_bytes ,
1440				     num_bytes - pos + lockstart);
1441	}
 
1442
1443	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1444
1445	return ret;
1446}
1447
1448static noinline ssize_t __btrfs_buffered_write(struct file *file,
1449					       struct iov_iter *i,
1450					       loff_t pos)
1451{
1452	struct inode *inode = file_inode(file);
1453	struct btrfs_root *root = BTRFS_I(inode)->root;
1454	struct page **pages = NULL;
1455	struct extent_state *cached_state = NULL;
1456	u64 release_bytes = 0;
1457	u64 lockstart;
1458	u64 lockend;
1459	unsigned long first_index;
1460	size_t num_written = 0;
1461	int nrptrs;
1462	int ret = 0;
1463	bool only_release_metadata = false;
1464	bool force_page_uptodate = false;
1465	bool need_unlock;
1466
1467	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1468		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1469		     (sizeof(struct page *)));
1470	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1471	nrptrs = max(nrptrs, 8);
1472	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1473	if (!pages)
1474		return -ENOMEM;
1475
1476	first_index = pos >> PAGE_CACHE_SHIFT;
1477
1478	while (iov_iter_count(i) > 0) {
1479		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1480		size_t write_bytes = min(iov_iter_count(i),
1481					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1482					 offset);
1483		size_t num_pages = (write_bytes + offset +
1484				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1485		size_t reserve_bytes;
1486		size_t dirty_pages;
1487		size_t copied;
1488
1489		WARN_ON(num_pages > nrptrs);
1490
1491		/*
1492		 * Fault pages before locking them in prepare_pages
1493		 * to avoid recursive lock
1494		 */
1495		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1496			ret = -EFAULT;
1497			break;
1498		}
1499
1500		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1501		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1502		if (ret == -ENOSPC &&
1503		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1504					      BTRFS_INODE_PREALLOC))) {
1505			ret = check_can_nocow(inode, pos, &write_bytes);
1506			if (ret > 0) {
1507				only_release_metadata = true;
1508				/*
1509				 * our prealloc extent may be smaller than
1510				 * write_bytes, so scale down.
1511				 */
1512				num_pages = (write_bytes + offset +
1513					     PAGE_CACHE_SIZE - 1) >>
1514					PAGE_CACHE_SHIFT;
1515				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1516				ret = 0;
1517			} else {
1518				ret = -ENOSPC;
1519			}
1520		}
1521
1522		if (ret)
1523			break;
1524
1525		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1526		if (ret) {
1527			if (!only_release_metadata)
1528				btrfs_free_reserved_data_space(inode,
1529							       reserve_bytes);
1530			else
1531				btrfs_end_nocow_write(root);
1532			break;
1533		}
1534
1535		release_bytes = reserve_bytes;
1536		need_unlock = false;
1537again:
1538		/*
1539		 * This is going to setup the pages array with the number of
1540		 * pages we want, so we don't really need to worry about the
1541		 * contents of pages from loop to loop
1542		 */
1543		ret = prepare_pages(inode, pages, num_pages,
1544				    pos, write_bytes,
1545				    force_page_uptodate);
1546		if (ret)
1547			break;
1548
1549		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1550						      pos, &lockstart, &lockend,
1551						      &cached_state);
1552		if (ret < 0) {
1553			if (ret == -EAGAIN)
1554				goto again;
1555			break;
1556		} else if (ret > 0) {
1557			need_unlock = true;
1558			ret = 0;
1559		}
1560
1561		copied = btrfs_copy_from_user(pos, num_pages,
1562					   write_bytes, pages, i);
1563
1564		/*
1565		 * if we have trouble faulting in the pages, fall
1566		 * back to one page at a time
1567		 */
1568		if (copied < write_bytes)
1569			nrptrs = 1;
1570
1571		if (copied == 0) {
1572			force_page_uptodate = true;
1573			dirty_pages = 0;
1574		} else {
1575			force_page_uptodate = false;
1576			dirty_pages = (copied + offset +
1577				       PAGE_CACHE_SIZE - 1) >>
1578				       PAGE_CACHE_SHIFT;
1579		}
1580
1581		/*
1582		 * If we had a short copy we need to release the excess delaloc
1583		 * bytes we reserved.  We need to increment outstanding_extents
1584		 * because btrfs_delalloc_release_space will decrement it, but
1585		 * we still have an outstanding extent for the chunk we actually
1586		 * managed to copy.
1587		 */
1588		if (num_pages > dirty_pages) {
1589			release_bytes = (num_pages - dirty_pages) <<
1590				PAGE_CACHE_SHIFT;
1591			if (copied > 0) {
1592				spin_lock(&BTRFS_I(inode)->lock);
1593				BTRFS_I(inode)->outstanding_extents++;
1594				spin_unlock(&BTRFS_I(inode)->lock);
1595			}
1596			if (only_release_metadata)
1597				btrfs_delalloc_release_metadata(inode,
1598								release_bytes);
1599			else
1600				btrfs_delalloc_release_space(inode,
1601							     release_bytes);
1602		}
1603
1604		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1605
1606		if (copied > 0)
1607			ret = btrfs_dirty_pages(root, inode, pages,
1608						dirty_pages, pos, copied,
1609						NULL);
1610		if (need_unlock)
1611			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1612					     lockstart, lockend, &cached_state,
1613					     GFP_NOFS);
1614		if (ret) {
1615			btrfs_drop_pages(pages, num_pages);
1616			break;
1617		}
1618
1619		release_bytes = 0;
1620		if (only_release_metadata)
1621			btrfs_end_nocow_write(root);
1622
1623		if (only_release_metadata && copied > 0) {
1624			u64 lockstart = round_down(pos, root->sectorsize);
1625			u64 lockend = lockstart +
1626				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1627
1628			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1629				       lockend, EXTENT_NORESERVE, NULL,
1630				       NULL, GFP_NOFS);
1631			only_release_metadata = false;
1632		}
1633
1634		btrfs_drop_pages(pages, num_pages);
1635
1636		cond_resched();
1637
1638		balance_dirty_pages_ratelimited(inode->i_mapping);
 
1639		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1640			btrfs_btree_balance_dirty(root);
1641
1642		pos += copied;
1643		num_written += copied;
1644	}
1645
1646	kfree(pages);
1647
1648	if (release_bytes) {
1649		if (only_release_metadata) {
1650			btrfs_end_nocow_write(root);
1651			btrfs_delalloc_release_metadata(inode, release_bytes);
1652		} else {
1653			btrfs_delalloc_release_space(inode, release_bytes);
1654		}
1655	}
1656
1657	return num_written ? num_written : ret;
1658}
1659
1660static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1661				    const struct iovec *iov,
1662				    unsigned long nr_segs, loff_t pos,
1663				    size_t count, size_t ocount)
1664{
1665	struct file *file = iocb->ki_filp;
1666	struct iov_iter i;
1667	ssize_t written;
1668	ssize_t written_buffered;
1669	loff_t endbyte;
1670	int err;
1671
1672	written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
1673					    count, ocount);
1674
1675	if (written < 0 || written == count)
1676		return written;
1677
1678	pos += written;
1679	count -= written;
1680	iov_iter_init(&i, iov, nr_segs, count, written);
1681	written_buffered = __btrfs_buffered_write(file, &i, pos);
1682	if (written_buffered < 0) {
1683		err = written_buffered;
1684		goto out;
1685	}
1686	endbyte = pos + written_buffered - 1;
1687	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1688	if (err)
1689		goto out;
1690	written += written_buffered;
1691	iocb->ki_pos = pos + written_buffered;
1692	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1693				 endbyte >> PAGE_CACHE_SHIFT);
1694out:
1695	return written ? written : err;
1696}
1697
1698static void update_time_for_write(struct inode *inode)
1699{
1700	struct timespec now;
1701
1702	if (IS_NOCMTIME(inode))
1703		return;
1704
1705	now = current_fs_time(inode->i_sb);
1706	if (!timespec_equal(&inode->i_mtime, &now))
1707		inode->i_mtime = now;
1708
1709	if (!timespec_equal(&inode->i_ctime, &now))
1710		inode->i_ctime = now;
1711
1712	if (IS_I_VERSION(inode))
1713		inode_inc_iversion(inode);
1714}
1715
1716static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1717				    const struct iovec *iov,
1718				    unsigned long nr_segs, loff_t pos)
1719{
1720	struct file *file = iocb->ki_filp;
1721	struct inode *inode = file_inode(file);
1722	struct btrfs_root *root = BTRFS_I(inode)->root;
 
1723	u64 start_pos;
1724	u64 end_pos;
1725	ssize_t num_written = 0;
1726	ssize_t err = 0;
1727	size_t count, ocount;
1728	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
 
1729
1730	mutex_lock(&inode->i_mutex);
1731
1732	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1733	if (err) {
1734		mutex_unlock(&inode->i_mutex);
1735		goto out;
1736	}
1737	count = ocount;
1738
1739	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1740	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1741	if (err) {
1742		mutex_unlock(&inode->i_mutex);
1743		goto out;
1744	}
1745
1746	if (count == 0) {
1747		mutex_unlock(&inode->i_mutex);
1748		goto out;
1749	}
1750
1751	err = file_remove_suid(file);
1752	if (err) {
1753		mutex_unlock(&inode->i_mutex);
1754		goto out;
1755	}
1756
1757	/*
1758	 * If BTRFS flips readonly due to some impossible error
1759	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1760	 * although we have opened a file as writable, we have
1761	 * to stop this write operation to ensure FS consistency.
1762	 */
1763	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1764		mutex_unlock(&inode->i_mutex);
1765		err = -EROFS;
1766		goto out;
1767	}
1768
1769	/*
1770	 * We reserve space for updating the inode when we reserve space for the
1771	 * extent we are going to write, so we will enospc out there.  We don't
1772	 * need to start yet another transaction to update the inode as we will
1773	 * update the inode when we finish writing whatever data we write.
1774	 */
1775	update_time_for_write(inode);
1776
1777	start_pos = round_down(pos, root->sectorsize);
1778	if (start_pos > i_size_read(inode)) {
1779		/* Expand hole size to cover write data, preventing empty gap */
1780		end_pos = round_up(pos + count, root->sectorsize);
1781		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1782		if (err) {
1783			mutex_unlock(&inode->i_mutex);
1784			goto out;
1785		}
1786	}
1787
1788	if (sync)
1789		atomic_inc(&BTRFS_I(inode)->sync_writers);
1790
1791	if (unlikely(file->f_flags & O_DIRECT)) {
1792		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1793						   pos, count, ocount);
1794	} else {
1795		struct iov_iter i;
1796
1797		iov_iter_init(&i, iov, nr_segs, count, num_written);
1798
1799		num_written = __btrfs_buffered_write(file, &i, pos);
1800		if (num_written > 0)
1801			iocb->ki_pos = pos + num_written;
1802	}
1803
1804	mutex_unlock(&inode->i_mutex);
1805
1806	/*
1807	 * we want to make sure fsync finds this change
1808	 * but we haven't joined a transaction running right now.
1809	 *
1810	 * Later on, someone is sure to update the inode and get the
1811	 * real transid recorded.
1812	 *
1813	 * We set last_trans now to the fs_info generation + 1,
1814	 * this will either be one more than the running transaction
1815	 * or the generation used for the next transaction if there isn't
1816	 * one running right now.
1817	 *
1818	 * We also have to set last_sub_trans to the current log transid,
1819	 * otherwise subsequent syncs to a file that's been synced in this
1820	 * transaction will appear to have already occured.
1821	 */
1822	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1823	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1824	if (num_written > 0) {
1825		err = generic_write_sync(file, pos, num_written);
1826		if (err < 0)
1827			num_written = err;
1828	}
1829
1830	if (sync)
1831		atomic_dec(&BTRFS_I(inode)->sync_writers);
1832out:
1833	current->backing_dev_info = NULL;
1834	return num_written ? num_written : err;
1835}
1836
1837int btrfs_release_file(struct inode *inode, struct file *filp)
1838{
1839	/*
1840	 * ordered_data_close is set by settattr when we are about to truncate
1841	 * a file from a non-zero size to a zero size.  This tries to
1842	 * flush down new bytes that may have been written if the
1843	 * application were using truncate to replace a file in place.
1844	 */
1845	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1846			       &BTRFS_I(inode)->runtime_flags)) {
1847		struct btrfs_trans_handle *trans;
1848		struct btrfs_root *root = BTRFS_I(inode)->root;
1849
1850		/*
1851		 * We need to block on a committing transaction to keep us from
1852		 * throwing a ordered operation on to the list and causing
1853		 * something like sync to deadlock trying to flush out this
1854		 * inode.
1855		 */
1856		trans = btrfs_start_transaction(root, 0);
1857		if (IS_ERR(trans))
1858			return PTR_ERR(trans);
1859		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1860		btrfs_end_transaction(trans, root);
1861		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1862			filemap_flush(inode->i_mapping);
1863	}
1864	if (filp->private_data)
1865		btrfs_ioctl_trans_end(filp);
1866	return 0;
1867}
1868
1869/*
1870 * fsync call for both files and directories.  This logs the inode into
1871 * the tree log instead of forcing full commits whenever possible.
1872 *
1873 * It needs to call filemap_fdatawait so that all ordered extent updates are
1874 * in the metadata btree are up to date for copying to the log.
1875 *
1876 * It drops the inode mutex before doing the tree log commit.  This is an
1877 * important optimization for directories because holding the mutex prevents
1878 * new operations on the dir while we write to disk.
1879 */
1880int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1881{
1882	struct dentry *dentry = file->f_path.dentry;
1883	struct inode *inode = dentry->d_inode;
1884	struct btrfs_root *root = BTRFS_I(inode)->root;
1885	struct btrfs_trans_handle *trans;
1886	struct btrfs_log_ctx ctx;
1887	int ret = 0;
1888	bool full_sync = 0;
1889
1890	trace_btrfs_sync_file(file, datasync);
1891
1892	/*
1893	 * We write the dirty pages in the range and wait until they complete
1894	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1895	 * multi-task, and make the performance up.  See
1896	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1897	 */
1898	atomic_inc(&BTRFS_I(inode)->sync_writers);
1899	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1900	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1901			     &BTRFS_I(inode)->runtime_flags))
1902		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1903	atomic_dec(&BTRFS_I(inode)->sync_writers);
1904	if (ret)
1905		return ret;
1906
1907	mutex_lock(&inode->i_mutex);
1908
1909	/*
1910	 * We flush the dirty pages again to avoid some dirty pages in the
1911	 * range being left.
1912	 */
1913	atomic_inc(&root->log_batch);
1914	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1915			     &BTRFS_I(inode)->runtime_flags);
1916	if (full_sync) {
1917		ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1918		if (ret) {
1919			mutex_unlock(&inode->i_mutex);
1920			goto out;
1921		}
1922	}
1923	atomic_inc(&root->log_batch);
1924
1925	/*
1926	 * check the transaction that last modified this inode
1927	 * and see if its already been committed
1928	 */
1929	if (!BTRFS_I(inode)->last_trans) {
1930		mutex_unlock(&inode->i_mutex);
1931		goto out;
1932	}
1933
1934	/*
1935	 * if the last transaction that changed this file was before
1936	 * the current transaction, we can bail out now without any
1937	 * syncing
1938	 */
1939	smp_mb();
1940	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1941	    BTRFS_I(inode)->last_trans <=
1942	    root->fs_info->last_trans_committed) {
1943		BTRFS_I(inode)->last_trans = 0;
1944
1945		/*
1946		 * We'v had everything committed since the last time we were
1947		 * modified so clear this flag in case it was set for whatever
1948		 * reason, it's no longer relevant.
1949		 */
1950		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1951			  &BTRFS_I(inode)->runtime_flags);
1952		mutex_unlock(&inode->i_mutex);
1953		goto out;
1954	}
1955
1956	/*
1957	 * ok we haven't committed the transaction yet, lets do a commit
1958	 */
1959	if (file->private_data)
1960		btrfs_ioctl_trans_end(file);
1961
1962	/*
1963	 * We use start here because we will need to wait on the IO to complete
1964	 * in btrfs_sync_log, which could require joining a transaction (for
1965	 * example checking cross references in the nocow path).  If we use join
1966	 * here we could get into a situation where we're waiting on IO to
1967	 * happen that is blocked on a transaction trying to commit.  With start
1968	 * we inc the extwriter counter, so we wait for all extwriters to exit
1969	 * before we start blocking join'ers.  This comment is to keep somebody
1970	 * from thinking they are super smart and changing this to
1971	 * btrfs_join_transaction *cough*Josef*cough*.
1972	 */
1973	trans = btrfs_start_transaction(root, 0);
1974	if (IS_ERR(trans)) {
1975		ret = PTR_ERR(trans);
1976		mutex_unlock(&inode->i_mutex);
1977		goto out;
1978	}
1979	trans->sync = true;
1980
1981	btrfs_init_log_ctx(&ctx);
1982
1983	ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1984	if (ret < 0) {
1985		/* Fallthrough and commit/free transaction. */
1986		ret = 1;
1987	}
1988
1989	/* we've logged all the items and now have a consistent
1990	 * version of the file in the log.  It is possible that
1991	 * someone will come in and modify the file, but that's
1992	 * fine because the log is consistent on disk, and we
1993	 * have references to all of the file's extents
1994	 *
1995	 * It is possible that someone will come in and log the
1996	 * file again, but that will end up using the synchronization
1997	 * inside btrfs_sync_log to keep things safe.
1998	 */
1999	mutex_unlock(&inode->i_mutex);
2000
2001	if (ret != BTRFS_NO_LOG_SYNC) {
2002		if (!ret) {
2003			ret = btrfs_sync_log(trans, root, &ctx);
2004			if (!ret) {
 
 
2005				ret = btrfs_end_transaction(trans, root);
2006				goto out;
2007			}
2008		}
2009		if (!full_sync) {
2010			ret = btrfs_wait_ordered_range(inode, start,
2011						       end - start + 1);
2012			if (ret)
2013				goto out;
2014		}
2015		ret = btrfs_commit_transaction(trans, root);
2016	} else {
2017		ret = btrfs_end_transaction(trans, root);
2018	}
2019out:
2020	return ret > 0 ? -EIO : ret;
2021}
2022
2023static const struct vm_operations_struct btrfs_file_vm_ops = {
2024	.fault		= filemap_fault,
2025	.map_pages	= filemap_map_pages,
2026	.page_mkwrite	= btrfs_page_mkwrite,
2027	.remap_pages	= generic_file_remap_pages,
2028};
2029
2030static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2031{
2032	struct address_space *mapping = filp->f_mapping;
2033
2034	if (!mapping->a_ops->readpage)
2035		return -ENOEXEC;
2036
2037	file_accessed(filp);
2038	vma->vm_ops = &btrfs_file_vm_ops;
 
2039
2040	return 0;
2041}
2042
2043static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2044			  int slot, u64 start, u64 end)
2045{
2046	struct btrfs_file_extent_item *fi;
2047	struct btrfs_key key;
2048
2049	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2050		return 0;
2051
2052	btrfs_item_key_to_cpu(leaf, &key, slot);
2053	if (key.objectid != btrfs_ino(inode) ||
2054	    key.type != BTRFS_EXTENT_DATA_KEY)
2055		return 0;
2056
2057	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2058
2059	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2060		return 0;
2061
2062	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2063		return 0;
2064
2065	if (key.offset == end)
2066		return 1;
2067	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2068		return 1;
2069	return 0;
2070}
2071
2072static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2073		      struct btrfs_path *path, u64 offset, u64 end)
2074{
2075	struct btrfs_root *root = BTRFS_I(inode)->root;
2076	struct extent_buffer *leaf;
2077	struct btrfs_file_extent_item *fi;
2078	struct extent_map *hole_em;
2079	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2080	struct btrfs_key key;
2081	int ret;
2082
2083	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2084		goto out;
2085
2086	key.objectid = btrfs_ino(inode);
2087	key.type = BTRFS_EXTENT_DATA_KEY;
2088	key.offset = offset;
2089
2090	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2091	if (ret < 0)
2092		return ret;
2093	BUG_ON(!ret);
2094
2095	leaf = path->nodes[0];
2096	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2097		u64 num_bytes;
2098
2099		path->slots[0]--;
2100		fi = btrfs_item_ptr(leaf, path->slots[0],
2101				    struct btrfs_file_extent_item);
2102		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2103			end - offset;
2104		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2105		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2106		btrfs_set_file_extent_offset(leaf, fi, 0);
2107		btrfs_mark_buffer_dirty(leaf);
2108		goto out;
2109	}
2110
2111	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2112		u64 num_bytes;
2113
2114		path->slots[0]++;
2115		key.offset = offset;
2116		btrfs_set_item_key_safe(root, path, &key);
2117		fi = btrfs_item_ptr(leaf, path->slots[0],
2118				    struct btrfs_file_extent_item);
2119		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2120			offset;
2121		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2122		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2123		btrfs_set_file_extent_offset(leaf, fi, 0);
2124		btrfs_mark_buffer_dirty(leaf);
2125		goto out;
2126	}
2127	btrfs_release_path(path);
2128
2129	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2130				       0, 0, end - offset, 0, end - offset,
2131				       0, 0, 0);
2132	if (ret)
2133		return ret;
2134
2135out:
2136	btrfs_release_path(path);
2137
2138	hole_em = alloc_extent_map();
2139	if (!hole_em) {
2140		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2141		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2142			&BTRFS_I(inode)->runtime_flags);
2143	} else {
2144		hole_em->start = offset;
2145		hole_em->len = end - offset;
2146		hole_em->ram_bytes = hole_em->len;
2147		hole_em->orig_start = offset;
2148
2149		hole_em->block_start = EXTENT_MAP_HOLE;
2150		hole_em->block_len = 0;
2151		hole_em->orig_block_len = 0;
2152		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2153		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2154		hole_em->generation = trans->transid;
2155
2156		do {
2157			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2158			write_lock(&em_tree->lock);
2159			ret = add_extent_mapping(em_tree, hole_em, 1);
2160			write_unlock(&em_tree->lock);
2161		} while (ret == -EEXIST);
2162		free_extent_map(hole_em);
2163		if (ret)
2164			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165				&BTRFS_I(inode)->runtime_flags);
2166	}
2167
2168	return 0;
2169}
2170
2171static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2172{
2173	struct btrfs_root *root = BTRFS_I(inode)->root;
2174	struct extent_state *cached_state = NULL;
2175	struct btrfs_path *path;
2176	struct btrfs_block_rsv *rsv;
2177	struct btrfs_trans_handle *trans;
2178	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2179	u64 lockend = round_down(offset + len,
2180				 BTRFS_I(inode)->root->sectorsize) - 1;
2181	u64 cur_offset = lockstart;
2182	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2183	u64 drop_end;
2184	int ret = 0;
2185	int err = 0;
2186	int rsv_count;
2187	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2188			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2189	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2190	u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2191
2192	ret = btrfs_wait_ordered_range(inode, offset, len);
2193	if (ret)
2194		return ret;
2195
2196	mutex_lock(&inode->i_mutex);
2197	/*
2198	 * We needn't truncate any page which is beyond the end of the file
2199	 * because we are sure there is no data there.
2200	 */
2201	/*
2202	 * Only do this if we are in the same page and we aren't doing the
2203	 * entire page.
2204	 */
2205	if (same_page && len < PAGE_CACHE_SIZE) {
2206		if (offset < ino_size)
2207			ret = btrfs_truncate_page(inode, offset, len, 0);
2208		mutex_unlock(&inode->i_mutex);
2209		return ret;
2210	}
2211
2212	/* zero back part of the first page */
2213	if (offset < ino_size) {
2214		ret = btrfs_truncate_page(inode, offset, 0, 0);
2215		if (ret) {
2216			mutex_unlock(&inode->i_mutex);
2217			return ret;
2218		}
2219	}
2220
2221	/* zero the front end of the last page */
2222	if (offset + len < ino_size) {
2223		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2224		if (ret) {
2225			mutex_unlock(&inode->i_mutex);
2226			return ret;
2227		}
2228	}
2229
2230	if (lockend < lockstart) {
2231		mutex_unlock(&inode->i_mutex);
2232		return 0;
2233	}
2234
2235	while (1) {
2236		struct btrfs_ordered_extent *ordered;
2237
2238		truncate_pagecache_range(inode, lockstart, lockend);
2239
2240		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2241				 0, &cached_state);
2242		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2243
2244		/*
2245		 * We need to make sure we have no ordered extents in this range
2246		 * and nobody raced in and read a page in this range, if we did
2247		 * we need to try again.
2248		 */
2249		if ((!ordered ||
2250		    (ordered->file_offset + ordered->len <= lockstart ||
2251		     ordered->file_offset > lockend)) &&
2252		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2253				     lockend, EXTENT_UPTODATE, 0,
2254				     cached_state)) {
2255			if (ordered)
2256				btrfs_put_ordered_extent(ordered);
2257			break;
2258		}
2259		if (ordered)
2260			btrfs_put_ordered_extent(ordered);
2261		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2262				     lockend, &cached_state, GFP_NOFS);
2263		ret = btrfs_wait_ordered_range(inode, lockstart,
2264					       lockend - lockstart + 1);
2265		if (ret) {
2266			mutex_unlock(&inode->i_mutex);
2267			return ret;
2268		}
2269	}
2270
2271	path = btrfs_alloc_path();
2272	if (!path) {
2273		ret = -ENOMEM;
2274		goto out;
2275	}
2276
2277	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2278	if (!rsv) {
2279		ret = -ENOMEM;
2280		goto out_free;
2281	}
2282	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2283	rsv->failfast = 1;
2284
2285	/*
2286	 * 1 - update the inode
2287	 * 1 - removing the extents in the range
2288	 * 1 - adding the hole extent if no_holes isn't set
2289	 */
2290	rsv_count = no_holes ? 2 : 3;
2291	trans = btrfs_start_transaction(root, rsv_count);
2292	if (IS_ERR(trans)) {
2293		err = PTR_ERR(trans);
2294		goto out_free;
2295	}
2296
2297	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2298				      min_size);
2299	BUG_ON(ret);
2300	trans->block_rsv = rsv;
2301
2302	while (cur_offset < lockend) {
2303		ret = __btrfs_drop_extents(trans, root, inode, path,
2304					   cur_offset, lockend + 1,
2305					   &drop_end, 1, 0, 0, NULL);
2306		if (ret != -ENOSPC)
2307			break;
2308
2309		trans->block_rsv = &root->fs_info->trans_block_rsv;
2310
2311		if (cur_offset < ino_size) {
2312			ret = fill_holes(trans, inode, path, cur_offset,
2313					 drop_end);
2314			if (ret) {
2315				err = ret;
2316				break;
2317			}
2318		}
2319
2320		cur_offset = drop_end;
2321
2322		ret = btrfs_update_inode(trans, root, inode);
2323		if (ret) {
2324			err = ret;
2325			break;
2326		}
2327
2328		btrfs_end_transaction(trans, root);
2329		btrfs_btree_balance_dirty(root);
2330
2331		trans = btrfs_start_transaction(root, rsv_count);
2332		if (IS_ERR(trans)) {
2333			ret = PTR_ERR(trans);
2334			trans = NULL;
2335			break;
2336		}
2337
2338		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2339					      rsv, min_size);
2340		BUG_ON(ret);	/* shouldn't happen */
2341		trans->block_rsv = rsv;
2342	}
2343
2344	if (ret) {
2345		err = ret;
2346		goto out_trans;
2347	}
2348
2349	trans->block_rsv = &root->fs_info->trans_block_rsv;
2350	if (cur_offset < ino_size) {
2351		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2352		if (ret) {
2353			err = ret;
2354			goto out_trans;
2355		}
2356	}
2357
2358out_trans:
2359	if (!trans)
2360		goto out_free;
2361
2362	inode_inc_iversion(inode);
2363	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2364
2365	trans->block_rsv = &root->fs_info->trans_block_rsv;
2366	ret = btrfs_update_inode(trans, root, inode);
2367	btrfs_end_transaction(trans, root);
2368	btrfs_btree_balance_dirty(root);
2369out_free:
2370	btrfs_free_path(path);
2371	btrfs_free_block_rsv(root, rsv);
2372out:
2373	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2374			     &cached_state, GFP_NOFS);
2375	mutex_unlock(&inode->i_mutex);
2376	if (ret && !err)
2377		err = ret;
2378	return err;
2379}
2380
2381static long btrfs_fallocate(struct file *file, int mode,
2382			    loff_t offset, loff_t len)
2383{
2384	struct inode *inode = file_inode(file);
2385	struct extent_state *cached_state = NULL;
2386	struct btrfs_root *root = BTRFS_I(inode)->root;
2387	u64 cur_offset;
2388	u64 last_byte;
2389	u64 alloc_start;
2390	u64 alloc_end;
2391	u64 alloc_hint = 0;
2392	u64 locked_end;
 
2393	struct extent_map *em;
2394	int blocksize = BTRFS_I(inode)->root->sectorsize;
2395	int ret;
2396
2397	alloc_start = round_down(offset, blocksize);
2398	alloc_end = round_up(offset + len, blocksize);
2399
2400	/* Make sure we aren't being give some crap mode */
2401	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2402		return -EOPNOTSUPP;
2403
2404	if (mode & FALLOC_FL_PUNCH_HOLE)
2405		return btrfs_punch_hole(inode, offset, len);
2406
2407	/*
2408	 * Make sure we have enough space before we do the
2409	 * allocation.
2410	 */
2411	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2412	if (ret)
2413		return ret;
2414	if (root->fs_info->quota_enabled) {
2415		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2416		if (ret)
2417			goto out_reserve_fail;
2418	}
 
2419
2420	mutex_lock(&inode->i_mutex);
2421	ret = inode_newsize_ok(inode, alloc_end);
2422	if (ret)
2423		goto out;
2424
2425	if (alloc_start > inode->i_size) {
2426		ret = btrfs_cont_expand(inode, i_size_read(inode),
2427					alloc_start);
2428		if (ret)
2429			goto out;
2430	} else {
2431		/*
2432		 * If we are fallocating from the end of the file onward we
2433		 * need to zero out the end of the page if i_size lands in the
2434		 * middle of a page.
2435		 */
2436		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2437		if (ret)
2438			goto out;
2439	}
2440
2441	/*
2442	 * wait for ordered IO before we have any locks.  We'll loop again
2443	 * below with the locks held.
2444	 */
2445	ret = btrfs_wait_ordered_range(inode, alloc_start,
2446				       alloc_end - alloc_start);
2447	if (ret)
2448		goto out;
2449
2450	locked_end = alloc_end - 1;
2451	while (1) {
2452		struct btrfs_ordered_extent *ordered;
2453
2454		/* the extent lock is ordered inside the running
2455		 * transaction
2456		 */
2457		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2458				 locked_end, 0, &cached_state);
2459		ordered = btrfs_lookup_first_ordered_extent(inode,
2460							    alloc_end - 1);
2461		if (ordered &&
2462		    ordered->file_offset + ordered->len > alloc_start &&
2463		    ordered->file_offset < alloc_end) {
2464			btrfs_put_ordered_extent(ordered);
2465			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2466					     alloc_start, locked_end,
2467					     &cached_state, GFP_NOFS);
2468			/*
2469			 * we can't wait on the range with the transaction
2470			 * running or with the extent lock held
2471			 */
2472			ret = btrfs_wait_ordered_range(inode, alloc_start,
2473						       alloc_end - alloc_start);
2474			if (ret)
2475				goto out;
2476		} else {
2477			if (ordered)
2478				btrfs_put_ordered_extent(ordered);
2479			break;
2480		}
2481	}
2482
2483	cur_offset = alloc_start;
2484	while (1) {
2485		u64 actual_end;
2486
2487		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2488				      alloc_end - cur_offset, 0);
2489		if (IS_ERR_OR_NULL(em)) {
2490			if (!em)
2491				ret = -ENOMEM;
2492			else
2493				ret = PTR_ERR(em);
2494			break;
2495		}
2496		last_byte = min(extent_map_end(em), alloc_end);
2497		actual_end = min_t(u64, extent_map_end(em), offset + len);
2498		last_byte = ALIGN(last_byte, blocksize);
2499
2500		if (em->block_start == EXTENT_MAP_HOLE ||
2501		    (cur_offset >= inode->i_size &&
2502		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2503			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2504							last_byte - cur_offset,
2505							1 << inode->i_blkbits,
2506							offset + len,
2507							&alloc_hint);
2508
2509			if (ret < 0) {
2510				free_extent_map(em);
2511				break;
2512			}
2513		} else if (actual_end > inode->i_size &&
2514			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2515			/*
2516			 * We didn't need to allocate any more space, but we
2517			 * still extended the size of the file so we need to
2518			 * update i_size.
2519			 */
2520			inode->i_ctime = CURRENT_TIME;
2521			i_size_write(inode, actual_end);
2522			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2523		}
2524		free_extent_map(em);
2525
2526		cur_offset = last_byte;
2527		if (cur_offset >= alloc_end) {
2528			ret = 0;
2529			break;
2530		}
2531	}
2532	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2533			     &cached_state, GFP_NOFS);
2534out:
2535	mutex_unlock(&inode->i_mutex);
2536	if (root->fs_info->quota_enabled)
2537		btrfs_qgroup_free(root, alloc_end - alloc_start);
2538out_reserve_fail:
2539	/* Let go of our reservation. */
2540	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2541	return ret;
2542}
2543
2544static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2545{
2546	struct btrfs_root *root = BTRFS_I(inode)->root;
2547	struct extent_map *em = NULL;
2548	struct extent_state *cached_state = NULL;
2549	u64 lockstart = *offset;
2550	u64 lockend = i_size_read(inode);
2551	u64 start = *offset;
 
2552	u64 len = i_size_read(inode);
 
2553	int ret = 0;
2554
2555	lockend = max_t(u64, root->sectorsize, lockend);
2556	if (lockend <= lockstart)
2557		lockend = lockstart + root->sectorsize;
2558
2559	lockend--;
2560	len = lockend - lockstart + 1;
2561
2562	len = max_t(u64, len, root->sectorsize);
2563	if (inode->i_size == 0)
2564		return -ENXIO;
2565
2566	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2567			 &cached_state);
2568
2569	while (start < inode->i_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2571		if (IS_ERR(em)) {
2572			ret = PTR_ERR(em);
2573			em = NULL;
2574			break;
2575		}
2576
2577		if (whence == SEEK_HOLE &&
2578		    (em->block_start == EXTENT_MAP_HOLE ||
2579		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2580			break;
2581		else if (whence == SEEK_DATA &&
2582			   (em->block_start != EXTENT_MAP_HOLE &&
2583			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2584			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585
2586		start = em->start + em->len;
 
 
 
 
 
 
 
 
 
 
2587		free_extent_map(em);
2588		em = NULL;
2589		cond_resched();
2590	}
2591	free_extent_map(em);
2592	if (!ret) {
2593		if (whence == SEEK_DATA && start >= inode->i_size)
2594			ret = -ENXIO;
2595		else
2596			*offset = min_t(loff_t, start, inode->i_size);
2597	}
2598	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2599			     &cached_state, GFP_NOFS);
2600	return ret;
2601}
2602
2603static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2604{
2605	struct inode *inode = file->f_mapping->host;
2606	int ret;
2607
2608	mutex_lock(&inode->i_mutex);
2609	switch (whence) {
2610	case SEEK_END:
2611	case SEEK_CUR:
2612		offset = generic_file_llseek(file, offset, whence);
2613		goto out;
2614	case SEEK_DATA:
2615	case SEEK_HOLE:
2616		if (offset >= i_size_read(inode)) {
2617			mutex_unlock(&inode->i_mutex);
2618			return -ENXIO;
2619		}
2620
2621		ret = find_desired_extent(inode, &offset, whence);
2622		if (ret) {
2623			mutex_unlock(&inode->i_mutex);
2624			return ret;
2625		}
2626	}
2627
2628	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
2629out:
2630	mutex_unlock(&inode->i_mutex);
2631	return offset;
2632}
2633
2634const struct file_operations btrfs_file_operations = {
2635	.llseek		= btrfs_file_llseek,
2636	.read		= do_sync_read,
2637	.write		= do_sync_write,
2638	.aio_read       = generic_file_aio_read,
2639	.splice_read	= generic_file_splice_read,
2640	.aio_write	= btrfs_file_aio_write,
2641	.mmap		= btrfs_file_mmap,
2642	.open		= generic_file_open,
2643	.release	= btrfs_release_file,
2644	.fsync		= btrfs_sync_file,
2645	.fallocate	= btrfs_fallocate,
2646	.unlocked_ioctl	= btrfs_ioctl,
2647#ifdef CONFIG_COMPAT
2648	.compat_ioctl	= btrfs_ioctl,
2649#endif
2650};
2651
2652void btrfs_auto_defrag_exit(void)
2653{
2654	if (btrfs_inode_defrag_cachep)
2655		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2656}
2657
2658int btrfs_auto_defrag_init(void)
2659{
2660	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2661					sizeof(struct inode_defrag), 0,
2662					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2663					NULL);
2664	if (!btrfs_inode_defrag_cachep)
2665		return -ENOMEM;
2666
2667	return 0;
2668}
v3.5.6
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
 
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/statfs.h>
  31#include <linux/compat.h>
  32#include <linux/slab.h>
 
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "ioctl.h"
  38#include "print-tree.h"
  39#include "tree-log.h"
  40#include "locking.h"
  41#include "compat.h"
  42
 
  43/*
  44 * when auto defrag is enabled we
  45 * queue up these defrag structs to remember which
  46 * inodes need defragging passes
  47 */
  48struct inode_defrag {
  49	struct rb_node rb_node;
  50	/* objectid */
  51	u64 ino;
  52	/*
  53	 * transid where the defrag was added, we search for
  54	 * extents newer than this
  55	 */
  56	u64 transid;
  57
  58	/* root objectid */
  59	u64 root;
  60
  61	/* last offset we were able to defrag */
  62	u64 last_offset;
  63
  64	/* if we've wrapped around back to zero once already */
  65	int cycled;
  66};
  67
  68static int __compare_inode_defrag(struct inode_defrag *defrag1,
  69				  struct inode_defrag *defrag2)
  70{
  71	if (defrag1->root > defrag2->root)
  72		return 1;
  73	else if (defrag1->root < defrag2->root)
  74		return -1;
  75	else if (defrag1->ino > defrag2->ino)
  76		return 1;
  77	else if (defrag1->ino < defrag2->ino)
  78		return -1;
  79	else
  80		return 0;
  81}
  82
  83/* pop a record for an inode into the defrag tree.  The lock
  84 * must be held already
  85 *
  86 * If you're inserting a record for an older transid than an
  87 * existing record, the transid already in the tree is lowered
  88 *
  89 * If an existing record is found the defrag item you
  90 * pass in is freed
  91 */
  92static void __btrfs_add_inode_defrag(struct inode *inode,
  93				    struct inode_defrag *defrag)
  94{
  95	struct btrfs_root *root = BTRFS_I(inode)->root;
  96	struct inode_defrag *entry;
  97	struct rb_node **p;
  98	struct rb_node *parent = NULL;
  99	int ret;
 100
 101	p = &root->fs_info->defrag_inodes.rb_node;
 102	while (*p) {
 103		parent = *p;
 104		entry = rb_entry(parent, struct inode_defrag, rb_node);
 105
 106		ret = __compare_inode_defrag(defrag, entry);
 107		if (ret < 0)
 108			p = &parent->rb_left;
 109		else if (ret > 0)
 110			p = &parent->rb_right;
 111		else {
 112			/* if we're reinserting an entry for
 113			 * an old defrag run, make sure to
 114			 * lower the transid of our existing record
 115			 */
 116			if (defrag->transid < entry->transid)
 117				entry->transid = defrag->transid;
 118			if (defrag->last_offset > entry->last_offset)
 119				entry->last_offset = defrag->last_offset;
 120			goto exists;
 121		}
 122	}
 123	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 124	rb_link_node(&defrag->rb_node, parent, p);
 125	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 126	return;
 
 
 
 
 
 
 127
 128exists:
 129	kfree(defrag);
 130	return;
 131
 
 132}
 133
 134/*
 135 * insert a defrag record for this inode if auto defrag is
 136 * enabled
 137 */
 138int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 139			   struct inode *inode)
 140{
 141	struct btrfs_root *root = BTRFS_I(inode)->root;
 142	struct inode_defrag *defrag;
 143	u64 transid;
 
 144
 145	if (!btrfs_test_opt(root, AUTO_DEFRAG))
 146		return 0;
 147
 148	if (btrfs_fs_closing(root->fs_info))
 149		return 0;
 150
 151	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 152		return 0;
 153
 154	if (trans)
 155		transid = trans->transid;
 156	else
 157		transid = BTRFS_I(inode)->root->last_trans;
 158
 159	defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
 160	if (!defrag)
 161		return -ENOMEM;
 162
 163	defrag->ino = btrfs_ino(inode);
 164	defrag->transid = transid;
 165	defrag->root = root->root_key.objectid;
 166
 167	spin_lock(&root->fs_info->defrag_inodes_lock);
 168	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 169		__btrfs_add_inode_defrag(inode, defrag);
 170	else
 171		kfree(defrag);
 
 
 
 
 
 
 
 
 172	spin_unlock(&root->fs_info->defrag_inodes_lock);
 173	return 0;
 174}
 175
 176/*
 177 * must be called with the defrag_inodes lock held
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178 */
 179struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info,
 180					     u64 root, u64 ino,
 181					     struct rb_node **next)
 182{
 183	struct inode_defrag *entry = NULL;
 184	struct inode_defrag tmp;
 185	struct rb_node *p;
 186	struct rb_node *parent = NULL;
 187	int ret;
 188
 189	tmp.ino = ino;
 190	tmp.root = root;
 191
 192	p = info->defrag_inodes.rb_node;
 
 193	while (p) {
 194		parent = p;
 195		entry = rb_entry(parent, struct inode_defrag, rb_node);
 196
 197		ret = __compare_inode_defrag(&tmp, entry);
 198		if (ret < 0)
 199			p = parent->rb_left;
 200		else if (ret > 0)
 201			p = parent->rb_right;
 202		else
 203			return entry;
 204	}
 205
 206	if (next) {
 207		while (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 208			parent = rb_next(parent);
 209			entry = rb_entry(parent, struct inode_defrag, rb_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210		}
 211		*next = parent;
 
 212	}
 213	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214}
 215
 216/*
 217 * run through the list of inodes in the FS that need
 218 * defragging
 219 */
 220int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 221{
 222	struct inode_defrag *defrag;
 223	struct btrfs_root *inode_root;
 224	struct inode *inode;
 225	struct rb_node *n;
 226	struct btrfs_key key;
 227	struct btrfs_ioctl_defrag_range_args range;
 228	u64 first_ino = 0;
 229	u64 root_objectid = 0;
 230	int num_defrag;
 231	int defrag_batch = 1024;
 232
 233	memset(&range, 0, sizeof(range));
 234	range.len = (u64)-1;
 
 
 
 
 235
 236	atomic_inc(&fs_info->defrag_running);
 237	spin_lock(&fs_info->defrag_inodes_lock);
 238	while(1) {
 239		n = NULL;
 240
 241		/* find an inode to defrag */
 242		defrag = btrfs_find_defrag_inode(fs_info, root_objectid,
 243						 first_ino, &n);
 244		if (!defrag) {
 245			if (n) {
 246				defrag = rb_entry(n, struct inode_defrag,
 247						  rb_node);
 248			} else if (root_objectid || first_ino) {
 249				root_objectid = 0;
 250				first_ino = 0;
 251				continue;
 252			} else {
 253				break;
 254			}
 255		}
 256
 257		/* remove it from the rbtree */
 258		first_ino = defrag->ino + 1;
 259		root_objectid = defrag->root;
 260		rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
 261
 262		if (btrfs_fs_closing(fs_info))
 263			goto next_free;
 264
 265		spin_unlock(&fs_info->defrag_inodes_lock);
 266
 267		/* get the inode */
 268		key.objectid = defrag->root;
 269		btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 270		key.offset = (u64)-1;
 271		inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 272		if (IS_ERR(inode_root))
 273			goto next;
 274
 275		key.objectid = defrag->ino;
 276		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
 277		key.offset = 0;
 278
 279		inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 280		if (IS_ERR(inode))
 281			goto next;
 282
 283		/* do a chunk of defrag */
 284		clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 285		range.start = defrag->last_offset;
 286		num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 287					       defrag_batch);
 288		/*
 289		 * if we filled the whole defrag batch, there
 290		 * must be more work to do.  Queue this defrag
 291		 * again
 292		 */
 293		if (num_defrag == defrag_batch) {
 294			defrag->last_offset = range.start;
 295			__btrfs_add_inode_defrag(inode, defrag);
 296			/*
 297			 * we don't want to kfree defrag, we added it back to
 298			 * the rbtree
 299			 */
 300			defrag = NULL;
 301		} else if (defrag->last_offset && !defrag->cycled) {
 302			/*
 303			 * we didn't fill our defrag batch, but
 304			 * we didn't start at zero.  Make sure we loop
 305			 * around to the start of the file.
 306			 */
 307			defrag->last_offset = 0;
 308			defrag->cycled = 1;
 309			__btrfs_add_inode_defrag(inode, defrag);
 310			defrag = NULL;
 311		}
 312
 313		iput(inode);
 314next:
 315		spin_lock(&fs_info->defrag_inodes_lock);
 316next_free:
 317		kfree(defrag);
 318	}
 319	spin_unlock(&fs_info->defrag_inodes_lock);
 320
 321	atomic_dec(&fs_info->defrag_running);
 322
 323	/*
 324	 * during unmount, we use the transaction_wait queue to
 325	 * wait for the defragger to stop
 326	 */
 327	wake_up(&fs_info->transaction_wait);
 328	return 0;
 329}
 330
 331/* simple helper to fault in pages and copy.  This should go away
 332 * and be replaced with calls into generic code.
 333 */
 334static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
 335					 size_t write_bytes,
 336					 struct page **prepared_pages,
 337					 struct iov_iter *i)
 338{
 339	size_t copied = 0;
 340	size_t total_copied = 0;
 341	int pg = 0;
 342	int offset = pos & (PAGE_CACHE_SIZE - 1);
 343
 344	while (write_bytes > 0) {
 345		size_t count = min_t(size_t,
 346				     PAGE_CACHE_SIZE - offset, write_bytes);
 347		struct page *page = prepared_pages[pg];
 348		/*
 349		 * Copy data from userspace to the current page
 350		 *
 351		 * Disable pagefault to avoid recursive lock since
 352		 * the pages are already locked
 353		 */
 354		pagefault_disable();
 355		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 356		pagefault_enable();
 357
 358		/* Flush processor's dcache for this page */
 359		flush_dcache_page(page);
 360
 361		/*
 362		 * if we get a partial write, we can end up with
 363		 * partially up to date pages.  These add
 364		 * a lot of complexity, so make sure they don't
 365		 * happen by forcing this copy to be retried.
 366		 *
 367		 * The rest of the btrfs_file_write code will fall
 368		 * back to page at a time copies after we return 0.
 369		 */
 370		if (!PageUptodate(page) && copied < count)
 371			copied = 0;
 372
 373		iov_iter_advance(i, copied);
 374		write_bytes -= copied;
 375		total_copied += copied;
 376
 377		/* Return to btrfs_file_aio_write to fault page */
 378		if (unlikely(copied == 0))
 379			break;
 380
 381		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
 382			offset += copied;
 383		} else {
 384			pg++;
 385			offset = 0;
 386		}
 387	}
 388	return total_copied;
 389}
 390
 391/*
 392 * unlocks pages after btrfs_file_write is done with them
 393 */
 394void btrfs_drop_pages(struct page **pages, size_t num_pages)
 395{
 396	size_t i;
 397	for (i = 0; i < num_pages; i++) {
 398		/* page checked is some magic around finding pages that
 399		 * have been modified without going through btrfs_set_page_dirty
 400		 * clear it here
 401		 */
 402		ClearPageChecked(pages[i]);
 403		unlock_page(pages[i]);
 404		mark_page_accessed(pages[i]);
 405		page_cache_release(pages[i]);
 406	}
 407}
 408
 409/*
 410 * after copy_from_user, pages need to be dirtied and we need to make
 411 * sure holes are created between the current EOF and the start of
 412 * any next extents (if required).
 413 *
 414 * this also makes the decision about creating an inline extent vs
 415 * doing real data extents, marking pages dirty and delalloc as required.
 416 */
 417int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 418		      struct page **pages, size_t num_pages,
 419		      loff_t pos, size_t write_bytes,
 420		      struct extent_state **cached)
 421{
 422	int err = 0;
 423	int i;
 424	u64 num_bytes;
 425	u64 start_pos;
 426	u64 end_of_last_block;
 427	u64 end_pos = pos + write_bytes;
 428	loff_t isize = i_size_read(inode);
 429
 430	start_pos = pos & ~((u64)root->sectorsize - 1);
 431	num_bytes = (write_bytes + pos - start_pos +
 432		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
 433
 434	end_of_last_block = start_pos + num_bytes - 1;
 435	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 436					cached);
 437	if (err)
 438		return err;
 439
 440	for (i = 0; i < num_pages; i++) {
 441		struct page *p = pages[i];
 442		SetPageUptodate(p);
 443		ClearPageChecked(p);
 444		set_page_dirty(p);
 445	}
 446
 447	/*
 448	 * we've only changed i_size in ram, and we haven't updated
 449	 * the disk i_size.  There is no need to log the inode
 450	 * at this time.
 451	 */
 452	if (end_pos > isize)
 453		i_size_write(inode, end_pos);
 454	return 0;
 455}
 456
 457/*
 458 * this drops all the extents in the cache that intersect the range
 459 * [start, end].  Existing extents are split as required.
 460 */
 461int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 462			    int skip_pinned)
 463{
 464	struct extent_map *em;
 465	struct extent_map *split = NULL;
 466	struct extent_map *split2 = NULL;
 467	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 468	u64 len = end - start + 1;
 
 469	int ret;
 470	int testend = 1;
 471	unsigned long flags;
 472	int compressed = 0;
 
 473
 474	WARN_ON(end < start);
 475	if (end == (u64)-1) {
 476		len = (u64)-1;
 477		testend = 0;
 478	}
 479	while (1) {
 
 
 
 480		if (!split)
 481			split = alloc_extent_map();
 482		if (!split2)
 483			split2 = alloc_extent_map();
 484		BUG_ON(!split || !split2); /* -ENOMEM */
 
 485
 486		write_lock(&em_tree->lock);
 487		em = lookup_extent_mapping(em_tree, start, len);
 488		if (!em) {
 489			write_unlock(&em_tree->lock);
 490			break;
 491		}
 492		flags = em->flags;
 
 493		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 494			if (testend && em->start + em->len >= start + len) {
 495				free_extent_map(em);
 496				write_unlock(&em_tree->lock);
 497				break;
 498			}
 499			start = em->start + em->len;
 500			if (testend)
 501				len = start + len - (em->start + em->len);
 502			free_extent_map(em);
 503			write_unlock(&em_tree->lock);
 504			continue;
 505		}
 506		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 507		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 508		remove_extent_mapping(em_tree, em);
 
 
 
 509
 510		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
 511		    em->start < start) {
 512			split->start = em->start;
 513			split->len = start - em->start;
 514			split->orig_start = em->orig_start;
 515			split->block_start = em->block_start;
 516
 517			if (compressed)
 518				split->block_len = em->block_len;
 519			else
 520				split->block_len = split->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521
 
 522			split->bdev = em->bdev;
 523			split->flags = flags;
 524			split->compress_type = em->compress_type;
 525			ret = add_extent_mapping(em_tree, split);
 526			BUG_ON(ret); /* Logic error */
 527			free_extent_map(split);
 528			split = split2;
 529			split2 = NULL;
 530		}
 531		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
 532		    testend && em->start + em->len > start + len) {
 533			u64 diff = start + len - em->start;
 534
 535			split->start = start + len;
 536			split->len = em->start + em->len - (start + len);
 537			split->bdev = em->bdev;
 538			split->flags = flags;
 539			split->compress_type = em->compress_type;
 
 540
 541			if (compressed) {
 542				split->block_len = em->block_len;
 543				split->block_start = em->block_start;
 544				split->orig_start = em->orig_start;
 
 
 
 
 
 
 
 
 
 
 
 545			} else {
 546				split->block_len = split->len;
 547				split->block_start = em->block_start + diff;
 548				split->orig_start = split->start;
 
 
 
 549			}
 550
 551			ret = add_extent_mapping(em_tree, split);
 552			BUG_ON(ret); /* Logic error */
 
 
 
 
 
 
 553			free_extent_map(split);
 554			split = NULL;
 555		}
 
 
 
 556		write_unlock(&em_tree->lock);
 557
 558		/* once for us */
 559		free_extent_map(em);
 560		/* once for the tree*/
 561		free_extent_map(em);
 562	}
 563	if (split)
 564		free_extent_map(split);
 565	if (split2)
 566		free_extent_map(split2);
 567	return 0;
 568}
 569
 570/*
 571 * this is very complex, but the basic idea is to drop all extents
 572 * in the range start - end.  hint_block is filled in with a block number
 573 * that would be a good hint to the block allocator for this file.
 574 *
 575 * If an extent intersects the range but is not entirely inside the range
 576 * it is either truncated or split.  Anything entirely inside the range
 577 * is deleted from the tree.
 578 */
 579int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
 580		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
 
 
 
 
 
 581{
 582	struct btrfs_root *root = BTRFS_I(inode)->root;
 583	struct extent_buffer *leaf;
 584	struct btrfs_file_extent_item *fi;
 585	struct btrfs_path *path;
 586	struct btrfs_key key;
 587	struct btrfs_key new_key;
 588	u64 ino = btrfs_ino(inode);
 589	u64 search_start = start;
 590	u64 disk_bytenr = 0;
 591	u64 num_bytes = 0;
 592	u64 extent_offset = 0;
 593	u64 extent_end = 0;
 594	int del_nr = 0;
 595	int del_slot = 0;
 596	int extent_type;
 597	int recow;
 598	int ret;
 599	int modify_tree = -1;
 
 
 
 600
 601	if (drop_cache)
 602		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 603
 604	path = btrfs_alloc_path();
 605	if (!path)
 606		return -ENOMEM;
 607
 608	if (start >= BTRFS_I(inode)->disk_i_size)
 609		modify_tree = 0;
 610
 611	while (1) {
 612		recow = 0;
 613		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 614					       search_start, modify_tree);
 615		if (ret < 0)
 616			break;
 617		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 618			leaf = path->nodes[0];
 619			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 620			if (key.objectid == ino &&
 621			    key.type == BTRFS_EXTENT_DATA_KEY)
 622				path->slots[0]--;
 623		}
 624		ret = 0;
 
 625next_slot:
 626		leaf = path->nodes[0];
 627		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 628			BUG_ON(del_nr > 0);
 629			ret = btrfs_next_leaf(root, path);
 630			if (ret < 0)
 631				break;
 632			if (ret > 0) {
 633				ret = 0;
 634				break;
 635			}
 
 636			leaf = path->nodes[0];
 637			recow = 1;
 638		}
 639
 640		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 641		if (key.objectid > ino ||
 642		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 643			break;
 644
 645		fi = btrfs_item_ptr(leaf, path->slots[0],
 646				    struct btrfs_file_extent_item);
 647		extent_type = btrfs_file_extent_type(leaf, fi);
 648
 649		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 650		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 651			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 652			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 653			extent_offset = btrfs_file_extent_offset(leaf, fi);
 654			extent_end = key.offset +
 655				btrfs_file_extent_num_bytes(leaf, fi);
 656		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 657			extent_end = key.offset +
 658				btrfs_file_extent_inline_len(leaf, fi);
 
 659		} else {
 660			WARN_ON(1);
 661			extent_end = search_start;
 662		}
 663
 664		if (extent_end <= search_start) {
 665			path->slots[0]++;
 666			goto next_slot;
 667		}
 668
 
 669		search_start = max(key.offset, start);
 670		if (recow || !modify_tree) {
 671			modify_tree = -1;
 672			btrfs_release_path(path);
 673			continue;
 674		}
 675
 676		/*
 677		 *     | - range to drop - |
 678		 *  | -------- extent -------- |
 679		 */
 680		if (start > key.offset && end < extent_end) {
 681			BUG_ON(del_nr > 0);
 682			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 
 
 
 683
 684			memcpy(&new_key, &key, sizeof(new_key));
 685			new_key.offset = start;
 686			ret = btrfs_duplicate_item(trans, root, path,
 687						   &new_key);
 688			if (ret == -EAGAIN) {
 689				btrfs_release_path(path);
 690				continue;
 691			}
 692			if (ret < 0)
 693				break;
 694
 695			leaf = path->nodes[0];
 696			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 697					    struct btrfs_file_extent_item);
 698			btrfs_set_file_extent_num_bytes(leaf, fi,
 699							start - key.offset);
 700
 701			fi = btrfs_item_ptr(leaf, path->slots[0],
 702					    struct btrfs_file_extent_item);
 703
 704			extent_offset += start - key.offset;
 705			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 706			btrfs_set_file_extent_num_bytes(leaf, fi,
 707							extent_end - start);
 708			btrfs_mark_buffer_dirty(leaf);
 709
 710			if (disk_bytenr > 0) {
 711				ret = btrfs_inc_extent_ref(trans, root,
 712						disk_bytenr, num_bytes, 0,
 713						root->root_key.objectid,
 714						new_key.objectid,
 715						start - extent_offset, 0);
 716				BUG_ON(ret); /* -ENOMEM */
 717				*hint_byte = disk_bytenr;
 718			}
 719			key.offset = start;
 720		}
 721		/*
 722		 *  | ---- range to drop ----- |
 723		 *      | -------- extent -------- |
 724		 */
 725		if (start <= key.offset && end < extent_end) {
 726			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 
 
 
 727
 728			memcpy(&new_key, &key, sizeof(new_key));
 729			new_key.offset = end;
 730			btrfs_set_item_key_safe(trans, root, path, &new_key);
 731
 732			extent_offset += end - key.offset;
 733			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 734			btrfs_set_file_extent_num_bytes(leaf, fi,
 735							extent_end - end);
 736			btrfs_mark_buffer_dirty(leaf);
 737			if (disk_bytenr > 0) {
 738				inode_sub_bytes(inode, end - key.offset);
 739				*hint_byte = disk_bytenr;
 740			}
 741			break;
 742		}
 743
 744		search_start = extent_end;
 745		/*
 746		 *       | ---- range to drop ----- |
 747		 *  | -------- extent -------- |
 748		 */
 749		if (start > key.offset && end >= extent_end) {
 750			BUG_ON(del_nr > 0);
 751			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
 
 
 
 752
 753			btrfs_set_file_extent_num_bytes(leaf, fi,
 754							start - key.offset);
 755			btrfs_mark_buffer_dirty(leaf);
 756			if (disk_bytenr > 0) {
 757				inode_sub_bytes(inode, extent_end - start);
 758				*hint_byte = disk_bytenr;
 759			}
 760			if (end == extent_end)
 761				break;
 762
 763			path->slots[0]++;
 764			goto next_slot;
 765		}
 766
 767		/*
 768		 *  | ---- range to drop ----- |
 769		 *    | ------ extent ------ |
 770		 */
 771		if (start <= key.offset && end >= extent_end) {
 772			if (del_nr == 0) {
 773				del_slot = path->slots[0];
 774				del_nr = 1;
 775			} else {
 776				BUG_ON(del_slot + del_nr != path->slots[0]);
 777				del_nr++;
 778			}
 779
 780			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 
 781				inode_sub_bytes(inode,
 782						extent_end - key.offset);
 783				extent_end = ALIGN(extent_end,
 784						   root->sectorsize);
 785			} else if (disk_bytenr > 0) {
 786				ret = btrfs_free_extent(trans, root,
 787						disk_bytenr, num_bytes, 0,
 788						root->root_key.objectid,
 789						key.objectid, key.offset -
 790						extent_offset, 0);
 791				BUG_ON(ret); /* -ENOMEM */
 792				inode_sub_bytes(inode,
 793						extent_end - key.offset);
 794				*hint_byte = disk_bytenr;
 795			}
 796
 797			if (end == extent_end)
 798				break;
 799
 800			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 801				path->slots[0]++;
 802				goto next_slot;
 803			}
 804
 805			ret = btrfs_del_items(trans, root, path, del_slot,
 806					      del_nr);
 807			if (ret) {
 808				btrfs_abort_transaction(trans, root, ret);
 809				goto out;
 810			}
 811
 812			del_nr = 0;
 813			del_slot = 0;
 814
 815			btrfs_release_path(path);
 816			continue;
 817		}
 818
 819		BUG_ON(1);
 820	}
 821
 822	if (!ret && del_nr > 0) {
 
 
 
 
 
 
 
 823		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 824		if (ret)
 825			btrfs_abort_transaction(trans, root, ret);
 826	}
 827
 828out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829	btrfs_free_path(path);
 830	return ret;
 831}
 832
 833static int extent_mergeable(struct extent_buffer *leaf, int slot,
 834			    u64 objectid, u64 bytenr, u64 orig_offset,
 835			    u64 *start, u64 *end)
 836{
 837	struct btrfs_file_extent_item *fi;
 838	struct btrfs_key key;
 839	u64 extent_end;
 840
 841	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 842		return 0;
 843
 844	btrfs_item_key_to_cpu(leaf, &key, slot);
 845	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 846		return 0;
 847
 848	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 849	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 850	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 851	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 852	    btrfs_file_extent_compression(leaf, fi) ||
 853	    btrfs_file_extent_encryption(leaf, fi) ||
 854	    btrfs_file_extent_other_encoding(leaf, fi))
 855		return 0;
 856
 857	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 858	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 859		return 0;
 860
 861	*start = key.offset;
 862	*end = extent_end;
 863	return 1;
 864}
 865
 866/*
 867 * Mark extent in the range start - end as written.
 868 *
 869 * This changes extent type from 'pre-allocated' to 'regular'. If only
 870 * part of extent is marked as written, the extent will be split into
 871 * two or three.
 872 */
 873int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 874			      struct inode *inode, u64 start, u64 end)
 875{
 876	struct btrfs_root *root = BTRFS_I(inode)->root;
 877	struct extent_buffer *leaf;
 878	struct btrfs_path *path;
 879	struct btrfs_file_extent_item *fi;
 880	struct btrfs_key key;
 881	struct btrfs_key new_key;
 882	u64 bytenr;
 883	u64 num_bytes;
 884	u64 extent_end;
 885	u64 orig_offset;
 886	u64 other_start;
 887	u64 other_end;
 888	u64 split;
 889	int del_nr = 0;
 890	int del_slot = 0;
 891	int recow;
 892	int ret;
 893	u64 ino = btrfs_ino(inode);
 894
 895	btrfs_drop_extent_cache(inode, start, end - 1, 0);
 896
 897	path = btrfs_alloc_path();
 898	if (!path)
 899		return -ENOMEM;
 900again:
 901	recow = 0;
 902	split = start;
 903	key.objectid = ino;
 904	key.type = BTRFS_EXTENT_DATA_KEY;
 905	key.offset = split;
 906
 907	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 908	if (ret < 0)
 909		goto out;
 910	if (ret > 0 && path->slots[0] > 0)
 911		path->slots[0]--;
 912
 913	leaf = path->nodes[0];
 914	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 915	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
 916	fi = btrfs_item_ptr(leaf, path->slots[0],
 917			    struct btrfs_file_extent_item);
 918	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
 919	       BTRFS_FILE_EXTENT_PREALLOC);
 920	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 921	BUG_ON(key.offset > start || extent_end < end);
 922
 923	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 924	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 925	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 926	memcpy(&new_key, &key, sizeof(new_key));
 927
 928	if (start == key.offset && end < extent_end) {
 929		other_start = 0;
 930		other_end = start;
 931		if (extent_mergeable(leaf, path->slots[0] - 1,
 932				     ino, bytenr, orig_offset,
 933				     &other_start, &other_end)) {
 934			new_key.offset = end;
 935			btrfs_set_item_key_safe(trans, root, path, &new_key);
 936			fi = btrfs_item_ptr(leaf, path->slots[0],
 937					    struct btrfs_file_extent_item);
 
 
 938			btrfs_set_file_extent_num_bytes(leaf, fi,
 939							extent_end - end);
 940			btrfs_set_file_extent_offset(leaf, fi,
 941						     end - orig_offset);
 942			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 943					    struct btrfs_file_extent_item);
 
 
 944			btrfs_set_file_extent_num_bytes(leaf, fi,
 945							end - other_start);
 946			btrfs_mark_buffer_dirty(leaf);
 947			goto out;
 948		}
 949	}
 950
 951	if (start > key.offset && end == extent_end) {
 952		other_start = end;
 953		other_end = 0;
 954		if (extent_mergeable(leaf, path->slots[0] + 1,
 955				     ino, bytenr, orig_offset,
 956				     &other_start, &other_end)) {
 957			fi = btrfs_item_ptr(leaf, path->slots[0],
 958					    struct btrfs_file_extent_item);
 959			btrfs_set_file_extent_num_bytes(leaf, fi,
 960							start - key.offset);
 
 
 961			path->slots[0]++;
 962			new_key.offset = start;
 963			btrfs_set_item_key_safe(trans, root, path, &new_key);
 964
 965			fi = btrfs_item_ptr(leaf, path->slots[0],
 966					    struct btrfs_file_extent_item);
 
 
 967			btrfs_set_file_extent_num_bytes(leaf, fi,
 968							other_end - start);
 969			btrfs_set_file_extent_offset(leaf, fi,
 970						     start - orig_offset);
 971			btrfs_mark_buffer_dirty(leaf);
 972			goto out;
 973		}
 974	}
 975
 976	while (start > key.offset || end < extent_end) {
 977		if (key.offset == start)
 978			split = end;
 979
 980		new_key.offset = split;
 981		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 982		if (ret == -EAGAIN) {
 983			btrfs_release_path(path);
 984			goto again;
 985		}
 986		if (ret < 0) {
 987			btrfs_abort_transaction(trans, root, ret);
 988			goto out;
 989		}
 990
 991		leaf = path->nodes[0];
 992		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 993				    struct btrfs_file_extent_item);
 
 994		btrfs_set_file_extent_num_bytes(leaf, fi,
 995						split - key.offset);
 996
 997		fi = btrfs_item_ptr(leaf, path->slots[0],
 998				    struct btrfs_file_extent_item);
 999
 
1000		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1001		btrfs_set_file_extent_num_bytes(leaf, fi,
1002						extent_end - split);
1003		btrfs_mark_buffer_dirty(leaf);
1004
1005		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1006					   root->root_key.objectid,
1007					   ino, orig_offset, 0);
1008		BUG_ON(ret); /* -ENOMEM */
1009
1010		if (split == start) {
1011			key.offset = start;
1012		} else {
1013			BUG_ON(start != key.offset);
1014			path->slots[0]--;
1015			extent_end = end;
1016		}
1017		recow = 1;
1018	}
1019
1020	other_start = end;
1021	other_end = 0;
1022	if (extent_mergeable(leaf, path->slots[0] + 1,
1023			     ino, bytenr, orig_offset,
1024			     &other_start, &other_end)) {
1025		if (recow) {
1026			btrfs_release_path(path);
1027			goto again;
1028		}
1029		extent_end = other_end;
1030		del_slot = path->slots[0] + 1;
1031		del_nr++;
1032		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1033					0, root->root_key.objectid,
1034					ino, orig_offset, 0);
1035		BUG_ON(ret); /* -ENOMEM */
1036	}
1037	other_start = 0;
1038	other_end = start;
1039	if (extent_mergeable(leaf, path->slots[0] - 1,
1040			     ino, bytenr, orig_offset,
1041			     &other_start, &other_end)) {
1042		if (recow) {
1043			btrfs_release_path(path);
1044			goto again;
1045		}
1046		key.offset = other_start;
1047		del_slot = path->slots[0];
1048		del_nr++;
1049		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1050					0, root->root_key.objectid,
1051					ino, orig_offset, 0);
1052		BUG_ON(ret); /* -ENOMEM */
1053	}
1054	if (del_nr == 0) {
1055		fi = btrfs_item_ptr(leaf, path->slots[0],
1056			   struct btrfs_file_extent_item);
1057		btrfs_set_file_extent_type(leaf, fi,
1058					   BTRFS_FILE_EXTENT_REG);
 
1059		btrfs_mark_buffer_dirty(leaf);
1060	} else {
1061		fi = btrfs_item_ptr(leaf, del_slot - 1,
1062			   struct btrfs_file_extent_item);
1063		btrfs_set_file_extent_type(leaf, fi,
1064					   BTRFS_FILE_EXTENT_REG);
 
1065		btrfs_set_file_extent_num_bytes(leaf, fi,
1066						extent_end - key.offset);
1067		btrfs_mark_buffer_dirty(leaf);
1068
1069		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1070		if (ret < 0) {
1071			btrfs_abort_transaction(trans, root, ret);
1072			goto out;
1073		}
1074	}
1075out:
1076	btrfs_free_path(path);
1077	return 0;
1078}
1079
1080/*
1081 * on error we return an unlocked page and the error value
1082 * on success we return a locked page and 0
1083 */
1084static int prepare_uptodate_page(struct page *page, u64 pos,
1085				 bool force_uptodate)
1086{
1087	int ret = 0;
1088
1089	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1090	    !PageUptodate(page)) {
1091		ret = btrfs_readpage(NULL, page);
1092		if (ret)
1093			return ret;
1094		lock_page(page);
1095		if (!PageUptodate(page)) {
1096			unlock_page(page);
1097			return -EIO;
1098		}
1099	}
1100	return 0;
1101}
1102
1103/*
1104 * this gets pages into the page cache and locks them down, it also properly
1105 * waits for data=ordered extents to finish before allowing the pages to be
1106 * modified.
1107 */
1108static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1109			 struct page **pages, size_t num_pages,
1110			 loff_t pos, unsigned long first_index,
1111			 size_t write_bytes, bool force_uptodate)
1112{
1113	struct extent_state *cached_state = NULL;
1114	int i;
1115	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1116	struct inode *inode = fdentry(file)->d_inode;
1117	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1118	int err = 0;
1119	int faili = 0;
1120	u64 start_pos;
1121	u64 last_pos;
1122
1123	start_pos = pos & ~((u64)root->sectorsize - 1);
1124	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1125
1126again:
1127	for (i = 0; i < num_pages; i++) {
1128		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1129					       mask | __GFP_WRITE);
1130		if (!pages[i]) {
1131			faili = i - 1;
1132			err = -ENOMEM;
1133			goto fail;
1134		}
1135
1136		if (i == 0)
1137			err = prepare_uptodate_page(pages[i], pos,
1138						    force_uptodate);
1139		if (i == num_pages - 1)
1140			err = prepare_uptodate_page(pages[i],
1141						    pos + write_bytes, false);
1142		if (err) {
1143			page_cache_release(pages[i]);
1144			faili = i - 1;
1145			goto fail;
1146		}
1147		wait_on_page_writeback(pages[i]);
1148	}
1149	err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150	if (start_pos < inode->i_size) {
1151		struct btrfs_ordered_extent *ordered;
1152		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1153				 start_pos, last_pos - 1, 0, &cached_state);
1154		ordered = btrfs_lookup_first_ordered_extent(inode,
1155							    last_pos - 1);
1156		if (ordered &&
1157		    ordered->file_offset + ordered->len > start_pos &&
1158		    ordered->file_offset < last_pos) {
1159			btrfs_put_ordered_extent(ordered);
1160			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1161					     start_pos, last_pos - 1,
1162					     &cached_state, GFP_NOFS);
1163			for (i = 0; i < num_pages; i++) {
1164				unlock_page(pages[i]);
1165				page_cache_release(pages[i]);
1166			}
1167			btrfs_wait_ordered_range(inode, start_pos,
1168						 last_pos - start_pos);
1169			goto again;
1170		}
1171		if (ordered)
1172			btrfs_put_ordered_extent(ordered);
1173
1174		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1175				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1176				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1177				  GFP_NOFS);
1178		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1179				     start_pos, last_pos - 1, &cached_state,
1180				     GFP_NOFS);
1181	}
 
1182	for (i = 0; i < num_pages; i++) {
1183		if (clear_page_dirty_for_io(pages[i]))
1184			account_page_redirty(pages[i]);
1185		set_page_extent_mapped(pages[i]);
1186		WARN_ON(!PageLocked(pages[i]));
1187	}
1188	return 0;
1189fail:
1190	while (faili >= 0) {
1191		unlock_page(pages[faili]);
1192		page_cache_release(pages[faili]);
1193		faili--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194	}
1195	return err;
1196
 
 
 
1197}
1198
1199static noinline ssize_t __btrfs_buffered_write(struct file *file,
1200					       struct iov_iter *i,
1201					       loff_t pos)
1202{
1203	struct inode *inode = fdentry(file)->d_inode;
1204	struct btrfs_root *root = BTRFS_I(inode)->root;
1205	struct page **pages = NULL;
 
 
 
 
1206	unsigned long first_index;
1207	size_t num_written = 0;
1208	int nrptrs;
1209	int ret = 0;
 
1210	bool force_page_uptodate = false;
 
1211
1212	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1213		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1214		     (sizeof(struct page *)));
1215	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1216	nrptrs = max(nrptrs, 8);
1217	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1218	if (!pages)
1219		return -ENOMEM;
1220
1221	first_index = pos >> PAGE_CACHE_SHIFT;
1222
1223	while (iov_iter_count(i) > 0) {
1224		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1225		size_t write_bytes = min(iov_iter_count(i),
1226					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1227					 offset);
1228		size_t num_pages = (write_bytes + offset +
1229				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 
1230		size_t dirty_pages;
1231		size_t copied;
1232
1233		WARN_ON(num_pages > nrptrs);
1234
1235		/*
1236		 * Fault pages before locking them in prepare_pages
1237		 * to avoid recursive lock
1238		 */
1239		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1240			ret = -EFAULT;
1241			break;
1242		}
1243
1244		ret = btrfs_delalloc_reserve_space(inode,
1245					num_pages << PAGE_CACHE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246		if (ret)
1247			break;
1248
 
 
 
 
 
 
 
 
 
 
 
 
 
1249		/*
1250		 * This is going to setup the pages array with the number of
1251		 * pages we want, so we don't really need to worry about the
1252		 * contents of pages from loop to loop
1253		 */
1254		ret = prepare_pages(root, file, pages, num_pages,
1255				    pos, first_index, write_bytes,
1256				    force_page_uptodate);
1257		if (ret) {
1258			btrfs_delalloc_release_space(inode,
1259					num_pages << PAGE_CACHE_SHIFT);
 
 
 
 
 
 
1260			break;
 
 
 
1261		}
1262
1263		copied = btrfs_copy_from_user(pos, num_pages,
1264					   write_bytes, pages, i);
1265
1266		/*
1267		 * if we have trouble faulting in the pages, fall
1268		 * back to one page at a time
1269		 */
1270		if (copied < write_bytes)
1271			nrptrs = 1;
1272
1273		if (copied == 0) {
1274			force_page_uptodate = true;
1275			dirty_pages = 0;
1276		} else {
1277			force_page_uptodate = false;
1278			dirty_pages = (copied + offset +
1279				       PAGE_CACHE_SIZE - 1) >>
1280				       PAGE_CACHE_SHIFT;
1281		}
1282
1283		/*
1284		 * If we had a short copy we need to release the excess delaloc
1285		 * bytes we reserved.  We need to increment outstanding_extents
1286		 * because btrfs_delalloc_release_space will decrement it, but
1287		 * we still have an outstanding extent for the chunk we actually
1288		 * managed to copy.
1289		 */
1290		if (num_pages > dirty_pages) {
 
 
1291			if (copied > 0) {
1292				spin_lock(&BTRFS_I(inode)->lock);
1293				BTRFS_I(inode)->outstanding_extents++;
1294				spin_unlock(&BTRFS_I(inode)->lock);
1295			}
1296			btrfs_delalloc_release_space(inode,
1297					(num_pages - dirty_pages) <<
1298					PAGE_CACHE_SHIFT);
 
 
 
1299		}
1300
1301		if (copied > 0) {
 
 
1302			ret = btrfs_dirty_pages(root, inode, pages,
1303						dirty_pages, pos, copied,
1304						NULL);
1305			if (ret) {
1306				btrfs_delalloc_release_space(inode,
1307					dirty_pages << PAGE_CACHE_SHIFT);
1308				btrfs_drop_pages(pages, num_pages);
1309				break;
1310			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311		}
1312
1313		btrfs_drop_pages(pages, num_pages);
1314
1315		cond_resched();
1316
1317		balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1318						   dirty_pages);
1319		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1320			btrfs_btree_balance_dirty(root, 1);
1321
1322		pos += copied;
1323		num_written += copied;
1324	}
1325
1326	kfree(pages);
1327
 
 
 
 
 
 
 
 
 
1328	return num_written ? num_written : ret;
1329}
1330
1331static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1332				    const struct iovec *iov,
1333				    unsigned long nr_segs, loff_t pos,
1334				    loff_t *ppos, size_t count, size_t ocount)
1335{
1336	struct file *file = iocb->ki_filp;
1337	struct iov_iter i;
1338	ssize_t written;
1339	ssize_t written_buffered;
1340	loff_t endbyte;
1341	int err;
1342
1343	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1344					    count, ocount);
1345
1346	if (written < 0 || written == count)
1347		return written;
1348
1349	pos += written;
1350	count -= written;
1351	iov_iter_init(&i, iov, nr_segs, count, written);
1352	written_buffered = __btrfs_buffered_write(file, &i, pos);
1353	if (written_buffered < 0) {
1354		err = written_buffered;
1355		goto out;
1356	}
1357	endbyte = pos + written_buffered - 1;
1358	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1359	if (err)
1360		goto out;
1361	written += written_buffered;
1362	*ppos = pos + written_buffered;
1363	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1364				 endbyte >> PAGE_CACHE_SHIFT);
1365out:
1366	return written ? written : err;
1367}
1368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1370				    const struct iovec *iov,
1371				    unsigned long nr_segs, loff_t pos)
1372{
1373	struct file *file = iocb->ki_filp;
1374	struct inode *inode = fdentry(file)->d_inode;
1375	struct btrfs_root *root = BTRFS_I(inode)->root;
1376	loff_t *ppos = &iocb->ki_pos;
1377	u64 start_pos;
 
1378	ssize_t num_written = 0;
1379	ssize_t err = 0;
1380	size_t count, ocount;
1381
1382	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1383
1384	mutex_lock(&inode->i_mutex);
1385
1386	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1387	if (err) {
1388		mutex_unlock(&inode->i_mutex);
1389		goto out;
1390	}
1391	count = ocount;
1392
1393	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1394	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1395	if (err) {
1396		mutex_unlock(&inode->i_mutex);
1397		goto out;
1398	}
1399
1400	if (count == 0) {
1401		mutex_unlock(&inode->i_mutex);
1402		goto out;
1403	}
1404
1405	err = file_remove_suid(file);
1406	if (err) {
1407		mutex_unlock(&inode->i_mutex);
1408		goto out;
1409	}
1410
1411	/*
1412	 * If BTRFS flips readonly due to some impossible error
1413	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1414	 * although we have opened a file as writable, we have
1415	 * to stop this write operation to ensure FS consistency.
1416	 */
1417	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1418		mutex_unlock(&inode->i_mutex);
1419		err = -EROFS;
1420		goto out;
1421	}
1422
1423	err = file_update_time(file);
1424	if (err) {
1425		mutex_unlock(&inode->i_mutex);
1426		goto out;
1427	}
 
 
1428
1429	start_pos = round_down(pos, root->sectorsize);
1430	if (start_pos > i_size_read(inode)) {
1431		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
 
 
1432		if (err) {
1433			mutex_unlock(&inode->i_mutex);
1434			goto out;
1435		}
1436	}
1437
 
 
 
1438	if (unlikely(file->f_flags & O_DIRECT)) {
1439		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1440						   pos, ppos, count, ocount);
1441	} else {
1442		struct iov_iter i;
1443
1444		iov_iter_init(&i, iov, nr_segs, count, num_written);
1445
1446		num_written = __btrfs_buffered_write(file, &i, pos);
1447		if (num_written > 0)
1448			*ppos = pos + num_written;
1449	}
1450
1451	mutex_unlock(&inode->i_mutex);
1452
1453	/*
1454	 * we want to make sure fsync finds this change
1455	 * but we haven't joined a transaction running right now.
1456	 *
1457	 * Later on, someone is sure to update the inode and get the
1458	 * real transid recorded.
1459	 *
1460	 * We set last_trans now to the fs_info generation + 1,
1461	 * this will either be one more than the running transaction
1462	 * or the generation used for the next transaction if there isn't
1463	 * one running right now.
 
 
 
 
1464	 */
1465	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1466	if (num_written > 0 || num_written == -EIOCBQUEUED) {
 
1467		err = generic_write_sync(file, pos, num_written);
1468		if (err < 0 && num_written > 0)
1469			num_written = err;
1470	}
 
 
 
1471out:
1472	current->backing_dev_info = NULL;
1473	return num_written ? num_written : err;
1474}
1475
1476int btrfs_release_file(struct inode *inode, struct file *filp)
1477{
1478	/*
1479	 * ordered_data_close is set by settattr when we are about to truncate
1480	 * a file from a non-zero size to a zero size.  This tries to
1481	 * flush down new bytes that may have been written if the
1482	 * application were using truncate to replace a file in place.
1483	 */
1484	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1485			       &BTRFS_I(inode)->runtime_flags)) {
1486		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
1487		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1488			filemap_flush(inode->i_mapping);
1489	}
1490	if (filp->private_data)
1491		btrfs_ioctl_trans_end(filp);
1492	return 0;
1493}
1494
1495/*
1496 * fsync call for both files and directories.  This logs the inode into
1497 * the tree log instead of forcing full commits whenever possible.
1498 *
1499 * It needs to call filemap_fdatawait so that all ordered extent updates are
1500 * in the metadata btree are up to date for copying to the log.
1501 *
1502 * It drops the inode mutex before doing the tree log commit.  This is an
1503 * important optimization for directories because holding the mutex prevents
1504 * new operations on the dir while we write to disk.
1505 */
1506int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1507{
1508	struct dentry *dentry = file->f_path.dentry;
1509	struct inode *inode = dentry->d_inode;
1510	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
1511	int ret = 0;
1512	struct btrfs_trans_handle *trans;
1513
1514	trace_btrfs_sync_file(file, datasync);
1515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516	mutex_lock(&inode->i_mutex);
1517
1518	/*
1519	 * we wait first, since the writeback may change the inode, also wait
1520	 * ordered range does a filemape_write_and_wait_range which is why we
1521	 * don't do it above like other file systems.
1522	 */
1523	root->log_batch++;
1524	btrfs_wait_ordered_range(inode, start, end);
1525	root->log_batch++;
 
 
 
 
 
 
 
1526
1527	/*
1528	 * check the transaction that last modified this inode
1529	 * and see if its already been committed
1530	 */
1531	if (!BTRFS_I(inode)->last_trans) {
1532		mutex_unlock(&inode->i_mutex);
1533		goto out;
1534	}
1535
1536	/*
1537	 * if the last transaction that changed this file was before
1538	 * the current transaction, we can bail out now without any
1539	 * syncing
1540	 */
1541	smp_mb();
1542	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1543	    BTRFS_I(inode)->last_trans <=
1544	    root->fs_info->last_trans_committed) {
1545		BTRFS_I(inode)->last_trans = 0;
 
 
 
 
 
 
 
 
1546		mutex_unlock(&inode->i_mutex);
1547		goto out;
1548	}
1549
1550	/*
1551	 * ok we haven't committed the transaction yet, lets do a commit
1552	 */
1553	if (file->private_data)
1554		btrfs_ioctl_trans_end(file);
1555
 
 
 
 
 
 
 
 
 
 
 
1556	trans = btrfs_start_transaction(root, 0);
1557	if (IS_ERR(trans)) {
1558		ret = PTR_ERR(trans);
1559		mutex_unlock(&inode->i_mutex);
1560		goto out;
1561	}
 
1562
1563	ret = btrfs_log_dentry_safe(trans, root, dentry);
 
 
1564	if (ret < 0) {
1565		mutex_unlock(&inode->i_mutex);
1566		goto out;
1567	}
1568
1569	/* we've logged all the items and now have a consistent
1570	 * version of the file in the log.  It is possible that
1571	 * someone will come in and modify the file, but that's
1572	 * fine because the log is consistent on disk, and we
1573	 * have references to all of the file's extents
1574	 *
1575	 * It is possible that someone will come in and log the
1576	 * file again, but that will end up using the synchronization
1577	 * inside btrfs_sync_log to keep things safe.
1578	 */
1579	mutex_unlock(&inode->i_mutex);
1580
1581	if (ret != BTRFS_NO_LOG_SYNC) {
1582		if (ret > 0) {
1583			ret = btrfs_commit_transaction(trans, root);
1584		} else {
1585			ret = btrfs_sync_log(trans, root);
1586			if (ret == 0)
1587				ret = btrfs_end_transaction(trans, root);
1588			else
1589				ret = btrfs_commit_transaction(trans, root);
 
 
 
 
 
 
1590		}
 
1591	} else {
1592		ret = btrfs_end_transaction(trans, root);
1593	}
1594out:
1595	return ret > 0 ? -EIO : ret;
1596}
1597
1598static const struct vm_operations_struct btrfs_file_vm_ops = {
1599	.fault		= filemap_fault,
 
1600	.page_mkwrite	= btrfs_page_mkwrite,
 
1601};
1602
1603static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1604{
1605	struct address_space *mapping = filp->f_mapping;
1606
1607	if (!mapping->a_ops->readpage)
1608		return -ENOEXEC;
1609
1610	file_accessed(filp);
1611	vma->vm_ops = &btrfs_file_vm_ops;
1612	vma->vm_flags |= VM_CAN_NONLINEAR;
1613
1614	return 0;
1615}
1616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617static long btrfs_fallocate(struct file *file, int mode,
1618			    loff_t offset, loff_t len)
1619{
1620	struct inode *inode = file->f_path.dentry->d_inode;
1621	struct extent_state *cached_state = NULL;
 
1622	u64 cur_offset;
1623	u64 last_byte;
1624	u64 alloc_start;
1625	u64 alloc_end;
1626	u64 alloc_hint = 0;
1627	u64 locked_end;
1628	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1629	struct extent_map *em;
 
1630	int ret;
1631
1632	alloc_start = offset & ~mask;
1633	alloc_end =  (offset + len + mask) & ~mask;
1634
1635	/* We only support the FALLOC_FL_KEEP_SIZE mode */
1636	if (mode & ~FALLOC_FL_KEEP_SIZE)
1637		return -EOPNOTSUPP;
1638
 
 
 
1639	/*
1640	 * Make sure we have enough space before we do the
1641	 * allocation.
1642	 */
1643	ret = btrfs_check_data_free_space(inode, len);
1644	if (ret)
1645		return ret;
1646
1647	/*
1648	 * wait for ordered IO before we have any locks.  We'll loop again
1649	 * below with the locks held.
1650	 */
1651	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1652
1653	mutex_lock(&inode->i_mutex);
1654	ret = inode_newsize_ok(inode, alloc_end);
1655	if (ret)
1656		goto out;
1657
1658	if (alloc_start > inode->i_size) {
1659		ret = btrfs_cont_expand(inode, i_size_read(inode),
1660					alloc_start);
1661		if (ret)
1662			goto out;
 
 
 
 
 
 
 
 
 
1663	}
1664
 
 
 
 
 
 
 
 
 
1665	locked_end = alloc_end - 1;
1666	while (1) {
1667		struct btrfs_ordered_extent *ordered;
1668
1669		/* the extent lock is ordered inside the running
1670		 * transaction
1671		 */
1672		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1673				 locked_end, 0, &cached_state);
1674		ordered = btrfs_lookup_first_ordered_extent(inode,
1675							    alloc_end - 1);
1676		if (ordered &&
1677		    ordered->file_offset + ordered->len > alloc_start &&
1678		    ordered->file_offset < alloc_end) {
1679			btrfs_put_ordered_extent(ordered);
1680			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1681					     alloc_start, locked_end,
1682					     &cached_state, GFP_NOFS);
1683			/*
1684			 * we can't wait on the range with the transaction
1685			 * running or with the extent lock held
1686			 */
1687			btrfs_wait_ordered_range(inode, alloc_start,
1688						 alloc_end - alloc_start);
 
 
1689		} else {
1690			if (ordered)
1691				btrfs_put_ordered_extent(ordered);
1692			break;
1693		}
1694	}
1695
1696	cur_offset = alloc_start;
1697	while (1) {
1698		u64 actual_end;
1699
1700		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1701				      alloc_end - cur_offset, 0);
1702		if (IS_ERR_OR_NULL(em)) {
1703			if (!em)
1704				ret = -ENOMEM;
1705			else
1706				ret = PTR_ERR(em);
1707			break;
1708		}
1709		last_byte = min(extent_map_end(em), alloc_end);
1710		actual_end = min_t(u64, extent_map_end(em), offset + len);
1711		last_byte = (last_byte + mask) & ~mask;
1712
1713		if (em->block_start == EXTENT_MAP_HOLE ||
1714		    (cur_offset >= inode->i_size &&
1715		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1716			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1717							last_byte - cur_offset,
1718							1 << inode->i_blkbits,
1719							offset + len,
1720							&alloc_hint);
1721
1722			if (ret < 0) {
1723				free_extent_map(em);
1724				break;
1725			}
1726		} else if (actual_end > inode->i_size &&
1727			   !(mode & FALLOC_FL_KEEP_SIZE)) {
1728			/*
1729			 * We didn't need to allocate any more space, but we
1730			 * still extended the size of the file so we need to
1731			 * update i_size.
1732			 */
1733			inode->i_ctime = CURRENT_TIME;
1734			i_size_write(inode, actual_end);
1735			btrfs_ordered_update_i_size(inode, actual_end, NULL);
1736		}
1737		free_extent_map(em);
1738
1739		cur_offset = last_byte;
1740		if (cur_offset >= alloc_end) {
1741			ret = 0;
1742			break;
1743		}
1744	}
1745	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1746			     &cached_state, GFP_NOFS);
1747out:
1748	mutex_unlock(&inode->i_mutex);
 
 
 
1749	/* Let go of our reservation. */
1750	btrfs_free_reserved_data_space(inode, len);
1751	return ret;
1752}
1753
1754static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
1755{
1756	struct btrfs_root *root = BTRFS_I(inode)->root;
1757	struct extent_map *em;
1758	struct extent_state *cached_state = NULL;
1759	u64 lockstart = *offset;
1760	u64 lockend = i_size_read(inode);
1761	u64 start = *offset;
1762	u64 orig_start = *offset;
1763	u64 len = i_size_read(inode);
1764	u64 last_end = 0;
1765	int ret = 0;
1766
1767	lockend = max_t(u64, root->sectorsize, lockend);
1768	if (lockend <= lockstart)
1769		lockend = lockstart + root->sectorsize;
1770
 
1771	len = lockend - lockstart + 1;
1772
1773	len = max_t(u64, len, root->sectorsize);
1774	if (inode->i_size == 0)
1775		return -ENXIO;
1776
1777	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
1778			 &cached_state);
1779
1780	/*
1781	 * Delalloc is such a pain.  If we have a hole and we have pending
1782	 * delalloc for a portion of the hole we will get back a hole that
1783	 * exists for the entire range since it hasn't been actually written
1784	 * yet.  So to take care of this case we need to look for an extent just
1785	 * before the position we want in case there is outstanding delalloc
1786	 * going on here.
1787	 */
1788	if (origin == SEEK_HOLE && start != 0) {
1789		if (start <= root->sectorsize)
1790			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
1791						     root->sectorsize, 0);
1792		else
1793			em = btrfs_get_extent_fiemap(inode, NULL, 0,
1794						     start - root->sectorsize,
1795						     root->sectorsize, 0);
1796		if (IS_ERR(em)) {
1797			ret = PTR_ERR(em);
1798			goto out;
1799		}
1800		last_end = em->start + em->len;
1801		if (em->block_start == EXTENT_MAP_DELALLOC)
1802			last_end = min_t(u64, last_end, inode->i_size);
1803		free_extent_map(em);
1804	}
1805
1806	while (1) {
1807		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
1808		if (IS_ERR(em)) {
1809			ret = PTR_ERR(em);
 
1810			break;
1811		}
1812
1813		if (em->block_start == EXTENT_MAP_HOLE) {
1814			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1815				if (last_end <= orig_start) {
1816					free_extent_map(em);
1817					ret = -ENXIO;
1818					break;
1819				}
1820			}
1821
1822			if (origin == SEEK_HOLE) {
1823				*offset = start;
1824				free_extent_map(em);
1825				break;
1826			}
1827		} else {
1828			if (origin == SEEK_DATA) {
1829				if (em->block_start == EXTENT_MAP_DELALLOC) {
1830					if (start >= inode->i_size) {
1831						free_extent_map(em);
1832						ret = -ENXIO;
1833						break;
1834					}
1835				}
1836
1837				*offset = start;
1838				free_extent_map(em);
1839				break;
1840			}
1841		}
1842
1843		start = em->start + em->len;
1844		last_end = em->start + em->len;
1845
1846		if (em->block_start == EXTENT_MAP_DELALLOC)
1847			last_end = min_t(u64, last_end, inode->i_size);
1848
1849		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1850			free_extent_map(em);
1851			ret = -ENXIO;
1852			break;
1853		}
1854		free_extent_map(em);
 
1855		cond_resched();
1856	}
1857	if (!ret)
1858		*offset = min(*offset, inode->i_size);
1859out:
 
 
 
 
1860	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1861			     &cached_state, GFP_NOFS);
1862	return ret;
1863}
1864
1865static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
1866{
1867	struct inode *inode = file->f_mapping->host;
1868	int ret;
1869
1870	mutex_lock(&inode->i_mutex);
1871	switch (origin) {
1872	case SEEK_END:
1873	case SEEK_CUR:
1874		offset = generic_file_llseek(file, offset, origin);
1875		goto out;
1876	case SEEK_DATA:
1877	case SEEK_HOLE:
1878		if (offset >= i_size_read(inode)) {
1879			mutex_unlock(&inode->i_mutex);
1880			return -ENXIO;
1881		}
1882
1883		ret = find_desired_extent(inode, &offset, origin);
1884		if (ret) {
1885			mutex_unlock(&inode->i_mutex);
1886			return ret;
1887		}
1888	}
1889
1890	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
1891		offset = -EINVAL;
1892		goto out;
1893	}
1894	if (offset > inode->i_sb->s_maxbytes) {
1895		offset = -EINVAL;
1896		goto out;
1897	}
1898
1899	/* Special lock needed here? */
1900	if (offset != file->f_pos) {
1901		file->f_pos = offset;
1902		file->f_version = 0;
1903	}
1904out:
1905	mutex_unlock(&inode->i_mutex);
1906	return offset;
1907}
1908
1909const struct file_operations btrfs_file_operations = {
1910	.llseek		= btrfs_file_llseek,
1911	.read		= do_sync_read,
1912	.write		= do_sync_write,
1913	.aio_read       = generic_file_aio_read,
1914	.splice_read	= generic_file_splice_read,
1915	.aio_write	= btrfs_file_aio_write,
1916	.mmap		= btrfs_file_mmap,
1917	.open		= generic_file_open,
1918	.release	= btrfs_release_file,
1919	.fsync		= btrfs_sync_file,
1920	.fallocate	= btrfs_fallocate,
1921	.unlocked_ioctl	= btrfs_ioctl,
1922#ifdef CONFIG_COMPAT
1923	.compat_ioctl	= btrfs_ioctl,
1924#endif
1925};