Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Copyright (C) 2009 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/slab.h>
 21#include <linux/sort.h>
 22#include "ctree.h"
 23#include "delayed-ref.h"
 24#include "transaction.h"
 25
 26struct kmem_cache *btrfs_delayed_ref_head_cachep;
 27struct kmem_cache *btrfs_delayed_tree_ref_cachep;
 28struct kmem_cache *btrfs_delayed_data_ref_cachep;
 29struct kmem_cache *btrfs_delayed_extent_op_cachep;
 30/*
 31 * delayed back reference update tracking.  For subvolume trees
 32 * we queue up extent allocations and backref maintenance for
 33 * delayed processing.   This avoids deep call chains where we
 34 * add extents in the middle of btrfs_search_slot, and it allows
 35 * us to buffer up frequently modified backrefs in an rb tree instead
 36 * of hammering updates on the extent allocation tree.
 37 */
 38
 39/*
 40 * compare two delayed tree backrefs with same bytenr and type
 41 */
 42static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
 43			  struct btrfs_delayed_tree_ref *ref1, int type)
 44{
 45	if (type == BTRFS_TREE_BLOCK_REF_KEY) {
 46		if (ref1->root < ref2->root)
 47			return -1;
 48		if (ref1->root > ref2->root)
 49			return 1;
 50	} else {
 51		if (ref1->parent < ref2->parent)
 52			return -1;
 53		if (ref1->parent > ref2->parent)
 54			return 1;
 55	}
 56	return 0;
 57}
 58
 59/*
 60 * compare two delayed data backrefs with same bytenr and type
 61 */
 62static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
 63			  struct btrfs_delayed_data_ref *ref1)
 64{
 65	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 66		if (ref1->root < ref2->root)
 67			return -1;
 68		if (ref1->root > ref2->root)
 69			return 1;
 70		if (ref1->objectid < ref2->objectid)
 71			return -1;
 72		if (ref1->objectid > ref2->objectid)
 73			return 1;
 74		if (ref1->offset < ref2->offset)
 75			return -1;
 76		if (ref1->offset > ref2->offset)
 77			return 1;
 78	} else {
 79		if (ref1->parent < ref2->parent)
 80			return -1;
 81		if (ref1->parent > ref2->parent)
 82			return 1;
 83	}
 84	return 0;
 85}
 86
 87/*
 88 * entries in the rb tree are ordered by the byte number of the extent,
 89 * type of the delayed backrefs and content of delayed backrefs.
 90 */
 91static int comp_entry(struct btrfs_delayed_ref_node *ref2,
 92		      struct btrfs_delayed_ref_node *ref1,
 93		      bool compare_seq)
 94{
 95	if (ref1->bytenr < ref2->bytenr)
 96		return -1;
 97	if (ref1->bytenr > ref2->bytenr)
 98		return 1;
 99	if (ref1->is_head && ref2->is_head)
100		return 0;
101	if (ref2->is_head)
102		return -1;
103	if (ref1->is_head)
104		return 1;
105	if (ref1->type < ref2->type)
106		return -1;
107	if (ref1->type > ref2->type)
108		return 1;
109	/* merging of sequenced refs is not allowed */
110	if (compare_seq) {
111		if (ref1->seq < ref2->seq)
112			return -1;
113		if (ref1->seq > ref2->seq)
114			return 1;
115	}
116	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
117	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
118		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
119				      btrfs_delayed_node_to_tree_ref(ref1),
120				      ref1->type);
121	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
122		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
123		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
124				      btrfs_delayed_node_to_data_ref(ref1));
125	}
126	BUG();
127	return 0;
128}
129
130/*
131 * insert a new ref into the rbtree.  This returns any existing refs
132 * for the same (bytenr,parent) tuple, or NULL if the new node was properly
133 * inserted.
134 */
135static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
136						  struct rb_node *node)
137{
138	struct rb_node **p = &root->rb_node;
139	struct rb_node *parent_node = NULL;
140	struct btrfs_delayed_ref_node *entry;
141	struct btrfs_delayed_ref_node *ins;
142	int cmp;
143
144	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
145	while (*p) {
146		parent_node = *p;
147		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
148				 rb_node);
149
150		cmp = comp_entry(entry, ins, 1);
151		if (cmp < 0)
152			p = &(*p)->rb_left;
153		else if (cmp > 0)
154			p = &(*p)->rb_right;
155		else
156			return entry;
157	}
158
159	rb_link_node(node, parent_node, p);
160	rb_insert_color(node, root);
161	return NULL;
162}
163
164/* insert a new ref to head ref rbtree */
165static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
166						   struct rb_node *node)
167{
168	struct rb_node **p = &root->rb_node;
169	struct rb_node *parent_node = NULL;
170	struct btrfs_delayed_ref_head *entry;
171	struct btrfs_delayed_ref_head *ins;
172	u64 bytenr;
173
174	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
175	bytenr = ins->node.bytenr;
176	while (*p) {
177		parent_node = *p;
178		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
179				 href_node);
180
181		if (bytenr < entry->node.bytenr)
182			p = &(*p)->rb_left;
183		else if (bytenr > entry->node.bytenr)
184			p = &(*p)->rb_right;
185		else
186			return entry;
187	}
188
189	rb_link_node(node, parent_node, p);
190	rb_insert_color(node, root);
191	return NULL;
192}
193
194/*
195 * find an head entry based on bytenr. This returns the delayed ref
196 * head if it was able to find one, or NULL if nothing was in that spot.
197 * If return_bigger is given, the next bigger entry is returned if no exact
198 * match is found.
199 */
200static struct btrfs_delayed_ref_head *
201find_ref_head(struct rb_root *root, u64 bytenr,
202	      int return_bigger)
 
203{
204	struct rb_node *n;
205	struct btrfs_delayed_ref_head *entry;
 
206
 
207	n = root->rb_node;
208	entry = NULL;
209	while (n) {
210		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 
 
 
 
 
 
 
 
 
 
 
 
211
212		if (bytenr < entry->node.bytenr)
213			n = n->rb_left;
214		else if (bytenr > entry->node.bytenr)
215			n = n->rb_right;
216		else
217			return entry;
218	}
219	if (entry && return_bigger) {
220		if (bytenr > entry->node.bytenr) {
221			n = rb_next(&entry->href_node);
222			if (!n)
223				n = rb_first(root);
224			entry = rb_entry(n, struct btrfs_delayed_ref_head,
225					 href_node);
226			return entry;
 
 
227		}
228		return entry;
229	}
230	return NULL;
231}
232
233int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
234			   struct btrfs_delayed_ref_head *head)
235{
236	struct btrfs_delayed_ref_root *delayed_refs;
237
238	delayed_refs = &trans->transaction->delayed_refs;
239	assert_spin_locked(&delayed_refs->lock);
240	if (mutex_trylock(&head->mutex))
241		return 0;
242
243	atomic_inc(&head->node.refs);
244	spin_unlock(&delayed_refs->lock);
245
246	mutex_lock(&head->mutex);
247	spin_lock(&delayed_refs->lock);
248	if (!head->node.in_tree) {
249		mutex_unlock(&head->mutex);
250		btrfs_put_delayed_ref(&head->node);
251		return -EAGAIN;
252	}
253	btrfs_put_delayed_ref(&head->node);
254	return 0;
255}
256
257static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
258				    struct btrfs_delayed_ref_root *delayed_refs,
259				    struct btrfs_delayed_ref_head *head,
260				    struct btrfs_delayed_ref_node *ref)
261{
262	if (btrfs_delayed_ref_is_head(ref)) {
263		head = btrfs_delayed_node_to_head(ref);
264		rb_erase(&head->href_node, &delayed_refs->href_root);
265	} else {
266		assert_spin_locked(&head->lock);
267		rb_erase(&ref->rb_node, &head->ref_root);
268	}
269	ref->in_tree = 0;
270	btrfs_put_delayed_ref(ref);
271	atomic_dec(&delayed_refs->num_entries);
272	if (trans->delayed_ref_updates)
273		trans->delayed_ref_updates--;
274}
275
276static int merge_ref(struct btrfs_trans_handle *trans,
277		     struct btrfs_delayed_ref_root *delayed_refs,
278		     struct btrfs_delayed_ref_head *head,
279		     struct btrfs_delayed_ref_node *ref, u64 seq)
280{
281	struct rb_node *node;
282	int mod = 0;
283	int done = 0;
284
285	node = rb_next(&ref->rb_node);
286	while (!done && node) {
287		struct btrfs_delayed_ref_node *next;
288
289		next = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
290		node = rb_next(node);
291		if (seq && next->seq >= seq)
292			break;
293		if (comp_entry(ref, next, 0))
294			continue;
295
296		if (ref->action == next->action) {
297			mod = next->ref_mod;
298		} else {
299			if (ref->ref_mod < next->ref_mod) {
300				struct btrfs_delayed_ref_node *tmp;
301
302				tmp = ref;
303				ref = next;
304				next = tmp;
305				done = 1;
306			}
307			mod = -next->ref_mod;
308		}
309
310		drop_delayed_ref(trans, delayed_refs, head, next);
311		ref->ref_mod += mod;
312		if (ref->ref_mod == 0) {
313			drop_delayed_ref(trans, delayed_refs, head, ref);
314			done = 1;
315		} else {
316			/*
317			 * You can't have multiples of the same ref on a tree
318			 * block.
319			 */
320			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
321				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
322		}
323	}
324	return done;
325}
326
327void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
328			      struct btrfs_fs_info *fs_info,
329			      struct btrfs_delayed_ref_root *delayed_refs,
330			      struct btrfs_delayed_ref_head *head)
331{
332	struct rb_node *node;
333	u64 seq = 0;
334
335	assert_spin_locked(&head->lock);
336	/*
337	 * We don't have too much refs to merge in the case of delayed data
338	 * refs.
339	 */
340	if (head->is_data)
341		return;
342
343	spin_lock(&fs_info->tree_mod_seq_lock);
344	if (!list_empty(&fs_info->tree_mod_seq_list)) {
345		struct seq_list *elem;
346
347		elem = list_first_entry(&fs_info->tree_mod_seq_list,
348					struct seq_list, list);
349		seq = elem->seq;
350	}
351	spin_unlock(&fs_info->tree_mod_seq_lock);
352
353	node = rb_first(&head->ref_root);
354	while (node) {
355		struct btrfs_delayed_ref_node *ref;
356
357		ref = rb_entry(node, struct btrfs_delayed_ref_node,
358			       rb_node);
359		/* We can't merge refs that are outside of our seq count */
360		if (seq && ref->seq >= seq)
361			break;
362		if (merge_ref(trans, delayed_refs, head, ref, seq))
363			node = rb_first(&head->ref_root);
364		else
365			node = rb_next(&ref->rb_node);
366	}
367}
368
369int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
370			    struct btrfs_delayed_ref_root *delayed_refs,
371			    u64 seq)
372{
373	struct seq_list *elem;
374	int ret = 0;
375
376	spin_lock(&fs_info->tree_mod_seq_lock);
377	if (!list_empty(&fs_info->tree_mod_seq_list)) {
378		elem = list_first_entry(&fs_info->tree_mod_seq_list,
379					struct seq_list, list);
380		if (seq >= elem->seq) {
381			pr_debug("holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)\n",
382				 (u32)(seq >> 32), (u32)seq,
383				 (u32)(elem->seq >> 32), (u32)elem->seq,
384				 delayed_refs);
385			ret = 1;
386		}
387	}
388
389	spin_unlock(&fs_info->tree_mod_seq_lock);
390	return ret;
 
 
 
 
 
391}
392
393struct btrfs_delayed_ref_head *
394btrfs_select_ref_head(struct btrfs_trans_handle *trans)
395{
 
396	struct btrfs_delayed_ref_root *delayed_refs;
 
 
397	struct btrfs_delayed_ref_head *head;
398	u64 start;
399	bool loop = false;
400
401	delayed_refs = &trans->transaction->delayed_refs;
402
 
 
 
 
 
 
 
 
 
403again:
404	start = delayed_refs->run_delayed_start;
405	head = find_ref_head(&delayed_refs->href_root, start, 1);
406	if (!head && !loop) {
407		delayed_refs->run_delayed_start = 0;
408		start = 0;
409		loop = true;
410		head = find_ref_head(&delayed_refs->href_root, start, 1);
411		if (!head)
412			return NULL;
413	} else if (!head && loop) {
414		return NULL;
415	}
416
417	while (head->processing) {
418		struct rb_node *node;
419
420		node = rb_next(&head->href_node);
421		if (!node) {
422			if (loop)
423				return NULL;
424			delayed_refs->run_delayed_start = 0;
425			start = 0;
426			loop = true;
427			goto again;
428		}
429		head = rb_entry(node, struct btrfs_delayed_ref_head,
430				href_node);
431	}
432
433	head->processing = 1;
434	WARN_ON(delayed_refs->num_heads_ready == 0);
435	delayed_refs->num_heads_ready--;
436	delayed_refs->run_delayed_start = head->node.bytenr +
437		head->node.num_bytes;
438	return head;
 
 
 
 
 
439}
440
441/*
442 * helper function to update an extent delayed ref in the
443 * rbtree.  existing and update must both have the same
444 * bytenr and parent
445 *
446 * This may free existing if the update cancels out whatever
447 * operation it was doing.
448 */
449static noinline void
450update_existing_ref(struct btrfs_trans_handle *trans,
451		    struct btrfs_delayed_ref_root *delayed_refs,
452		    struct btrfs_delayed_ref_head *head,
453		    struct btrfs_delayed_ref_node *existing,
454		    struct btrfs_delayed_ref_node *update)
455{
456	if (update->action != existing->action) {
457		/*
458		 * this is effectively undoing either an add or a
459		 * drop.  We decrement the ref_mod, and if it goes
460		 * down to zero we just delete the entry without
461		 * every changing the extent allocation tree.
462		 */
463		existing->ref_mod--;
464		if (existing->ref_mod == 0)
465			drop_delayed_ref(trans, delayed_refs, head, existing);
466		else
 
 
 
 
 
 
467			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
468				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
 
469	} else {
470		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
471			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
472		/*
473		 * the action on the existing ref matches
474		 * the action on the ref we're trying to add.
475		 * Bump the ref_mod by one so the backref that
476		 * is eventually added/removed has the correct
477		 * reference count
478		 */
479		existing->ref_mod += update->ref_mod;
480	}
481}
482
483/*
484 * helper function to update the accounting in the head ref
485 * existing and update must have the same bytenr
486 */
487static noinline void
488update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
489			 struct btrfs_delayed_ref_node *update)
490{
491	struct btrfs_delayed_ref_head *existing_ref;
492	struct btrfs_delayed_ref_head *ref;
493
494	existing_ref = btrfs_delayed_node_to_head(existing);
495	ref = btrfs_delayed_node_to_head(update);
496	BUG_ON(existing_ref->is_data != ref->is_data);
497
498	spin_lock(&existing_ref->lock);
499	if (ref->must_insert_reserved) {
500		/* if the extent was freed and then
501		 * reallocated before the delayed ref
502		 * entries were processed, we can end up
503		 * with an existing head ref without
504		 * the must_insert_reserved flag set.
505		 * Set it again here
506		 */
507		existing_ref->must_insert_reserved = ref->must_insert_reserved;
508
509		/*
510		 * update the num_bytes so we make sure the accounting
511		 * is done correctly
512		 */
513		existing->num_bytes = update->num_bytes;
514
515	}
516
517	if (ref->extent_op) {
518		if (!existing_ref->extent_op) {
519			existing_ref->extent_op = ref->extent_op;
520		} else {
521			if (ref->extent_op->update_key) {
522				memcpy(&existing_ref->extent_op->key,
523				       &ref->extent_op->key,
524				       sizeof(ref->extent_op->key));
525				existing_ref->extent_op->update_key = 1;
526			}
527			if (ref->extent_op->update_flags) {
528				existing_ref->extent_op->flags_to_set |=
529					ref->extent_op->flags_to_set;
530				existing_ref->extent_op->update_flags = 1;
531			}
532			btrfs_free_delayed_extent_op(ref->extent_op);
533		}
534	}
535	/*
536	 * update the reference mod on the head to reflect this new operation,
537	 * only need the lock for this case cause we could be processing it
538	 * currently, for refs we just added we know we're a-ok.
539	 */
540	existing->ref_mod += update->ref_mod;
541	spin_unlock(&existing_ref->lock);
542}
543
544/*
545 * helper function to actually insert a head node into the rbtree.
546 * this does all the dirty work in terms of maintaining the correct
547 * overall modification count.
548 */
549static noinline struct btrfs_delayed_ref_head *
550add_delayed_ref_head(struct btrfs_fs_info *fs_info,
551		     struct btrfs_trans_handle *trans,
552		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
553		     u64 num_bytes, int action, int is_data)
554{
555	struct btrfs_delayed_ref_head *existing;
556	struct btrfs_delayed_ref_head *head_ref = NULL;
557	struct btrfs_delayed_ref_root *delayed_refs;
558	int count_mod = 1;
559	int must_insert_reserved = 0;
560
561	/*
562	 * the head node stores the sum of all the mods, so dropping a ref
563	 * should drop the sum in the head node by one.
564	 */
565	if (action == BTRFS_UPDATE_DELAYED_HEAD)
566		count_mod = 0;
567	else if (action == BTRFS_DROP_DELAYED_REF)
568		count_mod = -1;
569
570	/*
571	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
572	 * the reserved accounting when the extent is finally added, or
573	 * if a later modification deletes the delayed ref without ever
574	 * inserting the extent into the extent allocation tree.
575	 * ref->must_insert_reserved is the flag used to record
576	 * that accounting mods are required.
577	 *
578	 * Once we record must_insert_reserved, switch the action to
579	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
580	 */
581	if (action == BTRFS_ADD_DELAYED_EXTENT)
582		must_insert_reserved = 1;
583	else
584		must_insert_reserved = 0;
585
586	delayed_refs = &trans->transaction->delayed_refs;
587
588	/* first set the basic ref node struct up */
589	atomic_set(&ref->refs, 1);
590	ref->bytenr = bytenr;
591	ref->num_bytes = num_bytes;
592	ref->ref_mod = count_mod;
593	ref->type  = 0;
594	ref->action  = 0;
595	ref->is_head = 1;
596	ref->in_tree = 1;
597	ref->seq = 0;
598
599	head_ref = btrfs_delayed_node_to_head(ref);
600	head_ref->must_insert_reserved = must_insert_reserved;
601	head_ref->is_data = is_data;
602	head_ref->ref_root = RB_ROOT;
603	head_ref->processing = 0;
604
605	spin_lock_init(&head_ref->lock);
606	mutex_init(&head_ref->mutex);
607
608	trace_add_delayed_ref_head(ref, head_ref, action);
 
 
609
610	existing = htree_insert(&delayed_refs->href_root,
611				&head_ref->href_node);
612	if (existing) {
613		update_existing_head_ref(&existing->node, ref);
614		/*
615		 * we've updated the existing ref, free the newly
616		 * allocated ref
617		 */
618		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
619		head_ref = existing;
620	} else {
621		delayed_refs->num_heads++;
622		delayed_refs->num_heads_ready++;
623		atomic_inc(&delayed_refs->num_entries);
624		trans->delayed_ref_updates++;
625	}
626	return head_ref;
627}
628
629/*
630 * helper to insert a delayed tree ref into the rbtree.
631 */
632static noinline void
633add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
634		     struct btrfs_trans_handle *trans,
635		     struct btrfs_delayed_ref_head *head_ref,
636		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
637		     u64 num_bytes, u64 parent, u64 ref_root, int level,
638		     int action, int for_cow)
639{
640	struct btrfs_delayed_ref_node *existing;
641	struct btrfs_delayed_tree_ref *full_ref;
642	struct btrfs_delayed_ref_root *delayed_refs;
643	u64 seq = 0;
644
645	if (action == BTRFS_ADD_DELAYED_EXTENT)
646		action = BTRFS_ADD_DELAYED_REF;
647
648	delayed_refs = &trans->transaction->delayed_refs;
649
650	/* first set the basic ref node struct up */
651	atomic_set(&ref->refs, 1);
652	ref->bytenr = bytenr;
653	ref->num_bytes = num_bytes;
654	ref->ref_mod = 1;
655	ref->action = action;
656	ref->is_head = 0;
657	ref->in_tree = 1;
658
659	if (need_ref_seq(for_cow, ref_root))
660		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
661	ref->seq = seq;
662
663	full_ref = btrfs_delayed_node_to_tree_ref(ref);
664	full_ref->parent = parent;
665	full_ref->root = ref_root;
666	if (parent)
667		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
668	else
669		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
670	full_ref->level = level;
671
672	trace_add_delayed_tree_ref(ref, full_ref, action);
 
 
673
674	spin_lock(&head_ref->lock);
675	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
676	if (existing) {
677		update_existing_ref(trans, delayed_refs, head_ref, existing,
678				    ref);
679		/*
680		 * we've updated the existing ref, free the newly
681		 * allocated ref
682		 */
683		kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
684	} else {
685		atomic_inc(&delayed_refs->num_entries);
686		trans->delayed_ref_updates++;
687	}
688	spin_unlock(&head_ref->lock);
689}
690
691/*
692 * helper to insert a delayed data ref into the rbtree.
693 */
694static noinline void
695add_delayed_data_ref(struct btrfs_fs_info *fs_info,
696		     struct btrfs_trans_handle *trans,
697		     struct btrfs_delayed_ref_head *head_ref,
698		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
699		     u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
700		     u64 offset, int action, int for_cow)
701{
702	struct btrfs_delayed_ref_node *existing;
703	struct btrfs_delayed_data_ref *full_ref;
704	struct btrfs_delayed_ref_root *delayed_refs;
705	u64 seq = 0;
706
707	if (action == BTRFS_ADD_DELAYED_EXTENT)
708		action = BTRFS_ADD_DELAYED_REF;
709
710	delayed_refs = &trans->transaction->delayed_refs;
711
712	/* first set the basic ref node struct up */
713	atomic_set(&ref->refs, 1);
714	ref->bytenr = bytenr;
715	ref->num_bytes = num_bytes;
716	ref->ref_mod = 1;
717	ref->action = action;
718	ref->is_head = 0;
719	ref->in_tree = 1;
720
721	if (need_ref_seq(for_cow, ref_root))
722		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
723	ref->seq = seq;
724
725	full_ref = btrfs_delayed_node_to_data_ref(ref);
726	full_ref->parent = parent;
727	full_ref->root = ref_root;
728	if (parent)
729		ref->type = BTRFS_SHARED_DATA_REF_KEY;
730	else
731		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
732
733	full_ref->objectid = owner;
734	full_ref->offset = offset;
735
736	trace_add_delayed_data_ref(ref, full_ref, action);
 
 
737
738	spin_lock(&head_ref->lock);
739	existing = tree_insert(&head_ref->ref_root, &ref->rb_node);
740	if (existing) {
741		update_existing_ref(trans, delayed_refs, head_ref, existing,
742				    ref);
743		/*
744		 * we've updated the existing ref, free the newly
745		 * allocated ref
746		 */
747		kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
748	} else {
749		atomic_inc(&delayed_refs->num_entries);
750		trans->delayed_ref_updates++;
751	}
752	spin_unlock(&head_ref->lock);
753}
754
755/*
756 * add a delayed tree ref.  This does all of the accounting required
757 * to make sure the delayed ref is eventually processed before this
758 * transaction commits.
759 */
760int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
761			       struct btrfs_trans_handle *trans,
762			       u64 bytenr, u64 num_bytes, u64 parent,
763			       u64 ref_root,  int level, int action,
764			       struct btrfs_delayed_extent_op *extent_op,
765			       int for_cow)
766{
767	struct btrfs_delayed_tree_ref *ref;
768	struct btrfs_delayed_ref_head *head_ref;
769	struct btrfs_delayed_ref_root *delayed_refs;
770
771	BUG_ON(extent_op && extent_op->is_data);
772	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
773	if (!ref)
774		return -ENOMEM;
775
776	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
777	if (!head_ref) {
778		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
779		return -ENOMEM;
780	}
781
782	head_ref->extent_op = extent_op;
783
784	delayed_refs = &trans->transaction->delayed_refs;
785	spin_lock(&delayed_refs->lock);
786
787	/*
788	 * insert both the head node and the new ref without dropping
789	 * the spin lock
790	 */
791	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
792					bytenr, num_bytes, action, 0);
793
794	add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
795				   num_bytes, parent, ref_root, level, action,
796				   for_cow);
 
 
 
797	spin_unlock(&delayed_refs->lock);
798	if (need_ref_seq(for_cow, ref_root))
799		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
800
801	return 0;
802}
803
804/*
805 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
806 */
807int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
808			       struct btrfs_trans_handle *trans,
809			       u64 bytenr, u64 num_bytes,
810			       u64 parent, u64 ref_root,
811			       u64 owner, u64 offset, int action,
812			       struct btrfs_delayed_extent_op *extent_op,
813			       int for_cow)
814{
815	struct btrfs_delayed_data_ref *ref;
816	struct btrfs_delayed_ref_head *head_ref;
817	struct btrfs_delayed_ref_root *delayed_refs;
818
819	BUG_ON(extent_op && !extent_op->is_data);
820	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
821	if (!ref)
822		return -ENOMEM;
823
824	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
825	if (!head_ref) {
826		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
827		return -ENOMEM;
828	}
829
830	head_ref->extent_op = extent_op;
831
832	delayed_refs = &trans->transaction->delayed_refs;
833	spin_lock(&delayed_refs->lock);
834
835	/*
836	 * insert both the head node and the new ref without dropping
837	 * the spin lock
838	 */
839	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node,
840					bytenr, num_bytes, action, 1);
841
842	add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
843				   num_bytes, parent, ref_root, owner, offset,
844				   action, for_cow);
 
 
 
845	spin_unlock(&delayed_refs->lock);
846	if (need_ref_seq(for_cow, ref_root))
847		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
848
849	return 0;
850}
851
852int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
853				struct btrfs_trans_handle *trans,
854				u64 bytenr, u64 num_bytes,
855				struct btrfs_delayed_extent_op *extent_op)
856{
857	struct btrfs_delayed_ref_head *head_ref;
858	struct btrfs_delayed_ref_root *delayed_refs;
859
860	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
861	if (!head_ref)
862		return -ENOMEM;
863
864	head_ref->extent_op = extent_op;
865
866	delayed_refs = &trans->transaction->delayed_refs;
867	spin_lock(&delayed_refs->lock);
868
869	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
870				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
871				   extent_op->is_data);
872
 
 
873	spin_unlock(&delayed_refs->lock);
874	return 0;
875}
876
877/*
878 * this does a simple search for the head node for a given extent.
879 * It must be called with the delayed ref spinlock held, and it returns
880 * the head node if any where found, or NULL if not.
881 */
882struct btrfs_delayed_ref_head *
883btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
884{
 
885	struct btrfs_delayed_ref_root *delayed_refs;
886
887	delayed_refs = &trans->transaction->delayed_refs;
888	return find_ref_head(&delayed_refs->href_root, bytenr, 0);
889}
890
891void btrfs_delayed_ref_exit(void)
892{
893	if (btrfs_delayed_ref_head_cachep)
894		kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
895	if (btrfs_delayed_tree_ref_cachep)
896		kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
897	if (btrfs_delayed_data_ref_cachep)
898		kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
899	if (btrfs_delayed_extent_op_cachep)
900		kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
901}
902
903int btrfs_delayed_ref_init(void)
904{
905	btrfs_delayed_ref_head_cachep = kmem_cache_create(
906				"btrfs_delayed_ref_head",
907				sizeof(struct btrfs_delayed_ref_head), 0,
908				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
909	if (!btrfs_delayed_ref_head_cachep)
910		goto fail;
911
912	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
913				"btrfs_delayed_tree_ref",
914				sizeof(struct btrfs_delayed_tree_ref), 0,
915				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
916	if (!btrfs_delayed_tree_ref_cachep)
917		goto fail;
918
919	btrfs_delayed_data_ref_cachep = kmem_cache_create(
920				"btrfs_delayed_data_ref",
921				sizeof(struct btrfs_delayed_data_ref), 0,
922				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
923	if (!btrfs_delayed_data_ref_cachep)
924		goto fail;
925
926	btrfs_delayed_extent_op_cachep = kmem_cache_create(
927				"btrfs_delayed_extent_op",
928				sizeof(struct btrfs_delayed_extent_op), 0,
929				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
930	if (!btrfs_delayed_extent_op_cachep)
931		goto fail;
932
933	return 0;
934fail:
935	btrfs_delayed_ref_exit();
936	return -ENOMEM;
937}
v3.5.6
  1/*
  2 * Copyright (C) 2009 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/slab.h>
 21#include <linux/sort.h>
 22#include "ctree.h"
 23#include "delayed-ref.h"
 24#include "transaction.h"
 25
 
 
 
 
 26/*
 27 * delayed back reference update tracking.  For subvolume trees
 28 * we queue up extent allocations and backref maintenance for
 29 * delayed processing.   This avoids deep call chains where we
 30 * add extents in the middle of btrfs_search_slot, and it allows
 31 * us to buffer up frequently modified backrefs in an rb tree instead
 32 * of hammering updates on the extent allocation tree.
 33 */
 34
 35/*
 36 * compare two delayed tree backrefs with same bytenr and type
 37 */
 38static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
 39			  struct btrfs_delayed_tree_ref *ref1)
 40{
 41	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 42		if (ref1->root < ref2->root)
 43			return -1;
 44		if (ref1->root > ref2->root)
 45			return 1;
 46	} else {
 47		if (ref1->parent < ref2->parent)
 48			return -1;
 49		if (ref1->parent > ref2->parent)
 50			return 1;
 51	}
 52	return 0;
 53}
 54
 55/*
 56 * compare two delayed data backrefs with same bytenr and type
 57 */
 58static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
 59			  struct btrfs_delayed_data_ref *ref1)
 60{
 61	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 62		if (ref1->root < ref2->root)
 63			return -1;
 64		if (ref1->root > ref2->root)
 65			return 1;
 66		if (ref1->objectid < ref2->objectid)
 67			return -1;
 68		if (ref1->objectid > ref2->objectid)
 69			return 1;
 70		if (ref1->offset < ref2->offset)
 71			return -1;
 72		if (ref1->offset > ref2->offset)
 73			return 1;
 74	} else {
 75		if (ref1->parent < ref2->parent)
 76			return -1;
 77		if (ref1->parent > ref2->parent)
 78			return 1;
 79	}
 80	return 0;
 81}
 82
 83/*
 84 * entries in the rb tree are ordered by the byte number of the extent,
 85 * type of the delayed backrefs and content of delayed backrefs.
 86 */
 87static int comp_entry(struct btrfs_delayed_ref_node *ref2,
 88		      struct btrfs_delayed_ref_node *ref1)
 
 89{
 90	if (ref1->bytenr < ref2->bytenr)
 91		return -1;
 92	if (ref1->bytenr > ref2->bytenr)
 93		return 1;
 94	if (ref1->is_head && ref2->is_head)
 95		return 0;
 96	if (ref2->is_head)
 97		return -1;
 98	if (ref1->is_head)
 99		return 1;
100	if (ref1->type < ref2->type)
101		return -1;
102	if (ref1->type > ref2->type)
103		return 1;
104	/* merging of sequenced refs is not allowed */
105	if (ref1->seq < ref2->seq)
106		return -1;
107	if (ref1->seq > ref2->seq)
108		return 1;
 
 
109	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
110	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
111		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
112				      btrfs_delayed_node_to_tree_ref(ref1));
 
113	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
114		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
115		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
116				      btrfs_delayed_node_to_data_ref(ref1));
117	}
118	BUG();
119	return 0;
120}
121
122/*
123 * insert a new ref into the rbtree.  This returns any existing refs
124 * for the same (bytenr,parent) tuple, or NULL if the new node was properly
125 * inserted.
126 */
127static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
128						  struct rb_node *node)
129{
130	struct rb_node **p = &root->rb_node;
131	struct rb_node *parent_node = NULL;
132	struct btrfs_delayed_ref_node *entry;
133	struct btrfs_delayed_ref_node *ins;
134	int cmp;
135
136	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
137	while (*p) {
138		parent_node = *p;
139		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
140				 rb_node);
141
142		cmp = comp_entry(entry, ins);
143		if (cmp < 0)
144			p = &(*p)->rb_left;
145		else if (cmp > 0)
146			p = &(*p)->rb_right;
147		else
148			return entry;
149	}
150
151	rb_link_node(node, parent_node, p);
152	rb_insert_color(node, root);
153	return NULL;
154}
155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156/*
157 * find an head entry based on bytenr. This returns the delayed ref
158 * head if it was able to find one, or NULL if nothing was in that spot.
159 * If return_bigger is given, the next bigger entry is returned if no exact
160 * match is found.
161 */
162static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
163				  u64 bytenr,
164				  struct btrfs_delayed_ref_node **last,
165				  int return_bigger)
166{
167	struct rb_node *n;
168	struct btrfs_delayed_ref_node *entry;
169	int cmp = 0;
170
171again:
172	n = root->rb_node;
173	entry = NULL;
174	while (n) {
175		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
176		WARN_ON(!entry->in_tree);
177		if (last)
178			*last = entry;
179
180		if (bytenr < entry->bytenr)
181			cmp = -1;
182		else if (bytenr > entry->bytenr)
183			cmp = 1;
184		else if (!btrfs_delayed_ref_is_head(entry))
185			cmp = 1;
186		else
187			cmp = 0;
188
189		if (cmp < 0)
190			n = n->rb_left;
191		else if (cmp > 0)
192			n = n->rb_right;
193		else
194			return entry;
195	}
196	if (entry && return_bigger) {
197		if (cmp > 0) {
198			n = rb_next(&entry->rb_node);
199			if (!n)
200				n = rb_first(root);
201			entry = rb_entry(n, struct btrfs_delayed_ref_node,
202					 rb_node);
203			bytenr = entry->bytenr;
204			return_bigger = 0;
205			goto again;
206		}
207		return entry;
208	}
209	return NULL;
210}
211
212int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
213			   struct btrfs_delayed_ref_head *head)
214{
215	struct btrfs_delayed_ref_root *delayed_refs;
216
217	delayed_refs = &trans->transaction->delayed_refs;
218	assert_spin_locked(&delayed_refs->lock);
219	if (mutex_trylock(&head->mutex))
220		return 0;
221
222	atomic_inc(&head->node.refs);
223	spin_unlock(&delayed_refs->lock);
224
225	mutex_lock(&head->mutex);
226	spin_lock(&delayed_refs->lock);
227	if (!head->node.in_tree) {
228		mutex_unlock(&head->mutex);
229		btrfs_put_delayed_ref(&head->node);
230		return -EAGAIN;
231	}
232	btrfs_put_delayed_ref(&head->node);
233	return 0;
234}
235
236int btrfs_check_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237			    u64 seq)
238{
239	struct seq_list *elem;
 
240
241	assert_spin_locked(&delayed_refs->lock);
242	if (list_empty(&delayed_refs->seq_head))
243		return 0;
 
 
 
 
 
 
 
 
 
244
245	elem = list_first_entry(&delayed_refs->seq_head, struct seq_list, list);
246	if (seq >= elem->seq) {
247		pr_debug("holding back delayed_ref %llu, lowest is %llu (%p)\n",
248			 seq, elem->seq, delayed_refs);
249		return 1;
250	}
251	return 0;
252}
253
254int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
255			   struct list_head *cluster, u64 start)
256{
257	int count = 0;
258	struct btrfs_delayed_ref_root *delayed_refs;
259	struct rb_node *node;
260	struct btrfs_delayed_ref_node *ref;
261	struct btrfs_delayed_ref_head *head;
 
 
262
263	delayed_refs = &trans->transaction->delayed_refs;
264	if (start == 0) {
265		node = rb_first(&delayed_refs->root);
266	} else {
267		ref = NULL;
268		find_ref_head(&delayed_refs->root, start + 1, &ref, 1);
269		if (ref) {
270			node = &ref->rb_node;
271		} else
272			node = rb_first(&delayed_refs->root);
273	}
274again:
275	while (node && count < 32) {
276		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
277		if (btrfs_delayed_ref_is_head(ref)) {
278			head = btrfs_delayed_node_to_head(ref);
279			if (list_empty(&head->cluster)) {
280				list_add_tail(&head->cluster, cluster);
281				delayed_refs->run_delayed_start =
282					head->node.bytenr;
283				count++;
284
285				WARN_ON(delayed_refs->num_heads_ready == 0);
286				delayed_refs->num_heads_ready--;
287			} else if (count) {
288				/* the goal of the clustering is to find extents
289				 * that are likely to end up in the same extent
290				 * leaf on disk.  So, we don't want them spread
291				 * all over the tree.  Stop now if we've hit
292				 * a head that was already in use
293				 */
294				break;
295			}
 
 
 
296		}
297		node = rb_next(node);
 
298	}
299	if (count) {
300		return 0;
301	} else if (start) {
302		/*
303		 * we've gone to the end of the rbtree without finding any
304		 * clusters.  start from the beginning and try again
305		 */
306		start = 0;
307		node = rb_first(&delayed_refs->root);
308		goto again;
309	}
310	return 1;
311}
312
313/*
314 * helper function to update an extent delayed ref in the
315 * rbtree.  existing and update must both have the same
316 * bytenr and parent
317 *
318 * This may free existing if the update cancels out whatever
319 * operation it was doing.
320 */
321static noinline void
322update_existing_ref(struct btrfs_trans_handle *trans,
323		    struct btrfs_delayed_ref_root *delayed_refs,
 
324		    struct btrfs_delayed_ref_node *existing,
325		    struct btrfs_delayed_ref_node *update)
326{
327	if (update->action != existing->action) {
328		/*
329		 * this is effectively undoing either an add or a
330		 * drop.  We decrement the ref_mod, and if it goes
331		 * down to zero we just delete the entry without
332		 * every changing the extent allocation tree.
333		 */
334		existing->ref_mod--;
335		if (existing->ref_mod == 0) {
336			rb_erase(&existing->rb_node,
337				 &delayed_refs->root);
338			existing->in_tree = 0;
339			btrfs_put_delayed_ref(existing);
340			delayed_refs->num_entries--;
341			if (trans->delayed_ref_updates)
342				trans->delayed_ref_updates--;
343		} else {
344			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
345				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
346		}
347	} else {
348		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
349			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
350		/*
351		 * the action on the existing ref matches
352		 * the action on the ref we're trying to add.
353		 * Bump the ref_mod by one so the backref that
354		 * is eventually added/removed has the correct
355		 * reference count
356		 */
357		existing->ref_mod += update->ref_mod;
358	}
359}
360
361/*
362 * helper function to update the accounting in the head ref
363 * existing and update must have the same bytenr
364 */
365static noinline void
366update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
367			 struct btrfs_delayed_ref_node *update)
368{
369	struct btrfs_delayed_ref_head *existing_ref;
370	struct btrfs_delayed_ref_head *ref;
371
372	existing_ref = btrfs_delayed_node_to_head(existing);
373	ref = btrfs_delayed_node_to_head(update);
374	BUG_ON(existing_ref->is_data != ref->is_data);
375
 
376	if (ref->must_insert_reserved) {
377		/* if the extent was freed and then
378		 * reallocated before the delayed ref
379		 * entries were processed, we can end up
380		 * with an existing head ref without
381		 * the must_insert_reserved flag set.
382		 * Set it again here
383		 */
384		existing_ref->must_insert_reserved = ref->must_insert_reserved;
385
386		/*
387		 * update the num_bytes so we make sure the accounting
388		 * is done correctly
389		 */
390		existing->num_bytes = update->num_bytes;
391
392	}
393
394	if (ref->extent_op) {
395		if (!existing_ref->extent_op) {
396			existing_ref->extent_op = ref->extent_op;
397		} else {
398			if (ref->extent_op->update_key) {
399				memcpy(&existing_ref->extent_op->key,
400				       &ref->extent_op->key,
401				       sizeof(ref->extent_op->key));
402				existing_ref->extent_op->update_key = 1;
403			}
404			if (ref->extent_op->update_flags) {
405				existing_ref->extent_op->flags_to_set |=
406					ref->extent_op->flags_to_set;
407				existing_ref->extent_op->update_flags = 1;
408			}
409			kfree(ref->extent_op);
410		}
411	}
412	/*
413	 * update the reference mod on the head to reflect this new operation
 
 
414	 */
415	existing->ref_mod += update->ref_mod;
 
416}
417
418/*
419 * helper function to actually insert a head node into the rbtree.
420 * this does all the dirty work in terms of maintaining the correct
421 * overall modification count.
422 */
423static noinline void add_delayed_ref_head(struct btrfs_fs_info *fs_info,
424					struct btrfs_trans_handle *trans,
425					struct btrfs_delayed_ref_node *ref,
426					u64 bytenr, u64 num_bytes,
427					int action, int is_data)
428{
429	struct btrfs_delayed_ref_node *existing;
430	struct btrfs_delayed_ref_head *head_ref = NULL;
431	struct btrfs_delayed_ref_root *delayed_refs;
432	int count_mod = 1;
433	int must_insert_reserved = 0;
434
435	/*
436	 * the head node stores the sum of all the mods, so dropping a ref
437	 * should drop the sum in the head node by one.
438	 */
439	if (action == BTRFS_UPDATE_DELAYED_HEAD)
440		count_mod = 0;
441	else if (action == BTRFS_DROP_DELAYED_REF)
442		count_mod = -1;
443
444	/*
445	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
446	 * the reserved accounting when the extent is finally added, or
447	 * if a later modification deletes the delayed ref without ever
448	 * inserting the extent into the extent allocation tree.
449	 * ref->must_insert_reserved is the flag used to record
450	 * that accounting mods are required.
451	 *
452	 * Once we record must_insert_reserved, switch the action to
453	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
454	 */
455	if (action == BTRFS_ADD_DELAYED_EXTENT)
456		must_insert_reserved = 1;
457	else
458		must_insert_reserved = 0;
459
460	delayed_refs = &trans->transaction->delayed_refs;
461
462	/* first set the basic ref node struct up */
463	atomic_set(&ref->refs, 1);
464	ref->bytenr = bytenr;
465	ref->num_bytes = num_bytes;
466	ref->ref_mod = count_mod;
467	ref->type  = 0;
468	ref->action  = 0;
469	ref->is_head = 1;
470	ref->in_tree = 1;
471	ref->seq = 0;
472
473	head_ref = btrfs_delayed_node_to_head(ref);
474	head_ref->must_insert_reserved = must_insert_reserved;
475	head_ref->is_data = is_data;
 
 
476
477	INIT_LIST_HEAD(&head_ref->cluster);
478	mutex_init(&head_ref->mutex);
479
480	trace_btrfs_delayed_ref_head(ref, head_ref, action);
481
482	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
483
 
 
484	if (existing) {
485		update_existing_head_ref(existing, ref);
486		/*
487		 * we've updated the existing ref, free the newly
488		 * allocated ref
489		 */
490		kfree(head_ref);
 
491	} else {
492		delayed_refs->num_heads++;
493		delayed_refs->num_heads_ready++;
494		delayed_refs->num_entries++;
495		trans->delayed_ref_updates++;
496	}
 
497}
498
499/*
500 * helper to insert a delayed tree ref into the rbtree.
501 */
502static noinline void add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
503					 struct btrfs_trans_handle *trans,
504					 struct btrfs_delayed_ref_node *ref,
505					 u64 bytenr, u64 num_bytes, u64 parent,
506					 u64 ref_root, int level, int action,
507					 int for_cow)
 
508{
509	struct btrfs_delayed_ref_node *existing;
510	struct btrfs_delayed_tree_ref *full_ref;
511	struct btrfs_delayed_ref_root *delayed_refs;
512	u64 seq = 0;
513
514	if (action == BTRFS_ADD_DELAYED_EXTENT)
515		action = BTRFS_ADD_DELAYED_REF;
516
517	delayed_refs = &trans->transaction->delayed_refs;
518
519	/* first set the basic ref node struct up */
520	atomic_set(&ref->refs, 1);
521	ref->bytenr = bytenr;
522	ref->num_bytes = num_bytes;
523	ref->ref_mod = 1;
524	ref->action = action;
525	ref->is_head = 0;
526	ref->in_tree = 1;
527
528	if (is_fstree(ref_root))
529		seq = inc_delayed_seq(delayed_refs);
530	ref->seq = seq;
531
532	full_ref = btrfs_delayed_node_to_tree_ref(ref);
533	full_ref->parent = parent;
534	full_ref->root = ref_root;
535	if (parent)
536		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
537	else
538		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
539	full_ref->level = level;
540
541	trace_btrfs_delayed_tree_ref(ref, full_ref, action);
542
543	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
544
 
 
545	if (existing) {
546		update_existing_ref(trans, delayed_refs, existing, ref);
 
547		/*
548		 * we've updated the existing ref, free the newly
549		 * allocated ref
550		 */
551		kfree(full_ref);
552	} else {
553		delayed_refs->num_entries++;
554		trans->delayed_ref_updates++;
555	}
 
556}
557
558/*
559 * helper to insert a delayed data ref into the rbtree.
560 */
561static noinline void add_delayed_data_ref(struct btrfs_fs_info *fs_info,
562					 struct btrfs_trans_handle *trans,
563					 struct btrfs_delayed_ref_node *ref,
564					 u64 bytenr, u64 num_bytes, u64 parent,
565					 u64 ref_root, u64 owner, u64 offset,
566					 int action, int for_cow)
 
567{
568	struct btrfs_delayed_ref_node *existing;
569	struct btrfs_delayed_data_ref *full_ref;
570	struct btrfs_delayed_ref_root *delayed_refs;
571	u64 seq = 0;
572
573	if (action == BTRFS_ADD_DELAYED_EXTENT)
574		action = BTRFS_ADD_DELAYED_REF;
575
576	delayed_refs = &trans->transaction->delayed_refs;
577
578	/* first set the basic ref node struct up */
579	atomic_set(&ref->refs, 1);
580	ref->bytenr = bytenr;
581	ref->num_bytes = num_bytes;
582	ref->ref_mod = 1;
583	ref->action = action;
584	ref->is_head = 0;
585	ref->in_tree = 1;
586
587	if (is_fstree(ref_root))
588		seq = inc_delayed_seq(delayed_refs);
589	ref->seq = seq;
590
591	full_ref = btrfs_delayed_node_to_data_ref(ref);
592	full_ref->parent = parent;
593	full_ref->root = ref_root;
594	if (parent)
595		ref->type = BTRFS_SHARED_DATA_REF_KEY;
596	else
597		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
598
599	full_ref->objectid = owner;
600	full_ref->offset = offset;
601
602	trace_btrfs_delayed_data_ref(ref, full_ref, action);
603
604	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
605
 
 
606	if (existing) {
607		update_existing_ref(trans, delayed_refs, existing, ref);
 
608		/*
609		 * we've updated the existing ref, free the newly
610		 * allocated ref
611		 */
612		kfree(full_ref);
613	} else {
614		delayed_refs->num_entries++;
615		trans->delayed_ref_updates++;
616	}
 
617}
618
619/*
620 * add a delayed tree ref.  This does all of the accounting required
621 * to make sure the delayed ref is eventually processed before this
622 * transaction commits.
623 */
624int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
625			       struct btrfs_trans_handle *trans,
626			       u64 bytenr, u64 num_bytes, u64 parent,
627			       u64 ref_root,  int level, int action,
628			       struct btrfs_delayed_extent_op *extent_op,
629			       int for_cow)
630{
631	struct btrfs_delayed_tree_ref *ref;
632	struct btrfs_delayed_ref_head *head_ref;
633	struct btrfs_delayed_ref_root *delayed_refs;
634
635	BUG_ON(extent_op && extent_op->is_data);
636	ref = kmalloc(sizeof(*ref), GFP_NOFS);
637	if (!ref)
638		return -ENOMEM;
639
640	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
641	if (!head_ref) {
642		kfree(ref);
643		return -ENOMEM;
644	}
645
646	head_ref->extent_op = extent_op;
647
648	delayed_refs = &trans->transaction->delayed_refs;
649	spin_lock(&delayed_refs->lock);
650
651	/*
652	 * insert both the head node and the new ref without dropping
653	 * the spin lock
654	 */
655	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
656				   num_bytes, action, 0);
657
658	add_delayed_tree_ref(fs_info, trans, &ref->node, bytenr,
659				   num_bytes, parent, ref_root, level, action,
660				   for_cow);
661	if (!is_fstree(ref_root) &&
662	    waitqueue_active(&delayed_refs->seq_wait))
663		wake_up(&delayed_refs->seq_wait);
664	spin_unlock(&delayed_refs->lock);
 
 
665
666	return 0;
667}
668
669/*
670 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
671 */
672int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
673			       struct btrfs_trans_handle *trans,
674			       u64 bytenr, u64 num_bytes,
675			       u64 parent, u64 ref_root,
676			       u64 owner, u64 offset, int action,
677			       struct btrfs_delayed_extent_op *extent_op,
678			       int for_cow)
679{
680	struct btrfs_delayed_data_ref *ref;
681	struct btrfs_delayed_ref_head *head_ref;
682	struct btrfs_delayed_ref_root *delayed_refs;
683
684	BUG_ON(extent_op && !extent_op->is_data);
685	ref = kmalloc(sizeof(*ref), GFP_NOFS);
686	if (!ref)
687		return -ENOMEM;
688
689	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
690	if (!head_ref) {
691		kfree(ref);
692		return -ENOMEM;
693	}
694
695	head_ref->extent_op = extent_op;
696
697	delayed_refs = &trans->transaction->delayed_refs;
698	spin_lock(&delayed_refs->lock);
699
700	/*
701	 * insert both the head node and the new ref without dropping
702	 * the spin lock
703	 */
704	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
705				   num_bytes, action, 1);
706
707	add_delayed_data_ref(fs_info, trans, &ref->node, bytenr,
708				   num_bytes, parent, ref_root, owner, offset,
709				   action, for_cow);
710	if (!is_fstree(ref_root) &&
711	    waitqueue_active(&delayed_refs->seq_wait))
712		wake_up(&delayed_refs->seq_wait);
713	spin_unlock(&delayed_refs->lock);
 
 
714
715	return 0;
716}
717
718int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
719				struct btrfs_trans_handle *trans,
720				u64 bytenr, u64 num_bytes,
721				struct btrfs_delayed_extent_op *extent_op)
722{
723	struct btrfs_delayed_ref_head *head_ref;
724	struct btrfs_delayed_ref_root *delayed_refs;
725
726	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
727	if (!head_ref)
728		return -ENOMEM;
729
730	head_ref->extent_op = extent_op;
731
732	delayed_refs = &trans->transaction->delayed_refs;
733	spin_lock(&delayed_refs->lock);
734
735	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
736				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
737				   extent_op->is_data);
738
739	if (waitqueue_active(&delayed_refs->seq_wait))
740		wake_up(&delayed_refs->seq_wait);
741	spin_unlock(&delayed_refs->lock);
742	return 0;
743}
744
745/*
746 * this does a simple search for the head node for a given extent.
747 * It must be called with the delayed ref spinlock held, and it returns
748 * the head node if any where found, or NULL if not.
749 */
750struct btrfs_delayed_ref_head *
751btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
752{
753	struct btrfs_delayed_ref_node *ref;
754	struct btrfs_delayed_ref_root *delayed_refs;
755
756	delayed_refs = &trans->transaction->delayed_refs;
757	ref = find_ref_head(&delayed_refs->root, bytenr, NULL, 0);
758	if (ref)
759		return btrfs_delayed_node_to_head(ref);
760	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761}