Loading...
1/*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19/*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
89 */
90
91#include <linux/sched.h>
92#include <linux/slab.h>
93#include <linux/buffer_head.h>
94#include <linux/mutex.h>
95#include <linux/genhd.h>
96#include <linux/blkdev.h>
97#include "ctree.h"
98#include "disk-io.h"
99#include "hash.h"
100#include "transaction.h"
101#include "extent_io.h"
102#include "volumes.h"
103#include "print-tree.h"
104#include "locking.h"
105#include "check-integrity.h"
106#include "rcu-string.h"
107
108#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
109#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
110#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
111#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
112#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
113#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
114#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
115#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
116 * excluding " [...]" */
117#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
118
119/*
120 * The definition of the bitmask fields for the print_mask.
121 * They are specified with the mount option check_integrity_print_mask.
122 */
123#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
124#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
125#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
126#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
127#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
128#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
129#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
130#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
131#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
132#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
133#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
134#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
135#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
136#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
137
138struct btrfsic_dev_state;
139struct btrfsic_state;
140
141struct btrfsic_block {
142 u32 magic_num; /* only used for debug purposes */
143 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
144 unsigned int is_superblock:1; /* if it is one of the superblocks */
145 unsigned int is_iodone:1; /* if is done by lower subsystem */
146 unsigned int iodone_w_error:1; /* error was indicated to endio */
147 unsigned int never_written:1; /* block was added because it was
148 * referenced, not because it was
149 * written */
150 unsigned int mirror_num; /* large enough to hold
151 * BTRFS_SUPER_MIRROR_MAX */
152 struct btrfsic_dev_state *dev_state;
153 u64 dev_bytenr; /* key, physical byte num on disk */
154 u64 logical_bytenr; /* logical byte num on disk */
155 u64 generation;
156 struct btrfs_disk_key disk_key; /* extra info to print in case of
157 * issues, will not always be correct */
158 struct list_head collision_resolving_node; /* list node */
159 struct list_head all_blocks_node; /* list node */
160
161 /* the following two lists contain block_link items */
162 struct list_head ref_to_list; /* list */
163 struct list_head ref_from_list; /* list */
164 struct btrfsic_block *next_in_same_bio;
165 void *orig_bio_bh_private;
166 union {
167 bio_end_io_t *bio;
168 bh_end_io_t *bh;
169 } orig_bio_bh_end_io;
170 int submit_bio_bh_rw;
171 u64 flush_gen; /* only valid if !never_written */
172};
173
174/*
175 * Elements of this type are allocated dynamically and required because
176 * each block object can refer to and can be ref from multiple blocks.
177 * The key to lookup them in the hashtable is the dev_bytenr of
178 * the block ref to plus the one from the block refered from.
179 * The fact that they are searchable via a hashtable and that a
180 * ref_cnt is maintained is not required for the btrfs integrity
181 * check algorithm itself, it is only used to make the output more
182 * beautiful in case that an error is detected (an error is defined
183 * as a write operation to a block while that block is still referenced).
184 */
185struct btrfsic_block_link {
186 u32 magic_num; /* only used for debug purposes */
187 u32 ref_cnt;
188 struct list_head node_ref_to; /* list node */
189 struct list_head node_ref_from; /* list node */
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block *block_ref_to;
192 struct btrfsic_block *block_ref_from;
193 u64 parent_generation;
194};
195
196struct btrfsic_dev_state {
197 u32 magic_num; /* only used for debug purposes */
198 struct block_device *bdev;
199 struct btrfsic_state *state;
200 struct list_head collision_resolving_node; /* list node */
201 struct btrfsic_block dummy_block_for_bio_bh_flush;
202 u64 last_flush_gen;
203 char name[BDEVNAME_SIZE];
204};
205
206struct btrfsic_block_hashtable {
207 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
208};
209
210struct btrfsic_block_link_hashtable {
211 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
212};
213
214struct btrfsic_dev_state_hashtable {
215 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
216};
217
218struct btrfsic_block_data_ctx {
219 u64 start; /* virtual bytenr */
220 u64 dev_bytenr; /* physical bytenr on device */
221 u32 len;
222 struct btrfsic_dev_state *dev;
223 char **datav;
224 struct page **pagev;
225 void *mem_to_free;
226};
227
228/* This structure is used to implement recursion without occupying
229 * any stack space, refer to btrfsic_process_metablock() */
230struct btrfsic_stack_frame {
231 u32 magic;
232 u32 nr;
233 int error;
234 int i;
235 int limit_nesting;
236 int num_copies;
237 int mirror_num;
238 struct btrfsic_block *block;
239 struct btrfsic_block_data_ctx *block_ctx;
240 struct btrfsic_block *next_block;
241 struct btrfsic_block_data_ctx next_block_ctx;
242 struct btrfs_header *hdr;
243 struct btrfsic_stack_frame *prev;
244};
245
246/* Some state per mounted filesystem */
247struct btrfsic_state {
248 u32 print_mask;
249 int include_extent_data;
250 int csum_size;
251 struct list_head all_blocks_list;
252 struct btrfsic_block_hashtable block_hashtable;
253 struct btrfsic_block_link_hashtable block_link_hashtable;
254 struct btrfs_root *root;
255 u64 max_superblock_generation;
256 struct btrfsic_block *latest_superblock;
257 u32 metablock_size;
258 u32 datablock_size;
259};
260
261static void btrfsic_block_init(struct btrfsic_block *b);
262static struct btrfsic_block *btrfsic_block_alloc(void);
263static void btrfsic_block_free(struct btrfsic_block *b);
264static void btrfsic_block_link_init(struct btrfsic_block_link *n);
265static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
266static void btrfsic_block_link_free(struct btrfsic_block_link *n);
267static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
268static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
269static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
270static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
271static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
272 struct btrfsic_block_hashtable *h);
273static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
274static struct btrfsic_block *btrfsic_block_hashtable_lookup(
275 struct block_device *bdev,
276 u64 dev_bytenr,
277 struct btrfsic_block_hashtable *h);
278static void btrfsic_block_link_hashtable_init(
279 struct btrfsic_block_link_hashtable *h);
280static void btrfsic_block_link_hashtable_add(
281 struct btrfsic_block_link *l,
282 struct btrfsic_block_link_hashtable *h);
283static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
284static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
285 struct block_device *bdev_ref_to,
286 u64 dev_bytenr_ref_to,
287 struct block_device *bdev_ref_from,
288 u64 dev_bytenr_ref_from,
289 struct btrfsic_block_link_hashtable *h);
290static void btrfsic_dev_state_hashtable_init(
291 struct btrfsic_dev_state_hashtable *h);
292static void btrfsic_dev_state_hashtable_add(
293 struct btrfsic_dev_state *ds,
294 struct btrfsic_dev_state_hashtable *h);
295static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
296static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
297 struct block_device *bdev,
298 struct btrfsic_dev_state_hashtable *h);
299static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
300static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
301static int btrfsic_process_superblock(struct btrfsic_state *state,
302 struct btrfs_fs_devices *fs_devices);
303static int btrfsic_process_metablock(struct btrfsic_state *state,
304 struct btrfsic_block *block,
305 struct btrfsic_block_data_ctx *block_ctx,
306 int limit_nesting, int force_iodone_flag);
307static void btrfsic_read_from_block_data(
308 struct btrfsic_block_data_ctx *block_ctx,
309 void *dst, u32 offset, size_t len);
310static int btrfsic_create_link_to_next_block(
311 struct btrfsic_state *state,
312 struct btrfsic_block *block,
313 struct btrfsic_block_data_ctx
314 *block_ctx, u64 next_bytenr,
315 int limit_nesting,
316 struct btrfsic_block_data_ctx *next_block_ctx,
317 struct btrfsic_block **next_blockp,
318 int force_iodone_flag,
319 int *num_copiesp, int *mirror_nump,
320 struct btrfs_disk_key *disk_key,
321 u64 parent_generation);
322static int btrfsic_handle_extent_data(struct btrfsic_state *state,
323 struct btrfsic_block *block,
324 struct btrfsic_block_data_ctx *block_ctx,
325 u32 item_offset, int force_iodone_flag);
326static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
327 struct btrfsic_block_data_ctx *block_ctx_out,
328 int mirror_num);
329static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
330 u32 len, struct block_device *bdev,
331 struct btrfsic_block_data_ctx *block_ctx_out);
332static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335static void btrfsic_dump_database(struct btrfsic_state *state);
336static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 char **datav, unsigned int num_pages);
338static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
349static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362static void btrfsic_dump_tree(const struct btrfsic_state *state);
363static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
393 u64 dev_bytenr);
394
395static struct mutex btrfsic_mutex;
396static int btrfsic_is_initialized;
397static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400static void btrfsic_block_init(struct btrfsic_block *b)
401{
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425}
426
427static struct btrfsic_block *btrfsic_block_alloc(void)
428{
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436}
437
438static void btrfsic_block_free(struct btrfsic_block *b)
439{
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442}
443
444static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445{
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453}
454
455static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456{
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464}
465
466static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467{
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470}
471
472static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473{
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483}
484
485static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486{
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494}
495
496static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497{
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501}
502
503static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504{
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509}
510
511static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513{
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520}
521
522static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523{
524 list_del(&b->collision_resolving_node);
525}
526
527static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531{
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct list_head *elem;
537
538 list_for_each(elem, h->table + hashval) {
539 struct btrfsic_block *const b =
540 list_entry(elem, struct btrfsic_block,
541 collision_resolving_node);
542
543 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
544 return b;
545 }
546
547 return NULL;
548}
549
550static void btrfsic_block_link_hashtable_init(
551 struct btrfsic_block_link_hashtable *h)
552{
553 int i;
554
555 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
556 INIT_LIST_HEAD(h->table + i);
557}
558
559static void btrfsic_block_link_hashtable_add(
560 struct btrfsic_block_link *l,
561 struct btrfsic_block_link_hashtable *h)
562{
563 const unsigned int hashval =
564 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
565 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
566 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
567 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
568 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
569
570 BUG_ON(NULL == l->block_ref_to);
571 BUG_ON(NULL == l->block_ref_from);
572 list_add(&l->collision_resolving_node, h->table + hashval);
573}
574
575static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
576{
577 list_del(&l->collision_resolving_node);
578}
579
580static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
581 struct block_device *bdev_ref_to,
582 u64 dev_bytenr_ref_to,
583 struct block_device *bdev_ref_from,
584 u64 dev_bytenr_ref_from,
585 struct btrfsic_block_link_hashtable *h)
586{
587 const unsigned int hashval =
588 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
589 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
590 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
591 ((unsigned int)((uintptr_t)bdev_ref_from))) &
592 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
593 struct list_head *elem;
594
595 list_for_each(elem, h->table + hashval) {
596 struct btrfsic_block_link *const l =
597 list_entry(elem, struct btrfsic_block_link,
598 collision_resolving_node);
599
600 BUG_ON(NULL == l->block_ref_to);
601 BUG_ON(NULL == l->block_ref_from);
602 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
603 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
604 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
605 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
606 return l;
607 }
608
609 return NULL;
610}
611
612static void btrfsic_dev_state_hashtable_init(
613 struct btrfsic_dev_state_hashtable *h)
614{
615 int i;
616
617 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
618 INIT_LIST_HEAD(h->table + i);
619}
620
621static void btrfsic_dev_state_hashtable_add(
622 struct btrfsic_dev_state *ds,
623 struct btrfsic_dev_state_hashtable *h)
624{
625 const unsigned int hashval =
626 (((unsigned int)((uintptr_t)ds->bdev)) &
627 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
628
629 list_add(&ds->collision_resolving_node, h->table + hashval);
630}
631
632static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
633{
634 list_del(&ds->collision_resolving_node);
635}
636
637static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
638 struct block_device *bdev,
639 struct btrfsic_dev_state_hashtable *h)
640{
641 const unsigned int hashval =
642 (((unsigned int)((uintptr_t)bdev)) &
643 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
644 struct list_head *elem;
645
646 list_for_each(elem, h->table + hashval) {
647 struct btrfsic_dev_state *const ds =
648 list_entry(elem, struct btrfsic_dev_state,
649 collision_resolving_node);
650
651 if (ds->bdev == bdev)
652 return ds;
653 }
654
655 return NULL;
656}
657
658static int btrfsic_process_superblock(struct btrfsic_state *state,
659 struct btrfs_fs_devices *fs_devices)
660{
661 int ret = 0;
662 struct btrfs_super_block *selected_super;
663 struct list_head *dev_head = &fs_devices->devices;
664 struct btrfs_device *device;
665 struct btrfsic_dev_state *selected_dev_state = NULL;
666 int pass;
667
668 BUG_ON(NULL == state);
669 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
670 if (NULL == selected_super) {
671 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
672 return -1;
673 }
674
675 list_for_each_entry(device, dev_head, dev_list) {
676 int i;
677 struct btrfsic_dev_state *dev_state;
678
679 if (!device->bdev || !device->name)
680 continue;
681
682 dev_state = btrfsic_dev_state_lookup(device->bdev);
683 BUG_ON(NULL == dev_state);
684 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
685 ret = btrfsic_process_superblock_dev_mirror(
686 state, dev_state, device, i,
687 &selected_dev_state, selected_super);
688 if (0 != ret && 0 == i) {
689 kfree(selected_super);
690 return ret;
691 }
692 }
693 }
694
695 if (NULL == state->latest_superblock) {
696 printk(KERN_INFO "btrfsic: no superblock found!\n");
697 kfree(selected_super);
698 return -1;
699 }
700
701 state->csum_size = btrfs_super_csum_size(selected_super);
702
703 for (pass = 0; pass < 3; pass++) {
704 int num_copies;
705 int mirror_num;
706 u64 next_bytenr;
707
708 switch (pass) {
709 case 0:
710 next_bytenr = btrfs_super_root(selected_super);
711 if (state->print_mask &
712 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
713 printk(KERN_INFO "root@%llu\n", next_bytenr);
714 break;
715 case 1:
716 next_bytenr = btrfs_super_chunk_root(selected_super);
717 if (state->print_mask &
718 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
719 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
720 break;
721 case 2:
722 next_bytenr = btrfs_super_log_root(selected_super);
723 if (0 == next_bytenr)
724 continue;
725 if (state->print_mask &
726 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
727 printk(KERN_INFO "log@%llu\n", next_bytenr);
728 break;
729 }
730
731 num_copies =
732 btrfs_num_copies(state->root->fs_info,
733 next_bytenr, state->metablock_size);
734 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
735 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
736 next_bytenr, num_copies);
737
738 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
739 struct btrfsic_block *next_block;
740 struct btrfsic_block_data_ctx tmp_next_block_ctx;
741 struct btrfsic_block_link *l;
742
743 ret = btrfsic_map_block(state, next_bytenr,
744 state->metablock_size,
745 &tmp_next_block_ctx,
746 mirror_num);
747 if (ret) {
748 printk(KERN_INFO "btrfsic:"
749 " btrfsic_map_block(root @%llu,"
750 " mirror %d) failed!\n",
751 next_bytenr, mirror_num);
752 kfree(selected_super);
753 return -1;
754 }
755
756 next_block = btrfsic_block_hashtable_lookup(
757 tmp_next_block_ctx.dev->bdev,
758 tmp_next_block_ctx.dev_bytenr,
759 &state->block_hashtable);
760 BUG_ON(NULL == next_block);
761
762 l = btrfsic_block_link_hashtable_lookup(
763 tmp_next_block_ctx.dev->bdev,
764 tmp_next_block_ctx.dev_bytenr,
765 state->latest_superblock->dev_state->
766 bdev,
767 state->latest_superblock->dev_bytenr,
768 &state->block_link_hashtable);
769 BUG_ON(NULL == l);
770
771 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
772 if (ret < (int)PAGE_CACHE_SIZE) {
773 printk(KERN_INFO
774 "btrfsic: read @logical %llu failed!\n",
775 tmp_next_block_ctx.start);
776 btrfsic_release_block_ctx(&tmp_next_block_ctx);
777 kfree(selected_super);
778 return -1;
779 }
780
781 ret = btrfsic_process_metablock(state,
782 next_block,
783 &tmp_next_block_ctx,
784 BTRFS_MAX_LEVEL + 3, 1);
785 btrfsic_release_block_ctx(&tmp_next_block_ctx);
786 }
787 }
788
789 kfree(selected_super);
790 return ret;
791}
792
793static int btrfsic_process_superblock_dev_mirror(
794 struct btrfsic_state *state,
795 struct btrfsic_dev_state *dev_state,
796 struct btrfs_device *device,
797 int superblock_mirror_num,
798 struct btrfsic_dev_state **selected_dev_state,
799 struct btrfs_super_block *selected_super)
800{
801 struct btrfs_super_block *super_tmp;
802 u64 dev_bytenr;
803 struct buffer_head *bh;
804 struct btrfsic_block *superblock_tmp;
805 int pass;
806 struct block_device *const superblock_bdev = device->bdev;
807
808 /* super block bytenr is always the unmapped device bytenr */
809 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
810 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
811 return -1;
812 bh = __bread(superblock_bdev, dev_bytenr / 4096,
813 BTRFS_SUPER_INFO_SIZE);
814 if (NULL == bh)
815 return -1;
816 super_tmp = (struct btrfs_super_block *)
817 (bh->b_data + (dev_bytenr & 4095));
818
819 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
820 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
821 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
822 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
823 btrfs_super_leafsize(super_tmp) != state->metablock_size ||
824 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
825 brelse(bh);
826 return 0;
827 }
828
829 superblock_tmp =
830 btrfsic_block_hashtable_lookup(superblock_bdev,
831 dev_bytenr,
832 &state->block_hashtable);
833 if (NULL == superblock_tmp) {
834 superblock_tmp = btrfsic_block_alloc();
835 if (NULL == superblock_tmp) {
836 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
837 brelse(bh);
838 return -1;
839 }
840 /* for superblock, only the dev_bytenr makes sense */
841 superblock_tmp->dev_bytenr = dev_bytenr;
842 superblock_tmp->dev_state = dev_state;
843 superblock_tmp->logical_bytenr = dev_bytenr;
844 superblock_tmp->generation = btrfs_super_generation(super_tmp);
845 superblock_tmp->is_metadata = 1;
846 superblock_tmp->is_superblock = 1;
847 superblock_tmp->is_iodone = 1;
848 superblock_tmp->never_written = 0;
849 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
850 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
851 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
852 " @%llu (%s/%llu/%d)\n",
853 superblock_bdev,
854 rcu_str_deref(device->name), dev_bytenr,
855 dev_state->name, dev_bytenr,
856 superblock_mirror_num);
857 list_add(&superblock_tmp->all_blocks_node,
858 &state->all_blocks_list);
859 btrfsic_block_hashtable_add(superblock_tmp,
860 &state->block_hashtable);
861 }
862
863 /* select the one with the highest generation field */
864 if (btrfs_super_generation(super_tmp) >
865 state->max_superblock_generation ||
866 0 == state->max_superblock_generation) {
867 memcpy(selected_super, super_tmp, sizeof(*selected_super));
868 *selected_dev_state = dev_state;
869 state->max_superblock_generation =
870 btrfs_super_generation(super_tmp);
871 state->latest_superblock = superblock_tmp;
872 }
873
874 for (pass = 0; pass < 3; pass++) {
875 u64 next_bytenr;
876 int num_copies;
877 int mirror_num;
878 const char *additional_string = NULL;
879 struct btrfs_disk_key tmp_disk_key;
880
881 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
882 tmp_disk_key.offset = 0;
883 switch (pass) {
884 case 0:
885 btrfs_set_disk_key_objectid(&tmp_disk_key,
886 BTRFS_ROOT_TREE_OBJECTID);
887 additional_string = "initial root ";
888 next_bytenr = btrfs_super_root(super_tmp);
889 break;
890 case 1:
891 btrfs_set_disk_key_objectid(&tmp_disk_key,
892 BTRFS_CHUNK_TREE_OBJECTID);
893 additional_string = "initial chunk ";
894 next_bytenr = btrfs_super_chunk_root(super_tmp);
895 break;
896 case 2:
897 btrfs_set_disk_key_objectid(&tmp_disk_key,
898 BTRFS_TREE_LOG_OBJECTID);
899 additional_string = "initial log ";
900 next_bytenr = btrfs_super_log_root(super_tmp);
901 if (0 == next_bytenr)
902 continue;
903 break;
904 }
905
906 num_copies =
907 btrfs_num_copies(state->root->fs_info,
908 next_bytenr, state->metablock_size);
909 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
910 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
911 next_bytenr, num_copies);
912 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
913 struct btrfsic_block *next_block;
914 struct btrfsic_block_data_ctx tmp_next_block_ctx;
915 struct btrfsic_block_link *l;
916
917 if (btrfsic_map_block(state, next_bytenr,
918 state->metablock_size,
919 &tmp_next_block_ctx,
920 mirror_num)) {
921 printk(KERN_INFO "btrfsic: btrfsic_map_block("
922 "bytenr @%llu, mirror %d) failed!\n",
923 next_bytenr, mirror_num);
924 brelse(bh);
925 return -1;
926 }
927
928 next_block = btrfsic_block_lookup_or_add(
929 state, &tmp_next_block_ctx,
930 additional_string, 1, 1, 0,
931 mirror_num, NULL);
932 if (NULL == next_block) {
933 btrfsic_release_block_ctx(&tmp_next_block_ctx);
934 brelse(bh);
935 return -1;
936 }
937
938 next_block->disk_key = tmp_disk_key;
939 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
940 l = btrfsic_block_link_lookup_or_add(
941 state, &tmp_next_block_ctx,
942 next_block, superblock_tmp,
943 BTRFSIC_GENERATION_UNKNOWN);
944 btrfsic_release_block_ctx(&tmp_next_block_ctx);
945 if (NULL == l) {
946 brelse(bh);
947 return -1;
948 }
949 }
950 }
951 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
952 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
953
954 brelse(bh);
955 return 0;
956}
957
958static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
959{
960 struct btrfsic_stack_frame *sf;
961
962 sf = kzalloc(sizeof(*sf), GFP_NOFS);
963 if (NULL == sf)
964 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
965 else
966 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
967 return sf;
968}
969
970static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
971{
972 BUG_ON(!(NULL == sf ||
973 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
974 kfree(sf);
975}
976
977static int btrfsic_process_metablock(
978 struct btrfsic_state *state,
979 struct btrfsic_block *const first_block,
980 struct btrfsic_block_data_ctx *const first_block_ctx,
981 int first_limit_nesting, int force_iodone_flag)
982{
983 struct btrfsic_stack_frame initial_stack_frame = { 0 };
984 struct btrfsic_stack_frame *sf;
985 struct btrfsic_stack_frame *next_stack;
986 struct btrfs_header *const first_hdr =
987 (struct btrfs_header *)first_block_ctx->datav[0];
988
989 BUG_ON(!first_hdr);
990 sf = &initial_stack_frame;
991 sf->error = 0;
992 sf->i = -1;
993 sf->limit_nesting = first_limit_nesting;
994 sf->block = first_block;
995 sf->block_ctx = first_block_ctx;
996 sf->next_block = NULL;
997 sf->hdr = first_hdr;
998 sf->prev = NULL;
999
1000continue_with_new_stack_frame:
1001 sf->block->generation = le64_to_cpu(sf->hdr->generation);
1002 if (0 == sf->hdr->level) {
1003 struct btrfs_leaf *const leafhdr =
1004 (struct btrfs_leaf *)sf->hdr;
1005
1006 if (-1 == sf->i) {
1007 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
1008
1009 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1010 printk(KERN_INFO
1011 "leaf %llu items %d generation %llu"
1012 " owner %llu\n",
1013 sf->block_ctx->start, sf->nr,
1014 btrfs_stack_header_generation(
1015 &leafhdr->header),
1016 btrfs_stack_header_owner(
1017 &leafhdr->header));
1018 }
1019
1020continue_with_current_leaf_stack_frame:
1021 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1022 sf->i++;
1023 sf->num_copies = 0;
1024 }
1025
1026 if (sf->i < sf->nr) {
1027 struct btrfs_item disk_item;
1028 u32 disk_item_offset =
1029 (uintptr_t)(leafhdr->items + sf->i) -
1030 (uintptr_t)leafhdr;
1031 struct btrfs_disk_key *disk_key;
1032 u8 type;
1033 u32 item_offset;
1034 u32 item_size;
1035
1036 if (disk_item_offset + sizeof(struct btrfs_item) >
1037 sf->block_ctx->len) {
1038leaf_item_out_of_bounce_error:
1039 printk(KERN_INFO
1040 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1041 sf->block_ctx->start,
1042 sf->block_ctx->dev->name);
1043 goto one_stack_frame_backwards;
1044 }
1045 btrfsic_read_from_block_data(sf->block_ctx,
1046 &disk_item,
1047 disk_item_offset,
1048 sizeof(struct btrfs_item));
1049 item_offset = btrfs_stack_item_offset(&disk_item);
1050 item_size = btrfs_stack_item_size(&disk_item);
1051 disk_key = &disk_item.key;
1052 type = btrfs_disk_key_type(disk_key);
1053
1054 if (BTRFS_ROOT_ITEM_KEY == type) {
1055 struct btrfs_root_item root_item;
1056 u32 root_item_offset;
1057 u64 next_bytenr;
1058
1059 root_item_offset = item_offset +
1060 offsetof(struct btrfs_leaf, items);
1061 if (root_item_offset + item_size >
1062 sf->block_ctx->len)
1063 goto leaf_item_out_of_bounce_error;
1064 btrfsic_read_from_block_data(
1065 sf->block_ctx, &root_item,
1066 root_item_offset,
1067 item_size);
1068 next_bytenr = btrfs_root_bytenr(&root_item);
1069
1070 sf->error =
1071 btrfsic_create_link_to_next_block(
1072 state,
1073 sf->block,
1074 sf->block_ctx,
1075 next_bytenr,
1076 sf->limit_nesting,
1077 &sf->next_block_ctx,
1078 &sf->next_block,
1079 force_iodone_flag,
1080 &sf->num_copies,
1081 &sf->mirror_num,
1082 disk_key,
1083 btrfs_root_generation(
1084 &root_item));
1085 if (sf->error)
1086 goto one_stack_frame_backwards;
1087
1088 if (NULL != sf->next_block) {
1089 struct btrfs_header *const next_hdr =
1090 (struct btrfs_header *)
1091 sf->next_block_ctx.datav[0];
1092
1093 next_stack =
1094 btrfsic_stack_frame_alloc();
1095 if (NULL == next_stack) {
1096 btrfsic_release_block_ctx(
1097 &sf->
1098 next_block_ctx);
1099 goto one_stack_frame_backwards;
1100 }
1101
1102 next_stack->i = -1;
1103 next_stack->block = sf->next_block;
1104 next_stack->block_ctx =
1105 &sf->next_block_ctx;
1106 next_stack->next_block = NULL;
1107 next_stack->hdr = next_hdr;
1108 next_stack->limit_nesting =
1109 sf->limit_nesting - 1;
1110 next_stack->prev = sf;
1111 sf = next_stack;
1112 goto continue_with_new_stack_frame;
1113 }
1114 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1115 state->include_extent_data) {
1116 sf->error = btrfsic_handle_extent_data(
1117 state,
1118 sf->block,
1119 sf->block_ctx,
1120 item_offset,
1121 force_iodone_flag);
1122 if (sf->error)
1123 goto one_stack_frame_backwards;
1124 }
1125
1126 goto continue_with_current_leaf_stack_frame;
1127 }
1128 } else {
1129 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1130
1131 if (-1 == sf->i) {
1132 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1133
1134 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1135 printk(KERN_INFO "node %llu level %d items %d"
1136 " generation %llu owner %llu\n",
1137 sf->block_ctx->start,
1138 nodehdr->header.level, sf->nr,
1139 btrfs_stack_header_generation(
1140 &nodehdr->header),
1141 btrfs_stack_header_owner(
1142 &nodehdr->header));
1143 }
1144
1145continue_with_current_node_stack_frame:
1146 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1147 sf->i++;
1148 sf->num_copies = 0;
1149 }
1150
1151 if (sf->i < sf->nr) {
1152 struct btrfs_key_ptr key_ptr;
1153 u32 key_ptr_offset;
1154 u64 next_bytenr;
1155
1156 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1157 (uintptr_t)nodehdr;
1158 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1159 sf->block_ctx->len) {
1160 printk(KERN_INFO
1161 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1162 sf->block_ctx->start,
1163 sf->block_ctx->dev->name);
1164 goto one_stack_frame_backwards;
1165 }
1166 btrfsic_read_from_block_data(
1167 sf->block_ctx, &key_ptr, key_ptr_offset,
1168 sizeof(struct btrfs_key_ptr));
1169 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1170
1171 sf->error = btrfsic_create_link_to_next_block(
1172 state,
1173 sf->block,
1174 sf->block_ctx,
1175 next_bytenr,
1176 sf->limit_nesting,
1177 &sf->next_block_ctx,
1178 &sf->next_block,
1179 force_iodone_flag,
1180 &sf->num_copies,
1181 &sf->mirror_num,
1182 &key_ptr.key,
1183 btrfs_stack_key_generation(&key_ptr));
1184 if (sf->error)
1185 goto one_stack_frame_backwards;
1186
1187 if (NULL != sf->next_block) {
1188 struct btrfs_header *const next_hdr =
1189 (struct btrfs_header *)
1190 sf->next_block_ctx.datav[0];
1191
1192 next_stack = btrfsic_stack_frame_alloc();
1193 if (NULL == next_stack)
1194 goto one_stack_frame_backwards;
1195
1196 next_stack->i = -1;
1197 next_stack->block = sf->next_block;
1198 next_stack->block_ctx = &sf->next_block_ctx;
1199 next_stack->next_block = NULL;
1200 next_stack->hdr = next_hdr;
1201 next_stack->limit_nesting =
1202 sf->limit_nesting - 1;
1203 next_stack->prev = sf;
1204 sf = next_stack;
1205 goto continue_with_new_stack_frame;
1206 }
1207
1208 goto continue_with_current_node_stack_frame;
1209 }
1210 }
1211
1212one_stack_frame_backwards:
1213 if (NULL != sf->prev) {
1214 struct btrfsic_stack_frame *const prev = sf->prev;
1215
1216 /* the one for the initial block is freed in the caller */
1217 btrfsic_release_block_ctx(sf->block_ctx);
1218
1219 if (sf->error) {
1220 prev->error = sf->error;
1221 btrfsic_stack_frame_free(sf);
1222 sf = prev;
1223 goto one_stack_frame_backwards;
1224 }
1225
1226 btrfsic_stack_frame_free(sf);
1227 sf = prev;
1228 goto continue_with_new_stack_frame;
1229 } else {
1230 BUG_ON(&initial_stack_frame != sf);
1231 }
1232
1233 return sf->error;
1234}
1235
1236static void btrfsic_read_from_block_data(
1237 struct btrfsic_block_data_ctx *block_ctx,
1238 void *dstv, u32 offset, size_t len)
1239{
1240 size_t cur;
1241 size_t offset_in_page;
1242 char *kaddr;
1243 char *dst = (char *)dstv;
1244 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1245 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1246
1247 WARN_ON(offset + len > block_ctx->len);
1248 offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1249
1250 while (len > 0) {
1251 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1252 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1253 PAGE_CACHE_SHIFT);
1254 kaddr = block_ctx->datav[i];
1255 memcpy(dst, kaddr + offset_in_page, cur);
1256
1257 dst += cur;
1258 len -= cur;
1259 offset_in_page = 0;
1260 i++;
1261 }
1262}
1263
1264static int btrfsic_create_link_to_next_block(
1265 struct btrfsic_state *state,
1266 struct btrfsic_block *block,
1267 struct btrfsic_block_data_ctx *block_ctx,
1268 u64 next_bytenr,
1269 int limit_nesting,
1270 struct btrfsic_block_data_ctx *next_block_ctx,
1271 struct btrfsic_block **next_blockp,
1272 int force_iodone_flag,
1273 int *num_copiesp, int *mirror_nump,
1274 struct btrfs_disk_key *disk_key,
1275 u64 parent_generation)
1276{
1277 struct btrfsic_block *next_block = NULL;
1278 int ret;
1279 struct btrfsic_block_link *l;
1280 int did_alloc_block_link;
1281 int block_was_created;
1282
1283 *next_blockp = NULL;
1284 if (0 == *num_copiesp) {
1285 *num_copiesp =
1286 btrfs_num_copies(state->root->fs_info,
1287 next_bytenr, state->metablock_size);
1288 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1289 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1290 next_bytenr, *num_copiesp);
1291 *mirror_nump = 1;
1292 }
1293
1294 if (*mirror_nump > *num_copiesp)
1295 return 0;
1296
1297 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1298 printk(KERN_INFO
1299 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1300 *mirror_nump);
1301 ret = btrfsic_map_block(state, next_bytenr,
1302 state->metablock_size,
1303 next_block_ctx, *mirror_nump);
1304 if (ret) {
1305 printk(KERN_INFO
1306 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1307 next_bytenr, *mirror_nump);
1308 btrfsic_release_block_ctx(next_block_ctx);
1309 *next_blockp = NULL;
1310 return -1;
1311 }
1312
1313 next_block = btrfsic_block_lookup_or_add(state,
1314 next_block_ctx, "referenced ",
1315 1, force_iodone_flag,
1316 !force_iodone_flag,
1317 *mirror_nump,
1318 &block_was_created);
1319 if (NULL == next_block) {
1320 btrfsic_release_block_ctx(next_block_ctx);
1321 *next_blockp = NULL;
1322 return -1;
1323 }
1324 if (block_was_created) {
1325 l = NULL;
1326 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1327 } else {
1328 if (next_block->logical_bytenr != next_bytenr &&
1329 !(!next_block->is_metadata &&
1330 0 == next_block->logical_bytenr)) {
1331 printk(KERN_INFO
1332 "Referenced block @%llu (%s/%llu/%d)"
1333 " found in hash table, %c,"
1334 " bytenr mismatch (!= stored %llu).\n",
1335 next_bytenr, next_block_ctx->dev->name,
1336 next_block_ctx->dev_bytenr, *mirror_nump,
1337 btrfsic_get_block_type(state, next_block),
1338 next_block->logical_bytenr);
1339 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1340 printk(KERN_INFO
1341 "Referenced block @%llu (%s/%llu/%d)"
1342 " found in hash table, %c.\n",
1343 next_bytenr, next_block_ctx->dev->name,
1344 next_block_ctx->dev_bytenr, *mirror_nump,
1345 btrfsic_get_block_type(state, next_block));
1346 next_block->logical_bytenr = next_bytenr;
1347
1348 next_block->mirror_num = *mirror_nump;
1349 l = btrfsic_block_link_hashtable_lookup(
1350 next_block_ctx->dev->bdev,
1351 next_block_ctx->dev_bytenr,
1352 block_ctx->dev->bdev,
1353 block_ctx->dev_bytenr,
1354 &state->block_link_hashtable);
1355 }
1356
1357 next_block->disk_key = *disk_key;
1358 if (NULL == l) {
1359 l = btrfsic_block_link_alloc();
1360 if (NULL == l) {
1361 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1362 btrfsic_release_block_ctx(next_block_ctx);
1363 *next_blockp = NULL;
1364 return -1;
1365 }
1366
1367 did_alloc_block_link = 1;
1368 l->block_ref_to = next_block;
1369 l->block_ref_from = block;
1370 l->ref_cnt = 1;
1371 l->parent_generation = parent_generation;
1372
1373 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1374 btrfsic_print_add_link(state, l);
1375
1376 list_add(&l->node_ref_to, &block->ref_to_list);
1377 list_add(&l->node_ref_from, &next_block->ref_from_list);
1378
1379 btrfsic_block_link_hashtable_add(l,
1380 &state->block_link_hashtable);
1381 } else {
1382 did_alloc_block_link = 0;
1383 if (0 == limit_nesting) {
1384 l->ref_cnt++;
1385 l->parent_generation = parent_generation;
1386 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1387 btrfsic_print_add_link(state, l);
1388 }
1389 }
1390
1391 if (limit_nesting > 0 && did_alloc_block_link) {
1392 ret = btrfsic_read_block(state, next_block_ctx);
1393 if (ret < (int)next_block_ctx->len) {
1394 printk(KERN_INFO
1395 "btrfsic: read block @logical %llu failed!\n",
1396 next_bytenr);
1397 btrfsic_release_block_ctx(next_block_ctx);
1398 *next_blockp = NULL;
1399 return -1;
1400 }
1401
1402 *next_blockp = next_block;
1403 } else {
1404 *next_blockp = NULL;
1405 }
1406 (*mirror_nump)++;
1407
1408 return 0;
1409}
1410
1411static int btrfsic_handle_extent_data(
1412 struct btrfsic_state *state,
1413 struct btrfsic_block *block,
1414 struct btrfsic_block_data_ctx *block_ctx,
1415 u32 item_offset, int force_iodone_flag)
1416{
1417 int ret;
1418 struct btrfs_file_extent_item file_extent_item;
1419 u64 file_extent_item_offset;
1420 u64 next_bytenr;
1421 u64 num_bytes;
1422 u64 generation;
1423 struct btrfsic_block_link *l;
1424
1425 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1426 item_offset;
1427 if (file_extent_item_offset +
1428 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1429 block_ctx->len) {
1430 printk(KERN_INFO
1431 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1432 block_ctx->start, block_ctx->dev->name);
1433 return -1;
1434 }
1435
1436 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1437 file_extent_item_offset,
1438 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1439 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1440 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1441 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1442 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1443 file_extent_item.type,
1444 btrfs_stack_file_extent_disk_bytenr(
1445 &file_extent_item));
1446 return 0;
1447 }
1448
1449 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1450 block_ctx->len) {
1451 printk(KERN_INFO
1452 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1453 block_ctx->start, block_ctx->dev->name);
1454 return -1;
1455 }
1456 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1457 file_extent_item_offset,
1458 sizeof(struct btrfs_file_extent_item));
1459 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1460 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1461 BTRFS_COMPRESS_NONE) {
1462 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1463 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1464 } else {
1465 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1466 }
1467 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1468
1469 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1470 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1471 " offset = %llu, num_bytes = %llu\n",
1472 file_extent_item.type,
1473 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1474 btrfs_stack_file_extent_offset(&file_extent_item),
1475 num_bytes);
1476 while (num_bytes > 0) {
1477 u32 chunk_len;
1478 int num_copies;
1479 int mirror_num;
1480
1481 if (num_bytes > state->datablock_size)
1482 chunk_len = state->datablock_size;
1483 else
1484 chunk_len = num_bytes;
1485
1486 num_copies =
1487 btrfs_num_copies(state->root->fs_info,
1488 next_bytenr, state->datablock_size);
1489 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1490 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1491 next_bytenr, num_copies);
1492 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1493 struct btrfsic_block_data_ctx next_block_ctx;
1494 struct btrfsic_block *next_block;
1495 int block_was_created;
1496
1497 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1498 printk(KERN_INFO "btrfsic_handle_extent_data("
1499 "mirror_num=%d)\n", mirror_num);
1500 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1501 printk(KERN_INFO
1502 "\tdisk_bytenr = %llu, num_bytes %u\n",
1503 next_bytenr, chunk_len);
1504 ret = btrfsic_map_block(state, next_bytenr,
1505 chunk_len, &next_block_ctx,
1506 mirror_num);
1507 if (ret) {
1508 printk(KERN_INFO
1509 "btrfsic: btrfsic_map_block(@%llu,"
1510 " mirror=%d) failed!\n",
1511 next_bytenr, mirror_num);
1512 return -1;
1513 }
1514
1515 next_block = btrfsic_block_lookup_or_add(
1516 state,
1517 &next_block_ctx,
1518 "referenced ",
1519 0,
1520 force_iodone_flag,
1521 !force_iodone_flag,
1522 mirror_num,
1523 &block_was_created);
1524 if (NULL == next_block) {
1525 printk(KERN_INFO
1526 "btrfsic: error, kmalloc failed!\n");
1527 btrfsic_release_block_ctx(&next_block_ctx);
1528 return -1;
1529 }
1530 if (!block_was_created) {
1531 if (next_block->logical_bytenr != next_bytenr &&
1532 !(!next_block->is_metadata &&
1533 0 == next_block->logical_bytenr)) {
1534 printk(KERN_INFO
1535 "Referenced block"
1536 " @%llu (%s/%llu/%d)"
1537 " found in hash table, D,"
1538 " bytenr mismatch"
1539 " (!= stored %llu).\n",
1540 next_bytenr,
1541 next_block_ctx.dev->name,
1542 next_block_ctx.dev_bytenr,
1543 mirror_num,
1544 next_block->logical_bytenr);
1545 }
1546 next_block->logical_bytenr = next_bytenr;
1547 next_block->mirror_num = mirror_num;
1548 }
1549
1550 l = btrfsic_block_link_lookup_or_add(state,
1551 &next_block_ctx,
1552 next_block, block,
1553 generation);
1554 btrfsic_release_block_ctx(&next_block_ctx);
1555 if (NULL == l)
1556 return -1;
1557 }
1558
1559 next_bytenr += chunk_len;
1560 num_bytes -= chunk_len;
1561 }
1562
1563 return 0;
1564}
1565
1566static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1567 struct btrfsic_block_data_ctx *block_ctx_out,
1568 int mirror_num)
1569{
1570 int ret;
1571 u64 length;
1572 struct btrfs_bio *multi = NULL;
1573 struct btrfs_device *device;
1574
1575 length = len;
1576 ret = btrfs_map_block(state->root->fs_info, READ,
1577 bytenr, &length, &multi, mirror_num);
1578
1579 if (ret) {
1580 block_ctx_out->start = 0;
1581 block_ctx_out->dev_bytenr = 0;
1582 block_ctx_out->len = 0;
1583 block_ctx_out->dev = NULL;
1584 block_ctx_out->datav = NULL;
1585 block_ctx_out->pagev = NULL;
1586 block_ctx_out->mem_to_free = NULL;
1587
1588 return ret;
1589 }
1590
1591 device = multi->stripes[0].dev;
1592 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1593 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1594 block_ctx_out->start = bytenr;
1595 block_ctx_out->len = len;
1596 block_ctx_out->datav = NULL;
1597 block_ctx_out->pagev = NULL;
1598 block_ctx_out->mem_to_free = NULL;
1599
1600 kfree(multi);
1601 if (NULL == block_ctx_out->dev) {
1602 ret = -ENXIO;
1603 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1604 }
1605
1606 return ret;
1607}
1608
1609static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1610 u32 len, struct block_device *bdev,
1611 struct btrfsic_block_data_ctx *block_ctx_out)
1612{
1613 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1614 block_ctx_out->dev_bytenr = bytenr;
1615 block_ctx_out->start = bytenr;
1616 block_ctx_out->len = len;
1617 block_ctx_out->datav = NULL;
1618 block_ctx_out->pagev = NULL;
1619 block_ctx_out->mem_to_free = NULL;
1620 if (NULL != block_ctx_out->dev) {
1621 return 0;
1622 } else {
1623 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1624 return -ENXIO;
1625 }
1626}
1627
1628static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1629{
1630 if (block_ctx->mem_to_free) {
1631 unsigned int num_pages;
1632
1633 BUG_ON(!block_ctx->datav);
1634 BUG_ON(!block_ctx->pagev);
1635 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1636 PAGE_CACHE_SHIFT;
1637 while (num_pages > 0) {
1638 num_pages--;
1639 if (block_ctx->datav[num_pages]) {
1640 kunmap(block_ctx->pagev[num_pages]);
1641 block_ctx->datav[num_pages] = NULL;
1642 }
1643 if (block_ctx->pagev[num_pages]) {
1644 __free_page(block_ctx->pagev[num_pages]);
1645 block_ctx->pagev[num_pages] = NULL;
1646 }
1647 }
1648
1649 kfree(block_ctx->mem_to_free);
1650 block_ctx->mem_to_free = NULL;
1651 block_ctx->pagev = NULL;
1652 block_ctx->datav = NULL;
1653 }
1654}
1655
1656static int btrfsic_read_block(struct btrfsic_state *state,
1657 struct btrfsic_block_data_ctx *block_ctx)
1658{
1659 unsigned int num_pages;
1660 unsigned int i;
1661 u64 dev_bytenr;
1662 int ret;
1663
1664 BUG_ON(block_ctx->datav);
1665 BUG_ON(block_ctx->pagev);
1666 BUG_ON(block_ctx->mem_to_free);
1667 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1668 printk(KERN_INFO
1669 "btrfsic: read_block() with unaligned bytenr %llu\n",
1670 block_ctx->dev_bytenr);
1671 return -1;
1672 }
1673
1674 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1675 PAGE_CACHE_SHIFT;
1676 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1677 sizeof(*block_ctx->pagev)) *
1678 num_pages, GFP_NOFS);
1679 if (!block_ctx->mem_to_free)
1680 return -1;
1681 block_ctx->datav = block_ctx->mem_to_free;
1682 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1683 for (i = 0; i < num_pages; i++) {
1684 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1685 if (!block_ctx->pagev[i])
1686 return -1;
1687 }
1688
1689 dev_bytenr = block_ctx->dev_bytenr;
1690 for (i = 0; i < num_pages;) {
1691 struct bio *bio;
1692 unsigned int j;
1693
1694 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1695 if (!bio) {
1696 printk(KERN_INFO
1697 "btrfsic: bio_alloc() for %u pages failed!\n",
1698 num_pages - i);
1699 return -1;
1700 }
1701 bio->bi_bdev = block_ctx->dev->bdev;
1702 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1703
1704 for (j = i; j < num_pages; j++) {
1705 ret = bio_add_page(bio, block_ctx->pagev[j],
1706 PAGE_CACHE_SIZE, 0);
1707 if (PAGE_CACHE_SIZE != ret)
1708 break;
1709 }
1710 if (j == i) {
1711 printk(KERN_INFO
1712 "btrfsic: error, failed to add a single page!\n");
1713 return -1;
1714 }
1715 if (submit_bio_wait(READ, bio)) {
1716 printk(KERN_INFO
1717 "btrfsic: read error at logical %llu dev %s!\n",
1718 block_ctx->start, block_ctx->dev->name);
1719 bio_put(bio);
1720 return -1;
1721 }
1722 bio_put(bio);
1723 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1724 i = j;
1725 }
1726 for (i = 0; i < num_pages; i++) {
1727 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1728 if (!block_ctx->datav[i]) {
1729 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1730 block_ctx->dev->name);
1731 return -1;
1732 }
1733 }
1734
1735 return block_ctx->len;
1736}
1737
1738static void btrfsic_dump_database(struct btrfsic_state *state)
1739{
1740 struct list_head *elem_all;
1741
1742 BUG_ON(NULL == state);
1743
1744 printk(KERN_INFO "all_blocks_list:\n");
1745 list_for_each(elem_all, &state->all_blocks_list) {
1746 const struct btrfsic_block *const b_all =
1747 list_entry(elem_all, struct btrfsic_block,
1748 all_blocks_node);
1749 struct list_head *elem_ref_to;
1750 struct list_head *elem_ref_from;
1751
1752 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1753 btrfsic_get_block_type(state, b_all),
1754 b_all->logical_bytenr, b_all->dev_state->name,
1755 b_all->dev_bytenr, b_all->mirror_num);
1756
1757 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1758 const struct btrfsic_block_link *const l =
1759 list_entry(elem_ref_to,
1760 struct btrfsic_block_link,
1761 node_ref_to);
1762
1763 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1764 " refers %u* to"
1765 " %c @%llu (%s/%llu/%d)\n",
1766 btrfsic_get_block_type(state, b_all),
1767 b_all->logical_bytenr, b_all->dev_state->name,
1768 b_all->dev_bytenr, b_all->mirror_num,
1769 l->ref_cnt,
1770 btrfsic_get_block_type(state, l->block_ref_to),
1771 l->block_ref_to->logical_bytenr,
1772 l->block_ref_to->dev_state->name,
1773 l->block_ref_to->dev_bytenr,
1774 l->block_ref_to->mirror_num);
1775 }
1776
1777 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1778 const struct btrfsic_block_link *const l =
1779 list_entry(elem_ref_from,
1780 struct btrfsic_block_link,
1781 node_ref_from);
1782
1783 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1784 " is ref %u* from"
1785 " %c @%llu (%s/%llu/%d)\n",
1786 btrfsic_get_block_type(state, b_all),
1787 b_all->logical_bytenr, b_all->dev_state->name,
1788 b_all->dev_bytenr, b_all->mirror_num,
1789 l->ref_cnt,
1790 btrfsic_get_block_type(state, l->block_ref_from),
1791 l->block_ref_from->logical_bytenr,
1792 l->block_ref_from->dev_state->name,
1793 l->block_ref_from->dev_bytenr,
1794 l->block_ref_from->mirror_num);
1795 }
1796
1797 printk(KERN_INFO "\n");
1798 }
1799}
1800
1801/*
1802 * Test whether the disk block contains a tree block (leaf or node)
1803 * (note that this test fails for the super block)
1804 */
1805static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1806 char **datav, unsigned int num_pages)
1807{
1808 struct btrfs_header *h;
1809 u8 csum[BTRFS_CSUM_SIZE];
1810 u32 crc = ~(u32)0;
1811 unsigned int i;
1812
1813 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1814 return 1; /* not metadata */
1815 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1816 h = (struct btrfs_header *)datav[0];
1817
1818 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1819 return 1;
1820
1821 for (i = 0; i < num_pages; i++) {
1822 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1823 size_t sublen = i ? PAGE_CACHE_SIZE :
1824 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1825
1826 crc = btrfs_crc32c(crc, data, sublen);
1827 }
1828 btrfs_csum_final(crc, csum);
1829 if (memcmp(csum, h->csum, state->csum_size))
1830 return 1;
1831
1832 return 0; /* is metadata */
1833}
1834
1835static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1836 u64 dev_bytenr, char **mapped_datav,
1837 unsigned int num_pages,
1838 struct bio *bio, int *bio_is_patched,
1839 struct buffer_head *bh,
1840 int submit_bio_bh_rw)
1841{
1842 int is_metadata;
1843 struct btrfsic_block *block;
1844 struct btrfsic_block_data_ctx block_ctx;
1845 int ret;
1846 struct btrfsic_state *state = dev_state->state;
1847 struct block_device *bdev = dev_state->bdev;
1848 unsigned int processed_len;
1849
1850 if (NULL != bio_is_patched)
1851 *bio_is_patched = 0;
1852
1853again:
1854 if (num_pages == 0)
1855 return;
1856
1857 processed_len = 0;
1858 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1859 num_pages));
1860
1861 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1862 &state->block_hashtable);
1863 if (NULL != block) {
1864 u64 bytenr = 0;
1865 struct list_head *elem_ref_to;
1866 struct list_head *tmp_ref_to;
1867
1868 if (block->is_superblock) {
1869 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1870 mapped_datav[0]);
1871 if (num_pages * PAGE_CACHE_SIZE <
1872 BTRFS_SUPER_INFO_SIZE) {
1873 printk(KERN_INFO
1874 "btrfsic: cannot work with too short bios!\n");
1875 return;
1876 }
1877 is_metadata = 1;
1878 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1879 processed_len = BTRFS_SUPER_INFO_SIZE;
1880 if (state->print_mask &
1881 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1882 printk(KERN_INFO
1883 "[before new superblock is written]:\n");
1884 btrfsic_dump_tree_sub(state, block, 0);
1885 }
1886 }
1887 if (is_metadata) {
1888 if (!block->is_superblock) {
1889 if (num_pages * PAGE_CACHE_SIZE <
1890 state->metablock_size) {
1891 printk(KERN_INFO
1892 "btrfsic: cannot work with too short bios!\n");
1893 return;
1894 }
1895 processed_len = state->metablock_size;
1896 bytenr = btrfs_stack_header_bytenr(
1897 (struct btrfs_header *)
1898 mapped_datav[0]);
1899 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1900 dev_state,
1901 dev_bytenr);
1902 }
1903 if (block->logical_bytenr != bytenr &&
1904 !(!block->is_metadata &&
1905 block->logical_bytenr == 0))
1906 printk(KERN_INFO
1907 "Written block @%llu (%s/%llu/%d)"
1908 " found in hash table, %c,"
1909 " bytenr mismatch"
1910 " (!= stored %llu).\n",
1911 bytenr, dev_state->name, dev_bytenr,
1912 block->mirror_num,
1913 btrfsic_get_block_type(state, block),
1914 block->logical_bytenr);
1915 else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1916 printk(KERN_INFO
1917 "Written block @%llu (%s/%llu/%d)"
1918 " found in hash table, %c.\n",
1919 bytenr, dev_state->name, dev_bytenr,
1920 block->mirror_num,
1921 btrfsic_get_block_type(state, block));
1922 block->logical_bytenr = bytenr;
1923 } else {
1924 if (num_pages * PAGE_CACHE_SIZE <
1925 state->datablock_size) {
1926 printk(KERN_INFO
1927 "btrfsic: cannot work with too short bios!\n");
1928 return;
1929 }
1930 processed_len = state->datablock_size;
1931 bytenr = block->logical_bytenr;
1932 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1933 printk(KERN_INFO
1934 "Written block @%llu (%s/%llu/%d)"
1935 " found in hash table, %c.\n",
1936 bytenr, dev_state->name, dev_bytenr,
1937 block->mirror_num,
1938 btrfsic_get_block_type(state, block));
1939 }
1940
1941 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1942 printk(KERN_INFO
1943 "ref_to_list: %cE, ref_from_list: %cE\n",
1944 list_empty(&block->ref_to_list) ? ' ' : '!',
1945 list_empty(&block->ref_from_list) ? ' ' : '!');
1946 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1947 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1948 " @%llu (%s/%llu/%d), old(gen=%llu,"
1949 " objectid=%llu, type=%d, offset=%llu),"
1950 " new(gen=%llu),"
1951 " which is referenced by most recent superblock"
1952 " (superblockgen=%llu)!\n",
1953 btrfsic_get_block_type(state, block), bytenr,
1954 dev_state->name, dev_bytenr, block->mirror_num,
1955 block->generation,
1956 btrfs_disk_key_objectid(&block->disk_key),
1957 block->disk_key.type,
1958 btrfs_disk_key_offset(&block->disk_key),
1959 btrfs_stack_header_generation(
1960 (struct btrfs_header *) mapped_datav[0]),
1961 state->max_superblock_generation);
1962 btrfsic_dump_tree(state);
1963 }
1964
1965 if (!block->is_iodone && !block->never_written) {
1966 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1967 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1968 " which is not yet iodone!\n",
1969 btrfsic_get_block_type(state, block), bytenr,
1970 dev_state->name, dev_bytenr, block->mirror_num,
1971 block->generation,
1972 btrfs_stack_header_generation(
1973 (struct btrfs_header *)
1974 mapped_datav[0]));
1975 /* it would not be safe to go on */
1976 btrfsic_dump_tree(state);
1977 goto continue_loop;
1978 }
1979
1980 /*
1981 * Clear all references of this block. Do not free
1982 * the block itself even if is not referenced anymore
1983 * because it still carries valueable information
1984 * like whether it was ever written and IO completed.
1985 */
1986 list_for_each_safe(elem_ref_to, tmp_ref_to,
1987 &block->ref_to_list) {
1988 struct btrfsic_block_link *const l =
1989 list_entry(elem_ref_to,
1990 struct btrfsic_block_link,
1991 node_ref_to);
1992
1993 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1994 btrfsic_print_rem_link(state, l);
1995 l->ref_cnt--;
1996 if (0 == l->ref_cnt) {
1997 list_del(&l->node_ref_to);
1998 list_del(&l->node_ref_from);
1999 btrfsic_block_link_hashtable_remove(l);
2000 btrfsic_block_link_free(l);
2001 }
2002 }
2003
2004 if (block->is_superblock)
2005 ret = btrfsic_map_superblock(state, bytenr,
2006 processed_len,
2007 bdev, &block_ctx);
2008 else
2009 ret = btrfsic_map_block(state, bytenr, processed_len,
2010 &block_ctx, 0);
2011 if (ret) {
2012 printk(KERN_INFO
2013 "btrfsic: btrfsic_map_block(root @%llu)"
2014 " failed!\n", bytenr);
2015 goto continue_loop;
2016 }
2017 block_ctx.datav = mapped_datav;
2018 /* the following is required in case of writes to mirrors,
2019 * use the same that was used for the lookup */
2020 block_ctx.dev = dev_state;
2021 block_ctx.dev_bytenr = dev_bytenr;
2022
2023 if (is_metadata || state->include_extent_data) {
2024 block->never_written = 0;
2025 block->iodone_w_error = 0;
2026 if (NULL != bio) {
2027 block->is_iodone = 0;
2028 BUG_ON(NULL == bio_is_patched);
2029 if (!*bio_is_patched) {
2030 block->orig_bio_bh_private =
2031 bio->bi_private;
2032 block->orig_bio_bh_end_io.bio =
2033 bio->bi_end_io;
2034 block->next_in_same_bio = NULL;
2035 bio->bi_private = block;
2036 bio->bi_end_io = btrfsic_bio_end_io;
2037 *bio_is_patched = 1;
2038 } else {
2039 struct btrfsic_block *chained_block =
2040 (struct btrfsic_block *)
2041 bio->bi_private;
2042
2043 BUG_ON(NULL == chained_block);
2044 block->orig_bio_bh_private =
2045 chained_block->orig_bio_bh_private;
2046 block->orig_bio_bh_end_io.bio =
2047 chained_block->orig_bio_bh_end_io.
2048 bio;
2049 block->next_in_same_bio = chained_block;
2050 bio->bi_private = block;
2051 }
2052 } else if (NULL != bh) {
2053 block->is_iodone = 0;
2054 block->orig_bio_bh_private = bh->b_private;
2055 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2056 block->next_in_same_bio = NULL;
2057 bh->b_private = block;
2058 bh->b_end_io = btrfsic_bh_end_io;
2059 } else {
2060 block->is_iodone = 1;
2061 block->orig_bio_bh_private = NULL;
2062 block->orig_bio_bh_end_io.bio = NULL;
2063 block->next_in_same_bio = NULL;
2064 }
2065 }
2066
2067 block->flush_gen = dev_state->last_flush_gen + 1;
2068 block->submit_bio_bh_rw = submit_bio_bh_rw;
2069 if (is_metadata) {
2070 block->logical_bytenr = bytenr;
2071 block->is_metadata = 1;
2072 if (block->is_superblock) {
2073 BUG_ON(PAGE_CACHE_SIZE !=
2074 BTRFS_SUPER_INFO_SIZE);
2075 ret = btrfsic_process_written_superblock(
2076 state,
2077 block,
2078 (struct btrfs_super_block *)
2079 mapped_datav[0]);
2080 if (state->print_mask &
2081 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2082 printk(KERN_INFO
2083 "[after new superblock is written]:\n");
2084 btrfsic_dump_tree_sub(state, block, 0);
2085 }
2086 } else {
2087 block->mirror_num = 0; /* unknown */
2088 ret = btrfsic_process_metablock(
2089 state,
2090 block,
2091 &block_ctx,
2092 0, 0);
2093 }
2094 if (ret)
2095 printk(KERN_INFO
2096 "btrfsic: btrfsic_process_metablock"
2097 "(root @%llu) failed!\n",
2098 dev_bytenr);
2099 } else {
2100 block->is_metadata = 0;
2101 block->mirror_num = 0; /* unknown */
2102 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2103 if (!state->include_extent_data
2104 && list_empty(&block->ref_from_list)) {
2105 /*
2106 * disk block is overwritten with extent
2107 * data (not meta data) and we are configured
2108 * to not include extent data: take the
2109 * chance and free the block's memory
2110 */
2111 btrfsic_block_hashtable_remove(block);
2112 list_del(&block->all_blocks_node);
2113 btrfsic_block_free(block);
2114 }
2115 }
2116 btrfsic_release_block_ctx(&block_ctx);
2117 } else {
2118 /* block has not been found in hash table */
2119 u64 bytenr;
2120
2121 if (!is_metadata) {
2122 processed_len = state->datablock_size;
2123 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2124 printk(KERN_INFO "Written block (%s/%llu/?)"
2125 " !found in hash table, D.\n",
2126 dev_state->name, dev_bytenr);
2127 if (!state->include_extent_data) {
2128 /* ignore that written D block */
2129 goto continue_loop;
2130 }
2131
2132 /* this is getting ugly for the
2133 * include_extent_data case... */
2134 bytenr = 0; /* unknown */
2135 block_ctx.start = bytenr;
2136 block_ctx.len = processed_len;
2137 block_ctx.mem_to_free = NULL;
2138 block_ctx.pagev = NULL;
2139 } else {
2140 processed_len = state->metablock_size;
2141 bytenr = btrfs_stack_header_bytenr(
2142 (struct btrfs_header *)
2143 mapped_datav[0]);
2144 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2145 dev_bytenr);
2146 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2147 printk(KERN_INFO
2148 "Written block @%llu (%s/%llu/?)"
2149 " !found in hash table, M.\n",
2150 bytenr, dev_state->name, dev_bytenr);
2151
2152 ret = btrfsic_map_block(state, bytenr, processed_len,
2153 &block_ctx, 0);
2154 if (ret) {
2155 printk(KERN_INFO
2156 "btrfsic: btrfsic_map_block(root @%llu)"
2157 " failed!\n",
2158 dev_bytenr);
2159 goto continue_loop;
2160 }
2161 }
2162 block_ctx.datav = mapped_datav;
2163 /* the following is required in case of writes to mirrors,
2164 * use the same that was used for the lookup */
2165 block_ctx.dev = dev_state;
2166 block_ctx.dev_bytenr = dev_bytenr;
2167
2168 block = btrfsic_block_alloc();
2169 if (NULL == block) {
2170 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2171 btrfsic_release_block_ctx(&block_ctx);
2172 goto continue_loop;
2173 }
2174 block->dev_state = dev_state;
2175 block->dev_bytenr = dev_bytenr;
2176 block->logical_bytenr = bytenr;
2177 block->is_metadata = is_metadata;
2178 block->never_written = 0;
2179 block->iodone_w_error = 0;
2180 block->mirror_num = 0; /* unknown */
2181 block->flush_gen = dev_state->last_flush_gen + 1;
2182 block->submit_bio_bh_rw = submit_bio_bh_rw;
2183 if (NULL != bio) {
2184 block->is_iodone = 0;
2185 BUG_ON(NULL == bio_is_patched);
2186 if (!*bio_is_patched) {
2187 block->orig_bio_bh_private = bio->bi_private;
2188 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2189 block->next_in_same_bio = NULL;
2190 bio->bi_private = block;
2191 bio->bi_end_io = btrfsic_bio_end_io;
2192 *bio_is_patched = 1;
2193 } else {
2194 struct btrfsic_block *chained_block =
2195 (struct btrfsic_block *)
2196 bio->bi_private;
2197
2198 BUG_ON(NULL == chained_block);
2199 block->orig_bio_bh_private =
2200 chained_block->orig_bio_bh_private;
2201 block->orig_bio_bh_end_io.bio =
2202 chained_block->orig_bio_bh_end_io.bio;
2203 block->next_in_same_bio = chained_block;
2204 bio->bi_private = block;
2205 }
2206 } else if (NULL != bh) {
2207 block->is_iodone = 0;
2208 block->orig_bio_bh_private = bh->b_private;
2209 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2210 block->next_in_same_bio = NULL;
2211 bh->b_private = block;
2212 bh->b_end_io = btrfsic_bh_end_io;
2213 } else {
2214 block->is_iodone = 1;
2215 block->orig_bio_bh_private = NULL;
2216 block->orig_bio_bh_end_io.bio = NULL;
2217 block->next_in_same_bio = NULL;
2218 }
2219 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2220 printk(KERN_INFO
2221 "New written %c-block @%llu (%s/%llu/%d)\n",
2222 is_metadata ? 'M' : 'D',
2223 block->logical_bytenr, block->dev_state->name,
2224 block->dev_bytenr, block->mirror_num);
2225 list_add(&block->all_blocks_node, &state->all_blocks_list);
2226 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2227
2228 if (is_metadata) {
2229 ret = btrfsic_process_metablock(state, block,
2230 &block_ctx, 0, 0);
2231 if (ret)
2232 printk(KERN_INFO
2233 "btrfsic: process_metablock(root @%llu)"
2234 " failed!\n",
2235 dev_bytenr);
2236 }
2237 btrfsic_release_block_ctx(&block_ctx);
2238 }
2239
2240continue_loop:
2241 BUG_ON(!processed_len);
2242 dev_bytenr += processed_len;
2243 mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2244 num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2245 goto again;
2246}
2247
2248static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2249{
2250 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2251 int iodone_w_error;
2252
2253 /* mutex is not held! This is not save if IO is not yet completed
2254 * on umount */
2255 iodone_w_error = 0;
2256 if (bio_error_status)
2257 iodone_w_error = 1;
2258
2259 BUG_ON(NULL == block);
2260 bp->bi_private = block->orig_bio_bh_private;
2261 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2262
2263 do {
2264 struct btrfsic_block *next_block;
2265 struct btrfsic_dev_state *const dev_state = block->dev_state;
2266
2267 if ((dev_state->state->print_mask &
2268 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2269 printk(KERN_INFO
2270 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2271 bio_error_status,
2272 btrfsic_get_block_type(dev_state->state, block),
2273 block->logical_bytenr, dev_state->name,
2274 block->dev_bytenr, block->mirror_num);
2275 next_block = block->next_in_same_bio;
2276 block->iodone_w_error = iodone_w_error;
2277 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2278 dev_state->last_flush_gen++;
2279 if ((dev_state->state->print_mask &
2280 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2281 printk(KERN_INFO
2282 "bio_end_io() new %s flush_gen=%llu\n",
2283 dev_state->name,
2284 dev_state->last_flush_gen);
2285 }
2286 if (block->submit_bio_bh_rw & REQ_FUA)
2287 block->flush_gen = 0; /* FUA completed means block is
2288 * on disk */
2289 block->is_iodone = 1; /* for FLUSH, this releases the block */
2290 block = next_block;
2291 } while (NULL != block);
2292
2293 bp->bi_end_io(bp, bio_error_status);
2294}
2295
2296static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2297{
2298 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2299 int iodone_w_error = !uptodate;
2300 struct btrfsic_dev_state *dev_state;
2301
2302 BUG_ON(NULL == block);
2303 dev_state = block->dev_state;
2304 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2305 printk(KERN_INFO
2306 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2307 iodone_w_error,
2308 btrfsic_get_block_type(dev_state->state, block),
2309 block->logical_bytenr, block->dev_state->name,
2310 block->dev_bytenr, block->mirror_num);
2311
2312 block->iodone_w_error = iodone_w_error;
2313 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2314 dev_state->last_flush_gen++;
2315 if ((dev_state->state->print_mask &
2316 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2317 printk(KERN_INFO
2318 "bh_end_io() new %s flush_gen=%llu\n",
2319 dev_state->name, dev_state->last_flush_gen);
2320 }
2321 if (block->submit_bio_bh_rw & REQ_FUA)
2322 block->flush_gen = 0; /* FUA completed means block is on disk */
2323
2324 bh->b_private = block->orig_bio_bh_private;
2325 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2326 block->is_iodone = 1; /* for FLUSH, this releases the block */
2327 bh->b_end_io(bh, uptodate);
2328}
2329
2330static int btrfsic_process_written_superblock(
2331 struct btrfsic_state *state,
2332 struct btrfsic_block *const superblock,
2333 struct btrfs_super_block *const super_hdr)
2334{
2335 int pass;
2336
2337 superblock->generation = btrfs_super_generation(super_hdr);
2338 if (!(superblock->generation > state->max_superblock_generation ||
2339 0 == state->max_superblock_generation)) {
2340 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2341 printk(KERN_INFO
2342 "btrfsic: superblock @%llu (%s/%llu/%d)"
2343 " with old gen %llu <= %llu\n",
2344 superblock->logical_bytenr,
2345 superblock->dev_state->name,
2346 superblock->dev_bytenr, superblock->mirror_num,
2347 btrfs_super_generation(super_hdr),
2348 state->max_superblock_generation);
2349 } else {
2350 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2351 printk(KERN_INFO
2352 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2353 " with new gen %llu > %llu\n",
2354 superblock->logical_bytenr,
2355 superblock->dev_state->name,
2356 superblock->dev_bytenr, superblock->mirror_num,
2357 btrfs_super_generation(super_hdr),
2358 state->max_superblock_generation);
2359
2360 state->max_superblock_generation =
2361 btrfs_super_generation(super_hdr);
2362 state->latest_superblock = superblock;
2363 }
2364
2365 for (pass = 0; pass < 3; pass++) {
2366 int ret;
2367 u64 next_bytenr;
2368 struct btrfsic_block *next_block;
2369 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2370 struct btrfsic_block_link *l;
2371 int num_copies;
2372 int mirror_num;
2373 const char *additional_string = NULL;
2374 struct btrfs_disk_key tmp_disk_key = {0};
2375
2376 btrfs_set_disk_key_objectid(&tmp_disk_key,
2377 BTRFS_ROOT_ITEM_KEY);
2378 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2379
2380 switch (pass) {
2381 case 0:
2382 btrfs_set_disk_key_objectid(&tmp_disk_key,
2383 BTRFS_ROOT_TREE_OBJECTID);
2384 additional_string = "root ";
2385 next_bytenr = btrfs_super_root(super_hdr);
2386 if (state->print_mask &
2387 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2388 printk(KERN_INFO "root@%llu\n", next_bytenr);
2389 break;
2390 case 1:
2391 btrfs_set_disk_key_objectid(&tmp_disk_key,
2392 BTRFS_CHUNK_TREE_OBJECTID);
2393 additional_string = "chunk ";
2394 next_bytenr = btrfs_super_chunk_root(super_hdr);
2395 if (state->print_mask &
2396 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2397 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2398 break;
2399 case 2:
2400 btrfs_set_disk_key_objectid(&tmp_disk_key,
2401 BTRFS_TREE_LOG_OBJECTID);
2402 additional_string = "log ";
2403 next_bytenr = btrfs_super_log_root(super_hdr);
2404 if (0 == next_bytenr)
2405 continue;
2406 if (state->print_mask &
2407 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2408 printk(KERN_INFO "log@%llu\n", next_bytenr);
2409 break;
2410 }
2411
2412 num_copies =
2413 btrfs_num_copies(state->root->fs_info,
2414 next_bytenr, BTRFS_SUPER_INFO_SIZE);
2415 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2416 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2417 next_bytenr, num_copies);
2418 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2419 int was_created;
2420
2421 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2422 printk(KERN_INFO
2423 "btrfsic_process_written_superblock("
2424 "mirror_num=%d)\n", mirror_num);
2425 ret = btrfsic_map_block(state, next_bytenr,
2426 BTRFS_SUPER_INFO_SIZE,
2427 &tmp_next_block_ctx,
2428 mirror_num);
2429 if (ret) {
2430 printk(KERN_INFO
2431 "btrfsic: btrfsic_map_block(@%llu,"
2432 " mirror=%d) failed!\n",
2433 next_bytenr, mirror_num);
2434 return -1;
2435 }
2436
2437 next_block = btrfsic_block_lookup_or_add(
2438 state,
2439 &tmp_next_block_ctx,
2440 additional_string,
2441 1, 0, 1,
2442 mirror_num,
2443 &was_created);
2444 if (NULL == next_block) {
2445 printk(KERN_INFO
2446 "btrfsic: error, kmalloc failed!\n");
2447 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2448 return -1;
2449 }
2450
2451 next_block->disk_key = tmp_disk_key;
2452 if (was_created)
2453 next_block->generation =
2454 BTRFSIC_GENERATION_UNKNOWN;
2455 l = btrfsic_block_link_lookup_or_add(
2456 state,
2457 &tmp_next_block_ctx,
2458 next_block,
2459 superblock,
2460 BTRFSIC_GENERATION_UNKNOWN);
2461 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2462 if (NULL == l)
2463 return -1;
2464 }
2465 }
2466
2467 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2468 btrfsic_dump_tree(state);
2469
2470 return 0;
2471}
2472
2473static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2474 struct btrfsic_block *const block,
2475 int recursion_level)
2476{
2477 struct list_head *elem_ref_to;
2478 int ret = 0;
2479
2480 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2481 /*
2482 * Note that this situation can happen and does not
2483 * indicate an error in regular cases. It happens
2484 * when disk blocks are freed and later reused.
2485 * The check-integrity module is not aware of any
2486 * block free operations, it just recognizes block
2487 * write operations. Therefore it keeps the linkage
2488 * information for a block until a block is
2489 * rewritten. This can temporarily cause incorrect
2490 * and even circular linkage informations. This
2491 * causes no harm unless such blocks are referenced
2492 * by the most recent super block.
2493 */
2494 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2495 printk(KERN_INFO
2496 "btrfsic: abort cyclic linkage (case 1).\n");
2497
2498 return ret;
2499 }
2500
2501 /*
2502 * This algorithm is recursive because the amount of used stack
2503 * space is very small and the max recursion depth is limited.
2504 */
2505 list_for_each(elem_ref_to, &block->ref_to_list) {
2506 const struct btrfsic_block_link *const l =
2507 list_entry(elem_ref_to, struct btrfsic_block_link,
2508 node_ref_to);
2509
2510 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2511 printk(KERN_INFO
2512 "rl=%d, %c @%llu (%s/%llu/%d)"
2513 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2514 recursion_level,
2515 btrfsic_get_block_type(state, block),
2516 block->logical_bytenr, block->dev_state->name,
2517 block->dev_bytenr, block->mirror_num,
2518 l->ref_cnt,
2519 btrfsic_get_block_type(state, l->block_ref_to),
2520 l->block_ref_to->logical_bytenr,
2521 l->block_ref_to->dev_state->name,
2522 l->block_ref_to->dev_bytenr,
2523 l->block_ref_to->mirror_num);
2524 if (l->block_ref_to->never_written) {
2525 printk(KERN_INFO "btrfs: attempt to write superblock"
2526 " which references block %c @%llu (%s/%llu/%d)"
2527 " which is never written!\n",
2528 btrfsic_get_block_type(state, l->block_ref_to),
2529 l->block_ref_to->logical_bytenr,
2530 l->block_ref_to->dev_state->name,
2531 l->block_ref_to->dev_bytenr,
2532 l->block_ref_to->mirror_num);
2533 ret = -1;
2534 } else if (!l->block_ref_to->is_iodone) {
2535 printk(KERN_INFO "btrfs: attempt to write superblock"
2536 " which references block %c @%llu (%s/%llu/%d)"
2537 " which is not yet iodone!\n",
2538 btrfsic_get_block_type(state, l->block_ref_to),
2539 l->block_ref_to->logical_bytenr,
2540 l->block_ref_to->dev_state->name,
2541 l->block_ref_to->dev_bytenr,
2542 l->block_ref_to->mirror_num);
2543 ret = -1;
2544 } else if (l->block_ref_to->iodone_w_error) {
2545 printk(KERN_INFO "btrfs: attempt to write superblock"
2546 " which references block %c @%llu (%s/%llu/%d)"
2547 " which has write error!\n",
2548 btrfsic_get_block_type(state, l->block_ref_to),
2549 l->block_ref_to->logical_bytenr,
2550 l->block_ref_to->dev_state->name,
2551 l->block_ref_to->dev_bytenr,
2552 l->block_ref_to->mirror_num);
2553 ret = -1;
2554 } else if (l->parent_generation !=
2555 l->block_ref_to->generation &&
2556 BTRFSIC_GENERATION_UNKNOWN !=
2557 l->parent_generation &&
2558 BTRFSIC_GENERATION_UNKNOWN !=
2559 l->block_ref_to->generation) {
2560 printk(KERN_INFO "btrfs: attempt to write superblock"
2561 " which references block %c @%llu (%s/%llu/%d)"
2562 " with generation %llu !="
2563 " parent generation %llu!\n",
2564 btrfsic_get_block_type(state, l->block_ref_to),
2565 l->block_ref_to->logical_bytenr,
2566 l->block_ref_to->dev_state->name,
2567 l->block_ref_to->dev_bytenr,
2568 l->block_ref_to->mirror_num,
2569 l->block_ref_to->generation,
2570 l->parent_generation);
2571 ret = -1;
2572 } else if (l->block_ref_to->flush_gen >
2573 l->block_ref_to->dev_state->last_flush_gen) {
2574 printk(KERN_INFO "btrfs: attempt to write superblock"
2575 " which references block %c @%llu (%s/%llu/%d)"
2576 " which is not flushed out of disk's write cache"
2577 " (block flush_gen=%llu,"
2578 " dev->flush_gen=%llu)!\n",
2579 btrfsic_get_block_type(state, l->block_ref_to),
2580 l->block_ref_to->logical_bytenr,
2581 l->block_ref_to->dev_state->name,
2582 l->block_ref_to->dev_bytenr,
2583 l->block_ref_to->mirror_num, block->flush_gen,
2584 l->block_ref_to->dev_state->last_flush_gen);
2585 ret = -1;
2586 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2587 l->block_ref_to,
2588 recursion_level +
2589 1)) {
2590 ret = -1;
2591 }
2592 }
2593
2594 return ret;
2595}
2596
2597static int btrfsic_is_block_ref_by_superblock(
2598 const struct btrfsic_state *state,
2599 const struct btrfsic_block *block,
2600 int recursion_level)
2601{
2602 struct list_head *elem_ref_from;
2603
2604 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2605 /* refer to comment at "abort cyclic linkage (case 1)" */
2606 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2607 printk(KERN_INFO
2608 "btrfsic: abort cyclic linkage (case 2).\n");
2609
2610 return 0;
2611 }
2612
2613 /*
2614 * This algorithm is recursive because the amount of used stack space
2615 * is very small and the max recursion depth is limited.
2616 */
2617 list_for_each(elem_ref_from, &block->ref_from_list) {
2618 const struct btrfsic_block_link *const l =
2619 list_entry(elem_ref_from, struct btrfsic_block_link,
2620 node_ref_from);
2621
2622 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2623 printk(KERN_INFO
2624 "rl=%d, %c @%llu (%s/%llu/%d)"
2625 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2626 recursion_level,
2627 btrfsic_get_block_type(state, block),
2628 block->logical_bytenr, block->dev_state->name,
2629 block->dev_bytenr, block->mirror_num,
2630 l->ref_cnt,
2631 btrfsic_get_block_type(state, l->block_ref_from),
2632 l->block_ref_from->logical_bytenr,
2633 l->block_ref_from->dev_state->name,
2634 l->block_ref_from->dev_bytenr,
2635 l->block_ref_from->mirror_num);
2636 if (l->block_ref_from->is_superblock &&
2637 state->latest_superblock->dev_bytenr ==
2638 l->block_ref_from->dev_bytenr &&
2639 state->latest_superblock->dev_state->bdev ==
2640 l->block_ref_from->dev_state->bdev)
2641 return 1;
2642 else if (btrfsic_is_block_ref_by_superblock(state,
2643 l->block_ref_from,
2644 recursion_level +
2645 1))
2646 return 1;
2647 }
2648
2649 return 0;
2650}
2651
2652static void btrfsic_print_add_link(const struct btrfsic_state *state,
2653 const struct btrfsic_block_link *l)
2654{
2655 printk(KERN_INFO
2656 "Add %u* link from %c @%llu (%s/%llu/%d)"
2657 " to %c @%llu (%s/%llu/%d).\n",
2658 l->ref_cnt,
2659 btrfsic_get_block_type(state, l->block_ref_from),
2660 l->block_ref_from->logical_bytenr,
2661 l->block_ref_from->dev_state->name,
2662 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2663 btrfsic_get_block_type(state, l->block_ref_to),
2664 l->block_ref_to->logical_bytenr,
2665 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2666 l->block_ref_to->mirror_num);
2667}
2668
2669static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2670 const struct btrfsic_block_link *l)
2671{
2672 printk(KERN_INFO
2673 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2674 " to %c @%llu (%s/%llu/%d).\n",
2675 l->ref_cnt,
2676 btrfsic_get_block_type(state, l->block_ref_from),
2677 l->block_ref_from->logical_bytenr,
2678 l->block_ref_from->dev_state->name,
2679 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2680 btrfsic_get_block_type(state, l->block_ref_to),
2681 l->block_ref_to->logical_bytenr,
2682 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2683 l->block_ref_to->mirror_num);
2684}
2685
2686static char btrfsic_get_block_type(const struct btrfsic_state *state,
2687 const struct btrfsic_block *block)
2688{
2689 if (block->is_superblock &&
2690 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2691 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2692 return 'S';
2693 else if (block->is_superblock)
2694 return 's';
2695 else if (block->is_metadata)
2696 return 'M';
2697 else
2698 return 'D';
2699}
2700
2701static void btrfsic_dump_tree(const struct btrfsic_state *state)
2702{
2703 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2704}
2705
2706static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2707 const struct btrfsic_block *block,
2708 int indent_level)
2709{
2710 struct list_head *elem_ref_to;
2711 int indent_add;
2712 static char buf[80];
2713 int cursor_position;
2714
2715 /*
2716 * Should better fill an on-stack buffer with a complete line and
2717 * dump it at once when it is time to print a newline character.
2718 */
2719
2720 /*
2721 * This algorithm is recursive because the amount of used stack space
2722 * is very small and the max recursion depth is limited.
2723 */
2724 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2725 btrfsic_get_block_type(state, block),
2726 block->logical_bytenr, block->dev_state->name,
2727 block->dev_bytenr, block->mirror_num);
2728 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2729 printk("[...]\n");
2730 return;
2731 }
2732 printk(buf);
2733 indent_level += indent_add;
2734 if (list_empty(&block->ref_to_list)) {
2735 printk("\n");
2736 return;
2737 }
2738 if (block->mirror_num > 1 &&
2739 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2740 printk(" [...]\n");
2741 return;
2742 }
2743
2744 cursor_position = indent_level;
2745 list_for_each(elem_ref_to, &block->ref_to_list) {
2746 const struct btrfsic_block_link *const l =
2747 list_entry(elem_ref_to, struct btrfsic_block_link,
2748 node_ref_to);
2749
2750 while (cursor_position < indent_level) {
2751 printk(" ");
2752 cursor_position++;
2753 }
2754 if (l->ref_cnt > 1)
2755 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2756 else
2757 indent_add = sprintf(buf, " --> ");
2758 if (indent_level + indent_add >
2759 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2760 printk("[...]\n");
2761 cursor_position = 0;
2762 continue;
2763 }
2764
2765 printk(buf);
2766
2767 btrfsic_dump_tree_sub(state, l->block_ref_to,
2768 indent_level + indent_add);
2769 cursor_position = 0;
2770 }
2771}
2772
2773static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2774 struct btrfsic_state *state,
2775 struct btrfsic_block_data_ctx *next_block_ctx,
2776 struct btrfsic_block *next_block,
2777 struct btrfsic_block *from_block,
2778 u64 parent_generation)
2779{
2780 struct btrfsic_block_link *l;
2781
2782 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2783 next_block_ctx->dev_bytenr,
2784 from_block->dev_state->bdev,
2785 from_block->dev_bytenr,
2786 &state->block_link_hashtable);
2787 if (NULL == l) {
2788 l = btrfsic_block_link_alloc();
2789 if (NULL == l) {
2790 printk(KERN_INFO
2791 "btrfsic: error, kmalloc" " failed!\n");
2792 return NULL;
2793 }
2794
2795 l->block_ref_to = next_block;
2796 l->block_ref_from = from_block;
2797 l->ref_cnt = 1;
2798 l->parent_generation = parent_generation;
2799
2800 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2801 btrfsic_print_add_link(state, l);
2802
2803 list_add(&l->node_ref_to, &from_block->ref_to_list);
2804 list_add(&l->node_ref_from, &next_block->ref_from_list);
2805
2806 btrfsic_block_link_hashtable_add(l,
2807 &state->block_link_hashtable);
2808 } else {
2809 l->ref_cnt++;
2810 l->parent_generation = parent_generation;
2811 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2812 btrfsic_print_add_link(state, l);
2813 }
2814
2815 return l;
2816}
2817
2818static struct btrfsic_block *btrfsic_block_lookup_or_add(
2819 struct btrfsic_state *state,
2820 struct btrfsic_block_data_ctx *block_ctx,
2821 const char *additional_string,
2822 int is_metadata,
2823 int is_iodone,
2824 int never_written,
2825 int mirror_num,
2826 int *was_created)
2827{
2828 struct btrfsic_block *block;
2829
2830 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2831 block_ctx->dev_bytenr,
2832 &state->block_hashtable);
2833 if (NULL == block) {
2834 struct btrfsic_dev_state *dev_state;
2835
2836 block = btrfsic_block_alloc();
2837 if (NULL == block) {
2838 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2839 return NULL;
2840 }
2841 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2842 if (NULL == dev_state) {
2843 printk(KERN_INFO
2844 "btrfsic: error, lookup dev_state failed!\n");
2845 btrfsic_block_free(block);
2846 return NULL;
2847 }
2848 block->dev_state = dev_state;
2849 block->dev_bytenr = block_ctx->dev_bytenr;
2850 block->logical_bytenr = block_ctx->start;
2851 block->is_metadata = is_metadata;
2852 block->is_iodone = is_iodone;
2853 block->never_written = never_written;
2854 block->mirror_num = mirror_num;
2855 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2856 printk(KERN_INFO
2857 "New %s%c-block @%llu (%s/%llu/%d)\n",
2858 additional_string,
2859 btrfsic_get_block_type(state, block),
2860 block->logical_bytenr, dev_state->name,
2861 block->dev_bytenr, mirror_num);
2862 list_add(&block->all_blocks_node, &state->all_blocks_list);
2863 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2864 if (NULL != was_created)
2865 *was_created = 1;
2866 } else {
2867 if (NULL != was_created)
2868 *was_created = 0;
2869 }
2870
2871 return block;
2872}
2873
2874static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2875 u64 bytenr,
2876 struct btrfsic_dev_state *dev_state,
2877 u64 dev_bytenr)
2878{
2879 int num_copies;
2880 int mirror_num;
2881 int ret;
2882 struct btrfsic_block_data_ctx block_ctx;
2883 int match = 0;
2884
2885 num_copies = btrfs_num_copies(state->root->fs_info,
2886 bytenr, state->metablock_size);
2887
2888 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2889 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2890 &block_ctx, mirror_num);
2891 if (ret) {
2892 printk(KERN_INFO "btrfsic:"
2893 " btrfsic_map_block(logical @%llu,"
2894 " mirror %d) failed!\n",
2895 bytenr, mirror_num);
2896 continue;
2897 }
2898
2899 if (dev_state->bdev == block_ctx.dev->bdev &&
2900 dev_bytenr == block_ctx.dev_bytenr) {
2901 match++;
2902 btrfsic_release_block_ctx(&block_ctx);
2903 break;
2904 }
2905 btrfsic_release_block_ctx(&block_ctx);
2906 }
2907
2908 if (WARN_ON(!match)) {
2909 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2910 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2911 " phys_bytenr=%llu)!\n",
2912 bytenr, dev_state->name, dev_bytenr);
2913 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2914 ret = btrfsic_map_block(state, bytenr,
2915 state->metablock_size,
2916 &block_ctx, mirror_num);
2917 if (ret)
2918 continue;
2919
2920 printk(KERN_INFO "Read logical bytenr @%llu maps to"
2921 " (%s/%llu/%d)\n",
2922 bytenr, block_ctx.dev->name,
2923 block_ctx.dev_bytenr, mirror_num);
2924 }
2925 }
2926}
2927
2928static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2929 struct block_device *bdev)
2930{
2931 struct btrfsic_dev_state *ds;
2932
2933 ds = btrfsic_dev_state_hashtable_lookup(bdev,
2934 &btrfsic_dev_state_hashtable);
2935 return ds;
2936}
2937
2938int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2939{
2940 struct btrfsic_dev_state *dev_state;
2941
2942 if (!btrfsic_is_initialized)
2943 return submit_bh(rw, bh);
2944
2945 mutex_lock(&btrfsic_mutex);
2946 /* since btrfsic_submit_bh() might also be called before
2947 * btrfsic_mount(), this might return NULL */
2948 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2949
2950 /* Only called to write the superblock (incl. FLUSH/FUA) */
2951 if (NULL != dev_state &&
2952 (rw & WRITE) && bh->b_size > 0) {
2953 u64 dev_bytenr;
2954
2955 dev_bytenr = 4096 * bh->b_blocknr;
2956 if (dev_state->state->print_mask &
2957 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2958 printk(KERN_INFO
2959 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2960 " size=%zu, data=%p, bdev=%p)\n",
2961 rw, (unsigned long long)bh->b_blocknr,
2962 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2963 btrfsic_process_written_block(dev_state, dev_bytenr,
2964 &bh->b_data, 1, NULL,
2965 NULL, bh, rw);
2966 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2967 if (dev_state->state->print_mask &
2968 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2969 printk(KERN_INFO
2970 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2971 rw, bh->b_bdev);
2972 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2973 if ((dev_state->state->print_mask &
2974 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2975 BTRFSIC_PRINT_MASK_VERBOSE)))
2976 printk(KERN_INFO
2977 "btrfsic_submit_bh(%s) with FLUSH"
2978 " but dummy block already in use"
2979 " (ignored)!\n",
2980 dev_state->name);
2981 } else {
2982 struct btrfsic_block *const block =
2983 &dev_state->dummy_block_for_bio_bh_flush;
2984
2985 block->is_iodone = 0;
2986 block->never_written = 0;
2987 block->iodone_w_error = 0;
2988 block->flush_gen = dev_state->last_flush_gen + 1;
2989 block->submit_bio_bh_rw = rw;
2990 block->orig_bio_bh_private = bh->b_private;
2991 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2992 block->next_in_same_bio = NULL;
2993 bh->b_private = block;
2994 bh->b_end_io = btrfsic_bh_end_io;
2995 }
2996 }
2997 mutex_unlock(&btrfsic_mutex);
2998 return submit_bh(rw, bh);
2999}
3000
3001static void __btrfsic_submit_bio(int rw, struct bio *bio)
3002{
3003 struct btrfsic_dev_state *dev_state;
3004
3005 if (!btrfsic_is_initialized)
3006 return;
3007
3008 mutex_lock(&btrfsic_mutex);
3009 /* since btrfsic_submit_bio() is also called before
3010 * btrfsic_mount(), this might return NULL */
3011 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3012 if (NULL != dev_state &&
3013 (rw & WRITE) && NULL != bio->bi_io_vec) {
3014 unsigned int i;
3015 u64 dev_bytenr;
3016 u64 cur_bytenr;
3017 int bio_is_patched;
3018 char **mapped_datav;
3019
3020 dev_bytenr = 512 * bio->bi_iter.bi_sector;
3021 bio_is_patched = 0;
3022 if (dev_state->state->print_mask &
3023 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3024 printk(KERN_INFO
3025 "submit_bio(rw=0x%x, bi_vcnt=%u,"
3026 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3027 rw, bio->bi_vcnt,
3028 (unsigned long long)bio->bi_iter.bi_sector,
3029 dev_bytenr, bio->bi_bdev);
3030
3031 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3032 GFP_NOFS);
3033 if (!mapped_datav)
3034 goto leave;
3035 cur_bytenr = dev_bytenr;
3036 for (i = 0; i < bio->bi_vcnt; i++) {
3037 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3038 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3039 if (!mapped_datav[i]) {
3040 while (i > 0) {
3041 i--;
3042 kunmap(bio->bi_io_vec[i].bv_page);
3043 }
3044 kfree(mapped_datav);
3045 goto leave;
3046 }
3047 if (dev_state->state->print_mask &
3048 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
3049 printk(KERN_INFO
3050 "#%u: bytenr=%llu, len=%u, offset=%u\n",
3051 i, cur_bytenr, bio->bi_io_vec[i].bv_len,
3052 bio->bi_io_vec[i].bv_offset);
3053 cur_bytenr += bio->bi_io_vec[i].bv_len;
3054 }
3055 btrfsic_process_written_block(dev_state, dev_bytenr,
3056 mapped_datav, bio->bi_vcnt,
3057 bio, &bio_is_patched,
3058 NULL, rw);
3059 while (i > 0) {
3060 i--;
3061 kunmap(bio->bi_io_vec[i].bv_page);
3062 }
3063 kfree(mapped_datav);
3064 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3065 if (dev_state->state->print_mask &
3066 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3067 printk(KERN_INFO
3068 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3069 rw, bio->bi_bdev);
3070 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3071 if ((dev_state->state->print_mask &
3072 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3073 BTRFSIC_PRINT_MASK_VERBOSE)))
3074 printk(KERN_INFO
3075 "btrfsic_submit_bio(%s) with FLUSH"
3076 " but dummy block already in use"
3077 " (ignored)!\n",
3078 dev_state->name);
3079 } else {
3080 struct btrfsic_block *const block =
3081 &dev_state->dummy_block_for_bio_bh_flush;
3082
3083 block->is_iodone = 0;
3084 block->never_written = 0;
3085 block->iodone_w_error = 0;
3086 block->flush_gen = dev_state->last_flush_gen + 1;
3087 block->submit_bio_bh_rw = rw;
3088 block->orig_bio_bh_private = bio->bi_private;
3089 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3090 block->next_in_same_bio = NULL;
3091 bio->bi_private = block;
3092 bio->bi_end_io = btrfsic_bio_end_io;
3093 }
3094 }
3095leave:
3096 mutex_unlock(&btrfsic_mutex);
3097}
3098
3099void btrfsic_submit_bio(int rw, struct bio *bio)
3100{
3101 __btrfsic_submit_bio(rw, bio);
3102 submit_bio(rw, bio);
3103}
3104
3105int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3106{
3107 __btrfsic_submit_bio(rw, bio);
3108 return submit_bio_wait(rw, bio);
3109}
3110
3111int btrfsic_mount(struct btrfs_root *root,
3112 struct btrfs_fs_devices *fs_devices,
3113 int including_extent_data, u32 print_mask)
3114{
3115 int ret;
3116 struct btrfsic_state *state;
3117 struct list_head *dev_head = &fs_devices->devices;
3118 struct btrfs_device *device;
3119
3120 if (root->nodesize != root->leafsize) {
3121 printk(KERN_INFO
3122 "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3123 root->nodesize, root->leafsize);
3124 return -1;
3125 }
3126 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3127 printk(KERN_INFO
3128 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3129 root->nodesize, PAGE_CACHE_SIZE);
3130 return -1;
3131 }
3132 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3133 printk(KERN_INFO
3134 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3135 root->leafsize, PAGE_CACHE_SIZE);
3136 return -1;
3137 }
3138 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3139 printk(KERN_INFO
3140 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3141 root->sectorsize, PAGE_CACHE_SIZE);
3142 return -1;
3143 }
3144 state = kzalloc(sizeof(*state), GFP_NOFS);
3145 if (NULL == state) {
3146 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3147 return -1;
3148 }
3149
3150 if (!btrfsic_is_initialized) {
3151 mutex_init(&btrfsic_mutex);
3152 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3153 btrfsic_is_initialized = 1;
3154 }
3155 mutex_lock(&btrfsic_mutex);
3156 state->root = root;
3157 state->print_mask = print_mask;
3158 state->include_extent_data = including_extent_data;
3159 state->csum_size = 0;
3160 state->metablock_size = root->nodesize;
3161 state->datablock_size = root->sectorsize;
3162 INIT_LIST_HEAD(&state->all_blocks_list);
3163 btrfsic_block_hashtable_init(&state->block_hashtable);
3164 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3165 state->max_superblock_generation = 0;
3166 state->latest_superblock = NULL;
3167
3168 list_for_each_entry(device, dev_head, dev_list) {
3169 struct btrfsic_dev_state *ds;
3170 char *p;
3171
3172 if (!device->bdev || !device->name)
3173 continue;
3174
3175 ds = btrfsic_dev_state_alloc();
3176 if (NULL == ds) {
3177 printk(KERN_INFO
3178 "btrfs check-integrity: kmalloc() failed!\n");
3179 mutex_unlock(&btrfsic_mutex);
3180 return -1;
3181 }
3182 ds->bdev = device->bdev;
3183 ds->state = state;
3184 bdevname(ds->bdev, ds->name);
3185 ds->name[BDEVNAME_SIZE - 1] = '\0';
3186 for (p = ds->name; *p != '\0'; p++);
3187 while (p > ds->name && *p != '/')
3188 p--;
3189 if (*p == '/')
3190 p++;
3191 strlcpy(ds->name, p, sizeof(ds->name));
3192 btrfsic_dev_state_hashtable_add(ds,
3193 &btrfsic_dev_state_hashtable);
3194 }
3195
3196 ret = btrfsic_process_superblock(state, fs_devices);
3197 if (0 != ret) {
3198 mutex_unlock(&btrfsic_mutex);
3199 btrfsic_unmount(root, fs_devices);
3200 return ret;
3201 }
3202
3203 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3204 btrfsic_dump_database(state);
3205 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3206 btrfsic_dump_tree(state);
3207
3208 mutex_unlock(&btrfsic_mutex);
3209 return 0;
3210}
3211
3212void btrfsic_unmount(struct btrfs_root *root,
3213 struct btrfs_fs_devices *fs_devices)
3214{
3215 struct list_head *elem_all;
3216 struct list_head *tmp_all;
3217 struct btrfsic_state *state;
3218 struct list_head *dev_head = &fs_devices->devices;
3219 struct btrfs_device *device;
3220
3221 if (!btrfsic_is_initialized)
3222 return;
3223
3224 mutex_lock(&btrfsic_mutex);
3225
3226 state = NULL;
3227 list_for_each_entry(device, dev_head, dev_list) {
3228 struct btrfsic_dev_state *ds;
3229
3230 if (!device->bdev || !device->name)
3231 continue;
3232
3233 ds = btrfsic_dev_state_hashtable_lookup(
3234 device->bdev,
3235 &btrfsic_dev_state_hashtable);
3236 if (NULL != ds) {
3237 state = ds->state;
3238 btrfsic_dev_state_hashtable_remove(ds);
3239 btrfsic_dev_state_free(ds);
3240 }
3241 }
3242
3243 if (NULL == state) {
3244 printk(KERN_INFO
3245 "btrfsic: error, cannot find state information"
3246 " on umount!\n");
3247 mutex_unlock(&btrfsic_mutex);
3248 return;
3249 }
3250
3251 /*
3252 * Don't care about keeping the lists' state up to date,
3253 * just free all memory that was allocated dynamically.
3254 * Free the blocks and the block_links.
3255 */
3256 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3257 struct btrfsic_block *const b_all =
3258 list_entry(elem_all, struct btrfsic_block,
3259 all_blocks_node);
3260 struct list_head *elem_ref_to;
3261 struct list_head *tmp_ref_to;
3262
3263 list_for_each_safe(elem_ref_to, tmp_ref_to,
3264 &b_all->ref_to_list) {
3265 struct btrfsic_block_link *const l =
3266 list_entry(elem_ref_to,
3267 struct btrfsic_block_link,
3268 node_ref_to);
3269
3270 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3271 btrfsic_print_rem_link(state, l);
3272
3273 l->ref_cnt--;
3274 if (0 == l->ref_cnt)
3275 btrfsic_block_link_free(l);
3276 }
3277
3278 if (b_all->is_iodone || b_all->never_written)
3279 btrfsic_block_free(b_all);
3280 else
3281 printk(KERN_INFO "btrfs: attempt to free %c-block"
3282 " @%llu (%s/%llu/%d) on umount which is"
3283 " not yet iodone!\n",
3284 btrfsic_get_block_type(state, b_all),
3285 b_all->logical_bytenr, b_all->dev_state->name,
3286 b_all->dev_bytenr, b_all->mirror_num);
3287 }
3288
3289 mutex_unlock(&btrfsic_mutex);
3290
3291 kfree(state);
3292}
1/*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19/*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and a FLUSH request to the device where
41 * these blocks are located was received and completed.
42 * 2b. All referenced blocks need to have a generation
43 * number which is equal to the parent's number.
44 *
45 * One issue that was found using this module was that the log
46 * tree on disk became temporarily corrupted because disk blocks
47 * that had been in use for the log tree had been freed and
48 * reused too early, while being referenced by the written super
49 * block.
50 *
51 * The search term in the kernel log that can be used to filter
52 * on the existence of detected integrity issues is
53 * "btrfs: attempt".
54 *
55 * The integrity check is enabled via mount options. These
56 * mount options are only supported if the integrity check
57 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
58 *
59 * Example #1, apply integrity checks to all metadata:
60 * mount /dev/sdb1 /mnt -o check_int
61 *
62 * Example #2, apply integrity checks to all metadata and
63 * to data extents:
64 * mount /dev/sdb1 /mnt -o check_int_data
65 *
66 * Example #3, apply integrity checks to all metadata and dump
67 * the tree that the super block references to kernel messages
68 * each time after a super block was written:
69 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
70 *
71 * If the integrity check tool is included and activated in
72 * the mount options, plenty of kernel memory is used, and
73 * plenty of additional CPU cycles are spent. Enabling this
74 * functionality is not intended for normal use. In most
75 * cases, unless you are a btrfs developer who needs to verify
76 * the integrity of (super)-block write requests, do not
77 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
78 * include and compile the integrity check tool.
79 */
80
81#include <linux/sched.h>
82#include <linux/slab.h>
83#include <linux/buffer_head.h>
84#include <linux/mutex.h>
85#include <linux/crc32c.h>
86#include <linux/genhd.h>
87#include <linux/blkdev.h>
88#include "ctree.h"
89#include "disk-io.h"
90#include "transaction.h"
91#include "extent_io.h"
92#include "volumes.h"
93#include "print-tree.h"
94#include "locking.h"
95#include "check-integrity.h"
96#include "rcu-string.h"
97
98#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
99#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
100#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
101#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
102#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
103#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
104#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
105#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
106 * excluding " [...]" */
107#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
108
109/*
110 * The definition of the bitmask fields for the print_mask.
111 * They are specified with the mount option check_integrity_print_mask.
112 */
113#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
114#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
115#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
116#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
117#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
118#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
119#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
120#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
121#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
122#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
123#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
124#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
125#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
126
127struct btrfsic_dev_state;
128struct btrfsic_state;
129
130struct btrfsic_block {
131 u32 magic_num; /* only used for debug purposes */
132 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
133 unsigned int is_superblock:1; /* if it is one of the superblocks */
134 unsigned int is_iodone:1; /* if is done by lower subsystem */
135 unsigned int iodone_w_error:1; /* error was indicated to endio */
136 unsigned int never_written:1; /* block was added because it was
137 * referenced, not because it was
138 * written */
139 unsigned int mirror_num:2; /* large enough to hold
140 * BTRFS_SUPER_MIRROR_MAX */
141 struct btrfsic_dev_state *dev_state;
142 u64 dev_bytenr; /* key, physical byte num on disk */
143 u64 logical_bytenr; /* logical byte num on disk */
144 u64 generation;
145 struct btrfs_disk_key disk_key; /* extra info to print in case of
146 * issues, will not always be correct */
147 struct list_head collision_resolving_node; /* list node */
148 struct list_head all_blocks_node; /* list node */
149
150 /* the following two lists contain block_link items */
151 struct list_head ref_to_list; /* list */
152 struct list_head ref_from_list; /* list */
153 struct btrfsic_block *next_in_same_bio;
154 void *orig_bio_bh_private;
155 union {
156 bio_end_io_t *bio;
157 bh_end_io_t *bh;
158 } orig_bio_bh_end_io;
159 int submit_bio_bh_rw;
160 u64 flush_gen; /* only valid if !never_written */
161};
162
163/*
164 * Elements of this type are allocated dynamically and required because
165 * each block object can refer to and can be ref from multiple blocks.
166 * The key to lookup them in the hashtable is the dev_bytenr of
167 * the block ref to plus the one from the block refered from.
168 * The fact that they are searchable via a hashtable and that a
169 * ref_cnt is maintained is not required for the btrfs integrity
170 * check algorithm itself, it is only used to make the output more
171 * beautiful in case that an error is detected (an error is defined
172 * as a write operation to a block while that block is still referenced).
173 */
174struct btrfsic_block_link {
175 u32 magic_num; /* only used for debug purposes */
176 u32 ref_cnt;
177 struct list_head node_ref_to; /* list node */
178 struct list_head node_ref_from; /* list node */
179 struct list_head collision_resolving_node; /* list node */
180 struct btrfsic_block *block_ref_to;
181 struct btrfsic_block *block_ref_from;
182 u64 parent_generation;
183};
184
185struct btrfsic_dev_state {
186 u32 magic_num; /* only used for debug purposes */
187 struct block_device *bdev;
188 struct btrfsic_state *state;
189 struct list_head collision_resolving_node; /* list node */
190 struct btrfsic_block dummy_block_for_bio_bh_flush;
191 u64 last_flush_gen;
192 char name[BDEVNAME_SIZE];
193};
194
195struct btrfsic_block_hashtable {
196 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
197};
198
199struct btrfsic_block_link_hashtable {
200 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
201};
202
203struct btrfsic_dev_state_hashtable {
204 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
205};
206
207struct btrfsic_block_data_ctx {
208 u64 start; /* virtual bytenr */
209 u64 dev_bytenr; /* physical bytenr on device */
210 u32 len;
211 struct btrfsic_dev_state *dev;
212 char **datav;
213 struct page **pagev;
214 void *mem_to_free;
215};
216
217/* This structure is used to implement recursion without occupying
218 * any stack space, refer to btrfsic_process_metablock() */
219struct btrfsic_stack_frame {
220 u32 magic;
221 u32 nr;
222 int error;
223 int i;
224 int limit_nesting;
225 int num_copies;
226 int mirror_num;
227 struct btrfsic_block *block;
228 struct btrfsic_block_data_ctx *block_ctx;
229 struct btrfsic_block *next_block;
230 struct btrfsic_block_data_ctx next_block_ctx;
231 struct btrfs_header *hdr;
232 struct btrfsic_stack_frame *prev;
233};
234
235/* Some state per mounted filesystem */
236struct btrfsic_state {
237 u32 print_mask;
238 int include_extent_data;
239 int csum_size;
240 struct list_head all_blocks_list;
241 struct btrfsic_block_hashtable block_hashtable;
242 struct btrfsic_block_link_hashtable block_link_hashtable;
243 struct btrfs_root *root;
244 u64 max_superblock_generation;
245 struct btrfsic_block *latest_superblock;
246 u32 metablock_size;
247 u32 datablock_size;
248};
249
250static void btrfsic_block_init(struct btrfsic_block *b);
251static struct btrfsic_block *btrfsic_block_alloc(void);
252static void btrfsic_block_free(struct btrfsic_block *b);
253static void btrfsic_block_link_init(struct btrfsic_block_link *n);
254static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
255static void btrfsic_block_link_free(struct btrfsic_block_link *n);
256static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
257static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
258static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
259static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
260static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
261 struct btrfsic_block_hashtable *h);
262static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
263static struct btrfsic_block *btrfsic_block_hashtable_lookup(
264 struct block_device *bdev,
265 u64 dev_bytenr,
266 struct btrfsic_block_hashtable *h);
267static void btrfsic_block_link_hashtable_init(
268 struct btrfsic_block_link_hashtable *h);
269static void btrfsic_block_link_hashtable_add(
270 struct btrfsic_block_link *l,
271 struct btrfsic_block_link_hashtable *h);
272static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
273static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
274 struct block_device *bdev_ref_to,
275 u64 dev_bytenr_ref_to,
276 struct block_device *bdev_ref_from,
277 u64 dev_bytenr_ref_from,
278 struct btrfsic_block_link_hashtable *h);
279static void btrfsic_dev_state_hashtable_init(
280 struct btrfsic_dev_state_hashtable *h);
281static void btrfsic_dev_state_hashtable_add(
282 struct btrfsic_dev_state *ds,
283 struct btrfsic_dev_state_hashtable *h);
284static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
285static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
286 struct block_device *bdev,
287 struct btrfsic_dev_state_hashtable *h);
288static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
289static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
290static int btrfsic_process_superblock(struct btrfsic_state *state,
291 struct btrfs_fs_devices *fs_devices);
292static int btrfsic_process_metablock(struct btrfsic_state *state,
293 struct btrfsic_block *block,
294 struct btrfsic_block_data_ctx *block_ctx,
295 int limit_nesting, int force_iodone_flag);
296static void btrfsic_read_from_block_data(
297 struct btrfsic_block_data_ctx *block_ctx,
298 void *dst, u32 offset, size_t len);
299static int btrfsic_create_link_to_next_block(
300 struct btrfsic_state *state,
301 struct btrfsic_block *block,
302 struct btrfsic_block_data_ctx
303 *block_ctx, u64 next_bytenr,
304 int limit_nesting,
305 struct btrfsic_block_data_ctx *next_block_ctx,
306 struct btrfsic_block **next_blockp,
307 int force_iodone_flag,
308 int *num_copiesp, int *mirror_nump,
309 struct btrfs_disk_key *disk_key,
310 u64 parent_generation);
311static int btrfsic_handle_extent_data(struct btrfsic_state *state,
312 struct btrfsic_block *block,
313 struct btrfsic_block_data_ctx *block_ctx,
314 u32 item_offset, int force_iodone_flag);
315static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
316 struct btrfsic_block_data_ctx *block_ctx_out,
317 int mirror_num);
318static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
319 u32 len, struct block_device *bdev,
320 struct btrfsic_block_data_ctx *block_ctx_out);
321static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
322static int btrfsic_read_block(struct btrfsic_state *state,
323 struct btrfsic_block_data_ctx *block_ctx);
324static void btrfsic_dump_database(struct btrfsic_state *state);
325static void btrfsic_complete_bio_end_io(struct bio *bio, int err);
326static int btrfsic_test_for_metadata(struct btrfsic_state *state,
327 char **datav, unsigned int num_pages);
328static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
329 u64 dev_bytenr, char **mapped_datav,
330 unsigned int num_pages,
331 struct bio *bio, int *bio_is_patched,
332 struct buffer_head *bh,
333 int submit_bio_bh_rw);
334static int btrfsic_process_written_superblock(
335 struct btrfsic_state *state,
336 struct btrfsic_block *const block,
337 struct btrfs_super_block *const super_hdr);
338static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
339static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
340static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
341 const struct btrfsic_block *block,
342 int recursion_level);
343static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
344 struct btrfsic_block *const block,
345 int recursion_level);
346static void btrfsic_print_add_link(const struct btrfsic_state *state,
347 const struct btrfsic_block_link *l);
348static void btrfsic_print_rem_link(const struct btrfsic_state *state,
349 const struct btrfsic_block_link *l);
350static char btrfsic_get_block_type(const struct btrfsic_state *state,
351 const struct btrfsic_block *block);
352static void btrfsic_dump_tree(const struct btrfsic_state *state);
353static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
354 const struct btrfsic_block *block,
355 int indent_level);
356static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
357 struct btrfsic_state *state,
358 struct btrfsic_block_data_ctx *next_block_ctx,
359 struct btrfsic_block *next_block,
360 struct btrfsic_block *from_block,
361 u64 parent_generation);
362static struct btrfsic_block *btrfsic_block_lookup_or_add(
363 struct btrfsic_state *state,
364 struct btrfsic_block_data_ctx *block_ctx,
365 const char *additional_string,
366 int is_metadata,
367 int is_iodone,
368 int never_written,
369 int mirror_num,
370 int *was_created);
371static int btrfsic_process_superblock_dev_mirror(
372 struct btrfsic_state *state,
373 struct btrfsic_dev_state *dev_state,
374 struct btrfs_device *device,
375 int superblock_mirror_num,
376 struct btrfsic_dev_state **selected_dev_state,
377 struct btrfs_super_block *selected_super);
378static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
379 struct block_device *bdev);
380static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
381 u64 bytenr,
382 struct btrfsic_dev_state *dev_state,
383 u64 dev_bytenr);
384
385static struct mutex btrfsic_mutex;
386static int btrfsic_is_initialized;
387static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
388
389
390static void btrfsic_block_init(struct btrfsic_block *b)
391{
392 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
393 b->dev_state = NULL;
394 b->dev_bytenr = 0;
395 b->logical_bytenr = 0;
396 b->generation = BTRFSIC_GENERATION_UNKNOWN;
397 b->disk_key.objectid = 0;
398 b->disk_key.type = 0;
399 b->disk_key.offset = 0;
400 b->is_metadata = 0;
401 b->is_superblock = 0;
402 b->is_iodone = 0;
403 b->iodone_w_error = 0;
404 b->never_written = 0;
405 b->mirror_num = 0;
406 b->next_in_same_bio = NULL;
407 b->orig_bio_bh_private = NULL;
408 b->orig_bio_bh_end_io.bio = NULL;
409 INIT_LIST_HEAD(&b->collision_resolving_node);
410 INIT_LIST_HEAD(&b->all_blocks_node);
411 INIT_LIST_HEAD(&b->ref_to_list);
412 INIT_LIST_HEAD(&b->ref_from_list);
413 b->submit_bio_bh_rw = 0;
414 b->flush_gen = 0;
415}
416
417static struct btrfsic_block *btrfsic_block_alloc(void)
418{
419 struct btrfsic_block *b;
420
421 b = kzalloc(sizeof(*b), GFP_NOFS);
422 if (NULL != b)
423 btrfsic_block_init(b);
424
425 return b;
426}
427
428static void btrfsic_block_free(struct btrfsic_block *b)
429{
430 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
431 kfree(b);
432}
433
434static void btrfsic_block_link_init(struct btrfsic_block_link *l)
435{
436 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
437 l->ref_cnt = 1;
438 INIT_LIST_HEAD(&l->node_ref_to);
439 INIT_LIST_HEAD(&l->node_ref_from);
440 INIT_LIST_HEAD(&l->collision_resolving_node);
441 l->block_ref_to = NULL;
442 l->block_ref_from = NULL;
443}
444
445static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
446{
447 struct btrfsic_block_link *l;
448
449 l = kzalloc(sizeof(*l), GFP_NOFS);
450 if (NULL != l)
451 btrfsic_block_link_init(l);
452
453 return l;
454}
455
456static void btrfsic_block_link_free(struct btrfsic_block_link *l)
457{
458 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
459 kfree(l);
460}
461
462static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
463{
464 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
465 ds->bdev = NULL;
466 ds->state = NULL;
467 ds->name[0] = '\0';
468 INIT_LIST_HEAD(&ds->collision_resolving_node);
469 ds->last_flush_gen = 0;
470 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
471 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
472 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
473}
474
475static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
476{
477 struct btrfsic_dev_state *ds;
478
479 ds = kzalloc(sizeof(*ds), GFP_NOFS);
480 if (NULL != ds)
481 btrfsic_dev_state_init(ds);
482
483 return ds;
484}
485
486static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
487{
488 BUG_ON(!(NULL == ds ||
489 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
490 kfree(ds);
491}
492
493static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
494{
495 int i;
496
497 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
498 INIT_LIST_HEAD(h->table + i);
499}
500
501static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
502 struct btrfsic_block_hashtable *h)
503{
504 const unsigned int hashval =
505 (((unsigned int)(b->dev_bytenr >> 16)) ^
506 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
507 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
508
509 list_add(&b->collision_resolving_node, h->table + hashval);
510}
511
512static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
513{
514 list_del(&b->collision_resolving_node);
515}
516
517static struct btrfsic_block *btrfsic_block_hashtable_lookup(
518 struct block_device *bdev,
519 u64 dev_bytenr,
520 struct btrfsic_block_hashtable *h)
521{
522 const unsigned int hashval =
523 (((unsigned int)(dev_bytenr >> 16)) ^
524 ((unsigned int)((uintptr_t)bdev))) &
525 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
526 struct list_head *elem;
527
528 list_for_each(elem, h->table + hashval) {
529 struct btrfsic_block *const b =
530 list_entry(elem, struct btrfsic_block,
531 collision_resolving_node);
532
533 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
534 return b;
535 }
536
537 return NULL;
538}
539
540static void btrfsic_block_link_hashtable_init(
541 struct btrfsic_block_link_hashtable *h)
542{
543 int i;
544
545 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
546 INIT_LIST_HEAD(h->table + i);
547}
548
549static void btrfsic_block_link_hashtable_add(
550 struct btrfsic_block_link *l,
551 struct btrfsic_block_link_hashtable *h)
552{
553 const unsigned int hashval =
554 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
555 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
556 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
557 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
558 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
559
560 BUG_ON(NULL == l->block_ref_to);
561 BUG_ON(NULL == l->block_ref_from);
562 list_add(&l->collision_resolving_node, h->table + hashval);
563}
564
565static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
566{
567 list_del(&l->collision_resolving_node);
568}
569
570static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
571 struct block_device *bdev_ref_to,
572 u64 dev_bytenr_ref_to,
573 struct block_device *bdev_ref_from,
574 u64 dev_bytenr_ref_from,
575 struct btrfsic_block_link_hashtable *h)
576{
577 const unsigned int hashval =
578 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
579 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
580 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
581 ((unsigned int)((uintptr_t)bdev_ref_from))) &
582 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
583 struct list_head *elem;
584
585 list_for_each(elem, h->table + hashval) {
586 struct btrfsic_block_link *const l =
587 list_entry(elem, struct btrfsic_block_link,
588 collision_resolving_node);
589
590 BUG_ON(NULL == l->block_ref_to);
591 BUG_ON(NULL == l->block_ref_from);
592 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
593 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
594 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
595 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
596 return l;
597 }
598
599 return NULL;
600}
601
602static void btrfsic_dev_state_hashtable_init(
603 struct btrfsic_dev_state_hashtable *h)
604{
605 int i;
606
607 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
608 INIT_LIST_HEAD(h->table + i);
609}
610
611static void btrfsic_dev_state_hashtable_add(
612 struct btrfsic_dev_state *ds,
613 struct btrfsic_dev_state_hashtable *h)
614{
615 const unsigned int hashval =
616 (((unsigned int)((uintptr_t)ds->bdev)) &
617 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
618
619 list_add(&ds->collision_resolving_node, h->table + hashval);
620}
621
622static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
623{
624 list_del(&ds->collision_resolving_node);
625}
626
627static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
628 struct block_device *bdev,
629 struct btrfsic_dev_state_hashtable *h)
630{
631 const unsigned int hashval =
632 (((unsigned int)((uintptr_t)bdev)) &
633 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
634 struct list_head *elem;
635
636 list_for_each(elem, h->table + hashval) {
637 struct btrfsic_dev_state *const ds =
638 list_entry(elem, struct btrfsic_dev_state,
639 collision_resolving_node);
640
641 if (ds->bdev == bdev)
642 return ds;
643 }
644
645 return NULL;
646}
647
648static int btrfsic_process_superblock(struct btrfsic_state *state,
649 struct btrfs_fs_devices *fs_devices)
650{
651 int ret = 0;
652 struct btrfs_super_block *selected_super;
653 struct list_head *dev_head = &fs_devices->devices;
654 struct btrfs_device *device;
655 struct btrfsic_dev_state *selected_dev_state = NULL;
656 int pass;
657
658 BUG_ON(NULL == state);
659 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
660 if (NULL == selected_super) {
661 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
662 return -1;
663 }
664
665 list_for_each_entry(device, dev_head, dev_list) {
666 int i;
667 struct btrfsic_dev_state *dev_state;
668
669 if (!device->bdev || !device->name)
670 continue;
671
672 dev_state = btrfsic_dev_state_lookup(device->bdev);
673 BUG_ON(NULL == dev_state);
674 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
675 ret = btrfsic_process_superblock_dev_mirror(
676 state, dev_state, device, i,
677 &selected_dev_state, selected_super);
678 if (0 != ret && 0 == i) {
679 kfree(selected_super);
680 return ret;
681 }
682 }
683 }
684
685 if (NULL == state->latest_superblock) {
686 printk(KERN_INFO "btrfsic: no superblock found!\n");
687 kfree(selected_super);
688 return -1;
689 }
690
691 state->csum_size = btrfs_super_csum_size(selected_super);
692
693 for (pass = 0; pass < 3; pass++) {
694 int num_copies;
695 int mirror_num;
696 u64 next_bytenr;
697
698 switch (pass) {
699 case 0:
700 next_bytenr = btrfs_super_root(selected_super);
701 if (state->print_mask &
702 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
703 printk(KERN_INFO "root@%llu\n",
704 (unsigned long long)next_bytenr);
705 break;
706 case 1:
707 next_bytenr = btrfs_super_chunk_root(selected_super);
708 if (state->print_mask &
709 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
710 printk(KERN_INFO "chunk@%llu\n",
711 (unsigned long long)next_bytenr);
712 break;
713 case 2:
714 next_bytenr = btrfs_super_log_root(selected_super);
715 if (0 == next_bytenr)
716 continue;
717 if (state->print_mask &
718 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
719 printk(KERN_INFO "log@%llu\n",
720 (unsigned long long)next_bytenr);
721 break;
722 }
723
724 num_copies =
725 btrfs_num_copies(&state->root->fs_info->mapping_tree,
726 next_bytenr, state->metablock_size);
727 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
728 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
729 (unsigned long long)next_bytenr, num_copies);
730
731 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
732 struct btrfsic_block *next_block;
733 struct btrfsic_block_data_ctx tmp_next_block_ctx;
734 struct btrfsic_block_link *l;
735
736 ret = btrfsic_map_block(state, next_bytenr,
737 state->metablock_size,
738 &tmp_next_block_ctx,
739 mirror_num);
740 if (ret) {
741 printk(KERN_INFO "btrfsic:"
742 " btrfsic_map_block(root @%llu,"
743 " mirror %d) failed!\n",
744 (unsigned long long)next_bytenr,
745 mirror_num);
746 kfree(selected_super);
747 return -1;
748 }
749
750 next_block = btrfsic_block_hashtable_lookup(
751 tmp_next_block_ctx.dev->bdev,
752 tmp_next_block_ctx.dev_bytenr,
753 &state->block_hashtable);
754 BUG_ON(NULL == next_block);
755
756 l = btrfsic_block_link_hashtable_lookup(
757 tmp_next_block_ctx.dev->bdev,
758 tmp_next_block_ctx.dev_bytenr,
759 state->latest_superblock->dev_state->
760 bdev,
761 state->latest_superblock->dev_bytenr,
762 &state->block_link_hashtable);
763 BUG_ON(NULL == l);
764
765 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
766 if (ret < (int)PAGE_CACHE_SIZE) {
767 printk(KERN_INFO
768 "btrfsic: read @logical %llu failed!\n",
769 (unsigned long long)
770 tmp_next_block_ctx.start);
771 btrfsic_release_block_ctx(&tmp_next_block_ctx);
772 kfree(selected_super);
773 return -1;
774 }
775
776 ret = btrfsic_process_metablock(state,
777 next_block,
778 &tmp_next_block_ctx,
779 BTRFS_MAX_LEVEL + 3, 1);
780 btrfsic_release_block_ctx(&tmp_next_block_ctx);
781 }
782 }
783
784 kfree(selected_super);
785 return ret;
786}
787
788static int btrfsic_process_superblock_dev_mirror(
789 struct btrfsic_state *state,
790 struct btrfsic_dev_state *dev_state,
791 struct btrfs_device *device,
792 int superblock_mirror_num,
793 struct btrfsic_dev_state **selected_dev_state,
794 struct btrfs_super_block *selected_super)
795{
796 struct btrfs_super_block *super_tmp;
797 u64 dev_bytenr;
798 struct buffer_head *bh;
799 struct btrfsic_block *superblock_tmp;
800 int pass;
801 struct block_device *const superblock_bdev = device->bdev;
802
803 /* super block bytenr is always the unmapped device bytenr */
804 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
805 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
806 return -1;
807 bh = __bread(superblock_bdev, dev_bytenr / 4096,
808 BTRFS_SUPER_INFO_SIZE);
809 if (NULL == bh)
810 return -1;
811 super_tmp = (struct btrfs_super_block *)
812 (bh->b_data + (dev_bytenr & 4095));
813
814 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
815 strncmp((char *)(&(super_tmp->magic)), BTRFS_MAGIC,
816 sizeof(super_tmp->magic)) ||
817 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
818 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
819 btrfs_super_leafsize(super_tmp) != state->metablock_size ||
820 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
821 brelse(bh);
822 return 0;
823 }
824
825 superblock_tmp =
826 btrfsic_block_hashtable_lookup(superblock_bdev,
827 dev_bytenr,
828 &state->block_hashtable);
829 if (NULL == superblock_tmp) {
830 superblock_tmp = btrfsic_block_alloc();
831 if (NULL == superblock_tmp) {
832 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
833 brelse(bh);
834 return -1;
835 }
836 /* for superblock, only the dev_bytenr makes sense */
837 superblock_tmp->dev_bytenr = dev_bytenr;
838 superblock_tmp->dev_state = dev_state;
839 superblock_tmp->logical_bytenr = dev_bytenr;
840 superblock_tmp->generation = btrfs_super_generation(super_tmp);
841 superblock_tmp->is_metadata = 1;
842 superblock_tmp->is_superblock = 1;
843 superblock_tmp->is_iodone = 1;
844 superblock_tmp->never_written = 0;
845 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
846 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
847 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
848 " @%llu (%s/%llu/%d)\n",
849 superblock_bdev,
850 rcu_str_deref(device->name),
851 (unsigned long long)dev_bytenr,
852 dev_state->name,
853 (unsigned long long)dev_bytenr,
854 superblock_mirror_num);
855 list_add(&superblock_tmp->all_blocks_node,
856 &state->all_blocks_list);
857 btrfsic_block_hashtable_add(superblock_tmp,
858 &state->block_hashtable);
859 }
860
861 /* select the one with the highest generation field */
862 if (btrfs_super_generation(super_tmp) >
863 state->max_superblock_generation ||
864 0 == state->max_superblock_generation) {
865 memcpy(selected_super, super_tmp, sizeof(*selected_super));
866 *selected_dev_state = dev_state;
867 state->max_superblock_generation =
868 btrfs_super_generation(super_tmp);
869 state->latest_superblock = superblock_tmp;
870 }
871
872 for (pass = 0; pass < 3; pass++) {
873 u64 next_bytenr;
874 int num_copies;
875 int mirror_num;
876 const char *additional_string = NULL;
877 struct btrfs_disk_key tmp_disk_key;
878
879 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
880 tmp_disk_key.offset = 0;
881 switch (pass) {
882 case 0:
883 tmp_disk_key.objectid =
884 cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
885 additional_string = "initial root ";
886 next_bytenr = btrfs_super_root(super_tmp);
887 break;
888 case 1:
889 tmp_disk_key.objectid =
890 cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
891 additional_string = "initial chunk ";
892 next_bytenr = btrfs_super_chunk_root(super_tmp);
893 break;
894 case 2:
895 tmp_disk_key.objectid =
896 cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
897 additional_string = "initial log ";
898 next_bytenr = btrfs_super_log_root(super_tmp);
899 if (0 == next_bytenr)
900 continue;
901 break;
902 }
903
904 num_copies =
905 btrfs_num_copies(&state->root->fs_info->mapping_tree,
906 next_bytenr, state->metablock_size);
907 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
908 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
909 (unsigned long long)next_bytenr, num_copies);
910 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
911 struct btrfsic_block *next_block;
912 struct btrfsic_block_data_ctx tmp_next_block_ctx;
913 struct btrfsic_block_link *l;
914
915 if (btrfsic_map_block(state, next_bytenr,
916 state->metablock_size,
917 &tmp_next_block_ctx,
918 mirror_num)) {
919 printk(KERN_INFO "btrfsic: btrfsic_map_block("
920 "bytenr @%llu, mirror %d) failed!\n",
921 (unsigned long long)next_bytenr,
922 mirror_num);
923 brelse(bh);
924 return -1;
925 }
926
927 next_block = btrfsic_block_lookup_or_add(
928 state, &tmp_next_block_ctx,
929 additional_string, 1, 1, 0,
930 mirror_num, NULL);
931 if (NULL == next_block) {
932 btrfsic_release_block_ctx(&tmp_next_block_ctx);
933 brelse(bh);
934 return -1;
935 }
936
937 next_block->disk_key = tmp_disk_key;
938 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
939 l = btrfsic_block_link_lookup_or_add(
940 state, &tmp_next_block_ctx,
941 next_block, superblock_tmp,
942 BTRFSIC_GENERATION_UNKNOWN);
943 btrfsic_release_block_ctx(&tmp_next_block_ctx);
944 if (NULL == l) {
945 brelse(bh);
946 return -1;
947 }
948 }
949 }
950 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
951 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
952
953 brelse(bh);
954 return 0;
955}
956
957static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
958{
959 struct btrfsic_stack_frame *sf;
960
961 sf = kzalloc(sizeof(*sf), GFP_NOFS);
962 if (NULL == sf)
963 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
964 else
965 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
966 return sf;
967}
968
969static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
970{
971 BUG_ON(!(NULL == sf ||
972 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
973 kfree(sf);
974}
975
976static int btrfsic_process_metablock(
977 struct btrfsic_state *state,
978 struct btrfsic_block *const first_block,
979 struct btrfsic_block_data_ctx *const first_block_ctx,
980 int first_limit_nesting, int force_iodone_flag)
981{
982 struct btrfsic_stack_frame initial_stack_frame = { 0 };
983 struct btrfsic_stack_frame *sf;
984 struct btrfsic_stack_frame *next_stack;
985 struct btrfs_header *const first_hdr =
986 (struct btrfs_header *)first_block_ctx->datav[0];
987
988 BUG_ON(!first_hdr);
989 sf = &initial_stack_frame;
990 sf->error = 0;
991 sf->i = -1;
992 sf->limit_nesting = first_limit_nesting;
993 sf->block = first_block;
994 sf->block_ctx = first_block_ctx;
995 sf->next_block = NULL;
996 sf->hdr = first_hdr;
997 sf->prev = NULL;
998
999continue_with_new_stack_frame:
1000 sf->block->generation = le64_to_cpu(sf->hdr->generation);
1001 if (0 == sf->hdr->level) {
1002 struct btrfs_leaf *const leafhdr =
1003 (struct btrfs_leaf *)sf->hdr;
1004
1005 if (-1 == sf->i) {
1006 sf->nr = le32_to_cpu(leafhdr->header.nritems);
1007
1008 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1009 printk(KERN_INFO
1010 "leaf %llu items %d generation %llu"
1011 " owner %llu\n",
1012 (unsigned long long)
1013 sf->block_ctx->start,
1014 sf->nr,
1015 (unsigned long long)
1016 le64_to_cpu(leafhdr->header.generation),
1017 (unsigned long long)
1018 le64_to_cpu(leafhdr->header.owner));
1019 }
1020
1021continue_with_current_leaf_stack_frame:
1022 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1023 sf->i++;
1024 sf->num_copies = 0;
1025 }
1026
1027 if (sf->i < sf->nr) {
1028 struct btrfs_item disk_item;
1029 u32 disk_item_offset =
1030 (uintptr_t)(leafhdr->items + sf->i) -
1031 (uintptr_t)leafhdr;
1032 struct btrfs_disk_key *disk_key;
1033 u8 type;
1034 u32 item_offset;
1035
1036 if (disk_item_offset + sizeof(struct btrfs_item) >
1037 sf->block_ctx->len) {
1038leaf_item_out_of_bounce_error:
1039 printk(KERN_INFO
1040 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1041 sf->block_ctx->start,
1042 sf->block_ctx->dev->name);
1043 goto one_stack_frame_backwards;
1044 }
1045 btrfsic_read_from_block_data(sf->block_ctx,
1046 &disk_item,
1047 disk_item_offset,
1048 sizeof(struct btrfs_item));
1049 item_offset = le32_to_cpu(disk_item.offset);
1050 disk_key = &disk_item.key;
1051 type = disk_key->type;
1052
1053 if (BTRFS_ROOT_ITEM_KEY == type) {
1054 struct btrfs_root_item root_item;
1055 u32 root_item_offset;
1056 u64 next_bytenr;
1057
1058 root_item_offset = item_offset +
1059 offsetof(struct btrfs_leaf, items);
1060 if (root_item_offset +
1061 sizeof(struct btrfs_root_item) >
1062 sf->block_ctx->len)
1063 goto leaf_item_out_of_bounce_error;
1064 btrfsic_read_from_block_data(
1065 sf->block_ctx, &root_item,
1066 root_item_offset,
1067 sizeof(struct btrfs_root_item));
1068 next_bytenr = le64_to_cpu(root_item.bytenr);
1069
1070 sf->error =
1071 btrfsic_create_link_to_next_block(
1072 state,
1073 sf->block,
1074 sf->block_ctx,
1075 next_bytenr,
1076 sf->limit_nesting,
1077 &sf->next_block_ctx,
1078 &sf->next_block,
1079 force_iodone_flag,
1080 &sf->num_copies,
1081 &sf->mirror_num,
1082 disk_key,
1083 le64_to_cpu(root_item.
1084 generation));
1085 if (sf->error)
1086 goto one_stack_frame_backwards;
1087
1088 if (NULL != sf->next_block) {
1089 struct btrfs_header *const next_hdr =
1090 (struct btrfs_header *)
1091 sf->next_block_ctx.datav[0];
1092
1093 next_stack =
1094 btrfsic_stack_frame_alloc();
1095 if (NULL == next_stack) {
1096 btrfsic_release_block_ctx(
1097 &sf->
1098 next_block_ctx);
1099 goto one_stack_frame_backwards;
1100 }
1101
1102 next_stack->i = -1;
1103 next_stack->block = sf->next_block;
1104 next_stack->block_ctx =
1105 &sf->next_block_ctx;
1106 next_stack->next_block = NULL;
1107 next_stack->hdr = next_hdr;
1108 next_stack->limit_nesting =
1109 sf->limit_nesting - 1;
1110 next_stack->prev = sf;
1111 sf = next_stack;
1112 goto continue_with_new_stack_frame;
1113 }
1114 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1115 state->include_extent_data) {
1116 sf->error = btrfsic_handle_extent_data(
1117 state,
1118 sf->block,
1119 sf->block_ctx,
1120 item_offset,
1121 force_iodone_flag);
1122 if (sf->error)
1123 goto one_stack_frame_backwards;
1124 }
1125
1126 goto continue_with_current_leaf_stack_frame;
1127 }
1128 } else {
1129 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1130
1131 if (-1 == sf->i) {
1132 sf->nr = le32_to_cpu(nodehdr->header.nritems);
1133
1134 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1135 printk(KERN_INFO "node %llu level %d items %d"
1136 " generation %llu owner %llu\n",
1137 (unsigned long long)
1138 sf->block_ctx->start,
1139 nodehdr->header.level, sf->nr,
1140 (unsigned long long)
1141 le64_to_cpu(nodehdr->header.generation),
1142 (unsigned long long)
1143 le64_to_cpu(nodehdr->header.owner));
1144 }
1145
1146continue_with_current_node_stack_frame:
1147 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1148 sf->i++;
1149 sf->num_copies = 0;
1150 }
1151
1152 if (sf->i < sf->nr) {
1153 struct btrfs_key_ptr key_ptr;
1154 u32 key_ptr_offset;
1155 u64 next_bytenr;
1156
1157 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1158 (uintptr_t)nodehdr;
1159 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1160 sf->block_ctx->len) {
1161 printk(KERN_INFO
1162 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1163 sf->block_ctx->start,
1164 sf->block_ctx->dev->name);
1165 goto one_stack_frame_backwards;
1166 }
1167 btrfsic_read_from_block_data(
1168 sf->block_ctx, &key_ptr, key_ptr_offset,
1169 sizeof(struct btrfs_key_ptr));
1170 next_bytenr = le64_to_cpu(key_ptr.blockptr);
1171
1172 sf->error = btrfsic_create_link_to_next_block(
1173 state,
1174 sf->block,
1175 sf->block_ctx,
1176 next_bytenr,
1177 sf->limit_nesting,
1178 &sf->next_block_ctx,
1179 &sf->next_block,
1180 force_iodone_flag,
1181 &sf->num_copies,
1182 &sf->mirror_num,
1183 &key_ptr.key,
1184 le64_to_cpu(key_ptr.generation));
1185 if (sf->error)
1186 goto one_stack_frame_backwards;
1187
1188 if (NULL != sf->next_block) {
1189 struct btrfs_header *const next_hdr =
1190 (struct btrfs_header *)
1191 sf->next_block_ctx.datav[0];
1192
1193 next_stack = btrfsic_stack_frame_alloc();
1194 if (NULL == next_stack)
1195 goto one_stack_frame_backwards;
1196
1197 next_stack->i = -1;
1198 next_stack->block = sf->next_block;
1199 next_stack->block_ctx = &sf->next_block_ctx;
1200 next_stack->next_block = NULL;
1201 next_stack->hdr = next_hdr;
1202 next_stack->limit_nesting =
1203 sf->limit_nesting - 1;
1204 next_stack->prev = sf;
1205 sf = next_stack;
1206 goto continue_with_new_stack_frame;
1207 }
1208
1209 goto continue_with_current_node_stack_frame;
1210 }
1211 }
1212
1213one_stack_frame_backwards:
1214 if (NULL != sf->prev) {
1215 struct btrfsic_stack_frame *const prev = sf->prev;
1216
1217 /* the one for the initial block is freed in the caller */
1218 btrfsic_release_block_ctx(sf->block_ctx);
1219
1220 if (sf->error) {
1221 prev->error = sf->error;
1222 btrfsic_stack_frame_free(sf);
1223 sf = prev;
1224 goto one_stack_frame_backwards;
1225 }
1226
1227 btrfsic_stack_frame_free(sf);
1228 sf = prev;
1229 goto continue_with_new_stack_frame;
1230 } else {
1231 BUG_ON(&initial_stack_frame != sf);
1232 }
1233
1234 return sf->error;
1235}
1236
1237static void btrfsic_read_from_block_data(
1238 struct btrfsic_block_data_ctx *block_ctx,
1239 void *dstv, u32 offset, size_t len)
1240{
1241 size_t cur;
1242 size_t offset_in_page;
1243 char *kaddr;
1244 char *dst = (char *)dstv;
1245 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1246 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1247
1248 WARN_ON(offset + len > block_ctx->len);
1249 offset_in_page = (start_offset + offset) &
1250 ((unsigned long)PAGE_CACHE_SIZE - 1);
1251
1252 while (len > 0) {
1253 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1254 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1255 PAGE_CACHE_SHIFT);
1256 kaddr = block_ctx->datav[i];
1257 memcpy(dst, kaddr + offset_in_page, cur);
1258
1259 dst += cur;
1260 len -= cur;
1261 offset_in_page = 0;
1262 i++;
1263 }
1264}
1265
1266static int btrfsic_create_link_to_next_block(
1267 struct btrfsic_state *state,
1268 struct btrfsic_block *block,
1269 struct btrfsic_block_data_ctx *block_ctx,
1270 u64 next_bytenr,
1271 int limit_nesting,
1272 struct btrfsic_block_data_ctx *next_block_ctx,
1273 struct btrfsic_block **next_blockp,
1274 int force_iodone_flag,
1275 int *num_copiesp, int *mirror_nump,
1276 struct btrfs_disk_key *disk_key,
1277 u64 parent_generation)
1278{
1279 struct btrfsic_block *next_block = NULL;
1280 int ret;
1281 struct btrfsic_block_link *l;
1282 int did_alloc_block_link;
1283 int block_was_created;
1284
1285 *next_blockp = NULL;
1286 if (0 == *num_copiesp) {
1287 *num_copiesp =
1288 btrfs_num_copies(&state->root->fs_info->mapping_tree,
1289 next_bytenr, state->metablock_size);
1290 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1291 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1292 (unsigned long long)next_bytenr, *num_copiesp);
1293 *mirror_nump = 1;
1294 }
1295
1296 if (*mirror_nump > *num_copiesp)
1297 return 0;
1298
1299 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1300 printk(KERN_INFO
1301 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1302 *mirror_nump);
1303 ret = btrfsic_map_block(state, next_bytenr,
1304 state->metablock_size,
1305 next_block_ctx, *mirror_nump);
1306 if (ret) {
1307 printk(KERN_INFO
1308 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1309 (unsigned long long)next_bytenr, *mirror_nump);
1310 btrfsic_release_block_ctx(next_block_ctx);
1311 *next_blockp = NULL;
1312 return -1;
1313 }
1314
1315 next_block = btrfsic_block_lookup_or_add(state,
1316 next_block_ctx, "referenced ",
1317 1, force_iodone_flag,
1318 !force_iodone_flag,
1319 *mirror_nump,
1320 &block_was_created);
1321 if (NULL == next_block) {
1322 btrfsic_release_block_ctx(next_block_ctx);
1323 *next_blockp = NULL;
1324 return -1;
1325 }
1326 if (block_was_created) {
1327 l = NULL;
1328 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1329 } else {
1330 if (next_block->logical_bytenr != next_bytenr &&
1331 !(!next_block->is_metadata &&
1332 0 == next_block->logical_bytenr)) {
1333 printk(KERN_INFO
1334 "Referenced block @%llu (%s/%llu/%d)"
1335 " found in hash table, %c,"
1336 " bytenr mismatch (!= stored %llu).\n",
1337 (unsigned long long)next_bytenr,
1338 next_block_ctx->dev->name,
1339 (unsigned long long)next_block_ctx->dev_bytenr,
1340 *mirror_nump,
1341 btrfsic_get_block_type(state, next_block),
1342 (unsigned long long)next_block->logical_bytenr);
1343 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1344 printk(KERN_INFO
1345 "Referenced block @%llu (%s/%llu/%d)"
1346 " found in hash table, %c.\n",
1347 (unsigned long long)next_bytenr,
1348 next_block_ctx->dev->name,
1349 (unsigned long long)next_block_ctx->dev_bytenr,
1350 *mirror_nump,
1351 btrfsic_get_block_type(state, next_block));
1352 next_block->logical_bytenr = next_bytenr;
1353
1354 next_block->mirror_num = *mirror_nump;
1355 l = btrfsic_block_link_hashtable_lookup(
1356 next_block_ctx->dev->bdev,
1357 next_block_ctx->dev_bytenr,
1358 block_ctx->dev->bdev,
1359 block_ctx->dev_bytenr,
1360 &state->block_link_hashtable);
1361 }
1362
1363 next_block->disk_key = *disk_key;
1364 if (NULL == l) {
1365 l = btrfsic_block_link_alloc();
1366 if (NULL == l) {
1367 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1368 btrfsic_release_block_ctx(next_block_ctx);
1369 *next_blockp = NULL;
1370 return -1;
1371 }
1372
1373 did_alloc_block_link = 1;
1374 l->block_ref_to = next_block;
1375 l->block_ref_from = block;
1376 l->ref_cnt = 1;
1377 l->parent_generation = parent_generation;
1378
1379 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1380 btrfsic_print_add_link(state, l);
1381
1382 list_add(&l->node_ref_to, &block->ref_to_list);
1383 list_add(&l->node_ref_from, &next_block->ref_from_list);
1384
1385 btrfsic_block_link_hashtable_add(l,
1386 &state->block_link_hashtable);
1387 } else {
1388 did_alloc_block_link = 0;
1389 if (0 == limit_nesting) {
1390 l->ref_cnt++;
1391 l->parent_generation = parent_generation;
1392 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1393 btrfsic_print_add_link(state, l);
1394 }
1395 }
1396
1397 if (limit_nesting > 0 && did_alloc_block_link) {
1398 ret = btrfsic_read_block(state, next_block_ctx);
1399 if (ret < (int)next_block_ctx->len) {
1400 printk(KERN_INFO
1401 "btrfsic: read block @logical %llu failed!\n",
1402 (unsigned long long)next_bytenr);
1403 btrfsic_release_block_ctx(next_block_ctx);
1404 *next_blockp = NULL;
1405 return -1;
1406 }
1407
1408 *next_blockp = next_block;
1409 } else {
1410 *next_blockp = NULL;
1411 }
1412 (*mirror_nump)++;
1413
1414 return 0;
1415}
1416
1417static int btrfsic_handle_extent_data(
1418 struct btrfsic_state *state,
1419 struct btrfsic_block *block,
1420 struct btrfsic_block_data_ctx *block_ctx,
1421 u32 item_offset, int force_iodone_flag)
1422{
1423 int ret;
1424 struct btrfs_file_extent_item file_extent_item;
1425 u64 file_extent_item_offset;
1426 u64 next_bytenr;
1427 u64 num_bytes;
1428 u64 generation;
1429 struct btrfsic_block_link *l;
1430
1431 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1432 item_offset;
1433 if (file_extent_item_offset +
1434 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1435 block_ctx->len) {
1436 printk(KERN_INFO
1437 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1438 block_ctx->start, block_ctx->dev->name);
1439 return -1;
1440 }
1441
1442 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1443 file_extent_item_offset,
1444 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1445 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1446 ((u64)0) == le64_to_cpu(file_extent_item.disk_bytenr)) {
1447 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1448 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1449 file_extent_item.type,
1450 (unsigned long long)
1451 le64_to_cpu(file_extent_item.disk_bytenr));
1452 return 0;
1453 }
1454
1455 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1456 block_ctx->len) {
1457 printk(KERN_INFO
1458 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1459 block_ctx->start, block_ctx->dev->name);
1460 return -1;
1461 }
1462 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1463 file_extent_item_offset,
1464 sizeof(struct btrfs_file_extent_item));
1465 next_bytenr = le64_to_cpu(file_extent_item.disk_bytenr) +
1466 le64_to_cpu(file_extent_item.offset);
1467 generation = le64_to_cpu(file_extent_item.generation);
1468 num_bytes = le64_to_cpu(file_extent_item.num_bytes);
1469 generation = le64_to_cpu(file_extent_item.generation);
1470
1471 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1472 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1473 " offset = %llu, num_bytes = %llu\n",
1474 file_extent_item.type,
1475 (unsigned long long)
1476 le64_to_cpu(file_extent_item.disk_bytenr),
1477 (unsigned long long)le64_to_cpu(file_extent_item.offset),
1478 (unsigned long long)num_bytes);
1479 while (num_bytes > 0) {
1480 u32 chunk_len;
1481 int num_copies;
1482 int mirror_num;
1483
1484 if (num_bytes > state->datablock_size)
1485 chunk_len = state->datablock_size;
1486 else
1487 chunk_len = num_bytes;
1488
1489 num_copies =
1490 btrfs_num_copies(&state->root->fs_info->mapping_tree,
1491 next_bytenr, state->datablock_size);
1492 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1493 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1494 (unsigned long long)next_bytenr, num_copies);
1495 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1496 struct btrfsic_block_data_ctx next_block_ctx;
1497 struct btrfsic_block *next_block;
1498 int block_was_created;
1499
1500 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1501 printk(KERN_INFO "btrfsic_handle_extent_data("
1502 "mirror_num=%d)\n", mirror_num);
1503 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1504 printk(KERN_INFO
1505 "\tdisk_bytenr = %llu, num_bytes %u\n",
1506 (unsigned long long)next_bytenr,
1507 chunk_len);
1508 ret = btrfsic_map_block(state, next_bytenr,
1509 chunk_len, &next_block_ctx,
1510 mirror_num);
1511 if (ret) {
1512 printk(KERN_INFO
1513 "btrfsic: btrfsic_map_block(@%llu,"
1514 " mirror=%d) failed!\n",
1515 (unsigned long long)next_bytenr,
1516 mirror_num);
1517 return -1;
1518 }
1519
1520 next_block = btrfsic_block_lookup_or_add(
1521 state,
1522 &next_block_ctx,
1523 "referenced ",
1524 0,
1525 force_iodone_flag,
1526 !force_iodone_flag,
1527 mirror_num,
1528 &block_was_created);
1529 if (NULL == next_block) {
1530 printk(KERN_INFO
1531 "btrfsic: error, kmalloc failed!\n");
1532 btrfsic_release_block_ctx(&next_block_ctx);
1533 return -1;
1534 }
1535 if (!block_was_created) {
1536 if (next_block->logical_bytenr != next_bytenr &&
1537 !(!next_block->is_metadata &&
1538 0 == next_block->logical_bytenr)) {
1539 printk(KERN_INFO
1540 "Referenced block"
1541 " @%llu (%s/%llu/%d)"
1542 " found in hash table, D,"
1543 " bytenr mismatch"
1544 " (!= stored %llu).\n",
1545 (unsigned long long)next_bytenr,
1546 next_block_ctx.dev->name,
1547 (unsigned long long)
1548 next_block_ctx.dev_bytenr,
1549 mirror_num,
1550 (unsigned long long)
1551 next_block->logical_bytenr);
1552 }
1553 next_block->logical_bytenr = next_bytenr;
1554 next_block->mirror_num = mirror_num;
1555 }
1556
1557 l = btrfsic_block_link_lookup_or_add(state,
1558 &next_block_ctx,
1559 next_block, block,
1560 generation);
1561 btrfsic_release_block_ctx(&next_block_ctx);
1562 if (NULL == l)
1563 return -1;
1564 }
1565
1566 next_bytenr += chunk_len;
1567 num_bytes -= chunk_len;
1568 }
1569
1570 return 0;
1571}
1572
1573static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1574 struct btrfsic_block_data_ctx *block_ctx_out,
1575 int mirror_num)
1576{
1577 int ret;
1578 u64 length;
1579 struct btrfs_bio *multi = NULL;
1580 struct btrfs_device *device;
1581
1582 length = len;
1583 ret = btrfs_map_block(&state->root->fs_info->mapping_tree, READ,
1584 bytenr, &length, &multi, mirror_num);
1585
1586 device = multi->stripes[0].dev;
1587 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1588 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1589 block_ctx_out->start = bytenr;
1590 block_ctx_out->len = len;
1591 block_ctx_out->datav = NULL;
1592 block_ctx_out->pagev = NULL;
1593 block_ctx_out->mem_to_free = NULL;
1594
1595 if (0 == ret)
1596 kfree(multi);
1597 if (NULL == block_ctx_out->dev) {
1598 ret = -ENXIO;
1599 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1600 }
1601
1602 return ret;
1603}
1604
1605static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1606 u32 len, struct block_device *bdev,
1607 struct btrfsic_block_data_ctx *block_ctx_out)
1608{
1609 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1610 block_ctx_out->dev_bytenr = bytenr;
1611 block_ctx_out->start = bytenr;
1612 block_ctx_out->len = len;
1613 block_ctx_out->datav = NULL;
1614 block_ctx_out->pagev = NULL;
1615 block_ctx_out->mem_to_free = NULL;
1616 if (NULL != block_ctx_out->dev) {
1617 return 0;
1618 } else {
1619 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1620 return -ENXIO;
1621 }
1622}
1623
1624static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1625{
1626 if (block_ctx->mem_to_free) {
1627 unsigned int num_pages;
1628
1629 BUG_ON(!block_ctx->datav);
1630 BUG_ON(!block_ctx->pagev);
1631 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1632 PAGE_CACHE_SHIFT;
1633 while (num_pages > 0) {
1634 num_pages--;
1635 if (block_ctx->datav[num_pages]) {
1636 kunmap(block_ctx->pagev[num_pages]);
1637 block_ctx->datav[num_pages] = NULL;
1638 }
1639 if (block_ctx->pagev[num_pages]) {
1640 __free_page(block_ctx->pagev[num_pages]);
1641 block_ctx->pagev[num_pages] = NULL;
1642 }
1643 }
1644
1645 kfree(block_ctx->mem_to_free);
1646 block_ctx->mem_to_free = NULL;
1647 block_ctx->pagev = NULL;
1648 block_ctx->datav = NULL;
1649 }
1650}
1651
1652static int btrfsic_read_block(struct btrfsic_state *state,
1653 struct btrfsic_block_data_ctx *block_ctx)
1654{
1655 unsigned int num_pages;
1656 unsigned int i;
1657 u64 dev_bytenr;
1658 int ret;
1659
1660 BUG_ON(block_ctx->datav);
1661 BUG_ON(block_ctx->pagev);
1662 BUG_ON(block_ctx->mem_to_free);
1663 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1664 printk(KERN_INFO
1665 "btrfsic: read_block() with unaligned bytenr %llu\n",
1666 (unsigned long long)block_ctx->dev_bytenr);
1667 return -1;
1668 }
1669
1670 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1671 PAGE_CACHE_SHIFT;
1672 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1673 sizeof(*block_ctx->pagev)) *
1674 num_pages, GFP_NOFS);
1675 if (!block_ctx->mem_to_free)
1676 return -1;
1677 block_ctx->datav = block_ctx->mem_to_free;
1678 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1679 for (i = 0; i < num_pages; i++) {
1680 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1681 if (!block_ctx->pagev[i])
1682 return -1;
1683 }
1684
1685 dev_bytenr = block_ctx->dev_bytenr;
1686 for (i = 0; i < num_pages;) {
1687 struct bio *bio;
1688 unsigned int j;
1689 DECLARE_COMPLETION_ONSTACK(complete);
1690
1691 bio = bio_alloc(GFP_NOFS, num_pages - i);
1692 if (!bio) {
1693 printk(KERN_INFO
1694 "btrfsic: bio_alloc() for %u pages failed!\n",
1695 num_pages - i);
1696 return -1;
1697 }
1698 bio->bi_bdev = block_ctx->dev->bdev;
1699 bio->bi_sector = dev_bytenr >> 9;
1700 bio->bi_end_io = btrfsic_complete_bio_end_io;
1701 bio->bi_private = &complete;
1702
1703 for (j = i; j < num_pages; j++) {
1704 ret = bio_add_page(bio, block_ctx->pagev[j],
1705 PAGE_CACHE_SIZE, 0);
1706 if (PAGE_CACHE_SIZE != ret)
1707 break;
1708 }
1709 if (j == i) {
1710 printk(KERN_INFO
1711 "btrfsic: error, failed to add a single page!\n");
1712 return -1;
1713 }
1714 submit_bio(READ, bio);
1715
1716 /* this will also unplug the queue */
1717 wait_for_completion(&complete);
1718
1719 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1720 printk(KERN_INFO
1721 "btrfsic: read error at logical %llu dev %s!\n",
1722 block_ctx->start, block_ctx->dev->name);
1723 bio_put(bio);
1724 return -1;
1725 }
1726 bio_put(bio);
1727 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1728 i = j;
1729 }
1730 for (i = 0; i < num_pages; i++) {
1731 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1732 if (!block_ctx->datav[i]) {
1733 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1734 block_ctx->dev->name);
1735 return -1;
1736 }
1737 }
1738
1739 return block_ctx->len;
1740}
1741
1742static void btrfsic_complete_bio_end_io(struct bio *bio, int err)
1743{
1744 complete((struct completion *)bio->bi_private);
1745}
1746
1747static void btrfsic_dump_database(struct btrfsic_state *state)
1748{
1749 struct list_head *elem_all;
1750
1751 BUG_ON(NULL == state);
1752
1753 printk(KERN_INFO "all_blocks_list:\n");
1754 list_for_each(elem_all, &state->all_blocks_list) {
1755 const struct btrfsic_block *const b_all =
1756 list_entry(elem_all, struct btrfsic_block,
1757 all_blocks_node);
1758 struct list_head *elem_ref_to;
1759 struct list_head *elem_ref_from;
1760
1761 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1762 btrfsic_get_block_type(state, b_all),
1763 (unsigned long long)b_all->logical_bytenr,
1764 b_all->dev_state->name,
1765 (unsigned long long)b_all->dev_bytenr,
1766 b_all->mirror_num);
1767
1768 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1769 const struct btrfsic_block_link *const l =
1770 list_entry(elem_ref_to,
1771 struct btrfsic_block_link,
1772 node_ref_to);
1773
1774 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1775 " refers %u* to"
1776 " %c @%llu (%s/%llu/%d)\n",
1777 btrfsic_get_block_type(state, b_all),
1778 (unsigned long long)b_all->logical_bytenr,
1779 b_all->dev_state->name,
1780 (unsigned long long)b_all->dev_bytenr,
1781 b_all->mirror_num,
1782 l->ref_cnt,
1783 btrfsic_get_block_type(state, l->block_ref_to),
1784 (unsigned long long)
1785 l->block_ref_to->logical_bytenr,
1786 l->block_ref_to->dev_state->name,
1787 (unsigned long long)l->block_ref_to->dev_bytenr,
1788 l->block_ref_to->mirror_num);
1789 }
1790
1791 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1792 const struct btrfsic_block_link *const l =
1793 list_entry(elem_ref_from,
1794 struct btrfsic_block_link,
1795 node_ref_from);
1796
1797 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1798 " is ref %u* from"
1799 " %c @%llu (%s/%llu/%d)\n",
1800 btrfsic_get_block_type(state, b_all),
1801 (unsigned long long)b_all->logical_bytenr,
1802 b_all->dev_state->name,
1803 (unsigned long long)b_all->dev_bytenr,
1804 b_all->mirror_num,
1805 l->ref_cnt,
1806 btrfsic_get_block_type(state, l->block_ref_from),
1807 (unsigned long long)
1808 l->block_ref_from->logical_bytenr,
1809 l->block_ref_from->dev_state->name,
1810 (unsigned long long)
1811 l->block_ref_from->dev_bytenr,
1812 l->block_ref_from->mirror_num);
1813 }
1814
1815 printk(KERN_INFO "\n");
1816 }
1817}
1818
1819/*
1820 * Test whether the disk block contains a tree block (leaf or node)
1821 * (note that this test fails for the super block)
1822 */
1823static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1824 char **datav, unsigned int num_pages)
1825{
1826 struct btrfs_header *h;
1827 u8 csum[BTRFS_CSUM_SIZE];
1828 u32 crc = ~(u32)0;
1829 unsigned int i;
1830
1831 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1832 return 1; /* not metadata */
1833 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1834 h = (struct btrfs_header *)datav[0];
1835
1836 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1837 return 1;
1838
1839 for (i = 0; i < num_pages; i++) {
1840 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1841 size_t sublen = i ? PAGE_CACHE_SIZE :
1842 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1843
1844 crc = crc32c(crc, data, sublen);
1845 }
1846 btrfs_csum_final(crc, csum);
1847 if (memcmp(csum, h->csum, state->csum_size))
1848 return 1;
1849
1850 return 0; /* is metadata */
1851}
1852
1853static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1854 u64 dev_bytenr, char **mapped_datav,
1855 unsigned int num_pages,
1856 struct bio *bio, int *bio_is_patched,
1857 struct buffer_head *bh,
1858 int submit_bio_bh_rw)
1859{
1860 int is_metadata;
1861 struct btrfsic_block *block;
1862 struct btrfsic_block_data_ctx block_ctx;
1863 int ret;
1864 struct btrfsic_state *state = dev_state->state;
1865 struct block_device *bdev = dev_state->bdev;
1866 unsigned int processed_len;
1867
1868 if (NULL != bio_is_patched)
1869 *bio_is_patched = 0;
1870
1871again:
1872 if (num_pages == 0)
1873 return;
1874
1875 processed_len = 0;
1876 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1877 num_pages));
1878
1879 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1880 &state->block_hashtable);
1881 if (NULL != block) {
1882 u64 bytenr = 0;
1883 struct list_head *elem_ref_to;
1884 struct list_head *tmp_ref_to;
1885
1886 if (block->is_superblock) {
1887 bytenr = le64_to_cpu(((struct btrfs_super_block *)
1888 mapped_datav[0])->bytenr);
1889 if (num_pages * PAGE_CACHE_SIZE <
1890 BTRFS_SUPER_INFO_SIZE) {
1891 printk(KERN_INFO
1892 "btrfsic: cannot work with too short bios!\n");
1893 return;
1894 }
1895 is_metadata = 1;
1896 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1897 processed_len = BTRFS_SUPER_INFO_SIZE;
1898 if (state->print_mask &
1899 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1900 printk(KERN_INFO
1901 "[before new superblock is written]:\n");
1902 btrfsic_dump_tree_sub(state, block, 0);
1903 }
1904 }
1905 if (is_metadata) {
1906 if (!block->is_superblock) {
1907 if (num_pages * PAGE_CACHE_SIZE <
1908 state->metablock_size) {
1909 printk(KERN_INFO
1910 "btrfsic: cannot work with too short bios!\n");
1911 return;
1912 }
1913 processed_len = state->metablock_size;
1914 bytenr = le64_to_cpu(((struct btrfs_header *)
1915 mapped_datav[0])->bytenr);
1916 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1917 dev_state,
1918 dev_bytenr);
1919 }
1920 if (block->logical_bytenr != bytenr) {
1921 printk(KERN_INFO
1922 "Written block @%llu (%s/%llu/%d)"
1923 " found in hash table, %c,"
1924 " bytenr mismatch"
1925 " (!= stored %llu).\n",
1926 (unsigned long long)bytenr,
1927 dev_state->name,
1928 (unsigned long long)dev_bytenr,
1929 block->mirror_num,
1930 btrfsic_get_block_type(state, block),
1931 (unsigned long long)
1932 block->logical_bytenr);
1933 block->logical_bytenr = bytenr;
1934 } else if (state->print_mask &
1935 BTRFSIC_PRINT_MASK_VERBOSE)
1936 printk(KERN_INFO
1937 "Written block @%llu (%s/%llu/%d)"
1938 " found in hash table, %c.\n",
1939 (unsigned long long)bytenr,
1940 dev_state->name,
1941 (unsigned long long)dev_bytenr,
1942 block->mirror_num,
1943 btrfsic_get_block_type(state, block));
1944 } else {
1945 if (num_pages * PAGE_CACHE_SIZE <
1946 state->datablock_size) {
1947 printk(KERN_INFO
1948 "btrfsic: cannot work with too short bios!\n");
1949 return;
1950 }
1951 processed_len = state->datablock_size;
1952 bytenr = block->logical_bytenr;
1953 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1954 printk(KERN_INFO
1955 "Written block @%llu (%s/%llu/%d)"
1956 " found in hash table, %c.\n",
1957 (unsigned long long)bytenr,
1958 dev_state->name,
1959 (unsigned long long)dev_bytenr,
1960 block->mirror_num,
1961 btrfsic_get_block_type(state, block));
1962 }
1963
1964 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1965 printk(KERN_INFO
1966 "ref_to_list: %cE, ref_from_list: %cE\n",
1967 list_empty(&block->ref_to_list) ? ' ' : '!',
1968 list_empty(&block->ref_from_list) ? ' ' : '!');
1969 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1970 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1971 " @%llu (%s/%llu/%d), old(gen=%llu,"
1972 " objectid=%llu, type=%d, offset=%llu),"
1973 " new(gen=%llu),"
1974 " which is referenced by most recent superblock"
1975 " (superblockgen=%llu)!\n",
1976 btrfsic_get_block_type(state, block),
1977 (unsigned long long)bytenr,
1978 dev_state->name,
1979 (unsigned long long)dev_bytenr,
1980 block->mirror_num,
1981 (unsigned long long)block->generation,
1982 (unsigned long long)
1983 le64_to_cpu(block->disk_key.objectid),
1984 block->disk_key.type,
1985 (unsigned long long)
1986 le64_to_cpu(block->disk_key.offset),
1987 (unsigned long long)
1988 le64_to_cpu(((struct btrfs_header *)
1989 mapped_datav[0])->generation),
1990 (unsigned long long)
1991 state->max_superblock_generation);
1992 btrfsic_dump_tree(state);
1993 }
1994
1995 if (!block->is_iodone && !block->never_written) {
1996 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1997 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1998 " which is not yet iodone!\n",
1999 btrfsic_get_block_type(state, block),
2000 (unsigned long long)bytenr,
2001 dev_state->name,
2002 (unsigned long long)dev_bytenr,
2003 block->mirror_num,
2004 (unsigned long long)block->generation,
2005 (unsigned long long)
2006 le64_to_cpu(((struct btrfs_header *)
2007 mapped_datav[0])->generation));
2008 /* it would not be safe to go on */
2009 btrfsic_dump_tree(state);
2010 goto continue_loop;
2011 }
2012
2013 /*
2014 * Clear all references of this block. Do not free
2015 * the block itself even if is not referenced anymore
2016 * because it still carries valueable information
2017 * like whether it was ever written and IO completed.
2018 */
2019 list_for_each_safe(elem_ref_to, tmp_ref_to,
2020 &block->ref_to_list) {
2021 struct btrfsic_block_link *const l =
2022 list_entry(elem_ref_to,
2023 struct btrfsic_block_link,
2024 node_ref_to);
2025
2026 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2027 btrfsic_print_rem_link(state, l);
2028 l->ref_cnt--;
2029 if (0 == l->ref_cnt) {
2030 list_del(&l->node_ref_to);
2031 list_del(&l->node_ref_from);
2032 btrfsic_block_link_hashtable_remove(l);
2033 btrfsic_block_link_free(l);
2034 }
2035 }
2036
2037 if (block->is_superblock)
2038 ret = btrfsic_map_superblock(state, bytenr,
2039 processed_len,
2040 bdev, &block_ctx);
2041 else
2042 ret = btrfsic_map_block(state, bytenr, processed_len,
2043 &block_ctx, 0);
2044 if (ret) {
2045 printk(KERN_INFO
2046 "btrfsic: btrfsic_map_block(root @%llu)"
2047 " failed!\n", (unsigned long long)bytenr);
2048 goto continue_loop;
2049 }
2050 block_ctx.datav = mapped_datav;
2051 /* the following is required in case of writes to mirrors,
2052 * use the same that was used for the lookup */
2053 block_ctx.dev = dev_state;
2054 block_ctx.dev_bytenr = dev_bytenr;
2055
2056 if (is_metadata || state->include_extent_data) {
2057 block->never_written = 0;
2058 block->iodone_w_error = 0;
2059 if (NULL != bio) {
2060 block->is_iodone = 0;
2061 BUG_ON(NULL == bio_is_patched);
2062 if (!*bio_is_patched) {
2063 block->orig_bio_bh_private =
2064 bio->bi_private;
2065 block->orig_bio_bh_end_io.bio =
2066 bio->bi_end_io;
2067 block->next_in_same_bio = NULL;
2068 bio->bi_private = block;
2069 bio->bi_end_io = btrfsic_bio_end_io;
2070 *bio_is_patched = 1;
2071 } else {
2072 struct btrfsic_block *chained_block =
2073 (struct btrfsic_block *)
2074 bio->bi_private;
2075
2076 BUG_ON(NULL == chained_block);
2077 block->orig_bio_bh_private =
2078 chained_block->orig_bio_bh_private;
2079 block->orig_bio_bh_end_io.bio =
2080 chained_block->orig_bio_bh_end_io.
2081 bio;
2082 block->next_in_same_bio = chained_block;
2083 bio->bi_private = block;
2084 }
2085 } else if (NULL != bh) {
2086 block->is_iodone = 0;
2087 block->orig_bio_bh_private = bh->b_private;
2088 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2089 block->next_in_same_bio = NULL;
2090 bh->b_private = block;
2091 bh->b_end_io = btrfsic_bh_end_io;
2092 } else {
2093 block->is_iodone = 1;
2094 block->orig_bio_bh_private = NULL;
2095 block->orig_bio_bh_end_io.bio = NULL;
2096 block->next_in_same_bio = NULL;
2097 }
2098 }
2099
2100 block->flush_gen = dev_state->last_flush_gen + 1;
2101 block->submit_bio_bh_rw = submit_bio_bh_rw;
2102 if (is_metadata) {
2103 block->logical_bytenr = bytenr;
2104 block->is_metadata = 1;
2105 if (block->is_superblock) {
2106 BUG_ON(PAGE_CACHE_SIZE !=
2107 BTRFS_SUPER_INFO_SIZE);
2108 ret = btrfsic_process_written_superblock(
2109 state,
2110 block,
2111 (struct btrfs_super_block *)
2112 mapped_datav[0]);
2113 if (state->print_mask &
2114 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2115 printk(KERN_INFO
2116 "[after new superblock is written]:\n");
2117 btrfsic_dump_tree_sub(state, block, 0);
2118 }
2119 } else {
2120 block->mirror_num = 0; /* unknown */
2121 ret = btrfsic_process_metablock(
2122 state,
2123 block,
2124 &block_ctx,
2125 0, 0);
2126 }
2127 if (ret)
2128 printk(KERN_INFO
2129 "btrfsic: btrfsic_process_metablock"
2130 "(root @%llu) failed!\n",
2131 (unsigned long long)dev_bytenr);
2132 } else {
2133 block->is_metadata = 0;
2134 block->mirror_num = 0; /* unknown */
2135 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2136 if (!state->include_extent_data
2137 && list_empty(&block->ref_from_list)) {
2138 /*
2139 * disk block is overwritten with extent
2140 * data (not meta data) and we are configured
2141 * to not include extent data: take the
2142 * chance and free the block's memory
2143 */
2144 btrfsic_block_hashtable_remove(block);
2145 list_del(&block->all_blocks_node);
2146 btrfsic_block_free(block);
2147 }
2148 }
2149 btrfsic_release_block_ctx(&block_ctx);
2150 } else {
2151 /* block has not been found in hash table */
2152 u64 bytenr;
2153
2154 if (!is_metadata) {
2155 processed_len = state->datablock_size;
2156 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2157 printk(KERN_INFO "Written block (%s/%llu/?)"
2158 " !found in hash table, D.\n",
2159 dev_state->name,
2160 (unsigned long long)dev_bytenr);
2161 if (!state->include_extent_data) {
2162 /* ignore that written D block */
2163 goto continue_loop;
2164 }
2165
2166 /* this is getting ugly for the
2167 * include_extent_data case... */
2168 bytenr = 0; /* unknown */
2169 block_ctx.start = bytenr;
2170 block_ctx.len = processed_len;
2171 block_ctx.mem_to_free = NULL;
2172 block_ctx.pagev = NULL;
2173 } else {
2174 processed_len = state->metablock_size;
2175 bytenr = le64_to_cpu(((struct btrfs_header *)
2176 mapped_datav[0])->bytenr);
2177 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2178 dev_bytenr);
2179 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2180 printk(KERN_INFO
2181 "Written block @%llu (%s/%llu/?)"
2182 " !found in hash table, M.\n",
2183 (unsigned long long)bytenr,
2184 dev_state->name,
2185 (unsigned long long)dev_bytenr);
2186
2187 ret = btrfsic_map_block(state, bytenr, processed_len,
2188 &block_ctx, 0);
2189 if (ret) {
2190 printk(KERN_INFO
2191 "btrfsic: btrfsic_map_block(root @%llu)"
2192 " failed!\n",
2193 (unsigned long long)dev_bytenr);
2194 goto continue_loop;
2195 }
2196 }
2197 block_ctx.datav = mapped_datav;
2198 /* the following is required in case of writes to mirrors,
2199 * use the same that was used for the lookup */
2200 block_ctx.dev = dev_state;
2201 block_ctx.dev_bytenr = dev_bytenr;
2202
2203 block = btrfsic_block_alloc();
2204 if (NULL == block) {
2205 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2206 btrfsic_release_block_ctx(&block_ctx);
2207 goto continue_loop;
2208 }
2209 block->dev_state = dev_state;
2210 block->dev_bytenr = dev_bytenr;
2211 block->logical_bytenr = bytenr;
2212 block->is_metadata = is_metadata;
2213 block->never_written = 0;
2214 block->iodone_w_error = 0;
2215 block->mirror_num = 0; /* unknown */
2216 block->flush_gen = dev_state->last_flush_gen + 1;
2217 block->submit_bio_bh_rw = submit_bio_bh_rw;
2218 if (NULL != bio) {
2219 block->is_iodone = 0;
2220 BUG_ON(NULL == bio_is_patched);
2221 if (!*bio_is_patched) {
2222 block->orig_bio_bh_private = bio->bi_private;
2223 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2224 block->next_in_same_bio = NULL;
2225 bio->bi_private = block;
2226 bio->bi_end_io = btrfsic_bio_end_io;
2227 *bio_is_patched = 1;
2228 } else {
2229 struct btrfsic_block *chained_block =
2230 (struct btrfsic_block *)
2231 bio->bi_private;
2232
2233 BUG_ON(NULL == chained_block);
2234 block->orig_bio_bh_private =
2235 chained_block->orig_bio_bh_private;
2236 block->orig_bio_bh_end_io.bio =
2237 chained_block->orig_bio_bh_end_io.bio;
2238 block->next_in_same_bio = chained_block;
2239 bio->bi_private = block;
2240 }
2241 } else if (NULL != bh) {
2242 block->is_iodone = 0;
2243 block->orig_bio_bh_private = bh->b_private;
2244 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2245 block->next_in_same_bio = NULL;
2246 bh->b_private = block;
2247 bh->b_end_io = btrfsic_bh_end_io;
2248 } else {
2249 block->is_iodone = 1;
2250 block->orig_bio_bh_private = NULL;
2251 block->orig_bio_bh_end_io.bio = NULL;
2252 block->next_in_same_bio = NULL;
2253 }
2254 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2255 printk(KERN_INFO
2256 "New written %c-block @%llu (%s/%llu/%d)\n",
2257 is_metadata ? 'M' : 'D',
2258 (unsigned long long)block->logical_bytenr,
2259 block->dev_state->name,
2260 (unsigned long long)block->dev_bytenr,
2261 block->mirror_num);
2262 list_add(&block->all_blocks_node, &state->all_blocks_list);
2263 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2264
2265 if (is_metadata) {
2266 ret = btrfsic_process_metablock(state, block,
2267 &block_ctx, 0, 0);
2268 if (ret)
2269 printk(KERN_INFO
2270 "btrfsic: process_metablock(root @%llu)"
2271 " failed!\n",
2272 (unsigned long long)dev_bytenr);
2273 }
2274 btrfsic_release_block_ctx(&block_ctx);
2275 }
2276
2277continue_loop:
2278 BUG_ON(!processed_len);
2279 dev_bytenr += processed_len;
2280 mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2281 num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2282 goto again;
2283}
2284
2285static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2286{
2287 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2288 int iodone_w_error;
2289
2290 /* mutex is not held! This is not save if IO is not yet completed
2291 * on umount */
2292 iodone_w_error = 0;
2293 if (bio_error_status)
2294 iodone_w_error = 1;
2295
2296 BUG_ON(NULL == block);
2297 bp->bi_private = block->orig_bio_bh_private;
2298 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2299
2300 do {
2301 struct btrfsic_block *next_block;
2302 struct btrfsic_dev_state *const dev_state = block->dev_state;
2303
2304 if ((dev_state->state->print_mask &
2305 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2306 printk(KERN_INFO
2307 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2308 bio_error_status,
2309 btrfsic_get_block_type(dev_state->state, block),
2310 (unsigned long long)block->logical_bytenr,
2311 dev_state->name,
2312 (unsigned long long)block->dev_bytenr,
2313 block->mirror_num);
2314 next_block = block->next_in_same_bio;
2315 block->iodone_w_error = iodone_w_error;
2316 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2317 dev_state->last_flush_gen++;
2318 if ((dev_state->state->print_mask &
2319 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2320 printk(KERN_INFO
2321 "bio_end_io() new %s flush_gen=%llu\n",
2322 dev_state->name,
2323 (unsigned long long)
2324 dev_state->last_flush_gen);
2325 }
2326 if (block->submit_bio_bh_rw & REQ_FUA)
2327 block->flush_gen = 0; /* FUA completed means block is
2328 * on disk */
2329 block->is_iodone = 1; /* for FLUSH, this releases the block */
2330 block = next_block;
2331 } while (NULL != block);
2332
2333 bp->bi_end_io(bp, bio_error_status);
2334}
2335
2336static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2337{
2338 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2339 int iodone_w_error = !uptodate;
2340 struct btrfsic_dev_state *dev_state;
2341
2342 BUG_ON(NULL == block);
2343 dev_state = block->dev_state;
2344 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2345 printk(KERN_INFO
2346 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2347 iodone_w_error,
2348 btrfsic_get_block_type(dev_state->state, block),
2349 (unsigned long long)block->logical_bytenr,
2350 block->dev_state->name,
2351 (unsigned long long)block->dev_bytenr,
2352 block->mirror_num);
2353
2354 block->iodone_w_error = iodone_w_error;
2355 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2356 dev_state->last_flush_gen++;
2357 if ((dev_state->state->print_mask &
2358 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2359 printk(KERN_INFO
2360 "bh_end_io() new %s flush_gen=%llu\n",
2361 dev_state->name,
2362 (unsigned long long)dev_state->last_flush_gen);
2363 }
2364 if (block->submit_bio_bh_rw & REQ_FUA)
2365 block->flush_gen = 0; /* FUA completed means block is on disk */
2366
2367 bh->b_private = block->orig_bio_bh_private;
2368 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2369 block->is_iodone = 1; /* for FLUSH, this releases the block */
2370 bh->b_end_io(bh, uptodate);
2371}
2372
2373static int btrfsic_process_written_superblock(
2374 struct btrfsic_state *state,
2375 struct btrfsic_block *const superblock,
2376 struct btrfs_super_block *const super_hdr)
2377{
2378 int pass;
2379
2380 superblock->generation = btrfs_super_generation(super_hdr);
2381 if (!(superblock->generation > state->max_superblock_generation ||
2382 0 == state->max_superblock_generation)) {
2383 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2384 printk(KERN_INFO
2385 "btrfsic: superblock @%llu (%s/%llu/%d)"
2386 " with old gen %llu <= %llu\n",
2387 (unsigned long long)superblock->logical_bytenr,
2388 superblock->dev_state->name,
2389 (unsigned long long)superblock->dev_bytenr,
2390 superblock->mirror_num,
2391 (unsigned long long)
2392 btrfs_super_generation(super_hdr),
2393 (unsigned long long)
2394 state->max_superblock_generation);
2395 } else {
2396 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2397 printk(KERN_INFO
2398 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2399 " with new gen %llu > %llu\n",
2400 (unsigned long long)superblock->logical_bytenr,
2401 superblock->dev_state->name,
2402 (unsigned long long)superblock->dev_bytenr,
2403 superblock->mirror_num,
2404 (unsigned long long)
2405 btrfs_super_generation(super_hdr),
2406 (unsigned long long)
2407 state->max_superblock_generation);
2408
2409 state->max_superblock_generation =
2410 btrfs_super_generation(super_hdr);
2411 state->latest_superblock = superblock;
2412 }
2413
2414 for (pass = 0; pass < 3; pass++) {
2415 int ret;
2416 u64 next_bytenr;
2417 struct btrfsic_block *next_block;
2418 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2419 struct btrfsic_block_link *l;
2420 int num_copies;
2421 int mirror_num;
2422 const char *additional_string = NULL;
2423 struct btrfs_disk_key tmp_disk_key;
2424
2425 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
2426 tmp_disk_key.offset = 0;
2427
2428 switch (pass) {
2429 case 0:
2430 tmp_disk_key.objectid =
2431 cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
2432 additional_string = "root ";
2433 next_bytenr = btrfs_super_root(super_hdr);
2434 if (state->print_mask &
2435 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2436 printk(KERN_INFO "root@%llu\n",
2437 (unsigned long long)next_bytenr);
2438 break;
2439 case 1:
2440 tmp_disk_key.objectid =
2441 cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
2442 additional_string = "chunk ";
2443 next_bytenr = btrfs_super_chunk_root(super_hdr);
2444 if (state->print_mask &
2445 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2446 printk(KERN_INFO "chunk@%llu\n",
2447 (unsigned long long)next_bytenr);
2448 break;
2449 case 2:
2450 tmp_disk_key.objectid =
2451 cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
2452 additional_string = "log ";
2453 next_bytenr = btrfs_super_log_root(super_hdr);
2454 if (0 == next_bytenr)
2455 continue;
2456 if (state->print_mask &
2457 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2458 printk(KERN_INFO "log@%llu\n",
2459 (unsigned long long)next_bytenr);
2460 break;
2461 }
2462
2463 num_copies =
2464 btrfs_num_copies(&state->root->fs_info->mapping_tree,
2465 next_bytenr, BTRFS_SUPER_INFO_SIZE);
2466 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2467 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2468 (unsigned long long)next_bytenr, num_copies);
2469 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2470 int was_created;
2471
2472 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2473 printk(KERN_INFO
2474 "btrfsic_process_written_superblock("
2475 "mirror_num=%d)\n", mirror_num);
2476 ret = btrfsic_map_block(state, next_bytenr,
2477 BTRFS_SUPER_INFO_SIZE,
2478 &tmp_next_block_ctx,
2479 mirror_num);
2480 if (ret) {
2481 printk(KERN_INFO
2482 "btrfsic: btrfsic_map_block(@%llu,"
2483 " mirror=%d) failed!\n",
2484 (unsigned long long)next_bytenr,
2485 mirror_num);
2486 return -1;
2487 }
2488
2489 next_block = btrfsic_block_lookup_or_add(
2490 state,
2491 &tmp_next_block_ctx,
2492 additional_string,
2493 1, 0, 1,
2494 mirror_num,
2495 &was_created);
2496 if (NULL == next_block) {
2497 printk(KERN_INFO
2498 "btrfsic: error, kmalloc failed!\n");
2499 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2500 return -1;
2501 }
2502
2503 next_block->disk_key = tmp_disk_key;
2504 if (was_created)
2505 next_block->generation =
2506 BTRFSIC_GENERATION_UNKNOWN;
2507 l = btrfsic_block_link_lookup_or_add(
2508 state,
2509 &tmp_next_block_ctx,
2510 next_block,
2511 superblock,
2512 BTRFSIC_GENERATION_UNKNOWN);
2513 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2514 if (NULL == l)
2515 return -1;
2516 }
2517 }
2518
2519 if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) {
2520 WARN_ON(1);
2521 btrfsic_dump_tree(state);
2522 }
2523
2524 return 0;
2525}
2526
2527static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2528 struct btrfsic_block *const block,
2529 int recursion_level)
2530{
2531 struct list_head *elem_ref_to;
2532 int ret = 0;
2533
2534 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2535 /*
2536 * Note that this situation can happen and does not
2537 * indicate an error in regular cases. It happens
2538 * when disk blocks are freed and later reused.
2539 * The check-integrity module is not aware of any
2540 * block free operations, it just recognizes block
2541 * write operations. Therefore it keeps the linkage
2542 * information for a block until a block is
2543 * rewritten. This can temporarily cause incorrect
2544 * and even circular linkage informations. This
2545 * causes no harm unless such blocks are referenced
2546 * by the most recent super block.
2547 */
2548 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2549 printk(KERN_INFO
2550 "btrfsic: abort cyclic linkage (case 1).\n");
2551
2552 return ret;
2553 }
2554
2555 /*
2556 * This algorithm is recursive because the amount of used stack
2557 * space is very small and the max recursion depth is limited.
2558 */
2559 list_for_each(elem_ref_to, &block->ref_to_list) {
2560 const struct btrfsic_block_link *const l =
2561 list_entry(elem_ref_to, struct btrfsic_block_link,
2562 node_ref_to);
2563
2564 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2565 printk(KERN_INFO
2566 "rl=%d, %c @%llu (%s/%llu/%d)"
2567 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2568 recursion_level,
2569 btrfsic_get_block_type(state, block),
2570 (unsigned long long)block->logical_bytenr,
2571 block->dev_state->name,
2572 (unsigned long long)block->dev_bytenr,
2573 block->mirror_num,
2574 l->ref_cnt,
2575 btrfsic_get_block_type(state, l->block_ref_to),
2576 (unsigned long long)
2577 l->block_ref_to->logical_bytenr,
2578 l->block_ref_to->dev_state->name,
2579 (unsigned long long)l->block_ref_to->dev_bytenr,
2580 l->block_ref_to->mirror_num);
2581 if (l->block_ref_to->never_written) {
2582 printk(KERN_INFO "btrfs: attempt to write superblock"
2583 " which references block %c @%llu (%s/%llu/%d)"
2584 " which is never written!\n",
2585 btrfsic_get_block_type(state, l->block_ref_to),
2586 (unsigned long long)
2587 l->block_ref_to->logical_bytenr,
2588 l->block_ref_to->dev_state->name,
2589 (unsigned long long)l->block_ref_to->dev_bytenr,
2590 l->block_ref_to->mirror_num);
2591 ret = -1;
2592 } else if (!l->block_ref_to->is_iodone) {
2593 printk(KERN_INFO "btrfs: attempt to write superblock"
2594 " which references block %c @%llu (%s/%llu/%d)"
2595 " which is not yet iodone!\n",
2596 btrfsic_get_block_type(state, l->block_ref_to),
2597 (unsigned long long)
2598 l->block_ref_to->logical_bytenr,
2599 l->block_ref_to->dev_state->name,
2600 (unsigned long long)l->block_ref_to->dev_bytenr,
2601 l->block_ref_to->mirror_num);
2602 ret = -1;
2603 } else if (l->parent_generation !=
2604 l->block_ref_to->generation &&
2605 BTRFSIC_GENERATION_UNKNOWN !=
2606 l->parent_generation &&
2607 BTRFSIC_GENERATION_UNKNOWN !=
2608 l->block_ref_to->generation) {
2609 printk(KERN_INFO "btrfs: attempt to write superblock"
2610 " which references block %c @%llu (%s/%llu/%d)"
2611 " with generation %llu !="
2612 " parent generation %llu!\n",
2613 btrfsic_get_block_type(state, l->block_ref_to),
2614 (unsigned long long)
2615 l->block_ref_to->logical_bytenr,
2616 l->block_ref_to->dev_state->name,
2617 (unsigned long long)l->block_ref_to->dev_bytenr,
2618 l->block_ref_to->mirror_num,
2619 (unsigned long long)l->block_ref_to->generation,
2620 (unsigned long long)l->parent_generation);
2621 ret = -1;
2622 } else if (l->block_ref_to->flush_gen >
2623 l->block_ref_to->dev_state->last_flush_gen) {
2624 printk(KERN_INFO "btrfs: attempt to write superblock"
2625 " which references block %c @%llu (%s/%llu/%d)"
2626 " which is not flushed out of disk's write cache"
2627 " (block flush_gen=%llu,"
2628 " dev->flush_gen=%llu)!\n",
2629 btrfsic_get_block_type(state, l->block_ref_to),
2630 (unsigned long long)
2631 l->block_ref_to->logical_bytenr,
2632 l->block_ref_to->dev_state->name,
2633 (unsigned long long)l->block_ref_to->dev_bytenr,
2634 l->block_ref_to->mirror_num,
2635 (unsigned long long)block->flush_gen,
2636 (unsigned long long)
2637 l->block_ref_to->dev_state->last_flush_gen);
2638 ret = -1;
2639 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2640 l->block_ref_to,
2641 recursion_level +
2642 1)) {
2643 ret = -1;
2644 }
2645 }
2646
2647 return ret;
2648}
2649
2650static int btrfsic_is_block_ref_by_superblock(
2651 const struct btrfsic_state *state,
2652 const struct btrfsic_block *block,
2653 int recursion_level)
2654{
2655 struct list_head *elem_ref_from;
2656
2657 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2658 /* refer to comment at "abort cyclic linkage (case 1)" */
2659 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2660 printk(KERN_INFO
2661 "btrfsic: abort cyclic linkage (case 2).\n");
2662
2663 return 0;
2664 }
2665
2666 /*
2667 * This algorithm is recursive because the amount of used stack space
2668 * is very small and the max recursion depth is limited.
2669 */
2670 list_for_each(elem_ref_from, &block->ref_from_list) {
2671 const struct btrfsic_block_link *const l =
2672 list_entry(elem_ref_from, struct btrfsic_block_link,
2673 node_ref_from);
2674
2675 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2676 printk(KERN_INFO
2677 "rl=%d, %c @%llu (%s/%llu/%d)"
2678 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2679 recursion_level,
2680 btrfsic_get_block_type(state, block),
2681 (unsigned long long)block->logical_bytenr,
2682 block->dev_state->name,
2683 (unsigned long long)block->dev_bytenr,
2684 block->mirror_num,
2685 l->ref_cnt,
2686 btrfsic_get_block_type(state, l->block_ref_from),
2687 (unsigned long long)
2688 l->block_ref_from->logical_bytenr,
2689 l->block_ref_from->dev_state->name,
2690 (unsigned long long)
2691 l->block_ref_from->dev_bytenr,
2692 l->block_ref_from->mirror_num);
2693 if (l->block_ref_from->is_superblock &&
2694 state->latest_superblock->dev_bytenr ==
2695 l->block_ref_from->dev_bytenr &&
2696 state->latest_superblock->dev_state->bdev ==
2697 l->block_ref_from->dev_state->bdev)
2698 return 1;
2699 else if (btrfsic_is_block_ref_by_superblock(state,
2700 l->block_ref_from,
2701 recursion_level +
2702 1))
2703 return 1;
2704 }
2705
2706 return 0;
2707}
2708
2709static void btrfsic_print_add_link(const struct btrfsic_state *state,
2710 const struct btrfsic_block_link *l)
2711{
2712 printk(KERN_INFO
2713 "Add %u* link from %c @%llu (%s/%llu/%d)"
2714 " to %c @%llu (%s/%llu/%d).\n",
2715 l->ref_cnt,
2716 btrfsic_get_block_type(state, l->block_ref_from),
2717 (unsigned long long)l->block_ref_from->logical_bytenr,
2718 l->block_ref_from->dev_state->name,
2719 (unsigned long long)l->block_ref_from->dev_bytenr,
2720 l->block_ref_from->mirror_num,
2721 btrfsic_get_block_type(state, l->block_ref_to),
2722 (unsigned long long)l->block_ref_to->logical_bytenr,
2723 l->block_ref_to->dev_state->name,
2724 (unsigned long long)l->block_ref_to->dev_bytenr,
2725 l->block_ref_to->mirror_num);
2726}
2727
2728static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2729 const struct btrfsic_block_link *l)
2730{
2731 printk(KERN_INFO
2732 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2733 " to %c @%llu (%s/%llu/%d).\n",
2734 l->ref_cnt,
2735 btrfsic_get_block_type(state, l->block_ref_from),
2736 (unsigned long long)l->block_ref_from->logical_bytenr,
2737 l->block_ref_from->dev_state->name,
2738 (unsigned long long)l->block_ref_from->dev_bytenr,
2739 l->block_ref_from->mirror_num,
2740 btrfsic_get_block_type(state, l->block_ref_to),
2741 (unsigned long long)l->block_ref_to->logical_bytenr,
2742 l->block_ref_to->dev_state->name,
2743 (unsigned long long)l->block_ref_to->dev_bytenr,
2744 l->block_ref_to->mirror_num);
2745}
2746
2747static char btrfsic_get_block_type(const struct btrfsic_state *state,
2748 const struct btrfsic_block *block)
2749{
2750 if (block->is_superblock &&
2751 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2752 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2753 return 'S';
2754 else if (block->is_superblock)
2755 return 's';
2756 else if (block->is_metadata)
2757 return 'M';
2758 else
2759 return 'D';
2760}
2761
2762static void btrfsic_dump_tree(const struct btrfsic_state *state)
2763{
2764 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2765}
2766
2767static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2768 const struct btrfsic_block *block,
2769 int indent_level)
2770{
2771 struct list_head *elem_ref_to;
2772 int indent_add;
2773 static char buf[80];
2774 int cursor_position;
2775
2776 /*
2777 * Should better fill an on-stack buffer with a complete line and
2778 * dump it at once when it is time to print a newline character.
2779 */
2780
2781 /*
2782 * This algorithm is recursive because the amount of used stack space
2783 * is very small and the max recursion depth is limited.
2784 */
2785 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2786 btrfsic_get_block_type(state, block),
2787 (unsigned long long)block->logical_bytenr,
2788 block->dev_state->name,
2789 (unsigned long long)block->dev_bytenr,
2790 block->mirror_num);
2791 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2792 printk("[...]\n");
2793 return;
2794 }
2795 printk(buf);
2796 indent_level += indent_add;
2797 if (list_empty(&block->ref_to_list)) {
2798 printk("\n");
2799 return;
2800 }
2801 if (block->mirror_num > 1 &&
2802 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2803 printk(" [...]\n");
2804 return;
2805 }
2806
2807 cursor_position = indent_level;
2808 list_for_each(elem_ref_to, &block->ref_to_list) {
2809 const struct btrfsic_block_link *const l =
2810 list_entry(elem_ref_to, struct btrfsic_block_link,
2811 node_ref_to);
2812
2813 while (cursor_position < indent_level) {
2814 printk(" ");
2815 cursor_position++;
2816 }
2817 if (l->ref_cnt > 1)
2818 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2819 else
2820 indent_add = sprintf(buf, " --> ");
2821 if (indent_level + indent_add >
2822 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2823 printk("[...]\n");
2824 cursor_position = 0;
2825 continue;
2826 }
2827
2828 printk(buf);
2829
2830 btrfsic_dump_tree_sub(state, l->block_ref_to,
2831 indent_level + indent_add);
2832 cursor_position = 0;
2833 }
2834}
2835
2836static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2837 struct btrfsic_state *state,
2838 struct btrfsic_block_data_ctx *next_block_ctx,
2839 struct btrfsic_block *next_block,
2840 struct btrfsic_block *from_block,
2841 u64 parent_generation)
2842{
2843 struct btrfsic_block_link *l;
2844
2845 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2846 next_block_ctx->dev_bytenr,
2847 from_block->dev_state->bdev,
2848 from_block->dev_bytenr,
2849 &state->block_link_hashtable);
2850 if (NULL == l) {
2851 l = btrfsic_block_link_alloc();
2852 if (NULL == l) {
2853 printk(KERN_INFO
2854 "btrfsic: error, kmalloc" " failed!\n");
2855 return NULL;
2856 }
2857
2858 l->block_ref_to = next_block;
2859 l->block_ref_from = from_block;
2860 l->ref_cnt = 1;
2861 l->parent_generation = parent_generation;
2862
2863 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2864 btrfsic_print_add_link(state, l);
2865
2866 list_add(&l->node_ref_to, &from_block->ref_to_list);
2867 list_add(&l->node_ref_from, &next_block->ref_from_list);
2868
2869 btrfsic_block_link_hashtable_add(l,
2870 &state->block_link_hashtable);
2871 } else {
2872 l->ref_cnt++;
2873 l->parent_generation = parent_generation;
2874 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2875 btrfsic_print_add_link(state, l);
2876 }
2877
2878 return l;
2879}
2880
2881static struct btrfsic_block *btrfsic_block_lookup_or_add(
2882 struct btrfsic_state *state,
2883 struct btrfsic_block_data_ctx *block_ctx,
2884 const char *additional_string,
2885 int is_metadata,
2886 int is_iodone,
2887 int never_written,
2888 int mirror_num,
2889 int *was_created)
2890{
2891 struct btrfsic_block *block;
2892
2893 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2894 block_ctx->dev_bytenr,
2895 &state->block_hashtable);
2896 if (NULL == block) {
2897 struct btrfsic_dev_state *dev_state;
2898
2899 block = btrfsic_block_alloc();
2900 if (NULL == block) {
2901 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2902 return NULL;
2903 }
2904 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2905 if (NULL == dev_state) {
2906 printk(KERN_INFO
2907 "btrfsic: error, lookup dev_state failed!\n");
2908 btrfsic_block_free(block);
2909 return NULL;
2910 }
2911 block->dev_state = dev_state;
2912 block->dev_bytenr = block_ctx->dev_bytenr;
2913 block->logical_bytenr = block_ctx->start;
2914 block->is_metadata = is_metadata;
2915 block->is_iodone = is_iodone;
2916 block->never_written = never_written;
2917 block->mirror_num = mirror_num;
2918 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2919 printk(KERN_INFO
2920 "New %s%c-block @%llu (%s/%llu/%d)\n",
2921 additional_string,
2922 btrfsic_get_block_type(state, block),
2923 (unsigned long long)block->logical_bytenr,
2924 dev_state->name,
2925 (unsigned long long)block->dev_bytenr,
2926 mirror_num);
2927 list_add(&block->all_blocks_node, &state->all_blocks_list);
2928 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2929 if (NULL != was_created)
2930 *was_created = 1;
2931 } else {
2932 if (NULL != was_created)
2933 *was_created = 0;
2934 }
2935
2936 return block;
2937}
2938
2939static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2940 u64 bytenr,
2941 struct btrfsic_dev_state *dev_state,
2942 u64 dev_bytenr)
2943{
2944 int num_copies;
2945 int mirror_num;
2946 int ret;
2947 struct btrfsic_block_data_ctx block_ctx;
2948 int match = 0;
2949
2950 num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree,
2951 bytenr, state->metablock_size);
2952
2953 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2954 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2955 &block_ctx, mirror_num);
2956 if (ret) {
2957 printk(KERN_INFO "btrfsic:"
2958 " btrfsic_map_block(logical @%llu,"
2959 " mirror %d) failed!\n",
2960 (unsigned long long)bytenr, mirror_num);
2961 continue;
2962 }
2963
2964 if (dev_state->bdev == block_ctx.dev->bdev &&
2965 dev_bytenr == block_ctx.dev_bytenr) {
2966 match++;
2967 btrfsic_release_block_ctx(&block_ctx);
2968 break;
2969 }
2970 btrfsic_release_block_ctx(&block_ctx);
2971 }
2972
2973 if (!match) {
2974 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2975 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2976 " phys_bytenr=%llu)!\n",
2977 (unsigned long long)bytenr, dev_state->name,
2978 (unsigned long long)dev_bytenr);
2979 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2980 ret = btrfsic_map_block(state, bytenr,
2981 state->metablock_size,
2982 &block_ctx, mirror_num);
2983 if (ret)
2984 continue;
2985
2986 printk(KERN_INFO "Read logical bytenr @%llu maps to"
2987 " (%s/%llu/%d)\n",
2988 (unsigned long long)bytenr,
2989 block_ctx.dev->name,
2990 (unsigned long long)block_ctx.dev_bytenr,
2991 mirror_num);
2992 }
2993 WARN_ON(1);
2994 }
2995}
2996
2997static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2998 struct block_device *bdev)
2999{
3000 struct btrfsic_dev_state *ds;
3001
3002 ds = btrfsic_dev_state_hashtable_lookup(bdev,
3003 &btrfsic_dev_state_hashtable);
3004 return ds;
3005}
3006
3007int btrfsic_submit_bh(int rw, struct buffer_head *bh)
3008{
3009 struct btrfsic_dev_state *dev_state;
3010
3011 if (!btrfsic_is_initialized)
3012 return submit_bh(rw, bh);
3013
3014 mutex_lock(&btrfsic_mutex);
3015 /* since btrfsic_submit_bh() might also be called before
3016 * btrfsic_mount(), this might return NULL */
3017 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
3018
3019 /* Only called to write the superblock (incl. FLUSH/FUA) */
3020 if (NULL != dev_state &&
3021 (rw & WRITE) && bh->b_size > 0) {
3022 u64 dev_bytenr;
3023
3024 dev_bytenr = 4096 * bh->b_blocknr;
3025 if (dev_state->state->print_mask &
3026 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3027 printk(KERN_INFO
3028 "submit_bh(rw=0x%x, blocknr=%lu (bytenr %llu),"
3029 " size=%lu, data=%p, bdev=%p)\n",
3030 rw, (unsigned long)bh->b_blocknr,
3031 (unsigned long long)dev_bytenr,
3032 (unsigned long)bh->b_size, bh->b_data,
3033 bh->b_bdev);
3034 btrfsic_process_written_block(dev_state, dev_bytenr,
3035 &bh->b_data, 1, NULL,
3036 NULL, bh, rw);
3037 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3038 if (dev_state->state->print_mask &
3039 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3040 printk(KERN_INFO
3041 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
3042 rw, bh->b_bdev);
3043 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3044 if ((dev_state->state->print_mask &
3045 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3046 BTRFSIC_PRINT_MASK_VERBOSE)))
3047 printk(KERN_INFO
3048 "btrfsic_submit_bh(%s) with FLUSH"
3049 " but dummy block already in use"
3050 " (ignored)!\n",
3051 dev_state->name);
3052 } else {
3053 struct btrfsic_block *const block =
3054 &dev_state->dummy_block_for_bio_bh_flush;
3055
3056 block->is_iodone = 0;
3057 block->never_written = 0;
3058 block->iodone_w_error = 0;
3059 block->flush_gen = dev_state->last_flush_gen + 1;
3060 block->submit_bio_bh_rw = rw;
3061 block->orig_bio_bh_private = bh->b_private;
3062 block->orig_bio_bh_end_io.bh = bh->b_end_io;
3063 block->next_in_same_bio = NULL;
3064 bh->b_private = block;
3065 bh->b_end_io = btrfsic_bh_end_io;
3066 }
3067 }
3068 mutex_unlock(&btrfsic_mutex);
3069 return submit_bh(rw, bh);
3070}
3071
3072void btrfsic_submit_bio(int rw, struct bio *bio)
3073{
3074 struct btrfsic_dev_state *dev_state;
3075
3076 if (!btrfsic_is_initialized) {
3077 submit_bio(rw, bio);
3078 return;
3079 }
3080
3081 mutex_lock(&btrfsic_mutex);
3082 /* since btrfsic_submit_bio() is also called before
3083 * btrfsic_mount(), this might return NULL */
3084 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3085 if (NULL != dev_state &&
3086 (rw & WRITE) && NULL != bio->bi_io_vec) {
3087 unsigned int i;
3088 u64 dev_bytenr;
3089 int bio_is_patched;
3090 char **mapped_datav;
3091
3092 dev_bytenr = 512 * bio->bi_sector;
3093 bio_is_patched = 0;
3094 if (dev_state->state->print_mask &
3095 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3096 printk(KERN_INFO
3097 "submit_bio(rw=0x%x, bi_vcnt=%u,"
3098 " bi_sector=%lu (bytenr %llu), bi_bdev=%p)\n",
3099 rw, bio->bi_vcnt, (unsigned long)bio->bi_sector,
3100 (unsigned long long)dev_bytenr,
3101 bio->bi_bdev);
3102
3103 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3104 GFP_NOFS);
3105 if (!mapped_datav)
3106 goto leave;
3107 for (i = 0; i < bio->bi_vcnt; i++) {
3108 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3109 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3110 if (!mapped_datav[i]) {
3111 while (i > 0) {
3112 i--;
3113 kunmap(bio->bi_io_vec[i].bv_page);
3114 }
3115 kfree(mapped_datav);
3116 goto leave;
3117 }
3118 if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3119 BTRFSIC_PRINT_MASK_VERBOSE) ==
3120 (dev_state->state->print_mask &
3121 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3122 BTRFSIC_PRINT_MASK_VERBOSE)))
3123 printk(KERN_INFO
3124 "#%u: page=%p, len=%u, offset=%u\n",
3125 i, bio->bi_io_vec[i].bv_page,
3126 bio->bi_io_vec[i].bv_len,
3127 bio->bi_io_vec[i].bv_offset);
3128 }
3129 btrfsic_process_written_block(dev_state, dev_bytenr,
3130 mapped_datav, bio->bi_vcnt,
3131 bio, &bio_is_patched,
3132 NULL, rw);
3133 while (i > 0) {
3134 i--;
3135 kunmap(bio->bi_io_vec[i].bv_page);
3136 }
3137 kfree(mapped_datav);
3138 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3139 if (dev_state->state->print_mask &
3140 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3141 printk(KERN_INFO
3142 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3143 rw, bio->bi_bdev);
3144 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3145 if ((dev_state->state->print_mask &
3146 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3147 BTRFSIC_PRINT_MASK_VERBOSE)))
3148 printk(KERN_INFO
3149 "btrfsic_submit_bio(%s) with FLUSH"
3150 " but dummy block already in use"
3151 " (ignored)!\n",
3152 dev_state->name);
3153 } else {
3154 struct btrfsic_block *const block =
3155 &dev_state->dummy_block_for_bio_bh_flush;
3156
3157 block->is_iodone = 0;
3158 block->never_written = 0;
3159 block->iodone_w_error = 0;
3160 block->flush_gen = dev_state->last_flush_gen + 1;
3161 block->submit_bio_bh_rw = rw;
3162 block->orig_bio_bh_private = bio->bi_private;
3163 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3164 block->next_in_same_bio = NULL;
3165 bio->bi_private = block;
3166 bio->bi_end_io = btrfsic_bio_end_io;
3167 }
3168 }
3169leave:
3170 mutex_unlock(&btrfsic_mutex);
3171
3172 submit_bio(rw, bio);
3173}
3174
3175int btrfsic_mount(struct btrfs_root *root,
3176 struct btrfs_fs_devices *fs_devices,
3177 int including_extent_data, u32 print_mask)
3178{
3179 int ret;
3180 struct btrfsic_state *state;
3181 struct list_head *dev_head = &fs_devices->devices;
3182 struct btrfs_device *device;
3183
3184 if (root->nodesize != root->leafsize) {
3185 printk(KERN_INFO
3186 "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3187 root->nodesize, root->leafsize);
3188 return -1;
3189 }
3190 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3191 printk(KERN_INFO
3192 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3193 root->nodesize, (unsigned long)PAGE_CACHE_SIZE);
3194 return -1;
3195 }
3196 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3197 printk(KERN_INFO
3198 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3199 root->leafsize, (unsigned long)PAGE_CACHE_SIZE);
3200 return -1;
3201 }
3202 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3203 printk(KERN_INFO
3204 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3205 root->sectorsize, (unsigned long)PAGE_CACHE_SIZE);
3206 return -1;
3207 }
3208 state = kzalloc(sizeof(*state), GFP_NOFS);
3209 if (NULL == state) {
3210 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3211 return -1;
3212 }
3213
3214 if (!btrfsic_is_initialized) {
3215 mutex_init(&btrfsic_mutex);
3216 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3217 btrfsic_is_initialized = 1;
3218 }
3219 mutex_lock(&btrfsic_mutex);
3220 state->root = root;
3221 state->print_mask = print_mask;
3222 state->include_extent_data = including_extent_data;
3223 state->csum_size = 0;
3224 state->metablock_size = root->nodesize;
3225 state->datablock_size = root->sectorsize;
3226 INIT_LIST_HEAD(&state->all_blocks_list);
3227 btrfsic_block_hashtable_init(&state->block_hashtable);
3228 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3229 state->max_superblock_generation = 0;
3230 state->latest_superblock = NULL;
3231
3232 list_for_each_entry(device, dev_head, dev_list) {
3233 struct btrfsic_dev_state *ds;
3234 char *p;
3235
3236 if (!device->bdev || !device->name)
3237 continue;
3238
3239 ds = btrfsic_dev_state_alloc();
3240 if (NULL == ds) {
3241 printk(KERN_INFO
3242 "btrfs check-integrity: kmalloc() failed!\n");
3243 mutex_unlock(&btrfsic_mutex);
3244 return -1;
3245 }
3246 ds->bdev = device->bdev;
3247 ds->state = state;
3248 bdevname(ds->bdev, ds->name);
3249 ds->name[BDEVNAME_SIZE - 1] = '\0';
3250 for (p = ds->name; *p != '\0'; p++);
3251 while (p > ds->name && *p != '/')
3252 p--;
3253 if (*p == '/')
3254 p++;
3255 strlcpy(ds->name, p, sizeof(ds->name));
3256 btrfsic_dev_state_hashtable_add(ds,
3257 &btrfsic_dev_state_hashtable);
3258 }
3259
3260 ret = btrfsic_process_superblock(state, fs_devices);
3261 if (0 != ret) {
3262 mutex_unlock(&btrfsic_mutex);
3263 btrfsic_unmount(root, fs_devices);
3264 return ret;
3265 }
3266
3267 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3268 btrfsic_dump_database(state);
3269 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3270 btrfsic_dump_tree(state);
3271
3272 mutex_unlock(&btrfsic_mutex);
3273 return 0;
3274}
3275
3276void btrfsic_unmount(struct btrfs_root *root,
3277 struct btrfs_fs_devices *fs_devices)
3278{
3279 struct list_head *elem_all;
3280 struct list_head *tmp_all;
3281 struct btrfsic_state *state;
3282 struct list_head *dev_head = &fs_devices->devices;
3283 struct btrfs_device *device;
3284
3285 if (!btrfsic_is_initialized)
3286 return;
3287
3288 mutex_lock(&btrfsic_mutex);
3289
3290 state = NULL;
3291 list_for_each_entry(device, dev_head, dev_list) {
3292 struct btrfsic_dev_state *ds;
3293
3294 if (!device->bdev || !device->name)
3295 continue;
3296
3297 ds = btrfsic_dev_state_hashtable_lookup(
3298 device->bdev,
3299 &btrfsic_dev_state_hashtable);
3300 if (NULL != ds) {
3301 state = ds->state;
3302 btrfsic_dev_state_hashtable_remove(ds);
3303 btrfsic_dev_state_free(ds);
3304 }
3305 }
3306
3307 if (NULL == state) {
3308 printk(KERN_INFO
3309 "btrfsic: error, cannot find state information"
3310 " on umount!\n");
3311 mutex_unlock(&btrfsic_mutex);
3312 return;
3313 }
3314
3315 /*
3316 * Don't care about keeping the lists' state up to date,
3317 * just free all memory that was allocated dynamically.
3318 * Free the blocks and the block_links.
3319 */
3320 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3321 struct btrfsic_block *const b_all =
3322 list_entry(elem_all, struct btrfsic_block,
3323 all_blocks_node);
3324 struct list_head *elem_ref_to;
3325 struct list_head *tmp_ref_to;
3326
3327 list_for_each_safe(elem_ref_to, tmp_ref_to,
3328 &b_all->ref_to_list) {
3329 struct btrfsic_block_link *const l =
3330 list_entry(elem_ref_to,
3331 struct btrfsic_block_link,
3332 node_ref_to);
3333
3334 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3335 btrfsic_print_rem_link(state, l);
3336
3337 l->ref_cnt--;
3338 if (0 == l->ref_cnt)
3339 btrfsic_block_link_free(l);
3340 }
3341
3342 if (b_all->is_iodone || b_all->never_written)
3343 btrfsic_block_free(b_all);
3344 else
3345 printk(KERN_INFO "btrfs: attempt to free %c-block"
3346 " @%llu (%s/%llu/%d) on umount which is"
3347 " not yet iodone!\n",
3348 btrfsic_get_block_type(state, b_all),
3349 (unsigned long long)b_all->logical_bytenr,
3350 b_all->dev_state->name,
3351 (unsigned long long)b_all->dev_bytenr,
3352 b_all->mirror_num);
3353 }
3354
3355 mutex_unlock(&btrfsic_mutex);
3356
3357 kfree(state);
3358}