Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/blkdev.h>
22#include <linux/sort.h>
23#include <linux/rcupdate.h>
24#include <linux/kthread.h>
25#include <linux/slab.h>
26#include <linux/ratelimit.h>
27#include <linux/percpu_counter.h>
28#include "hash.h"
29#include "ctree.h"
30#include "disk-io.h"
31#include "print-tree.h"
32#include "transaction.h"
33#include "volumes.h"
34#include "raid56.h"
35#include "locking.h"
36#include "free-space-cache.h"
37#include "math.h"
38#include "sysfs.h"
39
40#undef SCRAMBLE_DELAYED_REFS
41
42/*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60};
61
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
77static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
111
112static noinline int
113block_group_cache_done(struct btrfs_block_group_cache *cache)
114{
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118}
119
120static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121{
122 return (cache->flags & bits) == bits;
123}
124
125static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126{
127 atomic_inc(&cache->count);
128}
129
130void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131{
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138}
139
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
226static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228{
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
235}
236
237static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249}
250
251static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253{
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
275
276 while (nr--) {
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
302 }
303
304 kfree(logical);
305 }
306 return 0;
307}
308
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
318 }
319
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
324 }
325
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
330}
331
332static void put_caching_control(struct btrfs_caching_control *ctl)
333{
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
336}
337
338/*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
343static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
345{
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
348
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
356
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
368 }
369 }
370
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
376 }
377
378 return total_added;
379}
380
381static noinline void caching_thread(struct btrfs_work *work)
382{
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
394
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
399
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
403
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406 /*
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
411 */
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
415
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->commit_root_sem);
423
424next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
428
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
431
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
436 }
437
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
444
445 if (need_resched() ||
446 rwsem_is_contended(&fs_info->commit_root_sem)) {
447 caching_ctl->progress = last;
448 btrfs_release_path(path);
449 up_read(&fs_info->commit_root_sem);
450 mutex_unlock(&caching_ctl->mutex);
451 cond_resched();
452 goto again;
453 }
454
455 ret = btrfs_next_leaf(extent_root, path);
456 if (ret < 0)
457 goto err;
458 if (ret)
459 break;
460 leaf = path->nodes[0];
461 nritems = btrfs_header_nritems(leaf);
462 continue;
463 }
464
465 if (key.objectid < last) {
466 key.objectid = last;
467 key.offset = 0;
468 key.type = BTRFS_EXTENT_ITEM_KEY;
469
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 goto next;
473 }
474
475 if (key.objectid < block_group->key.objectid) {
476 path->slots[0]++;
477 continue;
478 }
479
480 if (key.objectid >= block_group->key.objectid +
481 block_group->key.offset)
482 break;
483
484 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 key.type == BTRFS_METADATA_ITEM_KEY) {
486 total_found += add_new_free_space(block_group,
487 fs_info, last,
488 key.objectid);
489 if (key.type == BTRFS_METADATA_ITEM_KEY)
490 last = key.objectid +
491 fs_info->tree_root->leafsize;
492 else
493 last = key.objectid + key.offset;
494
495 if (total_found > (1024 * 1024 * 2)) {
496 total_found = 0;
497 wake_up(&caching_ctl->wait);
498 }
499 }
500 path->slots[0]++;
501 }
502 ret = 0;
503
504 total_found += add_new_free_space(block_group, fs_info, last,
505 block_group->key.objectid +
506 block_group->key.offset);
507 caching_ctl->progress = (u64)-1;
508
509 spin_lock(&block_group->lock);
510 block_group->caching_ctl = NULL;
511 block_group->cached = BTRFS_CACHE_FINISHED;
512 spin_unlock(&block_group->lock);
513
514err:
515 btrfs_free_path(path);
516 up_read(&fs_info->commit_root_sem);
517
518 free_excluded_extents(extent_root, block_group);
519
520 mutex_unlock(&caching_ctl->mutex);
521out:
522 if (ret) {
523 spin_lock(&block_group->lock);
524 block_group->caching_ctl = NULL;
525 block_group->cached = BTRFS_CACHE_ERROR;
526 spin_unlock(&block_group->lock);
527 }
528 wake_up(&caching_ctl->wait);
529
530 put_caching_control(caching_ctl);
531 btrfs_put_block_group(block_group);
532}
533
534static int cache_block_group(struct btrfs_block_group_cache *cache,
535 int load_cache_only)
536{
537 DEFINE_WAIT(wait);
538 struct btrfs_fs_info *fs_info = cache->fs_info;
539 struct btrfs_caching_control *caching_ctl;
540 int ret = 0;
541
542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 if (!caching_ctl)
544 return -ENOMEM;
545
546 INIT_LIST_HEAD(&caching_ctl->list);
547 mutex_init(&caching_ctl->mutex);
548 init_waitqueue_head(&caching_ctl->wait);
549 caching_ctl->block_group = cache;
550 caching_ctl->progress = cache->key.objectid;
551 atomic_set(&caching_ctl->count, 1);
552 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
553
554 spin_lock(&cache->lock);
555 /*
556 * This should be a rare occasion, but this could happen I think in the
557 * case where one thread starts to load the space cache info, and then
558 * some other thread starts a transaction commit which tries to do an
559 * allocation while the other thread is still loading the space cache
560 * info. The previous loop should have kept us from choosing this block
561 * group, but if we've moved to the state where we will wait on caching
562 * block groups we need to first check if we're doing a fast load here,
563 * so we can wait for it to finish, otherwise we could end up allocating
564 * from a block group who's cache gets evicted for one reason or
565 * another.
566 */
567 while (cache->cached == BTRFS_CACHE_FAST) {
568 struct btrfs_caching_control *ctl;
569
570 ctl = cache->caching_ctl;
571 atomic_inc(&ctl->count);
572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 spin_unlock(&cache->lock);
574
575 schedule();
576
577 finish_wait(&ctl->wait, &wait);
578 put_caching_control(ctl);
579 spin_lock(&cache->lock);
580 }
581
582 if (cache->cached != BTRFS_CACHE_NO) {
583 spin_unlock(&cache->lock);
584 kfree(caching_ctl);
585 return 0;
586 }
587 WARN_ON(cache->caching_ctl);
588 cache->caching_ctl = caching_ctl;
589 cache->cached = BTRFS_CACHE_FAST;
590 spin_unlock(&cache->lock);
591
592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 }
607 }
608 spin_unlock(&cache->lock);
609 wake_up(&caching_ctl->wait);
610 if (ret == 1) {
611 put_caching_control(caching_ctl);
612 free_excluded_extents(fs_info->extent_root, cache);
613 return 0;
614 }
615 } else {
616 /*
617 * We are not going to do the fast caching, set cached to the
618 * appropriate value and wakeup any waiters.
619 */
620 spin_lock(&cache->lock);
621 if (load_cache_only) {
622 cache->caching_ctl = NULL;
623 cache->cached = BTRFS_CACHE_NO;
624 } else {
625 cache->cached = BTRFS_CACHE_STARTED;
626 }
627 spin_unlock(&cache->lock);
628 wake_up(&caching_ctl->wait);
629 }
630
631 if (load_cache_only) {
632 put_caching_control(caching_ctl);
633 return 0;
634 }
635
636 down_write(&fs_info->commit_root_sem);
637 atomic_inc(&caching_ctl->count);
638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 up_write(&fs_info->commit_root_sem);
640
641 btrfs_get_block_group(cache);
642
643 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
644
645 return ret;
646}
647
648/*
649 * return the block group that starts at or after bytenr
650 */
651static struct btrfs_block_group_cache *
652btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
653{
654 struct btrfs_block_group_cache *cache;
655
656 cache = block_group_cache_tree_search(info, bytenr, 0);
657
658 return cache;
659}
660
661/*
662 * return the block group that contains the given bytenr
663 */
664struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 struct btrfs_fs_info *info,
666 u64 bytenr)
667{
668 struct btrfs_block_group_cache *cache;
669
670 cache = block_group_cache_tree_search(info, bytenr, 1);
671
672 return cache;
673}
674
675static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 u64 flags)
677{
678 struct list_head *head = &info->space_info;
679 struct btrfs_space_info *found;
680
681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
682
683 rcu_read_lock();
684 list_for_each_entry_rcu(found, head, list) {
685 if (found->flags & flags) {
686 rcu_read_unlock();
687 return found;
688 }
689 }
690 rcu_read_unlock();
691 return NULL;
692}
693
694/*
695 * after adding space to the filesystem, we need to clear the full flags
696 * on all the space infos.
697 */
698void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
699{
700 struct list_head *head = &info->space_info;
701 struct btrfs_space_info *found;
702
703 rcu_read_lock();
704 list_for_each_entry_rcu(found, head, list)
705 found->full = 0;
706 rcu_read_unlock();
707}
708
709/* simple helper to search for an existing extent at a given offset */
710int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
711{
712 int ret;
713 struct btrfs_key key;
714 struct btrfs_path *path;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
720 key.objectid = start;
721 key.offset = len;
722 key.type = BTRFS_EXTENT_ITEM_KEY;
723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 0, 0);
725 if (ret > 0) {
726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 if (key.objectid == start &&
728 key.type == BTRFS_METADATA_ITEM_KEY)
729 ret = 0;
730 }
731 btrfs_free_path(path);
732 return ret;
733}
734
735/*
736 * helper function to lookup reference count and flags of a tree block.
737 *
738 * the head node for delayed ref is used to store the sum of all the
739 * reference count modifications queued up in the rbtree. the head
740 * node may also store the extent flags to set. This way you can check
741 * to see what the reference count and extent flags would be if all of
742 * the delayed refs are not processed.
743 */
744int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 struct btrfs_root *root, u64 bytenr,
746 u64 offset, int metadata, u64 *refs, u64 *flags)
747{
748 struct btrfs_delayed_ref_head *head;
749 struct btrfs_delayed_ref_root *delayed_refs;
750 struct btrfs_path *path;
751 struct btrfs_extent_item *ei;
752 struct extent_buffer *leaf;
753 struct btrfs_key key;
754 u32 item_size;
755 u64 num_refs;
756 u64 extent_flags;
757 int ret;
758
759 /*
760 * If we don't have skinny metadata, don't bother doing anything
761 * different
762 */
763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 offset = root->leafsize;
765 metadata = 0;
766 }
767
768 path = btrfs_alloc_path();
769 if (!path)
770 return -ENOMEM;
771
772 if (!trans) {
773 path->skip_locking = 1;
774 path->search_commit_root = 1;
775 }
776
777search_again:
778 key.objectid = bytenr;
779 key.offset = offset;
780 if (metadata)
781 key.type = BTRFS_METADATA_ITEM_KEY;
782 else
783 key.type = BTRFS_EXTENT_ITEM_KEY;
784
785again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
790
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 if (path->slots[0]) {
793 path->slots[0]--;
794 btrfs_item_key_to_cpu(path->nodes[0], &key,
795 path->slots[0]);
796 if (key.objectid == bytenr &&
797 key.type == BTRFS_EXTENT_ITEM_KEY &&
798 key.offset == root->leafsize)
799 ret = 0;
800 }
801 if (ret) {
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = root->leafsize;
805 btrfs_release_path(path);
806 goto again;
807 }
808 }
809
810 if (ret == 0) {
811 leaf = path->nodes[0];
812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 if (item_size >= sizeof(*ei)) {
814 ei = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_extent_item);
816 num_refs = btrfs_extent_refs(leaf, ei);
817 extent_flags = btrfs_extent_flags(leaf, ei);
818 } else {
819#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 struct btrfs_extent_item_v0 *ei0;
821 BUG_ON(item_size != sizeof(*ei0));
822 ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 struct btrfs_extent_item_v0);
824 num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 /* FIXME: this isn't correct for data */
826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827#else
828 BUG();
829#endif
830 }
831 BUG_ON(num_refs == 0);
832 } else {
833 num_refs = 0;
834 extent_flags = 0;
835 ret = 0;
836 }
837
838 if (!trans)
839 goto out;
840
841 delayed_refs = &trans->transaction->delayed_refs;
842 spin_lock(&delayed_refs->lock);
843 head = btrfs_find_delayed_ref_head(trans, bytenr);
844 if (head) {
845 if (!mutex_trylock(&head->mutex)) {
846 atomic_inc(&head->node.refs);
847 spin_unlock(&delayed_refs->lock);
848
849 btrfs_release_path(path);
850
851 /*
852 * Mutex was contended, block until it's released and try
853 * again
854 */
855 mutex_lock(&head->mutex);
856 mutex_unlock(&head->mutex);
857 btrfs_put_delayed_ref(&head->node);
858 goto search_again;
859 }
860 spin_lock(&head->lock);
861 if (head->extent_op && head->extent_op->update_flags)
862 extent_flags |= head->extent_op->flags_to_set;
863 else
864 BUG_ON(num_refs == 0);
865
866 num_refs += head->node.ref_mod;
867 spin_unlock(&head->lock);
868 mutex_unlock(&head->mutex);
869 }
870 spin_unlock(&delayed_refs->lock);
871out:
872 WARN_ON(num_refs == 0);
873 if (refs)
874 *refs = num_refs;
875 if (flags)
876 *flags = extent_flags;
877out_free:
878 btrfs_free_path(path);
879 return ret;
880}
881
882/*
883 * Back reference rules. Back refs have three main goals:
884 *
885 * 1) differentiate between all holders of references to an extent so that
886 * when a reference is dropped we can make sure it was a valid reference
887 * before freeing the extent.
888 *
889 * 2) Provide enough information to quickly find the holders of an extent
890 * if we notice a given block is corrupted or bad.
891 *
892 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
893 * maintenance. This is actually the same as #2, but with a slightly
894 * different use case.
895 *
896 * There are two kinds of back refs. The implicit back refs is optimized
897 * for pointers in non-shared tree blocks. For a given pointer in a block,
898 * back refs of this kind provide information about the block's owner tree
899 * and the pointer's key. These information allow us to find the block by
900 * b-tree searching. The full back refs is for pointers in tree blocks not
901 * referenced by their owner trees. The location of tree block is recorded
902 * in the back refs. Actually the full back refs is generic, and can be
903 * used in all cases the implicit back refs is used. The major shortcoming
904 * of the full back refs is its overhead. Every time a tree block gets
905 * COWed, we have to update back refs entry for all pointers in it.
906 *
907 * For a newly allocated tree block, we use implicit back refs for
908 * pointers in it. This means most tree related operations only involve
909 * implicit back refs. For a tree block created in old transaction, the
910 * only way to drop a reference to it is COW it. So we can detect the
911 * event that tree block loses its owner tree's reference and do the
912 * back refs conversion.
913 *
914 * When a tree block is COW'd through a tree, there are four cases:
915 *
916 * The reference count of the block is one and the tree is the block's
917 * owner tree. Nothing to do in this case.
918 *
919 * The reference count of the block is one and the tree is not the
920 * block's owner tree. In this case, full back refs is used for pointers
921 * in the block. Remove these full back refs, add implicit back refs for
922 * every pointers in the new block.
923 *
924 * The reference count of the block is greater than one and the tree is
925 * the block's owner tree. In this case, implicit back refs is used for
926 * pointers in the block. Add full back refs for every pointers in the
927 * block, increase lower level extents' reference counts. The original
928 * implicit back refs are entailed to the new block.
929 *
930 * The reference count of the block is greater than one and the tree is
931 * not the block's owner tree. Add implicit back refs for every pointer in
932 * the new block, increase lower level extents' reference count.
933 *
934 * Back Reference Key composing:
935 *
936 * The key objectid corresponds to the first byte in the extent,
937 * The key type is used to differentiate between types of back refs.
938 * There are different meanings of the key offset for different types
939 * of back refs.
940 *
941 * File extents can be referenced by:
942 *
943 * - multiple snapshots, subvolumes, or different generations in one subvol
944 * - different files inside a single subvolume
945 * - different offsets inside a file (bookend extents in file.c)
946 *
947 * The extent ref structure for the implicit back refs has fields for:
948 *
949 * - Objectid of the subvolume root
950 * - objectid of the file holding the reference
951 * - original offset in the file
952 * - how many bookend extents
953 *
954 * The key offset for the implicit back refs is hash of the first
955 * three fields.
956 *
957 * The extent ref structure for the full back refs has field for:
958 *
959 * - number of pointers in the tree leaf
960 *
961 * The key offset for the implicit back refs is the first byte of
962 * the tree leaf
963 *
964 * When a file extent is allocated, The implicit back refs is used.
965 * the fields are filled in:
966 *
967 * (root_key.objectid, inode objectid, offset in file, 1)
968 *
969 * When a file extent is removed file truncation, we find the
970 * corresponding implicit back refs and check the following fields:
971 *
972 * (btrfs_header_owner(leaf), inode objectid, offset in file)
973 *
974 * Btree extents can be referenced by:
975 *
976 * - Different subvolumes
977 *
978 * Both the implicit back refs and the full back refs for tree blocks
979 * only consist of key. The key offset for the implicit back refs is
980 * objectid of block's owner tree. The key offset for the full back refs
981 * is the first byte of parent block.
982 *
983 * When implicit back refs is used, information about the lowest key and
984 * level of the tree block are required. These information are stored in
985 * tree block info structure.
986 */
987
988#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
989static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root,
991 struct btrfs_path *path,
992 u64 owner, u32 extra_size)
993{
994 struct btrfs_extent_item *item;
995 struct btrfs_extent_item_v0 *ei0;
996 struct btrfs_extent_ref_v0 *ref0;
997 struct btrfs_tree_block_info *bi;
998 struct extent_buffer *leaf;
999 struct btrfs_key key;
1000 struct btrfs_key found_key;
1001 u32 new_size = sizeof(*item);
1002 u64 refs;
1003 int ret;
1004
1005 leaf = path->nodes[0];
1006 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1007
1008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1009 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1010 struct btrfs_extent_item_v0);
1011 refs = btrfs_extent_refs_v0(leaf, ei0);
1012
1013 if (owner == (u64)-1) {
1014 while (1) {
1015 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1016 ret = btrfs_next_leaf(root, path);
1017 if (ret < 0)
1018 return ret;
1019 BUG_ON(ret > 0); /* Corruption */
1020 leaf = path->nodes[0];
1021 }
1022 btrfs_item_key_to_cpu(leaf, &found_key,
1023 path->slots[0]);
1024 BUG_ON(key.objectid != found_key.objectid);
1025 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1026 path->slots[0]++;
1027 continue;
1028 }
1029 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_extent_ref_v0);
1031 owner = btrfs_ref_objectid_v0(leaf, ref0);
1032 break;
1033 }
1034 }
1035 btrfs_release_path(path);
1036
1037 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1038 new_size += sizeof(*bi);
1039
1040 new_size -= sizeof(*ei0);
1041 ret = btrfs_search_slot(trans, root, &key, path,
1042 new_size + extra_size, 1);
1043 if (ret < 0)
1044 return ret;
1045 BUG_ON(ret); /* Corruption */
1046
1047 btrfs_extend_item(root, path, new_size);
1048
1049 leaf = path->nodes[0];
1050 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1051 btrfs_set_extent_refs(leaf, item, refs);
1052 /* FIXME: get real generation */
1053 btrfs_set_extent_generation(leaf, item, 0);
1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 btrfs_set_extent_flags(leaf, item,
1056 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1057 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1058 bi = (struct btrfs_tree_block_info *)(item + 1);
1059 /* FIXME: get first key of the block */
1060 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1061 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1062 } else {
1063 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1064 }
1065 btrfs_mark_buffer_dirty(leaf);
1066 return 0;
1067}
1068#endif
1069
1070static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1071{
1072 u32 high_crc = ~(u32)0;
1073 u32 low_crc = ~(u32)0;
1074 __le64 lenum;
1075
1076 lenum = cpu_to_le64(root_objectid);
1077 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1078 lenum = cpu_to_le64(owner);
1079 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1080 lenum = cpu_to_le64(offset);
1081 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1082
1083 return ((u64)high_crc << 31) ^ (u64)low_crc;
1084}
1085
1086static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1087 struct btrfs_extent_data_ref *ref)
1088{
1089 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1090 btrfs_extent_data_ref_objectid(leaf, ref),
1091 btrfs_extent_data_ref_offset(leaf, ref));
1092}
1093
1094static int match_extent_data_ref(struct extent_buffer *leaf,
1095 struct btrfs_extent_data_ref *ref,
1096 u64 root_objectid, u64 owner, u64 offset)
1097{
1098 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1099 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1100 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1101 return 0;
1102 return 1;
1103}
1104
1105static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 u64 bytenr, u64 parent,
1109 u64 root_objectid,
1110 u64 owner, u64 offset)
1111{
1112 struct btrfs_key key;
1113 struct btrfs_extent_data_ref *ref;
1114 struct extent_buffer *leaf;
1115 u32 nritems;
1116 int ret;
1117 int recow;
1118 int err = -ENOENT;
1119
1120 key.objectid = bytenr;
1121 if (parent) {
1122 key.type = BTRFS_SHARED_DATA_REF_KEY;
1123 key.offset = parent;
1124 } else {
1125 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1126 key.offset = hash_extent_data_ref(root_objectid,
1127 owner, offset);
1128 }
1129again:
1130 recow = 0;
1131 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1132 if (ret < 0) {
1133 err = ret;
1134 goto fail;
1135 }
1136
1137 if (parent) {
1138 if (!ret)
1139 return 0;
1140#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1141 key.type = BTRFS_EXTENT_REF_V0_KEY;
1142 btrfs_release_path(path);
1143 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1144 if (ret < 0) {
1145 err = ret;
1146 goto fail;
1147 }
1148 if (!ret)
1149 return 0;
1150#endif
1151 goto fail;
1152 }
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 while (1) {
1157 if (path->slots[0] >= nritems) {
1158 ret = btrfs_next_leaf(root, path);
1159 if (ret < 0)
1160 err = ret;
1161 if (ret)
1162 goto fail;
1163
1164 leaf = path->nodes[0];
1165 nritems = btrfs_header_nritems(leaf);
1166 recow = 1;
1167 }
1168
1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 if (key.objectid != bytenr ||
1171 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1172 goto fail;
1173
1174 ref = btrfs_item_ptr(leaf, path->slots[0],
1175 struct btrfs_extent_data_ref);
1176
1177 if (match_extent_data_ref(leaf, ref, root_objectid,
1178 owner, offset)) {
1179 if (recow) {
1180 btrfs_release_path(path);
1181 goto again;
1182 }
1183 err = 0;
1184 break;
1185 }
1186 path->slots[0]++;
1187 }
1188fail:
1189 return err;
1190}
1191
1192static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1193 struct btrfs_root *root,
1194 struct btrfs_path *path,
1195 u64 bytenr, u64 parent,
1196 u64 root_objectid, u64 owner,
1197 u64 offset, int refs_to_add)
1198{
1199 struct btrfs_key key;
1200 struct extent_buffer *leaf;
1201 u32 size;
1202 u32 num_refs;
1203 int ret;
1204
1205 key.objectid = bytenr;
1206 if (parent) {
1207 key.type = BTRFS_SHARED_DATA_REF_KEY;
1208 key.offset = parent;
1209 size = sizeof(struct btrfs_shared_data_ref);
1210 } else {
1211 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1212 key.offset = hash_extent_data_ref(root_objectid,
1213 owner, offset);
1214 size = sizeof(struct btrfs_extent_data_ref);
1215 }
1216
1217 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1218 if (ret && ret != -EEXIST)
1219 goto fail;
1220
1221 leaf = path->nodes[0];
1222 if (parent) {
1223 struct btrfs_shared_data_ref *ref;
1224 ref = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_shared_data_ref);
1226 if (ret == 0) {
1227 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1228 } else {
1229 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1230 num_refs += refs_to_add;
1231 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1232 }
1233 } else {
1234 struct btrfs_extent_data_ref *ref;
1235 while (ret == -EEXIST) {
1236 ref = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238 if (match_extent_data_ref(leaf, ref, root_objectid,
1239 owner, offset))
1240 break;
1241 btrfs_release_path(path);
1242 key.offset++;
1243 ret = btrfs_insert_empty_item(trans, root, path, &key,
1244 size);
1245 if (ret && ret != -EEXIST)
1246 goto fail;
1247
1248 leaf = path->nodes[0];
1249 }
1250 ref = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_extent_data_ref);
1252 if (ret == 0) {
1253 btrfs_set_extent_data_ref_root(leaf, ref,
1254 root_objectid);
1255 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1256 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1257 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1258 } else {
1259 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1260 num_refs += refs_to_add;
1261 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1262 }
1263 }
1264 btrfs_mark_buffer_dirty(leaf);
1265 ret = 0;
1266fail:
1267 btrfs_release_path(path);
1268 return ret;
1269}
1270
1271static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1272 struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 int refs_to_drop)
1275{
1276 struct btrfs_key key;
1277 struct btrfs_extent_data_ref *ref1 = NULL;
1278 struct btrfs_shared_data_ref *ref2 = NULL;
1279 struct extent_buffer *leaf;
1280 u32 num_refs = 0;
1281 int ret = 0;
1282
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1285
1286 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1287 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_data_ref);
1289 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1290 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1291 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1292 struct btrfs_shared_data_ref);
1293 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1294#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1296 struct btrfs_extent_ref_v0 *ref0;
1297 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1298 struct btrfs_extent_ref_v0);
1299 num_refs = btrfs_ref_count_v0(leaf, ref0);
1300#endif
1301 } else {
1302 BUG();
1303 }
1304
1305 BUG_ON(num_refs < refs_to_drop);
1306 num_refs -= refs_to_drop;
1307
1308 if (num_refs == 0) {
1309 ret = btrfs_del_item(trans, root, path);
1310 } else {
1311 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1312 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1313 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1314 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1315#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 else {
1317 struct btrfs_extent_ref_v0 *ref0;
1318 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1319 struct btrfs_extent_ref_v0);
1320 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1321 }
1322#endif
1323 btrfs_mark_buffer_dirty(leaf);
1324 }
1325 return ret;
1326}
1327
1328static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1329 struct btrfs_path *path,
1330 struct btrfs_extent_inline_ref *iref)
1331{
1332 struct btrfs_key key;
1333 struct extent_buffer *leaf;
1334 struct btrfs_extent_data_ref *ref1;
1335 struct btrfs_shared_data_ref *ref2;
1336 u32 num_refs = 0;
1337
1338 leaf = path->nodes[0];
1339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 if (iref) {
1341 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1342 BTRFS_EXTENT_DATA_REF_KEY) {
1343 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else {
1346 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 }
1349 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_data_ref);
1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_shared_data_ref);
1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 struct btrfs_extent_ref_v0 *ref0;
1360 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_ref_v0);
1362 num_refs = btrfs_ref_count_v0(leaf, ref0);
1363#endif
1364 } else {
1365 WARN_ON(1);
1366 }
1367 return num_refs;
1368}
1369
1370static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375{
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 if (ret > 0)
1390 ret = -ENOENT;
1391#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1392 if (ret == -ENOENT && parent) {
1393 btrfs_release_path(path);
1394 key.type = BTRFS_EXTENT_REF_V0_KEY;
1395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1396 if (ret > 0)
1397 ret = -ENOENT;
1398 }
1399#endif
1400 return ret;
1401}
1402
1403static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root,
1405 struct btrfs_path *path,
1406 u64 bytenr, u64 parent,
1407 u64 root_objectid)
1408{
1409 struct btrfs_key key;
1410 int ret;
1411
1412 key.objectid = bytenr;
1413 if (parent) {
1414 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1415 key.offset = parent;
1416 } else {
1417 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1418 key.offset = root_objectid;
1419 }
1420
1421 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1422 btrfs_release_path(path);
1423 return ret;
1424}
1425
1426static inline int extent_ref_type(u64 parent, u64 owner)
1427{
1428 int type;
1429 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_BLOCK_REF_KEY;
1432 else
1433 type = BTRFS_TREE_BLOCK_REF_KEY;
1434 } else {
1435 if (parent > 0)
1436 type = BTRFS_SHARED_DATA_REF_KEY;
1437 else
1438 type = BTRFS_EXTENT_DATA_REF_KEY;
1439 }
1440 return type;
1441}
1442
1443static int find_next_key(struct btrfs_path *path, int level,
1444 struct btrfs_key *key)
1445
1446{
1447 for (; level < BTRFS_MAX_LEVEL; level++) {
1448 if (!path->nodes[level])
1449 break;
1450 if (path->slots[level] + 1 >=
1451 btrfs_header_nritems(path->nodes[level]))
1452 continue;
1453 if (level == 0)
1454 btrfs_item_key_to_cpu(path->nodes[level], key,
1455 path->slots[level] + 1);
1456 else
1457 btrfs_node_key_to_cpu(path->nodes[level], key,
1458 path->slots[level] + 1);
1459 return 0;
1460 }
1461 return 1;
1462}
1463
1464/*
1465 * look for inline back ref. if back ref is found, *ref_ret is set
1466 * to the address of inline back ref, and 0 is returned.
1467 *
1468 * if back ref isn't found, *ref_ret is set to the address where it
1469 * should be inserted, and -ENOENT is returned.
1470 *
1471 * if insert is true and there are too many inline back refs, the path
1472 * points to the extent item, and -EAGAIN is returned.
1473 *
1474 * NOTE: inline back refs are ordered in the same way that back ref
1475 * items in the tree are ordered.
1476 */
1477static noinline_for_stack
1478int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root,
1480 struct btrfs_path *path,
1481 struct btrfs_extent_inline_ref **ref_ret,
1482 u64 bytenr, u64 num_bytes,
1483 u64 parent, u64 root_objectid,
1484 u64 owner, u64 offset, int insert)
1485{
1486 struct btrfs_key key;
1487 struct extent_buffer *leaf;
1488 struct btrfs_extent_item *ei;
1489 struct btrfs_extent_inline_ref *iref;
1490 u64 flags;
1491 u64 item_size;
1492 unsigned long ptr;
1493 unsigned long end;
1494 int extra_size;
1495 int type;
1496 int want;
1497 int ret;
1498 int err = 0;
1499 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1500 SKINNY_METADATA);
1501
1502 key.objectid = bytenr;
1503 key.type = BTRFS_EXTENT_ITEM_KEY;
1504 key.offset = num_bytes;
1505
1506 want = extent_ref_type(parent, owner);
1507 if (insert) {
1508 extra_size = btrfs_extent_inline_ref_size(want);
1509 path->keep_locks = 1;
1510 } else
1511 extra_size = -1;
1512
1513 /*
1514 * Owner is our parent level, so we can just add one to get the level
1515 * for the block we are interested in.
1516 */
1517 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 key.type = BTRFS_METADATA_ITEM_KEY;
1519 key.offset = owner;
1520 }
1521
1522again:
1523 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1524 if (ret < 0) {
1525 err = ret;
1526 goto out;
1527 }
1528
1529 /*
1530 * We may be a newly converted file system which still has the old fat
1531 * extent entries for metadata, so try and see if we have one of those.
1532 */
1533 if (ret > 0 && skinny_metadata) {
1534 skinny_metadata = false;
1535 if (path->slots[0]) {
1536 path->slots[0]--;
1537 btrfs_item_key_to_cpu(path->nodes[0], &key,
1538 path->slots[0]);
1539 if (key.objectid == bytenr &&
1540 key.type == BTRFS_EXTENT_ITEM_KEY &&
1541 key.offset == num_bytes)
1542 ret = 0;
1543 }
1544 if (ret) {
1545 key.objectid = bytenr;
1546 key.type = BTRFS_EXTENT_ITEM_KEY;
1547 key.offset = num_bytes;
1548 btrfs_release_path(path);
1549 goto again;
1550 }
1551 }
1552
1553 if (ret && !insert) {
1554 err = -ENOENT;
1555 goto out;
1556 } else if (WARN_ON(ret)) {
1557 err = -EIO;
1558 goto out;
1559 }
1560
1561 leaf = path->nodes[0];
1562 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1563#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1564 if (item_size < sizeof(*ei)) {
1565 if (!insert) {
1566 err = -ENOENT;
1567 goto out;
1568 }
1569 ret = convert_extent_item_v0(trans, root, path, owner,
1570 extra_size);
1571 if (ret < 0) {
1572 err = ret;
1573 goto out;
1574 }
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1577 }
1578#endif
1579 BUG_ON(item_size < sizeof(*ei));
1580
1581 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1582 flags = btrfs_extent_flags(leaf, ei);
1583
1584 ptr = (unsigned long)(ei + 1);
1585 end = (unsigned long)ei + item_size;
1586
1587 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1588 ptr += sizeof(struct btrfs_tree_block_info);
1589 BUG_ON(ptr > end);
1590 }
1591
1592 err = -ENOENT;
1593 while (1) {
1594 if (ptr >= end) {
1595 WARN_ON(ptr > end);
1596 break;
1597 }
1598 iref = (struct btrfs_extent_inline_ref *)ptr;
1599 type = btrfs_extent_inline_ref_type(leaf, iref);
1600 if (want < type)
1601 break;
1602 if (want > type) {
1603 ptr += btrfs_extent_inline_ref_size(type);
1604 continue;
1605 }
1606
1607 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1608 struct btrfs_extent_data_ref *dref;
1609 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1610 if (match_extent_data_ref(leaf, dref, root_objectid,
1611 owner, offset)) {
1612 err = 0;
1613 break;
1614 }
1615 if (hash_extent_data_ref_item(leaf, dref) <
1616 hash_extent_data_ref(root_objectid, owner, offset))
1617 break;
1618 } else {
1619 u64 ref_offset;
1620 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1621 if (parent > 0) {
1622 if (parent == ref_offset) {
1623 err = 0;
1624 break;
1625 }
1626 if (ref_offset < parent)
1627 break;
1628 } else {
1629 if (root_objectid == ref_offset) {
1630 err = 0;
1631 break;
1632 }
1633 if (ref_offset < root_objectid)
1634 break;
1635 }
1636 }
1637 ptr += btrfs_extent_inline_ref_size(type);
1638 }
1639 if (err == -ENOENT && insert) {
1640 if (item_size + extra_size >=
1641 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1642 err = -EAGAIN;
1643 goto out;
1644 }
1645 /*
1646 * To add new inline back ref, we have to make sure
1647 * there is no corresponding back ref item.
1648 * For simplicity, we just do not add new inline back
1649 * ref if there is any kind of item for this block
1650 */
1651 if (find_next_key(path, 0, &key) == 0 &&
1652 key.objectid == bytenr &&
1653 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1654 err = -EAGAIN;
1655 goto out;
1656 }
1657 }
1658 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1659out:
1660 if (insert) {
1661 path->keep_locks = 0;
1662 btrfs_unlock_up_safe(path, 1);
1663 }
1664 return err;
1665}
1666
1667/*
1668 * helper to add new inline back ref
1669 */
1670static noinline_for_stack
1671void setup_inline_extent_backref(struct btrfs_root *root,
1672 struct btrfs_path *path,
1673 struct btrfs_extent_inline_ref *iref,
1674 u64 parent, u64 root_objectid,
1675 u64 owner, u64 offset, int refs_to_add,
1676 struct btrfs_delayed_extent_op *extent_op)
1677{
1678 struct extent_buffer *leaf;
1679 struct btrfs_extent_item *ei;
1680 unsigned long ptr;
1681 unsigned long end;
1682 unsigned long item_offset;
1683 u64 refs;
1684 int size;
1685 int type;
1686
1687 leaf = path->nodes[0];
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 item_offset = (unsigned long)iref - (unsigned long)ei;
1690
1691 type = extent_ref_type(parent, owner);
1692 size = btrfs_extent_inline_ref_size(type);
1693
1694 btrfs_extend_item(root, path, size);
1695
1696 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1697 refs = btrfs_extent_refs(leaf, ei);
1698 refs += refs_to_add;
1699 btrfs_set_extent_refs(leaf, ei, refs);
1700 if (extent_op)
1701 __run_delayed_extent_op(extent_op, leaf, ei);
1702
1703 ptr = (unsigned long)ei + item_offset;
1704 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1705 if (ptr < end - size)
1706 memmove_extent_buffer(leaf, ptr + size, ptr,
1707 end - size - ptr);
1708
1709 iref = (struct btrfs_extent_inline_ref *)ptr;
1710 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1711 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1712 struct btrfs_extent_data_ref *dref;
1713 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1714 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1715 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1716 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1717 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1718 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1719 struct btrfs_shared_data_ref *sref;
1720 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1721 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1723 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1724 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1725 } else {
1726 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1727 }
1728 btrfs_mark_buffer_dirty(leaf);
1729}
1730
1731static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1732 struct btrfs_root *root,
1733 struct btrfs_path *path,
1734 struct btrfs_extent_inline_ref **ref_ret,
1735 u64 bytenr, u64 num_bytes, u64 parent,
1736 u64 root_objectid, u64 owner, u64 offset)
1737{
1738 int ret;
1739
1740 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1741 bytenr, num_bytes, parent,
1742 root_objectid, owner, offset, 0);
1743 if (ret != -ENOENT)
1744 return ret;
1745
1746 btrfs_release_path(path);
1747 *ref_ret = NULL;
1748
1749 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1750 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1751 root_objectid);
1752 } else {
1753 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1754 root_objectid, owner, offset);
1755 }
1756 return ret;
1757}
1758
1759/*
1760 * helper to update/remove inline back ref
1761 */
1762static noinline_for_stack
1763void update_inline_extent_backref(struct btrfs_root *root,
1764 struct btrfs_path *path,
1765 struct btrfs_extent_inline_ref *iref,
1766 int refs_to_mod,
1767 struct btrfs_delayed_extent_op *extent_op)
1768{
1769 struct extent_buffer *leaf;
1770 struct btrfs_extent_item *ei;
1771 struct btrfs_extent_data_ref *dref = NULL;
1772 struct btrfs_shared_data_ref *sref = NULL;
1773 unsigned long ptr;
1774 unsigned long end;
1775 u32 item_size;
1776 int size;
1777 int type;
1778 u64 refs;
1779
1780 leaf = path->nodes[0];
1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 refs = btrfs_extent_refs(leaf, ei);
1783 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1784 refs += refs_to_mod;
1785 btrfs_set_extent_refs(leaf, ei, refs);
1786 if (extent_op)
1787 __run_delayed_extent_op(extent_op, leaf, ei);
1788
1789 type = btrfs_extent_inline_ref_type(leaf, iref);
1790
1791 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1792 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1793 refs = btrfs_extent_data_ref_count(leaf, dref);
1794 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1795 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1796 refs = btrfs_shared_data_ref_count(leaf, sref);
1797 } else {
1798 refs = 1;
1799 BUG_ON(refs_to_mod != -1);
1800 }
1801
1802 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1803 refs += refs_to_mod;
1804
1805 if (refs > 0) {
1806 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1807 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1808 else
1809 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1810 } else {
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
1819 btrfs_truncate_item(root, path, item_size, 1);
1820 }
1821 btrfs_mark_buffer_dirty(leaf);
1822}
1823
1824static noinline_for_stack
1825int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 struct btrfs_root *root,
1827 struct btrfs_path *path,
1828 u64 bytenr, u64 num_bytes, u64 parent,
1829 u64 root_objectid, u64 owner,
1830 u64 offset, int refs_to_add,
1831 struct btrfs_delayed_extent_op *extent_op)
1832{
1833 struct btrfs_extent_inline_ref *iref;
1834 int ret;
1835
1836 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1837 bytenr, num_bytes, parent,
1838 root_objectid, owner, offset, 1);
1839 if (ret == 0) {
1840 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1841 update_inline_extent_backref(root, path, iref,
1842 refs_to_add, extent_op);
1843 } else if (ret == -ENOENT) {
1844 setup_inline_extent_backref(root, path, iref, parent,
1845 root_objectid, owner, offset,
1846 refs_to_add, extent_op);
1847 ret = 0;
1848 }
1849 return ret;
1850}
1851
1852static int insert_extent_backref(struct btrfs_trans_handle *trans,
1853 struct btrfs_root *root,
1854 struct btrfs_path *path,
1855 u64 bytenr, u64 parent, u64 root_objectid,
1856 u64 owner, u64 offset, int refs_to_add)
1857{
1858 int ret;
1859 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1860 BUG_ON(refs_to_add != 1);
1861 ret = insert_tree_block_ref(trans, root, path, bytenr,
1862 parent, root_objectid);
1863 } else {
1864 ret = insert_extent_data_ref(trans, root, path, bytenr,
1865 parent, root_objectid,
1866 owner, offset, refs_to_add);
1867 }
1868 return ret;
1869}
1870
1871static int remove_extent_backref(struct btrfs_trans_handle *trans,
1872 struct btrfs_root *root,
1873 struct btrfs_path *path,
1874 struct btrfs_extent_inline_ref *iref,
1875 int refs_to_drop, int is_data)
1876{
1877 int ret = 0;
1878
1879 BUG_ON(!is_data && refs_to_drop != 1);
1880 if (iref) {
1881 update_inline_extent_backref(root, path, iref,
1882 -refs_to_drop, NULL);
1883 } else if (is_data) {
1884 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1885 } else {
1886 ret = btrfs_del_item(trans, root, path);
1887 }
1888 return ret;
1889}
1890
1891static int btrfs_issue_discard(struct block_device *bdev,
1892 u64 start, u64 len)
1893{
1894 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1895}
1896
1897static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1898 u64 num_bytes, u64 *actual_bytes)
1899{
1900 int ret;
1901 u64 discarded_bytes = 0;
1902 struct btrfs_bio *bbio = NULL;
1903
1904
1905 /* Tell the block device(s) that the sectors can be discarded */
1906 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1907 bytenr, &num_bytes, &bbio, 0);
1908 /* Error condition is -ENOMEM */
1909 if (!ret) {
1910 struct btrfs_bio_stripe *stripe = bbio->stripes;
1911 int i;
1912
1913
1914 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1915 if (!stripe->dev->can_discard)
1916 continue;
1917
1918 ret = btrfs_issue_discard(stripe->dev->bdev,
1919 stripe->physical,
1920 stripe->length);
1921 if (!ret)
1922 discarded_bytes += stripe->length;
1923 else if (ret != -EOPNOTSUPP)
1924 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1925
1926 /*
1927 * Just in case we get back EOPNOTSUPP for some reason,
1928 * just ignore the return value so we don't screw up
1929 * people calling discard_extent.
1930 */
1931 ret = 0;
1932 }
1933 kfree(bbio);
1934 }
1935
1936 if (actual_bytes)
1937 *actual_bytes = discarded_bytes;
1938
1939
1940 if (ret == -EOPNOTSUPP)
1941 ret = 0;
1942 return ret;
1943}
1944
1945/* Can return -ENOMEM */
1946int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1947 struct btrfs_root *root,
1948 u64 bytenr, u64 num_bytes, u64 parent,
1949 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1950{
1951 int ret;
1952 struct btrfs_fs_info *fs_info = root->fs_info;
1953
1954 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1955 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1956
1957 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1958 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1959 num_bytes,
1960 parent, root_objectid, (int)owner,
1961 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1962 } else {
1963 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1964 num_bytes,
1965 parent, root_objectid, owner, offset,
1966 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1967 }
1968 return ret;
1969}
1970
1971static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1972 struct btrfs_root *root,
1973 u64 bytenr, u64 num_bytes,
1974 u64 parent, u64 root_objectid,
1975 u64 owner, u64 offset, int refs_to_add,
1976 struct btrfs_delayed_extent_op *extent_op)
1977{
1978 struct btrfs_path *path;
1979 struct extent_buffer *leaf;
1980 struct btrfs_extent_item *item;
1981 u64 refs;
1982 int ret;
1983
1984 path = btrfs_alloc_path();
1985 if (!path)
1986 return -ENOMEM;
1987
1988 path->reada = 1;
1989 path->leave_spinning = 1;
1990 /* this will setup the path even if it fails to insert the back ref */
1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 path, bytenr, num_bytes, parent,
1993 root_objectid, owner, offset,
1994 refs_to_add, extent_op);
1995 if (ret != -EAGAIN)
1996 goto out;
1997
1998 leaf = path->nodes[0];
1999 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2000 refs = btrfs_extent_refs(leaf, item);
2001 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2002 if (extent_op)
2003 __run_delayed_extent_op(extent_op, leaf, item);
2004
2005 btrfs_mark_buffer_dirty(leaf);
2006 btrfs_release_path(path);
2007
2008 path->reada = 1;
2009 path->leave_spinning = 1;
2010
2011 /* now insert the actual backref */
2012 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2013 path, bytenr, parent, root_objectid,
2014 owner, offset, refs_to_add);
2015 if (ret)
2016 btrfs_abort_transaction(trans, root, ret);
2017out:
2018 btrfs_free_path(path);
2019 return ret;
2020}
2021
2022static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2023 struct btrfs_root *root,
2024 struct btrfs_delayed_ref_node *node,
2025 struct btrfs_delayed_extent_op *extent_op,
2026 int insert_reserved)
2027{
2028 int ret = 0;
2029 struct btrfs_delayed_data_ref *ref;
2030 struct btrfs_key ins;
2031 u64 parent = 0;
2032 u64 ref_root = 0;
2033 u64 flags = 0;
2034
2035 ins.objectid = node->bytenr;
2036 ins.offset = node->num_bytes;
2037 ins.type = BTRFS_EXTENT_ITEM_KEY;
2038
2039 ref = btrfs_delayed_node_to_data_ref(node);
2040 trace_run_delayed_data_ref(node, ref, node->action);
2041
2042 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2043 parent = ref->parent;
2044 else
2045 ref_root = ref->root;
2046
2047 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2048 if (extent_op)
2049 flags |= extent_op->flags_to_set;
2050 ret = alloc_reserved_file_extent(trans, root,
2051 parent, ref_root, flags,
2052 ref->objectid, ref->offset,
2053 &ins, node->ref_mod);
2054 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2055 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2056 node->num_bytes, parent,
2057 ref_root, ref->objectid,
2058 ref->offset, node->ref_mod,
2059 extent_op);
2060 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2061 ret = __btrfs_free_extent(trans, root, node->bytenr,
2062 node->num_bytes, parent,
2063 ref_root, ref->objectid,
2064 ref->offset, node->ref_mod,
2065 extent_op);
2066 } else {
2067 BUG();
2068 }
2069 return ret;
2070}
2071
2072static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2073 struct extent_buffer *leaf,
2074 struct btrfs_extent_item *ei)
2075{
2076 u64 flags = btrfs_extent_flags(leaf, ei);
2077 if (extent_op->update_flags) {
2078 flags |= extent_op->flags_to_set;
2079 btrfs_set_extent_flags(leaf, ei, flags);
2080 }
2081
2082 if (extent_op->update_key) {
2083 struct btrfs_tree_block_info *bi;
2084 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2085 bi = (struct btrfs_tree_block_info *)(ei + 1);
2086 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2087 }
2088}
2089
2090static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_delayed_ref_node *node,
2093 struct btrfs_delayed_extent_op *extent_op)
2094{
2095 struct btrfs_key key;
2096 struct btrfs_path *path;
2097 struct btrfs_extent_item *ei;
2098 struct extent_buffer *leaf;
2099 u32 item_size;
2100 int ret;
2101 int err = 0;
2102 int metadata = !extent_op->is_data;
2103
2104 if (trans->aborted)
2105 return 0;
2106
2107 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2108 metadata = 0;
2109
2110 path = btrfs_alloc_path();
2111 if (!path)
2112 return -ENOMEM;
2113
2114 key.objectid = node->bytenr;
2115
2116 if (metadata) {
2117 key.type = BTRFS_METADATA_ITEM_KEY;
2118 key.offset = extent_op->level;
2119 } else {
2120 key.type = BTRFS_EXTENT_ITEM_KEY;
2121 key.offset = node->num_bytes;
2122 }
2123
2124again:
2125 path->reada = 1;
2126 path->leave_spinning = 1;
2127 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2128 path, 0, 1);
2129 if (ret < 0) {
2130 err = ret;
2131 goto out;
2132 }
2133 if (ret > 0) {
2134 if (metadata) {
2135 if (path->slots[0] > 0) {
2136 path->slots[0]--;
2137 btrfs_item_key_to_cpu(path->nodes[0], &key,
2138 path->slots[0]);
2139 if (key.objectid == node->bytenr &&
2140 key.type == BTRFS_EXTENT_ITEM_KEY &&
2141 key.offset == node->num_bytes)
2142 ret = 0;
2143 }
2144 if (ret > 0) {
2145 btrfs_release_path(path);
2146 metadata = 0;
2147
2148 key.objectid = node->bytenr;
2149 key.offset = node->num_bytes;
2150 key.type = BTRFS_EXTENT_ITEM_KEY;
2151 goto again;
2152 }
2153 } else {
2154 err = -EIO;
2155 goto out;
2156 }
2157 }
2158
2159 leaf = path->nodes[0];
2160 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2161#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2162 if (item_size < sizeof(*ei)) {
2163 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2164 path, (u64)-1, 0);
2165 if (ret < 0) {
2166 err = ret;
2167 goto out;
2168 }
2169 leaf = path->nodes[0];
2170 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2171 }
2172#endif
2173 BUG_ON(item_size < sizeof(*ei));
2174 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2175 __run_delayed_extent_op(extent_op, leaf, ei);
2176
2177 btrfs_mark_buffer_dirty(leaf);
2178out:
2179 btrfs_free_path(path);
2180 return err;
2181}
2182
2183static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2184 struct btrfs_root *root,
2185 struct btrfs_delayed_ref_node *node,
2186 struct btrfs_delayed_extent_op *extent_op,
2187 int insert_reserved)
2188{
2189 int ret = 0;
2190 struct btrfs_delayed_tree_ref *ref;
2191 struct btrfs_key ins;
2192 u64 parent = 0;
2193 u64 ref_root = 0;
2194 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2195 SKINNY_METADATA);
2196
2197 ref = btrfs_delayed_node_to_tree_ref(node);
2198 trace_run_delayed_tree_ref(node, ref, node->action);
2199
2200 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2201 parent = ref->parent;
2202 else
2203 ref_root = ref->root;
2204
2205 ins.objectid = node->bytenr;
2206 if (skinny_metadata) {
2207 ins.offset = ref->level;
2208 ins.type = BTRFS_METADATA_ITEM_KEY;
2209 } else {
2210 ins.offset = node->num_bytes;
2211 ins.type = BTRFS_EXTENT_ITEM_KEY;
2212 }
2213
2214 BUG_ON(node->ref_mod != 1);
2215 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2216 BUG_ON(!extent_op || !extent_op->update_flags);
2217 ret = alloc_reserved_tree_block(trans, root,
2218 parent, ref_root,
2219 extent_op->flags_to_set,
2220 &extent_op->key,
2221 ref->level, &ins);
2222 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2223 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2224 node->num_bytes, parent, ref_root,
2225 ref->level, 0, 1, extent_op);
2226 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2227 ret = __btrfs_free_extent(trans, root, node->bytenr,
2228 node->num_bytes, parent, ref_root,
2229 ref->level, 0, 1, extent_op);
2230 } else {
2231 BUG();
2232 }
2233 return ret;
2234}
2235
2236/* helper function to actually process a single delayed ref entry */
2237static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2238 struct btrfs_root *root,
2239 struct btrfs_delayed_ref_node *node,
2240 struct btrfs_delayed_extent_op *extent_op,
2241 int insert_reserved)
2242{
2243 int ret = 0;
2244
2245 if (trans->aborted) {
2246 if (insert_reserved)
2247 btrfs_pin_extent(root, node->bytenr,
2248 node->num_bytes, 1);
2249 return 0;
2250 }
2251
2252 if (btrfs_delayed_ref_is_head(node)) {
2253 struct btrfs_delayed_ref_head *head;
2254 /*
2255 * we've hit the end of the chain and we were supposed
2256 * to insert this extent into the tree. But, it got
2257 * deleted before we ever needed to insert it, so all
2258 * we have to do is clean up the accounting
2259 */
2260 BUG_ON(extent_op);
2261 head = btrfs_delayed_node_to_head(node);
2262 trace_run_delayed_ref_head(node, head, node->action);
2263
2264 if (insert_reserved) {
2265 btrfs_pin_extent(root, node->bytenr,
2266 node->num_bytes, 1);
2267 if (head->is_data) {
2268 ret = btrfs_del_csums(trans, root,
2269 node->bytenr,
2270 node->num_bytes);
2271 }
2272 }
2273 return ret;
2274 }
2275
2276 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2277 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2278 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2279 insert_reserved);
2280 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2281 node->type == BTRFS_SHARED_DATA_REF_KEY)
2282 ret = run_delayed_data_ref(trans, root, node, extent_op,
2283 insert_reserved);
2284 else
2285 BUG();
2286 return ret;
2287}
2288
2289static noinline struct btrfs_delayed_ref_node *
2290select_delayed_ref(struct btrfs_delayed_ref_head *head)
2291{
2292 struct rb_node *node;
2293 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2294
2295 /*
2296 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2297 * this prevents ref count from going down to zero when
2298 * there still are pending delayed ref.
2299 */
2300 node = rb_first(&head->ref_root);
2301 while (node) {
2302 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2303 rb_node);
2304 if (ref->action == BTRFS_ADD_DELAYED_REF)
2305 return ref;
2306 else if (last == NULL)
2307 last = ref;
2308 node = rb_next(node);
2309 }
2310 return last;
2311}
2312
2313/*
2314 * Returns 0 on success or if called with an already aborted transaction.
2315 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2316 */
2317static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2318 struct btrfs_root *root,
2319 unsigned long nr)
2320{
2321 struct btrfs_delayed_ref_root *delayed_refs;
2322 struct btrfs_delayed_ref_node *ref;
2323 struct btrfs_delayed_ref_head *locked_ref = NULL;
2324 struct btrfs_delayed_extent_op *extent_op;
2325 struct btrfs_fs_info *fs_info = root->fs_info;
2326 ktime_t start = ktime_get();
2327 int ret;
2328 unsigned long count = 0;
2329 unsigned long actual_count = 0;
2330 int must_insert_reserved = 0;
2331
2332 delayed_refs = &trans->transaction->delayed_refs;
2333 while (1) {
2334 if (!locked_ref) {
2335 if (count >= nr)
2336 break;
2337
2338 spin_lock(&delayed_refs->lock);
2339 locked_ref = btrfs_select_ref_head(trans);
2340 if (!locked_ref) {
2341 spin_unlock(&delayed_refs->lock);
2342 break;
2343 }
2344
2345 /* grab the lock that says we are going to process
2346 * all the refs for this head */
2347 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2348 spin_unlock(&delayed_refs->lock);
2349 /*
2350 * we may have dropped the spin lock to get the head
2351 * mutex lock, and that might have given someone else
2352 * time to free the head. If that's true, it has been
2353 * removed from our list and we can move on.
2354 */
2355 if (ret == -EAGAIN) {
2356 locked_ref = NULL;
2357 count++;
2358 continue;
2359 }
2360 }
2361
2362 /*
2363 * We need to try and merge add/drops of the same ref since we
2364 * can run into issues with relocate dropping the implicit ref
2365 * and then it being added back again before the drop can
2366 * finish. If we merged anything we need to re-loop so we can
2367 * get a good ref.
2368 */
2369 spin_lock(&locked_ref->lock);
2370 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2371 locked_ref);
2372
2373 /*
2374 * locked_ref is the head node, so we have to go one
2375 * node back for any delayed ref updates
2376 */
2377 ref = select_delayed_ref(locked_ref);
2378
2379 if (ref && ref->seq &&
2380 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2381 spin_unlock(&locked_ref->lock);
2382 btrfs_delayed_ref_unlock(locked_ref);
2383 spin_lock(&delayed_refs->lock);
2384 locked_ref->processing = 0;
2385 delayed_refs->num_heads_ready++;
2386 spin_unlock(&delayed_refs->lock);
2387 locked_ref = NULL;
2388 cond_resched();
2389 count++;
2390 continue;
2391 }
2392
2393 /*
2394 * record the must insert reserved flag before we
2395 * drop the spin lock.
2396 */
2397 must_insert_reserved = locked_ref->must_insert_reserved;
2398 locked_ref->must_insert_reserved = 0;
2399
2400 extent_op = locked_ref->extent_op;
2401 locked_ref->extent_op = NULL;
2402
2403 if (!ref) {
2404
2405
2406 /* All delayed refs have been processed, Go ahead
2407 * and send the head node to run_one_delayed_ref,
2408 * so that any accounting fixes can happen
2409 */
2410 ref = &locked_ref->node;
2411
2412 if (extent_op && must_insert_reserved) {
2413 btrfs_free_delayed_extent_op(extent_op);
2414 extent_op = NULL;
2415 }
2416
2417 if (extent_op) {
2418 spin_unlock(&locked_ref->lock);
2419 ret = run_delayed_extent_op(trans, root,
2420 ref, extent_op);
2421 btrfs_free_delayed_extent_op(extent_op);
2422
2423 if (ret) {
2424 /*
2425 * Need to reset must_insert_reserved if
2426 * there was an error so the abort stuff
2427 * can cleanup the reserved space
2428 * properly.
2429 */
2430 if (must_insert_reserved)
2431 locked_ref->must_insert_reserved = 1;
2432 locked_ref->processing = 0;
2433 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2434 btrfs_delayed_ref_unlock(locked_ref);
2435 return ret;
2436 }
2437 continue;
2438 }
2439
2440 /*
2441 * Need to drop our head ref lock and re-aqcuire the
2442 * delayed ref lock and then re-check to make sure
2443 * nobody got added.
2444 */
2445 spin_unlock(&locked_ref->lock);
2446 spin_lock(&delayed_refs->lock);
2447 spin_lock(&locked_ref->lock);
2448 if (rb_first(&locked_ref->ref_root) ||
2449 locked_ref->extent_op) {
2450 spin_unlock(&locked_ref->lock);
2451 spin_unlock(&delayed_refs->lock);
2452 continue;
2453 }
2454 ref->in_tree = 0;
2455 delayed_refs->num_heads--;
2456 rb_erase(&locked_ref->href_node,
2457 &delayed_refs->href_root);
2458 spin_unlock(&delayed_refs->lock);
2459 } else {
2460 actual_count++;
2461 ref->in_tree = 0;
2462 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2463 }
2464 atomic_dec(&delayed_refs->num_entries);
2465
2466 if (!btrfs_delayed_ref_is_head(ref)) {
2467 /*
2468 * when we play the delayed ref, also correct the
2469 * ref_mod on head
2470 */
2471 switch (ref->action) {
2472 case BTRFS_ADD_DELAYED_REF:
2473 case BTRFS_ADD_DELAYED_EXTENT:
2474 locked_ref->node.ref_mod -= ref->ref_mod;
2475 break;
2476 case BTRFS_DROP_DELAYED_REF:
2477 locked_ref->node.ref_mod += ref->ref_mod;
2478 break;
2479 default:
2480 WARN_ON(1);
2481 }
2482 }
2483 spin_unlock(&locked_ref->lock);
2484
2485 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2486 must_insert_reserved);
2487
2488 btrfs_free_delayed_extent_op(extent_op);
2489 if (ret) {
2490 locked_ref->processing = 0;
2491 btrfs_delayed_ref_unlock(locked_ref);
2492 btrfs_put_delayed_ref(ref);
2493 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2494 return ret;
2495 }
2496
2497 /*
2498 * If this node is a head, that means all the refs in this head
2499 * have been dealt with, and we will pick the next head to deal
2500 * with, so we must unlock the head and drop it from the cluster
2501 * list before we release it.
2502 */
2503 if (btrfs_delayed_ref_is_head(ref)) {
2504 btrfs_delayed_ref_unlock(locked_ref);
2505 locked_ref = NULL;
2506 }
2507 btrfs_put_delayed_ref(ref);
2508 count++;
2509 cond_resched();
2510 }
2511
2512 /*
2513 * We don't want to include ref heads since we can have empty ref heads
2514 * and those will drastically skew our runtime down since we just do
2515 * accounting, no actual extent tree updates.
2516 */
2517 if (actual_count > 0) {
2518 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2519 u64 avg;
2520
2521 /*
2522 * We weigh the current average higher than our current runtime
2523 * to avoid large swings in the average.
2524 */
2525 spin_lock(&delayed_refs->lock);
2526 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2527 avg = div64_u64(avg, 4);
2528 fs_info->avg_delayed_ref_runtime = avg;
2529 spin_unlock(&delayed_refs->lock);
2530 }
2531 return 0;
2532}
2533
2534#ifdef SCRAMBLE_DELAYED_REFS
2535/*
2536 * Normally delayed refs get processed in ascending bytenr order. This
2537 * correlates in most cases to the order added. To expose dependencies on this
2538 * order, we start to process the tree in the middle instead of the beginning
2539 */
2540static u64 find_middle(struct rb_root *root)
2541{
2542 struct rb_node *n = root->rb_node;
2543 struct btrfs_delayed_ref_node *entry;
2544 int alt = 1;
2545 u64 middle;
2546 u64 first = 0, last = 0;
2547
2548 n = rb_first(root);
2549 if (n) {
2550 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2551 first = entry->bytenr;
2552 }
2553 n = rb_last(root);
2554 if (n) {
2555 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2556 last = entry->bytenr;
2557 }
2558 n = root->rb_node;
2559
2560 while (n) {
2561 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2562 WARN_ON(!entry->in_tree);
2563
2564 middle = entry->bytenr;
2565
2566 if (alt)
2567 n = n->rb_left;
2568 else
2569 n = n->rb_right;
2570
2571 alt = 1 - alt;
2572 }
2573 return middle;
2574}
2575#endif
2576
2577int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2578 struct btrfs_fs_info *fs_info)
2579{
2580 struct qgroup_update *qgroup_update;
2581 int ret = 0;
2582
2583 if (list_empty(&trans->qgroup_ref_list) !=
2584 !trans->delayed_ref_elem.seq) {
2585 /* list without seq or seq without list */
2586 btrfs_err(fs_info,
2587 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2588 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2589 (u32)(trans->delayed_ref_elem.seq >> 32),
2590 (u32)trans->delayed_ref_elem.seq);
2591 BUG();
2592 }
2593
2594 if (!trans->delayed_ref_elem.seq)
2595 return 0;
2596
2597 while (!list_empty(&trans->qgroup_ref_list)) {
2598 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2599 struct qgroup_update, list);
2600 list_del(&qgroup_update->list);
2601 if (!ret)
2602 ret = btrfs_qgroup_account_ref(
2603 trans, fs_info, qgroup_update->node,
2604 qgroup_update->extent_op);
2605 kfree(qgroup_update);
2606 }
2607
2608 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2609
2610 return ret;
2611}
2612
2613static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2614{
2615 u64 num_bytes;
2616
2617 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 sizeof(struct btrfs_extent_inline_ref));
2619 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2621
2622 /*
2623 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 * closer to what we're really going to want to ouse.
2625 */
2626 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2627}
2628
2629int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root)
2631{
2632 struct btrfs_block_rsv *global_rsv;
2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 u64 num_bytes;
2635 int ret = 0;
2636
2637 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 num_heads = heads_to_leaves(root, num_heads);
2639 if (num_heads > 1)
2640 num_bytes += (num_heads - 1) * root->leafsize;
2641 num_bytes <<= 1;
2642 global_rsv = &root->fs_info->global_block_rsv;
2643
2644 /*
2645 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 * wiggle room since running delayed refs can create more delayed refs.
2647 */
2648 if (global_rsv->space_info->full)
2649 num_bytes <<= 1;
2650
2651 spin_lock(&global_rsv->lock);
2652 if (global_rsv->reserved <= num_bytes)
2653 ret = 1;
2654 spin_unlock(&global_rsv->lock);
2655 return ret;
2656}
2657
2658int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root)
2660{
2661 struct btrfs_fs_info *fs_info = root->fs_info;
2662 u64 num_entries =
2663 atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 u64 avg_runtime;
2665
2666 smp_mb();
2667 avg_runtime = fs_info->avg_delayed_ref_runtime;
2668 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2669 return 1;
2670
2671 return btrfs_check_space_for_delayed_refs(trans, root);
2672}
2673
2674/*
2675 * this starts processing the delayed reference count updates and
2676 * extent insertions we have queued up so far. count can be
2677 * 0, which means to process everything in the tree at the start
2678 * of the run (but not newly added entries), or it can be some target
2679 * number you'd like to process.
2680 *
2681 * Returns 0 on success or if called with an aborted transaction
2682 * Returns <0 on error and aborts the transaction
2683 */
2684int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2685 struct btrfs_root *root, unsigned long count)
2686{
2687 struct rb_node *node;
2688 struct btrfs_delayed_ref_root *delayed_refs;
2689 struct btrfs_delayed_ref_head *head;
2690 int ret;
2691 int run_all = count == (unsigned long)-1;
2692 int run_most = 0;
2693
2694 /* We'll clean this up in btrfs_cleanup_transaction */
2695 if (trans->aborted)
2696 return 0;
2697
2698 if (root == root->fs_info->extent_root)
2699 root = root->fs_info->tree_root;
2700
2701 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2702
2703 delayed_refs = &trans->transaction->delayed_refs;
2704 if (count == 0) {
2705 count = atomic_read(&delayed_refs->num_entries) * 2;
2706 run_most = 1;
2707 }
2708
2709again:
2710#ifdef SCRAMBLE_DELAYED_REFS
2711 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2712#endif
2713 ret = __btrfs_run_delayed_refs(trans, root, count);
2714 if (ret < 0) {
2715 btrfs_abort_transaction(trans, root, ret);
2716 return ret;
2717 }
2718
2719 if (run_all) {
2720 if (!list_empty(&trans->new_bgs))
2721 btrfs_create_pending_block_groups(trans, root);
2722
2723 spin_lock(&delayed_refs->lock);
2724 node = rb_first(&delayed_refs->href_root);
2725 if (!node) {
2726 spin_unlock(&delayed_refs->lock);
2727 goto out;
2728 }
2729 count = (unsigned long)-1;
2730
2731 while (node) {
2732 head = rb_entry(node, struct btrfs_delayed_ref_head,
2733 href_node);
2734 if (btrfs_delayed_ref_is_head(&head->node)) {
2735 struct btrfs_delayed_ref_node *ref;
2736
2737 ref = &head->node;
2738 atomic_inc(&ref->refs);
2739
2740 spin_unlock(&delayed_refs->lock);
2741 /*
2742 * Mutex was contended, block until it's
2743 * released and try again
2744 */
2745 mutex_lock(&head->mutex);
2746 mutex_unlock(&head->mutex);
2747
2748 btrfs_put_delayed_ref(ref);
2749 cond_resched();
2750 goto again;
2751 } else {
2752 WARN_ON(1);
2753 }
2754 node = rb_next(node);
2755 }
2756 spin_unlock(&delayed_refs->lock);
2757 cond_resched();
2758 goto again;
2759 }
2760out:
2761 assert_qgroups_uptodate(trans);
2762 return 0;
2763}
2764
2765int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *root,
2767 u64 bytenr, u64 num_bytes, u64 flags,
2768 int level, int is_data)
2769{
2770 struct btrfs_delayed_extent_op *extent_op;
2771 int ret;
2772
2773 extent_op = btrfs_alloc_delayed_extent_op();
2774 if (!extent_op)
2775 return -ENOMEM;
2776
2777 extent_op->flags_to_set = flags;
2778 extent_op->update_flags = 1;
2779 extent_op->update_key = 0;
2780 extent_op->is_data = is_data ? 1 : 0;
2781 extent_op->level = level;
2782
2783 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2784 num_bytes, extent_op);
2785 if (ret)
2786 btrfs_free_delayed_extent_op(extent_op);
2787 return ret;
2788}
2789
2790static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2791 struct btrfs_root *root,
2792 struct btrfs_path *path,
2793 u64 objectid, u64 offset, u64 bytenr)
2794{
2795 struct btrfs_delayed_ref_head *head;
2796 struct btrfs_delayed_ref_node *ref;
2797 struct btrfs_delayed_data_ref *data_ref;
2798 struct btrfs_delayed_ref_root *delayed_refs;
2799 struct rb_node *node;
2800 int ret = 0;
2801
2802 delayed_refs = &trans->transaction->delayed_refs;
2803 spin_lock(&delayed_refs->lock);
2804 head = btrfs_find_delayed_ref_head(trans, bytenr);
2805 if (!head) {
2806 spin_unlock(&delayed_refs->lock);
2807 return 0;
2808 }
2809
2810 if (!mutex_trylock(&head->mutex)) {
2811 atomic_inc(&head->node.refs);
2812 spin_unlock(&delayed_refs->lock);
2813
2814 btrfs_release_path(path);
2815
2816 /*
2817 * Mutex was contended, block until it's released and let
2818 * caller try again
2819 */
2820 mutex_lock(&head->mutex);
2821 mutex_unlock(&head->mutex);
2822 btrfs_put_delayed_ref(&head->node);
2823 return -EAGAIN;
2824 }
2825 spin_unlock(&delayed_refs->lock);
2826
2827 spin_lock(&head->lock);
2828 node = rb_first(&head->ref_root);
2829 while (node) {
2830 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2831 node = rb_next(node);
2832
2833 /* If it's a shared ref we know a cross reference exists */
2834 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2835 ret = 1;
2836 break;
2837 }
2838
2839 data_ref = btrfs_delayed_node_to_data_ref(ref);
2840
2841 /*
2842 * If our ref doesn't match the one we're currently looking at
2843 * then we have a cross reference.
2844 */
2845 if (data_ref->root != root->root_key.objectid ||
2846 data_ref->objectid != objectid ||
2847 data_ref->offset != offset) {
2848 ret = 1;
2849 break;
2850 }
2851 }
2852 spin_unlock(&head->lock);
2853 mutex_unlock(&head->mutex);
2854 return ret;
2855}
2856
2857static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2858 struct btrfs_root *root,
2859 struct btrfs_path *path,
2860 u64 objectid, u64 offset, u64 bytenr)
2861{
2862 struct btrfs_root *extent_root = root->fs_info->extent_root;
2863 struct extent_buffer *leaf;
2864 struct btrfs_extent_data_ref *ref;
2865 struct btrfs_extent_inline_ref *iref;
2866 struct btrfs_extent_item *ei;
2867 struct btrfs_key key;
2868 u32 item_size;
2869 int ret;
2870
2871 key.objectid = bytenr;
2872 key.offset = (u64)-1;
2873 key.type = BTRFS_EXTENT_ITEM_KEY;
2874
2875 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2876 if (ret < 0)
2877 goto out;
2878 BUG_ON(ret == 0); /* Corruption */
2879
2880 ret = -ENOENT;
2881 if (path->slots[0] == 0)
2882 goto out;
2883
2884 path->slots[0]--;
2885 leaf = path->nodes[0];
2886 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2887
2888 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2889 goto out;
2890
2891 ret = 1;
2892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2893#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2894 if (item_size < sizeof(*ei)) {
2895 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2896 goto out;
2897 }
2898#endif
2899 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2900
2901 if (item_size != sizeof(*ei) +
2902 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2903 goto out;
2904
2905 if (btrfs_extent_generation(leaf, ei) <=
2906 btrfs_root_last_snapshot(&root->root_item))
2907 goto out;
2908
2909 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2910 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2911 BTRFS_EXTENT_DATA_REF_KEY)
2912 goto out;
2913
2914 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2915 if (btrfs_extent_refs(leaf, ei) !=
2916 btrfs_extent_data_ref_count(leaf, ref) ||
2917 btrfs_extent_data_ref_root(leaf, ref) !=
2918 root->root_key.objectid ||
2919 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2920 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2921 goto out;
2922
2923 ret = 0;
2924out:
2925 return ret;
2926}
2927
2928int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2929 struct btrfs_root *root,
2930 u64 objectid, u64 offset, u64 bytenr)
2931{
2932 struct btrfs_path *path;
2933 int ret;
2934 int ret2;
2935
2936 path = btrfs_alloc_path();
2937 if (!path)
2938 return -ENOENT;
2939
2940 do {
2941 ret = check_committed_ref(trans, root, path, objectid,
2942 offset, bytenr);
2943 if (ret && ret != -ENOENT)
2944 goto out;
2945
2946 ret2 = check_delayed_ref(trans, root, path, objectid,
2947 offset, bytenr);
2948 } while (ret2 == -EAGAIN);
2949
2950 if (ret2 && ret2 != -ENOENT) {
2951 ret = ret2;
2952 goto out;
2953 }
2954
2955 if (ret != -ENOENT || ret2 != -ENOENT)
2956 ret = 0;
2957out:
2958 btrfs_free_path(path);
2959 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2960 WARN_ON(ret > 0);
2961 return ret;
2962}
2963
2964static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2965 struct btrfs_root *root,
2966 struct extent_buffer *buf,
2967 int full_backref, int inc, int for_cow)
2968{
2969 u64 bytenr;
2970 u64 num_bytes;
2971 u64 parent;
2972 u64 ref_root;
2973 u32 nritems;
2974 struct btrfs_key key;
2975 struct btrfs_file_extent_item *fi;
2976 int i;
2977 int level;
2978 int ret = 0;
2979 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2980 u64, u64, u64, u64, u64, u64, int);
2981
2982 ref_root = btrfs_header_owner(buf);
2983 nritems = btrfs_header_nritems(buf);
2984 level = btrfs_header_level(buf);
2985
2986 if (!root->ref_cows && level == 0)
2987 return 0;
2988
2989 if (inc)
2990 process_func = btrfs_inc_extent_ref;
2991 else
2992 process_func = btrfs_free_extent;
2993
2994 if (full_backref)
2995 parent = buf->start;
2996 else
2997 parent = 0;
2998
2999 for (i = 0; i < nritems; i++) {
3000 if (level == 0) {
3001 btrfs_item_key_to_cpu(buf, &key, i);
3002 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3003 continue;
3004 fi = btrfs_item_ptr(buf, i,
3005 struct btrfs_file_extent_item);
3006 if (btrfs_file_extent_type(buf, fi) ==
3007 BTRFS_FILE_EXTENT_INLINE)
3008 continue;
3009 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3010 if (bytenr == 0)
3011 continue;
3012
3013 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3014 key.offset -= btrfs_file_extent_offset(buf, fi);
3015 ret = process_func(trans, root, bytenr, num_bytes,
3016 parent, ref_root, key.objectid,
3017 key.offset, for_cow);
3018 if (ret)
3019 goto fail;
3020 } else {
3021 bytenr = btrfs_node_blockptr(buf, i);
3022 num_bytes = btrfs_level_size(root, level - 1);
3023 ret = process_func(trans, root, bytenr, num_bytes,
3024 parent, ref_root, level - 1, 0,
3025 for_cow);
3026 if (ret)
3027 goto fail;
3028 }
3029 }
3030 return 0;
3031fail:
3032 return ret;
3033}
3034
3035int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3036 struct extent_buffer *buf, int full_backref, int for_cow)
3037{
3038 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3039}
3040
3041int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3042 struct extent_buffer *buf, int full_backref, int for_cow)
3043{
3044 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3045}
3046
3047static int write_one_cache_group(struct btrfs_trans_handle *trans,
3048 struct btrfs_root *root,
3049 struct btrfs_path *path,
3050 struct btrfs_block_group_cache *cache)
3051{
3052 int ret;
3053 struct btrfs_root *extent_root = root->fs_info->extent_root;
3054 unsigned long bi;
3055 struct extent_buffer *leaf;
3056
3057 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3058 if (ret < 0)
3059 goto fail;
3060 BUG_ON(ret); /* Corruption */
3061
3062 leaf = path->nodes[0];
3063 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3064 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3065 btrfs_mark_buffer_dirty(leaf);
3066 btrfs_release_path(path);
3067fail:
3068 if (ret) {
3069 btrfs_abort_transaction(trans, root, ret);
3070 return ret;
3071 }
3072 return 0;
3073
3074}
3075
3076static struct btrfs_block_group_cache *
3077next_block_group(struct btrfs_root *root,
3078 struct btrfs_block_group_cache *cache)
3079{
3080 struct rb_node *node;
3081 spin_lock(&root->fs_info->block_group_cache_lock);
3082 node = rb_next(&cache->cache_node);
3083 btrfs_put_block_group(cache);
3084 if (node) {
3085 cache = rb_entry(node, struct btrfs_block_group_cache,
3086 cache_node);
3087 btrfs_get_block_group(cache);
3088 } else
3089 cache = NULL;
3090 spin_unlock(&root->fs_info->block_group_cache_lock);
3091 return cache;
3092}
3093
3094static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3095 struct btrfs_trans_handle *trans,
3096 struct btrfs_path *path)
3097{
3098 struct btrfs_root *root = block_group->fs_info->tree_root;
3099 struct inode *inode = NULL;
3100 u64 alloc_hint = 0;
3101 int dcs = BTRFS_DC_ERROR;
3102 int num_pages = 0;
3103 int retries = 0;
3104 int ret = 0;
3105
3106 /*
3107 * If this block group is smaller than 100 megs don't bother caching the
3108 * block group.
3109 */
3110 if (block_group->key.offset < (100 * 1024 * 1024)) {
3111 spin_lock(&block_group->lock);
3112 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3113 spin_unlock(&block_group->lock);
3114 return 0;
3115 }
3116
3117again:
3118 inode = lookup_free_space_inode(root, block_group, path);
3119 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3120 ret = PTR_ERR(inode);
3121 btrfs_release_path(path);
3122 goto out;
3123 }
3124
3125 if (IS_ERR(inode)) {
3126 BUG_ON(retries);
3127 retries++;
3128
3129 if (block_group->ro)
3130 goto out_free;
3131
3132 ret = create_free_space_inode(root, trans, block_group, path);
3133 if (ret)
3134 goto out_free;
3135 goto again;
3136 }
3137
3138 /* We've already setup this transaction, go ahead and exit */
3139 if (block_group->cache_generation == trans->transid &&
3140 i_size_read(inode)) {
3141 dcs = BTRFS_DC_SETUP;
3142 goto out_put;
3143 }
3144
3145 /*
3146 * We want to set the generation to 0, that way if anything goes wrong
3147 * from here on out we know not to trust this cache when we load up next
3148 * time.
3149 */
3150 BTRFS_I(inode)->generation = 0;
3151 ret = btrfs_update_inode(trans, root, inode);
3152 WARN_ON(ret);
3153
3154 if (i_size_read(inode) > 0) {
3155 ret = btrfs_check_trunc_cache_free_space(root,
3156 &root->fs_info->global_block_rsv);
3157 if (ret)
3158 goto out_put;
3159
3160 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3161 if (ret)
3162 goto out_put;
3163 }
3164
3165 spin_lock(&block_group->lock);
3166 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3167 !btrfs_test_opt(root, SPACE_CACHE)) {
3168 /*
3169 * don't bother trying to write stuff out _if_
3170 * a) we're not cached,
3171 * b) we're with nospace_cache mount option.
3172 */
3173 dcs = BTRFS_DC_WRITTEN;
3174 spin_unlock(&block_group->lock);
3175 goto out_put;
3176 }
3177 spin_unlock(&block_group->lock);
3178
3179 /*
3180 * Try to preallocate enough space based on how big the block group is.
3181 * Keep in mind this has to include any pinned space which could end up
3182 * taking up quite a bit since it's not folded into the other space
3183 * cache.
3184 */
3185 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3186 if (!num_pages)
3187 num_pages = 1;
3188
3189 num_pages *= 16;
3190 num_pages *= PAGE_CACHE_SIZE;
3191
3192 ret = btrfs_check_data_free_space(inode, num_pages);
3193 if (ret)
3194 goto out_put;
3195
3196 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3197 num_pages, num_pages,
3198 &alloc_hint);
3199 if (!ret)
3200 dcs = BTRFS_DC_SETUP;
3201 btrfs_free_reserved_data_space(inode, num_pages);
3202
3203out_put:
3204 iput(inode);
3205out_free:
3206 btrfs_release_path(path);
3207out:
3208 spin_lock(&block_group->lock);
3209 if (!ret && dcs == BTRFS_DC_SETUP)
3210 block_group->cache_generation = trans->transid;
3211 block_group->disk_cache_state = dcs;
3212 spin_unlock(&block_group->lock);
3213
3214 return ret;
3215}
3216
3217int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root)
3219{
3220 struct btrfs_block_group_cache *cache;
3221 int err = 0;
3222 struct btrfs_path *path;
3223 u64 last = 0;
3224
3225 path = btrfs_alloc_path();
3226 if (!path)
3227 return -ENOMEM;
3228
3229again:
3230 while (1) {
3231 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3232 while (cache) {
3233 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3234 break;
3235 cache = next_block_group(root, cache);
3236 }
3237 if (!cache) {
3238 if (last == 0)
3239 break;
3240 last = 0;
3241 continue;
3242 }
3243 err = cache_save_setup(cache, trans, path);
3244 last = cache->key.objectid + cache->key.offset;
3245 btrfs_put_block_group(cache);
3246 }
3247
3248 while (1) {
3249 if (last == 0) {
3250 err = btrfs_run_delayed_refs(trans, root,
3251 (unsigned long)-1);
3252 if (err) /* File system offline */
3253 goto out;
3254 }
3255
3256 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3257 while (cache) {
3258 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3259 btrfs_put_block_group(cache);
3260 goto again;
3261 }
3262
3263 if (cache->dirty)
3264 break;
3265 cache = next_block_group(root, cache);
3266 }
3267 if (!cache) {
3268 if (last == 0)
3269 break;
3270 last = 0;
3271 continue;
3272 }
3273
3274 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3275 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3276 cache->dirty = 0;
3277 last = cache->key.objectid + cache->key.offset;
3278
3279 err = write_one_cache_group(trans, root, path, cache);
3280 btrfs_put_block_group(cache);
3281 if (err) /* File system offline */
3282 goto out;
3283 }
3284
3285 while (1) {
3286 /*
3287 * I don't think this is needed since we're just marking our
3288 * preallocated extent as written, but just in case it can't
3289 * hurt.
3290 */
3291 if (last == 0) {
3292 err = btrfs_run_delayed_refs(trans, root,
3293 (unsigned long)-1);
3294 if (err) /* File system offline */
3295 goto out;
3296 }
3297
3298 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3299 while (cache) {
3300 /*
3301 * Really this shouldn't happen, but it could if we
3302 * couldn't write the entire preallocated extent and
3303 * splitting the extent resulted in a new block.
3304 */
3305 if (cache->dirty) {
3306 btrfs_put_block_group(cache);
3307 goto again;
3308 }
3309 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3310 break;
3311 cache = next_block_group(root, cache);
3312 }
3313 if (!cache) {
3314 if (last == 0)
3315 break;
3316 last = 0;
3317 continue;
3318 }
3319
3320 err = btrfs_write_out_cache(root, trans, cache, path);
3321
3322 /*
3323 * If we didn't have an error then the cache state is still
3324 * NEED_WRITE, so we can set it to WRITTEN.
3325 */
3326 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3327 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3328 last = cache->key.objectid + cache->key.offset;
3329 btrfs_put_block_group(cache);
3330 }
3331out:
3332
3333 btrfs_free_path(path);
3334 return err;
3335}
3336
3337int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3338{
3339 struct btrfs_block_group_cache *block_group;
3340 int readonly = 0;
3341
3342 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3343 if (!block_group || block_group->ro)
3344 readonly = 1;
3345 if (block_group)
3346 btrfs_put_block_group(block_group);
3347 return readonly;
3348}
3349
3350static const char *alloc_name(u64 flags)
3351{
3352 switch (flags) {
3353 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3354 return "mixed";
3355 case BTRFS_BLOCK_GROUP_METADATA:
3356 return "metadata";
3357 case BTRFS_BLOCK_GROUP_DATA:
3358 return "data";
3359 case BTRFS_BLOCK_GROUP_SYSTEM:
3360 return "system";
3361 default:
3362 WARN_ON(1);
3363 return "invalid-combination";
3364 };
3365}
3366
3367static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3368 u64 total_bytes, u64 bytes_used,
3369 struct btrfs_space_info **space_info)
3370{
3371 struct btrfs_space_info *found;
3372 int i;
3373 int factor;
3374 int ret;
3375
3376 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3377 BTRFS_BLOCK_GROUP_RAID10))
3378 factor = 2;
3379 else
3380 factor = 1;
3381
3382 found = __find_space_info(info, flags);
3383 if (found) {
3384 spin_lock(&found->lock);
3385 found->total_bytes += total_bytes;
3386 found->disk_total += total_bytes * factor;
3387 found->bytes_used += bytes_used;
3388 found->disk_used += bytes_used * factor;
3389 found->full = 0;
3390 spin_unlock(&found->lock);
3391 *space_info = found;
3392 return 0;
3393 }
3394 found = kzalloc(sizeof(*found), GFP_NOFS);
3395 if (!found)
3396 return -ENOMEM;
3397
3398 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3399 if (ret) {
3400 kfree(found);
3401 return ret;
3402 }
3403
3404 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3405 INIT_LIST_HEAD(&found->block_groups[i]);
3406 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3407 }
3408 init_rwsem(&found->groups_sem);
3409 spin_lock_init(&found->lock);
3410 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3411 found->total_bytes = total_bytes;
3412 found->disk_total = total_bytes * factor;
3413 found->bytes_used = bytes_used;
3414 found->disk_used = bytes_used * factor;
3415 found->bytes_pinned = 0;
3416 found->bytes_reserved = 0;
3417 found->bytes_readonly = 0;
3418 found->bytes_may_use = 0;
3419 found->full = 0;
3420 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3421 found->chunk_alloc = 0;
3422 found->flush = 0;
3423 init_waitqueue_head(&found->wait);
3424
3425 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3426 info->space_info_kobj, "%s",
3427 alloc_name(found->flags));
3428 if (ret) {
3429 kfree(found);
3430 return ret;
3431 }
3432
3433 *space_info = found;
3434 list_add_rcu(&found->list, &info->space_info);
3435 if (flags & BTRFS_BLOCK_GROUP_DATA)
3436 info->data_sinfo = found;
3437
3438 return ret;
3439}
3440
3441static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3442{
3443 u64 extra_flags = chunk_to_extended(flags) &
3444 BTRFS_EXTENDED_PROFILE_MASK;
3445
3446 write_seqlock(&fs_info->profiles_lock);
3447 if (flags & BTRFS_BLOCK_GROUP_DATA)
3448 fs_info->avail_data_alloc_bits |= extra_flags;
3449 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3450 fs_info->avail_metadata_alloc_bits |= extra_flags;
3451 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3452 fs_info->avail_system_alloc_bits |= extra_flags;
3453 write_sequnlock(&fs_info->profiles_lock);
3454}
3455
3456/*
3457 * returns target flags in extended format or 0 if restripe for this
3458 * chunk_type is not in progress
3459 *
3460 * should be called with either volume_mutex or balance_lock held
3461 */
3462static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3463{
3464 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3465 u64 target = 0;
3466
3467 if (!bctl)
3468 return 0;
3469
3470 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3471 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3472 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3473 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3474 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3475 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3476 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3477 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3478 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3479 }
3480
3481 return target;
3482}
3483
3484/*
3485 * @flags: available profiles in extended format (see ctree.h)
3486 *
3487 * Returns reduced profile in chunk format. If profile changing is in
3488 * progress (either running or paused) picks the target profile (if it's
3489 * already available), otherwise falls back to plain reducing.
3490 */
3491static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3492{
3493 /*
3494 * we add in the count of missing devices because we want
3495 * to make sure that any RAID levels on a degraded FS
3496 * continue to be honored.
3497 */
3498 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3499 root->fs_info->fs_devices->missing_devices;
3500 u64 target;
3501 u64 tmp;
3502
3503 /*
3504 * see if restripe for this chunk_type is in progress, if so
3505 * try to reduce to the target profile
3506 */
3507 spin_lock(&root->fs_info->balance_lock);
3508 target = get_restripe_target(root->fs_info, flags);
3509 if (target) {
3510 /* pick target profile only if it's already available */
3511 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3512 spin_unlock(&root->fs_info->balance_lock);
3513 return extended_to_chunk(target);
3514 }
3515 }
3516 spin_unlock(&root->fs_info->balance_lock);
3517
3518 /* First, mask out the RAID levels which aren't possible */
3519 if (num_devices == 1)
3520 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3521 BTRFS_BLOCK_GROUP_RAID5);
3522 if (num_devices < 3)
3523 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3524 if (num_devices < 4)
3525 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3526
3527 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3528 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3529 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3530 flags &= ~tmp;
3531
3532 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3533 tmp = BTRFS_BLOCK_GROUP_RAID6;
3534 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3535 tmp = BTRFS_BLOCK_GROUP_RAID5;
3536 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3537 tmp = BTRFS_BLOCK_GROUP_RAID10;
3538 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3539 tmp = BTRFS_BLOCK_GROUP_RAID1;
3540 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3541 tmp = BTRFS_BLOCK_GROUP_RAID0;
3542
3543 return extended_to_chunk(flags | tmp);
3544}
3545
3546static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3547{
3548 unsigned seq;
3549 u64 flags;
3550
3551 do {
3552 flags = orig_flags;
3553 seq = read_seqbegin(&root->fs_info->profiles_lock);
3554
3555 if (flags & BTRFS_BLOCK_GROUP_DATA)
3556 flags |= root->fs_info->avail_data_alloc_bits;
3557 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3558 flags |= root->fs_info->avail_system_alloc_bits;
3559 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3560 flags |= root->fs_info->avail_metadata_alloc_bits;
3561 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3562
3563 return btrfs_reduce_alloc_profile(root, flags);
3564}
3565
3566u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3567{
3568 u64 flags;
3569 u64 ret;
3570
3571 if (data)
3572 flags = BTRFS_BLOCK_GROUP_DATA;
3573 else if (root == root->fs_info->chunk_root)
3574 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3575 else
3576 flags = BTRFS_BLOCK_GROUP_METADATA;
3577
3578 ret = get_alloc_profile(root, flags);
3579 return ret;
3580}
3581
3582/*
3583 * This will check the space that the inode allocates from to make sure we have
3584 * enough space for bytes.
3585 */
3586int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3587{
3588 struct btrfs_space_info *data_sinfo;
3589 struct btrfs_root *root = BTRFS_I(inode)->root;
3590 struct btrfs_fs_info *fs_info = root->fs_info;
3591 u64 used;
3592 int ret = 0, committed = 0, alloc_chunk = 1;
3593
3594 /* make sure bytes are sectorsize aligned */
3595 bytes = ALIGN(bytes, root->sectorsize);
3596
3597 if (btrfs_is_free_space_inode(inode)) {
3598 committed = 1;
3599 ASSERT(current->journal_info);
3600 }
3601
3602 data_sinfo = fs_info->data_sinfo;
3603 if (!data_sinfo)
3604 goto alloc;
3605
3606again:
3607 /* make sure we have enough space to handle the data first */
3608 spin_lock(&data_sinfo->lock);
3609 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3610 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3611 data_sinfo->bytes_may_use;
3612
3613 if (used + bytes > data_sinfo->total_bytes) {
3614 struct btrfs_trans_handle *trans;
3615
3616 /*
3617 * if we don't have enough free bytes in this space then we need
3618 * to alloc a new chunk.
3619 */
3620 if (!data_sinfo->full && alloc_chunk) {
3621 u64 alloc_target;
3622
3623 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3624 spin_unlock(&data_sinfo->lock);
3625alloc:
3626 alloc_target = btrfs_get_alloc_profile(root, 1);
3627 /*
3628 * It is ugly that we don't call nolock join
3629 * transaction for the free space inode case here.
3630 * But it is safe because we only do the data space
3631 * reservation for the free space cache in the
3632 * transaction context, the common join transaction
3633 * just increase the counter of the current transaction
3634 * handler, doesn't try to acquire the trans_lock of
3635 * the fs.
3636 */
3637 trans = btrfs_join_transaction(root);
3638 if (IS_ERR(trans))
3639 return PTR_ERR(trans);
3640
3641 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3642 alloc_target,
3643 CHUNK_ALLOC_NO_FORCE);
3644 btrfs_end_transaction(trans, root);
3645 if (ret < 0) {
3646 if (ret != -ENOSPC)
3647 return ret;
3648 else
3649 goto commit_trans;
3650 }
3651
3652 if (!data_sinfo)
3653 data_sinfo = fs_info->data_sinfo;
3654
3655 goto again;
3656 }
3657
3658 /*
3659 * If we don't have enough pinned space to deal with this
3660 * allocation don't bother committing the transaction.
3661 */
3662 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3663 bytes) < 0)
3664 committed = 1;
3665 spin_unlock(&data_sinfo->lock);
3666
3667 /* commit the current transaction and try again */
3668commit_trans:
3669 if (!committed &&
3670 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3671 committed = 1;
3672
3673 trans = btrfs_join_transaction(root);
3674 if (IS_ERR(trans))
3675 return PTR_ERR(trans);
3676 ret = btrfs_commit_transaction(trans, root);
3677 if (ret)
3678 return ret;
3679 goto again;
3680 }
3681
3682 trace_btrfs_space_reservation(root->fs_info,
3683 "space_info:enospc",
3684 data_sinfo->flags, bytes, 1);
3685 return -ENOSPC;
3686 }
3687 data_sinfo->bytes_may_use += bytes;
3688 trace_btrfs_space_reservation(root->fs_info, "space_info",
3689 data_sinfo->flags, bytes, 1);
3690 spin_unlock(&data_sinfo->lock);
3691
3692 return 0;
3693}
3694
3695/*
3696 * Called if we need to clear a data reservation for this inode.
3697 */
3698void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3699{
3700 struct btrfs_root *root = BTRFS_I(inode)->root;
3701 struct btrfs_space_info *data_sinfo;
3702
3703 /* make sure bytes are sectorsize aligned */
3704 bytes = ALIGN(bytes, root->sectorsize);
3705
3706 data_sinfo = root->fs_info->data_sinfo;
3707 spin_lock(&data_sinfo->lock);
3708 WARN_ON(data_sinfo->bytes_may_use < bytes);
3709 data_sinfo->bytes_may_use -= bytes;
3710 trace_btrfs_space_reservation(root->fs_info, "space_info",
3711 data_sinfo->flags, bytes, 0);
3712 spin_unlock(&data_sinfo->lock);
3713}
3714
3715static void force_metadata_allocation(struct btrfs_fs_info *info)
3716{
3717 struct list_head *head = &info->space_info;
3718 struct btrfs_space_info *found;
3719
3720 rcu_read_lock();
3721 list_for_each_entry_rcu(found, head, list) {
3722 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3723 found->force_alloc = CHUNK_ALLOC_FORCE;
3724 }
3725 rcu_read_unlock();
3726}
3727
3728static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3729{
3730 return (global->size << 1);
3731}
3732
3733static int should_alloc_chunk(struct btrfs_root *root,
3734 struct btrfs_space_info *sinfo, int force)
3735{
3736 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3737 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3738 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3739 u64 thresh;
3740
3741 if (force == CHUNK_ALLOC_FORCE)
3742 return 1;
3743
3744 /*
3745 * We need to take into account the global rsv because for all intents
3746 * and purposes it's used space. Don't worry about locking the
3747 * global_rsv, it doesn't change except when the transaction commits.
3748 */
3749 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3750 num_allocated += calc_global_rsv_need_space(global_rsv);
3751
3752 /*
3753 * in limited mode, we want to have some free space up to
3754 * about 1% of the FS size.
3755 */
3756 if (force == CHUNK_ALLOC_LIMITED) {
3757 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3758 thresh = max_t(u64, 64 * 1024 * 1024,
3759 div_factor_fine(thresh, 1));
3760
3761 if (num_bytes - num_allocated < thresh)
3762 return 1;
3763 }
3764
3765 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3766 return 0;
3767 return 1;
3768}
3769
3770static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3771{
3772 u64 num_dev;
3773
3774 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3775 BTRFS_BLOCK_GROUP_RAID0 |
3776 BTRFS_BLOCK_GROUP_RAID5 |
3777 BTRFS_BLOCK_GROUP_RAID6))
3778 num_dev = root->fs_info->fs_devices->rw_devices;
3779 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3780 num_dev = 2;
3781 else
3782 num_dev = 1; /* DUP or single */
3783
3784 /* metadata for updaing devices and chunk tree */
3785 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3786}
3787
3788static void check_system_chunk(struct btrfs_trans_handle *trans,
3789 struct btrfs_root *root, u64 type)
3790{
3791 struct btrfs_space_info *info;
3792 u64 left;
3793 u64 thresh;
3794
3795 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3796 spin_lock(&info->lock);
3797 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3798 info->bytes_reserved - info->bytes_readonly;
3799 spin_unlock(&info->lock);
3800
3801 thresh = get_system_chunk_thresh(root, type);
3802 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3803 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3804 left, thresh, type);
3805 dump_space_info(info, 0, 0);
3806 }
3807
3808 if (left < thresh) {
3809 u64 flags;
3810
3811 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3812 btrfs_alloc_chunk(trans, root, flags);
3813 }
3814}
3815
3816static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3817 struct btrfs_root *extent_root, u64 flags, int force)
3818{
3819 struct btrfs_space_info *space_info;
3820 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3821 int wait_for_alloc = 0;
3822 int ret = 0;
3823
3824 /* Don't re-enter if we're already allocating a chunk */
3825 if (trans->allocating_chunk)
3826 return -ENOSPC;
3827
3828 space_info = __find_space_info(extent_root->fs_info, flags);
3829 if (!space_info) {
3830 ret = update_space_info(extent_root->fs_info, flags,
3831 0, 0, &space_info);
3832 BUG_ON(ret); /* -ENOMEM */
3833 }
3834 BUG_ON(!space_info); /* Logic error */
3835
3836again:
3837 spin_lock(&space_info->lock);
3838 if (force < space_info->force_alloc)
3839 force = space_info->force_alloc;
3840 if (space_info->full) {
3841 if (should_alloc_chunk(extent_root, space_info, force))
3842 ret = -ENOSPC;
3843 else
3844 ret = 0;
3845 spin_unlock(&space_info->lock);
3846 return ret;
3847 }
3848
3849 if (!should_alloc_chunk(extent_root, space_info, force)) {
3850 spin_unlock(&space_info->lock);
3851 return 0;
3852 } else if (space_info->chunk_alloc) {
3853 wait_for_alloc = 1;
3854 } else {
3855 space_info->chunk_alloc = 1;
3856 }
3857
3858 spin_unlock(&space_info->lock);
3859
3860 mutex_lock(&fs_info->chunk_mutex);
3861
3862 /*
3863 * The chunk_mutex is held throughout the entirety of a chunk
3864 * allocation, so once we've acquired the chunk_mutex we know that the
3865 * other guy is done and we need to recheck and see if we should
3866 * allocate.
3867 */
3868 if (wait_for_alloc) {
3869 mutex_unlock(&fs_info->chunk_mutex);
3870 wait_for_alloc = 0;
3871 goto again;
3872 }
3873
3874 trans->allocating_chunk = true;
3875
3876 /*
3877 * If we have mixed data/metadata chunks we want to make sure we keep
3878 * allocating mixed chunks instead of individual chunks.
3879 */
3880 if (btrfs_mixed_space_info(space_info))
3881 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3882
3883 /*
3884 * if we're doing a data chunk, go ahead and make sure that
3885 * we keep a reasonable number of metadata chunks allocated in the
3886 * FS as well.
3887 */
3888 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3889 fs_info->data_chunk_allocations++;
3890 if (!(fs_info->data_chunk_allocations %
3891 fs_info->metadata_ratio))
3892 force_metadata_allocation(fs_info);
3893 }
3894
3895 /*
3896 * Check if we have enough space in SYSTEM chunk because we may need
3897 * to update devices.
3898 */
3899 check_system_chunk(trans, extent_root, flags);
3900
3901 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3902 trans->allocating_chunk = false;
3903
3904 spin_lock(&space_info->lock);
3905 if (ret < 0 && ret != -ENOSPC)
3906 goto out;
3907 if (ret)
3908 space_info->full = 1;
3909 else
3910 ret = 1;
3911
3912 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3913out:
3914 space_info->chunk_alloc = 0;
3915 spin_unlock(&space_info->lock);
3916 mutex_unlock(&fs_info->chunk_mutex);
3917 return ret;
3918}
3919
3920static int can_overcommit(struct btrfs_root *root,
3921 struct btrfs_space_info *space_info, u64 bytes,
3922 enum btrfs_reserve_flush_enum flush)
3923{
3924 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3925 u64 profile = btrfs_get_alloc_profile(root, 0);
3926 u64 space_size;
3927 u64 avail;
3928 u64 used;
3929
3930 used = space_info->bytes_used + space_info->bytes_reserved +
3931 space_info->bytes_pinned + space_info->bytes_readonly;
3932
3933 /*
3934 * We only want to allow over committing if we have lots of actual space
3935 * free, but if we don't have enough space to handle the global reserve
3936 * space then we could end up having a real enospc problem when trying
3937 * to allocate a chunk or some other such important allocation.
3938 */
3939 spin_lock(&global_rsv->lock);
3940 space_size = calc_global_rsv_need_space(global_rsv);
3941 spin_unlock(&global_rsv->lock);
3942 if (used + space_size >= space_info->total_bytes)
3943 return 0;
3944
3945 used += space_info->bytes_may_use;
3946
3947 spin_lock(&root->fs_info->free_chunk_lock);
3948 avail = root->fs_info->free_chunk_space;
3949 spin_unlock(&root->fs_info->free_chunk_lock);
3950
3951 /*
3952 * If we have dup, raid1 or raid10 then only half of the free
3953 * space is actually useable. For raid56, the space info used
3954 * doesn't include the parity drive, so we don't have to
3955 * change the math
3956 */
3957 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3958 BTRFS_BLOCK_GROUP_RAID1 |
3959 BTRFS_BLOCK_GROUP_RAID10))
3960 avail >>= 1;
3961
3962 /*
3963 * If we aren't flushing all things, let us overcommit up to
3964 * 1/2th of the space. If we can flush, don't let us overcommit
3965 * too much, let it overcommit up to 1/8 of the space.
3966 */
3967 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3968 avail >>= 3;
3969 else
3970 avail >>= 1;
3971
3972 if (used + bytes < space_info->total_bytes + avail)
3973 return 1;
3974 return 0;
3975}
3976
3977static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3978 unsigned long nr_pages, int nr_items)
3979{
3980 struct super_block *sb = root->fs_info->sb;
3981
3982 if (down_read_trylock(&sb->s_umount)) {
3983 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3984 up_read(&sb->s_umount);
3985 } else {
3986 /*
3987 * We needn't worry the filesystem going from r/w to r/o though
3988 * we don't acquire ->s_umount mutex, because the filesystem
3989 * should guarantee the delalloc inodes list be empty after
3990 * the filesystem is readonly(all dirty pages are written to
3991 * the disk).
3992 */
3993 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
3994 if (!current->journal_info)
3995 btrfs_wait_ordered_roots(root->fs_info, nr_items);
3996 }
3997}
3998
3999static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4000{
4001 u64 bytes;
4002 int nr;
4003
4004 bytes = btrfs_calc_trans_metadata_size(root, 1);
4005 nr = (int)div64_u64(to_reclaim, bytes);
4006 if (!nr)
4007 nr = 1;
4008 return nr;
4009}
4010
4011#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4012
4013/*
4014 * shrink metadata reservation for delalloc
4015 */
4016static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4017 bool wait_ordered)
4018{
4019 struct btrfs_block_rsv *block_rsv;
4020 struct btrfs_space_info *space_info;
4021 struct btrfs_trans_handle *trans;
4022 u64 delalloc_bytes;
4023 u64 max_reclaim;
4024 long time_left;
4025 unsigned long nr_pages;
4026 int loops;
4027 int items;
4028 enum btrfs_reserve_flush_enum flush;
4029
4030 /* Calc the number of the pages we need flush for space reservation */
4031 items = calc_reclaim_items_nr(root, to_reclaim);
4032 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4033
4034 trans = (struct btrfs_trans_handle *)current->journal_info;
4035 block_rsv = &root->fs_info->delalloc_block_rsv;
4036 space_info = block_rsv->space_info;
4037
4038 delalloc_bytes = percpu_counter_sum_positive(
4039 &root->fs_info->delalloc_bytes);
4040 if (delalloc_bytes == 0) {
4041 if (trans)
4042 return;
4043 if (wait_ordered)
4044 btrfs_wait_ordered_roots(root->fs_info, items);
4045 return;
4046 }
4047
4048 loops = 0;
4049 while (delalloc_bytes && loops < 3) {
4050 max_reclaim = min(delalloc_bytes, to_reclaim);
4051 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4052 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4053 /*
4054 * We need to wait for the async pages to actually start before
4055 * we do anything.
4056 */
4057 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4058 if (!max_reclaim)
4059 goto skip_async;
4060
4061 if (max_reclaim <= nr_pages)
4062 max_reclaim = 0;
4063 else
4064 max_reclaim -= nr_pages;
4065
4066 wait_event(root->fs_info->async_submit_wait,
4067 atomic_read(&root->fs_info->async_delalloc_pages) <=
4068 (int)max_reclaim);
4069skip_async:
4070 if (!trans)
4071 flush = BTRFS_RESERVE_FLUSH_ALL;
4072 else
4073 flush = BTRFS_RESERVE_NO_FLUSH;
4074 spin_lock(&space_info->lock);
4075 if (can_overcommit(root, space_info, orig, flush)) {
4076 spin_unlock(&space_info->lock);
4077 break;
4078 }
4079 spin_unlock(&space_info->lock);
4080
4081 loops++;
4082 if (wait_ordered && !trans) {
4083 btrfs_wait_ordered_roots(root->fs_info, items);
4084 } else {
4085 time_left = schedule_timeout_killable(1);
4086 if (time_left)
4087 break;
4088 }
4089 delalloc_bytes = percpu_counter_sum_positive(
4090 &root->fs_info->delalloc_bytes);
4091 }
4092}
4093
4094/**
4095 * maybe_commit_transaction - possibly commit the transaction if its ok to
4096 * @root - the root we're allocating for
4097 * @bytes - the number of bytes we want to reserve
4098 * @force - force the commit
4099 *
4100 * This will check to make sure that committing the transaction will actually
4101 * get us somewhere and then commit the transaction if it does. Otherwise it
4102 * will return -ENOSPC.
4103 */
4104static int may_commit_transaction(struct btrfs_root *root,
4105 struct btrfs_space_info *space_info,
4106 u64 bytes, int force)
4107{
4108 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4109 struct btrfs_trans_handle *trans;
4110
4111 trans = (struct btrfs_trans_handle *)current->journal_info;
4112 if (trans)
4113 return -EAGAIN;
4114
4115 if (force)
4116 goto commit;
4117
4118 /* See if there is enough pinned space to make this reservation */
4119 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4120 bytes) >= 0)
4121 goto commit;
4122
4123 /*
4124 * See if there is some space in the delayed insertion reservation for
4125 * this reservation.
4126 */
4127 if (space_info != delayed_rsv->space_info)
4128 return -ENOSPC;
4129
4130 spin_lock(&delayed_rsv->lock);
4131 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4132 bytes - delayed_rsv->size) >= 0) {
4133 spin_unlock(&delayed_rsv->lock);
4134 return -ENOSPC;
4135 }
4136 spin_unlock(&delayed_rsv->lock);
4137
4138commit:
4139 trans = btrfs_join_transaction(root);
4140 if (IS_ERR(trans))
4141 return -ENOSPC;
4142
4143 return btrfs_commit_transaction(trans, root);
4144}
4145
4146enum flush_state {
4147 FLUSH_DELAYED_ITEMS_NR = 1,
4148 FLUSH_DELAYED_ITEMS = 2,
4149 FLUSH_DELALLOC = 3,
4150 FLUSH_DELALLOC_WAIT = 4,
4151 ALLOC_CHUNK = 5,
4152 COMMIT_TRANS = 6,
4153};
4154
4155static int flush_space(struct btrfs_root *root,
4156 struct btrfs_space_info *space_info, u64 num_bytes,
4157 u64 orig_bytes, int state)
4158{
4159 struct btrfs_trans_handle *trans;
4160 int nr;
4161 int ret = 0;
4162
4163 switch (state) {
4164 case FLUSH_DELAYED_ITEMS_NR:
4165 case FLUSH_DELAYED_ITEMS:
4166 if (state == FLUSH_DELAYED_ITEMS_NR)
4167 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4168 else
4169 nr = -1;
4170
4171 trans = btrfs_join_transaction(root);
4172 if (IS_ERR(trans)) {
4173 ret = PTR_ERR(trans);
4174 break;
4175 }
4176 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4177 btrfs_end_transaction(trans, root);
4178 break;
4179 case FLUSH_DELALLOC:
4180 case FLUSH_DELALLOC_WAIT:
4181 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4182 state == FLUSH_DELALLOC_WAIT);
4183 break;
4184 case ALLOC_CHUNK:
4185 trans = btrfs_join_transaction(root);
4186 if (IS_ERR(trans)) {
4187 ret = PTR_ERR(trans);
4188 break;
4189 }
4190 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4191 btrfs_get_alloc_profile(root, 0),
4192 CHUNK_ALLOC_NO_FORCE);
4193 btrfs_end_transaction(trans, root);
4194 if (ret == -ENOSPC)
4195 ret = 0;
4196 break;
4197 case COMMIT_TRANS:
4198 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4199 break;
4200 default:
4201 ret = -ENOSPC;
4202 break;
4203 }
4204
4205 return ret;
4206}
4207/**
4208 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4209 * @root - the root we're allocating for
4210 * @block_rsv - the block_rsv we're allocating for
4211 * @orig_bytes - the number of bytes we want
4212 * @flush - whether or not we can flush to make our reservation
4213 *
4214 * This will reserve orgi_bytes number of bytes from the space info associated
4215 * with the block_rsv. If there is not enough space it will make an attempt to
4216 * flush out space to make room. It will do this by flushing delalloc if
4217 * possible or committing the transaction. If flush is 0 then no attempts to
4218 * regain reservations will be made and this will fail if there is not enough
4219 * space already.
4220 */
4221static int reserve_metadata_bytes(struct btrfs_root *root,
4222 struct btrfs_block_rsv *block_rsv,
4223 u64 orig_bytes,
4224 enum btrfs_reserve_flush_enum flush)
4225{
4226 struct btrfs_space_info *space_info = block_rsv->space_info;
4227 u64 used;
4228 u64 num_bytes = orig_bytes;
4229 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4230 int ret = 0;
4231 bool flushing = false;
4232
4233again:
4234 ret = 0;
4235 spin_lock(&space_info->lock);
4236 /*
4237 * We only want to wait if somebody other than us is flushing and we
4238 * are actually allowed to flush all things.
4239 */
4240 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4241 space_info->flush) {
4242 spin_unlock(&space_info->lock);
4243 /*
4244 * If we have a trans handle we can't wait because the flusher
4245 * may have to commit the transaction, which would mean we would
4246 * deadlock since we are waiting for the flusher to finish, but
4247 * hold the current transaction open.
4248 */
4249 if (current->journal_info)
4250 return -EAGAIN;
4251 ret = wait_event_killable(space_info->wait, !space_info->flush);
4252 /* Must have been killed, return */
4253 if (ret)
4254 return -EINTR;
4255
4256 spin_lock(&space_info->lock);
4257 }
4258
4259 ret = -ENOSPC;
4260 used = space_info->bytes_used + space_info->bytes_reserved +
4261 space_info->bytes_pinned + space_info->bytes_readonly +
4262 space_info->bytes_may_use;
4263
4264 /*
4265 * The idea here is that we've not already over-reserved the block group
4266 * then we can go ahead and save our reservation first and then start
4267 * flushing if we need to. Otherwise if we've already overcommitted
4268 * lets start flushing stuff first and then come back and try to make
4269 * our reservation.
4270 */
4271 if (used <= space_info->total_bytes) {
4272 if (used + orig_bytes <= space_info->total_bytes) {
4273 space_info->bytes_may_use += orig_bytes;
4274 trace_btrfs_space_reservation(root->fs_info,
4275 "space_info", space_info->flags, orig_bytes, 1);
4276 ret = 0;
4277 } else {
4278 /*
4279 * Ok set num_bytes to orig_bytes since we aren't
4280 * overocmmitted, this way we only try and reclaim what
4281 * we need.
4282 */
4283 num_bytes = orig_bytes;
4284 }
4285 } else {
4286 /*
4287 * Ok we're over committed, set num_bytes to the overcommitted
4288 * amount plus the amount of bytes that we need for this
4289 * reservation.
4290 */
4291 num_bytes = used - space_info->total_bytes +
4292 (orig_bytes * 2);
4293 }
4294
4295 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4296 space_info->bytes_may_use += orig_bytes;
4297 trace_btrfs_space_reservation(root->fs_info, "space_info",
4298 space_info->flags, orig_bytes,
4299 1);
4300 ret = 0;
4301 }
4302
4303 /*
4304 * Couldn't make our reservation, save our place so while we're trying
4305 * to reclaim space we can actually use it instead of somebody else
4306 * stealing it from us.
4307 *
4308 * We make the other tasks wait for the flush only when we can flush
4309 * all things.
4310 */
4311 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4312 flushing = true;
4313 space_info->flush = 1;
4314 }
4315
4316 spin_unlock(&space_info->lock);
4317
4318 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4319 goto out;
4320
4321 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4322 flush_state);
4323 flush_state++;
4324
4325 /*
4326 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4327 * would happen. So skip delalloc flush.
4328 */
4329 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4330 (flush_state == FLUSH_DELALLOC ||
4331 flush_state == FLUSH_DELALLOC_WAIT))
4332 flush_state = ALLOC_CHUNK;
4333
4334 if (!ret)
4335 goto again;
4336 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4337 flush_state < COMMIT_TRANS)
4338 goto again;
4339 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4340 flush_state <= COMMIT_TRANS)
4341 goto again;
4342
4343out:
4344 if (ret == -ENOSPC &&
4345 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4346 struct btrfs_block_rsv *global_rsv =
4347 &root->fs_info->global_block_rsv;
4348
4349 if (block_rsv != global_rsv &&
4350 !block_rsv_use_bytes(global_rsv, orig_bytes))
4351 ret = 0;
4352 }
4353 if (ret == -ENOSPC)
4354 trace_btrfs_space_reservation(root->fs_info,
4355 "space_info:enospc",
4356 space_info->flags, orig_bytes, 1);
4357 if (flushing) {
4358 spin_lock(&space_info->lock);
4359 space_info->flush = 0;
4360 wake_up_all(&space_info->wait);
4361 spin_unlock(&space_info->lock);
4362 }
4363 return ret;
4364}
4365
4366static struct btrfs_block_rsv *get_block_rsv(
4367 const struct btrfs_trans_handle *trans,
4368 const struct btrfs_root *root)
4369{
4370 struct btrfs_block_rsv *block_rsv = NULL;
4371
4372 if (root->ref_cows)
4373 block_rsv = trans->block_rsv;
4374
4375 if (root == root->fs_info->csum_root && trans->adding_csums)
4376 block_rsv = trans->block_rsv;
4377
4378 if (root == root->fs_info->uuid_root)
4379 block_rsv = trans->block_rsv;
4380
4381 if (!block_rsv)
4382 block_rsv = root->block_rsv;
4383
4384 if (!block_rsv)
4385 block_rsv = &root->fs_info->empty_block_rsv;
4386
4387 return block_rsv;
4388}
4389
4390static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4391 u64 num_bytes)
4392{
4393 int ret = -ENOSPC;
4394 spin_lock(&block_rsv->lock);
4395 if (block_rsv->reserved >= num_bytes) {
4396 block_rsv->reserved -= num_bytes;
4397 if (block_rsv->reserved < block_rsv->size)
4398 block_rsv->full = 0;
4399 ret = 0;
4400 }
4401 spin_unlock(&block_rsv->lock);
4402 return ret;
4403}
4404
4405static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4406 u64 num_bytes, int update_size)
4407{
4408 spin_lock(&block_rsv->lock);
4409 block_rsv->reserved += num_bytes;
4410 if (update_size)
4411 block_rsv->size += num_bytes;
4412 else if (block_rsv->reserved >= block_rsv->size)
4413 block_rsv->full = 1;
4414 spin_unlock(&block_rsv->lock);
4415}
4416
4417int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4418 struct btrfs_block_rsv *dest, u64 num_bytes,
4419 int min_factor)
4420{
4421 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4422 u64 min_bytes;
4423
4424 if (global_rsv->space_info != dest->space_info)
4425 return -ENOSPC;
4426
4427 spin_lock(&global_rsv->lock);
4428 min_bytes = div_factor(global_rsv->size, min_factor);
4429 if (global_rsv->reserved < min_bytes + num_bytes) {
4430 spin_unlock(&global_rsv->lock);
4431 return -ENOSPC;
4432 }
4433 global_rsv->reserved -= num_bytes;
4434 if (global_rsv->reserved < global_rsv->size)
4435 global_rsv->full = 0;
4436 spin_unlock(&global_rsv->lock);
4437
4438 block_rsv_add_bytes(dest, num_bytes, 1);
4439 return 0;
4440}
4441
4442static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4443 struct btrfs_block_rsv *block_rsv,
4444 struct btrfs_block_rsv *dest, u64 num_bytes)
4445{
4446 struct btrfs_space_info *space_info = block_rsv->space_info;
4447
4448 spin_lock(&block_rsv->lock);
4449 if (num_bytes == (u64)-1)
4450 num_bytes = block_rsv->size;
4451 block_rsv->size -= num_bytes;
4452 if (block_rsv->reserved >= block_rsv->size) {
4453 num_bytes = block_rsv->reserved - block_rsv->size;
4454 block_rsv->reserved = block_rsv->size;
4455 block_rsv->full = 1;
4456 } else {
4457 num_bytes = 0;
4458 }
4459 spin_unlock(&block_rsv->lock);
4460
4461 if (num_bytes > 0) {
4462 if (dest) {
4463 spin_lock(&dest->lock);
4464 if (!dest->full) {
4465 u64 bytes_to_add;
4466
4467 bytes_to_add = dest->size - dest->reserved;
4468 bytes_to_add = min(num_bytes, bytes_to_add);
4469 dest->reserved += bytes_to_add;
4470 if (dest->reserved >= dest->size)
4471 dest->full = 1;
4472 num_bytes -= bytes_to_add;
4473 }
4474 spin_unlock(&dest->lock);
4475 }
4476 if (num_bytes) {
4477 spin_lock(&space_info->lock);
4478 space_info->bytes_may_use -= num_bytes;
4479 trace_btrfs_space_reservation(fs_info, "space_info",
4480 space_info->flags, num_bytes, 0);
4481 spin_unlock(&space_info->lock);
4482 }
4483 }
4484}
4485
4486static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4487 struct btrfs_block_rsv *dst, u64 num_bytes)
4488{
4489 int ret;
4490
4491 ret = block_rsv_use_bytes(src, num_bytes);
4492 if (ret)
4493 return ret;
4494
4495 block_rsv_add_bytes(dst, num_bytes, 1);
4496 return 0;
4497}
4498
4499void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4500{
4501 memset(rsv, 0, sizeof(*rsv));
4502 spin_lock_init(&rsv->lock);
4503 rsv->type = type;
4504}
4505
4506struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4507 unsigned short type)
4508{
4509 struct btrfs_block_rsv *block_rsv;
4510 struct btrfs_fs_info *fs_info = root->fs_info;
4511
4512 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4513 if (!block_rsv)
4514 return NULL;
4515
4516 btrfs_init_block_rsv(block_rsv, type);
4517 block_rsv->space_info = __find_space_info(fs_info,
4518 BTRFS_BLOCK_GROUP_METADATA);
4519 return block_rsv;
4520}
4521
4522void btrfs_free_block_rsv(struct btrfs_root *root,
4523 struct btrfs_block_rsv *rsv)
4524{
4525 if (!rsv)
4526 return;
4527 btrfs_block_rsv_release(root, rsv, (u64)-1);
4528 kfree(rsv);
4529}
4530
4531int btrfs_block_rsv_add(struct btrfs_root *root,
4532 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4533 enum btrfs_reserve_flush_enum flush)
4534{
4535 int ret;
4536
4537 if (num_bytes == 0)
4538 return 0;
4539
4540 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4541 if (!ret) {
4542 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4543 return 0;
4544 }
4545
4546 return ret;
4547}
4548
4549int btrfs_block_rsv_check(struct btrfs_root *root,
4550 struct btrfs_block_rsv *block_rsv, int min_factor)
4551{
4552 u64 num_bytes = 0;
4553 int ret = -ENOSPC;
4554
4555 if (!block_rsv)
4556 return 0;
4557
4558 spin_lock(&block_rsv->lock);
4559 num_bytes = div_factor(block_rsv->size, min_factor);
4560 if (block_rsv->reserved >= num_bytes)
4561 ret = 0;
4562 spin_unlock(&block_rsv->lock);
4563
4564 return ret;
4565}
4566
4567int btrfs_block_rsv_refill(struct btrfs_root *root,
4568 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4569 enum btrfs_reserve_flush_enum flush)
4570{
4571 u64 num_bytes = 0;
4572 int ret = -ENOSPC;
4573
4574 if (!block_rsv)
4575 return 0;
4576
4577 spin_lock(&block_rsv->lock);
4578 num_bytes = min_reserved;
4579 if (block_rsv->reserved >= num_bytes)
4580 ret = 0;
4581 else
4582 num_bytes -= block_rsv->reserved;
4583 spin_unlock(&block_rsv->lock);
4584
4585 if (!ret)
4586 return 0;
4587
4588 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4589 if (!ret) {
4590 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4591 return 0;
4592 }
4593
4594 return ret;
4595}
4596
4597int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4598 struct btrfs_block_rsv *dst_rsv,
4599 u64 num_bytes)
4600{
4601 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4602}
4603
4604void btrfs_block_rsv_release(struct btrfs_root *root,
4605 struct btrfs_block_rsv *block_rsv,
4606 u64 num_bytes)
4607{
4608 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4609 if (global_rsv == block_rsv ||
4610 block_rsv->space_info != global_rsv->space_info)
4611 global_rsv = NULL;
4612 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4613 num_bytes);
4614}
4615
4616/*
4617 * helper to calculate size of global block reservation.
4618 * the desired value is sum of space used by extent tree,
4619 * checksum tree and root tree
4620 */
4621static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4622{
4623 struct btrfs_space_info *sinfo;
4624 u64 num_bytes;
4625 u64 meta_used;
4626 u64 data_used;
4627 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4628
4629 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4630 spin_lock(&sinfo->lock);
4631 data_used = sinfo->bytes_used;
4632 spin_unlock(&sinfo->lock);
4633
4634 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4635 spin_lock(&sinfo->lock);
4636 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4637 data_used = 0;
4638 meta_used = sinfo->bytes_used;
4639 spin_unlock(&sinfo->lock);
4640
4641 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4642 csum_size * 2;
4643 num_bytes += div64_u64(data_used + meta_used, 50);
4644
4645 if (num_bytes * 3 > meta_used)
4646 num_bytes = div64_u64(meta_used, 3);
4647
4648 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4649}
4650
4651static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4652{
4653 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4654 struct btrfs_space_info *sinfo = block_rsv->space_info;
4655 u64 num_bytes;
4656
4657 num_bytes = calc_global_metadata_size(fs_info);
4658
4659 spin_lock(&sinfo->lock);
4660 spin_lock(&block_rsv->lock);
4661
4662 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4663
4664 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4665 sinfo->bytes_reserved + sinfo->bytes_readonly +
4666 sinfo->bytes_may_use;
4667
4668 if (sinfo->total_bytes > num_bytes) {
4669 num_bytes = sinfo->total_bytes - num_bytes;
4670 block_rsv->reserved += num_bytes;
4671 sinfo->bytes_may_use += num_bytes;
4672 trace_btrfs_space_reservation(fs_info, "space_info",
4673 sinfo->flags, num_bytes, 1);
4674 }
4675
4676 if (block_rsv->reserved >= block_rsv->size) {
4677 num_bytes = block_rsv->reserved - block_rsv->size;
4678 sinfo->bytes_may_use -= num_bytes;
4679 trace_btrfs_space_reservation(fs_info, "space_info",
4680 sinfo->flags, num_bytes, 0);
4681 block_rsv->reserved = block_rsv->size;
4682 block_rsv->full = 1;
4683 }
4684
4685 spin_unlock(&block_rsv->lock);
4686 spin_unlock(&sinfo->lock);
4687}
4688
4689static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4690{
4691 struct btrfs_space_info *space_info;
4692
4693 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4694 fs_info->chunk_block_rsv.space_info = space_info;
4695
4696 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4697 fs_info->global_block_rsv.space_info = space_info;
4698 fs_info->delalloc_block_rsv.space_info = space_info;
4699 fs_info->trans_block_rsv.space_info = space_info;
4700 fs_info->empty_block_rsv.space_info = space_info;
4701 fs_info->delayed_block_rsv.space_info = space_info;
4702
4703 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4704 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4705 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4706 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4707 if (fs_info->quota_root)
4708 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4709 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4710
4711 update_global_block_rsv(fs_info);
4712}
4713
4714static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4715{
4716 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4717 (u64)-1);
4718 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4719 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4720 WARN_ON(fs_info->trans_block_rsv.size > 0);
4721 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4722 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4723 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4724 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4725 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4726}
4727
4728void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4729 struct btrfs_root *root)
4730{
4731 if (!trans->block_rsv)
4732 return;
4733
4734 if (!trans->bytes_reserved)
4735 return;
4736
4737 trace_btrfs_space_reservation(root->fs_info, "transaction",
4738 trans->transid, trans->bytes_reserved, 0);
4739 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4740 trans->bytes_reserved = 0;
4741}
4742
4743/* Can only return 0 or -ENOSPC */
4744int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4745 struct inode *inode)
4746{
4747 struct btrfs_root *root = BTRFS_I(inode)->root;
4748 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4749 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4750
4751 /*
4752 * We need to hold space in order to delete our orphan item once we've
4753 * added it, so this takes the reservation so we can release it later
4754 * when we are truly done with the orphan item.
4755 */
4756 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4757 trace_btrfs_space_reservation(root->fs_info, "orphan",
4758 btrfs_ino(inode), num_bytes, 1);
4759 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4760}
4761
4762void btrfs_orphan_release_metadata(struct inode *inode)
4763{
4764 struct btrfs_root *root = BTRFS_I(inode)->root;
4765 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4766 trace_btrfs_space_reservation(root->fs_info, "orphan",
4767 btrfs_ino(inode), num_bytes, 0);
4768 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4769}
4770
4771/*
4772 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4773 * root: the root of the parent directory
4774 * rsv: block reservation
4775 * items: the number of items that we need do reservation
4776 * qgroup_reserved: used to return the reserved size in qgroup
4777 *
4778 * This function is used to reserve the space for snapshot/subvolume
4779 * creation and deletion. Those operations are different with the
4780 * common file/directory operations, they change two fs/file trees
4781 * and root tree, the number of items that the qgroup reserves is
4782 * different with the free space reservation. So we can not use
4783 * the space reseravtion mechanism in start_transaction().
4784 */
4785int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4786 struct btrfs_block_rsv *rsv,
4787 int items,
4788 u64 *qgroup_reserved,
4789 bool use_global_rsv)
4790{
4791 u64 num_bytes;
4792 int ret;
4793 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4794
4795 if (root->fs_info->quota_enabled) {
4796 /* One for parent inode, two for dir entries */
4797 num_bytes = 3 * root->leafsize;
4798 ret = btrfs_qgroup_reserve(root, num_bytes);
4799 if (ret)
4800 return ret;
4801 } else {
4802 num_bytes = 0;
4803 }
4804
4805 *qgroup_reserved = num_bytes;
4806
4807 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4808 rsv->space_info = __find_space_info(root->fs_info,
4809 BTRFS_BLOCK_GROUP_METADATA);
4810 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4811 BTRFS_RESERVE_FLUSH_ALL);
4812
4813 if (ret == -ENOSPC && use_global_rsv)
4814 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4815
4816 if (ret) {
4817 if (*qgroup_reserved)
4818 btrfs_qgroup_free(root, *qgroup_reserved);
4819 }
4820
4821 return ret;
4822}
4823
4824void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4825 struct btrfs_block_rsv *rsv,
4826 u64 qgroup_reserved)
4827{
4828 btrfs_block_rsv_release(root, rsv, (u64)-1);
4829 if (qgroup_reserved)
4830 btrfs_qgroup_free(root, qgroup_reserved);
4831}
4832
4833/**
4834 * drop_outstanding_extent - drop an outstanding extent
4835 * @inode: the inode we're dropping the extent for
4836 *
4837 * This is called when we are freeing up an outstanding extent, either called
4838 * after an error or after an extent is written. This will return the number of
4839 * reserved extents that need to be freed. This must be called with
4840 * BTRFS_I(inode)->lock held.
4841 */
4842static unsigned drop_outstanding_extent(struct inode *inode)
4843{
4844 unsigned drop_inode_space = 0;
4845 unsigned dropped_extents = 0;
4846
4847 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4848 BTRFS_I(inode)->outstanding_extents--;
4849
4850 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4851 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4852 &BTRFS_I(inode)->runtime_flags))
4853 drop_inode_space = 1;
4854
4855 /*
4856 * If we have more or the same amount of outsanding extents than we have
4857 * reserved then we need to leave the reserved extents count alone.
4858 */
4859 if (BTRFS_I(inode)->outstanding_extents >=
4860 BTRFS_I(inode)->reserved_extents)
4861 return drop_inode_space;
4862
4863 dropped_extents = BTRFS_I(inode)->reserved_extents -
4864 BTRFS_I(inode)->outstanding_extents;
4865 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4866 return dropped_extents + drop_inode_space;
4867}
4868
4869/**
4870 * calc_csum_metadata_size - return the amount of metada space that must be
4871 * reserved/free'd for the given bytes.
4872 * @inode: the inode we're manipulating
4873 * @num_bytes: the number of bytes in question
4874 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4875 *
4876 * This adjusts the number of csum_bytes in the inode and then returns the
4877 * correct amount of metadata that must either be reserved or freed. We
4878 * calculate how many checksums we can fit into one leaf and then divide the
4879 * number of bytes that will need to be checksumed by this value to figure out
4880 * how many checksums will be required. If we are adding bytes then the number
4881 * may go up and we will return the number of additional bytes that must be
4882 * reserved. If it is going down we will return the number of bytes that must
4883 * be freed.
4884 *
4885 * This must be called with BTRFS_I(inode)->lock held.
4886 */
4887static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4888 int reserve)
4889{
4890 struct btrfs_root *root = BTRFS_I(inode)->root;
4891 u64 csum_size;
4892 int num_csums_per_leaf;
4893 int num_csums;
4894 int old_csums;
4895
4896 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4897 BTRFS_I(inode)->csum_bytes == 0)
4898 return 0;
4899
4900 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4901 if (reserve)
4902 BTRFS_I(inode)->csum_bytes += num_bytes;
4903 else
4904 BTRFS_I(inode)->csum_bytes -= num_bytes;
4905 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4906 num_csums_per_leaf = (int)div64_u64(csum_size,
4907 sizeof(struct btrfs_csum_item) +
4908 sizeof(struct btrfs_disk_key));
4909 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4910 num_csums = num_csums + num_csums_per_leaf - 1;
4911 num_csums = num_csums / num_csums_per_leaf;
4912
4913 old_csums = old_csums + num_csums_per_leaf - 1;
4914 old_csums = old_csums / num_csums_per_leaf;
4915
4916 /* No change, no need to reserve more */
4917 if (old_csums == num_csums)
4918 return 0;
4919
4920 if (reserve)
4921 return btrfs_calc_trans_metadata_size(root,
4922 num_csums - old_csums);
4923
4924 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4925}
4926
4927int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4928{
4929 struct btrfs_root *root = BTRFS_I(inode)->root;
4930 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4931 u64 to_reserve = 0;
4932 u64 csum_bytes;
4933 unsigned nr_extents = 0;
4934 int extra_reserve = 0;
4935 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4936 int ret = 0;
4937 bool delalloc_lock = true;
4938 u64 to_free = 0;
4939 unsigned dropped;
4940
4941 /* If we are a free space inode we need to not flush since we will be in
4942 * the middle of a transaction commit. We also don't need the delalloc
4943 * mutex since we won't race with anybody. We need this mostly to make
4944 * lockdep shut its filthy mouth.
4945 */
4946 if (btrfs_is_free_space_inode(inode)) {
4947 flush = BTRFS_RESERVE_NO_FLUSH;
4948 delalloc_lock = false;
4949 }
4950
4951 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4952 btrfs_transaction_in_commit(root->fs_info))
4953 schedule_timeout(1);
4954
4955 if (delalloc_lock)
4956 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4957
4958 num_bytes = ALIGN(num_bytes, root->sectorsize);
4959
4960 spin_lock(&BTRFS_I(inode)->lock);
4961 BTRFS_I(inode)->outstanding_extents++;
4962
4963 if (BTRFS_I(inode)->outstanding_extents >
4964 BTRFS_I(inode)->reserved_extents)
4965 nr_extents = BTRFS_I(inode)->outstanding_extents -
4966 BTRFS_I(inode)->reserved_extents;
4967
4968 /*
4969 * Add an item to reserve for updating the inode when we complete the
4970 * delalloc io.
4971 */
4972 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4973 &BTRFS_I(inode)->runtime_flags)) {
4974 nr_extents++;
4975 extra_reserve = 1;
4976 }
4977
4978 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4979 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4980 csum_bytes = BTRFS_I(inode)->csum_bytes;
4981 spin_unlock(&BTRFS_I(inode)->lock);
4982
4983 if (root->fs_info->quota_enabled) {
4984 ret = btrfs_qgroup_reserve(root, num_bytes +
4985 nr_extents * root->leafsize);
4986 if (ret)
4987 goto out_fail;
4988 }
4989
4990 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4991 if (unlikely(ret)) {
4992 if (root->fs_info->quota_enabled)
4993 btrfs_qgroup_free(root, num_bytes +
4994 nr_extents * root->leafsize);
4995 goto out_fail;
4996 }
4997
4998 spin_lock(&BTRFS_I(inode)->lock);
4999 if (extra_reserve) {
5000 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5001 &BTRFS_I(inode)->runtime_flags);
5002 nr_extents--;
5003 }
5004 BTRFS_I(inode)->reserved_extents += nr_extents;
5005 spin_unlock(&BTRFS_I(inode)->lock);
5006
5007 if (delalloc_lock)
5008 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5009
5010 if (to_reserve)
5011 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5012 btrfs_ino(inode), to_reserve, 1);
5013 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5014
5015 return 0;
5016
5017out_fail:
5018 spin_lock(&BTRFS_I(inode)->lock);
5019 dropped = drop_outstanding_extent(inode);
5020 /*
5021 * If the inodes csum_bytes is the same as the original
5022 * csum_bytes then we know we haven't raced with any free()ers
5023 * so we can just reduce our inodes csum bytes and carry on.
5024 */
5025 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5026 calc_csum_metadata_size(inode, num_bytes, 0);
5027 } else {
5028 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5029 u64 bytes;
5030
5031 /*
5032 * This is tricky, but first we need to figure out how much we
5033 * free'd from any free-ers that occured during this
5034 * reservation, so we reset ->csum_bytes to the csum_bytes
5035 * before we dropped our lock, and then call the free for the
5036 * number of bytes that were freed while we were trying our
5037 * reservation.
5038 */
5039 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5040 BTRFS_I(inode)->csum_bytes = csum_bytes;
5041 to_free = calc_csum_metadata_size(inode, bytes, 0);
5042
5043
5044 /*
5045 * Now we need to see how much we would have freed had we not
5046 * been making this reservation and our ->csum_bytes were not
5047 * artificially inflated.
5048 */
5049 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5050 bytes = csum_bytes - orig_csum_bytes;
5051 bytes = calc_csum_metadata_size(inode, bytes, 0);
5052
5053 /*
5054 * Now reset ->csum_bytes to what it should be. If bytes is
5055 * more than to_free then we would have free'd more space had we
5056 * not had an artificially high ->csum_bytes, so we need to free
5057 * the remainder. If bytes is the same or less then we don't
5058 * need to do anything, the other free-ers did the correct
5059 * thing.
5060 */
5061 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5062 if (bytes > to_free)
5063 to_free = bytes - to_free;
5064 else
5065 to_free = 0;
5066 }
5067 spin_unlock(&BTRFS_I(inode)->lock);
5068 if (dropped)
5069 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5070
5071 if (to_free) {
5072 btrfs_block_rsv_release(root, block_rsv, to_free);
5073 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5074 btrfs_ino(inode), to_free, 0);
5075 }
5076 if (delalloc_lock)
5077 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5078 return ret;
5079}
5080
5081/**
5082 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5083 * @inode: the inode to release the reservation for
5084 * @num_bytes: the number of bytes we're releasing
5085 *
5086 * This will release the metadata reservation for an inode. This can be called
5087 * once we complete IO for a given set of bytes to release their metadata
5088 * reservations.
5089 */
5090void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5091{
5092 struct btrfs_root *root = BTRFS_I(inode)->root;
5093 u64 to_free = 0;
5094 unsigned dropped;
5095
5096 num_bytes = ALIGN(num_bytes, root->sectorsize);
5097 spin_lock(&BTRFS_I(inode)->lock);
5098 dropped = drop_outstanding_extent(inode);
5099
5100 if (num_bytes)
5101 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5102 spin_unlock(&BTRFS_I(inode)->lock);
5103 if (dropped > 0)
5104 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5105
5106 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5107 btrfs_ino(inode), to_free, 0);
5108 if (root->fs_info->quota_enabled) {
5109 btrfs_qgroup_free(root, num_bytes +
5110 dropped * root->leafsize);
5111 }
5112
5113 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5114 to_free);
5115}
5116
5117/**
5118 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5119 * @inode: inode we're writing to
5120 * @num_bytes: the number of bytes we want to allocate
5121 *
5122 * This will do the following things
5123 *
5124 * o reserve space in the data space info for num_bytes
5125 * o reserve space in the metadata space info based on number of outstanding
5126 * extents and how much csums will be needed
5127 * o add to the inodes ->delalloc_bytes
5128 * o add it to the fs_info's delalloc inodes list.
5129 *
5130 * This will return 0 for success and -ENOSPC if there is no space left.
5131 */
5132int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5133{
5134 int ret;
5135
5136 ret = btrfs_check_data_free_space(inode, num_bytes);
5137 if (ret)
5138 return ret;
5139
5140 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5141 if (ret) {
5142 btrfs_free_reserved_data_space(inode, num_bytes);
5143 return ret;
5144 }
5145
5146 return 0;
5147}
5148
5149/**
5150 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5151 * @inode: inode we're releasing space for
5152 * @num_bytes: the number of bytes we want to free up
5153 *
5154 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5155 * called in the case that we don't need the metadata AND data reservations
5156 * anymore. So if there is an error or we insert an inline extent.
5157 *
5158 * This function will release the metadata space that was not used and will
5159 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5160 * list if there are no delalloc bytes left.
5161 */
5162void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5163{
5164 btrfs_delalloc_release_metadata(inode, num_bytes);
5165 btrfs_free_reserved_data_space(inode, num_bytes);
5166}
5167
5168static int update_block_group(struct btrfs_root *root,
5169 u64 bytenr, u64 num_bytes, int alloc)
5170{
5171 struct btrfs_block_group_cache *cache = NULL;
5172 struct btrfs_fs_info *info = root->fs_info;
5173 u64 total = num_bytes;
5174 u64 old_val;
5175 u64 byte_in_group;
5176 int factor;
5177
5178 /* block accounting for super block */
5179 spin_lock(&info->delalloc_root_lock);
5180 old_val = btrfs_super_bytes_used(info->super_copy);
5181 if (alloc)
5182 old_val += num_bytes;
5183 else
5184 old_val -= num_bytes;
5185 btrfs_set_super_bytes_used(info->super_copy, old_val);
5186 spin_unlock(&info->delalloc_root_lock);
5187
5188 while (total) {
5189 cache = btrfs_lookup_block_group(info, bytenr);
5190 if (!cache)
5191 return -ENOENT;
5192 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5193 BTRFS_BLOCK_GROUP_RAID1 |
5194 BTRFS_BLOCK_GROUP_RAID10))
5195 factor = 2;
5196 else
5197 factor = 1;
5198 /*
5199 * If this block group has free space cache written out, we
5200 * need to make sure to load it if we are removing space. This
5201 * is because we need the unpinning stage to actually add the
5202 * space back to the block group, otherwise we will leak space.
5203 */
5204 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5205 cache_block_group(cache, 1);
5206
5207 byte_in_group = bytenr - cache->key.objectid;
5208 WARN_ON(byte_in_group > cache->key.offset);
5209
5210 spin_lock(&cache->space_info->lock);
5211 spin_lock(&cache->lock);
5212
5213 if (btrfs_test_opt(root, SPACE_CACHE) &&
5214 cache->disk_cache_state < BTRFS_DC_CLEAR)
5215 cache->disk_cache_state = BTRFS_DC_CLEAR;
5216
5217 cache->dirty = 1;
5218 old_val = btrfs_block_group_used(&cache->item);
5219 num_bytes = min(total, cache->key.offset - byte_in_group);
5220 if (alloc) {
5221 old_val += num_bytes;
5222 btrfs_set_block_group_used(&cache->item, old_val);
5223 cache->reserved -= num_bytes;
5224 cache->space_info->bytes_reserved -= num_bytes;
5225 cache->space_info->bytes_used += num_bytes;
5226 cache->space_info->disk_used += num_bytes * factor;
5227 spin_unlock(&cache->lock);
5228 spin_unlock(&cache->space_info->lock);
5229 } else {
5230 old_val -= num_bytes;
5231 btrfs_set_block_group_used(&cache->item, old_val);
5232 cache->pinned += num_bytes;
5233 cache->space_info->bytes_pinned += num_bytes;
5234 cache->space_info->bytes_used -= num_bytes;
5235 cache->space_info->disk_used -= num_bytes * factor;
5236 spin_unlock(&cache->lock);
5237 spin_unlock(&cache->space_info->lock);
5238
5239 set_extent_dirty(info->pinned_extents,
5240 bytenr, bytenr + num_bytes - 1,
5241 GFP_NOFS | __GFP_NOFAIL);
5242 }
5243 btrfs_put_block_group(cache);
5244 total -= num_bytes;
5245 bytenr += num_bytes;
5246 }
5247 return 0;
5248}
5249
5250static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5251{
5252 struct btrfs_block_group_cache *cache;
5253 u64 bytenr;
5254
5255 spin_lock(&root->fs_info->block_group_cache_lock);
5256 bytenr = root->fs_info->first_logical_byte;
5257 spin_unlock(&root->fs_info->block_group_cache_lock);
5258
5259 if (bytenr < (u64)-1)
5260 return bytenr;
5261
5262 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5263 if (!cache)
5264 return 0;
5265
5266 bytenr = cache->key.objectid;
5267 btrfs_put_block_group(cache);
5268
5269 return bytenr;
5270}
5271
5272static int pin_down_extent(struct btrfs_root *root,
5273 struct btrfs_block_group_cache *cache,
5274 u64 bytenr, u64 num_bytes, int reserved)
5275{
5276 spin_lock(&cache->space_info->lock);
5277 spin_lock(&cache->lock);
5278 cache->pinned += num_bytes;
5279 cache->space_info->bytes_pinned += num_bytes;
5280 if (reserved) {
5281 cache->reserved -= num_bytes;
5282 cache->space_info->bytes_reserved -= num_bytes;
5283 }
5284 spin_unlock(&cache->lock);
5285 spin_unlock(&cache->space_info->lock);
5286
5287 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5288 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5289 if (reserved)
5290 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5291 return 0;
5292}
5293
5294/*
5295 * this function must be called within transaction
5296 */
5297int btrfs_pin_extent(struct btrfs_root *root,
5298 u64 bytenr, u64 num_bytes, int reserved)
5299{
5300 struct btrfs_block_group_cache *cache;
5301
5302 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5303 BUG_ON(!cache); /* Logic error */
5304
5305 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5306
5307 btrfs_put_block_group(cache);
5308 return 0;
5309}
5310
5311/*
5312 * this function must be called within transaction
5313 */
5314int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5315 u64 bytenr, u64 num_bytes)
5316{
5317 struct btrfs_block_group_cache *cache;
5318 int ret;
5319
5320 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5321 if (!cache)
5322 return -EINVAL;
5323
5324 /*
5325 * pull in the free space cache (if any) so that our pin
5326 * removes the free space from the cache. We have load_only set
5327 * to one because the slow code to read in the free extents does check
5328 * the pinned extents.
5329 */
5330 cache_block_group(cache, 1);
5331
5332 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5333
5334 /* remove us from the free space cache (if we're there at all) */
5335 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5336 btrfs_put_block_group(cache);
5337 return ret;
5338}
5339
5340static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5341{
5342 int ret;
5343 struct btrfs_block_group_cache *block_group;
5344 struct btrfs_caching_control *caching_ctl;
5345
5346 block_group = btrfs_lookup_block_group(root->fs_info, start);
5347 if (!block_group)
5348 return -EINVAL;
5349
5350 cache_block_group(block_group, 0);
5351 caching_ctl = get_caching_control(block_group);
5352
5353 if (!caching_ctl) {
5354 /* Logic error */
5355 BUG_ON(!block_group_cache_done(block_group));
5356 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5357 } else {
5358 mutex_lock(&caching_ctl->mutex);
5359
5360 if (start >= caching_ctl->progress) {
5361 ret = add_excluded_extent(root, start, num_bytes);
5362 } else if (start + num_bytes <= caching_ctl->progress) {
5363 ret = btrfs_remove_free_space(block_group,
5364 start, num_bytes);
5365 } else {
5366 num_bytes = caching_ctl->progress - start;
5367 ret = btrfs_remove_free_space(block_group,
5368 start, num_bytes);
5369 if (ret)
5370 goto out_lock;
5371
5372 num_bytes = (start + num_bytes) -
5373 caching_ctl->progress;
5374 start = caching_ctl->progress;
5375 ret = add_excluded_extent(root, start, num_bytes);
5376 }
5377out_lock:
5378 mutex_unlock(&caching_ctl->mutex);
5379 put_caching_control(caching_ctl);
5380 }
5381 btrfs_put_block_group(block_group);
5382 return ret;
5383}
5384
5385int btrfs_exclude_logged_extents(struct btrfs_root *log,
5386 struct extent_buffer *eb)
5387{
5388 struct btrfs_file_extent_item *item;
5389 struct btrfs_key key;
5390 int found_type;
5391 int i;
5392
5393 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5394 return 0;
5395
5396 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5397 btrfs_item_key_to_cpu(eb, &key, i);
5398 if (key.type != BTRFS_EXTENT_DATA_KEY)
5399 continue;
5400 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5401 found_type = btrfs_file_extent_type(eb, item);
5402 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5403 continue;
5404 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5405 continue;
5406 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5407 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5408 __exclude_logged_extent(log, key.objectid, key.offset);
5409 }
5410
5411 return 0;
5412}
5413
5414/**
5415 * btrfs_update_reserved_bytes - update the block_group and space info counters
5416 * @cache: The cache we are manipulating
5417 * @num_bytes: The number of bytes in question
5418 * @reserve: One of the reservation enums
5419 *
5420 * This is called by the allocator when it reserves space, or by somebody who is
5421 * freeing space that was never actually used on disk. For example if you
5422 * reserve some space for a new leaf in transaction A and before transaction A
5423 * commits you free that leaf, you call this with reserve set to 0 in order to
5424 * clear the reservation.
5425 *
5426 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5427 * ENOSPC accounting. For data we handle the reservation through clearing the
5428 * delalloc bits in the io_tree. We have to do this since we could end up
5429 * allocating less disk space for the amount of data we have reserved in the
5430 * case of compression.
5431 *
5432 * If this is a reservation and the block group has become read only we cannot
5433 * make the reservation and return -EAGAIN, otherwise this function always
5434 * succeeds.
5435 */
5436static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5437 u64 num_bytes, int reserve)
5438{
5439 struct btrfs_space_info *space_info = cache->space_info;
5440 int ret = 0;
5441
5442 spin_lock(&space_info->lock);
5443 spin_lock(&cache->lock);
5444 if (reserve != RESERVE_FREE) {
5445 if (cache->ro) {
5446 ret = -EAGAIN;
5447 } else {
5448 cache->reserved += num_bytes;
5449 space_info->bytes_reserved += num_bytes;
5450 if (reserve == RESERVE_ALLOC) {
5451 trace_btrfs_space_reservation(cache->fs_info,
5452 "space_info", space_info->flags,
5453 num_bytes, 0);
5454 space_info->bytes_may_use -= num_bytes;
5455 }
5456 }
5457 } else {
5458 if (cache->ro)
5459 space_info->bytes_readonly += num_bytes;
5460 cache->reserved -= num_bytes;
5461 space_info->bytes_reserved -= num_bytes;
5462 }
5463 spin_unlock(&cache->lock);
5464 spin_unlock(&space_info->lock);
5465 return ret;
5466}
5467
5468void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5469 struct btrfs_root *root)
5470{
5471 struct btrfs_fs_info *fs_info = root->fs_info;
5472 struct btrfs_caching_control *next;
5473 struct btrfs_caching_control *caching_ctl;
5474 struct btrfs_block_group_cache *cache;
5475 struct btrfs_space_info *space_info;
5476
5477 down_write(&fs_info->commit_root_sem);
5478
5479 list_for_each_entry_safe(caching_ctl, next,
5480 &fs_info->caching_block_groups, list) {
5481 cache = caching_ctl->block_group;
5482 if (block_group_cache_done(cache)) {
5483 cache->last_byte_to_unpin = (u64)-1;
5484 list_del_init(&caching_ctl->list);
5485 put_caching_control(caching_ctl);
5486 } else {
5487 cache->last_byte_to_unpin = caching_ctl->progress;
5488 }
5489 }
5490
5491 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5492 fs_info->pinned_extents = &fs_info->freed_extents[1];
5493 else
5494 fs_info->pinned_extents = &fs_info->freed_extents[0];
5495
5496 up_write(&fs_info->commit_root_sem);
5497
5498 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5499 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5500
5501 update_global_block_rsv(fs_info);
5502}
5503
5504static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5505{
5506 struct btrfs_fs_info *fs_info = root->fs_info;
5507 struct btrfs_block_group_cache *cache = NULL;
5508 struct btrfs_space_info *space_info;
5509 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5510 u64 len;
5511 bool readonly;
5512
5513 while (start <= end) {
5514 readonly = false;
5515 if (!cache ||
5516 start >= cache->key.objectid + cache->key.offset) {
5517 if (cache)
5518 btrfs_put_block_group(cache);
5519 cache = btrfs_lookup_block_group(fs_info, start);
5520 BUG_ON(!cache); /* Logic error */
5521 }
5522
5523 len = cache->key.objectid + cache->key.offset - start;
5524 len = min(len, end + 1 - start);
5525
5526 if (start < cache->last_byte_to_unpin) {
5527 len = min(len, cache->last_byte_to_unpin - start);
5528 btrfs_add_free_space(cache, start, len);
5529 }
5530
5531 start += len;
5532 space_info = cache->space_info;
5533
5534 spin_lock(&space_info->lock);
5535 spin_lock(&cache->lock);
5536 cache->pinned -= len;
5537 space_info->bytes_pinned -= len;
5538 if (cache->ro) {
5539 space_info->bytes_readonly += len;
5540 readonly = true;
5541 }
5542 spin_unlock(&cache->lock);
5543 if (!readonly && global_rsv->space_info == space_info) {
5544 spin_lock(&global_rsv->lock);
5545 if (!global_rsv->full) {
5546 len = min(len, global_rsv->size -
5547 global_rsv->reserved);
5548 global_rsv->reserved += len;
5549 space_info->bytes_may_use += len;
5550 if (global_rsv->reserved >= global_rsv->size)
5551 global_rsv->full = 1;
5552 }
5553 spin_unlock(&global_rsv->lock);
5554 }
5555 spin_unlock(&space_info->lock);
5556 }
5557
5558 if (cache)
5559 btrfs_put_block_group(cache);
5560 return 0;
5561}
5562
5563int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5564 struct btrfs_root *root)
5565{
5566 struct btrfs_fs_info *fs_info = root->fs_info;
5567 struct extent_io_tree *unpin;
5568 u64 start;
5569 u64 end;
5570 int ret;
5571
5572 if (trans->aborted)
5573 return 0;
5574
5575 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5576 unpin = &fs_info->freed_extents[1];
5577 else
5578 unpin = &fs_info->freed_extents[0];
5579
5580 while (1) {
5581 ret = find_first_extent_bit(unpin, 0, &start, &end,
5582 EXTENT_DIRTY, NULL);
5583 if (ret)
5584 break;
5585
5586 if (btrfs_test_opt(root, DISCARD))
5587 ret = btrfs_discard_extent(root, start,
5588 end + 1 - start, NULL);
5589
5590 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5591 unpin_extent_range(root, start, end);
5592 cond_resched();
5593 }
5594
5595 return 0;
5596}
5597
5598static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5599 u64 owner, u64 root_objectid)
5600{
5601 struct btrfs_space_info *space_info;
5602 u64 flags;
5603
5604 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5605 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5606 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5607 else
5608 flags = BTRFS_BLOCK_GROUP_METADATA;
5609 } else {
5610 flags = BTRFS_BLOCK_GROUP_DATA;
5611 }
5612
5613 space_info = __find_space_info(fs_info, flags);
5614 BUG_ON(!space_info); /* Logic bug */
5615 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5616}
5617
5618
5619static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5620 struct btrfs_root *root,
5621 u64 bytenr, u64 num_bytes, u64 parent,
5622 u64 root_objectid, u64 owner_objectid,
5623 u64 owner_offset, int refs_to_drop,
5624 struct btrfs_delayed_extent_op *extent_op)
5625{
5626 struct btrfs_key key;
5627 struct btrfs_path *path;
5628 struct btrfs_fs_info *info = root->fs_info;
5629 struct btrfs_root *extent_root = info->extent_root;
5630 struct extent_buffer *leaf;
5631 struct btrfs_extent_item *ei;
5632 struct btrfs_extent_inline_ref *iref;
5633 int ret;
5634 int is_data;
5635 int extent_slot = 0;
5636 int found_extent = 0;
5637 int num_to_del = 1;
5638 u32 item_size;
5639 u64 refs;
5640 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5641 SKINNY_METADATA);
5642
5643 path = btrfs_alloc_path();
5644 if (!path)
5645 return -ENOMEM;
5646
5647 path->reada = 1;
5648 path->leave_spinning = 1;
5649
5650 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5651 BUG_ON(!is_data && refs_to_drop != 1);
5652
5653 if (is_data)
5654 skinny_metadata = 0;
5655
5656 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5657 bytenr, num_bytes, parent,
5658 root_objectid, owner_objectid,
5659 owner_offset);
5660 if (ret == 0) {
5661 extent_slot = path->slots[0];
5662 while (extent_slot >= 0) {
5663 btrfs_item_key_to_cpu(path->nodes[0], &key,
5664 extent_slot);
5665 if (key.objectid != bytenr)
5666 break;
5667 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5668 key.offset == num_bytes) {
5669 found_extent = 1;
5670 break;
5671 }
5672 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5673 key.offset == owner_objectid) {
5674 found_extent = 1;
5675 break;
5676 }
5677 if (path->slots[0] - extent_slot > 5)
5678 break;
5679 extent_slot--;
5680 }
5681#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5682 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5683 if (found_extent && item_size < sizeof(*ei))
5684 found_extent = 0;
5685#endif
5686 if (!found_extent) {
5687 BUG_ON(iref);
5688 ret = remove_extent_backref(trans, extent_root, path,
5689 NULL, refs_to_drop,
5690 is_data);
5691 if (ret) {
5692 btrfs_abort_transaction(trans, extent_root, ret);
5693 goto out;
5694 }
5695 btrfs_release_path(path);
5696 path->leave_spinning = 1;
5697
5698 key.objectid = bytenr;
5699 key.type = BTRFS_EXTENT_ITEM_KEY;
5700 key.offset = num_bytes;
5701
5702 if (!is_data && skinny_metadata) {
5703 key.type = BTRFS_METADATA_ITEM_KEY;
5704 key.offset = owner_objectid;
5705 }
5706
5707 ret = btrfs_search_slot(trans, extent_root,
5708 &key, path, -1, 1);
5709 if (ret > 0 && skinny_metadata && path->slots[0]) {
5710 /*
5711 * Couldn't find our skinny metadata item,
5712 * see if we have ye olde extent item.
5713 */
5714 path->slots[0]--;
5715 btrfs_item_key_to_cpu(path->nodes[0], &key,
5716 path->slots[0]);
5717 if (key.objectid == bytenr &&
5718 key.type == BTRFS_EXTENT_ITEM_KEY &&
5719 key.offset == num_bytes)
5720 ret = 0;
5721 }
5722
5723 if (ret > 0 && skinny_metadata) {
5724 skinny_metadata = false;
5725 key.objectid = bytenr;
5726 key.type = BTRFS_EXTENT_ITEM_KEY;
5727 key.offset = num_bytes;
5728 btrfs_release_path(path);
5729 ret = btrfs_search_slot(trans, extent_root,
5730 &key, path, -1, 1);
5731 }
5732
5733 if (ret) {
5734 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5735 ret, bytenr);
5736 if (ret > 0)
5737 btrfs_print_leaf(extent_root,
5738 path->nodes[0]);
5739 }
5740 if (ret < 0) {
5741 btrfs_abort_transaction(trans, extent_root, ret);
5742 goto out;
5743 }
5744 extent_slot = path->slots[0];
5745 }
5746 } else if (WARN_ON(ret == -ENOENT)) {
5747 btrfs_print_leaf(extent_root, path->nodes[0]);
5748 btrfs_err(info,
5749 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5750 bytenr, parent, root_objectid, owner_objectid,
5751 owner_offset);
5752 btrfs_abort_transaction(trans, extent_root, ret);
5753 goto out;
5754 } else {
5755 btrfs_abort_transaction(trans, extent_root, ret);
5756 goto out;
5757 }
5758
5759 leaf = path->nodes[0];
5760 item_size = btrfs_item_size_nr(leaf, extent_slot);
5761#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5762 if (item_size < sizeof(*ei)) {
5763 BUG_ON(found_extent || extent_slot != path->slots[0]);
5764 ret = convert_extent_item_v0(trans, extent_root, path,
5765 owner_objectid, 0);
5766 if (ret < 0) {
5767 btrfs_abort_transaction(trans, extent_root, ret);
5768 goto out;
5769 }
5770
5771 btrfs_release_path(path);
5772 path->leave_spinning = 1;
5773
5774 key.objectid = bytenr;
5775 key.type = BTRFS_EXTENT_ITEM_KEY;
5776 key.offset = num_bytes;
5777
5778 ret = btrfs_search_slot(trans, extent_root, &key, path,
5779 -1, 1);
5780 if (ret) {
5781 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5782 ret, bytenr);
5783 btrfs_print_leaf(extent_root, path->nodes[0]);
5784 }
5785 if (ret < 0) {
5786 btrfs_abort_transaction(trans, extent_root, ret);
5787 goto out;
5788 }
5789
5790 extent_slot = path->slots[0];
5791 leaf = path->nodes[0];
5792 item_size = btrfs_item_size_nr(leaf, extent_slot);
5793 }
5794#endif
5795 BUG_ON(item_size < sizeof(*ei));
5796 ei = btrfs_item_ptr(leaf, extent_slot,
5797 struct btrfs_extent_item);
5798 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5799 key.type == BTRFS_EXTENT_ITEM_KEY) {
5800 struct btrfs_tree_block_info *bi;
5801 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5802 bi = (struct btrfs_tree_block_info *)(ei + 1);
5803 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5804 }
5805
5806 refs = btrfs_extent_refs(leaf, ei);
5807 if (refs < refs_to_drop) {
5808 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5809 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5810 ret = -EINVAL;
5811 btrfs_abort_transaction(trans, extent_root, ret);
5812 goto out;
5813 }
5814 refs -= refs_to_drop;
5815
5816 if (refs > 0) {
5817 if (extent_op)
5818 __run_delayed_extent_op(extent_op, leaf, ei);
5819 /*
5820 * In the case of inline back ref, reference count will
5821 * be updated by remove_extent_backref
5822 */
5823 if (iref) {
5824 BUG_ON(!found_extent);
5825 } else {
5826 btrfs_set_extent_refs(leaf, ei, refs);
5827 btrfs_mark_buffer_dirty(leaf);
5828 }
5829 if (found_extent) {
5830 ret = remove_extent_backref(trans, extent_root, path,
5831 iref, refs_to_drop,
5832 is_data);
5833 if (ret) {
5834 btrfs_abort_transaction(trans, extent_root, ret);
5835 goto out;
5836 }
5837 }
5838 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5839 root_objectid);
5840 } else {
5841 if (found_extent) {
5842 BUG_ON(is_data && refs_to_drop !=
5843 extent_data_ref_count(root, path, iref));
5844 if (iref) {
5845 BUG_ON(path->slots[0] != extent_slot);
5846 } else {
5847 BUG_ON(path->slots[0] != extent_slot + 1);
5848 path->slots[0] = extent_slot;
5849 num_to_del = 2;
5850 }
5851 }
5852
5853 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5854 num_to_del);
5855 if (ret) {
5856 btrfs_abort_transaction(trans, extent_root, ret);
5857 goto out;
5858 }
5859 btrfs_release_path(path);
5860
5861 if (is_data) {
5862 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5863 if (ret) {
5864 btrfs_abort_transaction(trans, extent_root, ret);
5865 goto out;
5866 }
5867 }
5868
5869 ret = update_block_group(root, bytenr, num_bytes, 0);
5870 if (ret) {
5871 btrfs_abort_transaction(trans, extent_root, ret);
5872 goto out;
5873 }
5874 }
5875out:
5876 btrfs_free_path(path);
5877 return ret;
5878}
5879
5880/*
5881 * when we free an block, it is possible (and likely) that we free the last
5882 * delayed ref for that extent as well. This searches the delayed ref tree for
5883 * a given extent, and if there are no other delayed refs to be processed, it
5884 * removes it from the tree.
5885 */
5886static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5887 struct btrfs_root *root, u64 bytenr)
5888{
5889 struct btrfs_delayed_ref_head *head;
5890 struct btrfs_delayed_ref_root *delayed_refs;
5891 int ret = 0;
5892
5893 delayed_refs = &trans->transaction->delayed_refs;
5894 spin_lock(&delayed_refs->lock);
5895 head = btrfs_find_delayed_ref_head(trans, bytenr);
5896 if (!head)
5897 goto out_delayed_unlock;
5898
5899 spin_lock(&head->lock);
5900 if (rb_first(&head->ref_root))
5901 goto out;
5902
5903 if (head->extent_op) {
5904 if (!head->must_insert_reserved)
5905 goto out;
5906 btrfs_free_delayed_extent_op(head->extent_op);
5907 head->extent_op = NULL;
5908 }
5909
5910 /*
5911 * waiting for the lock here would deadlock. If someone else has it
5912 * locked they are already in the process of dropping it anyway
5913 */
5914 if (!mutex_trylock(&head->mutex))
5915 goto out;
5916
5917 /*
5918 * at this point we have a head with no other entries. Go
5919 * ahead and process it.
5920 */
5921 head->node.in_tree = 0;
5922 rb_erase(&head->href_node, &delayed_refs->href_root);
5923
5924 atomic_dec(&delayed_refs->num_entries);
5925
5926 /*
5927 * we don't take a ref on the node because we're removing it from the
5928 * tree, so we just steal the ref the tree was holding.
5929 */
5930 delayed_refs->num_heads--;
5931 if (head->processing == 0)
5932 delayed_refs->num_heads_ready--;
5933 head->processing = 0;
5934 spin_unlock(&head->lock);
5935 spin_unlock(&delayed_refs->lock);
5936
5937 BUG_ON(head->extent_op);
5938 if (head->must_insert_reserved)
5939 ret = 1;
5940
5941 mutex_unlock(&head->mutex);
5942 btrfs_put_delayed_ref(&head->node);
5943 return ret;
5944out:
5945 spin_unlock(&head->lock);
5946
5947out_delayed_unlock:
5948 spin_unlock(&delayed_refs->lock);
5949 return 0;
5950}
5951
5952void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5953 struct btrfs_root *root,
5954 struct extent_buffer *buf,
5955 u64 parent, int last_ref)
5956{
5957 struct btrfs_block_group_cache *cache = NULL;
5958 int pin = 1;
5959 int ret;
5960
5961 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5962 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5963 buf->start, buf->len,
5964 parent, root->root_key.objectid,
5965 btrfs_header_level(buf),
5966 BTRFS_DROP_DELAYED_REF, NULL, 0);
5967 BUG_ON(ret); /* -ENOMEM */
5968 }
5969
5970 if (!last_ref)
5971 return;
5972
5973 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5974
5975 if (btrfs_header_generation(buf) == trans->transid) {
5976 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5977 ret = check_ref_cleanup(trans, root, buf->start);
5978 if (!ret)
5979 goto out;
5980 }
5981
5982 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5983 pin_down_extent(root, cache, buf->start, buf->len, 1);
5984 goto out;
5985 }
5986
5987 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5988
5989 btrfs_add_free_space(cache, buf->start, buf->len);
5990 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5991 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5992 pin = 0;
5993 }
5994out:
5995 if (pin)
5996 add_pinned_bytes(root->fs_info, buf->len,
5997 btrfs_header_level(buf),
5998 root->root_key.objectid);
5999
6000 /*
6001 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6002 * anymore.
6003 */
6004 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6005 btrfs_put_block_group(cache);
6006}
6007
6008/* Can return -ENOMEM */
6009int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6010 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6011 u64 owner, u64 offset, int for_cow)
6012{
6013 int ret;
6014 struct btrfs_fs_info *fs_info = root->fs_info;
6015
6016 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6017
6018 /*
6019 * tree log blocks never actually go into the extent allocation
6020 * tree, just update pinning info and exit early.
6021 */
6022 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6023 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6024 /* unlocks the pinned mutex */
6025 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6026 ret = 0;
6027 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6028 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6029 num_bytes,
6030 parent, root_objectid, (int)owner,
6031 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6032 } else {
6033 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6034 num_bytes,
6035 parent, root_objectid, owner,
6036 offset, BTRFS_DROP_DELAYED_REF,
6037 NULL, for_cow);
6038 }
6039 return ret;
6040}
6041
6042static u64 stripe_align(struct btrfs_root *root,
6043 struct btrfs_block_group_cache *cache,
6044 u64 val, u64 num_bytes)
6045{
6046 u64 ret = ALIGN(val, root->stripesize);
6047 return ret;
6048}
6049
6050/*
6051 * when we wait for progress in the block group caching, its because
6052 * our allocation attempt failed at least once. So, we must sleep
6053 * and let some progress happen before we try again.
6054 *
6055 * This function will sleep at least once waiting for new free space to
6056 * show up, and then it will check the block group free space numbers
6057 * for our min num_bytes. Another option is to have it go ahead
6058 * and look in the rbtree for a free extent of a given size, but this
6059 * is a good start.
6060 *
6061 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6062 * any of the information in this block group.
6063 */
6064static noinline void
6065wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6066 u64 num_bytes)
6067{
6068 struct btrfs_caching_control *caching_ctl;
6069
6070 caching_ctl = get_caching_control(cache);
6071 if (!caching_ctl)
6072 return;
6073
6074 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6075 (cache->free_space_ctl->free_space >= num_bytes));
6076
6077 put_caching_control(caching_ctl);
6078}
6079
6080static noinline int
6081wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6082{
6083 struct btrfs_caching_control *caching_ctl;
6084 int ret = 0;
6085
6086 caching_ctl = get_caching_control(cache);
6087 if (!caching_ctl)
6088 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6089
6090 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6091 if (cache->cached == BTRFS_CACHE_ERROR)
6092 ret = -EIO;
6093 put_caching_control(caching_ctl);
6094 return ret;
6095}
6096
6097int __get_raid_index(u64 flags)
6098{
6099 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6100 return BTRFS_RAID_RAID10;
6101 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6102 return BTRFS_RAID_RAID1;
6103 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6104 return BTRFS_RAID_DUP;
6105 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6106 return BTRFS_RAID_RAID0;
6107 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6108 return BTRFS_RAID_RAID5;
6109 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6110 return BTRFS_RAID_RAID6;
6111
6112 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6113}
6114
6115int get_block_group_index(struct btrfs_block_group_cache *cache)
6116{
6117 return __get_raid_index(cache->flags);
6118}
6119
6120static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6121 [BTRFS_RAID_RAID10] = "raid10",
6122 [BTRFS_RAID_RAID1] = "raid1",
6123 [BTRFS_RAID_DUP] = "dup",
6124 [BTRFS_RAID_RAID0] = "raid0",
6125 [BTRFS_RAID_SINGLE] = "single",
6126 [BTRFS_RAID_RAID5] = "raid5",
6127 [BTRFS_RAID_RAID6] = "raid6",
6128};
6129
6130static const char *get_raid_name(enum btrfs_raid_types type)
6131{
6132 if (type >= BTRFS_NR_RAID_TYPES)
6133 return NULL;
6134
6135 return btrfs_raid_type_names[type];
6136}
6137
6138enum btrfs_loop_type {
6139 LOOP_CACHING_NOWAIT = 0,
6140 LOOP_CACHING_WAIT = 1,
6141 LOOP_ALLOC_CHUNK = 2,
6142 LOOP_NO_EMPTY_SIZE = 3,
6143};
6144
6145/*
6146 * walks the btree of allocated extents and find a hole of a given size.
6147 * The key ins is changed to record the hole:
6148 * ins->objectid == start position
6149 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6150 * ins->offset == the size of the hole.
6151 * Any available blocks before search_start are skipped.
6152 *
6153 * If there is no suitable free space, we will record the max size of
6154 * the free space extent currently.
6155 */
6156static noinline int find_free_extent(struct btrfs_root *orig_root,
6157 u64 num_bytes, u64 empty_size,
6158 u64 hint_byte, struct btrfs_key *ins,
6159 u64 flags)
6160{
6161 int ret = 0;
6162 struct btrfs_root *root = orig_root->fs_info->extent_root;
6163 struct btrfs_free_cluster *last_ptr = NULL;
6164 struct btrfs_block_group_cache *block_group = NULL;
6165 u64 search_start = 0;
6166 u64 max_extent_size = 0;
6167 int empty_cluster = 2 * 1024 * 1024;
6168 struct btrfs_space_info *space_info;
6169 int loop = 0;
6170 int index = __get_raid_index(flags);
6171 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6172 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6173 bool failed_cluster_refill = false;
6174 bool failed_alloc = false;
6175 bool use_cluster = true;
6176 bool have_caching_bg = false;
6177
6178 WARN_ON(num_bytes < root->sectorsize);
6179 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6180 ins->objectid = 0;
6181 ins->offset = 0;
6182
6183 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6184
6185 space_info = __find_space_info(root->fs_info, flags);
6186 if (!space_info) {
6187 btrfs_err(root->fs_info, "No space info for %llu", flags);
6188 return -ENOSPC;
6189 }
6190
6191 /*
6192 * If the space info is for both data and metadata it means we have a
6193 * small filesystem and we can't use the clustering stuff.
6194 */
6195 if (btrfs_mixed_space_info(space_info))
6196 use_cluster = false;
6197
6198 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6199 last_ptr = &root->fs_info->meta_alloc_cluster;
6200 if (!btrfs_test_opt(root, SSD))
6201 empty_cluster = 64 * 1024;
6202 }
6203
6204 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6205 btrfs_test_opt(root, SSD)) {
6206 last_ptr = &root->fs_info->data_alloc_cluster;
6207 }
6208
6209 if (last_ptr) {
6210 spin_lock(&last_ptr->lock);
6211 if (last_ptr->block_group)
6212 hint_byte = last_ptr->window_start;
6213 spin_unlock(&last_ptr->lock);
6214 }
6215
6216 search_start = max(search_start, first_logical_byte(root, 0));
6217 search_start = max(search_start, hint_byte);
6218
6219 if (!last_ptr)
6220 empty_cluster = 0;
6221
6222 if (search_start == hint_byte) {
6223 block_group = btrfs_lookup_block_group(root->fs_info,
6224 search_start);
6225 /*
6226 * we don't want to use the block group if it doesn't match our
6227 * allocation bits, or if its not cached.
6228 *
6229 * However if we are re-searching with an ideal block group
6230 * picked out then we don't care that the block group is cached.
6231 */
6232 if (block_group && block_group_bits(block_group, flags) &&
6233 block_group->cached != BTRFS_CACHE_NO) {
6234 down_read(&space_info->groups_sem);
6235 if (list_empty(&block_group->list) ||
6236 block_group->ro) {
6237 /*
6238 * someone is removing this block group,
6239 * we can't jump into the have_block_group
6240 * target because our list pointers are not
6241 * valid
6242 */
6243 btrfs_put_block_group(block_group);
6244 up_read(&space_info->groups_sem);
6245 } else {
6246 index = get_block_group_index(block_group);
6247 goto have_block_group;
6248 }
6249 } else if (block_group) {
6250 btrfs_put_block_group(block_group);
6251 }
6252 }
6253search:
6254 have_caching_bg = false;
6255 down_read(&space_info->groups_sem);
6256 list_for_each_entry(block_group, &space_info->block_groups[index],
6257 list) {
6258 u64 offset;
6259 int cached;
6260
6261 btrfs_get_block_group(block_group);
6262 search_start = block_group->key.objectid;
6263
6264 /*
6265 * this can happen if we end up cycling through all the
6266 * raid types, but we want to make sure we only allocate
6267 * for the proper type.
6268 */
6269 if (!block_group_bits(block_group, flags)) {
6270 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6271 BTRFS_BLOCK_GROUP_RAID1 |
6272 BTRFS_BLOCK_GROUP_RAID5 |
6273 BTRFS_BLOCK_GROUP_RAID6 |
6274 BTRFS_BLOCK_GROUP_RAID10;
6275
6276 /*
6277 * if they asked for extra copies and this block group
6278 * doesn't provide them, bail. This does allow us to
6279 * fill raid0 from raid1.
6280 */
6281 if ((flags & extra) && !(block_group->flags & extra))
6282 goto loop;
6283 }
6284
6285have_block_group:
6286 cached = block_group_cache_done(block_group);
6287 if (unlikely(!cached)) {
6288 ret = cache_block_group(block_group, 0);
6289 BUG_ON(ret < 0);
6290 ret = 0;
6291 }
6292
6293 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6294 goto loop;
6295 if (unlikely(block_group->ro))
6296 goto loop;
6297
6298 /*
6299 * Ok we want to try and use the cluster allocator, so
6300 * lets look there
6301 */
6302 if (last_ptr) {
6303 struct btrfs_block_group_cache *used_block_group;
6304 unsigned long aligned_cluster;
6305 /*
6306 * the refill lock keeps out other
6307 * people trying to start a new cluster
6308 */
6309 spin_lock(&last_ptr->refill_lock);
6310 used_block_group = last_ptr->block_group;
6311 if (used_block_group != block_group &&
6312 (!used_block_group ||
6313 used_block_group->ro ||
6314 !block_group_bits(used_block_group, flags)))
6315 goto refill_cluster;
6316
6317 if (used_block_group != block_group)
6318 btrfs_get_block_group(used_block_group);
6319
6320 offset = btrfs_alloc_from_cluster(used_block_group,
6321 last_ptr,
6322 num_bytes,
6323 used_block_group->key.objectid,
6324 &max_extent_size);
6325 if (offset) {
6326 /* we have a block, we're done */
6327 spin_unlock(&last_ptr->refill_lock);
6328 trace_btrfs_reserve_extent_cluster(root,
6329 used_block_group,
6330 search_start, num_bytes);
6331 if (used_block_group != block_group) {
6332 btrfs_put_block_group(block_group);
6333 block_group = used_block_group;
6334 }
6335 goto checks;
6336 }
6337
6338 WARN_ON(last_ptr->block_group != used_block_group);
6339 if (used_block_group != block_group)
6340 btrfs_put_block_group(used_block_group);
6341refill_cluster:
6342 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6343 * set up a new clusters, so lets just skip it
6344 * and let the allocator find whatever block
6345 * it can find. If we reach this point, we
6346 * will have tried the cluster allocator
6347 * plenty of times and not have found
6348 * anything, so we are likely way too
6349 * fragmented for the clustering stuff to find
6350 * anything.
6351 *
6352 * However, if the cluster is taken from the
6353 * current block group, release the cluster
6354 * first, so that we stand a better chance of
6355 * succeeding in the unclustered
6356 * allocation. */
6357 if (loop >= LOOP_NO_EMPTY_SIZE &&
6358 last_ptr->block_group != block_group) {
6359 spin_unlock(&last_ptr->refill_lock);
6360 goto unclustered_alloc;
6361 }
6362
6363 /*
6364 * this cluster didn't work out, free it and
6365 * start over
6366 */
6367 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6368
6369 if (loop >= LOOP_NO_EMPTY_SIZE) {
6370 spin_unlock(&last_ptr->refill_lock);
6371 goto unclustered_alloc;
6372 }
6373
6374 aligned_cluster = max_t(unsigned long,
6375 empty_cluster + empty_size,
6376 block_group->full_stripe_len);
6377
6378 /* allocate a cluster in this block group */
6379 ret = btrfs_find_space_cluster(root, block_group,
6380 last_ptr, search_start,
6381 num_bytes,
6382 aligned_cluster);
6383 if (ret == 0) {
6384 /*
6385 * now pull our allocation out of this
6386 * cluster
6387 */
6388 offset = btrfs_alloc_from_cluster(block_group,
6389 last_ptr,
6390 num_bytes,
6391 search_start,
6392 &max_extent_size);
6393 if (offset) {
6394 /* we found one, proceed */
6395 spin_unlock(&last_ptr->refill_lock);
6396 trace_btrfs_reserve_extent_cluster(root,
6397 block_group, search_start,
6398 num_bytes);
6399 goto checks;
6400 }
6401 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6402 && !failed_cluster_refill) {
6403 spin_unlock(&last_ptr->refill_lock);
6404
6405 failed_cluster_refill = true;
6406 wait_block_group_cache_progress(block_group,
6407 num_bytes + empty_cluster + empty_size);
6408 goto have_block_group;
6409 }
6410
6411 /*
6412 * at this point we either didn't find a cluster
6413 * or we weren't able to allocate a block from our
6414 * cluster. Free the cluster we've been trying
6415 * to use, and go to the next block group
6416 */
6417 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6418 spin_unlock(&last_ptr->refill_lock);
6419 goto loop;
6420 }
6421
6422unclustered_alloc:
6423 spin_lock(&block_group->free_space_ctl->tree_lock);
6424 if (cached &&
6425 block_group->free_space_ctl->free_space <
6426 num_bytes + empty_cluster + empty_size) {
6427 if (block_group->free_space_ctl->free_space >
6428 max_extent_size)
6429 max_extent_size =
6430 block_group->free_space_ctl->free_space;
6431 spin_unlock(&block_group->free_space_ctl->tree_lock);
6432 goto loop;
6433 }
6434 spin_unlock(&block_group->free_space_ctl->tree_lock);
6435
6436 offset = btrfs_find_space_for_alloc(block_group, search_start,
6437 num_bytes, empty_size,
6438 &max_extent_size);
6439 /*
6440 * If we didn't find a chunk, and we haven't failed on this
6441 * block group before, and this block group is in the middle of
6442 * caching and we are ok with waiting, then go ahead and wait
6443 * for progress to be made, and set failed_alloc to true.
6444 *
6445 * If failed_alloc is true then we've already waited on this
6446 * block group once and should move on to the next block group.
6447 */
6448 if (!offset && !failed_alloc && !cached &&
6449 loop > LOOP_CACHING_NOWAIT) {
6450 wait_block_group_cache_progress(block_group,
6451 num_bytes + empty_size);
6452 failed_alloc = true;
6453 goto have_block_group;
6454 } else if (!offset) {
6455 if (!cached)
6456 have_caching_bg = true;
6457 goto loop;
6458 }
6459checks:
6460 search_start = stripe_align(root, block_group,
6461 offset, num_bytes);
6462
6463 /* move on to the next group */
6464 if (search_start + num_bytes >
6465 block_group->key.objectid + block_group->key.offset) {
6466 btrfs_add_free_space(block_group, offset, num_bytes);
6467 goto loop;
6468 }
6469
6470 if (offset < search_start)
6471 btrfs_add_free_space(block_group, offset,
6472 search_start - offset);
6473 BUG_ON(offset > search_start);
6474
6475 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6476 alloc_type);
6477 if (ret == -EAGAIN) {
6478 btrfs_add_free_space(block_group, offset, num_bytes);
6479 goto loop;
6480 }
6481
6482 /* we are all good, lets return */
6483 ins->objectid = search_start;
6484 ins->offset = num_bytes;
6485
6486 trace_btrfs_reserve_extent(orig_root, block_group,
6487 search_start, num_bytes);
6488 btrfs_put_block_group(block_group);
6489 break;
6490loop:
6491 failed_cluster_refill = false;
6492 failed_alloc = false;
6493 BUG_ON(index != get_block_group_index(block_group));
6494 btrfs_put_block_group(block_group);
6495 }
6496 up_read(&space_info->groups_sem);
6497
6498 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6499 goto search;
6500
6501 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6502 goto search;
6503
6504 /*
6505 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6506 * caching kthreads as we move along
6507 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6508 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6509 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6510 * again
6511 */
6512 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6513 index = 0;
6514 loop++;
6515 if (loop == LOOP_ALLOC_CHUNK) {
6516 struct btrfs_trans_handle *trans;
6517
6518 trans = btrfs_join_transaction(root);
6519 if (IS_ERR(trans)) {
6520 ret = PTR_ERR(trans);
6521 goto out;
6522 }
6523
6524 ret = do_chunk_alloc(trans, root, flags,
6525 CHUNK_ALLOC_FORCE);
6526 /*
6527 * Do not bail out on ENOSPC since we
6528 * can do more things.
6529 */
6530 if (ret < 0 && ret != -ENOSPC)
6531 btrfs_abort_transaction(trans,
6532 root, ret);
6533 else
6534 ret = 0;
6535 btrfs_end_transaction(trans, root);
6536 if (ret)
6537 goto out;
6538 }
6539
6540 if (loop == LOOP_NO_EMPTY_SIZE) {
6541 empty_size = 0;
6542 empty_cluster = 0;
6543 }
6544
6545 goto search;
6546 } else if (!ins->objectid) {
6547 ret = -ENOSPC;
6548 } else if (ins->objectid) {
6549 ret = 0;
6550 }
6551out:
6552 if (ret == -ENOSPC)
6553 ins->offset = max_extent_size;
6554 return ret;
6555}
6556
6557static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6558 int dump_block_groups)
6559{
6560 struct btrfs_block_group_cache *cache;
6561 int index = 0;
6562
6563 spin_lock(&info->lock);
6564 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6565 info->flags,
6566 info->total_bytes - info->bytes_used - info->bytes_pinned -
6567 info->bytes_reserved - info->bytes_readonly,
6568 (info->full) ? "" : "not ");
6569 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6570 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6571 info->total_bytes, info->bytes_used, info->bytes_pinned,
6572 info->bytes_reserved, info->bytes_may_use,
6573 info->bytes_readonly);
6574 spin_unlock(&info->lock);
6575
6576 if (!dump_block_groups)
6577 return;
6578
6579 down_read(&info->groups_sem);
6580again:
6581 list_for_each_entry(cache, &info->block_groups[index], list) {
6582 spin_lock(&cache->lock);
6583 printk(KERN_INFO "BTRFS: "
6584 "block group %llu has %llu bytes, "
6585 "%llu used %llu pinned %llu reserved %s\n",
6586 cache->key.objectid, cache->key.offset,
6587 btrfs_block_group_used(&cache->item), cache->pinned,
6588 cache->reserved, cache->ro ? "[readonly]" : "");
6589 btrfs_dump_free_space(cache, bytes);
6590 spin_unlock(&cache->lock);
6591 }
6592 if (++index < BTRFS_NR_RAID_TYPES)
6593 goto again;
6594 up_read(&info->groups_sem);
6595}
6596
6597int btrfs_reserve_extent(struct btrfs_root *root,
6598 u64 num_bytes, u64 min_alloc_size,
6599 u64 empty_size, u64 hint_byte,
6600 struct btrfs_key *ins, int is_data)
6601{
6602 bool final_tried = false;
6603 u64 flags;
6604 int ret;
6605
6606 flags = btrfs_get_alloc_profile(root, is_data);
6607again:
6608 WARN_ON(num_bytes < root->sectorsize);
6609 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6610 flags);
6611
6612 if (ret == -ENOSPC) {
6613 if (!final_tried && ins->offset) {
6614 num_bytes = min(num_bytes >> 1, ins->offset);
6615 num_bytes = round_down(num_bytes, root->sectorsize);
6616 num_bytes = max(num_bytes, min_alloc_size);
6617 if (num_bytes == min_alloc_size)
6618 final_tried = true;
6619 goto again;
6620 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6621 struct btrfs_space_info *sinfo;
6622
6623 sinfo = __find_space_info(root->fs_info, flags);
6624 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6625 flags, num_bytes);
6626 if (sinfo)
6627 dump_space_info(sinfo, num_bytes, 1);
6628 }
6629 }
6630
6631 return ret;
6632}
6633
6634static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6635 u64 start, u64 len, int pin)
6636{
6637 struct btrfs_block_group_cache *cache;
6638 int ret = 0;
6639
6640 cache = btrfs_lookup_block_group(root->fs_info, start);
6641 if (!cache) {
6642 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6643 start);
6644 return -ENOSPC;
6645 }
6646
6647 if (btrfs_test_opt(root, DISCARD))
6648 ret = btrfs_discard_extent(root, start, len, NULL);
6649
6650 if (pin)
6651 pin_down_extent(root, cache, start, len, 1);
6652 else {
6653 btrfs_add_free_space(cache, start, len);
6654 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6655 }
6656 btrfs_put_block_group(cache);
6657
6658 trace_btrfs_reserved_extent_free(root, start, len);
6659
6660 return ret;
6661}
6662
6663int btrfs_free_reserved_extent(struct btrfs_root *root,
6664 u64 start, u64 len)
6665{
6666 return __btrfs_free_reserved_extent(root, start, len, 0);
6667}
6668
6669int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6670 u64 start, u64 len)
6671{
6672 return __btrfs_free_reserved_extent(root, start, len, 1);
6673}
6674
6675static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6676 struct btrfs_root *root,
6677 u64 parent, u64 root_objectid,
6678 u64 flags, u64 owner, u64 offset,
6679 struct btrfs_key *ins, int ref_mod)
6680{
6681 int ret;
6682 struct btrfs_fs_info *fs_info = root->fs_info;
6683 struct btrfs_extent_item *extent_item;
6684 struct btrfs_extent_inline_ref *iref;
6685 struct btrfs_path *path;
6686 struct extent_buffer *leaf;
6687 int type;
6688 u32 size;
6689
6690 if (parent > 0)
6691 type = BTRFS_SHARED_DATA_REF_KEY;
6692 else
6693 type = BTRFS_EXTENT_DATA_REF_KEY;
6694
6695 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6696
6697 path = btrfs_alloc_path();
6698 if (!path)
6699 return -ENOMEM;
6700
6701 path->leave_spinning = 1;
6702 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6703 ins, size);
6704 if (ret) {
6705 btrfs_free_path(path);
6706 return ret;
6707 }
6708
6709 leaf = path->nodes[0];
6710 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6711 struct btrfs_extent_item);
6712 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6713 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6714 btrfs_set_extent_flags(leaf, extent_item,
6715 flags | BTRFS_EXTENT_FLAG_DATA);
6716
6717 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6718 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6719 if (parent > 0) {
6720 struct btrfs_shared_data_ref *ref;
6721 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6723 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6724 } else {
6725 struct btrfs_extent_data_ref *ref;
6726 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6727 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6728 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6729 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6730 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6731 }
6732
6733 btrfs_mark_buffer_dirty(path->nodes[0]);
6734 btrfs_free_path(path);
6735
6736 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6737 if (ret) { /* -ENOENT, logic error */
6738 btrfs_err(fs_info, "update block group failed for %llu %llu",
6739 ins->objectid, ins->offset);
6740 BUG();
6741 }
6742 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6743 return ret;
6744}
6745
6746static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6747 struct btrfs_root *root,
6748 u64 parent, u64 root_objectid,
6749 u64 flags, struct btrfs_disk_key *key,
6750 int level, struct btrfs_key *ins)
6751{
6752 int ret;
6753 struct btrfs_fs_info *fs_info = root->fs_info;
6754 struct btrfs_extent_item *extent_item;
6755 struct btrfs_tree_block_info *block_info;
6756 struct btrfs_extent_inline_ref *iref;
6757 struct btrfs_path *path;
6758 struct extent_buffer *leaf;
6759 u32 size = sizeof(*extent_item) + sizeof(*iref);
6760 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6761 SKINNY_METADATA);
6762
6763 if (!skinny_metadata)
6764 size += sizeof(*block_info);
6765
6766 path = btrfs_alloc_path();
6767 if (!path) {
6768 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6769 root->leafsize);
6770 return -ENOMEM;
6771 }
6772
6773 path->leave_spinning = 1;
6774 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6775 ins, size);
6776 if (ret) {
6777 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6778 root->leafsize);
6779 btrfs_free_path(path);
6780 return ret;
6781 }
6782
6783 leaf = path->nodes[0];
6784 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6785 struct btrfs_extent_item);
6786 btrfs_set_extent_refs(leaf, extent_item, 1);
6787 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6788 btrfs_set_extent_flags(leaf, extent_item,
6789 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6790
6791 if (skinny_metadata) {
6792 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6793 } else {
6794 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6795 btrfs_set_tree_block_key(leaf, block_info, key);
6796 btrfs_set_tree_block_level(leaf, block_info, level);
6797 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6798 }
6799
6800 if (parent > 0) {
6801 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6802 btrfs_set_extent_inline_ref_type(leaf, iref,
6803 BTRFS_SHARED_BLOCK_REF_KEY);
6804 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6805 } else {
6806 btrfs_set_extent_inline_ref_type(leaf, iref,
6807 BTRFS_TREE_BLOCK_REF_KEY);
6808 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6809 }
6810
6811 btrfs_mark_buffer_dirty(leaf);
6812 btrfs_free_path(path);
6813
6814 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6815 if (ret) { /* -ENOENT, logic error */
6816 btrfs_err(fs_info, "update block group failed for %llu %llu",
6817 ins->objectid, ins->offset);
6818 BUG();
6819 }
6820
6821 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6822 return ret;
6823}
6824
6825int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6826 struct btrfs_root *root,
6827 u64 root_objectid, u64 owner,
6828 u64 offset, struct btrfs_key *ins)
6829{
6830 int ret;
6831
6832 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6833
6834 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6835 ins->offset, 0,
6836 root_objectid, owner, offset,
6837 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6838 return ret;
6839}
6840
6841/*
6842 * this is used by the tree logging recovery code. It records that
6843 * an extent has been allocated and makes sure to clear the free
6844 * space cache bits as well
6845 */
6846int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6847 struct btrfs_root *root,
6848 u64 root_objectid, u64 owner, u64 offset,
6849 struct btrfs_key *ins)
6850{
6851 int ret;
6852 struct btrfs_block_group_cache *block_group;
6853
6854 /*
6855 * Mixed block groups will exclude before processing the log so we only
6856 * need to do the exlude dance if this fs isn't mixed.
6857 */
6858 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6859 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6860 if (ret)
6861 return ret;
6862 }
6863
6864 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6865 if (!block_group)
6866 return -EINVAL;
6867
6868 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6869 RESERVE_ALLOC_NO_ACCOUNT);
6870 BUG_ON(ret); /* logic error */
6871 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6872 0, owner, offset, ins, 1);
6873 btrfs_put_block_group(block_group);
6874 return ret;
6875}
6876
6877static struct extent_buffer *
6878btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6879 u64 bytenr, u32 blocksize, int level)
6880{
6881 struct extent_buffer *buf;
6882
6883 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6884 if (!buf)
6885 return ERR_PTR(-ENOMEM);
6886 btrfs_set_header_generation(buf, trans->transid);
6887 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6888 btrfs_tree_lock(buf);
6889 clean_tree_block(trans, root, buf);
6890 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6891
6892 btrfs_set_lock_blocking(buf);
6893 btrfs_set_buffer_uptodate(buf);
6894
6895 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6896 /*
6897 * we allow two log transactions at a time, use different
6898 * EXENT bit to differentiate dirty pages.
6899 */
6900 if (root->log_transid % 2 == 0)
6901 set_extent_dirty(&root->dirty_log_pages, buf->start,
6902 buf->start + buf->len - 1, GFP_NOFS);
6903 else
6904 set_extent_new(&root->dirty_log_pages, buf->start,
6905 buf->start + buf->len - 1, GFP_NOFS);
6906 } else {
6907 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6908 buf->start + buf->len - 1, GFP_NOFS);
6909 }
6910 trans->blocks_used++;
6911 /* this returns a buffer locked for blocking */
6912 return buf;
6913}
6914
6915static struct btrfs_block_rsv *
6916use_block_rsv(struct btrfs_trans_handle *trans,
6917 struct btrfs_root *root, u32 blocksize)
6918{
6919 struct btrfs_block_rsv *block_rsv;
6920 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6921 int ret;
6922 bool global_updated = false;
6923
6924 block_rsv = get_block_rsv(trans, root);
6925
6926 if (unlikely(block_rsv->size == 0))
6927 goto try_reserve;
6928again:
6929 ret = block_rsv_use_bytes(block_rsv, blocksize);
6930 if (!ret)
6931 return block_rsv;
6932
6933 if (block_rsv->failfast)
6934 return ERR_PTR(ret);
6935
6936 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6937 global_updated = true;
6938 update_global_block_rsv(root->fs_info);
6939 goto again;
6940 }
6941
6942 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6943 static DEFINE_RATELIMIT_STATE(_rs,
6944 DEFAULT_RATELIMIT_INTERVAL * 10,
6945 /*DEFAULT_RATELIMIT_BURST*/ 1);
6946 if (__ratelimit(&_rs))
6947 WARN(1, KERN_DEBUG
6948 "BTRFS: block rsv returned %d\n", ret);
6949 }
6950try_reserve:
6951 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6952 BTRFS_RESERVE_NO_FLUSH);
6953 if (!ret)
6954 return block_rsv;
6955 /*
6956 * If we couldn't reserve metadata bytes try and use some from
6957 * the global reserve if its space type is the same as the global
6958 * reservation.
6959 */
6960 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6961 block_rsv->space_info == global_rsv->space_info) {
6962 ret = block_rsv_use_bytes(global_rsv, blocksize);
6963 if (!ret)
6964 return global_rsv;
6965 }
6966 return ERR_PTR(ret);
6967}
6968
6969static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6970 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6971{
6972 block_rsv_add_bytes(block_rsv, blocksize, 0);
6973 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6974}
6975
6976/*
6977 * finds a free extent and does all the dirty work required for allocation
6978 * returns the key for the extent through ins, and a tree buffer for
6979 * the first block of the extent through buf.
6980 *
6981 * returns the tree buffer or NULL.
6982 */
6983struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6984 struct btrfs_root *root, u32 blocksize,
6985 u64 parent, u64 root_objectid,
6986 struct btrfs_disk_key *key, int level,
6987 u64 hint, u64 empty_size)
6988{
6989 struct btrfs_key ins;
6990 struct btrfs_block_rsv *block_rsv;
6991 struct extent_buffer *buf;
6992 u64 flags = 0;
6993 int ret;
6994 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6995 SKINNY_METADATA);
6996
6997 block_rsv = use_block_rsv(trans, root, blocksize);
6998 if (IS_ERR(block_rsv))
6999 return ERR_CAST(block_rsv);
7000
7001 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7002 empty_size, hint, &ins, 0);
7003 if (ret) {
7004 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7005 return ERR_PTR(ret);
7006 }
7007
7008 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7009 blocksize, level);
7010 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7011
7012 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7013 if (parent == 0)
7014 parent = ins.objectid;
7015 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7016 } else
7017 BUG_ON(parent > 0);
7018
7019 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7020 struct btrfs_delayed_extent_op *extent_op;
7021 extent_op = btrfs_alloc_delayed_extent_op();
7022 BUG_ON(!extent_op); /* -ENOMEM */
7023 if (key)
7024 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7025 else
7026 memset(&extent_op->key, 0, sizeof(extent_op->key));
7027 extent_op->flags_to_set = flags;
7028 if (skinny_metadata)
7029 extent_op->update_key = 0;
7030 else
7031 extent_op->update_key = 1;
7032 extent_op->update_flags = 1;
7033 extent_op->is_data = 0;
7034 extent_op->level = level;
7035
7036 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7037 ins.objectid,
7038 ins.offset, parent, root_objectid,
7039 level, BTRFS_ADD_DELAYED_EXTENT,
7040 extent_op, 0);
7041 BUG_ON(ret); /* -ENOMEM */
7042 }
7043 return buf;
7044}
7045
7046struct walk_control {
7047 u64 refs[BTRFS_MAX_LEVEL];
7048 u64 flags[BTRFS_MAX_LEVEL];
7049 struct btrfs_key update_progress;
7050 int stage;
7051 int level;
7052 int shared_level;
7053 int update_ref;
7054 int keep_locks;
7055 int reada_slot;
7056 int reada_count;
7057 int for_reloc;
7058};
7059
7060#define DROP_REFERENCE 1
7061#define UPDATE_BACKREF 2
7062
7063static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7064 struct btrfs_root *root,
7065 struct walk_control *wc,
7066 struct btrfs_path *path)
7067{
7068 u64 bytenr;
7069 u64 generation;
7070 u64 refs;
7071 u64 flags;
7072 u32 nritems;
7073 u32 blocksize;
7074 struct btrfs_key key;
7075 struct extent_buffer *eb;
7076 int ret;
7077 int slot;
7078 int nread = 0;
7079
7080 if (path->slots[wc->level] < wc->reada_slot) {
7081 wc->reada_count = wc->reada_count * 2 / 3;
7082 wc->reada_count = max(wc->reada_count, 2);
7083 } else {
7084 wc->reada_count = wc->reada_count * 3 / 2;
7085 wc->reada_count = min_t(int, wc->reada_count,
7086 BTRFS_NODEPTRS_PER_BLOCK(root));
7087 }
7088
7089 eb = path->nodes[wc->level];
7090 nritems = btrfs_header_nritems(eb);
7091 blocksize = btrfs_level_size(root, wc->level - 1);
7092
7093 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7094 if (nread >= wc->reada_count)
7095 break;
7096
7097 cond_resched();
7098 bytenr = btrfs_node_blockptr(eb, slot);
7099 generation = btrfs_node_ptr_generation(eb, slot);
7100
7101 if (slot == path->slots[wc->level])
7102 goto reada;
7103
7104 if (wc->stage == UPDATE_BACKREF &&
7105 generation <= root->root_key.offset)
7106 continue;
7107
7108 /* We don't lock the tree block, it's OK to be racy here */
7109 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7110 wc->level - 1, 1, &refs,
7111 &flags);
7112 /* We don't care about errors in readahead. */
7113 if (ret < 0)
7114 continue;
7115 BUG_ON(refs == 0);
7116
7117 if (wc->stage == DROP_REFERENCE) {
7118 if (refs == 1)
7119 goto reada;
7120
7121 if (wc->level == 1 &&
7122 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7123 continue;
7124 if (!wc->update_ref ||
7125 generation <= root->root_key.offset)
7126 continue;
7127 btrfs_node_key_to_cpu(eb, &key, slot);
7128 ret = btrfs_comp_cpu_keys(&key,
7129 &wc->update_progress);
7130 if (ret < 0)
7131 continue;
7132 } else {
7133 if (wc->level == 1 &&
7134 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7135 continue;
7136 }
7137reada:
7138 ret = readahead_tree_block(root, bytenr, blocksize,
7139 generation);
7140 if (ret)
7141 break;
7142 nread++;
7143 }
7144 wc->reada_slot = slot;
7145}
7146
7147/*
7148 * helper to process tree block while walking down the tree.
7149 *
7150 * when wc->stage == UPDATE_BACKREF, this function updates
7151 * back refs for pointers in the block.
7152 *
7153 * NOTE: return value 1 means we should stop walking down.
7154 */
7155static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7156 struct btrfs_root *root,
7157 struct btrfs_path *path,
7158 struct walk_control *wc, int lookup_info)
7159{
7160 int level = wc->level;
7161 struct extent_buffer *eb = path->nodes[level];
7162 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7163 int ret;
7164
7165 if (wc->stage == UPDATE_BACKREF &&
7166 btrfs_header_owner(eb) != root->root_key.objectid)
7167 return 1;
7168
7169 /*
7170 * when reference count of tree block is 1, it won't increase
7171 * again. once full backref flag is set, we never clear it.
7172 */
7173 if (lookup_info &&
7174 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7175 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7176 BUG_ON(!path->locks[level]);
7177 ret = btrfs_lookup_extent_info(trans, root,
7178 eb->start, level, 1,
7179 &wc->refs[level],
7180 &wc->flags[level]);
7181 BUG_ON(ret == -ENOMEM);
7182 if (ret)
7183 return ret;
7184 BUG_ON(wc->refs[level] == 0);
7185 }
7186
7187 if (wc->stage == DROP_REFERENCE) {
7188 if (wc->refs[level] > 1)
7189 return 1;
7190
7191 if (path->locks[level] && !wc->keep_locks) {
7192 btrfs_tree_unlock_rw(eb, path->locks[level]);
7193 path->locks[level] = 0;
7194 }
7195 return 0;
7196 }
7197
7198 /* wc->stage == UPDATE_BACKREF */
7199 if (!(wc->flags[level] & flag)) {
7200 BUG_ON(!path->locks[level]);
7201 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7202 BUG_ON(ret); /* -ENOMEM */
7203 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7204 BUG_ON(ret); /* -ENOMEM */
7205 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7206 eb->len, flag,
7207 btrfs_header_level(eb), 0);
7208 BUG_ON(ret); /* -ENOMEM */
7209 wc->flags[level] |= flag;
7210 }
7211
7212 /*
7213 * the block is shared by multiple trees, so it's not good to
7214 * keep the tree lock
7215 */
7216 if (path->locks[level] && level > 0) {
7217 btrfs_tree_unlock_rw(eb, path->locks[level]);
7218 path->locks[level] = 0;
7219 }
7220 return 0;
7221}
7222
7223/*
7224 * helper to process tree block pointer.
7225 *
7226 * when wc->stage == DROP_REFERENCE, this function checks
7227 * reference count of the block pointed to. if the block
7228 * is shared and we need update back refs for the subtree
7229 * rooted at the block, this function changes wc->stage to
7230 * UPDATE_BACKREF. if the block is shared and there is no
7231 * need to update back, this function drops the reference
7232 * to the block.
7233 *
7234 * NOTE: return value 1 means we should stop walking down.
7235 */
7236static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7237 struct btrfs_root *root,
7238 struct btrfs_path *path,
7239 struct walk_control *wc, int *lookup_info)
7240{
7241 u64 bytenr;
7242 u64 generation;
7243 u64 parent;
7244 u32 blocksize;
7245 struct btrfs_key key;
7246 struct extent_buffer *next;
7247 int level = wc->level;
7248 int reada = 0;
7249 int ret = 0;
7250
7251 generation = btrfs_node_ptr_generation(path->nodes[level],
7252 path->slots[level]);
7253 /*
7254 * if the lower level block was created before the snapshot
7255 * was created, we know there is no need to update back refs
7256 * for the subtree
7257 */
7258 if (wc->stage == UPDATE_BACKREF &&
7259 generation <= root->root_key.offset) {
7260 *lookup_info = 1;
7261 return 1;
7262 }
7263
7264 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7265 blocksize = btrfs_level_size(root, level - 1);
7266
7267 next = btrfs_find_tree_block(root, bytenr, blocksize);
7268 if (!next) {
7269 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7270 if (!next)
7271 return -ENOMEM;
7272 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7273 level - 1);
7274 reada = 1;
7275 }
7276 btrfs_tree_lock(next);
7277 btrfs_set_lock_blocking(next);
7278
7279 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7280 &wc->refs[level - 1],
7281 &wc->flags[level - 1]);
7282 if (ret < 0) {
7283 btrfs_tree_unlock(next);
7284 return ret;
7285 }
7286
7287 if (unlikely(wc->refs[level - 1] == 0)) {
7288 btrfs_err(root->fs_info, "Missing references.");
7289 BUG();
7290 }
7291 *lookup_info = 0;
7292
7293 if (wc->stage == DROP_REFERENCE) {
7294 if (wc->refs[level - 1] > 1) {
7295 if (level == 1 &&
7296 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7297 goto skip;
7298
7299 if (!wc->update_ref ||
7300 generation <= root->root_key.offset)
7301 goto skip;
7302
7303 btrfs_node_key_to_cpu(path->nodes[level], &key,
7304 path->slots[level]);
7305 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7306 if (ret < 0)
7307 goto skip;
7308
7309 wc->stage = UPDATE_BACKREF;
7310 wc->shared_level = level - 1;
7311 }
7312 } else {
7313 if (level == 1 &&
7314 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7315 goto skip;
7316 }
7317
7318 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7319 btrfs_tree_unlock(next);
7320 free_extent_buffer(next);
7321 next = NULL;
7322 *lookup_info = 1;
7323 }
7324
7325 if (!next) {
7326 if (reada && level == 1)
7327 reada_walk_down(trans, root, wc, path);
7328 next = read_tree_block(root, bytenr, blocksize, generation);
7329 if (!next || !extent_buffer_uptodate(next)) {
7330 free_extent_buffer(next);
7331 return -EIO;
7332 }
7333 btrfs_tree_lock(next);
7334 btrfs_set_lock_blocking(next);
7335 }
7336
7337 level--;
7338 BUG_ON(level != btrfs_header_level(next));
7339 path->nodes[level] = next;
7340 path->slots[level] = 0;
7341 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7342 wc->level = level;
7343 if (wc->level == 1)
7344 wc->reada_slot = 0;
7345 return 0;
7346skip:
7347 wc->refs[level - 1] = 0;
7348 wc->flags[level - 1] = 0;
7349 if (wc->stage == DROP_REFERENCE) {
7350 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7351 parent = path->nodes[level]->start;
7352 } else {
7353 BUG_ON(root->root_key.objectid !=
7354 btrfs_header_owner(path->nodes[level]));
7355 parent = 0;
7356 }
7357
7358 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7359 root->root_key.objectid, level - 1, 0, 0);
7360 BUG_ON(ret); /* -ENOMEM */
7361 }
7362 btrfs_tree_unlock(next);
7363 free_extent_buffer(next);
7364 *lookup_info = 1;
7365 return 1;
7366}
7367
7368/*
7369 * helper to process tree block while walking up the tree.
7370 *
7371 * when wc->stage == DROP_REFERENCE, this function drops
7372 * reference count on the block.
7373 *
7374 * when wc->stage == UPDATE_BACKREF, this function changes
7375 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7376 * to UPDATE_BACKREF previously while processing the block.
7377 *
7378 * NOTE: return value 1 means we should stop walking up.
7379 */
7380static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7381 struct btrfs_root *root,
7382 struct btrfs_path *path,
7383 struct walk_control *wc)
7384{
7385 int ret;
7386 int level = wc->level;
7387 struct extent_buffer *eb = path->nodes[level];
7388 u64 parent = 0;
7389
7390 if (wc->stage == UPDATE_BACKREF) {
7391 BUG_ON(wc->shared_level < level);
7392 if (level < wc->shared_level)
7393 goto out;
7394
7395 ret = find_next_key(path, level + 1, &wc->update_progress);
7396 if (ret > 0)
7397 wc->update_ref = 0;
7398
7399 wc->stage = DROP_REFERENCE;
7400 wc->shared_level = -1;
7401 path->slots[level] = 0;
7402
7403 /*
7404 * check reference count again if the block isn't locked.
7405 * we should start walking down the tree again if reference
7406 * count is one.
7407 */
7408 if (!path->locks[level]) {
7409 BUG_ON(level == 0);
7410 btrfs_tree_lock(eb);
7411 btrfs_set_lock_blocking(eb);
7412 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7413
7414 ret = btrfs_lookup_extent_info(trans, root,
7415 eb->start, level, 1,
7416 &wc->refs[level],
7417 &wc->flags[level]);
7418 if (ret < 0) {
7419 btrfs_tree_unlock_rw(eb, path->locks[level]);
7420 path->locks[level] = 0;
7421 return ret;
7422 }
7423 BUG_ON(wc->refs[level] == 0);
7424 if (wc->refs[level] == 1) {
7425 btrfs_tree_unlock_rw(eb, path->locks[level]);
7426 path->locks[level] = 0;
7427 return 1;
7428 }
7429 }
7430 }
7431
7432 /* wc->stage == DROP_REFERENCE */
7433 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7434
7435 if (wc->refs[level] == 1) {
7436 if (level == 0) {
7437 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7438 ret = btrfs_dec_ref(trans, root, eb, 1,
7439 wc->for_reloc);
7440 else
7441 ret = btrfs_dec_ref(trans, root, eb, 0,
7442 wc->for_reloc);
7443 BUG_ON(ret); /* -ENOMEM */
7444 }
7445 /* make block locked assertion in clean_tree_block happy */
7446 if (!path->locks[level] &&
7447 btrfs_header_generation(eb) == trans->transid) {
7448 btrfs_tree_lock(eb);
7449 btrfs_set_lock_blocking(eb);
7450 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7451 }
7452 clean_tree_block(trans, root, eb);
7453 }
7454
7455 if (eb == root->node) {
7456 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7457 parent = eb->start;
7458 else
7459 BUG_ON(root->root_key.objectid !=
7460 btrfs_header_owner(eb));
7461 } else {
7462 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7463 parent = path->nodes[level + 1]->start;
7464 else
7465 BUG_ON(root->root_key.objectid !=
7466 btrfs_header_owner(path->nodes[level + 1]));
7467 }
7468
7469 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7470out:
7471 wc->refs[level] = 0;
7472 wc->flags[level] = 0;
7473 return 0;
7474}
7475
7476static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7477 struct btrfs_root *root,
7478 struct btrfs_path *path,
7479 struct walk_control *wc)
7480{
7481 int level = wc->level;
7482 int lookup_info = 1;
7483 int ret;
7484
7485 while (level >= 0) {
7486 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7487 if (ret > 0)
7488 break;
7489
7490 if (level == 0)
7491 break;
7492
7493 if (path->slots[level] >=
7494 btrfs_header_nritems(path->nodes[level]))
7495 break;
7496
7497 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7498 if (ret > 0) {
7499 path->slots[level]++;
7500 continue;
7501 } else if (ret < 0)
7502 return ret;
7503 level = wc->level;
7504 }
7505 return 0;
7506}
7507
7508static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7509 struct btrfs_root *root,
7510 struct btrfs_path *path,
7511 struct walk_control *wc, int max_level)
7512{
7513 int level = wc->level;
7514 int ret;
7515
7516 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7517 while (level < max_level && path->nodes[level]) {
7518 wc->level = level;
7519 if (path->slots[level] + 1 <
7520 btrfs_header_nritems(path->nodes[level])) {
7521 path->slots[level]++;
7522 return 0;
7523 } else {
7524 ret = walk_up_proc(trans, root, path, wc);
7525 if (ret > 0)
7526 return 0;
7527
7528 if (path->locks[level]) {
7529 btrfs_tree_unlock_rw(path->nodes[level],
7530 path->locks[level]);
7531 path->locks[level] = 0;
7532 }
7533 free_extent_buffer(path->nodes[level]);
7534 path->nodes[level] = NULL;
7535 level++;
7536 }
7537 }
7538 return 1;
7539}
7540
7541/*
7542 * drop a subvolume tree.
7543 *
7544 * this function traverses the tree freeing any blocks that only
7545 * referenced by the tree.
7546 *
7547 * when a shared tree block is found. this function decreases its
7548 * reference count by one. if update_ref is true, this function
7549 * also make sure backrefs for the shared block and all lower level
7550 * blocks are properly updated.
7551 *
7552 * If called with for_reloc == 0, may exit early with -EAGAIN
7553 */
7554int btrfs_drop_snapshot(struct btrfs_root *root,
7555 struct btrfs_block_rsv *block_rsv, int update_ref,
7556 int for_reloc)
7557{
7558 struct btrfs_path *path;
7559 struct btrfs_trans_handle *trans;
7560 struct btrfs_root *tree_root = root->fs_info->tree_root;
7561 struct btrfs_root_item *root_item = &root->root_item;
7562 struct walk_control *wc;
7563 struct btrfs_key key;
7564 int err = 0;
7565 int ret;
7566 int level;
7567 bool root_dropped = false;
7568
7569 path = btrfs_alloc_path();
7570 if (!path) {
7571 err = -ENOMEM;
7572 goto out;
7573 }
7574
7575 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7576 if (!wc) {
7577 btrfs_free_path(path);
7578 err = -ENOMEM;
7579 goto out;
7580 }
7581
7582 trans = btrfs_start_transaction(tree_root, 0);
7583 if (IS_ERR(trans)) {
7584 err = PTR_ERR(trans);
7585 goto out_free;
7586 }
7587
7588 if (block_rsv)
7589 trans->block_rsv = block_rsv;
7590
7591 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7592 level = btrfs_header_level(root->node);
7593 path->nodes[level] = btrfs_lock_root_node(root);
7594 btrfs_set_lock_blocking(path->nodes[level]);
7595 path->slots[level] = 0;
7596 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7597 memset(&wc->update_progress, 0,
7598 sizeof(wc->update_progress));
7599 } else {
7600 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7601 memcpy(&wc->update_progress, &key,
7602 sizeof(wc->update_progress));
7603
7604 level = root_item->drop_level;
7605 BUG_ON(level == 0);
7606 path->lowest_level = level;
7607 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7608 path->lowest_level = 0;
7609 if (ret < 0) {
7610 err = ret;
7611 goto out_end_trans;
7612 }
7613 WARN_ON(ret > 0);
7614
7615 /*
7616 * unlock our path, this is safe because only this
7617 * function is allowed to delete this snapshot
7618 */
7619 btrfs_unlock_up_safe(path, 0);
7620
7621 level = btrfs_header_level(root->node);
7622 while (1) {
7623 btrfs_tree_lock(path->nodes[level]);
7624 btrfs_set_lock_blocking(path->nodes[level]);
7625 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7626
7627 ret = btrfs_lookup_extent_info(trans, root,
7628 path->nodes[level]->start,
7629 level, 1, &wc->refs[level],
7630 &wc->flags[level]);
7631 if (ret < 0) {
7632 err = ret;
7633 goto out_end_trans;
7634 }
7635 BUG_ON(wc->refs[level] == 0);
7636
7637 if (level == root_item->drop_level)
7638 break;
7639
7640 btrfs_tree_unlock(path->nodes[level]);
7641 path->locks[level] = 0;
7642 WARN_ON(wc->refs[level] != 1);
7643 level--;
7644 }
7645 }
7646
7647 wc->level = level;
7648 wc->shared_level = -1;
7649 wc->stage = DROP_REFERENCE;
7650 wc->update_ref = update_ref;
7651 wc->keep_locks = 0;
7652 wc->for_reloc = for_reloc;
7653 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7654
7655 while (1) {
7656
7657 ret = walk_down_tree(trans, root, path, wc);
7658 if (ret < 0) {
7659 err = ret;
7660 break;
7661 }
7662
7663 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7664 if (ret < 0) {
7665 err = ret;
7666 break;
7667 }
7668
7669 if (ret > 0) {
7670 BUG_ON(wc->stage != DROP_REFERENCE);
7671 break;
7672 }
7673
7674 if (wc->stage == DROP_REFERENCE) {
7675 level = wc->level;
7676 btrfs_node_key(path->nodes[level],
7677 &root_item->drop_progress,
7678 path->slots[level]);
7679 root_item->drop_level = level;
7680 }
7681
7682 BUG_ON(wc->level == 0);
7683 if (btrfs_should_end_transaction(trans, tree_root) ||
7684 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7685 ret = btrfs_update_root(trans, tree_root,
7686 &root->root_key,
7687 root_item);
7688 if (ret) {
7689 btrfs_abort_transaction(trans, tree_root, ret);
7690 err = ret;
7691 goto out_end_trans;
7692 }
7693
7694 btrfs_end_transaction_throttle(trans, tree_root);
7695 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7696 pr_debug("BTRFS: drop snapshot early exit\n");
7697 err = -EAGAIN;
7698 goto out_free;
7699 }
7700
7701 trans = btrfs_start_transaction(tree_root, 0);
7702 if (IS_ERR(trans)) {
7703 err = PTR_ERR(trans);
7704 goto out_free;
7705 }
7706 if (block_rsv)
7707 trans->block_rsv = block_rsv;
7708 }
7709 }
7710 btrfs_release_path(path);
7711 if (err)
7712 goto out_end_trans;
7713
7714 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7715 if (ret) {
7716 btrfs_abort_transaction(trans, tree_root, ret);
7717 goto out_end_trans;
7718 }
7719
7720 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7721 ret = btrfs_find_root(tree_root, &root->root_key, path,
7722 NULL, NULL);
7723 if (ret < 0) {
7724 btrfs_abort_transaction(trans, tree_root, ret);
7725 err = ret;
7726 goto out_end_trans;
7727 } else if (ret > 0) {
7728 /* if we fail to delete the orphan item this time
7729 * around, it'll get picked up the next time.
7730 *
7731 * The most common failure here is just -ENOENT.
7732 */
7733 btrfs_del_orphan_item(trans, tree_root,
7734 root->root_key.objectid);
7735 }
7736 }
7737
7738 if (root->in_radix) {
7739 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7740 } else {
7741 free_extent_buffer(root->node);
7742 free_extent_buffer(root->commit_root);
7743 btrfs_put_fs_root(root);
7744 }
7745 root_dropped = true;
7746out_end_trans:
7747 btrfs_end_transaction_throttle(trans, tree_root);
7748out_free:
7749 kfree(wc);
7750 btrfs_free_path(path);
7751out:
7752 /*
7753 * So if we need to stop dropping the snapshot for whatever reason we
7754 * need to make sure to add it back to the dead root list so that we
7755 * keep trying to do the work later. This also cleans up roots if we
7756 * don't have it in the radix (like when we recover after a power fail
7757 * or unmount) so we don't leak memory.
7758 */
7759 if (!for_reloc && root_dropped == false)
7760 btrfs_add_dead_root(root);
7761 if (err && err != -EAGAIN)
7762 btrfs_std_error(root->fs_info, err);
7763 return err;
7764}
7765
7766/*
7767 * drop subtree rooted at tree block 'node'.
7768 *
7769 * NOTE: this function will unlock and release tree block 'node'
7770 * only used by relocation code
7771 */
7772int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7773 struct btrfs_root *root,
7774 struct extent_buffer *node,
7775 struct extent_buffer *parent)
7776{
7777 struct btrfs_path *path;
7778 struct walk_control *wc;
7779 int level;
7780 int parent_level;
7781 int ret = 0;
7782 int wret;
7783
7784 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7785
7786 path = btrfs_alloc_path();
7787 if (!path)
7788 return -ENOMEM;
7789
7790 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7791 if (!wc) {
7792 btrfs_free_path(path);
7793 return -ENOMEM;
7794 }
7795
7796 btrfs_assert_tree_locked(parent);
7797 parent_level = btrfs_header_level(parent);
7798 extent_buffer_get(parent);
7799 path->nodes[parent_level] = parent;
7800 path->slots[parent_level] = btrfs_header_nritems(parent);
7801
7802 btrfs_assert_tree_locked(node);
7803 level = btrfs_header_level(node);
7804 path->nodes[level] = node;
7805 path->slots[level] = 0;
7806 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7807
7808 wc->refs[parent_level] = 1;
7809 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7810 wc->level = level;
7811 wc->shared_level = -1;
7812 wc->stage = DROP_REFERENCE;
7813 wc->update_ref = 0;
7814 wc->keep_locks = 1;
7815 wc->for_reloc = 1;
7816 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7817
7818 while (1) {
7819 wret = walk_down_tree(trans, root, path, wc);
7820 if (wret < 0) {
7821 ret = wret;
7822 break;
7823 }
7824
7825 wret = walk_up_tree(trans, root, path, wc, parent_level);
7826 if (wret < 0)
7827 ret = wret;
7828 if (wret != 0)
7829 break;
7830 }
7831
7832 kfree(wc);
7833 btrfs_free_path(path);
7834 return ret;
7835}
7836
7837static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7838{
7839 u64 num_devices;
7840 u64 stripped;
7841
7842 /*
7843 * if restripe for this chunk_type is on pick target profile and
7844 * return, otherwise do the usual balance
7845 */
7846 stripped = get_restripe_target(root->fs_info, flags);
7847 if (stripped)
7848 return extended_to_chunk(stripped);
7849
7850 /*
7851 * we add in the count of missing devices because we want
7852 * to make sure that any RAID levels on a degraded FS
7853 * continue to be honored.
7854 */
7855 num_devices = root->fs_info->fs_devices->rw_devices +
7856 root->fs_info->fs_devices->missing_devices;
7857
7858 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7859 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7860 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7861
7862 if (num_devices == 1) {
7863 stripped |= BTRFS_BLOCK_GROUP_DUP;
7864 stripped = flags & ~stripped;
7865
7866 /* turn raid0 into single device chunks */
7867 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7868 return stripped;
7869
7870 /* turn mirroring into duplication */
7871 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7872 BTRFS_BLOCK_GROUP_RAID10))
7873 return stripped | BTRFS_BLOCK_GROUP_DUP;
7874 } else {
7875 /* they already had raid on here, just return */
7876 if (flags & stripped)
7877 return flags;
7878
7879 stripped |= BTRFS_BLOCK_GROUP_DUP;
7880 stripped = flags & ~stripped;
7881
7882 /* switch duplicated blocks with raid1 */
7883 if (flags & BTRFS_BLOCK_GROUP_DUP)
7884 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7885
7886 /* this is drive concat, leave it alone */
7887 }
7888
7889 return flags;
7890}
7891
7892static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7893{
7894 struct btrfs_space_info *sinfo = cache->space_info;
7895 u64 num_bytes;
7896 u64 min_allocable_bytes;
7897 int ret = -ENOSPC;
7898
7899
7900 /*
7901 * We need some metadata space and system metadata space for
7902 * allocating chunks in some corner cases until we force to set
7903 * it to be readonly.
7904 */
7905 if ((sinfo->flags &
7906 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7907 !force)
7908 min_allocable_bytes = 1 * 1024 * 1024;
7909 else
7910 min_allocable_bytes = 0;
7911
7912 spin_lock(&sinfo->lock);
7913 spin_lock(&cache->lock);
7914
7915 if (cache->ro) {
7916 ret = 0;
7917 goto out;
7918 }
7919
7920 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7921 cache->bytes_super - btrfs_block_group_used(&cache->item);
7922
7923 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7924 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7925 min_allocable_bytes <= sinfo->total_bytes) {
7926 sinfo->bytes_readonly += num_bytes;
7927 cache->ro = 1;
7928 ret = 0;
7929 }
7930out:
7931 spin_unlock(&cache->lock);
7932 spin_unlock(&sinfo->lock);
7933 return ret;
7934}
7935
7936int btrfs_set_block_group_ro(struct btrfs_root *root,
7937 struct btrfs_block_group_cache *cache)
7938
7939{
7940 struct btrfs_trans_handle *trans;
7941 u64 alloc_flags;
7942 int ret;
7943
7944 BUG_ON(cache->ro);
7945
7946 trans = btrfs_join_transaction(root);
7947 if (IS_ERR(trans))
7948 return PTR_ERR(trans);
7949
7950 alloc_flags = update_block_group_flags(root, cache->flags);
7951 if (alloc_flags != cache->flags) {
7952 ret = do_chunk_alloc(trans, root, alloc_flags,
7953 CHUNK_ALLOC_FORCE);
7954 if (ret < 0)
7955 goto out;
7956 }
7957
7958 ret = set_block_group_ro(cache, 0);
7959 if (!ret)
7960 goto out;
7961 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7962 ret = do_chunk_alloc(trans, root, alloc_flags,
7963 CHUNK_ALLOC_FORCE);
7964 if (ret < 0)
7965 goto out;
7966 ret = set_block_group_ro(cache, 0);
7967out:
7968 btrfs_end_transaction(trans, root);
7969 return ret;
7970}
7971
7972int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7973 struct btrfs_root *root, u64 type)
7974{
7975 u64 alloc_flags = get_alloc_profile(root, type);
7976 return do_chunk_alloc(trans, root, alloc_flags,
7977 CHUNK_ALLOC_FORCE);
7978}
7979
7980/*
7981 * helper to account the unused space of all the readonly block group in the
7982 * list. takes mirrors into account.
7983 */
7984static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7985{
7986 struct btrfs_block_group_cache *block_group;
7987 u64 free_bytes = 0;
7988 int factor;
7989
7990 list_for_each_entry(block_group, groups_list, list) {
7991 spin_lock(&block_group->lock);
7992
7993 if (!block_group->ro) {
7994 spin_unlock(&block_group->lock);
7995 continue;
7996 }
7997
7998 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7999 BTRFS_BLOCK_GROUP_RAID10 |
8000 BTRFS_BLOCK_GROUP_DUP))
8001 factor = 2;
8002 else
8003 factor = 1;
8004
8005 free_bytes += (block_group->key.offset -
8006 btrfs_block_group_used(&block_group->item)) *
8007 factor;
8008
8009 spin_unlock(&block_group->lock);
8010 }
8011
8012 return free_bytes;
8013}
8014
8015/*
8016 * helper to account the unused space of all the readonly block group in the
8017 * space_info. takes mirrors into account.
8018 */
8019u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8020{
8021 int i;
8022 u64 free_bytes = 0;
8023
8024 spin_lock(&sinfo->lock);
8025
8026 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8027 if (!list_empty(&sinfo->block_groups[i]))
8028 free_bytes += __btrfs_get_ro_block_group_free_space(
8029 &sinfo->block_groups[i]);
8030
8031 spin_unlock(&sinfo->lock);
8032
8033 return free_bytes;
8034}
8035
8036void btrfs_set_block_group_rw(struct btrfs_root *root,
8037 struct btrfs_block_group_cache *cache)
8038{
8039 struct btrfs_space_info *sinfo = cache->space_info;
8040 u64 num_bytes;
8041
8042 BUG_ON(!cache->ro);
8043
8044 spin_lock(&sinfo->lock);
8045 spin_lock(&cache->lock);
8046 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8047 cache->bytes_super - btrfs_block_group_used(&cache->item);
8048 sinfo->bytes_readonly -= num_bytes;
8049 cache->ro = 0;
8050 spin_unlock(&cache->lock);
8051 spin_unlock(&sinfo->lock);
8052}
8053
8054/*
8055 * checks to see if its even possible to relocate this block group.
8056 *
8057 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8058 * ok to go ahead and try.
8059 */
8060int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8061{
8062 struct btrfs_block_group_cache *block_group;
8063 struct btrfs_space_info *space_info;
8064 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8065 struct btrfs_device *device;
8066 struct btrfs_trans_handle *trans;
8067 u64 min_free;
8068 u64 dev_min = 1;
8069 u64 dev_nr = 0;
8070 u64 target;
8071 int index;
8072 int full = 0;
8073 int ret = 0;
8074
8075 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8076
8077 /* odd, couldn't find the block group, leave it alone */
8078 if (!block_group)
8079 return -1;
8080
8081 min_free = btrfs_block_group_used(&block_group->item);
8082
8083 /* no bytes used, we're good */
8084 if (!min_free)
8085 goto out;
8086
8087 space_info = block_group->space_info;
8088 spin_lock(&space_info->lock);
8089
8090 full = space_info->full;
8091
8092 /*
8093 * if this is the last block group we have in this space, we can't
8094 * relocate it unless we're able to allocate a new chunk below.
8095 *
8096 * Otherwise, we need to make sure we have room in the space to handle
8097 * all of the extents from this block group. If we can, we're good
8098 */
8099 if ((space_info->total_bytes != block_group->key.offset) &&
8100 (space_info->bytes_used + space_info->bytes_reserved +
8101 space_info->bytes_pinned + space_info->bytes_readonly +
8102 min_free < space_info->total_bytes)) {
8103 spin_unlock(&space_info->lock);
8104 goto out;
8105 }
8106 spin_unlock(&space_info->lock);
8107
8108 /*
8109 * ok we don't have enough space, but maybe we have free space on our
8110 * devices to allocate new chunks for relocation, so loop through our
8111 * alloc devices and guess if we have enough space. if this block
8112 * group is going to be restriped, run checks against the target
8113 * profile instead of the current one.
8114 */
8115 ret = -1;
8116
8117 /*
8118 * index:
8119 * 0: raid10
8120 * 1: raid1
8121 * 2: dup
8122 * 3: raid0
8123 * 4: single
8124 */
8125 target = get_restripe_target(root->fs_info, block_group->flags);
8126 if (target) {
8127 index = __get_raid_index(extended_to_chunk(target));
8128 } else {
8129 /*
8130 * this is just a balance, so if we were marked as full
8131 * we know there is no space for a new chunk
8132 */
8133 if (full)
8134 goto out;
8135
8136 index = get_block_group_index(block_group);
8137 }
8138
8139 if (index == BTRFS_RAID_RAID10) {
8140 dev_min = 4;
8141 /* Divide by 2 */
8142 min_free >>= 1;
8143 } else if (index == BTRFS_RAID_RAID1) {
8144 dev_min = 2;
8145 } else if (index == BTRFS_RAID_DUP) {
8146 /* Multiply by 2 */
8147 min_free <<= 1;
8148 } else if (index == BTRFS_RAID_RAID0) {
8149 dev_min = fs_devices->rw_devices;
8150 do_div(min_free, dev_min);
8151 }
8152
8153 /* We need to do this so that we can look at pending chunks */
8154 trans = btrfs_join_transaction(root);
8155 if (IS_ERR(trans)) {
8156 ret = PTR_ERR(trans);
8157 goto out;
8158 }
8159
8160 mutex_lock(&root->fs_info->chunk_mutex);
8161 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8162 u64 dev_offset;
8163
8164 /*
8165 * check to make sure we can actually find a chunk with enough
8166 * space to fit our block group in.
8167 */
8168 if (device->total_bytes > device->bytes_used + min_free &&
8169 !device->is_tgtdev_for_dev_replace) {
8170 ret = find_free_dev_extent(trans, device, min_free,
8171 &dev_offset, NULL);
8172 if (!ret)
8173 dev_nr++;
8174
8175 if (dev_nr >= dev_min)
8176 break;
8177
8178 ret = -1;
8179 }
8180 }
8181 mutex_unlock(&root->fs_info->chunk_mutex);
8182 btrfs_end_transaction(trans, root);
8183out:
8184 btrfs_put_block_group(block_group);
8185 return ret;
8186}
8187
8188static int find_first_block_group(struct btrfs_root *root,
8189 struct btrfs_path *path, struct btrfs_key *key)
8190{
8191 int ret = 0;
8192 struct btrfs_key found_key;
8193 struct extent_buffer *leaf;
8194 int slot;
8195
8196 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8197 if (ret < 0)
8198 goto out;
8199
8200 while (1) {
8201 slot = path->slots[0];
8202 leaf = path->nodes[0];
8203 if (slot >= btrfs_header_nritems(leaf)) {
8204 ret = btrfs_next_leaf(root, path);
8205 if (ret == 0)
8206 continue;
8207 if (ret < 0)
8208 goto out;
8209 break;
8210 }
8211 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8212
8213 if (found_key.objectid >= key->objectid &&
8214 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8215 ret = 0;
8216 goto out;
8217 }
8218 path->slots[0]++;
8219 }
8220out:
8221 return ret;
8222}
8223
8224void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8225{
8226 struct btrfs_block_group_cache *block_group;
8227 u64 last = 0;
8228
8229 while (1) {
8230 struct inode *inode;
8231
8232 block_group = btrfs_lookup_first_block_group(info, last);
8233 while (block_group) {
8234 spin_lock(&block_group->lock);
8235 if (block_group->iref)
8236 break;
8237 spin_unlock(&block_group->lock);
8238 block_group = next_block_group(info->tree_root,
8239 block_group);
8240 }
8241 if (!block_group) {
8242 if (last == 0)
8243 break;
8244 last = 0;
8245 continue;
8246 }
8247
8248 inode = block_group->inode;
8249 block_group->iref = 0;
8250 block_group->inode = NULL;
8251 spin_unlock(&block_group->lock);
8252 iput(inode);
8253 last = block_group->key.objectid + block_group->key.offset;
8254 btrfs_put_block_group(block_group);
8255 }
8256}
8257
8258int btrfs_free_block_groups(struct btrfs_fs_info *info)
8259{
8260 struct btrfs_block_group_cache *block_group;
8261 struct btrfs_space_info *space_info;
8262 struct btrfs_caching_control *caching_ctl;
8263 struct rb_node *n;
8264
8265 down_write(&info->commit_root_sem);
8266 while (!list_empty(&info->caching_block_groups)) {
8267 caching_ctl = list_entry(info->caching_block_groups.next,
8268 struct btrfs_caching_control, list);
8269 list_del(&caching_ctl->list);
8270 put_caching_control(caching_ctl);
8271 }
8272 up_write(&info->commit_root_sem);
8273
8274 spin_lock(&info->block_group_cache_lock);
8275 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8276 block_group = rb_entry(n, struct btrfs_block_group_cache,
8277 cache_node);
8278 rb_erase(&block_group->cache_node,
8279 &info->block_group_cache_tree);
8280 spin_unlock(&info->block_group_cache_lock);
8281
8282 down_write(&block_group->space_info->groups_sem);
8283 list_del(&block_group->list);
8284 up_write(&block_group->space_info->groups_sem);
8285
8286 if (block_group->cached == BTRFS_CACHE_STARTED)
8287 wait_block_group_cache_done(block_group);
8288
8289 /*
8290 * We haven't cached this block group, which means we could
8291 * possibly have excluded extents on this block group.
8292 */
8293 if (block_group->cached == BTRFS_CACHE_NO ||
8294 block_group->cached == BTRFS_CACHE_ERROR)
8295 free_excluded_extents(info->extent_root, block_group);
8296
8297 btrfs_remove_free_space_cache(block_group);
8298 btrfs_put_block_group(block_group);
8299
8300 spin_lock(&info->block_group_cache_lock);
8301 }
8302 spin_unlock(&info->block_group_cache_lock);
8303
8304 /* now that all the block groups are freed, go through and
8305 * free all the space_info structs. This is only called during
8306 * the final stages of unmount, and so we know nobody is
8307 * using them. We call synchronize_rcu() once before we start,
8308 * just to be on the safe side.
8309 */
8310 synchronize_rcu();
8311
8312 release_global_block_rsv(info);
8313
8314 while (!list_empty(&info->space_info)) {
8315 int i;
8316
8317 space_info = list_entry(info->space_info.next,
8318 struct btrfs_space_info,
8319 list);
8320 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8321 if (WARN_ON(space_info->bytes_pinned > 0 ||
8322 space_info->bytes_reserved > 0 ||
8323 space_info->bytes_may_use > 0)) {
8324 dump_space_info(space_info, 0, 0);
8325 }
8326 }
8327 list_del(&space_info->list);
8328 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8329 struct kobject *kobj;
8330 kobj = &space_info->block_group_kobjs[i];
8331 if (kobj->parent) {
8332 kobject_del(kobj);
8333 kobject_put(kobj);
8334 }
8335 }
8336 kobject_del(&space_info->kobj);
8337 kobject_put(&space_info->kobj);
8338 }
8339 return 0;
8340}
8341
8342static void __link_block_group(struct btrfs_space_info *space_info,
8343 struct btrfs_block_group_cache *cache)
8344{
8345 int index = get_block_group_index(cache);
8346 bool first = false;
8347
8348 down_write(&space_info->groups_sem);
8349 if (list_empty(&space_info->block_groups[index]))
8350 first = true;
8351 list_add_tail(&cache->list, &space_info->block_groups[index]);
8352 up_write(&space_info->groups_sem);
8353
8354 if (first) {
8355 struct kobject *kobj = &space_info->block_group_kobjs[index];
8356 int ret;
8357
8358 kobject_get(&space_info->kobj); /* put in release */
8359 ret = kobject_add(kobj, &space_info->kobj, "%s",
8360 get_raid_name(index));
8361 if (ret) {
8362 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8363 kobject_put(&space_info->kobj);
8364 }
8365 }
8366}
8367
8368static struct btrfs_block_group_cache *
8369btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8370{
8371 struct btrfs_block_group_cache *cache;
8372
8373 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8374 if (!cache)
8375 return NULL;
8376
8377 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8378 GFP_NOFS);
8379 if (!cache->free_space_ctl) {
8380 kfree(cache);
8381 return NULL;
8382 }
8383
8384 cache->key.objectid = start;
8385 cache->key.offset = size;
8386 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8387
8388 cache->sectorsize = root->sectorsize;
8389 cache->fs_info = root->fs_info;
8390 cache->full_stripe_len = btrfs_full_stripe_len(root,
8391 &root->fs_info->mapping_tree,
8392 start);
8393 atomic_set(&cache->count, 1);
8394 spin_lock_init(&cache->lock);
8395 INIT_LIST_HEAD(&cache->list);
8396 INIT_LIST_HEAD(&cache->cluster_list);
8397 INIT_LIST_HEAD(&cache->new_bg_list);
8398 btrfs_init_free_space_ctl(cache);
8399
8400 return cache;
8401}
8402
8403int btrfs_read_block_groups(struct btrfs_root *root)
8404{
8405 struct btrfs_path *path;
8406 int ret;
8407 struct btrfs_block_group_cache *cache;
8408 struct btrfs_fs_info *info = root->fs_info;
8409 struct btrfs_space_info *space_info;
8410 struct btrfs_key key;
8411 struct btrfs_key found_key;
8412 struct extent_buffer *leaf;
8413 int need_clear = 0;
8414 u64 cache_gen;
8415
8416 root = info->extent_root;
8417 key.objectid = 0;
8418 key.offset = 0;
8419 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8420 path = btrfs_alloc_path();
8421 if (!path)
8422 return -ENOMEM;
8423 path->reada = 1;
8424
8425 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8426 if (btrfs_test_opt(root, SPACE_CACHE) &&
8427 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8428 need_clear = 1;
8429 if (btrfs_test_opt(root, CLEAR_CACHE))
8430 need_clear = 1;
8431
8432 while (1) {
8433 ret = find_first_block_group(root, path, &key);
8434 if (ret > 0)
8435 break;
8436 if (ret != 0)
8437 goto error;
8438
8439 leaf = path->nodes[0];
8440 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8441
8442 cache = btrfs_create_block_group_cache(root, found_key.objectid,
8443 found_key.offset);
8444 if (!cache) {
8445 ret = -ENOMEM;
8446 goto error;
8447 }
8448
8449 if (need_clear) {
8450 /*
8451 * When we mount with old space cache, we need to
8452 * set BTRFS_DC_CLEAR and set dirty flag.
8453 *
8454 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8455 * truncate the old free space cache inode and
8456 * setup a new one.
8457 * b) Setting 'dirty flag' makes sure that we flush
8458 * the new space cache info onto disk.
8459 */
8460 cache->disk_cache_state = BTRFS_DC_CLEAR;
8461 if (btrfs_test_opt(root, SPACE_CACHE))
8462 cache->dirty = 1;
8463 }
8464
8465 read_extent_buffer(leaf, &cache->item,
8466 btrfs_item_ptr_offset(leaf, path->slots[0]),
8467 sizeof(cache->item));
8468 cache->flags = btrfs_block_group_flags(&cache->item);
8469
8470 key.objectid = found_key.objectid + found_key.offset;
8471 btrfs_release_path(path);
8472
8473 /*
8474 * We need to exclude the super stripes now so that the space
8475 * info has super bytes accounted for, otherwise we'll think
8476 * we have more space than we actually do.
8477 */
8478 ret = exclude_super_stripes(root, cache);
8479 if (ret) {
8480 /*
8481 * We may have excluded something, so call this just in
8482 * case.
8483 */
8484 free_excluded_extents(root, cache);
8485 btrfs_put_block_group(cache);
8486 goto error;
8487 }
8488
8489 /*
8490 * check for two cases, either we are full, and therefore
8491 * don't need to bother with the caching work since we won't
8492 * find any space, or we are empty, and we can just add all
8493 * the space in and be done with it. This saves us _alot_ of
8494 * time, particularly in the full case.
8495 */
8496 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8497 cache->last_byte_to_unpin = (u64)-1;
8498 cache->cached = BTRFS_CACHE_FINISHED;
8499 free_excluded_extents(root, cache);
8500 } else if (btrfs_block_group_used(&cache->item) == 0) {
8501 cache->last_byte_to_unpin = (u64)-1;
8502 cache->cached = BTRFS_CACHE_FINISHED;
8503 add_new_free_space(cache, root->fs_info,
8504 found_key.objectid,
8505 found_key.objectid +
8506 found_key.offset);
8507 free_excluded_extents(root, cache);
8508 }
8509
8510 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8511 if (ret) {
8512 btrfs_remove_free_space_cache(cache);
8513 btrfs_put_block_group(cache);
8514 goto error;
8515 }
8516
8517 ret = update_space_info(info, cache->flags, found_key.offset,
8518 btrfs_block_group_used(&cache->item),
8519 &space_info);
8520 if (ret) {
8521 btrfs_remove_free_space_cache(cache);
8522 spin_lock(&info->block_group_cache_lock);
8523 rb_erase(&cache->cache_node,
8524 &info->block_group_cache_tree);
8525 spin_unlock(&info->block_group_cache_lock);
8526 btrfs_put_block_group(cache);
8527 goto error;
8528 }
8529
8530 cache->space_info = space_info;
8531 spin_lock(&cache->space_info->lock);
8532 cache->space_info->bytes_readonly += cache->bytes_super;
8533 spin_unlock(&cache->space_info->lock);
8534
8535 __link_block_group(space_info, cache);
8536
8537 set_avail_alloc_bits(root->fs_info, cache->flags);
8538 if (btrfs_chunk_readonly(root, cache->key.objectid))
8539 set_block_group_ro(cache, 1);
8540 }
8541
8542 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8543 if (!(get_alloc_profile(root, space_info->flags) &
8544 (BTRFS_BLOCK_GROUP_RAID10 |
8545 BTRFS_BLOCK_GROUP_RAID1 |
8546 BTRFS_BLOCK_GROUP_RAID5 |
8547 BTRFS_BLOCK_GROUP_RAID6 |
8548 BTRFS_BLOCK_GROUP_DUP)))
8549 continue;
8550 /*
8551 * avoid allocating from un-mirrored block group if there are
8552 * mirrored block groups.
8553 */
8554 list_for_each_entry(cache,
8555 &space_info->block_groups[BTRFS_RAID_RAID0],
8556 list)
8557 set_block_group_ro(cache, 1);
8558 list_for_each_entry(cache,
8559 &space_info->block_groups[BTRFS_RAID_SINGLE],
8560 list)
8561 set_block_group_ro(cache, 1);
8562 }
8563
8564 init_global_block_rsv(info);
8565 ret = 0;
8566error:
8567 btrfs_free_path(path);
8568 return ret;
8569}
8570
8571void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8572 struct btrfs_root *root)
8573{
8574 struct btrfs_block_group_cache *block_group, *tmp;
8575 struct btrfs_root *extent_root = root->fs_info->extent_root;
8576 struct btrfs_block_group_item item;
8577 struct btrfs_key key;
8578 int ret = 0;
8579
8580 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8581 new_bg_list) {
8582 list_del_init(&block_group->new_bg_list);
8583
8584 if (ret)
8585 continue;
8586
8587 spin_lock(&block_group->lock);
8588 memcpy(&item, &block_group->item, sizeof(item));
8589 memcpy(&key, &block_group->key, sizeof(key));
8590 spin_unlock(&block_group->lock);
8591
8592 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8593 sizeof(item));
8594 if (ret)
8595 btrfs_abort_transaction(trans, extent_root, ret);
8596 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8597 key.objectid, key.offset);
8598 if (ret)
8599 btrfs_abort_transaction(trans, extent_root, ret);
8600 }
8601}
8602
8603int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8604 struct btrfs_root *root, u64 bytes_used,
8605 u64 type, u64 chunk_objectid, u64 chunk_offset,
8606 u64 size)
8607{
8608 int ret;
8609 struct btrfs_root *extent_root;
8610 struct btrfs_block_group_cache *cache;
8611
8612 extent_root = root->fs_info->extent_root;
8613
8614 root->fs_info->last_trans_log_full_commit = trans->transid;
8615
8616 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8617 if (!cache)
8618 return -ENOMEM;
8619
8620 btrfs_set_block_group_used(&cache->item, bytes_used);
8621 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8622 btrfs_set_block_group_flags(&cache->item, type);
8623
8624 cache->flags = type;
8625 cache->last_byte_to_unpin = (u64)-1;
8626 cache->cached = BTRFS_CACHE_FINISHED;
8627 ret = exclude_super_stripes(root, cache);
8628 if (ret) {
8629 /*
8630 * We may have excluded something, so call this just in
8631 * case.
8632 */
8633 free_excluded_extents(root, cache);
8634 btrfs_put_block_group(cache);
8635 return ret;
8636 }
8637
8638 add_new_free_space(cache, root->fs_info, chunk_offset,
8639 chunk_offset + size);
8640
8641 free_excluded_extents(root, cache);
8642
8643 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8644 if (ret) {
8645 btrfs_remove_free_space_cache(cache);
8646 btrfs_put_block_group(cache);
8647 return ret;
8648 }
8649
8650 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8651 &cache->space_info);
8652 if (ret) {
8653 btrfs_remove_free_space_cache(cache);
8654 spin_lock(&root->fs_info->block_group_cache_lock);
8655 rb_erase(&cache->cache_node,
8656 &root->fs_info->block_group_cache_tree);
8657 spin_unlock(&root->fs_info->block_group_cache_lock);
8658 btrfs_put_block_group(cache);
8659 return ret;
8660 }
8661 update_global_block_rsv(root->fs_info);
8662
8663 spin_lock(&cache->space_info->lock);
8664 cache->space_info->bytes_readonly += cache->bytes_super;
8665 spin_unlock(&cache->space_info->lock);
8666
8667 __link_block_group(cache->space_info, cache);
8668
8669 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8670
8671 set_avail_alloc_bits(extent_root->fs_info, type);
8672
8673 return 0;
8674}
8675
8676static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8677{
8678 u64 extra_flags = chunk_to_extended(flags) &
8679 BTRFS_EXTENDED_PROFILE_MASK;
8680
8681 write_seqlock(&fs_info->profiles_lock);
8682 if (flags & BTRFS_BLOCK_GROUP_DATA)
8683 fs_info->avail_data_alloc_bits &= ~extra_flags;
8684 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8685 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8686 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8687 fs_info->avail_system_alloc_bits &= ~extra_flags;
8688 write_sequnlock(&fs_info->profiles_lock);
8689}
8690
8691int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8692 struct btrfs_root *root, u64 group_start)
8693{
8694 struct btrfs_path *path;
8695 struct btrfs_block_group_cache *block_group;
8696 struct btrfs_free_cluster *cluster;
8697 struct btrfs_root *tree_root = root->fs_info->tree_root;
8698 struct btrfs_key key;
8699 struct inode *inode;
8700 int ret;
8701 int index;
8702 int factor;
8703
8704 root = root->fs_info->extent_root;
8705
8706 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8707 BUG_ON(!block_group);
8708 BUG_ON(!block_group->ro);
8709
8710 /*
8711 * Free the reserved super bytes from this block group before
8712 * remove it.
8713 */
8714 free_excluded_extents(root, block_group);
8715
8716 memcpy(&key, &block_group->key, sizeof(key));
8717 index = get_block_group_index(block_group);
8718 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8719 BTRFS_BLOCK_GROUP_RAID1 |
8720 BTRFS_BLOCK_GROUP_RAID10))
8721 factor = 2;
8722 else
8723 factor = 1;
8724
8725 /* make sure this block group isn't part of an allocation cluster */
8726 cluster = &root->fs_info->data_alloc_cluster;
8727 spin_lock(&cluster->refill_lock);
8728 btrfs_return_cluster_to_free_space(block_group, cluster);
8729 spin_unlock(&cluster->refill_lock);
8730
8731 /*
8732 * make sure this block group isn't part of a metadata
8733 * allocation cluster
8734 */
8735 cluster = &root->fs_info->meta_alloc_cluster;
8736 spin_lock(&cluster->refill_lock);
8737 btrfs_return_cluster_to_free_space(block_group, cluster);
8738 spin_unlock(&cluster->refill_lock);
8739
8740 path = btrfs_alloc_path();
8741 if (!path) {
8742 ret = -ENOMEM;
8743 goto out;
8744 }
8745
8746 inode = lookup_free_space_inode(tree_root, block_group, path);
8747 if (!IS_ERR(inode)) {
8748 ret = btrfs_orphan_add(trans, inode);
8749 if (ret) {
8750 btrfs_add_delayed_iput(inode);
8751 goto out;
8752 }
8753 clear_nlink(inode);
8754 /* One for the block groups ref */
8755 spin_lock(&block_group->lock);
8756 if (block_group->iref) {
8757 block_group->iref = 0;
8758 block_group->inode = NULL;
8759 spin_unlock(&block_group->lock);
8760 iput(inode);
8761 } else {
8762 spin_unlock(&block_group->lock);
8763 }
8764 /* One for our lookup ref */
8765 btrfs_add_delayed_iput(inode);
8766 }
8767
8768 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8769 key.offset = block_group->key.objectid;
8770 key.type = 0;
8771
8772 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8773 if (ret < 0)
8774 goto out;
8775 if (ret > 0)
8776 btrfs_release_path(path);
8777 if (ret == 0) {
8778 ret = btrfs_del_item(trans, tree_root, path);
8779 if (ret)
8780 goto out;
8781 btrfs_release_path(path);
8782 }
8783
8784 spin_lock(&root->fs_info->block_group_cache_lock);
8785 rb_erase(&block_group->cache_node,
8786 &root->fs_info->block_group_cache_tree);
8787
8788 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8789 root->fs_info->first_logical_byte = (u64)-1;
8790 spin_unlock(&root->fs_info->block_group_cache_lock);
8791
8792 down_write(&block_group->space_info->groups_sem);
8793 /*
8794 * we must use list_del_init so people can check to see if they
8795 * are still on the list after taking the semaphore
8796 */
8797 list_del_init(&block_group->list);
8798 if (list_empty(&block_group->space_info->block_groups[index])) {
8799 kobject_del(&block_group->space_info->block_group_kobjs[index]);
8800 kobject_put(&block_group->space_info->block_group_kobjs[index]);
8801 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8802 }
8803 up_write(&block_group->space_info->groups_sem);
8804
8805 if (block_group->cached == BTRFS_CACHE_STARTED)
8806 wait_block_group_cache_done(block_group);
8807
8808 btrfs_remove_free_space_cache(block_group);
8809
8810 spin_lock(&block_group->space_info->lock);
8811 block_group->space_info->total_bytes -= block_group->key.offset;
8812 block_group->space_info->bytes_readonly -= block_group->key.offset;
8813 block_group->space_info->disk_total -= block_group->key.offset * factor;
8814 spin_unlock(&block_group->space_info->lock);
8815
8816 memcpy(&key, &block_group->key, sizeof(key));
8817
8818 btrfs_clear_space_info_full(root->fs_info);
8819
8820 btrfs_put_block_group(block_group);
8821 btrfs_put_block_group(block_group);
8822
8823 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8824 if (ret > 0)
8825 ret = -EIO;
8826 if (ret < 0)
8827 goto out;
8828
8829 ret = btrfs_del_item(trans, root, path);
8830out:
8831 btrfs_free_path(path);
8832 return ret;
8833}
8834
8835int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8836{
8837 struct btrfs_space_info *space_info;
8838 struct btrfs_super_block *disk_super;
8839 u64 features;
8840 u64 flags;
8841 int mixed = 0;
8842 int ret;
8843
8844 disk_super = fs_info->super_copy;
8845 if (!btrfs_super_root(disk_super))
8846 return 1;
8847
8848 features = btrfs_super_incompat_flags(disk_super);
8849 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8850 mixed = 1;
8851
8852 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8853 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8854 if (ret)
8855 goto out;
8856
8857 if (mixed) {
8858 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8859 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8860 } else {
8861 flags = BTRFS_BLOCK_GROUP_METADATA;
8862 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8863 if (ret)
8864 goto out;
8865
8866 flags = BTRFS_BLOCK_GROUP_DATA;
8867 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8868 }
8869out:
8870 return ret;
8871}
8872
8873int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8874{
8875 return unpin_extent_range(root, start, end);
8876}
8877
8878int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8879 u64 num_bytes, u64 *actual_bytes)
8880{
8881 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8882}
8883
8884int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8885{
8886 struct btrfs_fs_info *fs_info = root->fs_info;
8887 struct btrfs_block_group_cache *cache = NULL;
8888 u64 group_trimmed;
8889 u64 start;
8890 u64 end;
8891 u64 trimmed = 0;
8892 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8893 int ret = 0;
8894
8895 /*
8896 * try to trim all FS space, our block group may start from non-zero.
8897 */
8898 if (range->len == total_bytes)
8899 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8900 else
8901 cache = btrfs_lookup_block_group(fs_info, range->start);
8902
8903 while (cache) {
8904 if (cache->key.objectid >= (range->start + range->len)) {
8905 btrfs_put_block_group(cache);
8906 break;
8907 }
8908
8909 start = max(range->start, cache->key.objectid);
8910 end = min(range->start + range->len,
8911 cache->key.objectid + cache->key.offset);
8912
8913 if (end - start >= range->minlen) {
8914 if (!block_group_cache_done(cache)) {
8915 ret = cache_block_group(cache, 0);
8916 if (ret) {
8917 btrfs_put_block_group(cache);
8918 break;
8919 }
8920 ret = wait_block_group_cache_done(cache);
8921 if (ret) {
8922 btrfs_put_block_group(cache);
8923 break;
8924 }
8925 }
8926 ret = btrfs_trim_block_group(cache,
8927 &group_trimmed,
8928 start,
8929 end,
8930 range->minlen);
8931
8932 trimmed += group_trimmed;
8933 if (ret) {
8934 btrfs_put_block_group(cache);
8935 break;
8936 }
8937 }
8938
8939 cache = next_block_group(fs_info->tree_root, cache);
8940 }
8941
8942 range->len = trimmed;
8943 return ret;
8944}
8945
8946/*
8947 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
8948 * they are used to prevent the some tasks writing data into the page cache
8949 * by nocow before the subvolume is snapshoted, but flush the data into
8950 * the disk after the snapshot creation.
8951 */
8952void btrfs_end_nocow_write(struct btrfs_root *root)
8953{
8954 percpu_counter_dec(&root->subv_writers->counter);
8955 /*
8956 * Make sure counter is updated before we wake up
8957 * waiters.
8958 */
8959 smp_mb();
8960 if (waitqueue_active(&root->subv_writers->wait))
8961 wake_up(&root->subv_writers->wait);
8962}
8963
8964int btrfs_start_nocow_write(struct btrfs_root *root)
8965{
8966 if (unlikely(atomic_read(&root->will_be_snapshoted)))
8967 return 0;
8968
8969 percpu_counter_inc(&root->subv_writers->counter);
8970 /*
8971 * Make sure counter is updated before we check for snapshot creation.
8972 */
8973 smp_mb();
8974 if (unlikely(atomic_read(&root->will_be_snapshoted))) {
8975 btrfs_end_nocow_write(root);
8976 return 0;
8977 }
8978 return 1;
8979}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/blkdev.h>
22#include <linux/sort.h>
23#include <linux/rcupdate.h>
24#include <linux/kthread.h>
25#include <linux/slab.h>
26#include <linux/ratelimit.h>
27#include "compat.h"
28#include "hash.h"
29#include "ctree.h"
30#include "disk-io.h"
31#include "print-tree.h"
32#include "transaction.h"
33#include "volumes.h"
34#include "locking.h"
35#include "free-space-cache.h"
36
37/*
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 *
50 */
51enum {
52 CHUNK_ALLOC_NO_FORCE = 0,
53 CHUNK_ALLOC_LIMITED = 1,
54 CHUNK_ALLOC_FORCE = 2,
55};
56
57/*
58 * Control how reservations are dealt with.
59 *
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62 * ENOSPC accounting
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
65 */
66enum {
67 RESERVE_FREE = 0,
68 RESERVE_ALLOC = 1,
69 RESERVE_ALLOC_NO_ACCOUNT = 2,
70};
71
72static int update_block_group(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 bytenr, u64 num_bytes, int alloc);
75static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, u64 parent,
78 u64 root_objectid, u64 owner_objectid,
79 u64 owner_offset, int refs_to_drop,
80 struct btrfs_delayed_extent_op *extra_op);
81static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 struct extent_buffer *leaf,
83 struct btrfs_extent_item *ei);
84static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 struct btrfs_root *root,
86 u64 parent, u64 root_objectid,
87 u64 flags, u64 owner, u64 offset,
88 struct btrfs_key *ins, int ref_mod);
89static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, struct btrfs_disk_key *key,
93 int level, struct btrfs_key *ins);
94static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 struct btrfs_root *extent_root, u64 alloc_bytes,
96 u64 flags, int force);
97static int find_next_key(struct btrfs_path *path, int level,
98 struct btrfs_key *key);
99static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 int dump_block_groups);
101static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 u64 num_bytes, int reserve);
103
104static noinline int
105block_group_cache_done(struct btrfs_block_group_cache *cache)
106{
107 smp_mb();
108 return cache->cached == BTRFS_CACHE_FINISHED;
109}
110
111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112{
113 return (cache->flags & bits) == bits;
114}
115
116static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117{
118 atomic_inc(&cache->count);
119}
120
121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122{
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
126 kfree(cache->free_space_ctl);
127 kfree(cache);
128 }
129}
130
131/*
132 * this adds the block group to the fs_info rb tree for the block group
133 * cache
134 */
135static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 struct btrfs_block_group_cache *block_group)
137{
138 struct rb_node **p;
139 struct rb_node *parent = NULL;
140 struct btrfs_block_group_cache *cache;
141
142 spin_lock(&info->block_group_cache_lock);
143 p = &info->block_group_cache_tree.rb_node;
144
145 while (*p) {
146 parent = *p;
147 cache = rb_entry(parent, struct btrfs_block_group_cache,
148 cache_node);
149 if (block_group->key.objectid < cache->key.objectid) {
150 p = &(*p)->rb_left;
151 } else if (block_group->key.objectid > cache->key.objectid) {
152 p = &(*p)->rb_right;
153 } else {
154 spin_unlock(&info->block_group_cache_lock);
155 return -EEXIST;
156 }
157 }
158
159 rb_link_node(&block_group->cache_node, parent, p);
160 rb_insert_color(&block_group->cache_node,
161 &info->block_group_cache_tree);
162 spin_unlock(&info->block_group_cache_lock);
163
164 return 0;
165}
166
167/*
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
170 */
171static struct btrfs_block_group_cache *
172block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 int contains)
174{
175 struct btrfs_block_group_cache *cache, *ret = NULL;
176 struct rb_node *n;
177 u64 end, start;
178
179 spin_lock(&info->block_group_cache_lock);
180 n = info->block_group_cache_tree.rb_node;
181
182 while (n) {
183 cache = rb_entry(n, struct btrfs_block_group_cache,
184 cache_node);
185 end = cache->key.objectid + cache->key.offset - 1;
186 start = cache->key.objectid;
187
188 if (bytenr < start) {
189 if (!contains && (!ret || start < ret->key.objectid))
190 ret = cache;
191 n = n->rb_left;
192 } else if (bytenr > start) {
193 if (contains && bytenr <= end) {
194 ret = cache;
195 break;
196 }
197 n = n->rb_right;
198 } else {
199 ret = cache;
200 break;
201 }
202 }
203 if (ret)
204 btrfs_get_block_group(ret);
205 spin_unlock(&info->block_group_cache_lock);
206
207 return ret;
208}
209
210static int add_excluded_extent(struct btrfs_root *root,
211 u64 start, u64 num_bytes)
212{
213 u64 end = start + num_bytes - 1;
214 set_extent_bits(&root->fs_info->freed_extents[0],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 set_extent_bits(&root->fs_info->freed_extents[1],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 return 0;
219}
220
221static void free_excluded_extents(struct btrfs_root *root,
222 struct btrfs_block_group_cache *cache)
223{
224 u64 start, end;
225
226 start = cache->key.objectid;
227 end = start + cache->key.offset - 1;
228
229 clear_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 clear_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233}
234
235static int exclude_super_stripes(struct btrfs_root *root,
236 struct btrfs_block_group_cache *cache)
237{
238 u64 bytenr;
239 u64 *logical;
240 int stripe_len;
241 int i, nr, ret;
242
243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 cache->bytes_super += stripe_len;
246 ret = add_excluded_extent(root, cache->key.objectid,
247 stripe_len);
248 BUG_ON(ret); /* -ENOMEM */
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 cache->key.objectid, bytenr,
255 0, &logical, &nr, &stripe_len);
256 BUG_ON(ret); /* -ENOMEM */
257
258 while (nr--) {
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(root, logical[nr],
261 stripe_len);
262 BUG_ON(ret); /* -ENOMEM */
263 }
264
265 kfree(logical);
266 }
267 return 0;
268}
269
270static struct btrfs_caching_control *
271get_caching_control(struct btrfs_block_group_cache *cache)
272{
273 struct btrfs_caching_control *ctl;
274
275 spin_lock(&cache->lock);
276 if (cache->cached != BTRFS_CACHE_STARTED) {
277 spin_unlock(&cache->lock);
278 return NULL;
279 }
280
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache->caching_ctl) {
283 spin_unlock(&cache->lock);
284 return NULL;
285 }
286
287 ctl = cache->caching_ctl;
288 atomic_inc(&ctl->count);
289 spin_unlock(&cache->lock);
290 return ctl;
291}
292
293static void put_caching_control(struct btrfs_caching_control *ctl)
294{
295 if (atomic_dec_and_test(&ctl->count))
296 kfree(ctl);
297}
298
299/*
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
303 */
304static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 struct btrfs_fs_info *info, u64 start, u64 end)
306{
307 u64 extent_start, extent_end, size, total_added = 0;
308 int ret;
309
310 while (start < end) {
311 ret = find_first_extent_bit(info->pinned_extents, start,
312 &extent_start, &extent_end,
313 EXTENT_DIRTY | EXTENT_UPTODATE);
314 if (ret)
315 break;
316
317 if (extent_start <= start) {
318 start = extent_end + 1;
319 } else if (extent_start > start && extent_start < end) {
320 size = extent_start - start;
321 total_added += size;
322 ret = btrfs_add_free_space(block_group, start,
323 size);
324 BUG_ON(ret); /* -ENOMEM or logic error */
325 start = extent_end + 1;
326 } else {
327 break;
328 }
329 }
330
331 if (start < end) {
332 size = end - start;
333 total_added += size;
334 ret = btrfs_add_free_space(block_group, start, size);
335 BUG_ON(ret); /* -ENOMEM or logic error */
336 }
337
338 return total_added;
339}
340
341static noinline void caching_thread(struct btrfs_work *work)
342{
343 struct btrfs_block_group_cache *block_group;
344 struct btrfs_fs_info *fs_info;
345 struct btrfs_caching_control *caching_ctl;
346 struct btrfs_root *extent_root;
347 struct btrfs_path *path;
348 struct extent_buffer *leaf;
349 struct btrfs_key key;
350 u64 total_found = 0;
351 u64 last = 0;
352 u32 nritems;
353 int ret = 0;
354
355 caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 block_group = caching_ctl->block_group;
357 fs_info = block_group->fs_info;
358 extent_root = fs_info->extent_root;
359
360 path = btrfs_alloc_path();
361 if (!path)
362 goto out;
363
364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365
366 /*
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
371 */
372 path->skip_locking = 1;
373 path->search_commit_root = 1;
374 path->reada = 1;
375
376 key.objectid = last;
377 key.offset = 0;
378 key.type = BTRFS_EXTENT_ITEM_KEY;
379again:
380 mutex_lock(&caching_ctl->mutex);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info->extent_commit_sem);
383
384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 if (ret < 0)
386 goto err;
387
388 leaf = path->nodes[0];
389 nritems = btrfs_header_nritems(leaf);
390
391 while (1) {
392 if (btrfs_fs_closing(fs_info) > 1) {
393 last = (u64)-1;
394 break;
395 }
396
397 if (path->slots[0] < nritems) {
398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 } else {
400 ret = find_next_key(path, 0, &key);
401 if (ret)
402 break;
403
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root, path)) {
406 caching_ctl->progress = last;
407 btrfs_release_path(path);
408 up_read(&fs_info->extent_commit_sem);
409 mutex_unlock(&caching_ctl->mutex);
410 cond_resched();
411 goto again;
412 }
413 leaf = path->nodes[0];
414 nritems = btrfs_header_nritems(leaf);
415 continue;
416 }
417
418 if (key.objectid < block_group->key.objectid) {
419 path->slots[0]++;
420 continue;
421 }
422
423 if (key.objectid >= block_group->key.objectid +
424 block_group->key.offset)
425 break;
426
427 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 total_found += add_new_free_space(block_group,
429 fs_info, last,
430 key.objectid);
431 last = key.objectid + key.offset;
432
433 if (total_found > (1024 * 1024 * 2)) {
434 total_found = 0;
435 wake_up(&caching_ctl->wait);
436 }
437 }
438 path->slots[0]++;
439 }
440 ret = 0;
441
442 total_found += add_new_free_space(block_group, fs_info, last,
443 block_group->key.objectid +
444 block_group->key.offset);
445 caching_ctl->progress = (u64)-1;
446
447 spin_lock(&block_group->lock);
448 block_group->caching_ctl = NULL;
449 block_group->cached = BTRFS_CACHE_FINISHED;
450 spin_unlock(&block_group->lock);
451
452err:
453 btrfs_free_path(path);
454 up_read(&fs_info->extent_commit_sem);
455
456 free_excluded_extents(extent_root, block_group);
457
458 mutex_unlock(&caching_ctl->mutex);
459out:
460 wake_up(&caching_ctl->wait);
461
462 put_caching_control(caching_ctl);
463 btrfs_put_block_group(block_group);
464}
465
466static int cache_block_group(struct btrfs_block_group_cache *cache,
467 struct btrfs_trans_handle *trans,
468 struct btrfs_root *root,
469 int load_cache_only)
470{
471 DEFINE_WAIT(wait);
472 struct btrfs_fs_info *fs_info = cache->fs_info;
473 struct btrfs_caching_control *caching_ctl;
474 int ret = 0;
475
476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 if (!caching_ctl)
478 return -ENOMEM;
479
480 INIT_LIST_HEAD(&caching_ctl->list);
481 mutex_init(&caching_ctl->mutex);
482 init_waitqueue_head(&caching_ctl->wait);
483 caching_ctl->block_group = cache;
484 caching_ctl->progress = cache->key.objectid;
485 atomic_set(&caching_ctl->count, 1);
486 caching_ctl->work.func = caching_thread;
487
488 spin_lock(&cache->lock);
489 /*
490 * This should be a rare occasion, but this could happen I think in the
491 * case where one thread starts to load the space cache info, and then
492 * some other thread starts a transaction commit which tries to do an
493 * allocation while the other thread is still loading the space cache
494 * info. The previous loop should have kept us from choosing this block
495 * group, but if we've moved to the state where we will wait on caching
496 * block groups we need to first check if we're doing a fast load here,
497 * so we can wait for it to finish, otherwise we could end up allocating
498 * from a block group who's cache gets evicted for one reason or
499 * another.
500 */
501 while (cache->cached == BTRFS_CACHE_FAST) {
502 struct btrfs_caching_control *ctl;
503
504 ctl = cache->caching_ctl;
505 atomic_inc(&ctl->count);
506 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
507 spin_unlock(&cache->lock);
508
509 schedule();
510
511 finish_wait(&ctl->wait, &wait);
512 put_caching_control(ctl);
513 spin_lock(&cache->lock);
514 }
515
516 if (cache->cached != BTRFS_CACHE_NO) {
517 spin_unlock(&cache->lock);
518 kfree(caching_ctl);
519 return 0;
520 }
521 WARN_ON(cache->caching_ctl);
522 cache->caching_ctl = caching_ctl;
523 cache->cached = BTRFS_CACHE_FAST;
524 spin_unlock(&cache->lock);
525
526 /*
527 * We can't do the read from on-disk cache during a commit since we need
528 * to have the normal tree locking. Also if we are currently trying to
529 * allocate blocks for the tree root we can't do the fast caching since
530 * we likely hold important locks.
531 */
532 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
533 ret = load_free_space_cache(fs_info, cache);
534
535 spin_lock(&cache->lock);
536 if (ret == 1) {
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
540 } else {
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
544 } else {
545 cache->cached = BTRFS_CACHE_STARTED;
546 }
547 }
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
550 if (ret == 1) {
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
553 return 0;
554 }
555 } else {
556 /*
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
559 */
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
564 } else {
565 cache->cached = BTRFS_CACHE_STARTED;
566 }
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
569 }
570
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
573 return 0;
574 }
575
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
580
581 btrfs_get_block_group(cache);
582
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
584
585 return ret;
586}
587
588/*
589 * return the block group that starts at or after bytenr
590 */
591static struct btrfs_block_group_cache *
592btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
593{
594 struct btrfs_block_group_cache *cache;
595
596 cache = block_group_cache_tree_search(info, bytenr, 0);
597
598 return cache;
599}
600
601/*
602 * return the block group that contains the given bytenr
603 */
604struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
606 u64 bytenr)
607{
608 struct btrfs_block_group_cache *cache;
609
610 cache = block_group_cache_tree_search(info, bytenr, 1);
611
612 return cache;
613}
614
615static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 u64 flags)
617{
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
620
621 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
622
623 rcu_read_lock();
624 list_for_each_entry_rcu(found, head, list) {
625 if (found->flags & flags) {
626 rcu_read_unlock();
627 return found;
628 }
629 }
630 rcu_read_unlock();
631 return NULL;
632}
633
634/*
635 * after adding space to the filesystem, we need to clear the full flags
636 * on all the space infos.
637 */
638void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
639{
640 struct list_head *head = &info->space_info;
641 struct btrfs_space_info *found;
642
643 rcu_read_lock();
644 list_for_each_entry_rcu(found, head, list)
645 found->full = 0;
646 rcu_read_unlock();
647}
648
649static u64 div_factor(u64 num, int factor)
650{
651 if (factor == 10)
652 return num;
653 num *= factor;
654 do_div(num, 10);
655 return num;
656}
657
658static u64 div_factor_fine(u64 num, int factor)
659{
660 if (factor == 100)
661 return num;
662 num *= factor;
663 do_div(num, 100);
664 return num;
665}
666
667u64 btrfs_find_block_group(struct btrfs_root *root,
668 u64 search_start, u64 search_hint, int owner)
669{
670 struct btrfs_block_group_cache *cache;
671 u64 used;
672 u64 last = max(search_hint, search_start);
673 u64 group_start = 0;
674 int full_search = 0;
675 int factor = 9;
676 int wrapped = 0;
677again:
678 while (1) {
679 cache = btrfs_lookup_first_block_group(root->fs_info, last);
680 if (!cache)
681 break;
682
683 spin_lock(&cache->lock);
684 last = cache->key.objectid + cache->key.offset;
685 used = btrfs_block_group_used(&cache->item);
686
687 if ((full_search || !cache->ro) &&
688 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
689 if (used + cache->pinned + cache->reserved <
690 div_factor(cache->key.offset, factor)) {
691 group_start = cache->key.objectid;
692 spin_unlock(&cache->lock);
693 btrfs_put_block_group(cache);
694 goto found;
695 }
696 }
697 spin_unlock(&cache->lock);
698 btrfs_put_block_group(cache);
699 cond_resched();
700 }
701 if (!wrapped) {
702 last = search_start;
703 wrapped = 1;
704 goto again;
705 }
706 if (!full_search && factor < 10) {
707 last = search_start;
708 full_search = 1;
709 factor = 10;
710 goto again;
711 }
712found:
713 return group_start;
714}
715
716/* simple helper to search for an existing extent at a given offset */
717int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
718{
719 int ret;
720 struct btrfs_key key;
721 struct btrfs_path *path;
722
723 path = btrfs_alloc_path();
724 if (!path)
725 return -ENOMEM;
726
727 key.objectid = start;
728 key.offset = len;
729 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
730 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
731 0, 0);
732 btrfs_free_path(path);
733 return ret;
734}
735
736/*
737 * helper function to lookup reference count and flags of extent.
738 *
739 * the head node for delayed ref is used to store the sum of all the
740 * reference count modifications queued up in the rbtree. the head
741 * node may also store the extent flags to set. This way you can check
742 * to see what the reference count and extent flags would be if all of
743 * the delayed refs are not processed.
744 */
745int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
746 struct btrfs_root *root, u64 bytenr,
747 u64 num_bytes, u64 *refs, u64 *flags)
748{
749 struct btrfs_delayed_ref_head *head;
750 struct btrfs_delayed_ref_root *delayed_refs;
751 struct btrfs_path *path;
752 struct btrfs_extent_item *ei;
753 struct extent_buffer *leaf;
754 struct btrfs_key key;
755 u32 item_size;
756 u64 num_refs;
757 u64 extent_flags;
758 int ret;
759
760 path = btrfs_alloc_path();
761 if (!path)
762 return -ENOMEM;
763
764 key.objectid = bytenr;
765 key.type = BTRFS_EXTENT_ITEM_KEY;
766 key.offset = num_bytes;
767 if (!trans) {
768 path->skip_locking = 1;
769 path->search_commit_root = 1;
770 }
771again:
772 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
773 &key, path, 0, 0);
774 if (ret < 0)
775 goto out_free;
776
777 if (ret == 0) {
778 leaf = path->nodes[0];
779 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
780 if (item_size >= sizeof(*ei)) {
781 ei = btrfs_item_ptr(leaf, path->slots[0],
782 struct btrfs_extent_item);
783 num_refs = btrfs_extent_refs(leaf, ei);
784 extent_flags = btrfs_extent_flags(leaf, ei);
785 } else {
786#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 struct btrfs_extent_item_v0 *ei0;
788 BUG_ON(item_size != sizeof(*ei0));
789 ei0 = btrfs_item_ptr(leaf, path->slots[0],
790 struct btrfs_extent_item_v0);
791 num_refs = btrfs_extent_refs_v0(leaf, ei0);
792 /* FIXME: this isn't correct for data */
793 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
794#else
795 BUG();
796#endif
797 }
798 BUG_ON(num_refs == 0);
799 } else {
800 num_refs = 0;
801 extent_flags = 0;
802 ret = 0;
803 }
804
805 if (!trans)
806 goto out;
807
808 delayed_refs = &trans->transaction->delayed_refs;
809 spin_lock(&delayed_refs->lock);
810 head = btrfs_find_delayed_ref_head(trans, bytenr);
811 if (head) {
812 if (!mutex_trylock(&head->mutex)) {
813 atomic_inc(&head->node.refs);
814 spin_unlock(&delayed_refs->lock);
815
816 btrfs_release_path(path);
817
818 /*
819 * Mutex was contended, block until it's released and try
820 * again
821 */
822 mutex_lock(&head->mutex);
823 mutex_unlock(&head->mutex);
824 btrfs_put_delayed_ref(&head->node);
825 goto again;
826 }
827 if (head->extent_op && head->extent_op->update_flags)
828 extent_flags |= head->extent_op->flags_to_set;
829 else
830 BUG_ON(num_refs == 0);
831
832 num_refs += head->node.ref_mod;
833 mutex_unlock(&head->mutex);
834 }
835 spin_unlock(&delayed_refs->lock);
836out:
837 WARN_ON(num_refs == 0);
838 if (refs)
839 *refs = num_refs;
840 if (flags)
841 *flags = extent_flags;
842out_free:
843 btrfs_free_path(path);
844 return ret;
845}
846
847/*
848 * Back reference rules. Back refs have three main goals:
849 *
850 * 1) differentiate between all holders of references to an extent so that
851 * when a reference is dropped we can make sure it was a valid reference
852 * before freeing the extent.
853 *
854 * 2) Provide enough information to quickly find the holders of an extent
855 * if we notice a given block is corrupted or bad.
856 *
857 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858 * maintenance. This is actually the same as #2, but with a slightly
859 * different use case.
860 *
861 * There are two kinds of back refs. The implicit back refs is optimized
862 * for pointers in non-shared tree blocks. For a given pointer in a block,
863 * back refs of this kind provide information about the block's owner tree
864 * and the pointer's key. These information allow us to find the block by
865 * b-tree searching. The full back refs is for pointers in tree blocks not
866 * referenced by their owner trees. The location of tree block is recorded
867 * in the back refs. Actually the full back refs is generic, and can be
868 * used in all cases the implicit back refs is used. The major shortcoming
869 * of the full back refs is its overhead. Every time a tree block gets
870 * COWed, we have to update back refs entry for all pointers in it.
871 *
872 * For a newly allocated tree block, we use implicit back refs for
873 * pointers in it. This means most tree related operations only involve
874 * implicit back refs. For a tree block created in old transaction, the
875 * only way to drop a reference to it is COW it. So we can detect the
876 * event that tree block loses its owner tree's reference and do the
877 * back refs conversion.
878 *
879 * When a tree block is COW'd through a tree, there are four cases:
880 *
881 * The reference count of the block is one and the tree is the block's
882 * owner tree. Nothing to do in this case.
883 *
884 * The reference count of the block is one and the tree is not the
885 * block's owner tree. In this case, full back refs is used for pointers
886 * in the block. Remove these full back refs, add implicit back refs for
887 * every pointers in the new block.
888 *
889 * The reference count of the block is greater than one and the tree is
890 * the block's owner tree. In this case, implicit back refs is used for
891 * pointers in the block. Add full back refs for every pointers in the
892 * block, increase lower level extents' reference counts. The original
893 * implicit back refs are entailed to the new block.
894 *
895 * The reference count of the block is greater than one and the tree is
896 * not the block's owner tree. Add implicit back refs for every pointer in
897 * the new block, increase lower level extents' reference count.
898 *
899 * Back Reference Key composing:
900 *
901 * The key objectid corresponds to the first byte in the extent,
902 * The key type is used to differentiate between types of back refs.
903 * There are different meanings of the key offset for different types
904 * of back refs.
905 *
906 * File extents can be referenced by:
907 *
908 * - multiple snapshots, subvolumes, or different generations in one subvol
909 * - different files inside a single subvolume
910 * - different offsets inside a file (bookend extents in file.c)
911 *
912 * The extent ref structure for the implicit back refs has fields for:
913 *
914 * - Objectid of the subvolume root
915 * - objectid of the file holding the reference
916 * - original offset in the file
917 * - how many bookend extents
918 *
919 * The key offset for the implicit back refs is hash of the first
920 * three fields.
921 *
922 * The extent ref structure for the full back refs has field for:
923 *
924 * - number of pointers in the tree leaf
925 *
926 * The key offset for the implicit back refs is the first byte of
927 * the tree leaf
928 *
929 * When a file extent is allocated, The implicit back refs is used.
930 * the fields are filled in:
931 *
932 * (root_key.objectid, inode objectid, offset in file, 1)
933 *
934 * When a file extent is removed file truncation, we find the
935 * corresponding implicit back refs and check the following fields:
936 *
937 * (btrfs_header_owner(leaf), inode objectid, offset in file)
938 *
939 * Btree extents can be referenced by:
940 *
941 * - Different subvolumes
942 *
943 * Both the implicit back refs and the full back refs for tree blocks
944 * only consist of key. The key offset for the implicit back refs is
945 * objectid of block's owner tree. The key offset for the full back refs
946 * is the first byte of parent block.
947 *
948 * When implicit back refs is used, information about the lowest key and
949 * level of the tree block are required. These information are stored in
950 * tree block info structure.
951 */
952
953#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
954static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 struct btrfs_path *path,
957 u64 owner, u32 extra_size)
958{
959 struct btrfs_extent_item *item;
960 struct btrfs_extent_item_v0 *ei0;
961 struct btrfs_extent_ref_v0 *ref0;
962 struct btrfs_tree_block_info *bi;
963 struct extent_buffer *leaf;
964 struct btrfs_key key;
965 struct btrfs_key found_key;
966 u32 new_size = sizeof(*item);
967 u64 refs;
968 int ret;
969
970 leaf = path->nodes[0];
971 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
972
973 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
974 ei0 = btrfs_item_ptr(leaf, path->slots[0],
975 struct btrfs_extent_item_v0);
976 refs = btrfs_extent_refs_v0(leaf, ei0);
977
978 if (owner == (u64)-1) {
979 while (1) {
980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 ret = btrfs_next_leaf(root, path);
982 if (ret < 0)
983 return ret;
984 BUG_ON(ret > 0); /* Corruption */
985 leaf = path->nodes[0];
986 }
987 btrfs_item_key_to_cpu(leaf, &found_key,
988 path->slots[0]);
989 BUG_ON(key.objectid != found_key.objectid);
990 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
991 path->slots[0]++;
992 continue;
993 }
994 ref0 = btrfs_item_ptr(leaf, path->slots[0],
995 struct btrfs_extent_ref_v0);
996 owner = btrfs_ref_objectid_v0(leaf, ref0);
997 break;
998 }
999 }
1000 btrfs_release_path(path);
1001
1002 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1003 new_size += sizeof(*bi);
1004
1005 new_size -= sizeof(*ei0);
1006 ret = btrfs_search_slot(trans, root, &key, path,
1007 new_size + extra_size, 1);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret); /* Corruption */
1011
1012 btrfs_extend_item(trans, root, path, new_size);
1013
1014 leaf = path->nodes[0];
1015 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 btrfs_set_extent_refs(leaf, item, refs);
1017 /* FIXME: get real generation */
1018 btrfs_set_extent_generation(leaf, item, 0);
1019 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1020 btrfs_set_extent_flags(leaf, item,
1021 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1022 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1023 bi = (struct btrfs_tree_block_info *)(item + 1);
1024 /* FIXME: get first key of the block */
1025 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1026 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1027 } else {
1028 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1029 }
1030 btrfs_mark_buffer_dirty(leaf);
1031 return 0;
1032}
1033#endif
1034
1035static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1036{
1037 u32 high_crc = ~(u32)0;
1038 u32 low_crc = ~(u32)0;
1039 __le64 lenum;
1040
1041 lenum = cpu_to_le64(root_objectid);
1042 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1043 lenum = cpu_to_le64(owner);
1044 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(offset);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047
1048 return ((u64)high_crc << 31) ^ (u64)low_crc;
1049}
1050
1051static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1052 struct btrfs_extent_data_ref *ref)
1053{
1054 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1055 btrfs_extent_data_ref_objectid(leaf, ref),
1056 btrfs_extent_data_ref_offset(leaf, ref));
1057}
1058
1059static int match_extent_data_ref(struct extent_buffer *leaf,
1060 struct btrfs_extent_data_ref *ref,
1061 u64 root_objectid, u64 owner, u64 offset)
1062{
1063 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1064 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1065 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1066 return 0;
1067 return 1;
1068}
1069
1070static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root,
1072 struct btrfs_path *path,
1073 u64 bytenr, u64 parent,
1074 u64 root_objectid,
1075 u64 owner, u64 offset)
1076{
1077 struct btrfs_key key;
1078 struct btrfs_extent_data_ref *ref;
1079 struct extent_buffer *leaf;
1080 u32 nritems;
1081 int ret;
1082 int recow;
1083 int err = -ENOENT;
1084
1085 key.objectid = bytenr;
1086 if (parent) {
1087 key.type = BTRFS_SHARED_DATA_REF_KEY;
1088 key.offset = parent;
1089 } else {
1090 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1091 key.offset = hash_extent_data_ref(root_objectid,
1092 owner, offset);
1093 }
1094again:
1095 recow = 0;
1096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1097 if (ret < 0) {
1098 err = ret;
1099 goto fail;
1100 }
1101
1102 if (parent) {
1103 if (!ret)
1104 return 0;
1105#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 btrfs_release_path(path);
1108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 if (ret < 0) {
1110 err = ret;
1111 goto fail;
1112 }
1113 if (!ret)
1114 return 0;
1115#endif
1116 goto fail;
1117 }
1118
1119 leaf = path->nodes[0];
1120 nritems = btrfs_header_nritems(leaf);
1121 while (1) {
1122 if (path->slots[0] >= nritems) {
1123 ret = btrfs_next_leaf(root, path);
1124 if (ret < 0)
1125 err = ret;
1126 if (ret)
1127 goto fail;
1128
1129 leaf = path->nodes[0];
1130 nritems = btrfs_header_nritems(leaf);
1131 recow = 1;
1132 }
1133
1134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 if (key.objectid != bytenr ||
1136 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1137 goto fail;
1138
1139 ref = btrfs_item_ptr(leaf, path->slots[0],
1140 struct btrfs_extent_data_ref);
1141
1142 if (match_extent_data_ref(leaf, ref, root_objectid,
1143 owner, offset)) {
1144 if (recow) {
1145 btrfs_release_path(path);
1146 goto again;
1147 }
1148 err = 0;
1149 break;
1150 }
1151 path->slots[0]++;
1152 }
1153fail:
1154 return err;
1155}
1156
1157static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 u64 bytenr, u64 parent,
1161 u64 root_objectid, u64 owner,
1162 u64 offset, int refs_to_add)
1163{
1164 struct btrfs_key key;
1165 struct extent_buffer *leaf;
1166 u32 size;
1167 u32 num_refs;
1168 int ret;
1169
1170 key.objectid = bytenr;
1171 if (parent) {
1172 key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 key.offset = parent;
1174 size = sizeof(struct btrfs_shared_data_ref);
1175 } else {
1176 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 key.offset = hash_extent_data_ref(root_objectid,
1178 owner, offset);
1179 size = sizeof(struct btrfs_extent_data_ref);
1180 }
1181
1182 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1183 if (ret && ret != -EEXIST)
1184 goto fail;
1185
1186 leaf = path->nodes[0];
1187 if (parent) {
1188 struct btrfs_shared_data_ref *ref;
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_shared_data_ref);
1191 if (ret == 0) {
1192 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1193 } else {
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1195 num_refs += refs_to_add;
1196 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1197 }
1198 } else {
1199 struct btrfs_extent_data_ref *ref;
1200 while (ret == -EEXIST) {
1201 ref = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_extent_data_ref);
1203 if (match_extent_data_ref(leaf, ref, root_objectid,
1204 owner, offset))
1205 break;
1206 btrfs_release_path(path);
1207 key.offset++;
1208 ret = btrfs_insert_empty_item(trans, root, path, &key,
1209 size);
1210 if (ret && ret != -EEXIST)
1211 goto fail;
1212
1213 leaf = path->nodes[0];
1214 }
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_extent_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_extent_data_ref_root(leaf, ref,
1219 root_objectid);
1220 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1221 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1222 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1223 } else {
1224 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1225 num_refs += refs_to_add;
1226 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1227 }
1228 }
1229 btrfs_mark_buffer_dirty(leaf);
1230 ret = 0;
1231fail:
1232 btrfs_release_path(path);
1233 return ret;
1234}
1235
1236static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1237 struct btrfs_root *root,
1238 struct btrfs_path *path,
1239 int refs_to_drop)
1240{
1241 struct btrfs_key key;
1242 struct btrfs_extent_data_ref *ref1 = NULL;
1243 struct btrfs_shared_data_ref *ref2 = NULL;
1244 struct extent_buffer *leaf;
1245 u32 num_refs = 0;
1246 int ret = 0;
1247
1248 leaf = path->nodes[0];
1249 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1250
1251 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 struct btrfs_extent_data_ref);
1254 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_shared_data_ref);
1258 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1261 struct btrfs_extent_ref_v0 *ref0;
1262 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1263 struct btrfs_extent_ref_v0);
1264 num_refs = btrfs_ref_count_v0(leaf, ref0);
1265#endif
1266 } else {
1267 BUG();
1268 }
1269
1270 BUG_ON(num_refs < refs_to_drop);
1271 num_refs -= refs_to_drop;
1272
1273 if (num_refs == 0) {
1274 ret = btrfs_del_item(trans, root, path);
1275 } else {
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1277 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1278 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1279 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1280#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 else {
1282 struct btrfs_extent_ref_v0 *ref0;
1283 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_ref_v0);
1285 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1286 }
1287#endif
1288 btrfs_mark_buffer_dirty(leaf);
1289 }
1290 return ret;
1291}
1292
1293static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 struct btrfs_extent_inline_ref *iref)
1296{
1297 struct btrfs_key key;
1298 struct extent_buffer *leaf;
1299 struct btrfs_extent_data_ref *ref1;
1300 struct btrfs_shared_data_ref *ref2;
1301 u32 num_refs = 0;
1302
1303 leaf = path->nodes[0];
1304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1305 if (iref) {
1306 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1307 BTRFS_EXTENT_DATA_REF_KEY) {
1308 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1309 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1310 } else {
1311 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1313 }
1314 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1315 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1318 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1319 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_shared_data_ref);
1321 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1322#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1324 struct btrfs_extent_ref_v0 *ref0;
1325 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_extent_ref_v0);
1327 num_refs = btrfs_ref_count_v0(leaf, ref0);
1328#endif
1329 } else {
1330 WARN_ON(1);
1331 }
1332 return num_refs;
1333}
1334
1335static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1336 struct btrfs_root *root,
1337 struct btrfs_path *path,
1338 u64 bytenr, u64 parent,
1339 u64 root_objectid)
1340{
1341 struct btrfs_key key;
1342 int ret;
1343
1344 key.objectid = bytenr;
1345 if (parent) {
1346 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1347 key.offset = parent;
1348 } else {
1349 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1350 key.offset = root_objectid;
1351 }
1352
1353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1354 if (ret > 0)
1355 ret = -ENOENT;
1356#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 if (ret == -ENOENT && parent) {
1358 btrfs_release_path(path);
1359 key.type = BTRFS_EXTENT_REF_V0_KEY;
1360 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1361 if (ret > 0)
1362 ret = -ENOENT;
1363 }
1364#endif
1365 return ret;
1366}
1367
1368static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1372 u64 root_objectid)
1373{
1374 struct btrfs_key key;
1375 int ret;
1376
1377 key.objectid = bytenr;
1378 if (parent) {
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1381 } else {
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1384 }
1385
1386 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1387 btrfs_release_path(path);
1388 return ret;
1389}
1390
1391static inline int extent_ref_type(u64 parent, u64 owner)
1392{
1393 int type;
1394 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1395 if (parent > 0)
1396 type = BTRFS_SHARED_BLOCK_REF_KEY;
1397 else
1398 type = BTRFS_TREE_BLOCK_REF_KEY;
1399 } else {
1400 if (parent > 0)
1401 type = BTRFS_SHARED_DATA_REF_KEY;
1402 else
1403 type = BTRFS_EXTENT_DATA_REF_KEY;
1404 }
1405 return type;
1406}
1407
1408static int find_next_key(struct btrfs_path *path, int level,
1409 struct btrfs_key *key)
1410
1411{
1412 for (; level < BTRFS_MAX_LEVEL; level++) {
1413 if (!path->nodes[level])
1414 break;
1415 if (path->slots[level] + 1 >=
1416 btrfs_header_nritems(path->nodes[level]))
1417 continue;
1418 if (level == 0)
1419 btrfs_item_key_to_cpu(path->nodes[level], key,
1420 path->slots[level] + 1);
1421 else
1422 btrfs_node_key_to_cpu(path->nodes[level], key,
1423 path->slots[level] + 1);
1424 return 0;
1425 }
1426 return 1;
1427}
1428
1429/*
1430 * look for inline back ref. if back ref is found, *ref_ret is set
1431 * to the address of inline back ref, and 0 is returned.
1432 *
1433 * if back ref isn't found, *ref_ret is set to the address where it
1434 * should be inserted, and -ENOENT is returned.
1435 *
1436 * if insert is true and there are too many inline back refs, the path
1437 * points to the extent item, and -EAGAIN is returned.
1438 *
1439 * NOTE: inline back refs are ordered in the same way that back ref
1440 * items in the tree are ordered.
1441 */
1442static noinline_for_stack
1443int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1444 struct btrfs_root *root,
1445 struct btrfs_path *path,
1446 struct btrfs_extent_inline_ref **ref_ret,
1447 u64 bytenr, u64 num_bytes,
1448 u64 parent, u64 root_objectid,
1449 u64 owner, u64 offset, int insert)
1450{
1451 struct btrfs_key key;
1452 struct extent_buffer *leaf;
1453 struct btrfs_extent_item *ei;
1454 struct btrfs_extent_inline_ref *iref;
1455 u64 flags;
1456 u64 item_size;
1457 unsigned long ptr;
1458 unsigned long end;
1459 int extra_size;
1460 int type;
1461 int want;
1462 int ret;
1463 int err = 0;
1464
1465 key.objectid = bytenr;
1466 key.type = BTRFS_EXTENT_ITEM_KEY;
1467 key.offset = num_bytes;
1468
1469 want = extent_ref_type(parent, owner);
1470 if (insert) {
1471 extra_size = btrfs_extent_inline_ref_size(want);
1472 path->keep_locks = 1;
1473 } else
1474 extra_size = -1;
1475 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1476 if (ret < 0) {
1477 err = ret;
1478 goto out;
1479 }
1480 if (ret && !insert) {
1481 err = -ENOENT;
1482 goto out;
1483 }
1484 BUG_ON(ret); /* Corruption */
1485
1486 leaf = path->nodes[0];
1487 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1488#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1489 if (item_size < sizeof(*ei)) {
1490 if (!insert) {
1491 err = -ENOENT;
1492 goto out;
1493 }
1494 ret = convert_extent_item_v0(trans, root, path, owner,
1495 extra_size);
1496 if (ret < 0) {
1497 err = ret;
1498 goto out;
1499 }
1500 leaf = path->nodes[0];
1501 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1502 }
1503#endif
1504 BUG_ON(item_size < sizeof(*ei));
1505
1506 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1507 flags = btrfs_extent_flags(leaf, ei);
1508
1509 ptr = (unsigned long)(ei + 1);
1510 end = (unsigned long)ei + item_size;
1511
1512 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1513 ptr += sizeof(struct btrfs_tree_block_info);
1514 BUG_ON(ptr > end);
1515 } else {
1516 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1517 }
1518
1519 err = -ENOENT;
1520 while (1) {
1521 if (ptr >= end) {
1522 WARN_ON(ptr > end);
1523 break;
1524 }
1525 iref = (struct btrfs_extent_inline_ref *)ptr;
1526 type = btrfs_extent_inline_ref_type(leaf, iref);
1527 if (want < type)
1528 break;
1529 if (want > type) {
1530 ptr += btrfs_extent_inline_ref_size(type);
1531 continue;
1532 }
1533
1534 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1535 struct btrfs_extent_data_ref *dref;
1536 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1537 if (match_extent_data_ref(leaf, dref, root_objectid,
1538 owner, offset)) {
1539 err = 0;
1540 break;
1541 }
1542 if (hash_extent_data_ref_item(leaf, dref) <
1543 hash_extent_data_ref(root_objectid, owner, offset))
1544 break;
1545 } else {
1546 u64 ref_offset;
1547 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1548 if (parent > 0) {
1549 if (parent == ref_offset) {
1550 err = 0;
1551 break;
1552 }
1553 if (ref_offset < parent)
1554 break;
1555 } else {
1556 if (root_objectid == ref_offset) {
1557 err = 0;
1558 break;
1559 }
1560 if (ref_offset < root_objectid)
1561 break;
1562 }
1563 }
1564 ptr += btrfs_extent_inline_ref_size(type);
1565 }
1566 if (err == -ENOENT && insert) {
1567 if (item_size + extra_size >=
1568 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1569 err = -EAGAIN;
1570 goto out;
1571 }
1572 /*
1573 * To add new inline back ref, we have to make sure
1574 * there is no corresponding back ref item.
1575 * For simplicity, we just do not add new inline back
1576 * ref if there is any kind of item for this block
1577 */
1578 if (find_next_key(path, 0, &key) == 0 &&
1579 key.objectid == bytenr &&
1580 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1581 err = -EAGAIN;
1582 goto out;
1583 }
1584 }
1585 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1586out:
1587 if (insert) {
1588 path->keep_locks = 0;
1589 btrfs_unlock_up_safe(path, 1);
1590 }
1591 return err;
1592}
1593
1594/*
1595 * helper to add new inline back ref
1596 */
1597static noinline_for_stack
1598void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1599 struct btrfs_root *root,
1600 struct btrfs_path *path,
1601 struct btrfs_extent_inline_ref *iref,
1602 u64 parent, u64 root_objectid,
1603 u64 owner, u64 offset, int refs_to_add,
1604 struct btrfs_delayed_extent_op *extent_op)
1605{
1606 struct extent_buffer *leaf;
1607 struct btrfs_extent_item *ei;
1608 unsigned long ptr;
1609 unsigned long end;
1610 unsigned long item_offset;
1611 u64 refs;
1612 int size;
1613 int type;
1614
1615 leaf = path->nodes[0];
1616 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1617 item_offset = (unsigned long)iref - (unsigned long)ei;
1618
1619 type = extent_ref_type(parent, owner);
1620 size = btrfs_extent_inline_ref_size(type);
1621
1622 btrfs_extend_item(trans, root, path, size);
1623
1624 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1625 refs = btrfs_extent_refs(leaf, ei);
1626 refs += refs_to_add;
1627 btrfs_set_extent_refs(leaf, ei, refs);
1628 if (extent_op)
1629 __run_delayed_extent_op(extent_op, leaf, ei);
1630
1631 ptr = (unsigned long)ei + item_offset;
1632 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1633 if (ptr < end - size)
1634 memmove_extent_buffer(leaf, ptr + size, ptr,
1635 end - size - ptr);
1636
1637 iref = (struct btrfs_extent_inline_ref *)ptr;
1638 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1639 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1640 struct btrfs_extent_data_ref *dref;
1641 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1642 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1643 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1644 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1645 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1646 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1647 struct btrfs_shared_data_ref *sref;
1648 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1649 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 } else {
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1655 }
1656 btrfs_mark_buffer_dirty(leaf);
1657}
1658
1659static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1660 struct btrfs_root *root,
1661 struct btrfs_path *path,
1662 struct btrfs_extent_inline_ref **ref_ret,
1663 u64 bytenr, u64 num_bytes, u64 parent,
1664 u64 root_objectid, u64 owner, u64 offset)
1665{
1666 int ret;
1667
1668 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1669 bytenr, num_bytes, parent,
1670 root_objectid, owner, offset, 0);
1671 if (ret != -ENOENT)
1672 return ret;
1673
1674 btrfs_release_path(path);
1675 *ref_ret = NULL;
1676
1677 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1678 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1679 root_objectid);
1680 } else {
1681 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1682 root_objectid, owner, offset);
1683 }
1684 return ret;
1685}
1686
1687/*
1688 * helper to update/remove inline back ref
1689 */
1690static noinline_for_stack
1691void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1692 struct btrfs_root *root,
1693 struct btrfs_path *path,
1694 struct btrfs_extent_inline_ref *iref,
1695 int refs_to_mod,
1696 struct btrfs_delayed_extent_op *extent_op)
1697{
1698 struct extent_buffer *leaf;
1699 struct btrfs_extent_item *ei;
1700 struct btrfs_extent_data_ref *dref = NULL;
1701 struct btrfs_shared_data_ref *sref = NULL;
1702 unsigned long ptr;
1703 unsigned long end;
1704 u32 item_size;
1705 int size;
1706 int type;
1707 u64 refs;
1708
1709 leaf = path->nodes[0];
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 refs += refs_to_mod;
1714 btrfs_set_extent_refs(leaf, ei, refs);
1715 if (extent_op)
1716 __run_delayed_extent_op(extent_op, leaf, ei);
1717
1718 type = btrfs_extent_inline_ref_type(leaf, iref);
1719
1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 refs = btrfs_extent_data_ref_count(leaf, dref);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 refs = btrfs_shared_data_ref_count(leaf, sref);
1726 } else {
1727 refs = 1;
1728 BUG_ON(refs_to_mod != -1);
1729 }
1730
1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 refs += refs_to_mod;
1733
1734 if (refs > 0) {
1735 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 else
1738 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 } else {
1740 size = btrfs_extent_inline_ref_size(type);
1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 ptr = (unsigned long)iref;
1743 end = (unsigned long)ei + item_size;
1744 if (ptr + size < end)
1745 memmove_extent_buffer(leaf, ptr, ptr + size,
1746 end - ptr - size);
1747 item_size -= size;
1748 btrfs_truncate_item(trans, root, path, item_size, 1);
1749 }
1750 btrfs_mark_buffer_dirty(leaf);
1751}
1752
1753static noinline_for_stack
1754int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 u64 bytenr, u64 num_bytes, u64 parent,
1758 u64 root_objectid, u64 owner,
1759 u64 offset, int refs_to_add,
1760 struct btrfs_delayed_extent_op *extent_op)
1761{
1762 struct btrfs_extent_inline_ref *iref;
1763 int ret;
1764
1765 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1766 bytenr, num_bytes, parent,
1767 root_objectid, owner, offset, 1);
1768 if (ret == 0) {
1769 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1770 update_inline_extent_backref(trans, root, path, iref,
1771 refs_to_add, extent_op);
1772 } else if (ret == -ENOENT) {
1773 setup_inline_extent_backref(trans, root, path, iref, parent,
1774 root_objectid, owner, offset,
1775 refs_to_add, extent_op);
1776 ret = 0;
1777 }
1778 return ret;
1779}
1780
1781static int insert_extent_backref(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_path *path,
1784 u64 bytenr, u64 parent, u64 root_objectid,
1785 u64 owner, u64 offset, int refs_to_add)
1786{
1787 int ret;
1788 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1789 BUG_ON(refs_to_add != 1);
1790 ret = insert_tree_block_ref(trans, root, path, bytenr,
1791 parent, root_objectid);
1792 } else {
1793 ret = insert_extent_data_ref(trans, root, path, bytenr,
1794 parent, root_objectid,
1795 owner, offset, refs_to_add);
1796 }
1797 return ret;
1798}
1799
1800static int remove_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref *iref,
1804 int refs_to_drop, int is_data)
1805{
1806 int ret = 0;
1807
1808 BUG_ON(!is_data && refs_to_drop != 1);
1809 if (iref) {
1810 update_inline_extent_backref(trans, root, path, iref,
1811 -refs_to_drop, NULL);
1812 } else if (is_data) {
1813 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1814 } else {
1815 ret = btrfs_del_item(trans, root, path);
1816 }
1817 return ret;
1818}
1819
1820static int btrfs_issue_discard(struct block_device *bdev,
1821 u64 start, u64 len)
1822{
1823 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1824}
1825
1826static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1827 u64 num_bytes, u64 *actual_bytes)
1828{
1829 int ret;
1830 u64 discarded_bytes = 0;
1831 struct btrfs_bio *bbio = NULL;
1832
1833
1834 /* Tell the block device(s) that the sectors can be discarded */
1835 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1836 bytenr, &num_bytes, &bbio, 0);
1837 /* Error condition is -ENOMEM */
1838 if (!ret) {
1839 struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 int i;
1841
1842
1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 if (!stripe->dev->can_discard)
1845 continue;
1846
1847 ret = btrfs_issue_discard(stripe->dev->bdev,
1848 stripe->physical,
1849 stripe->length);
1850 if (!ret)
1851 discarded_bytes += stripe->length;
1852 else if (ret != -EOPNOTSUPP)
1853 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1854
1855 /*
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1859 */
1860 ret = 0;
1861 }
1862 kfree(bbio);
1863 }
1864
1865 if (actual_bytes)
1866 *actual_bytes = discarded_bytes;
1867
1868
1869 return ret;
1870}
1871
1872/* Can return -ENOMEM */
1873int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1874 struct btrfs_root *root,
1875 u64 bytenr, u64 num_bytes, u64 parent,
1876 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1877{
1878 int ret;
1879 struct btrfs_fs_info *fs_info = root->fs_info;
1880
1881 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1882 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1883
1884 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1885 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1886 num_bytes,
1887 parent, root_objectid, (int)owner,
1888 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1889 } else {
1890 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1891 num_bytes,
1892 parent, root_objectid, owner, offset,
1893 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1894 }
1895 return ret;
1896}
1897
1898static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1899 struct btrfs_root *root,
1900 u64 bytenr, u64 num_bytes,
1901 u64 parent, u64 root_objectid,
1902 u64 owner, u64 offset, int refs_to_add,
1903 struct btrfs_delayed_extent_op *extent_op)
1904{
1905 struct btrfs_path *path;
1906 struct extent_buffer *leaf;
1907 struct btrfs_extent_item *item;
1908 u64 refs;
1909 int ret;
1910 int err = 0;
1911
1912 path = btrfs_alloc_path();
1913 if (!path)
1914 return -ENOMEM;
1915
1916 path->reada = 1;
1917 path->leave_spinning = 1;
1918 /* this will setup the path even if it fails to insert the back ref */
1919 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1920 path, bytenr, num_bytes, parent,
1921 root_objectid, owner, offset,
1922 refs_to_add, extent_op);
1923 if (ret == 0)
1924 goto out;
1925
1926 if (ret != -EAGAIN) {
1927 err = ret;
1928 goto out;
1929 }
1930
1931 leaf = path->nodes[0];
1932 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1933 refs = btrfs_extent_refs(leaf, item);
1934 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1935 if (extent_op)
1936 __run_delayed_extent_op(extent_op, leaf, item);
1937
1938 btrfs_mark_buffer_dirty(leaf);
1939 btrfs_release_path(path);
1940
1941 path->reada = 1;
1942 path->leave_spinning = 1;
1943
1944 /* now insert the actual backref */
1945 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1946 path, bytenr, parent, root_objectid,
1947 owner, offset, refs_to_add);
1948 if (ret)
1949 btrfs_abort_transaction(trans, root, ret);
1950out:
1951 btrfs_free_path(path);
1952 return err;
1953}
1954
1955static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1956 struct btrfs_root *root,
1957 struct btrfs_delayed_ref_node *node,
1958 struct btrfs_delayed_extent_op *extent_op,
1959 int insert_reserved)
1960{
1961 int ret = 0;
1962 struct btrfs_delayed_data_ref *ref;
1963 struct btrfs_key ins;
1964 u64 parent = 0;
1965 u64 ref_root = 0;
1966 u64 flags = 0;
1967
1968 ins.objectid = node->bytenr;
1969 ins.offset = node->num_bytes;
1970 ins.type = BTRFS_EXTENT_ITEM_KEY;
1971
1972 ref = btrfs_delayed_node_to_data_ref(node);
1973 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1974 parent = ref->parent;
1975 else
1976 ref_root = ref->root;
1977
1978 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1979 if (extent_op) {
1980 BUG_ON(extent_op->update_key);
1981 flags |= extent_op->flags_to_set;
1982 }
1983 ret = alloc_reserved_file_extent(trans, root,
1984 parent, ref_root, flags,
1985 ref->objectid, ref->offset,
1986 &ins, node->ref_mod);
1987 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1988 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1989 node->num_bytes, parent,
1990 ref_root, ref->objectid,
1991 ref->offset, node->ref_mod,
1992 extent_op);
1993 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1994 ret = __btrfs_free_extent(trans, root, node->bytenr,
1995 node->num_bytes, parent,
1996 ref_root, ref->objectid,
1997 ref->offset, node->ref_mod,
1998 extent_op);
1999 } else {
2000 BUG();
2001 }
2002 return ret;
2003}
2004
2005static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2006 struct extent_buffer *leaf,
2007 struct btrfs_extent_item *ei)
2008{
2009 u64 flags = btrfs_extent_flags(leaf, ei);
2010 if (extent_op->update_flags) {
2011 flags |= extent_op->flags_to_set;
2012 btrfs_set_extent_flags(leaf, ei, flags);
2013 }
2014
2015 if (extent_op->update_key) {
2016 struct btrfs_tree_block_info *bi;
2017 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2018 bi = (struct btrfs_tree_block_info *)(ei + 1);
2019 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2020 }
2021}
2022
2023static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2024 struct btrfs_root *root,
2025 struct btrfs_delayed_ref_node *node,
2026 struct btrfs_delayed_extent_op *extent_op)
2027{
2028 struct btrfs_key key;
2029 struct btrfs_path *path;
2030 struct btrfs_extent_item *ei;
2031 struct extent_buffer *leaf;
2032 u32 item_size;
2033 int ret;
2034 int err = 0;
2035
2036 if (trans->aborted)
2037 return 0;
2038
2039 path = btrfs_alloc_path();
2040 if (!path)
2041 return -ENOMEM;
2042
2043 key.objectid = node->bytenr;
2044 key.type = BTRFS_EXTENT_ITEM_KEY;
2045 key.offset = node->num_bytes;
2046
2047 path->reada = 1;
2048 path->leave_spinning = 1;
2049 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2050 path, 0, 1);
2051 if (ret < 0) {
2052 err = ret;
2053 goto out;
2054 }
2055 if (ret > 0) {
2056 err = -EIO;
2057 goto out;
2058 }
2059
2060 leaf = path->nodes[0];
2061 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2062#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2063 if (item_size < sizeof(*ei)) {
2064 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2065 path, (u64)-1, 0);
2066 if (ret < 0) {
2067 err = ret;
2068 goto out;
2069 }
2070 leaf = path->nodes[0];
2071 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2072 }
2073#endif
2074 BUG_ON(item_size < sizeof(*ei));
2075 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2076 __run_delayed_extent_op(extent_op, leaf, ei);
2077
2078 btrfs_mark_buffer_dirty(leaf);
2079out:
2080 btrfs_free_path(path);
2081 return err;
2082}
2083
2084static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2085 struct btrfs_root *root,
2086 struct btrfs_delayed_ref_node *node,
2087 struct btrfs_delayed_extent_op *extent_op,
2088 int insert_reserved)
2089{
2090 int ret = 0;
2091 struct btrfs_delayed_tree_ref *ref;
2092 struct btrfs_key ins;
2093 u64 parent = 0;
2094 u64 ref_root = 0;
2095
2096 ins.objectid = node->bytenr;
2097 ins.offset = node->num_bytes;
2098 ins.type = BTRFS_EXTENT_ITEM_KEY;
2099
2100 ref = btrfs_delayed_node_to_tree_ref(node);
2101 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2102 parent = ref->parent;
2103 else
2104 ref_root = ref->root;
2105
2106 BUG_ON(node->ref_mod != 1);
2107 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2108 BUG_ON(!extent_op || !extent_op->update_flags ||
2109 !extent_op->update_key);
2110 ret = alloc_reserved_tree_block(trans, root,
2111 parent, ref_root,
2112 extent_op->flags_to_set,
2113 &extent_op->key,
2114 ref->level, &ins);
2115 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2116 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2117 node->num_bytes, parent, ref_root,
2118 ref->level, 0, 1, extent_op);
2119 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2120 ret = __btrfs_free_extent(trans, root, node->bytenr,
2121 node->num_bytes, parent, ref_root,
2122 ref->level, 0, 1, extent_op);
2123 } else {
2124 BUG();
2125 }
2126 return ret;
2127}
2128
2129/* helper function to actually process a single delayed ref entry */
2130static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2131 struct btrfs_root *root,
2132 struct btrfs_delayed_ref_node *node,
2133 struct btrfs_delayed_extent_op *extent_op,
2134 int insert_reserved)
2135{
2136 int ret = 0;
2137
2138 if (trans->aborted)
2139 return 0;
2140
2141 if (btrfs_delayed_ref_is_head(node)) {
2142 struct btrfs_delayed_ref_head *head;
2143 /*
2144 * we've hit the end of the chain and we were supposed
2145 * to insert this extent into the tree. But, it got
2146 * deleted before we ever needed to insert it, so all
2147 * we have to do is clean up the accounting
2148 */
2149 BUG_ON(extent_op);
2150 head = btrfs_delayed_node_to_head(node);
2151 if (insert_reserved) {
2152 btrfs_pin_extent(root, node->bytenr,
2153 node->num_bytes, 1);
2154 if (head->is_data) {
2155 ret = btrfs_del_csums(trans, root,
2156 node->bytenr,
2157 node->num_bytes);
2158 }
2159 }
2160 mutex_unlock(&head->mutex);
2161 return ret;
2162 }
2163
2164 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2165 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2166 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2167 insert_reserved);
2168 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2169 node->type == BTRFS_SHARED_DATA_REF_KEY)
2170 ret = run_delayed_data_ref(trans, root, node, extent_op,
2171 insert_reserved);
2172 else
2173 BUG();
2174 return ret;
2175}
2176
2177static noinline struct btrfs_delayed_ref_node *
2178select_delayed_ref(struct btrfs_delayed_ref_head *head)
2179{
2180 struct rb_node *node;
2181 struct btrfs_delayed_ref_node *ref;
2182 int action = BTRFS_ADD_DELAYED_REF;
2183again:
2184 /*
2185 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2186 * this prevents ref count from going down to zero when
2187 * there still are pending delayed ref.
2188 */
2189 node = rb_prev(&head->node.rb_node);
2190 while (1) {
2191 if (!node)
2192 break;
2193 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2194 rb_node);
2195 if (ref->bytenr != head->node.bytenr)
2196 break;
2197 if (ref->action == action)
2198 return ref;
2199 node = rb_prev(node);
2200 }
2201 if (action == BTRFS_ADD_DELAYED_REF) {
2202 action = BTRFS_DROP_DELAYED_REF;
2203 goto again;
2204 }
2205 return NULL;
2206}
2207
2208/*
2209 * Returns 0 on success or if called with an already aborted transaction.
2210 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2211 */
2212static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2213 struct btrfs_root *root,
2214 struct list_head *cluster)
2215{
2216 struct btrfs_delayed_ref_root *delayed_refs;
2217 struct btrfs_delayed_ref_node *ref;
2218 struct btrfs_delayed_ref_head *locked_ref = NULL;
2219 struct btrfs_delayed_extent_op *extent_op;
2220 int ret;
2221 int count = 0;
2222 int must_insert_reserved = 0;
2223
2224 delayed_refs = &trans->transaction->delayed_refs;
2225 while (1) {
2226 if (!locked_ref) {
2227 /* pick a new head ref from the cluster list */
2228 if (list_empty(cluster))
2229 break;
2230
2231 locked_ref = list_entry(cluster->next,
2232 struct btrfs_delayed_ref_head, cluster);
2233
2234 /* grab the lock that says we are going to process
2235 * all the refs for this head */
2236 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2237
2238 /*
2239 * we may have dropped the spin lock to get the head
2240 * mutex lock, and that might have given someone else
2241 * time to free the head. If that's true, it has been
2242 * removed from our list and we can move on.
2243 */
2244 if (ret == -EAGAIN) {
2245 locked_ref = NULL;
2246 count++;
2247 continue;
2248 }
2249 }
2250
2251 /*
2252 * locked_ref is the head node, so we have to go one
2253 * node back for any delayed ref updates
2254 */
2255 ref = select_delayed_ref(locked_ref);
2256
2257 if (ref && ref->seq &&
2258 btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2259 /*
2260 * there are still refs with lower seq numbers in the
2261 * process of being added. Don't run this ref yet.
2262 */
2263 list_del_init(&locked_ref->cluster);
2264 mutex_unlock(&locked_ref->mutex);
2265 locked_ref = NULL;
2266 delayed_refs->num_heads_ready++;
2267 spin_unlock(&delayed_refs->lock);
2268 cond_resched();
2269 spin_lock(&delayed_refs->lock);
2270 continue;
2271 }
2272
2273 /*
2274 * record the must insert reserved flag before we
2275 * drop the spin lock.
2276 */
2277 must_insert_reserved = locked_ref->must_insert_reserved;
2278 locked_ref->must_insert_reserved = 0;
2279
2280 extent_op = locked_ref->extent_op;
2281 locked_ref->extent_op = NULL;
2282
2283 if (!ref) {
2284 /* All delayed refs have been processed, Go ahead
2285 * and send the head node to run_one_delayed_ref,
2286 * so that any accounting fixes can happen
2287 */
2288 ref = &locked_ref->node;
2289
2290 if (extent_op && must_insert_reserved) {
2291 kfree(extent_op);
2292 extent_op = NULL;
2293 }
2294
2295 if (extent_op) {
2296 spin_unlock(&delayed_refs->lock);
2297
2298 ret = run_delayed_extent_op(trans, root,
2299 ref, extent_op);
2300 kfree(extent_op);
2301
2302 if (ret) {
2303 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2304 spin_lock(&delayed_refs->lock);
2305 return ret;
2306 }
2307
2308 goto next;
2309 }
2310
2311 list_del_init(&locked_ref->cluster);
2312 locked_ref = NULL;
2313 }
2314
2315 ref->in_tree = 0;
2316 rb_erase(&ref->rb_node, &delayed_refs->root);
2317 delayed_refs->num_entries--;
2318 /*
2319 * we modified num_entries, but as we're currently running
2320 * delayed refs, skip
2321 * wake_up(&delayed_refs->seq_wait);
2322 * here.
2323 */
2324 spin_unlock(&delayed_refs->lock);
2325
2326 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2327 must_insert_reserved);
2328
2329 btrfs_put_delayed_ref(ref);
2330 kfree(extent_op);
2331 count++;
2332
2333 if (ret) {
2334 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2335 spin_lock(&delayed_refs->lock);
2336 return ret;
2337 }
2338
2339next:
2340 do_chunk_alloc(trans, root->fs_info->extent_root,
2341 2 * 1024 * 1024,
2342 btrfs_get_alloc_profile(root, 0),
2343 CHUNK_ALLOC_NO_FORCE);
2344 cond_resched();
2345 spin_lock(&delayed_refs->lock);
2346 }
2347 return count;
2348}
2349
2350static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2351 unsigned long num_refs,
2352 struct list_head *first_seq)
2353{
2354 spin_unlock(&delayed_refs->lock);
2355 pr_debug("waiting for more refs (num %ld, first %p)\n",
2356 num_refs, first_seq);
2357 wait_event(delayed_refs->seq_wait,
2358 num_refs != delayed_refs->num_entries ||
2359 delayed_refs->seq_head.next != first_seq);
2360 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2361 delayed_refs->num_entries, delayed_refs->seq_head.next);
2362 spin_lock(&delayed_refs->lock);
2363}
2364
2365/*
2366 * this starts processing the delayed reference count updates and
2367 * extent insertions we have queued up so far. count can be
2368 * 0, which means to process everything in the tree at the start
2369 * of the run (but not newly added entries), or it can be some target
2370 * number you'd like to process.
2371 *
2372 * Returns 0 on success or if called with an aborted transaction
2373 * Returns <0 on error and aborts the transaction
2374 */
2375int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2376 struct btrfs_root *root, unsigned long count)
2377{
2378 struct rb_node *node;
2379 struct btrfs_delayed_ref_root *delayed_refs;
2380 struct btrfs_delayed_ref_node *ref;
2381 struct list_head cluster;
2382 struct list_head *first_seq = NULL;
2383 int ret;
2384 u64 delayed_start;
2385 int run_all = count == (unsigned long)-1;
2386 int run_most = 0;
2387 unsigned long num_refs = 0;
2388 int consider_waiting;
2389
2390 /* We'll clean this up in btrfs_cleanup_transaction */
2391 if (trans->aborted)
2392 return 0;
2393
2394 if (root == root->fs_info->extent_root)
2395 root = root->fs_info->tree_root;
2396
2397 do_chunk_alloc(trans, root->fs_info->extent_root,
2398 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2399 CHUNK_ALLOC_NO_FORCE);
2400
2401 delayed_refs = &trans->transaction->delayed_refs;
2402 INIT_LIST_HEAD(&cluster);
2403again:
2404 consider_waiting = 0;
2405 spin_lock(&delayed_refs->lock);
2406 if (count == 0) {
2407 count = delayed_refs->num_entries * 2;
2408 run_most = 1;
2409 }
2410 while (1) {
2411 if (!(run_all || run_most) &&
2412 delayed_refs->num_heads_ready < 64)
2413 break;
2414
2415 /*
2416 * go find something we can process in the rbtree. We start at
2417 * the beginning of the tree, and then build a cluster
2418 * of refs to process starting at the first one we are able to
2419 * lock
2420 */
2421 delayed_start = delayed_refs->run_delayed_start;
2422 ret = btrfs_find_ref_cluster(trans, &cluster,
2423 delayed_refs->run_delayed_start);
2424 if (ret)
2425 break;
2426
2427 if (delayed_start >= delayed_refs->run_delayed_start) {
2428 if (consider_waiting == 0) {
2429 /*
2430 * btrfs_find_ref_cluster looped. let's do one
2431 * more cycle. if we don't run any delayed ref
2432 * during that cycle (because we can't because
2433 * all of them are blocked) and if the number of
2434 * refs doesn't change, we avoid busy waiting.
2435 */
2436 consider_waiting = 1;
2437 num_refs = delayed_refs->num_entries;
2438 first_seq = root->fs_info->tree_mod_seq_list.next;
2439 } else {
2440 wait_for_more_refs(delayed_refs,
2441 num_refs, first_seq);
2442 /*
2443 * after waiting, things have changed. we
2444 * dropped the lock and someone else might have
2445 * run some refs, built new clusters and so on.
2446 * therefore, we restart staleness detection.
2447 */
2448 consider_waiting = 0;
2449 }
2450 }
2451
2452 ret = run_clustered_refs(trans, root, &cluster);
2453 if (ret < 0) {
2454 spin_unlock(&delayed_refs->lock);
2455 btrfs_abort_transaction(trans, root, ret);
2456 return ret;
2457 }
2458
2459 count -= min_t(unsigned long, ret, count);
2460
2461 if (count == 0)
2462 break;
2463
2464 if (ret || delayed_refs->run_delayed_start == 0) {
2465 /* refs were run, let's reset staleness detection */
2466 consider_waiting = 0;
2467 }
2468 }
2469
2470 if (run_all) {
2471 node = rb_first(&delayed_refs->root);
2472 if (!node)
2473 goto out;
2474 count = (unsigned long)-1;
2475
2476 while (node) {
2477 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2478 rb_node);
2479 if (btrfs_delayed_ref_is_head(ref)) {
2480 struct btrfs_delayed_ref_head *head;
2481
2482 head = btrfs_delayed_node_to_head(ref);
2483 atomic_inc(&ref->refs);
2484
2485 spin_unlock(&delayed_refs->lock);
2486 /*
2487 * Mutex was contended, block until it's
2488 * released and try again
2489 */
2490 mutex_lock(&head->mutex);
2491 mutex_unlock(&head->mutex);
2492
2493 btrfs_put_delayed_ref(ref);
2494 cond_resched();
2495 goto again;
2496 }
2497 node = rb_next(node);
2498 }
2499 spin_unlock(&delayed_refs->lock);
2500 schedule_timeout(1);
2501 goto again;
2502 }
2503out:
2504 spin_unlock(&delayed_refs->lock);
2505 return 0;
2506}
2507
2508int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2509 struct btrfs_root *root,
2510 u64 bytenr, u64 num_bytes, u64 flags,
2511 int is_data)
2512{
2513 struct btrfs_delayed_extent_op *extent_op;
2514 int ret;
2515
2516 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2517 if (!extent_op)
2518 return -ENOMEM;
2519
2520 extent_op->flags_to_set = flags;
2521 extent_op->update_flags = 1;
2522 extent_op->update_key = 0;
2523 extent_op->is_data = is_data ? 1 : 0;
2524
2525 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2526 num_bytes, extent_op);
2527 if (ret)
2528 kfree(extent_op);
2529 return ret;
2530}
2531
2532static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2533 struct btrfs_root *root,
2534 struct btrfs_path *path,
2535 u64 objectid, u64 offset, u64 bytenr)
2536{
2537 struct btrfs_delayed_ref_head *head;
2538 struct btrfs_delayed_ref_node *ref;
2539 struct btrfs_delayed_data_ref *data_ref;
2540 struct btrfs_delayed_ref_root *delayed_refs;
2541 struct rb_node *node;
2542 int ret = 0;
2543
2544 ret = -ENOENT;
2545 delayed_refs = &trans->transaction->delayed_refs;
2546 spin_lock(&delayed_refs->lock);
2547 head = btrfs_find_delayed_ref_head(trans, bytenr);
2548 if (!head)
2549 goto out;
2550
2551 if (!mutex_trylock(&head->mutex)) {
2552 atomic_inc(&head->node.refs);
2553 spin_unlock(&delayed_refs->lock);
2554
2555 btrfs_release_path(path);
2556
2557 /*
2558 * Mutex was contended, block until it's released and let
2559 * caller try again
2560 */
2561 mutex_lock(&head->mutex);
2562 mutex_unlock(&head->mutex);
2563 btrfs_put_delayed_ref(&head->node);
2564 return -EAGAIN;
2565 }
2566
2567 node = rb_prev(&head->node.rb_node);
2568 if (!node)
2569 goto out_unlock;
2570
2571 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2572
2573 if (ref->bytenr != bytenr)
2574 goto out_unlock;
2575
2576 ret = 1;
2577 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2578 goto out_unlock;
2579
2580 data_ref = btrfs_delayed_node_to_data_ref(ref);
2581
2582 node = rb_prev(node);
2583 if (node) {
2584 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2585 if (ref->bytenr == bytenr)
2586 goto out_unlock;
2587 }
2588
2589 if (data_ref->root != root->root_key.objectid ||
2590 data_ref->objectid != objectid || data_ref->offset != offset)
2591 goto out_unlock;
2592
2593 ret = 0;
2594out_unlock:
2595 mutex_unlock(&head->mutex);
2596out:
2597 spin_unlock(&delayed_refs->lock);
2598 return ret;
2599}
2600
2601static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2602 struct btrfs_root *root,
2603 struct btrfs_path *path,
2604 u64 objectid, u64 offset, u64 bytenr)
2605{
2606 struct btrfs_root *extent_root = root->fs_info->extent_root;
2607 struct extent_buffer *leaf;
2608 struct btrfs_extent_data_ref *ref;
2609 struct btrfs_extent_inline_ref *iref;
2610 struct btrfs_extent_item *ei;
2611 struct btrfs_key key;
2612 u32 item_size;
2613 int ret;
2614
2615 key.objectid = bytenr;
2616 key.offset = (u64)-1;
2617 key.type = BTRFS_EXTENT_ITEM_KEY;
2618
2619 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2620 if (ret < 0)
2621 goto out;
2622 BUG_ON(ret == 0); /* Corruption */
2623
2624 ret = -ENOENT;
2625 if (path->slots[0] == 0)
2626 goto out;
2627
2628 path->slots[0]--;
2629 leaf = path->nodes[0];
2630 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2631
2632 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2633 goto out;
2634
2635 ret = 1;
2636 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2637#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2638 if (item_size < sizeof(*ei)) {
2639 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2640 goto out;
2641 }
2642#endif
2643 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2644
2645 if (item_size != sizeof(*ei) +
2646 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2647 goto out;
2648
2649 if (btrfs_extent_generation(leaf, ei) <=
2650 btrfs_root_last_snapshot(&root->root_item))
2651 goto out;
2652
2653 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2654 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2655 BTRFS_EXTENT_DATA_REF_KEY)
2656 goto out;
2657
2658 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2659 if (btrfs_extent_refs(leaf, ei) !=
2660 btrfs_extent_data_ref_count(leaf, ref) ||
2661 btrfs_extent_data_ref_root(leaf, ref) !=
2662 root->root_key.objectid ||
2663 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2664 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2665 goto out;
2666
2667 ret = 0;
2668out:
2669 return ret;
2670}
2671
2672int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2673 struct btrfs_root *root,
2674 u64 objectid, u64 offset, u64 bytenr)
2675{
2676 struct btrfs_path *path;
2677 int ret;
2678 int ret2;
2679
2680 path = btrfs_alloc_path();
2681 if (!path)
2682 return -ENOENT;
2683
2684 do {
2685 ret = check_committed_ref(trans, root, path, objectid,
2686 offset, bytenr);
2687 if (ret && ret != -ENOENT)
2688 goto out;
2689
2690 ret2 = check_delayed_ref(trans, root, path, objectid,
2691 offset, bytenr);
2692 } while (ret2 == -EAGAIN);
2693
2694 if (ret2 && ret2 != -ENOENT) {
2695 ret = ret2;
2696 goto out;
2697 }
2698
2699 if (ret != -ENOENT || ret2 != -ENOENT)
2700 ret = 0;
2701out:
2702 btrfs_free_path(path);
2703 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2704 WARN_ON(ret > 0);
2705 return ret;
2706}
2707
2708static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2709 struct btrfs_root *root,
2710 struct extent_buffer *buf,
2711 int full_backref, int inc, int for_cow)
2712{
2713 u64 bytenr;
2714 u64 num_bytes;
2715 u64 parent;
2716 u64 ref_root;
2717 u32 nritems;
2718 struct btrfs_key key;
2719 struct btrfs_file_extent_item *fi;
2720 int i;
2721 int level;
2722 int ret = 0;
2723 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2724 u64, u64, u64, u64, u64, u64, int);
2725
2726 ref_root = btrfs_header_owner(buf);
2727 nritems = btrfs_header_nritems(buf);
2728 level = btrfs_header_level(buf);
2729
2730 if (!root->ref_cows && level == 0)
2731 return 0;
2732
2733 if (inc)
2734 process_func = btrfs_inc_extent_ref;
2735 else
2736 process_func = btrfs_free_extent;
2737
2738 if (full_backref)
2739 parent = buf->start;
2740 else
2741 parent = 0;
2742
2743 for (i = 0; i < nritems; i++) {
2744 if (level == 0) {
2745 btrfs_item_key_to_cpu(buf, &key, i);
2746 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2747 continue;
2748 fi = btrfs_item_ptr(buf, i,
2749 struct btrfs_file_extent_item);
2750 if (btrfs_file_extent_type(buf, fi) ==
2751 BTRFS_FILE_EXTENT_INLINE)
2752 continue;
2753 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2754 if (bytenr == 0)
2755 continue;
2756
2757 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2758 key.offset -= btrfs_file_extent_offset(buf, fi);
2759 ret = process_func(trans, root, bytenr, num_bytes,
2760 parent, ref_root, key.objectid,
2761 key.offset, for_cow);
2762 if (ret)
2763 goto fail;
2764 } else {
2765 bytenr = btrfs_node_blockptr(buf, i);
2766 num_bytes = btrfs_level_size(root, level - 1);
2767 ret = process_func(trans, root, bytenr, num_bytes,
2768 parent, ref_root, level - 1, 0,
2769 for_cow);
2770 if (ret)
2771 goto fail;
2772 }
2773 }
2774 return 0;
2775fail:
2776 return ret;
2777}
2778
2779int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2780 struct extent_buffer *buf, int full_backref, int for_cow)
2781{
2782 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2783}
2784
2785int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2786 struct extent_buffer *buf, int full_backref, int for_cow)
2787{
2788 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2789}
2790
2791static int write_one_cache_group(struct btrfs_trans_handle *trans,
2792 struct btrfs_root *root,
2793 struct btrfs_path *path,
2794 struct btrfs_block_group_cache *cache)
2795{
2796 int ret;
2797 struct btrfs_root *extent_root = root->fs_info->extent_root;
2798 unsigned long bi;
2799 struct extent_buffer *leaf;
2800
2801 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2802 if (ret < 0)
2803 goto fail;
2804 BUG_ON(ret); /* Corruption */
2805
2806 leaf = path->nodes[0];
2807 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2808 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2809 btrfs_mark_buffer_dirty(leaf);
2810 btrfs_release_path(path);
2811fail:
2812 if (ret) {
2813 btrfs_abort_transaction(trans, root, ret);
2814 return ret;
2815 }
2816 return 0;
2817
2818}
2819
2820static struct btrfs_block_group_cache *
2821next_block_group(struct btrfs_root *root,
2822 struct btrfs_block_group_cache *cache)
2823{
2824 struct rb_node *node;
2825 spin_lock(&root->fs_info->block_group_cache_lock);
2826 node = rb_next(&cache->cache_node);
2827 btrfs_put_block_group(cache);
2828 if (node) {
2829 cache = rb_entry(node, struct btrfs_block_group_cache,
2830 cache_node);
2831 btrfs_get_block_group(cache);
2832 } else
2833 cache = NULL;
2834 spin_unlock(&root->fs_info->block_group_cache_lock);
2835 return cache;
2836}
2837
2838static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2839 struct btrfs_trans_handle *trans,
2840 struct btrfs_path *path)
2841{
2842 struct btrfs_root *root = block_group->fs_info->tree_root;
2843 struct inode *inode = NULL;
2844 u64 alloc_hint = 0;
2845 int dcs = BTRFS_DC_ERROR;
2846 int num_pages = 0;
2847 int retries = 0;
2848 int ret = 0;
2849
2850 /*
2851 * If this block group is smaller than 100 megs don't bother caching the
2852 * block group.
2853 */
2854 if (block_group->key.offset < (100 * 1024 * 1024)) {
2855 spin_lock(&block_group->lock);
2856 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2857 spin_unlock(&block_group->lock);
2858 return 0;
2859 }
2860
2861again:
2862 inode = lookup_free_space_inode(root, block_group, path);
2863 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2864 ret = PTR_ERR(inode);
2865 btrfs_release_path(path);
2866 goto out;
2867 }
2868
2869 if (IS_ERR(inode)) {
2870 BUG_ON(retries);
2871 retries++;
2872
2873 if (block_group->ro)
2874 goto out_free;
2875
2876 ret = create_free_space_inode(root, trans, block_group, path);
2877 if (ret)
2878 goto out_free;
2879 goto again;
2880 }
2881
2882 /* We've already setup this transaction, go ahead and exit */
2883 if (block_group->cache_generation == trans->transid &&
2884 i_size_read(inode)) {
2885 dcs = BTRFS_DC_SETUP;
2886 goto out_put;
2887 }
2888
2889 /*
2890 * We want to set the generation to 0, that way if anything goes wrong
2891 * from here on out we know not to trust this cache when we load up next
2892 * time.
2893 */
2894 BTRFS_I(inode)->generation = 0;
2895 ret = btrfs_update_inode(trans, root, inode);
2896 WARN_ON(ret);
2897
2898 if (i_size_read(inode) > 0) {
2899 ret = btrfs_truncate_free_space_cache(root, trans, path,
2900 inode);
2901 if (ret)
2902 goto out_put;
2903 }
2904
2905 spin_lock(&block_group->lock);
2906 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2907 /* We're not cached, don't bother trying to write stuff out */
2908 dcs = BTRFS_DC_WRITTEN;
2909 spin_unlock(&block_group->lock);
2910 goto out_put;
2911 }
2912 spin_unlock(&block_group->lock);
2913
2914 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2915 if (!num_pages)
2916 num_pages = 1;
2917
2918 /*
2919 * Just to make absolutely sure we have enough space, we're going to
2920 * preallocate 12 pages worth of space for each block group. In
2921 * practice we ought to use at most 8, but we need extra space so we can
2922 * add our header and have a terminator between the extents and the
2923 * bitmaps.
2924 */
2925 num_pages *= 16;
2926 num_pages *= PAGE_CACHE_SIZE;
2927
2928 ret = btrfs_check_data_free_space(inode, num_pages);
2929 if (ret)
2930 goto out_put;
2931
2932 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2933 num_pages, num_pages,
2934 &alloc_hint);
2935 if (!ret)
2936 dcs = BTRFS_DC_SETUP;
2937 btrfs_free_reserved_data_space(inode, num_pages);
2938
2939out_put:
2940 iput(inode);
2941out_free:
2942 btrfs_release_path(path);
2943out:
2944 spin_lock(&block_group->lock);
2945 if (!ret && dcs == BTRFS_DC_SETUP)
2946 block_group->cache_generation = trans->transid;
2947 block_group->disk_cache_state = dcs;
2948 spin_unlock(&block_group->lock);
2949
2950 return ret;
2951}
2952
2953int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2954 struct btrfs_root *root)
2955{
2956 struct btrfs_block_group_cache *cache;
2957 int err = 0;
2958 struct btrfs_path *path;
2959 u64 last = 0;
2960
2961 path = btrfs_alloc_path();
2962 if (!path)
2963 return -ENOMEM;
2964
2965again:
2966 while (1) {
2967 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2968 while (cache) {
2969 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2970 break;
2971 cache = next_block_group(root, cache);
2972 }
2973 if (!cache) {
2974 if (last == 0)
2975 break;
2976 last = 0;
2977 continue;
2978 }
2979 err = cache_save_setup(cache, trans, path);
2980 last = cache->key.objectid + cache->key.offset;
2981 btrfs_put_block_group(cache);
2982 }
2983
2984 while (1) {
2985 if (last == 0) {
2986 err = btrfs_run_delayed_refs(trans, root,
2987 (unsigned long)-1);
2988 if (err) /* File system offline */
2989 goto out;
2990 }
2991
2992 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2993 while (cache) {
2994 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2995 btrfs_put_block_group(cache);
2996 goto again;
2997 }
2998
2999 if (cache->dirty)
3000 break;
3001 cache = next_block_group(root, cache);
3002 }
3003 if (!cache) {
3004 if (last == 0)
3005 break;
3006 last = 0;
3007 continue;
3008 }
3009
3010 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3011 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3012 cache->dirty = 0;
3013 last = cache->key.objectid + cache->key.offset;
3014
3015 err = write_one_cache_group(trans, root, path, cache);
3016 if (err) /* File system offline */
3017 goto out;
3018
3019 btrfs_put_block_group(cache);
3020 }
3021
3022 while (1) {
3023 /*
3024 * I don't think this is needed since we're just marking our
3025 * preallocated extent as written, but just in case it can't
3026 * hurt.
3027 */
3028 if (last == 0) {
3029 err = btrfs_run_delayed_refs(trans, root,
3030 (unsigned long)-1);
3031 if (err) /* File system offline */
3032 goto out;
3033 }
3034
3035 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3036 while (cache) {
3037 /*
3038 * Really this shouldn't happen, but it could if we
3039 * couldn't write the entire preallocated extent and
3040 * splitting the extent resulted in a new block.
3041 */
3042 if (cache->dirty) {
3043 btrfs_put_block_group(cache);
3044 goto again;
3045 }
3046 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3047 break;
3048 cache = next_block_group(root, cache);
3049 }
3050 if (!cache) {
3051 if (last == 0)
3052 break;
3053 last = 0;
3054 continue;
3055 }
3056
3057 err = btrfs_write_out_cache(root, trans, cache, path);
3058
3059 /*
3060 * If we didn't have an error then the cache state is still
3061 * NEED_WRITE, so we can set it to WRITTEN.
3062 */
3063 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3064 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3065 last = cache->key.objectid + cache->key.offset;
3066 btrfs_put_block_group(cache);
3067 }
3068out:
3069
3070 btrfs_free_path(path);
3071 return err;
3072}
3073
3074int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3075{
3076 struct btrfs_block_group_cache *block_group;
3077 int readonly = 0;
3078
3079 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3080 if (!block_group || block_group->ro)
3081 readonly = 1;
3082 if (block_group)
3083 btrfs_put_block_group(block_group);
3084 return readonly;
3085}
3086
3087static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3088 u64 total_bytes, u64 bytes_used,
3089 struct btrfs_space_info **space_info)
3090{
3091 struct btrfs_space_info *found;
3092 int i;
3093 int factor;
3094
3095 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3096 BTRFS_BLOCK_GROUP_RAID10))
3097 factor = 2;
3098 else
3099 factor = 1;
3100
3101 found = __find_space_info(info, flags);
3102 if (found) {
3103 spin_lock(&found->lock);
3104 found->total_bytes += total_bytes;
3105 found->disk_total += total_bytes * factor;
3106 found->bytes_used += bytes_used;
3107 found->disk_used += bytes_used * factor;
3108 found->full = 0;
3109 spin_unlock(&found->lock);
3110 *space_info = found;
3111 return 0;
3112 }
3113 found = kzalloc(sizeof(*found), GFP_NOFS);
3114 if (!found)
3115 return -ENOMEM;
3116
3117 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3118 INIT_LIST_HEAD(&found->block_groups[i]);
3119 init_rwsem(&found->groups_sem);
3120 spin_lock_init(&found->lock);
3121 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3122 found->total_bytes = total_bytes;
3123 found->disk_total = total_bytes * factor;
3124 found->bytes_used = bytes_used;
3125 found->disk_used = bytes_used * factor;
3126 found->bytes_pinned = 0;
3127 found->bytes_reserved = 0;
3128 found->bytes_readonly = 0;
3129 found->bytes_may_use = 0;
3130 found->full = 0;
3131 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3132 found->chunk_alloc = 0;
3133 found->flush = 0;
3134 init_waitqueue_head(&found->wait);
3135 *space_info = found;
3136 list_add_rcu(&found->list, &info->space_info);
3137 return 0;
3138}
3139
3140static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3141{
3142 u64 extra_flags = chunk_to_extended(flags) &
3143 BTRFS_EXTENDED_PROFILE_MASK;
3144
3145 if (flags & BTRFS_BLOCK_GROUP_DATA)
3146 fs_info->avail_data_alloc_bits |= extra_flags;
3147 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3148 fs_info->avail_metadata_alloc_bits |= extra_flags;
3149 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3150 fs_info->avail_system_alloc_bits |= extra_flags;
3151}
3152
3153/*
3154 * returns target flags in extended format or 0 if restripe for this
3155 * chunk_type is not in progress
3156 *
3157 * should be called with either volume_mutex or balance_lock held
3158 */
3159static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3160{
3161 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3162 u64 target = 0;
3163
3164 if (!bctl)
3165 return 0;
3166
3167 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3168 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3169 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3170 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3171 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3172 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3173 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3174 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3175 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3176 }
3177
3178 return target;
3179}
3180
3181/*
3182 * @flags: available profiles in extended format (see ctree.h)
3183 *
3184 * Returns reduced profile in chunk format. If profile changing is in
3185 * progress (either running or paused) picks the target profile (if it's
3186 * already available), otherwise falls back to plain reducing.
3187 */
3188u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3189{
3190 /*
3191 * we add in the count of missing devices because we want
3192 * to make sure that any RAID levels on a degraded FS
3193 * continue to be honored.
3194 */
3195 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3196 root->fs_info->fs_devices->missing_devices;
3197 u64 target;
3198
3199 /*
3200 * see if restripe for this chunk_type is in progress, if so
3201 * try to reduce to the target profile
3202 */
3203 spin_lock(&root->fs_info->balance_lock);
3204 target = get_restripe_target(root->fs_info, flags);
3205 if (target) {
3206 /* pick target profile only if it's already available */
3207 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3208 spin_unlock(&root->fs_info->balance_lock);
3209 return extended_to_chunk(target);
3210 }
3211 }
3212 spin_unlock(&root->fs_info->balance_lock);
3213
3214 if (num_devices == 1)
3215 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3216 if (num_devices < 4)
3217 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3218
3219 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3220 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3221 BTRFS_BLOCK_GROUP_RAID10))) {
3222 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3223 }
3224
3225 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3226 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3227 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3228 }
3229
3230 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3231 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3232 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3233 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3234 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3235 }
3236
3237 return extended_to_chunk(flags);
3238}
3239
3240static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3241{
3242 if (flags & BTRFS_BLOCK_GROUP_DATA)
3243 flags |= root->fs_info->avail_data_alloc_bits;
3244 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3245 flags |= root->fs_info->avail_system_alloc_bits;
3246 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3247 flags |= root->fs_info->avail_metadata_alloc_bits;
3248
3249 return btrfs_reduce_alloc_profile(root, flags);
3250}
3251
3252u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3253{
3254 u64 flags;
3255
3256 if (data)
3257 flags = BTRFS_BLOCK_GROUP_DATA;
3258 else if (root == root->fs_info->chunk_root)
3259 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3260 else
3261 flags = BTRFS_BLOCK_GROUP_METADATA;
3262
3263 return get_alloc_profile(root, flags);
3264}
3265
3266void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3267{
3268 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3269 BTRFS_BLOCK_GROUP_DATA);
3270}
3271
3272/*
3273 * This will check the space that the inode allocates from to make sure we have
3274 * enough space for bytes.
3275 */
3276int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3277{
3278 struct btrfs_space_info *data_sinfo;
3279 struct btrfs_root *root = BTRFS_I(inode)->root;
3280 u64 used;
3281 int ret = 0, committed = 0, alloc_chunk = 1;
3282
3283 /* make sure bytes are sectorsize aligned */
3284 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3285
3286 if (root == root->fs_info->tree_root ||
3287 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3288 alloc_chunk = 0;
3289 committed = 1;
3290 }
3291
3292 data_sinfo = BTRFS_I(inode)->space_info;
3293 if (!data_sinfo)
3294 goto alloc;
3295
3296again:
3297 /* make sure we have enough space to handle the data first */
3298 spin_lock(&data_sinfo->lock);
3299 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3300 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3301 data_sinfo->bytes_may_use;
3302
3303 if (used + bytes > data_sinfo->total_bytes) {
3304 struct btrfs_trans_handle *trans;
3305
3306 /*
3307 * if we don't have enough free bytes in this space then we need
3308 * to alloc a new chunk.
3309 */
3310 if (!data_sinfo->full && alloc_chunk) {
3311 u64 alloc_target;
3312
3313 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3314 spin_unlock(&data_sinfo->lock);
3315alloc:
3316 alloc_target = btrfs_get_alloc_profile(root, 1);
3317 trans = btrfs_join_transaction(root);
3318 if (IS_ERR(trans))
3319 return PTR_ERR(trans);
3320
3321 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3322 bytes + 2 * 1024 * 1024,
3323 alloc_target,
3324 CHUNK_ALLOC_NO_FORCE);
3325 btrfs_end_transaction(trans, root);
3326 if (ret < 0) {
3327 if (ret != -ENOSPC)
3328 return ret;
3329 else
3330 goto commit_trans;
3331 }
3332
3333 if (!data_sinfo) {
3334 btrfs_set_inode_space_info(root, inode);
3335 data_sinfo = BTRFS_I(inode)->space_info;
3336 }
3337 goto again;
3338 }
3339
3340 /*
3341 * If we have less pinned bytes than we want to allocate then
3342 * don't bother committing the transaction, it won't help us.
3343 */
3344 if (data_sinfo->bytes_pinned < bytes)
3345 committed = 1;
3346 spin_unlock(&data_sinfo->lock);
3347
3348 /* commit the current transaction and try again */
3349commit_trans:
3350 if (!committed &&
3351 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3352 committed = 1;
3353 trans = btrfs_join_transaction(root);
3354 if (IS_ERR(trans))
3355 return PTR_ERR(trans);
3356 ret = btrfs_commit_transaction(trans, root);
3357 if (ret)
3358 return ret;
3359 goto again;
3360 }
3361
3362 return -ENOSPC;
3363 }
3364 data_sinfo->bytes_may_use += bytes;
3365 trace_btrfs_space_reservation(root->fs_info, "space_info",
3366 data_sinfo->flags, bytes, 1);
3367 spin_unlock(&data_sinfo->lock);
3368
3369 return 0;
3370}
3371
3372/*
3373 * Called if we need to clear a data reservation for this inode.
3374 */
3375void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3376{
3377 struct btrfs_root *root = BTRFS_I(inode)->root;
3378 struct btrfs_space_info *data_sinfo;
3379
3380 /* make sure bytes are sectorsize aligned */
3381 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3382
3383 data_sinfo = BTRFS_I(inode)->space_info;
3384 spin_lock(&data_sinfo->lock);
3385 data_sinfo->bytes_may_use -= bytes;
3386 trace_btrfs_space_reservation(root->fs_info, "space_info",
3387 data_sinfo->flags, bytes, 0);
3388 spin_unlock(&data_sinfo->lock);
3389}
3390
3391static void force_metadata_allocation(struct btrfs_fs_info *info)
3392{
3393 struct list_head *head = &info->space_info;
3394 struct btrfs_space_info *found;
3395
3396 rcu_read_lock();
3397 list_for_each_entry_rcu(found, head, list) {
3398 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3399 found->force_alloc = CHUNK_ALLOC_FORCE;
3400 }
3401 rcu_read_unlock();
3402}
3403
3404static int should_alloc_chunk(struct btrfs_root *root,
3405 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3406 int force)
3407{
3408 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3409 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3410 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3411 u64 thresh;
3412
3413 if (force == CHUNK_ALLOC_FORCE)
3414 return 1;
3415
3416 /*
3417 * We need to take into account the global rsv because for all intents
3418 * and purposes it's used space. Don't worry about locking the
3419 * global_rsv, it doesn't change except when the transaction commits.
3420 */
3421 num_allocated += global_rsv->size;
3422
3423 /*
3424 * in limited mode, we want to have some free space up to
3425 * about 1% of the FS size.
3426 */
3427 if (force == CHUNK_ALLOC_LIMITED) {
3428 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3429 thresh = max_t(u64, 64 * 1024 * 1024,
3430 div_factor_fine(thresh, 1));
3431
3432 if (num_bytes - num_allocated < thresh)
3433 return 1;
3434 }
3435 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3436
3437 /* 256MB or 2% of the FS */
3438 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3439 /* system chunks need a much small threshold */
3440 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3441 thresh = 32 * 1024 * 1024;
3442
3443 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3444 return 0;
3445 return 1;
3446}
3447
3448static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3449{
3450 u64 num_dev;
3451
3452 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3453 type & BTRFS_BLOCK_GROUP_RAID0)
3454 num_dev = root->fs_info->fs_devices->rw_devices;
3455 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3456 num_dev = 2;
3457 else
3458 num_dev = 1; /* DUP or single */
3459
3460 /* metadata for updaing devices and chunk tree */
3461 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3462}
3463
3464static void check_system_chunk(struct btrfs_trans_handle *trans,
3465 struct btrfs_root *root, u64 type)
3466{
3467 struct btrfs_space_info *info;
3468 u64 left;
3469 u64 thresh;
3470
3471 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3472 spin_lock(&info->lock);
3473 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3474 info->bytes_reserved - info->bytes_readonly;
3475 spin_unlock(&info->lock);
3476
3477 thresh = get_system_chunk_thresh(root, type);
3478 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3479 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3480 left, thresh, type);
3481 dump_space_info(info, 0, 0);
3482 }
3483
3484 if (left < thresh) {
3485 u64 flags;
3486
3487 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3488 btrfs_alloc_chunk(trans, root, flags);
3489 }
3490}
3491
3492static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3493 struct btrfs_root *extent_root, u64 alloc_bytes,
3494 u64 flags, int force)
3495{
3496 struct btrfs_space_info *space_info;
3497 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3498 int wait_for_alloc = 0;
3499 int ret = 0;
3500
3501 space_info = __find_space_info(extent_root->fs_info, flags);
3502 if (!space_info) {
3503 ret = update_space_info(extent_root->fs_info, flags,
3504 0, 0, &space_info);
3505 BUG_ON(ret); /* -ENOMEM */
3506 }
3507 BUG_ON(!space_info); /* Logic error */
3508
3509again:
3510 spin_lock(&space_info->lock);
3511 if (force < space_info->force_alloc)
3512 force = space_info->force_alloc;
3513 if (space_info->full) {
3514 spin_unlock(&space_info->lock);
3515 return 0;
3516 }
3517
3518 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3519 spin_unlock(&space_info->lock);
3520 return 0;
3521 } else if (space_info->chunk_alloc) {
3522 wait_for_alloc = 1;
3523 } else {
3524 space_info->chunk_alloc = 1;
3525 }
3526
3527 spin_unlock(&space_info->lock);
3528
3529 mutex_lock(&fs_info->chunk_mutex);
3530
3531 /*
3532 * The chunk_mutex is held throughout the entirety of a chunk
3533 * allocation, so once we've acquired the chunk_mutex we know that the
3534 * other guy is done and we need to recheck and see if we should
3535 * allocate.
3536 */
3537 if (wait_for_alloc) {
3538 mutex_unlock(&fs_info->chunk_mutex);
3539 wait_for_alloc = 0;
3540 goto again;
3541 }
3542
3543 /*
3544 * If we have mixed data/metadata chunks we want to make sure we keep
3545 * allocating mixed chunks instead of individual chunks.
3546 */
3547 if (btrfs_mixed_space_info(space_info))
3548 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3549
3550 /*
3551 * if we're doing a data chunk, go ahead and make sure that
3552 * we keep a reasonable number of metadata chunks allocated in the
3553 * FS as well.
3554 */
3555 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3556 fs_info->data_chunk_allocations++;
3557 if (!(fs_info->data_chunk_allocations %
3558 fs_info->metadata_ratio))
3559 force_metadata_allocation(fs_info);
3560 }
3561
3562 /*
3563 * Check if we have enough space in SYSTEM chunk because we may need
3564 * to update devices.
3565 */
3566 check_system_chunk(trans, extent_root, flags);
3567
3568 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3569 if (ret < 0 && ret != -ENOSPC)
3570 goto out;
3571
3572 spin_lock(&space_info->lock);
3573 if (ret)
3574 space_info->full = 1;
3575 else
3576 ret = 1;
3577
3578 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3579 space_info->chunk_alloc = 0;
3580 spin_unlock(&space_info->lock);
3581out:
3582 mutex_unlock(&fs_info->chunk_mutex);
3583 return ret;
3584}
3585
3586/*
3587 * shrink metadata reservation for delalloc
3588 */
3589static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3590 bool wait_ordered)
3591{
3592 struct btrfs_block_rsv *block_rsv;
3593 struct btrfs_space_info *space_info;
3594 struct btrfs_trans_handle *trans;
3595 u64 reserved;
3596 u64 max_reclaim;
3597 u64 reclaimed = 0;
3598 long time_left;
3599 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3600 int loops = 0;
3601 unsigned long progress;
3602
3603 trans = (struct btrfs_trans_handle *)current->journal_info;
3604 block_rsv = &root->fs_info->delalloc_block_rsv;
3605 space_info = block_rsv->space_info;
3606
3607 smp_mb();
3608 reserved = space_info->bytes_may_use;
3609 progress = space_info->reservation_progress;
3610
3611 if (reserved == 0)
3612 return 0;
3613
3614 smp_mb();
3615 if (root->fs_info->delalloc_bytes == 0) {
3616 if (trans)
3617 return 0;
3618 btrfs_wait_ordered_extents(root, 0, 0);
3619 return 0;
3620 }
3621
3622 max_reclaim = min(reserved, to_reclaim);
3623 nr_pages = max_t(unsigned long, nr_pages,
3624 max_reclaim >> PAGE_CACHE_SHIFT);
3625 while (loops < 1024) {
3626 /* have the flusher threads jump in and do some IO */
3627 smp_mb();
3628 nr_pages = min_t(unsigned long, nr_pages,
3629 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3630 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3631 WB_REASON_FS_FREE_SPACE);
3632
3633 spin_lock(&space_info->lock);
3634 if (reserved > space_info->bytes_may_use)
3635 reclaimed += reserved - space_info->bytes_may_use;
3636 reserved = space_info->bytes_may_use;
3637 spin_unlock(&space_info->lock);
3638
3639 loops++;
3640
3641 if (reserved == 0 || reclaimed >= max_reclaim)
3642 break;
3643
3644 if (trans && trans->transaction->blocked)
3645 return -EAGAIN;
3646
3647 if (wait_ordered && !trans) {
3648 btrfs_wait_ordered_extents(root, 0, 0);
3649 } else {
3650 time_left = schedule_timeout_interruptible(1);
3651
3652 /* We were interrupted, exit */
3653 if (time_left)
3654 break;
3655 }
3656
3657 /* we've kicked the IO a few times, if anything has been freed,
3658 * exit. There is no sense in looping here for a long time
3659 * when we really need to commit the transaction, or there are
3660 * just too many writers without enough free space
3661 */
3662
3663 if (loops > 3) {
3664 smp_mb();
3665 if (progress != space_info->reservation_progress)
3666 break;
3667 }
3668
3669 }
3670
3671 return reclaimed >= to_reclaim;
3672}
3673
3674/**
3675 * maybe_commit_transaction - possibly commit the transaction if its ok to
3676 * @root - the root we're allocating for
3677 * @bytes - the number of bytes we want to reserve
3678 * @force - force the commit
3679 *
3680 * This will check to make sure that committing the transaction will actually
3681 * get us somewhere and then commit the transaction if it does. Otherwise it
3682 * will return -ENOSPC.
3683 */
3684static int may_commit_transaction(struct btrfs_root *root,
3685 struct btrfs_space_info *space_info,
3686 u64 bytes, int force)
3687{
3688 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3689 struct btrfs_trans_handle *trans;
3690
3691 trans = (struct btrfs_trans_handle *)current->journal_info;
3692 if (trans)
3693 return -EAGAIN;
3694
3695 if (force)
3696 goto commit;
3697
3698 /* See if there is enough pinned space to make this reservation */
3699 spin_lock(&space_info->lock);
3700 if (space_info->bytes_pinned >= bytes) {
3701 spin_unlock(&space_info->lock);
3702 goto commit;
3703 }
3704 spin_unlock(&space_info->lock);
3705
3706 /*
3707 * See if there is some space in the delayed insertion reservation for
3708 * this reservation.
3709 */
3710 if (space_info != delayed_rsv->space_info)
3711 return -ENOSPC;
3712
3713 spin_lock(&space_info->lock);
3714 spin_lock(&delayed_rsv->lock);
3715 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3716 spin_unlock(&delayed_rsv->lock);
3717 spin_unlock(&space_info->lock);
3718 return -ENOSPC;
3719 }
3720 spin_unlock(&delayed_rsv->lock);
3721 spin_unlock(&space_info->lock);
3722
3723commit:
3724 trans = btrfs_join_transaction(root);
3725 if (IS_ERR(trans))
3726 return -ENOSPC;
3727
3728 return btrfs_commit_transaction(trans, root);
3729}
3730
3731/**
3732 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3733 * @root - the root we're allocating for
3734 * @block_rsv - the block_rsv we're allocating for
3735 * @orig_bytes - the number of bytes we want
3736 * @flush - wether or not we can flush to make our reservation
3737 *
3738 * This will reserve orgi_bytes number of bytes from the space info associated
3739 * with the block_rsv. If there is not enough space it will make an attempt to
3740 * flush out space to make room. It will do this by flushing delalloc if
3741 * possible or committing the transaction. If flush is 0 then no attempts to
3742 * regain reservations will be made and this will fail if there is not enough
3743 * space already.
3744 */
3745static int reserve_metadata_bytes(struct btrfs_root *root,
3746 struct btrfs_block_rsv *block_rsv,
3747 u64 orig_bytes, int flush)
3748{
3749 struct btrfs_space_info *space_info = block_rsv->space_info;
3750 u64 used;
3751 u64 num_bytes = orig_bytes;
3752 int retries = 0;
3753 int ret = 0;
3754 bool committed = false;
3755 bool flushing = false;
3756 bool wait_ordered = false;
3757
3758again:
3759 ret = 0;
3760 spin_lock(&space_info->lock);
3761 /*
3762 * We only want to wait if somebody other than us is flushing and we are
3763 * actually alloed to flush.
3764 */
3765 while (flush && !flushing && space_info->flush) {
3766 spin_unlock(&space_info->lock);
3767 /*
3768 * If we have a trans handle we can't wait because the flusher
3769 * may have to commit the transaction, which would mean we would
3770 * deadlock since we are waiting for the flusher to finish, but
3771 * hold the current transaction open.
3772 */
3773 if (current->journal_info)
3774 return -EAGAIN;
3775 ret = wait_event_killable(space_info->wait, !space_info->flush);
3776 /* Must have been killed, return */
3777 if (ret)
3778 return -EINTR;
3779
3780 spin_lock(&space_info->lock);
3781 }
3782
3783 ret = -ENOSPC;
3784 used = space_info->bytes_used + space_info->bytes_reserved +
3785 space_info->bytes_pinned + space_info->bytes_readonly +
3786 space_info->bytes_may_use;
3787
3788 /*
3789 * The idea here is that we've not already over-reserved the block group
3790 * then we can go ahead and save our reservation first and then start
3791 * flushing if we need to. Otherwise if we've already overcommitted
3792 * lets start flushing stuff first and then come back and try to make
3793 * our reservation.
3794 */
3795 if (used <= space_info->total_bytes) {
3796 if (used + orig_bytes <= space_info->total_bytes) {
3797 space_info->bytes_may_use += orig_bytes;
3798 trace_btrfs_space_reservation(root->fs_info,
3799 "space_info", space_info->flags, orig_bytes, 1);
3800 ret = 0;
3801 } else {
3802 /*
3803 * Ok set num_bytes to orig_bytes since we aren't
3804 * overocmmitted, this way we only try and reclaim what
3805 * we need.
3806 */
3807 num_bytes = orig_bytes;
3808 }
3809 } else {
3810 /*
3811 * Ok we're over committed, set num_bytes to the overcommitted
3812 * amount plus the amount of bytes that we need for this
3813 * reservation.
3814 */
3815 wait_ordered = true;
3816 num_bytes = used - space_info->total_bytes +
3817 (orig_bytes * (retries + 1));
3818 }
3819
3820 if (ret) {
3821 u64 profile = btrfs_get_alloc_profile(root, 0);
3822 u64 avail;
3823
3824 /*
3825 * If we have a lot of space that's pinned, don't bother doing
3826 * the overcommit dance yet and just commit the transaction.
3827 */
3828 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3829 do_div(avail, 10);
3830 if (space_info->bytes_pinned >= avail && flush && !committed) {
3831 space_info->flush = 1;
3832 flushing = true;
3833 spin_unlock(&space_info->lock);
3834 ret = may_commit_transaction(root, space_info,
3835 orig_bytes, 1);
3836 if (ret)
3837 goto out;
3838 committed = true;
3839 goto again;
3840 }
3841
3842 spin_lock(&root->fs_info->free_chunk_lock);
3843 avail = root->fs_info->free_chunk_space;
3844
3845 /*
3846 * If we have dup, raid1 or raid10 then only half of the free
3847 * space is actually useable.
3848 */
3849 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3850 BTRFS_BLOCK_GROUP_RAID1 |
3851 BTRFS_BLOCK_GROUP_RAID10))
3852 avail >>= 1;
3853
3854 /*
3855 * If we aren't flushing don't let us overcommit too much, say
3856 * 1/8th of the space. If we can flush, let it overcommit up to
3857 * 1/2 of the space.
3858 */
3859 if (flush)
3860 avail >>= 3;
3861 else
3862 avail >>= 1;
3863 spin_unlock(&root->fs_info->free_chunk_lock);
3864
3865 if (used + num_bytes < space_info->total_bytes + avail) {
3866 space_info->bytes_may_use += orig_bytes;
3867 trace_btrfs_space_reservation(root->fs_info,
3868 "space_info", space_info->flags, orig_bytes, 1);
3869 ret = 0;
3870 } else {
3871 wait_ordered = true;
3872 }
3873 }
3874
3875 /*
3876 * Couldn't make our reservation, save our place so while we're trying
3877 * to reclaim space we can actually use it instead of somebody else
3878 * stealing it from us.
3879 */
3880 if (ret && flush) {
3881 flushing = true;
3882 space_info->flush = 1;
3883 }
3884
3885 spin_unlock(&space_info->lock);
3886
3887 if (!ret || !flush)
3888 goto out;
3889
3890 /*
3891 * We do synchronous shrinking since we don't actually unreserve
3892 * metadata until after the IO is completed.
3893 */
3894 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3895 if (ret < 0)
3896 goto out;
3897
3898 ret = 0;
3899
3900 /*
3901 * So if we were overcommitted it's possible that somebody else flushed
3902 * out enough space and we simply didn't have enough space to reclaim,
3903 * so go back around and try again.
3904 */
3905 if (retries < 2) {
3906 wait_ordered = true;
3907 retries++;
3908 goto again;
3909 }
3910
3911 ret = -ENOSPC;
3912 if (committed)
3913 goto out;
3914
3915 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3916 if (!ret) {
3917 committed = true;
3918 goto again;
3919 }
3920
3921out:
3922 if (flushing) {
3923 spin_lock(&space_info->lock);
3924 space_info->flush = 0;
3925 wake_up_all(&space_info->wait);
3926 spin_unlock(&space_info->lock);
3927 }
3928 return ret;
3929}
3930
3931static struct btrfs_block_rsv *get_block_rsv(
3932 const struct btrfs_trans_handle *trans,
3933 const struct btrfs_root *root)
3934{
3935 struct btrfs_block_rsv *block_rsv = NULL;
3936
3937 if (root->ref_cows || root == root->fs_info->csum_root)
3938 block_rsv = trans->block_rsv;
3939
3940 if (!block_rsv)
3941 block_rsv = root->block_rsv;
3942
3943 if (!block_rsv)
3944 block_rsv = &root->fs_info->empty_block_rsv;
3945
3946 return block_rsv;
3947}
3948
3949static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3950 u64 num_bytes)
3951{
3952 int ret = -ENOSPC;
3953 spin_lock(&block_rsv->lock);
3954 if (block_rsv->reserved >= num_bytes) {
3955 block_rsv->reserved -= num_bytes;
3956 if (block_rsv->reserved < block_rsv->size)
3957 block_rsv->full = 0;
3958 ret = 0;
3959 }
3960 spin_unlock(&block_rsv->lock);
3961 return ret;
3962}
3963
3964static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3965 u64 num_bytes, int update_size)
3966{
3967 spin_lock(&block_rsv->lock);
3968 block_rsv->reserved += num_bytes;
3969 if (update_size)
3970 block_rsv->size += num_bytes;
3971 else if (block_rsv->reserved >= block_rsv->size)
3972 block_rsv->full = 1;
3973 spin_unlock(&block_rsv->lock);
3974}
3975
3976static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3977 struct btrfs_block_rsv *block_rsv,
3978 struct btrfs_block_rsv *dest, u64 num_bytes)
3979{
3980 struct btrfs_space_info *space_info = block_rsv->space_info;
3981
3982 spin_lock(&block_rsv->lock);
3983 if (num_bytes == (u64)-1)
3984 num_bytes = block_rsv->size;
3985 block_rsv->size -= num_bytes;
3986 if (block_rsv->reserved >= block_rsv->size) {
3987 num_bytes = block_rsv->reserved - block_rsv->size;
3988 block_rsv->reserved = block_rsv->size;
3989 block_rsv->full = 1;
3990 } else {
3991 num_bytes = 0;
3992 }
3993 spin_unlock(&block_rsv->lock);
3994
3995 if (num_bytes > 0) {
3996 if (dest) {
3997 spin_lock(&dest->lock);
3998 if (!dest->full) {
3999 u64 bytes_to_add;
4000
4001 bytes_to_add = dest->size - dest->reserved;
4002 bytes_to_add = min(num_bytes, bytes_to_add);
4003 dest->reserved += bytes_to_add;
4004 if (dest->reserved >= dest->size)
4005 dest->full = 1;
4006 num_bytes -= bytes_to_add;
4007 }
4008 spin_unlock(&dest->lock);
4009 }
4010 if (num_bytes) {
4011 spin_lock(&space_info->lock);
4012 space_info->bytes_may_use -= num_bytes;
4013 trace_btrfs_space_reservation(fs_info, "space_info",
4014 space_info->flags, num_bytes, 0);
4015 space_info->reservation_progress++;
4016 spin_unlock(&space_info->lock);
4017 }
4018 }
4019}
4020
4021static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4022 struct btrfs_block_rsv *dst, u64 num_bytes)
4023{
4024 int ret;
4025
4026 ret = block_rsv_use_bytes(src, num_bytes);
4027 if (ret)
4028 return ret;
4029
4030 block_rsv_add_bytes(dst, num_bytes, 1);
4031 return 0;
4032}
4033
4034void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4035{
4036 memset(rsv, 0, sizeof(*rsv));
4037 spin_lock_init(&rsv->lock);
4038}
4039
4040struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4041{
4042 struct btrfs_block_rsv *block_rsv;
4043 struct btrfs_fs_info *fs_info = root->fs_info;
4044
4045 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4046 if (!block_rsv)
4047 return NULL;
4048
4049 btrfs_init_block_rsv(block_rsv);
4050 block_rsv->space_info = __find_space_info(fs_info,
4051 BTRFS_BLOCK_GROUP_METADATA);
4052 return block_rsv;
4053}
4054
4055void btrfs_free_block_rsv(struct btrfs_root *root,
4056 struct btrfs_block_rsv *rsv)
4057{
4058 btrfs_block_rsv_release(root, rsv, (u64)-1);
4059 kfree(rsv);
4060}
4061
4062static inline int __block_rsv_add(struct btrfs_root *root,
4063 struct btrfs_block_rsv *block_rsv,
4064 u64 num_bytes, int flush)
4065{
4066 int ret;
4067
4068 if (num_bytes == 0)
4069 return 0;
4070
4071 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4072 if (!ret) {
4073 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4074 return 0;
4075 }
4076
4077 return ret;
4078}
4079
4080int btrfs_block_rsv_add(struct btrfs_root *root,
4081 struct btrfs_block_rsv *block_rsv,
4082 u64 num_bytes)
4083{
4084 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4085}
4086
4087int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4088 struct btrfs_block_rsv *block_rsv,
4089 u64 num_bytes)
4090{
4091 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4092}
4093
4094int btrfs_block_rsv_check(struct btrfs_root *root,
4095 struct btrfs_block_rsv *block_rsv, int min_factor)
4096{
4097 u64 num_bytes = 0;
4098 int ret = -ENOSPC;
4099
4100 if (!block_rsv)
4101 return 0;
4102
4103 spin_lock(&block_rsv->lock);
4104 num_bytes = div_factor(block_rsv->size, min_factor);
4105 if (block_rsv->reserved >= num_bytes)
4106 ret = 0;
4107 spin_unlock(&block_rsv->lock);
4108
4109 return ret;
4110}
4111
4112static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4113 struct btrfs_block_rsv *block_rsv,
4114 u64 min_reserved, int flush)
4115{
4116 u64 num_bytes = 0;
4117 int ret = -ENOSPC;
4118
4119 if (!block_rsv)
4120 return 0;
4121
4122 spin_lock(&block_rsv->lock);
4123 num_bytes = min_reserved;
4124 if (block_rsv->reserved >= num_bytes)
4125 ret = 0;
4126 else
4127 num_bytes -= block_rsv->reserved;
4128 spin_unlock(&block_rsv->lock);
4129
4130 if (!ret)
4131 return 0;
4132
4133 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4134 if (!ret) {
4135 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4136 return 0;
4137 }
4138
4139 return ret;
4140}
4141
4142int btrfs_block_rsv_refill(struct btrfs_root *root,
4143 struct btrfs_block_rsv *block_rsv,
4144 u64 min_reserved)
4145{
4146 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4147}
4148
4149int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4150 struct btrfs_block_rsv *block_rsv,
4151 u64 min_reserved)
4152{
4153 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4154}
4155
4156int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4157 struct btrfs_block_rsv *dst_rsv,
4158 u64 num_bytes)
4159{
4160 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4161}
4162
4163void btrfs_block_rsv_release(struct btrfs_root *root,
4164 struct btrfs_block_rsv *block_rsv,
4165 u64 num_bytes)
4166{
4167 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4168 if (global_rsv->full || global_rsv == block_rsv ||
4169 block_rsv->space_info != global_rsv->space_info)
4170 global_rsv = NULL;
4171 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4172 num_bytes);
4173}
4174
4175/*
4176 * helper to calculate size of global block reservation.
4177 * the desired value is sum of space used by extent tree,
4178 * checksum tree and root tree
4179 */
4180static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4181{
4182 struct btrfs_space_info *sinfo;
4183 u64 num_bytes;
4184 u64 meta_used;
4185 u64 data_used;
4186 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4187
4188 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4189 spin_lock(&sinfo->lock);
4190 data_used = sinfo->bytes_used;
4191 spin_unlock(&sinfo->lock);
4192
4193 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4194 spin_lock(&sinfo->lock);
4195 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4196 data_used = 0;
4197 meta_used = sinfo->bytes_used;
4198 spin_unlock(&sinfo->lock);
4199
4200 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4201 csum_size * 2;
4202 num_bytes += div64_u64(data_used + meta_used, 50);
4203
4204 if (num_bytes * 3 > meta_used)
4205 num_bytes = div64_u64(meta_used, 3);
4206
4207 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4208}
4209
4210static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4211{
4212 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4213 struct btrfs_space_info *sinfo = block_rsv->space_info;
4214 u64 num_bytes;
4215
4216 num_bytes = calc_global_metadata_size(fs_info);
4217
4218 spin_lock(&sinfo->lock);
4219 spin_lock(&block_rsv->lock);
4220
4221 block_rsv->size = num_bytes;
4222
4223 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4224 sinfo->bytes_reserved + sinfo->bytes_readonly +
4225 sinfo->bytes_may_use;
4226
4227 if (sinfo->total_bytes > num_bytes) {
4228 num_bytes = sinfo->total_bytes - num_bytes;
4229 block_rsv->reserved += num_bytes;
4230 sinfo->bytes_may_use += num_bytes;
4231 trace_btrfs_space_reservation(fs_info, "space_info",
4232 sinfo->flags, num_bytes, 1);
4233 }
4234
4235 if (block_rsv->reserved >= block_rsv->size) {
4236 num_bytes = block_rsv->reserved - block_rsv->size;
4237 sinfo->bytes_may_use -= num_bytes;
4238 trace_btrfs_space_reservation(fs_info, "space_info",
4239 sinfo->flags, num_bytes, 0);
4240 sinfo->reservation_progress++;
4241 block_rsv->reserved = block_rsv->size;
4242 block_rsv->full = 1;
4243 }
4244
4245 spin_unlock(&block_rsv->lock);
4246 spin_unlock(&sinfo->lock);
4247}
4248
4249static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4250{
4251 struct btrfs_space_info *space_info;
4252
4253 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4254 fs_info->chunk_block_rsv.space_info = space_info;
4255
4256 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4257 fs_info->global_block_rsv.space_info = space_info;
4258 fs_info->delalloc_block_rsv.space_info = space_info;
4259 fs_info->trans_block_rsv.space_info = space_info;
4260 fs_info->empty_block_rsv.space_info = space_info;
4261 fs_info->delayed_block_rsv.space_info = space_info;
4262
4263 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4264 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4265 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4266 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4267 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4268
4269 update_global_block_rsv(fs_info);
4270}
4271
4272static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4273{
4274 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4275 (u64)-1);
4276 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4277 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4278 WARN_ON(fs_info->trans_block_rsv.size > 0);
4279 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4280 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4281 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4282 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4283 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4284}
4285
4286void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4287 struct btrfs_root *root)
4288{
4289 if (!trans->bytes_reserved)
4290 return;
4291
4292 trace_btrfs_space_reservation(root->fs_info, "transaction",
4293 trans->transid, trans->bytes_reserved, 0);
4294 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4295 trans->bytes_reserved = 0;
4296}
4297
4298/* Can only return 0 or -ENOSPC */
4299int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4300 struct inode *inode)
4301{
4302 struct btrfs_root *root = BTRFS_I(inode)->root;
4303 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4304 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4305
4306 /*
4307 * We need to hold space in order to delete our orphan item once we've
4308 * added it, so this takes the reservation so we can release it later
4309 * when we are truly done with the orphan item.
4310 */
4311 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4312 trace_btrfs_space_reservation(root->fs_info, "orphan",
4313 btrfs_ino(inode), num_bytes, 1);
4314 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4315}
4316
4317void btrfs_orphan_release_metadata(struct inode *inode)
4318{
4319 struct btrfs_root *root = BTRFS_I(inode)->root;
4320 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4321 trace_btrfs_space_reservation(root->fs_info, "orphan",
4322 btrfs_ino(inode), num_bytes, 0);
4323 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4324}
4325
4326int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4327 struct btrfs_pending_snapshot *pending)
4328{
4329 struct btrfs_root *root = pending->root;
4330 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4331 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4332 /*
4333 * two for root back/forward refs, two for directory entries
4334 * and one for root of the snapshot.
4335 */
4336 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4337 dst_rsv->space_info = src_rsv->space_info;
4338 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4339}
4340
4341/**
4342 * drop_outstanding_extent - drop an outstanding extent
4343 * @inode: the inode we're dropping the extent for
4344 *
4345 * This is called when we are freeing up an outstanding extent, either called
4346 * after an error or after an extent is written. This will return the number of
4347 * reserved extents that need to be freed. This must be called with
4348 * BTRFS_I(inode)->lock held.
4349 */
4350static unsigned drop_outstanding_extent(struct inode *inode)
4351{
4352 unsigned drop_inode_space = 0;
4353 unsigned dropped_extents = 0;
4354
4355 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4356 BTRFS_I(inode)->outstanding_extents--;
4357
4358 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4359 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4360 &BTRFS_I(inode)->runtime_flags))
4361 drop_inode_space = 1;
4362
4363 /*
4364 * If we have more or the same amount of outsanding extents than we have
4365 * reserved then we need to leave the reserved extents count alone.
4366 */
4367 if (BTRFS_I(inode)->outstanding_extents >=
4368 BTRFS_I(inode)->reserved_extents)
4369 return drop_inode_space;
4370
4371 dropped_extents = BTRFS_I(inode)->reserved_extents -
4372 BTRFS_I(inode)->outstanding_extents;
4373 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4374 return dropped_extents + drop_inode_space;
4375}
4376
4377/**
4378 * calc_csum_metadata_size - return the amount of metada space that must be
4379 * reserved/free'd for the given bytes.
4380 * @inode: the inode we're manipulating
4381 * @num_bytes: the number of bytes in question
4382 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4383 *
4384 * This adjusts the number of csum_bytes in the inode and then returns the
4385 * correct amount of metadata that must either be reserved or freed. We
4386 * calculate how many checksums we can fit into one leaf and then divide the
4387 * number of bytes that will need to be checksumed by this value to figure out
4388 * how many checksums will be required. If we are adding bytes then the number
4389 * may go up and we will return the number of additional bytes that must be
4390 * reserved. If it is going down we will return the number of bytes that must
4391 * be freed.
4392 *
4393 * This must be called with BTRFS_I(inode)->lock held.
4394 */
4395static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4396 int reserve)
4397{
4398 struct btrfs_root *root = BTRFS_I(inode)->root;
4399 u64 csum_size;
4400 int num_csums_per_leaf;
4401 int num_csums;
4402 int old_csums;
4403
4404 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4405 BTRFS_I(inode)->csum_bytes == 0)
4406 return 0;
4407
4408 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4409 if (reserve)
4410 BTRFS_I(inode)->csum_bytes += num_bytes;
4411 else
4412 BTRFS_I(inode)->csum_bytes -= num_bytes;
4413 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4414 num_csums_per_leaf = (int)div64_u64(csum_size,
4415 sizeof(struct btrfs_csum_item) +
4416 sizeof(struct btrfs_disk_key));
4417 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4418 num_csums = num_csums + num_csums_per_leaf - 1;
4419 num_csums = num_csums / num_csums_per_leaf;
4420
4421 old_csums = old_csums + num_csums_per_leaf - 1;
4422 old_csums = old_csums / num_csums_per_leaf;
4423
4424 /* No change, no need to reserve more */
4425 if (old_csums == num_csums)
4426 return 0;
4427
4428 if (reserve)
4429 return btrfs_calc_trans_metadata_size(root,
4430 num_csums - old_csums);
4431
4432 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4433}
4434
4435int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4436{
4437 struct btrfs_root *root = BTRFS_I(inode)->root;
4438 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4439 u64 to_reserve = 0;
4440 u64 csum_bytes;
4441 unsigned nr_extents = 0;
4442 int extra_reserve = 0;
4443 int flush = 1;
4444 int ret;
4445
4446 /* Need to be holding the i_mutex here if we aren't free space cache */
4447 if (btrfs_is_free_space_inode(root, inode))
4448 flush = 0;
4449
4450 if (flush && btrfs_transaction_in_commit(root->fs_info))
4451 schedule_timeout(1);
4452
4453 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4454 num_bytes = ALIGN(num_bytes, root->sectorsize);
4455
4456 spin_lock(&BTRFS_I(inode)->lock);
4457 BTRFS_I(inode)->outstanding_extents++;
4458
4459 if (BTRFS_I(inode)->outstanding_extents >
4460 BTRFS_I(inode)->reserved_extents)
4461 nr_extents = BTRFS_I(inode)->outstanding_extents -
4462 BTRFS_I(inode)->reserved_extents;
4463
4464 /*
4465 * Add an item to reserve for updating the inode when we complete the
4466 * delalloc io.
4467 */
4468 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4469 &BTRFS_I(inode)->runtime_flags)) {
4470 nr_extents++;
4471 extra_reserve = 1;
4472 }
4473
4474 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4475 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4476 csum_bytes = BTRFS_I(inode)->csum_bytes;
4477 spin_unlock(&BTRFS_I(inode)->lock);
4478
4479 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4480 if (ret) {
4481 u64 to_free = 0;
4482 unsigned dropped;
4483
4484 spin_lock(&BTRFS_I(inode)->lock);
4485 dropped = drop_outstanding_extent(inode);
4486 /*
4487 * If the inodes csum_bytes is the same as the original
4488 * csum_bytes then we know we haven't raced with any free()ers
4489 * so we can just reduce our inodes csum bytes and carry on.
4490 * Otherwise we have to do the normal free thing to account for
4491 * the case that the free side didn't free up its reserve
4492 * because of this outstanding reservation.
4493 */
4494 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4495 calc_csum_metadata_size(inode, num_bytes, 0);
4496 else
4497 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4498 spin_unlock(&BTRFS_I(inode)->lock);
4499 if (dropped)
4500 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4501
4502 if (to_free) {
4503 btrfs_block_rsv_release(root, block_rsv, to_free);
4504 trace_btrfs_space_reservation(root->fs_info,
4505 "delalloc",
4506 btrfs_ino(inode),
4507 to_free, 0);
4508 }
4509 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4510 return ret;
4511 }
4512
4513 spin_lock(&BTRFS_I(inode)->lock);
4514 if (extra_reserve) {
4515 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4516 &BTRFS_I(inode)->runtime_flags);
4517 nr_extents--;
4518 }
4519 BTRFS_I(inode)->reserved_extents += nr_extents;
4520 spin_unlock(&BTRFS_I(inode)->lock);
4521 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4522
4523 if (to_reserve)
4524 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4525 btrfs_ino(inode), to_reserve, 1);
4526 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4527
4528 return 0;
4529}
4530
4531/**
4532 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4533 * @inode: the inode to release the reservation for
4534 * @num_bytes: the number of bytes we're releasing
4535 *
4536 * This will release the metadata reservation for an inode. This can be called
4537 * once we complete IO for a given set of bytes to release their metadata
4538 * reservations.
4539 */
4540void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4541{
4542 struct btrfs_root *root = BTRFS_I(inode)->root;
4543 u64 to_free = 0;
4544 unsigned dropped;
4545
4546 num_bytes = ALIGN(num_bytes, root->sectorsize);
4547 spin_lock(&BTRFS_I(inode)->lock);
4548 dropped = drop_outstanding_extent(inode);
4549
4550 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4551 spin_unlock(&BTRFS_I(inode)->lock);
4552 if (dropped > 0)
4553 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4554
4555 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4556 btrfs_ino(inode), to_free, 0);
4557 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4558 to_free);
4559}
4560
4561/**
4562 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4563 * @inode: inode we're writing to
4564 * @num_bytes: the number of bytes we want to allocate
4565 *
4566 * This will do the following things
4567 *
4568 * o reserve space in the data space info for num_bytes
4569 * o reserve space in the metadata space info based on number of outstanding
4570 * extents and how much csums will be needed
4571 * o add to the inodes ->delalloc_bytes
4572 * o add it to the fs_info's delalloc inodes list.
4573 *
4574 * This will return 0 for success and -ENOSPC if there is no space left.
4575 */
4576int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4577{
4578 int ret;
4579
4580 ret = btrfs_check_data_free_space(inode, num_bytes);
4581 if (ret)
4582 return ret;
4583
4584 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4585 if (ret) {
4586 btrfs_free_reserved_data_space(inode, num_bytes);
4587 return ret;
4588 }
4589
4590 return 0;
4591}
4592
4593/**
4594 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4595 * @inode: inode we're releasing space for
4596 * @num_bytes: the number of bytes we want to free up
4597 *
4598 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4599 * called in the case that we don't need the metadata AND data reservations
4600 * anymore. So if there is an error or we insert an inline extent.
4601 *
4602 * This function will release the metadata space that was not used and will
4603 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4604 * list if there are no delalloc bytes left.
4605 */
4606void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4607{
4608 btrfs_delalloc_release_metadata(inode, num_bytes);
4609 btrfs_free_reserved_data_space(inode, num_bytes);
4610}
4611
4612static int update_block_group(struct btrfs_trans_handle *trans,
4613 struct btrfs_root *root,
4614 u64 bytenr, u64 num_bytes, int alloc)
4615{
4616 struct btrfs_block_group_cache *cache = NULL;
4617 struct btrfs_fs_info *info = root->fs_info;
4618 u64 total = num_bytes;
4619 u64 old_val;
4620 u64 byte_in_group;
4621 int factor;
4622
4623 /* block accounting for super block */
4624 spin_lock(&info->delalloc_lock);
4625 old_val = btrfs_super_bytes_used(info->super_copy);
4626 if (alloc)
4627 old_val += num_bytes;
4628 else
4629 old_val -= num_bytes;
4630 btrfs_set_super_bytes_used(info->super_copy, old_val);
4631 spin_unlock(&info->delalloc_lock);
4632
4633 while (total) {
4634 cache = btrfs_lookup_block_group(info, bytenr);
4635 if (!cache)
4636 return -ENOENT;
4637 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4638 BTRFS_BLOCK_GROUP_RAID1 |
4639 BTRFS_BLOCK_GROUP_RAID10))
4640 factor = 2;
4641 else
4642 factor = 1;
4643 /*
4644 * If this block group has free space cache written out, we
4645 * need to make sure to load it if we are removing space. This
4646 * is because we need the unpinning stage to actually add the
4647 * space back to the block group, otherwise we will leak space.
4648 */
4649 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4650 cache_block_group(cache, trans, NULL, 1);
4651
4652 byte_in_group = bytenr - cache->key.objectid;
4653 WARN_ON(byte_in_group > cache->key.offset);
4654
4655 spin_lock(&cache->space_info->lock);
4656 spin_lock(&cache->lock);
4657
4658 if (btrfs_test_opt(root, SPACE_CACHE) &&
4659 cache->disk_cache_state < BTRFS_DC_CLEAR)
4660 cache->disk_cache_state = BTRFS_DC_CLEAR;
4661
4662 cache->dirty = 1;
4663 old_val = btrfs_block_group_used(&cache->item);
4664 num_bytes = min(total, cache->key.offset - byte_in_group);
4665 if (alloc) {
4666 old_val += num_bytes;
4667 btrfs_set_block_group_used(&cache->item, old_val);
4668 cache->reserved -= num_bytes;
4669 cache->space_info->bytes_reserved -= num_bytes;
4670 cache->space_info->bytes_used += num_bytes;
4671 cache->space_info->disk_used += num_bytes * factor;
4672 spin_unlock(&cache->lock);
4673 spin_unlock(&cache->space_info->lock);
4674 } else {
4675 old_val -= num_bytes;
4676 btrfs_set_block_group_used(&cache->item, old_val);
4677 cache->pinned += num_bytes;
4678 cache->space_info->bytes_pinned += num_bytes;
4679 cache->space_info->bytes_used -= num_bytes;
4680 cache->space_info->disk_used -= num_bytes * factor;
4681 spin_unlock(&cache->lock);
4682 spin_unlock(&cache->space_info->lock);
4683
4684 set_extent_dirty(info->pinned_extents,
4685 bytenr, bytenr + num_bytes - 1,
4686 GFP_NOFS | __GFP_NOFAIL);
4687 }
4688 btrfs_put_block_group(cache);
4689 total -= num_bytes;
4690 bytenr += num_bytes;
4691 }
4692 return 0;
4693}
4694
4695static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4696{
4697 struct btrfs_block_group_cache *cache;
4698 u64 bytenr;
4699
4700 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4701 if (!cache)
4702 return 0;
4703
4704 bytenr = cache->key.objectid;
4705 btrfs_put_block_group(cache);
4706
4707 return bytenr;
4708}
4709
4710static int pin_down_extent(struct btrfs_root *root,
4711 struct btrfs_block_group_cache *cache,
4712 u64 bytenr, u64 num_bytes, int reserved)
4713{
4714 spin_lock(&cache->space_info->lock);
4715 spin_lock(&cache->lock);
4716 cache->pinned += num_bytes;
4717 cache->space_info->bytes_pinned += num_bytes;
4718 if (reserved) {
4719 cache->reserved -= num_bytes;
4720 cache->space_info->bytes_reserved -= num_bytes;
4721 }
4722 spin_unlock(&cache->lock);
4723 spin_unlock(&cache->space_info->lock);
4724
4725 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4726 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4727 return 0;
4728}
4729
4730/*
4731 * this function must be called within transaction
4732 */
4733int btrfs_pin_extent(struct btrfs_root *root,
4734 u64 bytenr, u64 num_bytes, int reserved)
4735{
4736 struct btrfs_block_group_cache *cache;
4737
4738 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4739 BUG_ON(!cache); /* Logic error */
4740
4741 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4742
4743 btrfs_put_block_group(cache);
4744 return 0;
4745}
4746
4747/*
4748 * this function must be called within transaction
4749 */
4750int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4751 struct btrfs_root *root,
4752 u64 bytenr, u64 num_bytes)
4753{
4754 struct btrfs_block_group_cache *cache;
4755
4756 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4757 BUG_ON(!cache); /* Logic error */
4758
4759 /*
4760 * pull in the free space cache (if any) so that our pin
4761 * removes the free space from the cache. We have load_only set
4762 * to one because the slow code to read in the free extents does check
4763 * the pinned extents.
4764 */
4765 cache_block_group(cache, trans, root, 1);
4766
4767 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4768
4769 /* remove us from the free space cache (if we're there at all) */
4770 btrfs_remove_free_space(cache, bytenr, num_bytes);
4771 btrfs_put_block_group(cache);
4772 return 0;
4773}
4774
4775/**
4776 * btrfs_update_reserved_bytes - update the block_group and space info counters
4777 * @cache: The cache we are manipulating
4778 * @num_bytes: The number of bytes in question
4779 * @reserve: One of the reservation enums
4780 *
4781 * This is called by the allocator when it reserves space, or by somebody who is
4782 * freeing space that was never actually used on disk. For example if you
4783 * reserve some space for a new leaf in transaction A and before transaction A
4784 * commits you free that leaf, you call this with reserve set to 0 in order to
4785 * clear the reservation.
4786 *
4787 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4788 * ENOSPC accounting. For data we handle the reservation through clearing the
4789 * delalloc bits in the io_tree. We have to do this since we could end up
4790 * allocating less disk space for the amount of data we have reserved in the
4791 * case of compression.
4792 *
4793 * If this is a reservation and the block group has become read only we cannot
4794 * make the reservation and return -EAGAIN, otherwise this function always
4795 * succeeds.
4796 */
4797static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4798 u64 num_bytes, int reserve)
4799{
4800 struct btrfs_space_info *space_info = cache->space_info;
4801 int ret = 0;
4802
4803 spin_lock(&space_info->lock);
4804 spin_lock(&cache->lock);
4805 if (reserve != RESERVE_FREE) {
4806 if (cache->ro) {
4807 ret = -EAGAIN;
4808 } else {
4809 cache->reserved += num_bytes;
4810 space_info->bytes_reserved += num_bytes;
4811 if (reserve == RESERVE_ALLOC) {
4812 trace_btrfs_space_reservation(cache->fs_info,
4813 "space_info", space_info->flags,
4814 num_bytes, 0);
4815 space_info->bytes_may_use -= num_bytes;
4816 }
4817 }
4818 } else {
4819 if (cache->ro)
4820 space_info->bytes_readonly += num_bytes;
4821 cache->reserved -= num_bytes;
4822 space_info->bytes_reserved -= num_bytes;
4823 space_info->reservation_progress++;
4824 }
4825 spin_unlock(&cache->lock);
4826 spin_unlock(&space_info->lock);
4827 return ret;
4828}
4829
4830void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4831 struct btrfs_root *root)
4832{
4833 struct btrfs_fs_info *fs_info = root->fs_info;
4834 struct btrfs_caching_control *next;
4835 struct btrfs_caching_control *caching_ctl;
4836 struct btrfs_block_group_cache *cache;
4837
4838 down_write(&fs_info->extent_commit_sem);
4839
4840 list_for_each_entry_safe(caching_ctl, next,
4841 &fs_info->caching_block_groups, list) {
4842 cache = caching_ctl->block_group;
4843 if (block_group_cache_done(cache)) {
4844 cache->last_byte_to_unpin = (u64)-1;
4845 list_del_init(&caching_ctl->list);
4846 put_caching_control(caching_ctl);
4847 } else {
4848 cache->last_byte_to_unpin = caching_ctl->progress;
4849 }
4850 }
4851
4852 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4853 fs_info->pinned_extents = &fs_info->freed_extents[1];
4854 else
4855 fs_info->pinned_extents = &fs_info->freed_extents[0];
4856
4857 up_write(&fs_info->extent_commit_sem);
4858
4859 update_global_block_rsv(fs_info);
4860}
4861
4862static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4863{
4864 struct btrfs_fs_info *fs_info = root->fs_info;
4865 struct btrfs_block_group_cache *cache = NULL;
4866 u64 len;
4867
4868 while (start <= end) {
4869 if (!cache ||
4870 start >= cache->key.objectid + cache->key.offset) {
4871 if (cache)
4872 btrfs_put_block_group(cache);
4873 cache = btrfs_lookup_block_group(fs_info, start);
4874 BUG_ON(!cache); /* Logic error */
4875 }
4876
4877 len = cache->key.objectid + cache->key.offset - start;
4878 len = min(len, end + 1 - start);
4879
4880 if (start < cache->last_byte_to_unpin) {
4881 len = min(len, cache->last_byte_to_unpin - start);
4882 btrfs_add_free_space(cache, start, len);
4883 }
4884
4885 start += len;
4886
4887 spin_lock(&cache->space_info->lock);
4888 spin_lock(&cache->lock);
4889 cache->pinned -= len;
4890 cache->space_info->bytes_pinned -= len;
4891 if (cache->ro)
4892 cache->space_info->bytes_readonly += len;
4893 spin_unlock(&cache->lock);
4894 spin_unlock(&cache->space_info->lock);
4895 }
4896
4897 if (cache)
4898 btrfs_put_block_group(cache);
4899 return 0;
4900}
4901
4902int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4903 struct btrfs_root *root)
4904{
4905 struct btrfs_fs_info *fs_info = root->fs_info;
4906 struct extent_io_tree *unpin;
4907 u64 start;
4908 u64 end;
4909 int ret;
4910
4911 if (trans->aborted)
4912 return 0;
4913
4914 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4915 unpin = &fs_info->freed_extents[1];
4916 else
4917 unpin = &fs_info->freed_extents[0];
4918
4919 while (1) {
4920 ret = find_first_extent_bit(unpin, 0, &start, &end,
4921 EXTENT_DIRTY);
4922 if (ret)
4923 break;
4924
4925 if (btrfs_test_opt(root, DISCARD))
4926 ret = btrfs_discard_extent(root, start,
4927 end + 1 - start, NULL);
4928
4929 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4930 unpin_extent_range(root, start, end);
4931 cond_resched();
4932 }
4933
4934 return 0;
4935}
4936
4937static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4938 struct btrfs_root *root,
4939 u64 bytenr, u64 num_bytes, u64 parent,
4940 u64 root_objectid, u64 owner_objectid,
4941 u64 owner_offset, int refs_to_drop,
4942 struct btrfs_delayed_extent_op *extent_op)
4943{
4944 struct btrfs_key key;
4945 struct btrfs_path *path;
4946 struct btrfs_fs_info *info = root->fs_info;
4947 struct btrfs_root *extent_root = info->extent_root;
4948 struct extent_buffer *leaf;
4949 struct btrfs_extent_item *ei;
4950 struct btrfs_extent_inline_ref *iref;
4951 int ret;
4952 int is_data;
4953 int extent_slot = 0;
4954 int found_extent = 0;
4955 int num_to_del = 1;
4956 u32 item_size;
4957 u64 refs;
4958
4959 path = btrfs_alloc_path();
4960 if (!path)
4961 return -ENOMEM;
4962
4963 path->reada = 1;
4964 path->leave_spinning = 1;
4965
4966 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4967 BUG_ON(!is_data && refs_to_drop != 1);
4968
4969 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4970 bytenr, num_bytes, parent,
4971 root_objectid, owner_objectid,
4972 owner_offset);
4973 if (ret == 0) {
4974 extent_slot = path->slots[0];
4975 while (extent_slot >= 0) {
4976 btrfs_item_key_to_cpu(path->nodes[0], &key,
4977 extent_slot);
4978 if (key.objectid != bytenr)
4979 break;
4980 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4981 key.offset == num_bytes) {
4982 found_extent = 1;
4983 break;
4984 }
4985 if (path->slots[0] - extent_slot > 5)
4986 break;
4987 extent_slot--;
4988 }
4989#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4990 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4991 if (found_extent && item_size < sizeof(*ei))
4992 found_extent = 0;
4993#endif
4994 if (!found_extent) {
4995 BUG_ON(iref);
4996 ret = remove_extent_backref(trans, extent_root, path,
4997 NULL, refs_to_drop,
4998 is_data);
4999 if (ret)
5000 goto abort;
5001 btrfs_release_path(path);
5002 path->leave_spinning = 1;
5003
5004 key.objectid = bytenr;
5005 key.type = BTRFS_EXTENT_ITEM_KEY;
5006 key.offset = num_bytes;
5007
5008 ret = btrfs_search_slot(trans, extent_root,
5009 &key, path, -1, 1);
5010 if (ret) {
5011 printk(KERN_ERR "umm, got %d back from search"
5012 ", was looking for %llu\n", ret,
5013 (unsigned long long)bytenr);
5014 if (ret > 0)
5015 btrfs_print_leaf(extent_root,
5016 path->nodes[0]);
5017 }
5018 if (ret < 0)
5019 goto abort;
5020 extent_slot = path->slots[0];
5021 }
5022 } else if (ret == -ENOENT) {
5023 btrfs_print_leaf(extent_root, path->nodes[0]);
5024 WARN_ON(1);
5025 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5026 "parent %llu root %llu owner %llu offset %llu\n",
5027 (unsigned long long)bytenr,
5028 (unsigned long long)parent,
5029 (unsigned long long)root_objectid,
5030 (unsigned long long)owner_objectid,
5031 (unsigned long long)owner_offset);
5032 } else {
5033 goto abort;
5034 }
5035
5036 leaf = path->nodes[0];
5037 item_size = btrfs_item_size_nr(leaf, extent_slot);
5038#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5039 if (item_size < sizeof(*ei)) {
5040 BUG_ON(found_extent || extent_slot != path->slots[0]);
5041 ret = convert_extent_item_v0(trans, extent_root, path,
5042 owner_objectid, 0);
5043 if (ret < 0)
5044 goto abort;
5045
5046 btrfs_release_path(path);
5047 path->leave_spinning = 1;
5048
5049 key.objectid = bytenr;
5050 key.type = BTRFS_EXTENT_ITEM_KEY;
5051 key.offset = num_bytes;
5052
5053 ret = btrfs_search_slot(trans, extent_root, &key, path,
5054 -1, 1);
5055 if (ret) {
5056 printk(KERN_ERR "umm, got %d back from search"
5057 ", was looking for %llu\n", ret,
5058 (unsigned long long)bytenr);
5059 btrfs_print_leaf(extent_root, path->nodes[0]);
5060 }
5061 if (ret < 0)
5062 goto abort;
5063 extent_slot = path->slots[0];
5064 leaf = path->nodes[0];
5065 item_size = btrfs_item_size_nr(leaf, extent_slot);
5066 }
5067#endif
5068 BUG_ON(item_size < sizeof(*ei));
5069 ei = btrfs_item_ptr(leaf, extent_slot,
5070 struct btrfs_extent_item);
5071 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5072 struct btrfs_tree_block_info *bi;
5073 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5074 bi = (struct btrfs_tree_block_info *)(ei + 1);
5075 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5076 }
5077
5078 refs = btrfs_extent_refs(leaf, ei);
5079 BUG_ON(refs < refs_to_drop);
5080 refs -= refs_to_drop;
5081
5082 if (refs > 0) {
5083 if (extent_op)
5084 __run_delayed_extent_op(extent_op, leaf, ei);
5085 /*
5086 * In the case of inline back ref, reference count will
5087 * be updated by remove_extent_backref
5088 */
5089 if (iref) {
5090 BUG_ON(!found_extent);
5091 } else {
5092 btrfs_set_extent_refs(leaf, ei, refs);
5093 btrfs_mark_buffer_dirty(leaf);
5094 }
5095 if (found_extent) {
5096 ret = remove_extent_backref(trans, extent_root, path,
5097 iref, refs_to_drop,
5098 is_data);
5099 if (ret)
5100 goto abort;
5101 }
5102 } else {
5103 if (found_extent) {
5104 BUG_ON(is_data && refs_to_drop !=
5105 extent_data_ref_count(root, path, iref));
5106 if (iref) {
5107 BUG_ON(path->slots[0] != extent_slot);
5108 } else {
5109 BUG_ON(path->slots[0] != extent_slot + 1);
5110 path->slots[0] = extent_slot;
5111 num_to_del = 2;
5112 }
5113 }
5114
5115 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5116 num_to_del);
5117 if (ret)
5118 goto abort;
5119 btrfs_release_path(path);
5120
5121 if (is_data) {
5122 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5123 if (ret)
5124 goto abort;
5125 }
5126
5127 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5128 if (ret)
5129 goto abort;
5130 }
5131out:
5132 btrfs_free_path(path);
5133 return ret;
5134
5135abort:
5136 btrfs_abort_transaction(trans, extent_root, ret);
5137 goto out;
5138}
5139
5140/*
5141 * when we free an block, it is possible (and likely) that we free the last
5142 * delayed ref for that extent as well. This searches the delayed ref tree for
5143 * a given extent, and if there are no other delayed refs to be processed, it
5144 * removes it from the tree.
5145 */
5146static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5147 struct btrfs_root *root, u64 bytenr)
5148{
5149 struct btrfs_delayed_ref_head *head;
5150 struct btrfs_delayed_ref_root *delayed_refs;
5151 struct btrfs_delayed_ref_node *ref;
5152 struct rb_node *node;
5153 int ret = 0;
5154
5155 delayed_refs = &trans->transaction->delayed_refs;
5156 spin_lock(&delayed_refs->lock);
5157 head = btrfs_find_delayed_ref_head(trans, bytenr);
5158 if (!head)
5159 goto out;
5160
5161 node = rb_prev(&head->node.rb_node);
5162 if (!node)
5163 goto out;
5164
5165 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5166
5167 /* there are still entries for this ref, we can't drop it */
5168 if (ref->bytenr == bytenr)
5169 goto out;
5170
5171 if (head->extent_op) {
5172 if (!head->must_insert_reserved)
5173 goto out;
5174 kfree(head->extent_op);
5175 head->extent_op = NULL;
5176 }
5177
5178 /*
5179 * waiting for the lock here would deadlock. If someone else has it
5180 * locked they are already in the process of dropping it anyway
5181 */
5182 if (!mutex_trylock(&head->mutex))
5183 goto out;
5184
5185 /*
5186 * at this point we have a head with no other entries. Go
5187 * ahead and process it.
5188 */
5189 head->node.in_tree = 0;
5190 rb_erase(&head->node.rb_node, &delayed_refs->root);
5191
5192 delayed_refs->num_entries--;
5193 if (waitqueue_active(&delayed_refs->seq_wait))
5194 wake_up(&delayed_refs->seq_wait);
5195
5196 /*
5197 * we don't take a ref on the node because we're removing it from the
5198 * tree, so we just steal the ref the tree was holding.
5199 */
5200 delayed_refs->num_heads--;
5201 if (list_empty(&head->cluster))
5202 delayed_refs->num_heads_ready--;
5203
5204 list_del_init(&head->cluster);
5205 spin_unlock(&delayed_refs->lock);
5206
5207 BUG_ON(head->extent_op);
5208 if (head->must_insert_reserved)
5209 ret = 1;
5210
5211 mutex_unlock(&head->mutex);
5212 btrfs_put_delayed_ref(&head->node);
5213 return ret;
5214out:
5215 spin_unlock(&delayed_refs->lock);
5216 return 0;
5217}
5218
5219void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5220 struct btrfs_root *root,
5221 struct extent_buffer *buf,
5222 u64 parent, int last_ref)
5223{
5224 struct btrfs_block_group_cache *cache = NULL;
5225 int ret;
5226
5227 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5228 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5229 buf->start, buf->len,
5230 parent, root->root_key.objectid,
5231 btrfs_header_level(buf),
5232 BTRFS_DROP_DELAYED_REF, NULL, 0);
5233 BUG_ON(ret); /* -ENOMEM */
5234 }
5235
5236 if (!last_ref)
5237 return;
5238
5239 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5240
5241 if (btrfs_header_generation(buf) == trans->transid) {
5242 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5243 ret = check_ref_cleanup(trans, root, buf->start);
5244 if (!ret)
5245 goto out;
5246 }
5247
5248 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5249 pin_down_extent(root, cache, buf->start, buf->len, 1);
5250 goto out;
5251 }
5252
5253 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5254
5255 btrfs_add_free_space(cache, buf->start, buf->len);
5256 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5257 }
5258out:
5259 /*
5260 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5261 * anymore.
5262 */
5263 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5264 btrfs_put_block_group(cache);
5265}
5266
5267/* Can return -ENOMEM */
5268int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5269 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5270 u64 owner, u64 offset, int for_cow)
5271{
5272 int ret;
5273 struct btrfs_fs_info *fs_info = root->fs_info;
5274
5275 /*
5276 * tree log blocks never actually go into the extent allocation
5277 * tree, just update pinning info and exit early.
5278 */
5279 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5280 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5281 /* unlocks the pinned mutex */
5282 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5283 ret = 0;
5284 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5285 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5286 num_bytes,
5287 parent, root_objectid, (int)owner,
5288 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5289 } else {
5290 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5291 num_bytes,
5292 parent, root_objectid, owner,
5293 offset, BTRFS_DROP_DELAYED_REF,
5294 NULL, for_cow);
5295 }
5296 return ret;
5297}
5298
5299static u64 stripe_align(struct btrfs_root *root, u64 val)
5300{
5301 u64 mask = ((u64)root->stripesize - 1);
5302 u64 ret = (val + mask) & ~mask;
5303 return ret;
5304}
5305
5306/*
5307 * when we wait for progress in the block group caching, its because
5308 * our allocation attempt failed at least once. So, we must sleep
5309 * and let some progress happen before we try again.
5310 *
5311 * This function will sleep at least once waiting for new free space to
5312 * show up, and then it will check the block group free space numbers
5313 * for our min num_bytes. Another option is to have it go ahead
5314 * and look in the rbtree for a free extent of a given size, but this
5315 * is a good start.
5316 */
5317static noinline int
5318wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5319 u64 num_bytes)
5320{
5321 struct btrfs_caching_control *caching_ctl;
5322 DEFINE_WAIT(wait);
5323
5324 caching_ctl = get_caching_control(cache);
5325 if (!caching_ctl)
5326 return 0;
5327
5328 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5329 (cache->free_space_ctl->free_space >= num_bytes));
5330
5331 put_caching_control(caching_ctl);
5332 return 0;
5333}
5334
5335static noinline int
5336wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5337{
5338 struct btrfs_caching_control *caching_ctl;
5339 DEFINE_WAIT(wait);
5340
5341 caching_ctl = get_caching_control(cache);
5342 if (!caching_ctl)
5343 return 0;
5344
5345 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5346
5347 put_caching_control(caching_ctl);
5348 return 0;
5349}
5350
5351static int __get_block_group_index(u64 flags)
5352{
5353 int index;
5354
5355 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5356 index = 0;
5357 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5358 index = 1;
5359 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5360 index = 2;
5361 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5362 index = 3;
5363 else
5364 index = 4;
5365
5366 return index;
5367}
5368
5369static int get_block_group_index(struct btrfs_block_group_cache *cache)
5370{
5371 return __get_block_group_index(cache->flags);
5372}
5373
5374enum btrfs_loop_type {
5375 LOOP_CACHING_NOWAIT = 0,
5376 LOOP_CACHING_WAIT = 1,
5377 LOOP_ALLOC_CHUNK = 2,
5378 LOOP_NO_EMPTY_SIZE = 3,
5379};
5380
5381/*
5382 * walks the btree of allocated extents and find a hole of a given size.
5383 * The key ins is changed to record the hole:
5384 * ins->objectid == block start
5385 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5386 * ins->offset == number of blocks
5387 * Any available blocks before search_start are skipped.
5388 */
5389static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5390 struct btrfs_root *orig_root,
5391 u64 num_bytes, u64 empty_size,
5392 u64 hint_byte, struct btrfs_key *ins,
5393 u64 data)
5394{
5395 int ret = 0;
5396 struct btrfs_root *root = orig_root->fs_info->extent_root;
5397 struct btrfs_free_cluster *last_ptr = NULL;
5398 struct btrfs_block_group_cache *block_group = NULL;
5399 struct btrfs_block_group_cache *used_block_group;
5400 u64 search_start = 0;
5401 int empty_cluster = 2 * 1024 * 1024;
5402 int allowed_chunk_alloc = 0;
5403 int done_chunk_alloc = 0;
5404 struct btrfs_space_info *space_info;
5405 int loop = 0;
5406 int index = 0;
5407 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5408 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5409 bool found_uncached_bg = false;
5410 bool failed_cluster_refill = false;
5411 bool failed_alloc = false;
5412 bool use_cluster = true;
5413 bool have_caching_bg = false;
5414
5415 WARN_ON(num_bytes < root->sectorsize);
5416 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5417 ins->objectid = 0;
5418 ins->offset = 0;
5419
5420 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5421
5422 space_info = __find_space_info(root->fs_info, data);
5423 if (!space_info) {
5424 printk(KERN_ERR "No space info for %llu\n", data);
5425 return -ENOSPC;
5426 }
5427
5428 /*
5429 * If the space info is for both data and metadata it means we have a
5430 * small filesystem and we can't use the clustering stuff.
5431 */
5432 if (btrfs_mixed_space_info(space_info))
5433 use_cluster = false;
5434
5435 if (orig_root->ref_cows || empty_size)
5436 allowed_chunk_alloc = 1;
5437
5438 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5439 last_ptr = &root->fs_info->meta_alloc_cluster;
5440 if (!btrfs_test_opt(root, SSD))
5441 empty_cluster = 64 * 1024;
5442 }
5443
5444 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5445 btrfs_test_opt(root, SSD)) {
5446 last_ptr = &root->fs_info->data_alloc_cluster;
5447 }
5448
5449 if (last_ptr) {
5450 spin_lock(&last_ptr->lock);
5451 if (last_ptr->block_group)
5452 hint_byte = last_ptr->window_start;
5453 spin_unlock(&last_ptr->lock);
5454 }
5455
5456 search_start = max(search_start, first_logical_byte(root, 0));
5457 search_start = max(search_start, hint_byte);
5458
5459 if (!last_ptr)
5460 empty_cluster = 0;
5461
5462 if (search_start == hint_byte) {
5463 block_group = btrfs_lookup_block_group(root->fs_info,
5464 search_start);
5465 used_block_group = block_group;
5466 /*
5467 * we don't want to use the block group if it doesn't match our
5468 * allocation bits, or if its not cached.
5469 *
5470 * However if we are re-searching with an ideal block group
5471 * picked out then we don't care that the block group is cached.
5472 */
5473 if (block_group && block_group_bits(block_group, data) &&
5474 block_group->cached != BTRFS_CACHE_NO) {
5475 down_read(&space_info->groups_sem);
5476 if (list_empty(&block_group->list) ||
5477 block_group->ro) {
5478 /*
5479 * someone is removing this block group,
5480 * we can't jump into the have_block_group
5481 * target because our list pointers are not
5482 * valid
5483 */
5484 btrfs_put_block_group(block_group);
5485 up_read(&space_info->groups_sem);
5486 } else {
5487 index = get_block_group_index(block_group);
5488 goto have_block_group;
5489 }
5490 } else if (block_group) {
5491 btrfs_put_block_group(block_group);
5492 }
5493 }
5494search:
5495 have_caching_bg = false;
5496 down_read(&space_info->groups_sem);
5497 list_for_each_entry(block_group, &space_info->block_groups[index],
5498 list) {
5499 u64 offset;
5500 int cached;
5501
5502 used_block_group = block_group;
5503 btrfs_get_block_group(block_group);
5504 search_start = block_group->key.objectid;
5505
5506 /*
5507 * this can happen if we end up cycling through all the
5508 * raid types, but we want to make sure we only allocate
5509 * for the proper type.
5510 */
5511 if (!block_group_bits(block_group, data)) {
5512 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5513 BTRFS_BLOCK_GROUP_RAID1 |
5514 BTRFS_BLOCK_GROUP_RAID10;
5515
5516 /*
5517 * if they asked for extra copies and this block group
5518 * doesn't provide them, bail. This does allow us to
5519 * fill raid0 from raid1.
5520 */
5521 if ((data & extra) && !(block_group->flags & extra))
5522 goto loop;
5523 }
5524
5525have_block_group:
5526 cached = block_group_cache_done(block_group);
5527 if (unlikely(!cached)) {
5528 found_uncached_bg = true;
5529 ret = cache_block_group(block_group, trans,
5530 orig_root, 0);
5531 BUG_ON(ret < 0);
5532 ret = 0;
5533 }
5534
5535 if (unlikely(block_group->ro))
5536 goto loop;
5537
5538 /*
5539 * Ok we want to try and use the cluster allocator, so
5540 * lets look there
5541 */
5542 if (last_ptr) {
5543 /*
5544 * the refill lock keeps out other
5545 * people trying to start a new cluster
5546 */
5547 spin_lock(&last_ptr->refill_lock);
5548 used_block_group = last_ptr->block_group;
5549 if (used_block_group != block_group &&
5550 (!used_block_group ||
5551 used_block_group->ro ||
5552 !block_group_bits(used_block_group, data))) {
5553 used_block_group = block_group;
5554 goto refill_cluster;
5555 }
5556
5557 if (used_block_group != block_group)
5558 btrfs_get_block_group(used_block_group);
5559
5560 offset = btrfs_alloc_from_cluster(used_block_group,
5561 last_ptr, num_bytes, used_block_group->key.objectid);
5562 if (offset) {
5563 /* we have a block, we're done */
5564 spin_unlock(&last_ptr->refill_lock);
5565 trace_btrfs_reserve_extent_cluster(root,
5566 block_group, search_start, num_bytes);
5567 goto checks;
5568 }
5569
5570 WARN_ON(last_ptr->block_group != used_block_group);
5571 if (used_block_group != block_group) {
5572 btrfs_put_block_group(used_block_group);
5573 used_block_group = block_group;
5574 }
5575refill_cluster:
5576 BUG_ON(used_block_group != block_group);
5577 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5578 * set up a new clusters, so lets just skip it
5579 * and let the allocator find whatever block
5580 * it can find. If we reach this point, we
5581 * will have tried the cluster allocator
5582 * plenty of times and not have found
5583 * anything, so we are likely way too
5584 * fragmented for the clustering stuff to find
5585 * anything.
5586 *
5587 * However, if the cluster is taken from the
5588 * current block group, release the cluster
5589 * first, so that we stand a better chance of
5590 * succeeding in the unclustered
5591 * allocation. */
5592 if (loop >= LOOP_NO_EMPTY_SIZE &&
5593 last_ptr->block_group != block_group) {
5594 spin_unlock(&last_ptr->refill_lock);
5595 goto unclustered_alloc;
5596 }
5597
5598 /*
5599 * this cluster didn't work out, free it and
5600 * start over
5601 */
5602 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5603
5604 if (loop >= LOOP_NO_EMPTY_SIZE) {
5605 spin_unlock(&last_ptr->refill_lock);
5606 goto unclustered_alloc;
5607 }
5608
5609 /* allocate a cluster in this block group */
5610 ret = btrfs_find_space_cluster(trans, root,
5611 block_group, last_ptr,
5612 search_start, num_bytes,
5613 empty_cluster + empty_size);
5614 if (ret == 0) {
5615 /*
5616 * now pull our allocation out of this
5617 * cluster
5618 */
5619 offset = btrfs_alloc_from_cluster(block_group,
5620 last_ptr, num_bytes,
5621 search_start);
5622 if (offset) {
5623 /* we found one, proceed */
5624 spin_unlock(&last_ptr->refill_lock);
5625 trace_btrfs_reserve_extent_cluster(root,
5626 block_group, search_start,
5627 num_bytes);
5628 goto checks;
5629 }
5630 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5631 && !failed_cluster_refill) {
5632 spin_unlock(&last_ptr->refill_lock);
5633
5634 failed_cluster_refill = true;
5635 wait_block_group_cache_progress(block_group,
5636 num_bytes + empty_cluster + empty_size);
5637 goto have_block_group;
5638 }
5639
5640 /*
5641 * at this point we either didn't find a cluster
5642 * or we weren't able to allocate a block from our
5643 * cluster. Free the cluster we've been trying
5644 * to use, and go to the next block group
5645 */
5646 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5647 spin_unlock(&last_ptr->refill_lock);
5648 goto loop;
5649 }
5650
5651unclustered_alloc:
5652 spin_lock(&block_group->free_space_ctl->tree_lock);
5653 if (cached &&
5654 block_group->free_space_ctl->free_space <
5655 num_bytes + empty_cluster + empty_size) {
5656 spin_unlock(&block_group->free_space_ctl->tree_lock);
5657 goto loop;
5658 }
5659 spin_unlock(&block_group->free_space_ctl->tree_lock);
5660
5661 offset = btrfs_find_space_for_alloc(block_group, search_start,
5662 num_bytes, empty_size);
5663 /*
5664 * If we didn't find a chunk, and we haven't failed on this
5665 * block group before, and this block group is in the middle of
5666 * caching and we are ok with waiting, then go ahead and wait
5667 * for progress to be made, and set failed_alloc to true.
5668 *
5669 * If failed_alloc is true then we've already waited on this
5670 * block group once and should move on to the next block group.
5671 */
5672 if (!offset && !failed_alloc && !cached &&
5673 loop > LOOP_CACHING_NOWAIT) {
5674 wait_block_group_cache_progress(block_group,
5675 num_bytes + empty_size);
5676 failed_alloc = true;
5677 goto have_block_group;
5678 } else if (!offset) {
5679 if (!cached)
5680 have_caching_bg = true;
5681 goto loop;
5682 }
5683checks:
5684 search_start = stripe_align(root, offset);
5685
5686 /* move on to the next group */
5687 if (search_start + num_bytes >
5688 used_block_group->key.objectid + used_block_group->key.offset) {
5689 btrfs_add_free_space(used_block_group, offset, num_bytes);
5690 goto loop;
5691 }
5692
5693 if (offset < search_start)
5694 btrfs_add_free_space(used_block_group, offset,
5695 search_start - offset);
5696 BUG_ON(offset > search_start);
5697
5698 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5699 alloc_type);
5700 if (ret == -EAGAIN) {
5701 btrfs_add_free_space(used_block_group, offset, num_bytes);
5702 goto loop;
5703 }
5704
5705 /* we are all good, lets return */
5706 ins->objectid = search_start;
5707 ins->offset = num_bytes;
5708
5709 trace_btrfs_reserve_extent(orig_root, block_group,
5710 search_start, num_bytes);
5711 if (offset < search_start)
5712 btrfs_add_free_space(used_block_group, offset,
5713 search_start - offset);
5714 BUG_ON(offset > search_start);
5715 if (used_block_group != block_group)
5716 btrfs_put_block_group(used_block_group);
5717 btrfs_put_block_group(block_group);
5718 break;
5719loop:
5720 failed_cluster_refill = false;
5721 failed_alloc = false;
5722 BUG_ON(index != get_block_group_index(block_group));
5723 if (used_block_group != block_group)
5724 btrfs_put_block_group(used_block_group);
5725 btrfs_put_block_group(block_group);
5726 }
5727 up_read(&space_info->groups_sem);
5728
5729 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5730 goto search;
5731
5732 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5733 goto search;
5734
5735 /*
5736 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5737 * caching kthreads as we move along
5738 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5739 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5740 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5741 * again
5742 */
5743 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5744 index = 0;
5745 loop++;
5746 if (loop == LOOP_ALLOC_CHUNK) {
5747 if (allowed_chunk_alloc) {
5748 ret = do_chunk_alloc(trans, root, num_bytes +
5749 2 * 1024 * 1024, data,
5750 CHUNK_ALLOC_LIMITED);
5751 if (ret < 0) {
5752 btrfs_abort_transaction(trans,
5753 root, ret);
5754 goto out;
5755 }
5756 allowed_chunk_alloc = 0;
5757 if (ret == 1)
5758 done_chunk_alloc = 1;
5759 } else if (!done_chunk_alloc &&
5760 space_info->force_alloc ==
5761 CHUNK_ALLOC_NO_FORCE) {
5762 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5763 }
5764
5765 /*
5766 * We didn't allocate a chunk, go ahead and drop the
5767 * empty size and loop again.
5768 */
5769 if (!done_chunk_alloc)
5770 loop = LOOP_NO_EMPTY_SIZE;
5771 }
5772
5773 if (loop == LOOP_NO_EMPTY_SIZE) {
5774 empty_size = 0;
5775 empty_cluster = 0;
5776 }
5777
5778 goto search;
5779 } else if (!ins->objectid) {
5780 ret = -ENOSPC;
5781 } else if (ins->objectid) {
5782 ret = 0;
5783 }
5784out:
5785
5786 return ret;
5787}
5788
5789static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5790 int dump_block_groups)
5791{
5792 struct btrfs_block_group_cache *cache;
5793 int index = 0;
5794
5795 spin_lock(&info->lock);
5796 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5797 (unsigned long long)info->flags,
5798 (unsigned long long)(info->total_bytes - info->bytes_used -
5799 info->bytes_pinned - info->bytes_reserved -
5800 info->bytes_readonly),
5801 (info->full) ? "" : "not ");
5802 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5803 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5804 (unsigned long long)info->total_bytes,
5805 (unsigned long long)info->bytes_used,
5806 (unsigned long long)info->bytes_pinned,
5807 (unsigned long long)info->bytes_reserved,
5808 (unsigned long long)info->bytes_may_use,
5809 (unsigned long long)info->bytes_readonly);
5810 spin_unlock(&info->lock);
5811
5812 if (!dump_block_groups)
5813 return;
5814
5815 down_read(&info->groups_sem);
5816again:
5817 list_for_each_entry(cache, &info->block_groups[index], list) {
5818 spin_lock(&cache->lock);
5819 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5820 "%llu pinned %llu reserved\n",
5821 (unsigned long long)cache->key.objectid,
5822 (unsigned long long)cache->key.offset,
5823 (unsigned long long)btrfs_block_group_used(&cache->item),
5824 (unsigned long long)cache->pinned,
5825 (unsigned long long)cache->reserved);
5826 btrfs_dump_free_space(cache, bytes);
5827 spin_unlock(&cache->lock);
5828 }
5829 if (++index < BTRFS_NR_RAID_TYPES)
5830 goto again;
5831 up_read(&info->groups_sem);
5832}
5833
5834int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5835 struct btrfs_root *root,
5836 u64 num_bytes, u64 min_alloc_size,
5837 u64 empty_size, u64 hint_byte,
5838 struct btrfs_key *ins, u64 data)
5839{
5840 bool final_tried = false;
5841 int ret;
5842
5843 data = btrfs_get_alloc_profile(root, data);
5844again:
5845 /*
5846 * the only place that sets empty_size is btrfs_realloc_node, which
5847 * is not called recursively on allocations
5848 */
5849 if (empty_size || root->ref_cows) {
5850 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5851 num_bytes + 2 * 1024 * 1024, data,
5852 CHUNK_ALLOC_NO_FORCE);
5853 if (ret < 0 && ret != -ENOSPC) {
5854 btrfs_abort_transaction(trans, root, ret);
5855 return ret;
5856 }
5857 }
5858
5859 WARN_ON(num_bytes < root->sectorsize);
5860 ret = find_free_extent(trans, root, num_bytes, empty_size,
5861 hint_byte, ins, data);
5862
5863 if (ret == -ENOSPC) {
5864 if (!final_tried) {
5865 num_bytes = num_bytes >> 1;
5866 num_bytes = num_bytes & ~(root->sectorsize - 1);
5867 num_bytes = max(num_bytes, min_alloc_size);
5868 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5869 num_bytes, data, CHUNK_ALLOC_FORCE);
5870 if (ret < 0 && ret != -ENOSPC) {
5871 btrfs_abort_transaction(trans, root, ret);
5872 return ret;
5873 }
5874 if (num_bytes == min_alloc_size)
5875 final_tried = true;
5876 goto again;
5877 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5878 struct btrfs_space_info *sinfo;
5879
5880 sinfo = __find_space_info(root->fs_info, data);
5881 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5882 "wanted %llu\n", (unsigned long long)data,
5883 (unsigned long long)num_bytes);
5884 if (sinfo)
5885 dump_space_info(sinfo, num_bytes, 1);
5886 }
5887 }
5888
5889 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5890
5891 return ret;
5892}
5893
5894static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5895 u64 start, u64 len, int pin)
5896{
5897 struct btrfs_block_group_cache *cache;
5898 int ret = 0;
5899
5900 cache = btrfs_lookup_block_group(root->fs_info, start);
5901 if (!cache) {
5902 printk(KERN_ERR "Unable to find block group for %llu\n",
5903 (unsigned long long)start);
5904 return -ENOSPC;
5905 }
5906
5907 if (btrfs_test_opt(root, DISCARD))
5908 ret = btrfs_discard_extent(root, start, len, NULL);
5909
5910 if (pin)
5911 pin_down_extent(root, cache, start, len, 1);
5912 else {
5913 btrfs_add_free_space(cache, start, len);
5914 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5915 }
5916 btrfs_put_block_group(cache);
5917
5918 trace_btrfs_reserved_extent_free(root, start, len);
5919
5920 return ret;
5921}
5922
5923int btrfs_free_reserved_extent(struct btrfs_root *root,
5924 u64 start, u64 len)
5925{
5926 return __btrfs_free_reserved_extent(root, start, len, 0);
5927}
5928
5929int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5930 u64 start, u64 len)
5931{
5932 return __btrfs_free_reserved_extent(root, start, len, 1);
5933}
5934
5935static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5936 struct btrfs_root *root,
5937 u64 parent, u64 root_objectid,
5938 u64 flags, u64 owner, u64 offset,
5939 struct btrfs_key *ins, int ref_mod)
5940{
5941 int ret;
5942 struct btrfs_fs_info *fs_info = root->fs_info;
5943 struct btrfs_extent_item *extent_item;
5944 struct btrfs_extent_inline_ref *iref;
5945 struct btrfs_path *path;
5946 struct extent_buffer *leaf;
5947 int type;
5948 u32 size;
5949
5950 if (parent > 0)
5951 type = BTRFS_SHARED_DATA_REF_KEY;
5952 else
5953 type = BTRFS_EXTENT_DATA_REF_KEY;
5954
5955 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5956
5957 path = btrfs_alloc_path();
5958 if (!path)
5959 return -ENOMEM;
5960
5961 path->leave_spinning = 1;
5962 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5963 ins, size);
5964 if (ret) {
5965 btrfs_free_path(path);
5966 return ret;
5967 }
5968
5969 leaf = path->nodes[0];
5970 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5971 struct btrfs_extent_item);
5972 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5973 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5974 btrfs_set_extent_flags(leaf, extent_item,
5975 flags | BTRFS_EXTENT_FLAG_DATA);
5976
5977 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5978 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5979 if (parent > 0) {
5980 struct btrfs_shared_data_ref *ref;
5981 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5982 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5983 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5984 } else {
5985 struct btrfs_extent_data_ref *ref;
5986 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5987 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5988 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5989 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5990 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5991 }
5992
5993 btrfs_mark_buffer_dirty(path->nodes[0]);
5994 btrfs_free_path(path);
5995
5996 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5997 if (ret) { /* -ENOENT, logic error */
5998 printk(KERN_ERR "btrfs update block group failed for %llu "
5999 "%llu\n", (unsigned long long)ins->objectid,
6000 (unsigned long long)ins->offset);
6001 BUG();
6002 }
6003 return ret;
6004}
6005
6006static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6007 struct btrfs_root *root,
6008 u64 parent, u64 root_objectid,
6009 u64 flags, struct btrfs_disk_key *key,
6010 int level, struct btrfs_key *ins)
6011{
6012 int ret;
6013 struct btrfs_fs_info *fs_info = root->fs_info;
6014 struct btrfs_extent_item *extent_item;
6015 struct btrfs_tree_block_info *block_info;
6016 struct btrfs_extent_inline_ref *iref;
6017 struct btrfs_path *path;
6018 struct extent_buffer *leaf;
6019 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6020
6021 path = btrfs_alloc_path();
6022 if (!path)
6023 return -ENOMEM;
6024
6025 path->leave_spinning = 1;
6026 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6027 ins, size);
6028 if (ret) {
6029 btrfs_free_path(path);
6030 return ret;
6031 }
6032
6033 leaf = path->nodes[0];
6034 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6035 struct btrfs_extent_item);
6036 btrfs_set_extent_refs(leaf, extent_item, 1);
6037 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6038 btrfs_set_extent_flags(leaf, extent_item,
6039 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6040 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6041
6042 btrfs_set_tree_block_key(leaf, block_info, key);
6043 btrfs_set_tree_block_level(leaf, block_info, level);
6044
6045 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6046 if (parent > 0) {
6047 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6048 btrfs_set_extent_inline_ref_type(leaf, iref,
6049 BTRFS_SHARED_BLOCK_REF_KEY);
6050 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6051 } else {
6052 btrfs_set_extent_inline_ref_type(leaf, iref,
6053 BTRFS_TREE_BLOCK_REF_KEY);
6054 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6055 }
6056
6057 btrfs_mark_buffer_dirty(leaf);
6058 btrfs_free_path(path);
6059
6060 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6061 if (ret) { /* -ENOENT, logic error */
6062 printk(KERN_ERR "btrfs update block group failed for %llu "
6063 "%llu\n", (unsigned long long)ins->objectid,
6064 (unsigned long long)ins->offset);
6065 BUG();
6066 }
6067 return ret;
6068}
6069
6070int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6071 struct btrfs_root *root,
6072 u64 root_objectid, u64 owner,
6073 u64 offset, struct btrfs_key *ins)
6074{
6075 int ret;
6076
6077 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6078
6079 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6080 ins->offset, 0,
6081 root_objectid, owner, offset,
6082 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6083 return ret;
6084}
6085
6086/*
6087 * this is used by the tree logging recovery code. It records that
6088 * an extent has been allocated and makes sure to clear the free
6089 * space cache bits as well
6090 */
6091int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6092 struct btrfs_root *root,
6093 u64 root_objectid, u64 owner, u64 offset,
6094 struct btrfs_key *ins)
6095{
6096 int ret;
6097 struct btrfs_block_group_cache *block_group;
6098 struct btrfs_caching_control *caching_ctl;
6099 u64 start = ins->objectid;
6100 u64 num_bytes = ins->offset;
6101
6102 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6103 cache_block_group(block_group, trans, NULL, 0);
6104 caching_ctl = get_caching_control(block_group);
6105
6106 if (!caching_ctl) {
6107 BUG_ON(!block_group_cache_done(block_group));
6108 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6109 BUG_ON(ret); /* -ENOMEM */
6110 } else {
6111 mutex_lock(&caching_ctl->mutex);
6112
6113 if (start >= caching_ctl->progress) {
6114 ret = add_excluded_extent(root, start, num_bytes);
6115 BUG_ON(ret); /* -ENOMEM */
6116 } else if (start + num_bytes <= caching_ctl->progress) {
6117 ret = btrfs_remove_free_space(block_group,
6118 start, num_bytes);
6119 BUG_ON(ret); /* -ENOMEM */
6120 } else {
6121 num_bytes = caching_ctl->progress - start;
6122 ret = btrfs_remove_free_space(block_group,
6123 start, num_bytes);
6124 BUG_ON(ret); /* -ENOMEM */
6125
6126 start = caching_ctl->progress;
6127 num_bytes = ins->objectid + ins->offset -
6128 caching_ctl->progress;
6129 ret = add_excluded_extent(root, start, num_bytes);
6130 BUG_ON(ret); /* -ENOMEM */
6131 }
6132
6133 mutex_unlock(&caching_ctl->mutex);
6134 put_caching_control(caching_ctl);
6135 }
6136
6137 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6138 RESERVE_ALLOC_NO_ACCOUNT);
6139 BUG_ON(ret); /* logic error */
6140 btrfs_put_block_group(block_group);
6141 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6142 0, owner, offset, ins, 1);
6143 return ret;
6144}
6145
6146struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6147 struct btrfs_root *root,
6148 u64 bytenr, u32 blocksize,
6149 int level)
6150{
6151 struct extent_buffer *buf;
6152
6153 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6154 if (!buf)
6155 return ERR_PTR(-ENOMEM);
6156 btrfs_set_header_generation(buf, trans->transid);
6157 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6158 btrfs_tree_lock(buf);
6159 clean_tree_block(trans, root, buf);
6160 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6161
6162 btrfs_set_lock_blocking(buf);
6163 btrfs_set_buffer_uptodate(buf);
6164
6165 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6166 /*
6167 * we allow two log transactions at a time, use different
6168 * EXENT bit to differentiate dirty pages.
6169 */
6170 if (root->log_transid % 2 == 0)
6171 set_extent_dirty(&root->dirty_log_pages, buf->start,
6172 buf->start + buf->len - 1, GFP_NOFS);
6173 else
6174 set_extent_new(&root->dirty_log_pages, buf->start,
6175 buf->start + buf->len - 1, GFP_NOFS);
6176 } else {
6177 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6178 buf->start + buf->len - 1, GFP_NOFS);
6179 }
6180 trans->blocks_used++;
6181 /* this returns a buffer locked for blocking */
6182 return buf;
6183}
6184
6185static struct btrfs_block_rsv *
6186use_block_rsv(struct btrfs_trans_handle *trans,
6187 struct btrfs_root *root, u32 blocksize)
6188{
6189 struct btrfs_block_rsv *block_rsv;
6190 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6191 int ret;
6192
6193 block_rsv = get_block_rsv(trans, root);
6194
6195 if (block_rsv->size == 0) {
6196 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6197 /*
6198 * If we couldn't reserve metadata bytes try and use some from
6199 * the global reserve.
6200 */
6201 if (ret && block_rsv != global_rsv) {
6202 ret = block_rsv_use_bytes(global_rsv, blocksize);
6203 if (!ret)
6204 return global_rsv;
6205 return ERR_PTR(ret);
6206 } else if (ret) {
6207 return ERR_PTR(ret);
6208 }
6209 return block_rsv;
6210 }
6211
6212 ret = block_rsv_use_bytes(block_rsv, blocksize);
6213 if (!ret)
6214 return block_rsv;
6215 if (ret) {
6216 static DEFINE_RATELIMIT_STATE(_rs,
6217 DEFAULT_RATELIMIT_INTERVAL,
6218 /*DEFAULT_RATELIMIT_BURST*/ 2);
6219 if (__ratelimit(&_rs)) {
6220 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6221 WARN_ON(1);
6222 }
6223 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6224 if (!ret) {
6225 return block_rsv;
6226 } else if (ret && block_rsv != global_rsv) {
6227 ret = block_rsv_use_bytes(global_rsv, blocksize);
6228 if (!ret)
6229 return global_rsv;
6230 }
6231 }
6232
6233 return ERR_PTR(-ENOSPC);
6234}
6235
6236static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6237 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6238{
6239 block_rsv_add_bytes(block_rsv, blocksize, 0);
6240 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6241}
6242
6243/*
6244 * finds a free extent and does all the dirty work required for allocation
6245 * returns the key for the extent through ins, and a tree buffer for
6246 * the first block of the extent through buf.
6247 *
6248 * returns the tree buffer or NULL.
6249 */
6250struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6251 struct btrfs_root *root, u32 blocksize,
6252 u64 parent, u64 root_objectid,
6253 struct btrfs_disk_key *key, int level,
6254 u64 hint, u64 empty_size)
6255{
6256 struct btrfs_key ins;
6257 struct btrfs_block_rsv *block_rsv;
6258 struct extent_buffer *buf;
6259 u64 flags = 0;
6260 int ret;
6261
6262
6263 block_rsv = use_block_rsv(trans, root, blocksize);
6264 if (IS_ERR(block_rsv))
6265 return ERR_CAST(block_rsv);
6266
6267 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6268 empty_size, hint, &ins, 0);
6269 if (ret) {
6270 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6271 return ERR_PTR(ret);
6272 }
6273
6274 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6275 blocksize, level);
6276 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6277
6278 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6279 if (parent == 0)
6280 parent = ins.objectid;
6281 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6282 } else
6283 BUG_ON(parent > 0);
6284
6285 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6286 struct btrfs_delayed_extent_op *extent_op;
6287 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6288 BUG_ON(!extent_op); /* -ENOMEM */
6289 if (key)
6290 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6291 else
6292 memset(&extent_op->key, 0, sizeof(extent_op->key));
6293 extent_op->flags_to_set = flags;
6294 extent_op->update_key = 1;
6295 extent_op->update_flags = 1;
6296 extent_op->is_data = 0;
6297
6298 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6299 ins.objectid,
6300 ins.offset, parent, root_objectid,
6301 level, BTRFS_ADD_DELAYED_EXTENT,
6302 extent_op, 0);
6303 BUG_ON(ret); /* -ENOMEM */
6304 }
6305 return buf;
6306}
6307
6308struct walk_control {
6309 u64 refs[BTRFS_MAX_LEVEL];
6310 u64 flags[BTRFS_MAX_LEVEL];
6311 struct btrfs_key update_progress;
6312 int stage;
6313 int level;
6314 int shared_level;
6315 int update_ref;
6316 int keep_locks;
6317 int reada_slot;
6318 int reada_count;
6319 int for_reloc;
6320};
6321
6322#define DROP_REFERENCE 1
6323#define UPDATE_BACKREF 2
6324
6325static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6326 struct btrfs_root *root,
6327 struct walk_control *wc,
6328 struct btrfs_path *path)
6329{
6330 u64 bytenr;
6331 u64 generation;
6332 u64 refs;
6333 u64 flags;
6334 u32 nritems;
6335 u32 blocksize;
6336 struct btrfs_key key;
6337 struct extent_buffer *eb;
6338 int ret;
6339 int slot;
6340 int nread = 0;
6341
6342 if (path->slots[wc->level] < wc->reada_slot) {
6343 wc->reada_count = wc->reada_count * 2 / 3;
6344 wc->reada_count = max(wc->reada_count, 2);
6345 } else {
6346 wc->reada_count = wc->reada_count * 3 / 2;
6347 wc->reada_count = min_t(int, wc->reada_count,
6348 BTRFS_NODEPTRS_PER_BLOCK(root));
6349 }
6350
6351 eb = path->nodes[wc->level];
6352 nritems = btrfs_header_nritems(eb);
6353 blocksize = btrfs_level_size(root, wc->level - 1);
6354
6355 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6356 if (nread >= wc->reada_count)
6357 break;
6358
6359 cond_resched();
6360 bytenr = btrfs_node_blockptr(eb, slot);
6361 generation = btrfs_node_ptr_generation(eb, slot);
6362
6363 if (slot == path->slots[wc->level])
6364 goto reada;
6365
6366 if (wc->stage == UPDATE_BACKREF &&
6367 generation <= root->root_key.offset)
6368 continue;
6369
6370 /* We don't lock the tree block, it's OK to be racy here */
6371 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6372 &refs, &flags);
6373 /* We don't care about errors in readahead. */
6374 if (ret < 0)
6375 continue;
6376 BUG_ON(refs == 0);
6377
6378 if (wc->stage == DROP_REFERENCE) {
6379 if (refs == 1)
6380 goto reada;
6381
6382 if (wc->level == 1 &&
6383 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6384 continue;
6385 if (!wc->update_ref ||
6386 generation <= root->root_key.offset)
6387 continue;
6388 btrfs_node_key_to_cpu(eb, &key, slot);
6389 ret = btrfs_comp_cpu_keys(&key,
6390 &wc->update_progress);
6391 if (ret < 0)
6392 continue;
6393 } else {
6394 if (wc->level == 1 &&
6395 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6396 continue;
6397 }
6398reada:
6399 ret = readahead_tree_block(root, bytenr, blocksize,
6400 generation);
6401 if (ret)
6402 break;
6403 nread++;
6404 }
6405 wc->reada_slot = slot;
6406}
6407
6408/*
6409 * hepler to process tree block while walking down the tree.
6410 *
6411 * when wc->stage == UPDATE_BACKREF, this function updates
6412 * back refs for pointers in the block.
6413 *
6414 * NOTE: return value 1 means we should stop walking down.
6415 */
6416static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6417 struct btrfs_root *root,
6418 struct btrfs_path *path,
6419 struct walk_control *wc, int lookup_info)
6420{
6421 int level = wc->level;
6422 struct extent_buffer *eb = path->nodes[level];
6423 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6424 int ret;
6425
6426 if (wc->stage == UPDATE_BACKREF &&
6427 btrfs_header_owner(eb) != root->root_key.objectid)
6428 return 1;
6429
6430 /*
6431 * when reference count of tree block is 1, it won't increase
6432 * again. once full backref flag is set, we never clear it.
6433 */
6434 if (lookup_info &&
6435 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6436 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6437 BUG_ON(!path->locks[level]);
6438 ret = btrfs_lookup_extent_info(trans, root,
6439 eb->start, eb->len,
6440 &wc->refs[level],
6441 &wc->flags[level]);
6442 BUG_ON(ret == -ENOMEM);
6443 if (ret)
6444 return ret;
6445 BUG_ON(wc->refs[level] == 0);
6446 }
6447
6448 if (wc->stage == DROP_REFERENCE) {
6449 if (wc->refs[level] > 1)
6450 return 1;
6451
6452 if (path->locks[level] && !wc->keep_locks) {
6453 btrfs_tree_unlock_rw(eb, path->locks[level]);
6454 path->locks[level] = 0;
6455 }
6456 return 0;
6457 }
6458
6459 /* wc->stage == UPDATE_BACKREF */
6460 if (!(wc->flags[level] & flag)) {
6461 BUG_ON(!path->locks[level]);
6462 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6463 BUG_ON(ret); /* -ENOMEM */
6464 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6465 BUG_ON(ret); /* -ENOMEM */
6466 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6467 eb->len, flag, 0);
6468 BUG_ON(ret); /* -ENOMEM */
6469 wc->flags[level] |= flag;
6470 }
6471
6472 /*
6473 * the block is shared by multiple trees, so it's not good to
6474 * keep the tree lock
6475 */
6476 if (path->locks[level] && level > 0) {
6477 btrfs_tree_unlock_rw(eb, path->locks[level]);
6478 path->locks[level] = 0;
6479 }
6480 return 0;
6481}
6482
6483/*
6484 * hepler to process tree block pointer.
6485 *
6486 * when wc->stage == DROP_REFERENCE, this function checks
6487 * reference count of the block pointed to. if the block
6488 * is shared and we need update back refs for the subtree
6489 * rooted at the block, this function changes wc->stage to
6490 * UPDATE_BACKREF. if the block is shared and there is no
6491 * need to update back, this function drops the reference
6492 * to the block.
6493 *
6494 * NOTE: return value 1 means we should stop walking down.
6495 */
6496static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6497 struct btrfs_root *root,
6498 struct btrfs_path *path,
6499 struct walk_control *wc, int *lookup_info)
6500{
6501 u64 bytenr;
6502 u64 generation;
6503 u64 parent;
6504 u32 blocksize;
6505 struct btrfs_key key;
6506 struct extent_buffer *next;
6507 int level = wc->level;
6508 int reada = 0;
6509 int ret = 0;
6510
6511 generation = btrfs_node_ptr_generation(path->nodes[level],
6512 path->slots[level]);
6513 /*
6514 * if the lower level block was created before the snapshot
6515 * was created, we know there is no need to update back refs
6516 * for the subtree
6517 */
6518 if (wc->stage == UPDATE_BACKREF &&
6519 generation <= root->root_key.offset) {
6520 *lookup_info = 1;
6521 return 1;
6522 }
6523
6524 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6525 blocksize = btrfs_level_size(root, level - 1);
6526
6527 next = btrfs_find_tree_block(root, bytenr, blocksize);
6528 if (!next) {
6529 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6530 if (!next)
6531 return -ENOMEM;
6532 reada = 1;
6533 }
6534 btrfs_tree_lock(next);
6535 btrfs_set_lock_blocking(next);
6536
6537 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6538 &wc->refs[level - 1],
6539 &wc->flags[level - 1]);
6540 if (ret < 0) {
6541 btrfs_tree_unlock(next);
6542 return ret;
6543 }
6544
6545 BUG_ON(wc->refs[level - 1] == 0);
6546 *lookup_info = 0;
6547
6548 if (wc->stage == DROP_REFERENCE) {
6549 if (wc->refs[level - 1] > 1) {
6550 if (level == 1 &&
6551 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6552 goto skip;
6553
6554 if (!wc->update_ref ||
6555 generation <= root->root_key.offset)
6556 goto skip;
6557
6558 btrfs_node_key_to_cpu(path->nodes[level], &key,
6559 path->slots[level]);
6560 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6561 if (ret < 0)
6562 goto skip;
6563
6564 wc->stage = UPDATE_BACKREF;
6565 wc->shared_level = level - 1;
6566 }
6567 } else {
6568 if (level == 1 &&
6569 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6570 goto skip;
6571 }
6572
6573 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6574 btrfs_tree_unlock(next);
6575 free_extent_buffer(next);
6576 next = NULL;
6577 *lookup_info = 1;
6578 }
6579
6580 if (!next) {
6581 if (reada && level == 1)
6582 reada_walk_down(trans, root, wc, path);
6583 next = read_tree_block(root, bytenr, blocksize, generation);
6584 if (!next)
6585 return -EIO;
6586 btrfs_tree_lock(next);
6587 btrfs_set_lock_blocking(next);
6588 }
6589
6590 level--;
6591 BUG_ON(level != btrfs_header_level(next));
6592 path->nodes[level] = next;
6593 path->slots[level] = 0;
6594 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6595 wc->level = level;
6596 if (wc->level == 1)
6597 wc->reada_slot = 0;
6598 return 0;
6599skip:
6600 wc->refs[level - 1] = 0;
6601 wc->flags[level - 1] = 0;
6602 if (wc->stage == DROP_REFERENCE) {
6603 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6604 parent = path->nodes[level]->start;
6605 } else {
6606 BUG_ON(root->root_key.objectid !=
6607 btrfs_header_owner(path->nodes[level]));
6608 parent = 0;
6609 }
6610
6611 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6612 root->root_key.objectid, level - 1, 0, 0);
6613 BUG_ON(ret); /* -ENOMEM */
6614 }
6615 btrfs_tree_unlock(next);
6616 free_extent_buffer(next);
6617 *lookup_info = 1;
6618 return 1;
6619}
6620
6621/*
6622 * hepler to process tree block while walking up the tree.
6623 *
6624 * when wc->stage == DROP_REFERENCE, this function drops
6625 * reference count on the block.
6626 *
6627 * when wc->stage == UPDATE_BACKREF, this function changes
6628 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6629 * to UPDATE_BACKREF previously while processing the block.
6630 *
6631 * NOTE: return value 1 means we should stop walking up.
6632 */
6633static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6634 struct btrfs_root *root,
6635 struct btrfs_path *path,
6636 struct walk_control *wc)
6637{
6638 int ret;
6639 int level = wc->level;
6640 struct extent_buffer *eb = path->nodes[level];
6641 u64 parent = 0;
6642
6643 if (wc->stage == UPDATE_BACKREF) {
6644 BUG_ON(wc->shared_level < level);
6645 if (level < wc->shared_level)
6646 goto out;
6647
6648 ret = find_next_key(path, level + 1, &wc->update_progress);
6649 if (ret > 0)
6650 wc->update_ref = 0;
6651
6652 wc->stage = DROP_REFERENCE;
6653 wc->shared_level = -1;
6654 path->slots[level] = 0;
6655
6656 /*
6657 * check reference count again if the block isn't locked.
6658 * we should start walking down the tree again if reference
6659 * count is one.
6660 */
6661 if (!path->locks[level]) {
6662 BUG_ON(level == 0);
6663 btrfs_tree_lock(eb);
6664 btrfs_set_lock_blocking(eb);
6665 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6666
6667 ret = btrfs_lookup_extent_info(trans, root,
6668 eb->start, eb->len,
6669 &wc->refs[level],
6670 &wc->flags[level]);
6671 if (ret < 0) {
6672 btrfs_tree_unlock_rw(eb, path->locks[level]);
6673 return ret;
6674 }
6675 BUG_ON(wc->refs[level] == 0);
6676 if (wc->refs[level] == 1) {
6677 btrfs_tree_unlock_rw(eb, path->locks[level]);
6678 return 1;
6679 }
6680 }
6681 }
6682
6683 /* wc->stage == DROP_REFERENCE */
6684 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6685
6686 if (wc->refs[level] == 1) {
6687 if (level == 0) {
6688 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6689 ret = btrfs_dec_ref(trans, root, eb, 1,
6690 wc->for_reloc);
6691 else
6692 ret = btrfs_dec_ref(trans, root, eb, 0,
6693 wc->for_reloc);
6694 BUG_ON(ret); /* -ENOMEM */
6695 }
6696 /* make block locked assertion in clean_tree_block happy */
6697 if (!path->locks[level] &&
6698 btrfs_header_generation(eb) == trans->transid) {
6699 btrfs_tree_lock(eb);
6700 btrfs_set_lock_blocking(eb);
6701 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6702 }
6703 clean_tree_block(trans, root, eb);
6704 }
6705
6706 if (eb == root->node) {
6707 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6708 parent = eb->start;
6709 else
6710 BUG_ON(root->root_key.objectid !=
6711 btrfs_header_owner(eb));
6712 } else {
6713 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6714 parent = path->nodes[level + 1]->start;
6715 else
6716 BUG_ON(root->root_key.objectid !=
6717 btrfs_header_owner(path->nodes[level + 1]));
6718 }
6719
6720 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6721out:
6722 wc->refs[level] = 0;
6723 wc->flags[level] = 0;
6724 return 0;
6725}
6726
6727static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6728 struct btrfs_root *root,
6729 struct btrfs_path *path,
6730 struct walk_control *wc)
6731{
6732 int level = wc->level;
6733 int lookup_info = 1;
6734 int ret;
6735
6736 while (level >= 0) {
6737 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6738 if (ret > 0)
6739 break;
6740
6741 if (level == 0)
6742 break;
6743
6744 if (path->slots[level] >=
6745 btrfs_header_nritems(path->nodes[level]))
6746 break;
6747
6748 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6749 if (ret > 0) {
6750 path->slots[level]++;
6751 continue;
6752 } else if (ret < 0)
6753 return ret;
6754 level = wc->level;
6755 }
6756 return 0;
6757}
6758
6759static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6760 struct btrfs_root *root,
6761 struct btrfs_path *path,
6762 struct walk_control *wc, int max_level)
6763{
6764 int level = wc->level;
6765 int ret;
6766
6767 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6768 while (level < max_level && path->nodes[level]) {
6769 wc->level = level;
6770 if (path->slots[level] + 1 <
6771 btrfs_header_nritems(path->nodes[level])) {
6772 path->slots[level]++;
6773 return 0;
6774 } else {
6775 ret = walk_up_proc(trans, root, path, wc);
6776 if (ret > 0)
6777 return 0;
6778
6779 if (path->locks[level]) {
6780 btrfs_tree_unlock_rw(path->nodes[level],
6781 path->locks[level]);
6782 path->locks[level] = 0;
6783 }
6784 free_extent_buffer(path->nodes[level]);
6785 path->nodes[level] = NULL;
6786 level++;
6787 }
6788 }
6789 return 1;
6790}
6791
6792/*
6793 * drop a subvolume tree.
6794 *
6795 * this function traverses the tree freeing any blocks that only
6796 * referenced by the tree.
6797 *
6798 * when a shared tree block is found. this function decreases its
6799 * reference count by one. if update_ref is true, this function
6800 * also make sure backrefs for the shared block and all lower level
6801 * blocks are properly updated.
6802 */
6803int btrfs_drop_snapshot(struct btrfs_root *root,
6804 struct btrfs_block_rsv *block_rsv, int update_ref,
6805 int for_reloc)
6806{
6807 struct btrfs_path *path;
6808 struct btrfs_trans_handle *trans;
6809 struct btrfs_root *tree_root = root->fs_info->tree_root;
6810 struct btrfs_root_item *root_item = &root->root_item;
6811 struct walk_control *wc;
6812 struct btrfs_key key;
6813 int err = 0;
6814 int ret;
6815 int level;
6816
6817 path = btrfs_alloc_path();
6818 if (!path) {
6819 err = -ENOMEM;
6820 goto out;
6821 }
6822
6823 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6824 if (!wc) {
6825 btrfs_free_path(path);
6826 err = -ENOMEM;
6827 goto out;
6828 }
6829
6830 trans = btrfs_start_transaction(tree_root, 0);
6831 if (IS_ERR(trans)) {
6832 err = PTR_ERR(trans);
6833 goto out_free;
6834 }
6835
6836 if (block_rsv)
6837 trans->block_rsv = block_rsv;
6838
6839 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6840 level = btrfs_header_level(root->node);
6841 path->nodes[level] = btrfs_lock_root_node(root);
6842 btrfs_set_lock_blocking(path->nodes[level]);
6843 path->slots[level] = 0;
6844 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6845 memset(&wc->update_progress, 0,
6846 sizeof(wc->update_progress));
6847 } else {
6848 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6849 memcpy(&wc->update_progress, &key,
6850 sizeof(wc->update_progress));
6851
6852 level = root_item->drop_level;
6853 BUG_ON(level == 0);
6854 path->lowest_level = level;
6855 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6856 path->lowest_level = 0;
6857 if (ret < 0) {
6858 err = ret;
6859 goto out_end_trans;
6860 }
6861 WARN_ON(ret > 0);
6862
6863 /*
6864 * unlock our path, this is safe because only this
6865 * function is allowed to delete this snapshot
6866 */
6867 btrfs_unlock_up_safe(path, 0);
6868
6869 level = btrfs_header_level(root->node);
6870 while (1) {
6871 btrfs_tree_lock(path->nodes[level]);
6872 btrfs_set_lock_blocking(path->nodes[level]);
6873
6874 ret = btrfs_lookup_extent_info(trans, root,
6875 path->nodes[level]->start,
6876 path->nodes[level]->len,
6877 &wc->refs[level],
6878 &wc->flags[level]);
6879 if (ret < 0) {
6880 err = ret;
6881 goto out_end_trans;
6882 }
6883 BUG_ON(wc->refs[level] == 0);
6884
6885 if (level == root_item->drop_level)
6886 break;
6887
6888 btrfs_tree_unlock(path->nodes[level]);
6889 WARN_ON(wc->refs[level] != 1);
6890 level--;
6891 }
6892 }
6893
6894 wc->level = level;
6895 wc->shared_level = -1;
6896 wc->stage = DROP_REFERENCE;
6897 wc->update_ref = update_ref;
6898 wc->keep_locks = 0;
6899 wc->for_reloc = for_reloc;
6900 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6901
6902 while (1) {
6903 ret = walk_down_tree(trans, root, path, wc);
6904 if (ret < 0) {
6905 err = ret;
6906 break;
6907 }
6908
6909 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6910 if (ret < 0) {
6911 err = ret;
6912 break;
6913 }
6914
6915 if (ret > 0) {
6916 BUG_ON(wc->stage != DROP_REFERENCE);
6917 break;
6918 }
6919
6920 if (wc->stage == DROP_REFERENCE) {
6921 level = wc->level;
6922 btrfs_node_key(path->nodes[level],
6923 &root_item->drop_progress,
6924 path->slots[level]);
6925 root_item->drop_level = level;
6926 }
6927
6928 BUG_ON(wc->level == 0);
6929 if (btrfs_should_end_transaction(trans, tree_root)) {
6930 ret = btrfs_update_root(trans, tree_root,
6931 &root->root_key,
6932 root_item);
6933 if (ret) {
6934 btrfs_abort_transaction(trans, tree_root, ret);
6935 err = ret;
6936 goto out_end_trans;
6937 }
6938
6939 btrfs_end_transaction_throttle(trans, tree_root);
6940 trans = btrfs_start_transaction(tree_root, 0);
6941 if (IS_ERR(trans)) {
6942 err = PTR_ERR(trans);
6943 goto out_free;
6944 }
6945 if (block_rsv)
6946 trans->block_rsv = block_rsv;
6947 }
6948 }
6949 btrfs_release_path(path);
6950 if (err)
6951 goto out_end_trans;
6952
6953 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6954 if (ret) {
6955 btrfs_abort_transaction(trans, tree_root, ret);
6956 goto out_end_trans;
6957 }
6958
6959 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6960 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6961 NULL, NULL);
6962 if (ret < 0) {
6963 btrfs_abort_transaction(trans, tree_root, ret);
6964 err = ret;
6965 goto out_end_trans;
6966 } else if (ret > 0) {
6967 /* if we fail to delete the orphan item this time
6968 * around, it'll get picked up the next time.
6969 *
6970 * The most common failure here is just -ENOENT.
6971 */
6972 btrfs_del_orphan_item(trans, tree_root,
6973 root->root_key.objectid);
6974 }
6975 }
6976
6977 if (root->in_radix) {
6978 btrfs_free_fs_root(tree_root->fs_info, root);
6979 } else {
6980 free_extent_buffer(root->node);
6981 free_extent_buffer(root->commit_root);
6982 kfree(root);
6983 }
6984out_end_trans:
6985 btrfs_end_transaction_throttle(trans, tree_root);
6986out_free:
6987 kfree(wc);
6988 btrfs_free_path(path);
6989out:
6990 if (err)
6991 btrfs_std_error(root->fs_info, err);
6992 return err;
6993}
6994
6995/*
6996 * drop subtree rooted at tree block 'node'.
6997 *
6998 * NOTE: this function will unlock and release tree block 'node'
6999 * only used by relocation code
7000 */
7001int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7002 struct btrfs_root *root,
7003 struct extent_buffer *node,
7004 struct extent_buffer *parent)
7005{
7006 struct btrfs_path *path;
7007 struct walk_control *wc;
7008 int level;
7009 int parent_level;
7010 int ret = 0;
7011 int wret;
7012
7013 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7014
7015 path = btrfs_alloc_path();
7016 if (!path)
7017 return -ENOMEM;
7018
7019 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7020 if (!wc) {
7021 btrfs_free_path(path);
7022 return -ENOMEM;
7023 }
7024
7025 btrfs_assert_tree_locked(parent);
7026 parent_level = btrfs_header_level(parent);
7027 extent_buffer_get(parent);
7028 path->nodes[parent_level] = parent;
7029 path->slots[parent_level] = btrfs_header_nritems(parent);
7030
7031 btrfs_assert_tree_locked(node);
7032 level = btrfs_header_level(node);
7033 path->nodes[level] = node;
7034 path->slots[level] = 0;
7035 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7036
7037 wc->refs[parent_level] = 1;
7038 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7039 wc->level = level;
7040 wc->shared_level = -1;
7041 wc->stage = DROP_REFERENCE;
7042 wc->update_ref = 0;
7043 wc->keep_locks = 1;
7044 wc->for_reloc = 1;
7045 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7046
7047 while (1) {
7048 wret = walk_down_tree(trans, root, path, wc);
7049 if (wret < 0) {
7050 ret = wret;
7051 break;
7052 }
7053
7054 wret = walk_up_tree(trans, root, path, wc, parent_level);
7055 if (wret < 0)
7056 ret = wret;
7057 if (wret != 0)
7058 break;
7059 }
7060
7061 kfree(wc);
7062 btrfs_free_path(path);
7063 return ret;
7064}
7065
7066static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7067{
7068 u64 num_devices;
7069 u64 stripped;
7070
7071 /*
7072 * if restripe for this chunk_type is on pick target profile and
7073 * return, otherwise do the usual balance
7074 */
7075 stripped = get_restripe_target(root->fs_info, flags);
7076 if (stripped)
7077 return extended_to_chunk(stripped);
7078
7079 /*
7080 * we add in the count of missing devices because we want
7081 * to make sure that any RAID levels on a degraded FS
7082 * continue to be honored.
7083 */
7084 num_devices = root->fs_info->fs_devices->rw_devices +
7085 root->fs_info->fs_devices->missing_devices;
7086
7087 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7088 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7089
7090 if (num_devices == 1) {
7091 stripped |= BTRFS_BLOCK_GROUP_DUP;
7092 stripped = flags & ~stripped;
7093
7094 /* turn raid0 into single device chunks */
7095 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7096 return stripped;
7097
7098 /* turn mirroring into duplication */
7099 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7100 BTRFS_BLOCK_GROUP_RAID10))
7101 return stripped | BTRFS_BLOCK_GROUP_DUP;
7102 } else {
7103 /* they already had raid on here, just return */
7104 if (flags & stripped)
7105 return flags;
7106
7107 stripped |= BTRFS_BLOCK_GROUP_DUP;
7108 stripped = flags & ~stripped;
7109
7110 /* switch duplicated blocks with raid1 */
7111 if (flags & BTRFS_BLOCK_GROUP_DUP)
7112 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7113
7114 /* this is drive concat, leave it alone */
7115 }
7116
7117 return flags;
7118}
7119
7120static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7121{
7122 struct btrfs_space_info *sinfo = cache->space_info;
7123 u64 num_bytes;
7124 u64 min_allocable_bytes;
7125 int ret = -ENOSPC;
7126
7127
7128 /*
7129 * We need some metadata space and system metadata space for
7130 * allocating chunks in some corner cases until we force to set
7131 * it to be readonly.
7132 */
7133 if ((sinfo->flags &
7134 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7135 !force)
7136 min_allocable_bytes = 1 * 1024 * 1024;
7137 else
7138 min_allocable_bytes = 0;
7139
7140 spin_lock(&sinfo->lock);
7141 spin_lock(&cache->lock);
7142
7143 if (cache->ro) {
7144 ret = 0;
7145 goto out;
7146 }
7147
7148 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7149 cache->bytes_super - btrfs_block_group_used(&cache->item);
7150
7151 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7152 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7153 min_allocable_bytes <= sinfo->total_bytes) {
7154 sinfo->bytes_readonly += num_bytes;
7155 cache->ro = 1;
7156 ret = 0;
7157 }
7158out:
7159 spin_unlock(&cache->lock);
7160 spin_unlock(&sinfo->lock);
7161 return ret;
7162}
7163
7164int btrfs_set_block_group_ro(struct btrfs_root *root,
7165 struct btrfs_block_group_cache *cache)
7166
7167{
7168 struct btrfs_trans_handle *trans;
7169 u64 alloc_flags;
7170 int ret;
7171
7172 BUG_ON(cache->ro);
7173
7174 trans = btrfs_join_transaction(root);
7175 if (IS_ERR(trans))
7176 return PTR_ERR(trans);
7177
7178 alloc_flags = update_block_group_flags(root, cache->flags);
7179 if (alloc_flags != cache->flags) {
7180 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7181 CHUNK_ALLOC_FORCE);
7182 if (ret < 0)
7183 goto out;
7184 }
7185
7186 ret = set_block_group_ro(cache, 0);
7187 if (!ret)
7188 goto out;
7189 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7190 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7191 CHUNK_ALLOC_FORCE);
7192 if (ret < 0)
7193 goto out;
7194 ret = set_block_group_ro(cache, 0);
7195out:
7196 btrfs_end_transaction(trans, root);
7197 return ret;
7198}
7199
7200int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7201 struct btrfs_root *root, u64 type)
7202{
7203 u64 alloc_flags = get_alloc_profile(root, type);
7204 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7205 CHUNK_ALLOC_FORCE);
7206}
7207
7208/*
7209 * helper to account the unused space of all the readonly block group in the
7210 * list. takes mirrors into account.
7211 */
7212static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7213{
7214 struct btrfs_block_group_cache *block_group;
7215 u64 free_bytes = 0;
7216 int factor;
7217
7218 list_for_each_entry(block_group, groups_list, list) {
7219 spin_lock(&block_group->lock);
7220
7221 if (!block_group->ro) {
7222 spin_unlock(&block_group->lock);
7223 continue;
7224 }
7225
7226 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7227 BTRFS_BLOCK_GROUP_RAID10 |
7228 BTRFS_BLOCK_GROUP_DUP))
7229 factor = 2;
7230 else
7231 factor = 1;
7232
7233 free_bytes += (block_group->key.offset -
7234 btrfs_block_group_used(&block_group->item)) *
7235 factor;
7236
7237 spin_unlock(&block_group->lock);
7238 }
7239
7240 return free_bytes;
7241}
7242
7243/*
7244 * helper to account the unused space of all the readonly block group in the
7245 * space_info. takes mirrors into account.
7246 */
7247u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7248{
7249 int i;
7250 u64 free_bytes = 0;
7251
7252 spin_lock(&sinfo->lock);
7253
7254 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7255 if (!list_empty(&sinfo->block_groups[i]))
7256 free_bytes += __btrfs_get_ro_block_group_free_space(
7257 &sinfo->block_groups[i]);
7258
7259 spin_unlock(&sinfo->lock);
7260
7261 return free_bytes;
7262}
7263
7264void btrfs_set_block_group_rw(struct btrfs_root *root,
7265 struct btrfs_block_group_cache *cache)
7266{
7267 struct btrfs_space_info *sinfo = cache->space_info;
7268 u64 num_bytes;
7269
7270 BUG_ON(!cache->ro);
7271
7272 spin_lock(&sinfo->lock);
7273 spin_lock(&cache->lock);
7274 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7275 cache->bytes_super - btrfs_block_group_used(&cache->item);
7276 sinfo->bytes_readonly -= num_bytes;
7277 cache->ro = 0;
7278 spin_unlock(&cache->lock);
7279 spin_unlock(&sinfo->lock);
7280}
7281
7282/*
7283 * checks to see if its even possible to relocate this block group.
7284 *
7285 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7286 * ok to go ahead and try.
7287 */
7288int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7289{
7290 struct btrfs_block_group_cache *block_group;
7291 struct btrfs_space_info *space_info;
7292 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7293 struct btrfs_device *device;
7294 u64 min_free;
7295 u64 dev_min = 1;
7296 u64 dev_nr = 0;
7297 u64 target;
7298 int index;
7299 int full = 0;
7300 int ret = 0;
7301
7302 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7303
7304 /* odd, couldn't find the block group, leave it alone */
7305 if (!block_group)
7306 return -1;
7307
7308 min_free = btrfs_block_group_used(&block_group->item);
7309
7310 /* no bytes used, we're good */
7311 if (!min_free)
7312 goto out;
7313
7314 space_info = block_group->space_info;
7315 spin_lock(&space_info->lock);
7316
7317 full = space_info->full;
7318
7319 /*
7320 * if this is the last block group we have in this space, we can't
7321 * relocate it unless we're able to allocate a new chunk below.
7322 *
7323 * Otherwise, we need to make sure we have room in the space to handle
7324 * all of the extents from this block group. If we can, we're good
7325 */
7326 if ((space_info->total_bytes != block_group->key.offset) &&
7327 (space_info->bytes_used + space_info->bytes_reserved +
7328 space_info->bytes_pinned + space_info->bytes_readonly +
7329 min_free < space_info->total_bytes)) {
7330 spin_unlock(&space_info->lock);
7331 goto out;
7332 }
7333 spin_unlock(&space_info->lock);
7334
7335 /*
7336 * ok we don't have enough space, but maybe we have free space on our
7337 * devices to allocate new chunks for relocation, so loop through our
7338 * alloc devices and guess if we have enough space. if this block
7339 * group is going to be restriped, run checks against the target
7340 * profile instead of the current one.
7341 */
7342 ret = -1;
7343
7344 /*
7345 * index:
7346 * 0: raid10
7347 * 1: raid1
7348 * 2: dup
7349 * 3: raid0
7350 * 4: single
7351 */
7352 target = get_restripe_target(root->fs_info, block_group->flags);
7353 if (target) {
7354 index = __get_block_group_index(extended_to_chunk(target));
7355 } else {
7356 /*
7357 * this is just a balance, so if we were marked as full
7358 * we know there is no space for a new chunk
7359 */
7360 if (full)
7361 goto out;
7362
7363 index = get_block_group_index(block_group);
7364 }
7365
7366 if (index == 0) {
7367 dev_min = 4;
7368 /* Divide by 2 */
7369 min_free >>= 1;
7370 } else if (index == 1) {
7371 dev_min = 2;
7372 } else if (index == 2) {
7373 /* Multiply by 2 */
7374 min_free <<= 1;
7375 } else if (index == 3) {
7376 dev_min = fs_devices->rw_devices;
7377 do_div(min_free, dev_min);
7378 }
7379
7380 mutex_lock(&root->fs_info->chunk_mutex);
7381 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7382 u64 dev_offset;
7383
7384 /*
7385 * check to make sure we can actually find a chunk with enough
7386 * space to fit our block group in.
7387 */
7388 if (device->total_bytes > device->bytes_used + min_free) {
7389 ret = find_free_dev_extent(device, min_free,
7390 &dev_offset, NULL);
7391 if (!ret)
7392 dev_nr++;
7393
7394 if (dev_nr >= dev_min)
7395 break;
7396
7397 ret = -1;
7398 }
7399 }
7400 mutex_unlock(&root->fs_info->chunk_mutex);
7401out:
7402 btrfs_put_block_group(block_group);
7403 return ret;
7404}
7405
7406static int find_first_block_group(struct btrfs_root *root,
7407 struct btrfs_path *path, struct btrfs_key *key)
7408{
7409 int ret = 0;
7410 struct btrfs_key found_key;
7411 struct extent_buffer *leaf;
7412 int slot;
7413
7414 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7415 if (ret < 0)
7416 goto out;
7417
7418 while (1) {
7419 slot = path->slots[0];
7420 leaf = path->nodes[0];
7421 if (slot >= btrfs_header_nritems(leaf)) {
7422 ret = btrfs_next_leaf(root, path);
7423 if (ret == 0)
7424 continue;
7425 if (ret < 0)
7426 goto out;
7427 break;
7428 }
7429 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7430
7431 if (found_key.objectid >= key->objectid &&
7432 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7433 ret = 0;
7434 goto out;
7435 }
7436 path->slots[0]++;
7437 }
7438out:
7439 return ret;
7440}
7441
7442void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7443{
7444 struct btrfs_block_group_cache *block_group;
7445 u64 last = 0;
7446
7447 while (1) {
7448 struct inode *inode;
7449
7450 block_group = btrfs_lookup_first_block_group(info, last);
7451 while (block_group) {
7452 spin_lock(&block_group->lock);
7453 if (block_group->iref)
7454 break;
7455 spin_unlock(&block_group->lock);
7456 block_group = next_block_group(info->tree_root,
7457 block_group);
7458 }
7459 if (!block_group) {
7460 if (last == 0)
7461 break;
7462 last = 0;
7463 continue;
7464 }
7465
7466 inode = block_group->inode;
7467 block_group->iref = 0;
7468 block_group->inode = NULL;
7469 spin_unlock(&block_group->lock);
7470 iput(inode);
7471 last = block_group->key.objectid + block_group->key.offset;
7472 btrfs_put_block_group(block_group);
7473 }
7474}
7475
7476int btrfs_free_block_groups(struct btrfs_fs_info *info)
7477{
7478 struct btrfs_block_group_cache *block_group;
7479 struct btrfs_space_info *space_info;
7480 struct btrfs_caching_control *caching_ctl;
7481 struct rb_node *n;
7482
7483 down_write(&info->extent_commit_sem);
7484 while (!list_empty(&info->caching_block_groups)) {
7485 caching_ctl = list_entry(info->caching_block_groups.next,
7486 struct btrfs_caching_control, list);
7487 list_del(&caching_ctl->list);
7488 put_caching_control(caching_ctl);
7489 }
7490 up_write(&info->extent_commit_sem);
7491
7492 spin_lock(&info->block_group_cache_lock);
7493 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7494 block_group = rb_entry(n, struct btrfs_block_group_cache,
7495 cache_node);
7496 rb_erase(&block_group->cache_node,
7497 &info->block_group_cache_tree);
7498 spin_unlock(&info->block_group_cache_lock);
7499
7500 down_write(&block_group->space_info->groups_sem);
7501 list_del(&block_group->list);
7502 up_write(&block_group->space_info->groups_sem);
7503
7504 if (block_group->cached == BTRFS_CACHE_STARTED)
7505 wait_block_group_cache_done(block_group);
7506
7507 /*
7508 * We haven't cached this block group, which means we could
7509 * possibly have excluded extents on this block group.
7510 */
7511 if (block_group->cached == BTRFS_CACHE_NO)
7512 free_excluded_extents(info->extent_root, block_group);
7513
7514 btrfs_remove_free_space_cache(block_group);
7515 btrfs_put_block_group(block_group);
7516
7517 spin_lock(&info->block_group_cache_lock);
7518 }
7519 spin_unlock(&info->block_group_cache_lock);
7520
7521 /* now that all the block groups are freed, go through and
7522 * free all the space_info structs. This is only called during
7523 * the final stages of unmount, and so we know nobody is
7524 * using them. We call synchronize_rcu() once before we start,
7525 * just to be on the safe side.
7526 */
7527 synchronize_rcu();
7528
7529 release_global_block_rsv(info);
7530
7531 while(!list_empty(&info->space_info)) {
7532 space_info = list_entry(info->space_info.next,
7533 struct btrfs_space_info,
7534 list);
7535 if (space_info->bytes_pinned > 0 ||
7536 space_info->bytes_reserved > 0 ||
7537 space_info->bytes_may_use > 0) {
7538 WARN_ON(1);
7539 dump_space_info(space_info, 0, 0);
7540 }
7541 list_del(&space_info->list);
7542 kfree(space_info);
7543 }
7544 return 0;
7545}
7546
7547static void __link_block_group(struct btrfs_space_info *space_info,
7548 struct btrfs_block_group_cache *cache)
7549{
7550 int index = get_block_group_index(cache);
7551
7552 down_write(&space_info->groups_sem);
7553 list_add_tail(&cache->list, &space_info->block_groups[index]);
7554 up_write(&space_info->groups_sem);
7555}
7556
7557int btrfs_read_block_groups(struct btrfs_root *root)
7558{
7559 struct btrfs_path *path;
7560 int ret;
7561 struct btrfs_block_group_cache *cache;
7562 struct btrfs_fs_info *info = root->fs_info;
7563 struct btrfs_space_info *space_info;
7564 struct btrfs_key key;
7565 struct btrfs_key found_key;
7566 struct extent_buffer *leaf;
7567 int need_clear = 0;
7568 u64 cache_gen;
7569
7570 root = info->extent_root;
7571 key.objectid = 0;
7572 key.offset = 0;
7573 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7574 path = btrfs_alloc_path();
7575 if (!path)
7576 return -ENOMEM;
7577 path->reada = 1;
7578
7579 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7580 if (btrfs_test_opt(root, SPACE_CACHE) &&
7581 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7582 need_clear = 1;
7583 if (btrfs_test_opt(root, CLEAR_CACHE))
7584 need_clear = 1;
7585
7586 while (1) {
7587 ret = find_first_block_group(root, path, &key);
7588 if (ret > 0)
7589 break;
7590 if (ret != 0)
7591 goto error;
7592 leaf = path->nodes[0];
7593 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7594 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7595 if (!cache) {
7596 ret = -ENOMEM;
7597 goto error;
7598 }
7599 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7600 GFP_NOFS);
7601 if (!cache->free_space_ctl) {
7602 kfree(cache);
7603 ret = -ENOMEM;
7604 goto error;
7605 }
7606
7607 atomic_set(&cache->count, 1);
7608 spin_lock_init(&cache->lock);
7609 cache->fs_info = info;
7610 INIT_LIST_HEAD(&cache->list);
7611 INIT_LIST_HEAD(&cache->cluster_list);
7612
7613 if (need_clear)
7614 cache->disk_cache_state = BTRFS_DC_CLEAR;
7615
7616 read_extent_buffer(leaf, &cache->item,
7617 btrfs_item_ptr_offset(leaf, path->slots[0]),
7618 sizeof(cache->item));
7619 memcpy(&cache->key, &found_key, sizeof(found_key));
7620
7621 key.objectid = found_key.objectid + found_key.offset;
7622 btrfs_release_path(path);
7623 cache->flags = btrfs_block_group_flags(&cache->item);
7624 cache->sectorsize = root->sectorsize;
7625
7626 btrfs_init_free_space_ctl(cache);
7627
7628 /*
7629 * We need to exclude the super stripes now so that the space
7630 * info has super bytes accounted for, otherwise we'll think
7631 * we have more space than we actually do.
7632 */
7633 exclude_super_stripes(root, cache);
7634
7635 /*
7636 * check for two cases, either we are full, and therefore
7637 * don't need to bother with the caching work since we won't
7638 * find any space, or we are empty, and we can just add all
7639 * the space in and be done with it. This saves us _alot_ of
7640 * time, particularly in the full case.
7641 */
7642 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7643 cache->last_byte_to_unpin = (u64)-1;
7644 cache->cached = BTRFS_CACHE_FINISHED;
7645 free_excluded_extents(root, cache);
7646 } else if (btrfs_block_group_used(&cache->item) == 0) {
7647 cache->last_byte_to_unpin = (u64)-1;
7648 cache->cached = BTRFS_CACHE_FINISHED;
7649 add_new_free_space(cache, root->fs_info,
7650 found_key.objectid,
7651 found_key.objectid +
7652 found_key.offset);
7653 free_excluded_extents(root, cache);
7654 }
7655
7656 ret = update_space_info(info, cache->flags, found_key.offset,
7657 btrfs_block_group_used(&cache->item),
7658 &space_info);
7659 BUG_ON(ret); /* -ENOMEM */
7660 cache->space_info = space_info;
7661 spin_lock(&cache->space_info->lock);
7662 cache->space_info->bytes_readonly += cache->bytes_super;
7663 spin_unlock(&cache->space_info->lock);
7664
7665 __link_block_group(space_info, cache);
7666
7667 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7668 BUG_ON(ret); /* Logic error */
7669
7670 set_avail_alloc_bits(root->fs_info, cache->flags);
7671 if (btrfs_chunk_readonly(root, cache->key.objectid))
7672 set_block_group_ro(cache, 1);
7673 }
7674
7675 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7676 if (!(get_alloc_profile(root, space_info->flags) &
7677 (BTRFS_BLOCK_GROUP_RAID10 |
7678 BTRFS_BLOCK_GROUP_RAID1 |
7679 BTRFS_BLOCK_GROUP_DUP)))
7680 continue;
7681 /*
7682 * avoid allocating from un-mirrored block group if there are
7683 * mirrored block groups.
7684 */
7685 list_for_each_entry(cache, &space_info->block_groups[3], list)
7686 set_block_group_ro(cache, 1);
7687 list_for_each_entry(cache, &space_info->block_groups[4], list)
7688 set_block_group_ro(cache, 1);
7689 }
7690
7691 init_global_block_rsv(info);
7692 ret = 0;
7693error:
7694 btrfs_free_path(path);
7695 return ret;
7696}
7697
7698int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7699 struct btrfs_root *root, u64 bytes_used,
7700 u64 type, u64 chunk_objectid, u64 chunk_offset,
7701 u64 size)
7702{
7703 int ret;
7704 struct btrfs_root *extent_root;
7705 struct btrfs_block_group_cache *cache;
7706
7707 extent_root = root->fs_info->extent_root;
7708
7709 root->fs_info->last_trans_log_full_commit = trans->transid;
7710
7711 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7712 if (!cache)
7713 return -ENOMEM;
7714 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7715 GFP_NOFS);
7716 if (!cache->free_space_ctl) {
7717 kfree(cache);
7718 return -ENOMEM;
7719 }
7720
7721 cache->key.objectid = chunk_offset;
7722 cache->key.offset = size;
7723 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7724 cache->sectorsize = root->sectorsize;
7725 cache->fs_info = root->fs_info;
7726
7727 atomic_set(&cache->count, 1);
7728 spin_lock_init(&cache->lock);
7729 INIT_LIST_HEAD(&cache->list);
7730 INIT_LIST_HEAD(&cache->cluster_list);
7731
7732 btrfs_init_free_space_ctl(cache);
7733
7734 btrfs_set_block_group_used(&cache->item, bytes_used);
7735 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7736 cache->flags = type;
7737 btrfs_set_block_group_flags(&cache->item, type);
7738
7739 cache->last_byte_to_unpin = (u64)-1;
7740 cache->cached = BTRFS_CACHE_FINISHED;
7741 exclude_super_stripes(root, cache);
7742
7743 add_new_free_space(cache, root->fs_info, chunk_offset,
7744 chunk_offset + size);
7745
7746 free_excluded_extents(root, cache);
7747
7748 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7749 &cache->space_info);
7750 BUG_ON(ret); /* -ENOMEM */
7751 update_global_block_rsv(root->fs_info);
7752
7753 spin_lock(&cache->space_info->lock);
7754 cache->space_info->bytes_readonly += cache->bytes_super;
7755 spin_unlock(&cache->space_info->lock);
7756
7757 __link_block_group(cache->space_info, cache);
7758
7759 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7760 BUG_ON(ret); /* Logic error */
7761
7762 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7763 sizeof(cache->item));
7764 if (ret) {
7765 btrfs_abort_transaction(trans, extent_root, ret);
7766 return ret;
7767 }
7768
7769 set_avail_alloc_bits(extent_root->fs_info, type);
7770
7771 return 0;
7772}
7773
7774static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7775{
7776 u64 extra_flags = chunk_to_extended(flags) &
7777 BTRFS_EXTENDED_PROFILE_MASK;
7778
7779 if (flags & BTRFS_BLOCK_GROUP_DATA)
7780 fs_info->avail_data_alloc_bits &= ~extra_flags;
7781 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7782 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7783 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7784 fs_info->avail_system_alloc_bits &= ~extra_flags;
7785}
7786
7787int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7788 struct btrfs_root *root, u64 group_start)
7789{
7790 struct btrfs_path *path;
7791 struct btrfs_block_group_cache *block_group;
7792 struct btrfs_free_cluster *cluster;
7793 struct btrfs_root *tree_root = root->fs_info->tree_root;
7794 struct btrfs_key key;
7795 struct inode *inode;
7796 int ret;
7797 int index;
7798 int factor;
7799
7800 root = root->fs_info->extent_root;
7801
7802 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7803 BUG_ON(!block_group);
7804 BUG_ON(!block_group->ro);
7805
7806 /*
7807 * Free the reserved super bytes from this block group before
7808 * remove it.
7809 */
7810 free_excluded_extents(root, block_group);
7811
7812 memcpy(&key, &block_group->key, sizeof(key));
7813 index = get_block_group_index(block_group);
7814 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7815 BTRFS_BLOCK_GROUP_RAID1 |
7816 BTRFS_BLOCK_GROUP_RAID10))
7817 factor = 2;
7818 else
7819 factor = 1;
7820
7821 /* make sure this block group isn't part of an allocation cluster */
7822 cluster = &root->fs_info->data_alloc_cluster;
7823 spin_lock(&cluster->refill_lock);
7824 btrfs_return_cluster_to_free_space(block_group, cluster);
7825 spin_unlock(&cluster->refill_lock);
7826
7827 /*
7828 * make sure this block group isn't part of a metadata
7829 * allocation cluster
7830 */
7831 cluster = &root->fs_info->meta_alloc_cluster;
7832 spin_lock(&cluster->refill_lock);
7833 btrfs_return_cluster_to_free_space(block_group, cluster);
7834 spin_unlock(&cluster->refill_lock);
7835
7836 path = btrfs_alloc_path();
7837 if (!path) {
7838 ret = -ENOMEM;
7839 goto out;
7840 }
7841
7842 inode = lookup_free_space_inode(tree_root, block_group, path);
7843 if (!IS_ERR(inode)) {
7844 ret = btrfs_orphan_add(trans, inode);
7845 if (ret) {
7846 btrfs_add_delayed_iput(inode);
7847 goto out;
7848 }
7849 clear_nlink(inode);
7850 /* One for the block groups ref */
7851 spin_lock(&block_group->lock);
7852 if (block_group->iref) {
7853 block_group->iref = 0;
7854 block_group->inode = NULL;
7855 spin_unlock(&block_group->lock);
7856 iput(inode);
7857 } else {
7858 spin_unlock(&block_group->lock);
7859 }
7860 /* One for our lookup ref */
7861 btrfs_add_delayed_iput(inode);
7862 }
7863
7864 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7865 key.offset = block_group->key.objectid;
7866 key.type = 0;
7867
7868 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7869 if (ret < 0)
7870 goto out;
7871 if (ret > 0)
7872 btrfs_release_path(path);
7873 if (ret == 0) {
7874 ret = btrfs_del_item(trans, tree_root, path);
7875 if (ret)
7876 goto out;
7877 btrfs_release_path(path);
7878 }
7879
7880 spin_lock(&root->fs_info->block_group_cache_lock);
7881 rb_erase(&block_group->cache_node,
7882 &root->fs_info->block_group_cache_tree);
7883 spin_unlock(&root->fs_info->block_group_cache_lock);
7884
7885 down_write(&block_group->space_info->groups_sem);
7886 /*
7887 * we must use list_del_init so people can check to see if they
7888 * are still on the list after taking the semaphore
7889 */
7890 list_del_init(&block_group->list);
7891 if (list_empty(&block_group->space_info->block_groups[index]))
7892 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7893 up_write(&block_group->space_info->groups_sem);
7894
7895 if (block_group->cached == BTRFS_CACHE_STARTED)
7896 wait_block_group_cache_done(block_group);
7897
7898 btrfs_remove_free_space_cache(block_group);
7899
7900 spin_lock(&block_group->space_info->lock);
7901 block_group->space_info->total_bytes -= block_group->key.offset;
7902 block_group->space_info->bytes_readonly -= block_group->key.offset;
7903 block_group->space_info->disk_total -= block_group->key.offset * factor;
7904 spin_unlock(&block_group->space_info->lock);
7905
7906 memcpy(&key, &block_group->key, sizeof(key));
7907
7908 btrfs_clear_space_info_full(root->fs_info);
7909
7910 btrfs_put_block_group(block_group);
7911 btrfs_put_block_group(block_group);
7912
7913 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7914 if (ret > 0)
7915 ret = -EIO;
7916 if (ret < 0)
7917 goto out;
7918
7919 ret = btrfs_del_item(trans, root, path);
7920out:
7921 btrfs_free_path(path);
7922 return ret;
7923}
7924
7925int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7926{
7927 struct btrfs_space_info *space_info;
7928 struct btrfs_super_block *disk_super;
7929 u64 features;
7930 u64 flags;
7931 int mixed = 0;
7932 int ret;
7933
7934 disk_super = fs_info->super_copy;
7935 if (!btrfs_super_root(disk_super))
7936 return 1;
7937
7938 features = btrfs_super_incompat_flags(disk_super);
7939 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7940 mixed = 1;
7941
7942 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7943 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7944 if (ret)
7945 goto out;
7946
7947 if (mixed) {
7948 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7949 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7950 } else {
7951 flags = BTRFS_BLOCK_GROUP_METADATA;
7952 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7953 if (ret)
7954 goto out;
7955
7956 flags = BTRFS_BLOCK_GROUP_DATA;
7957 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7958 }
7959out:
7960 return ret;
7961}
7962
7963int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7964{
7965 return unpin_extent_range(root, start, end);
7966}
7967
7968int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7969 u64 num_bytes, u64 *actual_bytes)
7970{
7971 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7972}
7973
7974int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7975{
7976 struct btrfs_fs_info *fs_info = root->fs_info;
7977 struct btrfs_block_group_cache *cache = NULL;
7978 u64 group_trimmed;
7979 u64 start;
7980 u64 end;
7981 u64 trimmed = 0;
7982 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
7983 int ret = 0;
7984
7985 /*
7986 * try to trim all FS space, our block group may start from non-zero.
7987 */
7988 if (range->len == total_bytes)
7989 cache = btrfs_lookup_first_block_group(fs_info, range->start);
7990 else
7991 cache = btrfs_lookup_block_group(fs_info, range->start);
7992
7993 while (cache) {
7994 if (cache->key.objectid >= (range->start + range->len)) {
7995 btrfs_put_block_group(cache);
7996 break;
7997 }
7998
7999 start = max(range->start, cache->key.objectid);
8000 end = min(range->start + range->len,
8001 cache->key.objectid + cache->key.offset);
8002
8003 if (end - start >= range->minlen) {
8004 if (!block_group_cache_done(cache)) {
8005 ret = cache_block_group(cache, NULL, root, 0);
8006 if (!ret)
8007 wait_block_group_cache_done(cache);
8008 }
8009 ret = btrfs_trim_block_group(cache,
8010 &group_trimmed,
8011 start,
8012 end,
8013 range->minlen);
8014
8015 trimmed += group_trimmed;
8016 if (ret) {
8017 btrfs_put_block_group(cache);
8018 break;
8019 }
8020 }
8021
8022 cache = next_block_group(fs_info->tree_root, cache);
8023 }
8024
8025 range->len = trimmed;
8026 return ret;
8027}