Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.15
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/vmalloc.h>
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "backref.h"
  23#include "ulist.h"
  24#include "transaction.h"
  25#include "delayed-ref.h"
  26#include "locking.h"
  27
  28struct extent_inode_elem {
  29	u64 inum;
  30	u64 offset;
  31	struct extent_inode_elem *next;
  32};
  33
  34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  35				struct btrfs_file_extent_item *fi,
  36				u64 extent_item_pos,
  37				struct extent_inode_elem **eie)
  38{
  39	u64 offset = 0;
 
  40	struct extent_inode_elem *e;
  41
  42	if (!btrfs_file_extent_compression(eb, fi) &&
  43	    !btrfs_file_extent_encryption(eb, fi) &&
  44	    !btrfs_file_extent_other_encoding(eb, fi)) {
  45		u64 data_offset;
  46		u64 data_len;
  47
  48		data_offset = btrfs_file_extent_offset(eb, fi);
  49		data_len = btrfs_file_extent_num_bytes(eb, fi);
  50
  51		if (extent_item_pos < data_offset ||
  52		    extent_item_pos >= data_offset + data_len)
  53			return 1;
  54		offset = extent_item_pos - data_offset;
  55	}
  56
  57	e = kmalloc(sizeof(*e), GFP_NOFS);
  58	if (!e)
  59		return -ENOMEM;
  60
  61	e->next = *eie;
  62	e->inum = key->objectid;
  63	e->offset = key->offset + offset;
  64	*eie = e;
  65
  66	return 0;
  67}
  68
  69static void free_inode_elem_list(struct extent_inode_elem *eie)
  70{
  71	struct extent_inode_elem *eie_next;
  72
  73	for (; eie; eie = eie_next) {
  74		eie_next = eie->next;
  75		kfree(eie);
  76	}
  77}
  78
  79static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  80				u64 extent_item_pos,
  81				struct extent_inode_elem **eie)
  82{
  83	u64 disk_byte;
  84	struct btrfs_key key;
  85	struct btrfs_file_extent_item *fi;
  86	int slot;
  87	int nritems;
  88	int extent_type;
  89	int ret;
  90
  91	/*
  92	 * from the shared data ref, we only have the leaf but we need
  93	 * the key. thus, we must look into all items and see that we
  94	 * find one (some) with a reference to our extent item.
  95	 */
  96	nritems = btrfs_header_nritems(eb);
  97	for (slot = 0; slot < nritems; ++slot) {
  98		btrfs_item_key_to_cpu(eb, &key, slot);
  99		if (key.type != BTRFS_EXTENT_DATA_KEY)
 100			continue;
 101		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 102		extent_type = btrfs_file_extent_type(eb, fi);
 103		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 104			continue;
 105		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 106		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 107		if (disk_byte != wanted_disk_byte)
 108			continue;
 109
 110		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
 111		if (ret < 0)
 112			return ret;
 113	}
 114
 115	return 0;
 116}
 117
 118/*
 119 * this structure records all encountered refs on the way up to the root
 120 */
 121struct __prelim_ref {
 122	struct list_head list;
 123	u64 root_id;
 124	struct btrfs_key key_for_search;
 125	int level;
 126	int count;
 127	struct extent_inode_elem *inode_list;
 128	u64 parent;
 129	u64 wanted_disk_byte;
 130};
 131
 132static struct kmem_cache *btrfs_prelim_ref_cache;
 133
 134int __init btrfs_prelim_ref_init(void)
 135{
 136	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 137					sizeof(struct __prelim_ref),
 138					0,
 139					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 140					NULL);
 141	if (!btrfs_prelim_ref_cache)
 142		return -ENOMEM;
 143	return 0;
 144}
 145
 146void btrfs_prelim_ref_exit(void)
 147{
 148	if (btrfs_prelim_ref_cache)
 149		kmem_cache_destroy(btrfs_prelim_ref_cache);
 150}
 151
 152/*
 153 * the rules for all callers of this function are:
 154 * - obtaining the parent is the goal
 155 * - if you add a key, you must know that it is a correct key
 156 * - if you cannot add the parent or a correct key, then we will look into the
 157 *   block later to set a correct key
 158 *
 159 * delayed refs
 160 * ============
 161 *        backref type | shared | indirect | shared | indirect
 162 * information         |   tree |     tree |   data |     data
 163 * --------------------+--------+----------+--------+----------
 164 *      parent logical |    y   |     -    |    -   |     -
 165 *      key to resolve |    -   |     y    |    y   |     y
 166 *  tree block logical |    -   |     -    |    -   |     -
 167 *  root for resolving |    y   |     y    |    y   |     y
 168 *
 169 * - column 1:       we've the parent -> done
 170 * - column 2, 3, 4: we use the key to find the parent
 171 *
 172 * on disk refs (inline or keyed)
 173 * ==============================
 174 *        backref type | shared | indirect | shared | indirect
 175 * information         |   tree |     tree |   data |     data
 176 * --------------------+--------+----------+--------+----------
 177 *      parent logical |    y   |     -    |    y   |     -
 178 *      key to resolve |    -   |     -    |    -   |     y
 179 *  tree block logical |    y   |     y    |    y   |     y
 180 *  root for resolving |    -   |     y    |    y   |     y
 181 *
 182 * - column 1, 3: we've the parent -> done
 183 * - column 2:    we take the first key from the block to find the parent
 184 *                (see __add_missing_keys)
 185 * - column 4:    we use the key to find the parent
 186 *
 187 * additional information that's available but not required to find the parent
 188 * block might help in merging entries to gain some speed.
 189 */
 190
 191static int __add_prelim_ref(struct list_head *head, u64 root_id,
 192			    struct btrfs_key *key, int level,
 193			    u64 parent, u64 wanted_disk_byte, int count,
 194			    gfp_t gfp_mask)
 195{
 196	struct __prelim_ref *ref;
 197
 198	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 199		return 0;
 200
 201	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 202	if (!ref)
 203		return -ENOMEM;
 204
 205	ref->root_id = root_id;
 206	if (key)
 207		ref->key_for_search = *key;
 208	else
 209		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 210
 211	ref->inode_list = NULL;
 212	ref->level = level;
 213	ref->count = count;
 214	ref->parent = parent;
 215	ref->wanted_disk_byte = wanted_disk_byte;
 216	list_add_tail(&ref->list, head);
 217
 218	return 0;
 219}
 220
 221static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 222			   struct ulist *parents, struct __prelim_ref *ref,
 223			   int level, u64 time_seq, const u64 *extent_item_pos,
 224			   u64 total_refs)
 
 225{
 226	int ret = 0;
 227	int slot;
 228	struct extent_buffer *eb;
 229	struct btrfs_key key;
 230	struct btrfs_key *key_for_search = &ref->key_for_search;
 231	struct btrfs_file_extent_item *fi;
 232	struct extent_inode_elem *eie = NULL, *old = NULL;
 233	u64 disk_byte;
 234	u64 wanted_disk_byte = ref->wanted_disk_byte;
 235	u64 count = 0;
 236
 237	if (level != 0) {
 238		eb = path->nodes[level];
 239		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 240		if (ret < 0)
 241			return ret;
 242		return 0;
 243	}
 244
 245	/*
 246	 * We normally enter this function with the path already pointing to
 247	 * the first item to check. But sometimes, we may enter it with
 248	 * slot==nritems. In that case, go to the next leaf before we continue.
 249	 */
 250	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
 251		ret = btrfs_next_old_leaf(root, path, time_seq);
 252
 253	while (!ret && count < total_refs) {
 254		eb = path->nodes[0];
 255		slot = path->slots[0];
 256
 257		btrfs_item_key_to_cpu(eb, &key, slot);
 258
 259		if (key.objectid != key_for_search->objectid ||
 260		    key.type != BTRFS_EXTENT_DATA_KEY)
 261			break;
 262
 263		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 264		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 265
 266		if (disk_byte == wanted_disk_byte) {
 267			eie = NULL;
 268			old = NULL;
 269			count++;
 270			if (extent_item_pos) {
 271				ret = check_extent_in_eb(&key, eb, fi,
 272						*extent_item_pos,
 273						&eie);
 274				if (ret < 0)
 275					break;
 276			}
 277			if (ret > 0)
 278				goto next;
 279			ret = ulist_add_merge(parents, eb->start,
 280					      (uintptr_t)eie,
 281					      (u64 *)&old, GFP_NOFS);
 282			if (ret < 0)
 283				break;
 284			if (!ret && extent_item_pos) {
 285				while (old->next)
 286					old = old->next;
 287				old->next = eie;
 288			}
 289			eie = NULL;
 290		}
 291next:
 292		ret = btrfs_next_old_item(root, path, time_seq);
 293	}
 294
 295	if (ret > 0)
 296		ret = 0;
 297	else if (ret < 0)
 298		free_inode_elem_list(eie);
 299	return ret;
 300}
 301
 302/*
 303 * resolve an indirect backref in the form (root_id, key, level)
 304 * to a logical address
 305 */
 306static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 307				  struct btrfs_path *path, u64 time_seq,
 308				  struct __prelim_ref *ref,
 309				  struct ulist *parents,
 310				  const u64 *extent_item_pos, u64 total_refs)
 
 311{
 
 312	struct btrfs_root *root;
 313	struct btrfs_key root_key;
 314	struct extent_buffer *eb;
 315	int ret = 0;
 316	int root_level;
 317	int level = ref->level;
 318	int index;
 
 
 
 
 319
 320	root_key.objectid = ref->root_id;
 321	root_key.type = BTRFS_ROOT_ITEM_KEY;
 322	root_key.offset = (u64)-1;
 323
 324	index = srcu_read_lock(&fs_info->subvol_srcu);
 325
 326	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 327	if (IS_ERR(root)) {
 328		srcu_read_unlock(&fs_info->subvol_srcu, index);
 329		ret = PTR_ERR(root);
 330		goto out;
 331	}
 332
 333	if (path->search_commit_root)
 334		root_level = btrfs_header_level(root->commit_root);
 335	else
 336		root_level = btrfs_old_root_level(root, time_seq);
 337
 338	if (root_level + 1 == level) {
 339		srcu_read_unlock(&fs_info->subvol_srcu, index);
 340		goto out;
 341	}
 342
 343	path->lowest_level = level;
 344	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
 345
 346	/* root node has been locked, we can release @subvol_srcu safely here */
 347	srcu_read_unlock(&fs_info->subvol_srcu, index);
 348
 349	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 350		 "%d for key (%llu %u %llu)\n",
 351		 ref->root_id, level, ref->count, ret,
 352		 ref->key_for_search.objectid, ref->key_for_search.type,
 353		 ref->key_for_search.offset);
 
 354	if (ret < 0)
 355		goto out;
 356
 357	eb = path->nodes[level];
 358	while (!eb) {
 359		if (WARN_ON(!level)) {
 
 360			ret = 1;
 361			goto out;
 362		}
 363		level--;
 364		eb = path->nodes[level];
 365	}
 366
 367	ret = add_all_parents(root, path, parents, ref, level, time_seq,
 368			      extent_item_pos, total_refs);
 
 369out:
 370	path->lowest_level = 0;
 371	btrfs_release_path(path);
 372	return ret;
 373}
 374
 375/*
 376 * resolve all indirect backrefs from the list
 377 */
 378static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 379				   struct btrfs_path *path, u64 time_seq,
 380				   struct list_head *head,
 381				   const u64 *extent_item_pos, u64 total_refs)
 382{
 383	int err;
 384	int ret = 0;
 385	struct __prelim_ref *ref;
 386	struct __prelim_ref *ref_safe;
 387	struct __prelim_ref *new_ref;
 388	struct ulist *parents;
 389	struct ulist_node *node;
 390	struct ulist_iterator uiter;
 391
 392	parents = ulist_alloc(GFP_NOFS);
 393	if (!parents)
 394		return -ENOMEM;
 395
 396	/*
 397	 * _safe allows us to insert directly after the current item without
 398	 * iterating over the newly inserted items.
 399	 * we're also allowed to re-assign ref during iteration.
 400	 */
 401	list_for_each_entry_safe(ref, ref_safe, head, list) {
 402		if (ref->parent)	/* already direct */
 403			continue;
 404		if (ref->count == 0)
 405			continue;
 406		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
 407					     parents, extent_item_pos,
 408					     total_refs);
 409		/*
 410		 * we can only tolerate ENOENT,otherwise,we should catch error
 411		 * and return directly.
 412		 */
 413		if (err == -ENOENT) {
 414			continue;
 415		} else if (err) {
 416			ret = err;
 417			goto out;
 418		}
 419
 420		/* we put the first parent into the ref at hand */
 421		ULIST_ITER_INIT(&uiter);
 422		node = ulist_next(parents, &uiter);
 423		ref->parent = node ? node->val : 0;
 424		ref->inode_list = node ?
 425			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
 426
 427		/* additional parents require new refs being added here */
 428		while ((node = ulist_next(parents, &uiter))) {
 429			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 430						   GFP_NOFS);
 431			if (!new_ref) {
 432				ret = -ENOMEM;
 433				goto out;
 434			}
 435			memcpy(new_ref, ref, sizeof(*ref));
 436			new_ref->parent = node->val;
 437			new_ref->inode_list = (struct extent_inode_elem *)
 438							(uintptr_t)node->aux;
 439			list_add(&new_ref->list, &ref->list);
 440		}
 441		ulist_reinit(parents);
 442	}
 443out:
 444	ulist_free(parents);
 445	return ret;
 446}
 447
 448static inline int ref_for_same_block(struct __prelim_ref *ref1,
 449				     struct __prelim_ref *ref2)
 450{
 451	if (ref1->level != ref2->level)
 452		return 0;
 453	if (ref1->root_id != ref2->root_id)
 454		return 0;
 455	if (ref1->key_for_search.type != ref2->key_for_search.type)
 456		return 0;
 457	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 458		return 0;
 459	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 460		return 0;
 461	if (ref1->parent != ref2->parent)
 462		return 0;
 463
 464	return 1;
 465}
 466
 467/*
 468 * read tree blocks and add keys where required.
 469 */
 470static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 471			      struct list_head *head)
 472{
 473	struct list_head *pos;
 474	struct extent_buffer *eb;
 475
 476	list_for_each(pos, head) {
 477		struct __prelim_ref *ref;
 478		ref = list_entry(pos, struct __prelim_ref, list);
 479
 480		if (ref->parent)
 481			continue;
 482		if (ref->key_for_search.type)
 483			continue;
 484		BUG_ON(!ref->wanted_disk_byte);
 485		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 486				     fs_info->tree_root->leafsize, 0);
 487		if (!eb || !extent_buffer_uptodate(eb)) {
 488			free_extent_buffer(eb);
 489			return -EIO;
 490		}
 491		btrfs_tree_read_lock(eb);
 492		if (btrfs_header_level(eb) == 0)
 493			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 494		else
 495			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 496		btrfs_tree_read_unlock(eb);
 497		free_extent_buffer(eb);
 498	}
 499	return 0;
 500}
 501
 502/*
 503 * merge two lists of backrefs and adjust counts accordingly
 504 *
 505 * mode = 1: merge identical keys, if key is set
 506 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 507 *           additionally, we could even add a key range for the blocks we
 508 *           looked into to merge even more (-> replace unresolved refs by those
 509 *           having a parent).
 510 * mode = 2: merge identical parents
 511 */
 512static void __merge_refs(struct list_head *head, int mode)
 513{
 514	struct list_head *pos1;
 515
 516	list_for_each(pos1, head) {
 517		struct list_head *n2;
 518		struct list_head *pos2;
 519		struct __prelim_ref *ref1;
 520
 521		ref1 = list_entry(pos1, struct __prelim_ref, list);
 522
 523		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
 524		     pos2 = n2, n2 = pos2->next) {
 525			struct __prelim_ref *ref2;
 526			struct __prelim_ref *xchg;
 527			struct extent_inode_elem *eie;
 528
 529			ref2 = list_entry(pos2, struct __prelim_ref, list);
 530
 531			if (mode == 1) {
 532				if (!ref_for_same_block(ref1, ref2))
 533					continue;
 534				if (!ref1->parent && ref2->parent) {
 535					xchg = ref1;
 536					ref1 = ref2;
 537					ref2 = xchg;
 538				}
 
 539			} else {
 540				if (ref1->parent != ref2->parent)
 541					continue;
 
 542			}
 543
 544			eie = ref1->inode_list;
 545			while (eie && eie->next)
 546				eie = eie->next;
 547			if (eie)
 548				eie->next = ref2->inode_list;
 549			else
 550				ref1->inode_list = ref2->inode_list;
 551			ref1->count += ref2->count;
 552
 553			list_del(&ref2->list);
 554			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
 555		}
 556
 557	}
 
 558}
 559
 560/*
 561 * add all currently queued delayed refs from this head whose seq nr is
 562 * smaller or equal that seq to the list
 563 */
 564static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 565			      struct list_head *prefs, u64 *total_refs)
 566{
 567	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 568	struct rb_node *n = &head->node.rb_node;
 569	struct btrfs_key key;
 570	struct btrfs_key op_key = {0};
 571	int sgn;
 572	int ret = 0;
 573
 574	if (extent_op && extent_op->update_key)
 575		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 576
 577	spin_lock(&head->lock);
 578	n = rb_first(&head->ref_root);
 579	while (n) {
 580		struct btrfs_delayed_ref_node *node;
 581		node = rb_entry(n, struct btrfs_delayed_ref_node,
 582				rb_node);
 583		n = rb_next(n);
 
 
 
 584		if (node->seq > seq)
 585			continue;
 586
 587		switch (node->action) {
 588		case BTRFS_ADD_DELAYED_EXTENT:
 589		case BTRFS_UPDATE_DELAYED_HEAD:
 590			WARN_ON(1);
 591			continue;
 592		case BTRFS_ADD_DELAYED_REF:
 593			sgn = 1;
 594			break;
 595		case BTRFS_DROP_DELAYED_REF:
 596			sgn = -1;
 597			break;
 598		default:
 599			BUG_ON(1);
 600		}
 601		*total_refs += (node->ref_mod * sgn);
 602		switch (node->type) {
 603		case BTRFS_TREE_BLOCK_REF_KEY: {
 604			struct btrfs_delayed_tree_ref *ref;
 605
 606			ref = btrfs_delayed_node_to_tree_ref(node);
 607			ret = __add_prelim_ref(prefs, ref->root, &op_key,
 608					       ref->level + 1, 0, node->bytenr,
 609					       node->ref_mod * sgn, GFP_ATOMIC);
 610			break;
 611		}
 612		case BTRFS_SHARED_BLOCK_REF_KEY: {
 613			struct btrfs_delayed_tree_ref *ref;
 614
 615			ref = btrfs_delayed_node_to_tree_ref(node);
 616			ret = __add_prelim_ref(prefs, ref->root, NULL,
 617					       ref->level + 1, ref->parent,
 618					       node->bytenr,
 619					       node->ref_mod * sgn, GFP_ATOMIC);
 620			break;
 621		}
 622		case BTRFS_EXTENT_DATA_REF_KEY: {
 623			struct btrfs_delayed_data_ref *ref;
 624			ref = btrfs_delayed_node_to_data_ref(node);
 625
 626			key.objectid = ref->objectid;
 627			key.type = BTRFS_EXTENT_DATA_KEY;
 628			key.offset = ref->offset;
 629			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 630					       node->bytenr,
 631					       node->ref_mod * sgn, GFP_ATOMIC);
 632			break;
 633		}
 634		case BTRFS_SHARED_DATA_REF_KEY: {
 635			struct btrfs_delayed_data_ref *ref;
 636
 637			ref = btrfs_delayed_node_to_data_ref(node);
 638
 639			key.objectid = ref->objectid;
 640			key.type = BTRFS_EXTENT_DATA_KEY;
 641			key.offset = ref->offset;
 642			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
 643					       ref->parent, node->bytenr,
 644					       node->ref_mod * sgn, GFP_ATOMIC);
 645			break;
 646		}
 647		default:
 648			WARN_ON(1);
 649		}
 650		if (ret)
 651			break;
 652	}
 653	spin_unlock(&head->lock);
 654	return ret;
 655}
 656
 657/*
 658 * add all inline backrefs for bytenr to the list
 659 */
 660static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 661			     struct btrfs_path *path, u64 bytenr,
 662			     int *info_level, struct list_head *prefs,
 663			     u64 *total_refs)
 664{
 665	int ret = 0;
 666	int slot;
 667	struct extent_buffer *leaf;
 668	struct btrfs_key key;
 669	struct btrfs_key found_key;
 670	unsigned long ptr;
 671	unsigned long end;
 672	struct btrfs_extent_item *ei;
 673	u64 flags;
 674	u64 item_size;
 675
 676	/*
 677	 * enumerate all inline refs
 678	 */
 679	leaf = path->nodes[0];
 680	slot = path->slots[0];
 681
 682	item_size = btrfs_item_size_nr(leaf, slot);
 683	BUG_ON(item_size < sizeof(*ei));
 684
 685	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 686	flags = btrfs_extent_flags(leaf, ei);
 687	*total_refs += btrfs_extent_refs(leaf, ei);
 688	btrfs_item_key_to_cpu(leaf, &found_key, slot);
 689
 690	ptr = (unsigned long)(ei + 1);
 691	end = (unsigned long)ei + item_size;
 692
 693	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 694	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 695		struct btrfs_tree_block_info *info;
 696
 697		info = (struct btrfs_tree_block_info *)ptr;
 698		*info_level = btrfs_tree_block_level(leaf, info);
 699		ptr += sizeof(struct btrfs_tree_block_info);
 700		BUG_ON(ptr > end);
 701	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 702		*info_level = found_key.offset;
 703	} else {
 704		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 705	}
 706
 707	while (ptr < end) {
 708		struct btrfs_extent_inline_ref *iref;
 709		u64 offset;
 710		int type;
 711
 712		iref = (struct btrfs_extent_inline_ref *)ptr;
 713		type = btrfs_extent_inline_ref_type(leaf, iref);
 714		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 715
 716		switch (type) {
 717		case BTRFS_SHARED_BLOCK_REF_KEY:
 718			ret = __add_prelim_ref(prefs, 0, NULL,
 719						*info_level + 1, offset,
 720						bytenr, 1, GFP_NOFS);
 721			break;
 722		case BTRFS_SHARED_DATA_REF_KEY: {
 723			struct btrfs_shared_data_ref *sdref;
 724			int count;
 725
 726			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 727			count = btrfs_shared_data_ref_count(leaf, sdref);
 728			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 729					       bytenr, count, GFP_NOFS);
 730			break;
 731		}
 732		case BTRFS_TREE_BLOCK_REF_KEY:
 733			ret = __add_prelim_ref(prefs, offset, NULL,
 734					       *info_level + 1, 0,
 735					       bytenr, 1, GFP_NOFS);
 736			break;
 737		case BTRFS_EXTENT_DATA_REF_KEY: {
 738			struct btrfs_extent_data_ref *dref;
 739			int count;
 740			u64 root;
 741
 742			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 743			count = btrfs_extent_data_ref_count(leaf, dref);
 744			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 745								      dref);
 746			key.type = BTRFS_EXTENT_DATA_KEY;
 747			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 748			root = btrfs_extent_data_ref_root(leaf, dref);
 749			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 750					       bytenr, count, GFP_NOFS);
 751			break;
 752		}
 753		default:
 754			WARN_ON(1);
 755		}
 756		if (ret)
 757			return ret;
 758		ptr += btrfs_extent_inline_ref_size(type);
 759	}
 760
 761	return 0;
 762}
 763
 764/*
 765 * add all non-inline backrefs for bytenr to the list
 766 */
 767static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 768			    struct btrfs_path *path, u64 bytenr,
 769			    int info_level, struct list_head *prefs)
 770{
 771	struct btrfs_root *extent_root = fs_info->extent_root;
 772	int ret;
 773	int slot;
 774	struct extent_buffer *leaf;
 775	struct btrfs_key key;
 776
 777	while (1) {
 778		ret = btrfs_next_item(extent_root, path);
 779		if (ret < 0)
 780			break;
 781		if (ret) {
 782			ret = 0;
 783			break;
 784		}
 785
 786		slot = path->slots[0];
 787		leaf = path->nodes[0];
 788		btrfs_item_key_to_cpu(leaf, &key, slot);
 789
 790		if (key.objectid != bytenr)
 791			break;
 792		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 793			continue;
 794		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 795			break;
 796
 797		switch (key.type) {
 798		case BTRFS_SHARED_BLOCK_REF_KEY:
 799			ret = __add_prelim_ref(prefs, 0, NULL,
 800						info_level + 1, key.offset,
 801						bytenr, 1, GFP_NOFS);
 802			break;
 803		case BTRFS_SHARED_DATA_REF_KEY: {
 804			struct btrfs_shared_data_ref *sdref;
 805			int count;
 806
 807			sdref = btrfs_item_ptr(leaf, slot,
 808					      struct btrfs_shared_data_ref);
 809			count = btrfs_shared_data_ref_count(leaf, sdref);
 810			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 811						bytenr, count, GFP_NOFS);
 812			break;
 813		}
 814		case BTRFS_TREE_BLOCK_REF_KEY:
 815			ret = __add_prelim_ref(prefs, key.offset, NULL,
 816					       info_level + 1, 0,
 817					       bytenr, 1, GFP_NOFS);
 818			break;
 819		case BTRFS_EXTENT_DATA_REF_KEY: {
 820			struct btrfs_extent_data_ref *dref;
 821			int count;
 822			u64 root;
 823
 824			dref = btrfs_item_ptr(leaf, slot,
 825					      struct btrfs_extent_data_ref);
 826			count = btrfs_extent_data_ref_count(leaf, dref);
 827			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 828								      dref);
 829			key.type = BTRFS_EXTENT_DATA_KEY;
 830			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 831			root = btrfs_extent_data_ref_root(leaf, dref);
 832			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 833					       bytenr, count, GFP_NOFS);
 834			break;
 835		}
 836		default:
 837			WARN_ON(1);
 838		}
 839		if (ret)
 840			return ret;
 841
 842	}
 843
 844	return ret;
 845}
 846
 847/*
 848 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 849 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 850 * indirect refs to their parent bytenr.
 851 * When roots are found, they're added to the roots list
 852 *
 853 * FIXME some caching might speed things up
 854 */
 855static int find_parent_nodes(struct btrfs_trans_handle *trans,
 856			     struct btrfs_fs_info *fs_info, u64 bytenr,
 857			     u64 time_seq, struct ulist *refs,
 858			     struct ulist *roots, const u64 *extent_item_pos)
 
 859{
 860	struct btrfs_key key;
 861	struct btrfs_path *path;
 862	struct btrfs_delayed_ref_root *delayed_refs = NULL;
 863	struct btrfs_delayed_ref_head *head;
 864	int info_level = 0;
 865	int ret;
 
 866	struct list_head prefs_delayed;
 867	struct list_head prefs;
 868	struct __prelim_ref *ref;
 869	struct extent_inode_elem *eie = NULL;
 870	u64 total_refs = 0;
 871
 872	INIT_LIST_HEAD(&prefs);
 873	INIT_LIST_HEAD(&prefs_delayed);
 874
 875	key.objectid = bytenr;
 
 876	key.offset = (u64)-1;
 877	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 878		key.type = BTRFS_METADATA_ITEM_KEY;
 879	else
 880		key.type = BTRFS_EXTENT_ITEM_KEY;
 881
 882	path = btrfs_alloc_path();
 883	if (!path)
 884		return -ENOMEM;
 885	if (!trans) {
 886		path->search_commit_root = 1;
 887		path->skip_locking = 1;
 888	}
 889
 890	/*
 891	 * grab both a lock on the path and a lock on the delayed ref head.
 892	 * We need both to get a consistent picture of how the refs look
 893	 * at a specified point in time
 894	 */
 895again:
 896	head = NULL;
 897
 898	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 899	if (ret < 0)
 900		goto out;
 901	BUG_ON(ret == 0);
 902
 903	if (trans) {
 904		/*
 905		 * look if there are updates for this ref queued and lock the
 906		 * head
 907		 */
 908		delayed_refs = &trans->transaction->delayed_refs;
 909		spin_lock(&delayed_refs->lock);
 910		head = btrfs_find_delayed_ref_head(trans, bytenr);
 911		if (head) {
 912			if (!mutex_trylock(&head->mutex)) {
 913				atomic_inc(&head->node.refs);
 914				spin_unlock(&delayed_refs->lock);
 915
 916				btrfs_release_path(path);
 917
 918				/*
 919				 * Mutex was contended, block until it's
 920				 * released and try again
 921				 */
 922				mutex_lock(&head->mutex);
 923				mutex_unlock(&head->mutex);
 924				btrfs_put_delayed_ref(&head->node);
 925				goto again;
 926			}
 927			spin_unlock(&delayed_refs->lock);
 928			ret = __add_delayed_refs(head, time_seq,
 929						 &prefs_delayed, &total_refs);
 930			mutex_unlock(&head->mutex);
 931			if (ret)
 
 932				goto out;
 933		} else {
 934			spin_unlock(&delayed_refs->lock);
 935		}
 
 936	}
 937
 938	if (path->slots[0]) {
 939		struct extent_buffer *leaf;
 940		int slot;
 941
 942		path->slots[0]--;
 943		leaf = path->nodes[0];
 944		slot = path->slots[0];
 945		btrfs_item_key_to_cpu(leaf, &key, slot);
 946		if (key.objectid == bytenr &&
 947		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
 948		     key.type == BTRFS_METADATA_ITEM_KEY)) {
 949			ret = __add_inline_refs(fs_info, path, bytenr,
 950						&info_level, &prefs,
 951						&total_refs);
 952			if (ret)
 953				goto out;
 954			ret = __add_keyed_refs(fs_info, path, bytenr,
 955					       info_level, &prefs);
 956			if (ret)
 957				goto out;
 958		}
 959	}
 960	btrfs_release_path(path);
 961
 962	list_splice_init(&prefs_delayed, &prefs);
 963
 964	ret = __add_missing_keys(fs_info, &prefs);
 965	if (ret)
 966		goto out;
 967
 968	__merge_refs(&prefs, 1);
 
 
 969
 970	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
 971				      extent_item_pos, total_refs);
 972	if (ret)
 973		goto out;
 974
 975	__merge_refs(&prefs, 2);
 
 
 976
 977	while (!list_empty(&prefs)) {
 978		ref = list_first_entry(&prefs, struct __prelim_ref, list);
 979		WARN_ON(ref->count < 0);
 980		if (roots && ref->count && ref->root_id && ref->parent == 0) {
 
 
 981			/* no parent == root of tree */
 982			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
 983			if (ret < 0)
 984				goto out;
 985		}
 986		if (ref->count && ref->parent) {
 
 987			if (extent_item_pos && !ref->inode_list) {
 988				u32 bsz;
 989				struct extent_buffer *eb;
 990				bsz = btrfs_level_size(fs_info->extent_root,
 991							info_level);
 992				eb = read_tree_block(fs_info->extent_root,
 993							   ref->parent, bsz, 0);
 994				if (!eb || !extent_buffer_uptodate(eb)) {
 995					free_extent_buffer(eb);
 996					ret = -EIO;
 997					goto out;
 998				}
 999				ret = find_extent_in_eb(eb, bytenr,
1000							*extent_item_pos, &eie);
1001				free_extent_buffer(eb);
1002				if (ret < 0)
1003					goto out;
1004				ref->inode_list = eie;
 
1005			}
1006			ret = ulist_add_merge(refs, ref->parent,
1007					      (uintptr_t)ref->inode_list,
1008					      (u64 *)&eie, GFP_NOFS);
1009			if (ret < 0)
1010				goto out;
1011			if (!ret && extent_item_pos) {
1012				/*
1013				 * we've recorded that parent, so we must extend
1014				 * its inode list here
1015				 */
1016				BUG_ON(!eie);
1017				while (eie->next)
1018					eie = eie->next;
1019				eie->next = ref->inode_list;
1020			}
1021			eie = NULL;
1022		}
1023		list_del(&ref->list);
1024		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1025	}
1026
1027out:
1028	btrfs_free_path(path);
1029	while (!list_empty(&prefs)) {
1030		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1031		list_del(&ref->list);
1032		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1033	}
1034	while (!list_empty(&prefs_delayed)) {
1035		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1036				       list);
1037		list_del(&ref->list);
1038		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1039	}
1040	if (ret < 0)
1041		free_inode_elem_list(eie);
1042	return ret;
1043}
1044
1045static void free_leaf_list(struct ulist *blocks)
1046{
1047	struct ulist_node *node = NULL;
1048	struct extent_inode_elem *eie;
 
1049	struct ulist_iterator uiter;
1050
1051	ULIST_ITER_INIT(&uiter);
1052	while ((node = ulist_next(blocks, &uiter))) {
1053		if (!node->aux)
1054			continue;
1055		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1056		free_inode_elem_list(eie);
 
 
 
1057		node->aux = 0;
1058	}
1059
1060	ulist_free(blocks);
1061}
1062
1063/*
1064 * Finds all leafs with a reference to the specified combination of bytenr and
1065 * offset. key_list_head will point to a list of corresponding keys (caller must
1066 * free each list element). The leafs will be stored in the leafs ulist, which
1067 * must be freed with ulist_free.
1068 *
1069 * returns 0 on success, <0 on error
1070 */
1071static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1072				struct btrfs_fs_info *fs_info, u64 bytenr,
1073				u64 time_seq, struct ulist **leafs,
 
1074				const u64 *extent_item_pos)
1075{
 
1076	int ret;
1077
 
 
 
1078	*leafs = ulist_alloc(GFP_NOFS);
1079	if (!*leafs)
 
1080		return -ENOMEM;
 
 
 
 
 
1081
1082	ret = find_parent_nodes(trans, fs_info, bytenr,
1083				time_seq, *leafs, NULL, extent_item_pos);
1084	if (ret < 0 && ret != -ENOENT) {
1085		free_leaf_list(*leafs);
1086		return ret;
1087	}
1088
1089	return 0;
1090}
1091
1092/*
1093 * walk all backrefs for a given extent to find all roots that reference this
1094 * extent. Walking a backref means finding all extents that reference this
1095 * extent and in turn walk the backrefs of those, too. Naturally this is a
1096 * recursive process, but here it is implemented in an iterative fashion: We
1097 * find all referencing extents for the extent in question and put them on a
1098 * list. In turn, we find all referencing extents for those, further appending
1099 * to the list. The way we iterate the list allows adding more elements after
1100 * the current while iterating. The process stops when we reach the end of the
1101 * list. Found roots are added to the roots list.
1102 *
1103 * returns 0 on success, < 0 on error.
1104 */
1105static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1106				  struct btrfs_fs_info *fs_info, u64 bytenr,
1107				  u64 time_seq, struct ulist **roots)
 
1108{
1109	struct ulist *tmp;
1110	struct ulist_node *node = NULL;
1111	struct ulist_iterator uiter;
1112	int ret;
1113
1114	tmp = ulist_alloc(GFP_NOFS);
1115	if (!tmp)
1116		return -ENOMEM;
1117	*roots = ulist_alloc(GFP_NOFS);
1118	if (!*roots) {
1119		ulist_free(tmp);
1120		return -ENOMEM;
1121	}
1122
1123	ULIST_ITER_INIT(&uiter);
1124	while (1) {
1125		ret = find_parent_nodes(trans, fs_info, bytenr,
1126					time_seq, tmp, *roots, NULL);
1127		if (ret < 0 && ret != -ENOENT) {
1128			ulist_free(tmp);
1129			ulist_free(*roots);
1130			return ret;
1131		}
1132		node = ulist_next(tmp, &uiter);
1133		if (!node)
1134			break;
1135		bytenr = node->val;
1136		cond_resched();
1137	}
1138
1139	ulist_free(tmp);
1140	return 0;
1141}
1142
1143int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1144			 struct btrfs_fs_info *fs_info, u64 bytenr,
1145			 u64 time_seq, struct ulist **roots)
 
1146{
1147	int ret;
 
 
1148
1149	if (!trans)
1150		down_read(&fs_info->commit_root_sem);
1151	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1152	if (!trans)
1153		up_read(&fs_info->commit_root_sem);
1154	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155}
1156
1157/*
1158 * this makes the path point to (inum INODE_ITEM ioff)
1159 */
1160int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1161			struct btrfs_path *path)
1162{
1163	struct btrfs_key key;
1164	return btrfs_find_item(fs_root, path, inum, ioff,
1165			BTRFS_INODE_ITEM_KEY, &key);
1166}
1167
1168static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1169				struct btrfs_path *path,
1170				struct btrfs_key *found_key)
1171{
1172	return btrfs_find_item(fs_root, path, inum, ioff,
1173			BTRFS_INODE_REF_KEY, found_key);
1174}
1175
1176int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1177			  u64 start_off, struct btrfs_path *path,
1178			  struct btrfs_inode_extref **ret_extref,
1179			  u64 *found_off)
1180{
1181	int ret, slot;
1182	struct btrfs_key key;
1183	struct btrfs_key found_key;
1184	struct btrfs_inode_extref *extref;
1185	struct extent_buffer *leaf;
1186	unsigned long ptr;
1187
1188	key.objectid = inode_objectid;
1189	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1190	key.offset = start_off;
1191
1192	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1193	if (ret < 0)
1194		return ret;
1195
1196	while (1) {
1197		leaf = path->nodes[0];
1198		slot = path->slots[0];
1199		if (slot >= btrfs_header_nritems(leaf)) {
1200			/*
1201			 * If the item at offset is not found,
1202			 * btrfs_search_slot will point us to the slot
1203			 * where it should be inserted. In our case
1204			 * that will be the slot directly before the
1205			 * next INODE_REF_KEY_V2 item. In the case
1206			 * that we're pointing to the last slot in a
1207			 * leaf, we must move one leaf over.
1208			 */
1209			ret = btrfs_next_leaf(root, path);
1210			if (ret) {
1211				if (ret >= 1)
1212					ret = -ENOENT;
1213				break;
1214			}
1215			continue;
1216		}
1217
1218		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1219
1220		/*
1221		 * Check that we're still looking at an extended ref key for
1222		 * this particular objectid. If we have different
1223		 * objectid or type then there are no more to be found
1224		 * in the tree and we can exit.
1225		 */
1226		ret = -ENOENT;
1227		if (found_key.objectid != inode_objectid)
1228			break;
1229		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1230			break;
1231
1232		ret = 0;
1233		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1234		extref = (struct btrfs_inode_extref *)ptr;
1235		*ret_extref = extref;
1236		if (found_off)
1237			*found_off = found_key.offset;
1238		break;
1239	}
1240
1241	return ret;
1242}
1243
1244/*
1245 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1246 * Elements of the path are separated by '/' and the path is guaranteed to be
1247 * 0-terminated. the path is only given within the current file system.
1248 * Therefore, it never starts with a '/'. the caller is responsible to provide
1249 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1250 * the start point of the resulting string is returned. this pointer is within
1251 * dest, normally.
1252 * in case the path buffer would overflow, the pointer is decremented further
1253 * as if output was written to the buffer, though no more output is actually
1254 * generated. that way, the caller can determine how much space would be
1255 * required for the path to fit into the buffer. in that case, the returned
1256 * value will be smaller than dest. callers must check this!
1257 */
1258char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1259			u32 name_len, unsigned long name_off,
1260			struct extent_buffer *eb_in, u64 parent,
1261			char *dest, u32 size)
1262{
 
1263	int slot;
1264	u64 next_inum;
1265	int ret;
1266	s64 bytes_left = ((s64)size) - 1;
1267	struct extent_buffer *eb = eb_in;
1268	struct btrfs_key found_key;
1269	int leave_spinning = path->leave_spinning;
1270	struct btrfs_inode_ref *iref;
1271
1272	if (bytes_left >= 0)
1273		dest[bytes_left] = '\0';
1274
1275	path->leave_spinning = 1;
1276	while (1) {
1277		bytes_left -= name_len;
 
1278		if (bytes_left >= 0)
1279			read_extent_buffer(eb, dest + bytes_left,
1280					   name_off, name_len);
1281		if (eb != eb_in) {
1282			btrfs_tree_read_unlock_blocking(eb);
1283			free_extent_buffer(eb);
1284		}
1285		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1286		if (ret > 0)
1287			ret = -ENOENT;
1288		if (ret)
1289			break;
1290
1291		next_inum = found_key.offset;
1292
1293		/* regular exit ahead */
1294		if (parent == next_inum)
1295			break;
1296
1297		slot = path->slots[0];
1298		eb = path->nodes[0];
1299		/* make sure we can use eb after releasing the path */
1300		if (eb != eb_in) {
1301			atomic_inc(&eb->refs);
1302			btrfs_tree_read_lock(eb);
1303			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1304		}
1305		btrfs_release_path(path);
1306		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1307
1308		name_len = btrfs_inode_ref_name_len(eb, iref);
1309		name_off = (unsigned long)(iref + 1);
1310
 
1311		parent = next_inum;
1312		--bytes_left;
1313		if (bytes_left >= 0)
1314			dest[bytes_left] = '/';
1315	}
1316
1317	btrfs_release_path(path);
1318	path->leave_spinning = leave_spinning;
1319
1320	if (ret)
1321		return ERR_PTR(ret);
1322
1323	return dest + bytes_left;
1324}
1325
1326/*
1327 * this makes the path point to (logical EXTENT_ITEM *)
1328 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1329 * tree blocks and <0 on error.
1330 */
1331int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1332			struct btrfs_path *path, struct btrfs_key *found_key,
1333			u64 *flags_ret)
1334{
1335	int ret;
1336	u64 flags;
1337	u64 size = 0;
1338	u32 item_size;
1339	struct extent_buffer *eb;
1340	struct btrfs_extent_item *ei;
1341	struct btrfs_key key;
1342
1343	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1344		key.type = BTRFS_METADATA_ITEM_KEY;
1345	else
1346		key.type = BTRFS_EXTENT_ITEM_KEY;
1347	key.objectid = logical;
1348	key.offset = (u64)-1;
1349
1350	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1351	if (ret < 0)
1352		return ret;
1353
1354	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1355	if (ret) {
1356		if (ret > 0)
1357			ret = -ENOENT;
1358		return ret;
1359	}
1360	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1361	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1362		size = fs_info->extent_root->leafsize;
1363	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1364		size = found_key->offset;
1365
1366	if (found_key->objectid > logical ||
1367	    found_key->objectid + size <= logical) {
1368		pr_debug("logical %llu is not within any extent\n", logical);
1369		return -ENOENT;
1370	}
1371
1372	eb = path->nodes[0];
1373	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1374	BUG_ON(item_size < sizeof(*ei));
1375
1376	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1377	flags = btrfs_extent_flags(eb, ei);
1378
1379	pr_debug("logical %llu is at position %llu within the extent (%llu "
1380		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1381		 logical, logical - found_key->objectid, found_key->objectid,
1382		 found_key->offset, flags, item_size);
1383
1384	WARN_ON(!flags_ret);
1385	if (flags_ret) {
1386		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1387			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1388		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1389			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1390		else
1391			BUG_ON(1);
1392		return 0;
1393	}
1394
1395	return -EIO;
1396}
1397
1398/*
1399 * helper function to iterate extent inline refs. ptr must point to a 0 value
1400 * for the first call and may be modified. it is used to track state.
1401 * if more refs exist, 0 is returned and the next call to
1402 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1403 * next ref. after the last ref was processed, 1 is returned.
1404 * returns <0 on error
1405 */
1406static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1407				struct btrfs_extent_item *ei, u32 item_size,
1408				struct btrfs_extent_inline_ref **out_eiref,
1409				int *out_type)
1410{
1411	unsigned long end;
1412	u64 flags;
1413	struct btrfs_tree_block_info *info;
1414
1415	if (!*ptr) {
1416		/* first call */
1417		flags = btrfs_extent_flags(eb, ei);
1418		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1419			info = (struct btrfs_tree_block_info *)(ei + 1);
1420			*out_eiref =
1421				(struct btrfs_extent_inline_ref *)(info + 1);
1422		} else {
1423			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1424		}
1425		*ptr = (unsigned long)*out_eiref;
1426		if ((void *)*ptr >= (void *)ei + item_size)
1427			return -ENOENT;
1428	}
1429
1430	end = (unsigned long)ei + item_size;
1431	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1432	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1433
1434	*ptr += btrfs_extent_inline_ref_size(*out_type);
1435	WARN_ON(*ptr > end);
1436	if (*ptr == end)
1437		return 1; /* last */
1438
1439	return 0;
1440}
1441
1442/*
1443 * reads the tree block backref for an extent. tree level and root are returned
1444 * through out_level and out_root. ptr must point to a 0 value for the first
1445 * call and may be modified (see __get_extent_inline_ref comment).
1446 * returns 0 if data was provided, 1 if there was no more data to provide or
1447 * <0 on error.
1448 */
1449int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1450				struct btrfs_extent_item *ei, u32 item_size,
1451				u64 *out_root, u8 *out_level)
1452{
1453	int ret;
1454	int type;
1455	struct btrfs_tree_block_info *info;
1456	struct btrfs_extent_inline_ref *eiref;
1457
1458	if (*ptr == (unsigned long)-1)
1459		return 1;
1460
1461	while (1) {
1462		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1463						&eiref, &type);
1464		if (ret < 0)
1465			return ret;
1466
1467		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1468		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1469			break;
1470
1471		if (ret == 1)
1472			return 1;
1473	}
1474
1475	/* we can treat both ref types equally here */
1476	info = (struct btrfs_tree_block_info *)(ei + 1);
1477	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1478	*out_level = btrfs_tree_block_level(eb, info);
1479
1480	if (ret == 1)
1481		*ptr = (unsigned long)-1;
1482
1483	return 0;
1484}
1485
1486static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1487				u64 root, u64 extent_item_objectid,
1488				iterate_extent_inodes_t *iterate, void *ctx)
1489{
1490	struct extent_inode_elem *eie;
1491	int ret = 0;
1492
1493	for (eie = inode_list; eie; eie = eie->next) {
1494		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1495			 "root %llu\n", extent_item_objectid,
1496			 eie->inum, eie->offset, root);
1497		ret = iterate(eie->inum, eie->offset, root, ctx);
1498		if (ret) {
1499			pr_debug("stopping iteration for %llu due to ret=%d\n",
1500				 extent_item_objectid, ret);
1501			break;
1502		}
1503	}
1504
1505	return ret;
1506}
1507
1508/*
1509 * calls iterate() for every inode that references the extent identified by
1510 * the given parameters.
1511 * when the iterator function returns a non-zero value, iteration stops.
1512 */
1513int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1514				u64 extent_item_objectid, u64 extent_item_pos,
1515				int search_commit_root,
1516				iterate_extent_inodes_t *iterate, void *ctx)
1517{
1518	int ret;
1519	struct btrfs_trans_handle *trans = NULL;
 
 
1520	struct ulist *refs = NULL;
1521	struct ulist *roots = NULL;
1522	struct ulist_node *ref_node = NULL;
1523	struct ulist_node *root_node = NULL;
 
1524	struct seq_list tree_mod_seq_elem = {};
1525	struct ulist_iterator ref_uiter;
1526	struct ulist_iterator root_uiter;
 
1527
1528	pr_debug("resolving all inodes for extent %llu\n",
1529			extent_item_objectid);
1530
1531	if (!search_commit_root) {
 
 
1532		trans = btrfs_join_transaction(fs_info->extent_root);
1533		if (IS_ERR(trans))
1534			return PTR_ERR(trans);
 
 
 
 
 
1535		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1536	} else {
1537		down_read(&fs_info->commit_root_sem);
1538	}
1539
1540	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1541				   tree_mod_seq_elem.seq, &refs,
1542				   &extent_item_pos);
1543	if (ret)
1544		goto out;
1545
1546	ULIST_ITER_INIT(&ref_uiter);
1547	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1548		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1549					     tree_mod_seq_elem.seq, &roots);
 
1550		if (ret)
1551			break;
1552		ULIST_ITER_INIT(&root_uiter);
1553		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1554			pr_debug("root %llu references leaf %llu, data list "
1555				 "%#llx\n", root_node->val, ref_node->val,
1556				 ref_node->aux);
1557			ret = iterate_leaf_refs((struct extent_inode_elem *)
1558						(uintptr_t)ref_node->aux,
1559						root_node->val,
1560						extent_item_objectid,
1561						iterate, ctx);
1562		}
1563		ulist_free(roots);
 
1564	}
1565
1566	free_leaf_list(refs);
 
1567out:
1568	if (!search_commit_root) {
1569		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
 
1570		btrfs_end_transaction(trans, fs_info->extent_root);
1571	} else {
1572		up_read(&fs_info->commit_root_sem);
1573	}
1574
1575	return ret;
1576}
1577
1578int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1579				struct btrfs_path *path,
1580				iterate_extent_inodes_t *iterate, void *ctx)
1581{
1582	int ret;
1583	u64 extent_item_pos;
1584	u64 flags = 0;
1585	struct btrfs_key found_key;
1586	int search_commit_root = path->search_commit_root;
1587
1588	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
 
1589	btrfs_release_path(path);
 
 
1590	if (ret < 0)
1591		return ret;
1592	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1593		return -EINVAL;
1594
1595	extent_item_pos = logical - found_key.objectid;
1596	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1597					extent_item_pos, search_commit_root,
1598					iterate, ctx);
1599
1600	return ret;
1601}
1602
1603typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1604			      struct extent_buffer *eb, void *ctx);
1605
1606static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1607			      struct btrfs_path *path,
1608			      iterate_irefs_t *iterate, void *ctx)
1609{
1610	int ret = 0;
1611	int slot;
1612	u32 cur;
1613	u32 len;
1614	u32 name_len;
1615	u64 parent = 0;
1616	int found = 0;
1617	struct extent_buffer *eb;
1618	struct btrfs_item *item;
1619	struct btrfs_inode_ref *iref;
1620	struct btrfs_key found_key;
1621
1622	while (!ret) {
 
1623		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1624				     &found_key);
1625		if (ret < 0)
1626			break;
1627		if (ret) {
1628			ret = found ? 0 : -ENOENT;
1629			break;
1630		}
1631		++found;
1632
1633		parent = found_key.offset;
1634		slot = path->slots[0];
1635		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1636		if (!eb) {
1637			ret = -ENOMEM;
1638			break;
1639		}
1640		extent_buffer_get(eb);
1641		btrfs_tree_read_lock(eb);
1642		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1643		btrfs_release_path(path);
1644
1645		item = btrfs_item_nr(slot);
1646		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1647
1648		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1649			name_len = btrfs_inode_ref_name_len(eb, iref);
1650			/* path must be released before calling iterate()! */
1651			pr_debug("following ref at offset %u for inode %llu in "
1652				 "tree %llu\n", cur, found_key.objectid,
1653				 fs_root->objectid);
1654			ret = iterate(parent, name_len,
1655				      (unsigned long)(iref + 1), eb, ctx);
1656			if (ret)
1657				break;
1658			len = sizeof(*iref) + name_len;
1659			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1660		}
1661		btrfs_tree_read_unlock_blocking(eb);
1662		free_extent_buffer(eb);
1663	}
1664
1665	btrfs_release_path(path);
1666
1667	return ret;
1668}
1669
1670static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1671				 struct btrfs_path *path,
1672				 iterate_irefs_t *iterate, void *ctx)
1673{
1674	int ret;
1675	int slot;
1676	u64 offset = 0;
1677	u64 parent;
1678	int found = 0;
1679	struct extent_buffer *eb;
1680	struct btrfs_inode_extref *extref;
1681	struct extent_buffer *leaf;
1682	u32 item_size;
1683	u32 cur_offset;
1684	unsigned long ptr;
1685
1686	while (1) {
1687		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1688					    &offset);
1689		if (ret < 0)
1690			break;
1691		if (ret) {
1692			ret = found ? 0 : -ENOENT;
1693			break;
1694		}
1695		++found;
1696
1697		slot = path->slots[0];
1698		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1699		if (!eb) {
1700			ret = -ENOMEM;
1701			break;
1702		}
1703		extent_buffer_get(eb);
1704
1705		btrfs_tree_read_lock(eb);
1706		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1707		btrfs_release_path(path);
1708
1709		leaf = path->nodes[0];
1710		item_size = btrfs_item_size_nr(leaf, slot);
1711		ptr = btrfs_item_ptr_offset(leaf, slot);
1712		cur_offset = 0;
1713
1714		while (cur_offset < item_size) {
1715			u32 name_len;
1716
1717			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1718			parent = btrfs_inode_extref_parent(eb, extref);
1719			name_len = btrfs_inode_extref_name_len(eb, extref);
1720			ret = iterate(parent, name_len,
1721				      (unsigned long)&extref->name, eb, ctx);
1722			if (ret)
1723				break;
1724
1725			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1726			cur_offset += sizeof(*extref);
1727		}
1728		btrfs_tree_read_unlock_blocking(eb);
1729		free_extent_buffer(eb);
1730
1731		offset++;
1732	}
1733
1734	btrfs_release_path(path);
1735
1736	return ret;
1737}
1738
1739static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1740			 struct btrfs_path *path, iterate_irefs_t *iterate,
1741			 void *ctx)
1742{
1743	int ret;
1744	int found_refs = 0;
1745
1746	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1747	if (!ret)
1748		++found_refs;
1749	else if (ret != -ENOENT)
1750		return ret;
1751
1752	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1753	if (ret == -ENOENT && found_refs)
1754		return 0;
1755
1756	return ret;
1757}
1758
1759/*
1760 * returns 0 if the path could be dumped (probably truncated)
1761 * returns <0 in case of an error
1762 */
1763static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1764			 struct extent_buffer *eb, void *ctx)
1765{
1766	struct inode_fs_paths *ipath = ctx;
1767	char *fspath;
1768	char *fspath_min;
1769	int i = ipath->fspath->elem_cnt;
1770	const int s_ptr = sizeof(char *);
1771	u32 bytes_left;
1772
1773	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1774					ipath->fspath->bytes_left - s_ptr : 0;
1775
1776	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1777	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1778				   name_off, eb, inum, fspath_min, bytes_left);
1779	if (IS_ERR(fspath))
1780		return PTR_ERR(fspath);
1781
1782	if (fspath > fspath_min) {
 
1783		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1784		++ipath->fspath->elem_cnt;
1785		ipath->fspath->bytes_left = fspath - fspath_min;
1786	} else {
 
 
 
1787		++ipath->fspath->elem_missed;
1788		ipath->fspath->bytes_missing += fspath_min - fspath;
1789		ipath->fspath->bytes_left = 0;
1790	}
1791
1792	return 0;
1793}
1794
1795/*
1796 * this dumps all file system paths to the inode into the ipath struct, provided
1797 * is has been created large enough. each path is zero-terminated and accessed
1798 * from ipath->fspath->val[i].
1799 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1800 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1801 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1802 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1803 * have been needed to return all paths.
1804 */
1805int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1806{
1807	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1808			     inode_to_path, ipath);
1809}
1810
1811struct btrfs_data_container *init_data_container(u32 total_bytes)
1812{
1813	struct btrfs_data_container *data;
1814	size_t alloc_bytes;
1815
1816	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1817	data = vmalloc(alloc_bytes);
1818	if (!data)
1819		return ERR_PTR(-ENOMEM);
1820
1821	if (total_bytes >= sizeof(*data)) {
1822		data->bytes_left = total_bytes - sizeof(*data);
1823		data->bytes_missing = 0;
1824	} else {
1825		data->bytes_missing = sizeof(*data) - total_bytes;
1826		data->bytes_left = 0;
1827	}
1828
1829	data->elem_cnt = 0;
1830	data->elem_missed = 0;
1831
1832	return data;
1833}
1834
1835/*
1836 * allocates space to return multiple file system paths for an inode.
1837 * total_bytes to allocate are passed, note that space usable for actual path
1838 * information will be total_bytes - sizeof(struct inode_fs_paths).
1839 * the returned pointer must be freed with free_ipath() in the end.
1840 */
1841struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1842					struct btrfs_path *path)
1843{
1844	struct inode_fs_paths *ifp;
1845	struct btrfs_data_container *fspath;
1846
1847	fspath = init_data_container(total_bytes);
1848	if (IS_ERR(fspath))
1849		return (void *)fspath;
1850
1851	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1852	if (!ifp) {
1853		kfree(fspath);
1854		return ERR_PTR(-ENOMEM);
1855	}
1856
1857	ifp->btrfs_path = path;
1858	ifp->fspath = fspath;
1859	ifp->fs_root = fs_root;
1860
1861	return ifp;
1862}
1863
1864void free_ipath(struct inode_fs_paths *ipath)
1865{
1866	if (!ipath)
1867		return;
1868	vfree(ipath->fspath);
1869	kfree(ipath);
1870}
v3.5.6
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
 
  19#include "ctree.h"
  20#include "disk-io.h"
  21#include "backref.h"
  22#include "ulist.h"
  23#include "transaction.h"
  24#include "delayed-ref.h"
  25#include "locking.h"
  26
  27struct extent_inode_elem {
  28	u64 inum;
  29	u64 offset;
  30	struct extent_inode_elem *next;
  31};
  32
  33static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  34				struct btrfs_file_extent_item *fi,
  35				u64 extent_item_pos,
  36				struct extent_inode_elem **eie)
  37{
  38	u64 data_offset;
  39	u64 data_len;
  40	struct extent_inode_elem *e;
  41
  42	data_offset = btrfs_file_extent_offset(eb, fi);
  43	data_len = btrfs_file_extent_num_bytes(eb, fi);
 
 
 
  44
  45	if (extent_item_pos < data_offset ||
  46	    extent_item_pos >= data_offset + data_len)
  47		return 1;
 
 
 
 
 
  48
  49	e = kmalloc(sizeof(*e), GFP_NOFS);
  50	if (!e)
  51		return -ENOMEM;
  52
  53	e->next = *eie;
  54	e->inum = key->objectid;
  55	e->offset = key->offset + (extent_item_pos - data_offset);
  56	*eie = e;
  57
  58	return 0;
  59}
  60
 
 
 
 
 
 
 
 
 
 
  61static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  62				u64 extent_item_pos,
  63				struct extent_inode_elem **eie)
  64{
  65	u64 disk_byte;
  66	struct btrfs_key key;
  67	struct btrfs_file_extent_item *fi;
  68	int slot;
  69	int nritems;
  70	int extent_type;
  71	int ret;
  72
  73	/*
  74	 * from the shared data ref, we only have the leaf but we need
  75	 * the key. thus, we must look into all items and see that we
  76	 * find one (some) with a reference to our extent item.
  77	 */
  78	nritems = btrfs_header_nritems(eb);
  79	for (slot = 0; slot < nritems; ++slot) {
  80		btrfs_item_key_to_cpu(eb, &key, slot);
  81		if (key.type != BTRFS_EXTENT_DATA_KEY)
  82			continue;
  83		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  84		extent_type = btrfs_file_extent_type(eb, fi);
  85		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  86			continue;
  87		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  88		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  89		if (disk_byte != wanted_disk_byte)
  90			continue;
  91
  92		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  93		if (ret < 0)
  94			return ret;
  95	}
  96
  97	return 0;
  98}
  99
 100/*
 101 * this structure records all encountered refs on the way up to the root
 102 */
 103struct __prelim_ref {
 104	struct list_head list;
 105	u64 root_id;
 106	struct btrfs_key key_for_search;
 107	int level;
 108	int count;
 109	struct extent_inode_elem *inode_list;
 110	u64 parent;
 111	u64 wanted_disk_byte;
 112};
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114/*
 115 * the rules for all callers of this function are:
 116 * - obtaining the parent is the goal
 117 * - if you add a key, you must know that it is a correct key
 118 * - if you cannot add the parent or a correct key, then we will look into the
 119 *   block later to set a correct key
 120 *
 121 * delayed refs
 122 * ============
 123 *        backref type | shared | indirect | shared | indirect
 124 * information         |   tree |     tree |   data |     data
 125 * --------------------+--------+----------+--------+----------
 126 *      parent logical |    y   |     -    |    -   |     -
 127 *      key to resolve |    -   |     y    |    y   |     y
 128 *  tree block logical |    -   |     -    |    -   |     -
 129 *  root for resolving |    y   |     y    |    y   |     y
 130 *
 131 * - column 1:       we've the parent -> done
 132 * - column 2, 3, 4: we use the key to find the parent
 133 *
 134 * on disk refs (inline or keyed)
 135 * ==============================
 136 *        backref type | shared | indirect | shared | indirect
 137 * information         |   tree |     tree |   data |     data
 138 * --------------------+--------+----------+--------+----------
 139 *      parent logical |    y   |     -    |    y   |     -
 140 *      key to resolve |    -   |     -    |    -   |     y
 141 *  tree block logical |    y   |     y    |    y   |     y
 142 *  root for resolving |    -   |     y    |    y   |     y
 143 *
 144 * - column 1, 3: we've the parent -> done
 145 * - column 2:    we take the first key from the block to find the parent
 146 *                (see __add_missing_keys)
 147 * - column 4:    we use the key to find the parent
 148 *
 149 * additional information that's available but not required to find the parent
 150 * block might help in merging entries to gain some speed.
 151 */
 152
 153static int __add_prelim_ref(struct list_head *head, u64 root_id,
 154			    struct btrfs_key *key, int level,
 155			    u64 parent, u64 wanted_disk_byte, int count)
 
 156{
 157	struct __prelim_ref *ref;
 158
 159	/* in case we're adding delayed refs, we're holding the refs spinlock */
 160	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
 
 
 161	if (!ref)
 162		return -ENOMEM;
 163
 164	ref->root_id = root_id;
 165	if (key)
 166		ref->key_for_search = *key;
 167	else
 168		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 169
 170	ref->inode_list = NULL;
 171	ref->level = level;
 172	ref->count = count;
 173	ref->parent = parent;
 174	ref->wanted_disk_byte = wanted_disk_byte;
 175	list_add_tail(&ref->list, head);
 176
 177	return 0;
 178}
 179
 180static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 181				struct ulist *parents, int level,
 182				struct btrfs_key *key_for_search, u64 time_seq,
 183				u64 wanted_disk_byte,
 184				const u64 *extent_item_pos)
 185{
 186	int ret = 0;
 187	int slot;
 188	struct extent_buffer *eb;
 189	struct btrfs_key key;
 
 190	struct btrfs_file_extent_item *fi;
 191	struct extent_inode_elem *eie = NULL;
 192	u64 disk_byte;
 
 
 193
 194	if (level != 0) {
 195		eb = path->nodes[level];
 196		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 197		if (ret < 0)
 198			return ret;
 199		return 0;
 200	}
 201
 202	/*
 203	 * We normally enter this function with the path already pointing to
 204	 * the first item to check. But sometimes, we may enter it with
 205	 * slot==nritems. In that case, go to the next leaf before we continue.
 206	 */
 207	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
 208		ret = btrfs_next_old_leaf(root, path, time_seq);
 209
 210	while (!ret) {
 211		eb = path->nodes[0];
 212		slot = path->slots[0];
 213
 214		btrfs_item_key_to_cpu(eb, &key, slot);
 215
 216		if (key.objectid != key_for_search->objectid ||
 217		    key.type != BTRFS_EXTENT_DATA_KEY)
 218			break;
 219
 220		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 221		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 222
 223		if (disk_byte == wanted_disk_byte) {
 224			eie = NULL;
 
 
 225			if (extent_item_pos) {
 226				ret = check_extent_in_eb(&key, eb, fi,
 227						*extent_item_pos,
 228						&eie);
 229				if (ret < 0)
 230					break;
 231			}
 232			if (!ret) {
 233				ret = ulist_add(parents, eb->start,
 234						(unsigned long)eie, GFP_NOFS);
 235				if (ret < 0)
 236					break;
 237				if (!extent_item_pos) {
 238					ret = btrfs_next_old_leaf(root, path,
 239							time_seq);
 240					continue;
 241				}
 
 242			}
 
 243		}
 
 244		ret = btrfs_next_old_item(root, path, time_seq);
 245	}
 246
 247	if (ret > 0)
 248		ret = 0;
 
 
 249	return ret;
 250}
 251
 252/*
 253 * resolve an indirect backref in the form (root_id, key, level)
 254 * to a logical address
 255 */
 256static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 257					int search_commit_root,
 258					u64 time_seq,
 259					struct __prelim_ref *ref,
 260					struct ulist *parents,
 261					const u64 *extent_item_pos)
 262{
 263	struct btrfs_path *path;
 264	struct btrfs_root *root;
 265	struct btrfs_key root_key;
 266	struct extent_buffer *eb;
 267	int ret = 0;
 268	int root_level;
 269	int level = ref->level;
 270
 271	path = btrfs_alloc_path();
 272	if (!path)
 273		return -ENOMEM;
 274	path->search_commit_root = !!search_commit_root;
 275
 276	root_key.objectid = ref->root_id;
 277	root_key.type = BTRFS_ROOT_ITEM_KEY;
 278	root_key.offset = (u64)-1;
 
 
 
 279	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 280	if (IS_ERR(root)) {
 
 281		ret = PTR_ERR(root);
 282		goto out;
 283	}
 284
 285	rcu_read_lock();
 286	root_level = btrfs_header_level(root->node);
 287	rcu_read_unlock();
 
 288
 289	if (root_level + 1 == level)
 
 290		goto out;
 
 291
 292	path->lowest_level = level;
 293	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
 
 
 
 
 294	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 295		 "%d for key (%llu %u %llu)\n",
 296		 (unsigned long long)ref->root_id, level, ref->count, ret,
 297		 (unsigned long long)ref->key_for_search.objectid,
 298		 ref->key_for_search.type,
 299		 (unsigned long long)ref->key_for_search.offset);
 300	if (ret < 0)
 301		goto out;
 302
 303	eb = path->nodes[level];
 304	while (!eb) {
 305		if (!level) {
 306			WARN_ON(1);
 307			ret = 1;
 308			goto out;
 309		}
 310		level--;
 311		eb = path->nodes[level];
 312	}
 313
 314	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
 315				time_seq, ref->wanted_disk_byte,
 316				extent_item_pos);
 317out:
 318	btrfs_free_path(path);
 
 319	return ret;
 320}
 321
 322/*
 323 * resolve all indirect backrefs from the list
 324 */
 325static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 326				   int search_commit_root, u64 time_seq,
 327				   struct list_head *head,
 328				   const u64 *extent_item_pos)
 329{
 330	int err;
 331	int ret = 0;
 332	struct __prelim_ref *ref;
 333	struct __prelim_ref *ref_safe;
 334	struct __prelim_ref *new_ref;
 335	struct ulist *parents;
 336	struct ulist_node *node;
 337	struct ulist_iterator uiter;
 338
 339	parents = ulist_alloc(GFP_NOFS);
 340	if (!parents)
 341		return -ENOMEM;
 342
 343	/*
 344	 * _safe allows us to insert directly after the current item without
 345	 * iterating over the newly inserted items.
 346	 * we're also allowed to re-assign ref during iteration.
 347	 */
 348	list_for_each_entry_safe(ref, ref_safe, head, list) {
 349		if (ref->parent)	/* already direct */
 350			continue;
 351		if (ref->count == 0)
 352			continue;
 353		err = __resolve_indirect_ref(fs_info, search_commit_root,
 354					     time_seq, ref, parents,
 355					     extent_item_pos);
 356		if (err) {
 357			if (ret == 0)
 358				ret = err;
 
 
 359			continue;
 
 
 
 360		}
 361
 362		/* we put the first parent into the ref at hand */
 363		ULIST_ITER_INIT(&uiter);
 364		node = ulist_next(parents, &uiter);
 365		ref->parent = node ? node->val : 0;
 366		ref->inode_list =
 367			node ? (struct extent_inode_elem *)node->aux : 0;
 368
 369		/* additional parents require new refs being added here */
 370		while ((node = ulist_next(parents, &uiter))) {
 371			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
 
 372			if (!new_ref) {
 373				ret = -ENOMEM;
 374				break;
 375			}
 376			memcpy(new_ref, ref, sizeof(*ref));
 377			new_ref->parent = node->val;
 378			new_ref->inode_list =
 379					(struct extent_inode_elem *)node->aux;
 380			list_add(&new_ref->list, &ref->list);
 381		}
 382		ulist_reinit(parents);
 383	}
 384
 385	ulist_free(parents);
 386	return ret;
 387}
 388
 389static inline int ref_for_same_block(struct __prelim_ref *ref1,
 390				     struct __prelim_ref *ref2)
 391{
 392	if (ref1->level != ref2->level)
 393		return 0;
 394	if (ref1->root_id != ref2->root_id)
 395		return 0;
 396	if (ref1->key_for_search.type != ref2->key_for_search.type)
 397		return 0;
 398	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 399		return 0;
 400	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 401		return 0;
 402	if (ref1->parent != ref2->parent)
 403		return 0;
 404
 405	return 1;
 406}
 407
 408/*
 409 * read tree blocks and add keys where required.
 410 */
 411static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 412			      struct list_head *head)
 413{
 414	struct list_head *pos;
 415	struct extent_buffer *eb;
 416
 417	list_for_each(pos, head) {
 418		struct __prelim_ref *ref;
 419		ref = list_entry(pos, struct __prelim_ref, list);
 420
 421		if (ref->parent)
 422			continue;
 423		if (ref->key_for_search.type)
 424			continue;
 425		BUG_ON(!ref->wanted_disk_byte);
 426		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 427				     fs_info->tree_root->leafsize, 0);
 428		BUG_ON(!eb);
 
 
 
 429		btrfs_tree_read_lock(eb);
 430		if (btrfs_header_level(eb) == 0)
 431			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 432		else
 433			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 434		btrfs_tree_read_unlock(eb);
 435		free_extent_buffer(eb);
 436	}
 437	return 0;
 438}
 439
 440/*
 441 * merge two lists of backrefs and adjust counts accordingly
 442 *
 443 * mode = 1: merge identical keys, if key is set
 444 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 445 *           additionally, we could even add a key range for the blocks we
 446 *           looked into to merge even more (-> replace unresolved refs by those
 447 *           having a parent).
 448 * mode = 2: merge identical parents
 449 */
 450static int __merge_refs(struct list_head *head, int mode)
 451{
 452	struct list_head *pos1;
 453
 454	list_for_each(pos1, head) {
 455		struct list_head *n2;
 456		struct list_head *pos2;
 457		struct __prelim_ref *ref1;
 458
 459		ref1 = list_entry(pos1, struct __prelim_ref, list);
 460
 461		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
 462		     pos2 = n2, n2 = pos2->next) {
 463			struct __prelim_ref *ref2;
 464			struct __prelim_ref *xchg;
 
 465
 466			ref2 = list_entry(pos2, struct __prelim_ref, list);
 467
 468			if (mode == 1) {
 469				if (!ref_for_same_block(ref1, ref2))
 470					continue;
 471				if (!ref1->parent && ref2->parent) {
 472					xchg = ref1;
 473					ref1 = ref2;
 474					ref2 = xchg;
 475				}
 476				ref1->count += ref2->count;
 477			} else {
 478				if (ref1->parent != ref2->parent)
 479					continue;
 480				ref1->count += ref2->count;
 481			}
 
 
 
 
 
 
 
 
 
 
 482			list_del(&ref2->list);
 483			kfree(ref2);
 484		}
 485
 486	}
 487	return 0;
 488}
 489
 490/*
 491 * add all currently queued delayed refs from this head whose seq nr is
 492 * smaller or equal that seq to the list
 493 */
 494static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 495			      struct list_head *prefs)
 496{
 497	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 498	struct rb_node *n = &head->node.rb_node;
 499	struct btrfs_key key;
 500	struct btrfs_key op_key = {0};
 501	int sgn;
 502	int ret = 0;
 503
 504	if (extent_op && extent_op->update_key)
 505		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 506
 507	while ((n = rb_prev(n))) {
 
 
 508		struct btrfs_delayed_ref_node *node;
 509		node = rb_entry(n, struct btrfs_delayed_ref_node,
 510				rb_node);
 511		if (node->bytenr != head->node.bytenr)
 512			break;
 513		WARN_ON(node->is_head);
 514
 515		if (node->seq > seq)
 516			continue;
 517
 518		switch (node->action) {
 519		case BTRFS_ADD_DELAYED_EXTENT:
 520		case BTRFS_UPDATE_DELAYED_HEAD:
 521			WARN_ON(1);
 522			continue;
 523		case BTRFS_ADD_DELAYED_REF:
 524			sgn = 1;
 525			break;
 526		case BTRFS_DROP_DELAYED_REF:
 527			sgn = -1;
 528			break;
 529		default:
 530			BUG_ON(1);
 531		}
 
 532		switch (node->type) {
 533		case BTRFS_TREE_BLOCK_REF_KEY: {
 534			struct btrfs_delayed_tree_ref *ref;
 535
 536			ref = btrfs_delayed_node_to_tree_ref(node);
 537			ret = __add_prelim_ref(prefs, ref->root, &op_key,
 538					       ref->level + 1, 0, node->bytenr,
 539					       node->ref_mod * sgn);
 540			break;
 541		}
 542		case BTRFS_SHARED_BLOCK_REF_KEY: {
 543			struct btrfs_delayed_tree_ref *ref;
 544
 545			ref = btrfs_delayed_node_to_tree_ref(node);
 546			ret = __add_prelim_ref(prefs, ref->root, NULL,
 547					       ref->level + 1, ref->parent,
 548					       node->bytenr,
 549					       node->ref_mod * sgn);
 550			break;
 551		}
 552		case BTRFS_EXTENT_DATA_REF_KEY: {
 553			struct btrfs_delayed_data_ref *ref;
 554			ref = btrfs_delayed_node_to_data_ref(node);
 555
 556			key.objectid = ref->objectid;
 557			key.type = BTRFS_EXTENT_DATA_KEY;
 558			key.offset = ref->offset;
 559			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 560					       node->bytenr,
 561					       node->ref_mod * sgn);
 562			break;
 563		}
 564		case BTRFS_SHARED_DATA_REF_KEY: {
 565			struct btrfs_delayed_data_ref *ref;
 566
 567			ref = btrfs_delayed_node_to_data_ref(node);
 568
 569			key.objectid = ref->objectid;
 570			key.type = BTRFS_EXTENT_DATA_KEY;
 571			key.offset = ref->offset;
 572			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
 573					       ref->parent, node->bytenr,
 574					       node->ref_mod * sgn);
 575			break;
 576		}
 577		default:
 578			WARN_ON(1);
 579		}
 580		BUG_ON(ret);
 
 581	}
 582
 583	return 0;
 584}
 585
 586/*
 587 * add all inline backrefs for bytenr to the list
 588 */
 589static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 590			     struct btrfs_path *path, u64 bytenr,
 591			     int *info_level, struct list_head *prefs)
 
 592{
 593	int ret = 0;
 594	int slot;
 595	struct extent_buffer *leaf;
 596	struct btrfs_key key;
 
 597	unsigned long ptr;
 598	unsigned long end;
 599	struct btrfs_extent_item *ei;
 600	u64 flags;
 601	u64 item_size;
 602
 603	/*
 604	 * enumerate all inline refs
 605	 */
 606	leaf = path->nodes[0];
 607	slot = path->slots[0];
 608
 609	item_size = btrfs_item_size_nr(leaf, slot);
 610	BUG_ON(item_size < sizeof(*ei));
 611
 612	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 613	flags = btrfs_extent_flags(leaf, ei);
 
 
 614
 615	ptr = (unsigned long)(ei + 1);
 616	end = (unsigned long)ei + item_size;
 617
 618	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 
 619		struct btrfs_tree_block_info *info;
 620
 621		info = (struct btrfs_tree_block_info *)ptr;
 622		*info_level = btrfs_tree_block_level(leaf, info);
 623		ptr += sizeof(struct btrfs_tree_block_info);
 624		BUG_ON(ptr > end);
 
 
 625	} else {
 626		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 627	}
 628
 629	while (ptr < end) {
 630		struct btrfs_extent_inline_ref *iref;
 631		u64 offset;
 632		int type;
 633
 634		iref = (struct btrfs_extent_inline_ref *)ptr;
 635		type = btrfs_extent_inline_ref_type(leaf, iref);
 636		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 637
 638		switch (type) {
 639		case BTRFS_SHARED_BLOCK_REF_KEY:
 640			ret = __add_prelim_ref(prefs, 0, NULL,
 641						*info_level + 1, offset,
 642						bytenr, 1);
 643			break;
 644		case BTRFS_SHARED_DATA_REF_KEY: {
 645			struct btrfs_shared_data_ref *sdref;
 646			int count;
 647
 648			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 649			count = btrfs_shared_data_ref_count(leaf, sdref);
 650			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 651					       bytenr, count);
 652			break;
 653		}
 654		case BTRFS_TREE_BLOCK_REF_KEY:
 655			ret = __add_prelim_ref(prefs, offset, NULL,
 656					       *info_level + 1, 0,
 657					       bytenr, 1);
 658			break;
 659		case BTRFS_EXTENT_DATA_REF_KEY: {
 660			struct btrfs_extent_data_ref *dref;
 661			int count;
 662			u64 root;
 663
 664			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 665			count = btrfs_extent_data_ref_count(leaf, dref);
 666			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 667								      dref);
 668			key.type = BTRFS_EXTENT_DATA_KEY;
 669			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 670			root = btrfs_extent_data_ref_root(leaf, dref);
 671			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 672					       bytenr, count);
 673			break;
 674		}
 675		default:
 676			WARN_ON(1);
 677		}
 678		BUG_ON(ret);
 
 679		ptr += btrfs_extent_inline_ref_size(type);
 680	}
 681
 682	return 0;
 683}
 684
 685/*
 686 * add all non-inline backrefs for bytenr to the list
 687 */
 688static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 689			    struct btrfs_path *path, u64 bytenr,
 690			    int info_level, struct list_head *prefs)
 691{
 692	struct btrfs_root *extent_root = fs_info->extent_root;
 693	int ret;
 694	int slot;
 695	struct extent_buffer *leaf;
 696	struct btrfs_key key;
 697
 698	while (1) {
 699		ret = btrfs_next_item(extent_root, path);
 700		if (ret < 0)
 701			break;
 702		if (ret) {
 703			ret = 0;
 704			break;
 705		}
 706
 707		slot = path->slots[0];
 708		leaf = path->nodes[0];
 709		btrfs_item_key_to_cpu(leaf, &key, slot);
 710
 711		if (key.objectid != bytenr)
 712			break;
 713		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 714			continue;
 715		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 716			break;
 717
 718		switch (key.type) {
 719		case BTRFS_SHARED_BLOCK_REF_KEY:
 720			ret = __add_prelim_ref(prefs, 0, NULL,
 721						info_level + 1, key.offset,
 722						bytenr, 1);
 723			break;
 724		case BTRFS_SHARED_DATA_REF_KEY: {
 725			struct btrfs_shared_data_ref *sdref;
 726			int count;
 727
 728			sdref = btrfs_item_ptr(leaf, slot,
 729					      struct btrfs_shared_data_ref);
 730			count = btrfs_shared_data_ref_count(leaf, sdref);
 731			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 732						bytenr, count);
 733			break;
 734		}
 735		case BTRFS_TREE_BLOCK_REF_KEY:
 736			ret = __add_prelim_ref(prefs, key.offset, NULL,
 737					       info_level + 1, 0,
 738					       bytenr, 1);
 739			break;
 740		case BTRFS_EXTENT_DATA_REF_KEY: {
 741			struct btrfs_extent_data_ref *dref;
 742			int count;
 743			u64 root;
 744
 745			dref = btrfs_item_ptr(leaf, slot,
 746					      struct btrfs_extent_data_ref);
 747			count = btrfs_extent_data_ref_count(leaf, dref);
 748			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 749								      dref);
 750			key.type = BTRFS_EXTENT_DATA_KEY;
 751			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 752			root = btrfs_extent_data_ref_root(leaf, dref);
 753			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 754					       bytenr, count);
 755			break;
 756		}
 757		default:
 758			WARN_ON(1);
 759		}
 760		BUG_ON(ret);
 
 
 761	}
 762
 763	return ret;
 764}
 765
 766/*
 767 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 768 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 769 * indirect refs to their parent bytenr.
 770 * When roots are found, they're added to the roots list
 771 *
 772 * FIXME some caching might speed things up
 773 */
 774static int find_parent_nodes(struct btrfs_trans_handle *trans,
 775			     struct btrfs_fs_info *fs_info, u64 bytenr,
 776			     u64 delayed_ref_seq, u64 time_seq,
 777			     struct ulist *refs, struct ulist *roots,
 778			     const u64 *extent_item_pos)
 779{
 780	struct btrfs_key key;
 781	struct btrfs_path *path;
 782	struct btrfs_delayed_ref_root *delayed_refs = NULL;
 783	struct btrfs_delayed_ref_head *head;
 784	int info_level = 0;
 785	int ret;
 786	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
 787	struct list_head prefs_delayed;
 788	struct list_head prefs;
 789	struct __prelim_ref *ref;
 
 
 790
 791	INIT_LIST_HEAD(&prefs);
 792	INIT_LIST_HEAD(&prefs_delayed);
 793
 794	key.objectid = bytenr;
 795	key.type = BTRFS_EXTENT_ITEM_KEY;
 796	key.offset = (u64)-1;
 
 
 
 
 797
 798	path = btrfs_alloc_path();
 799	if (!path)
 800		return -ENOMEM;
 801	path->search_commit_root = !!search_commit_root;
 
 
 
 802
 803	/*
 804	 * grab both a lock on the path and a lock on the delayed ref head.
 805	 * We need both to get a consistent picture of how the refs look
 806	 * at a specified point in time
 807	 */
 808again:
 809	head = NULL;
 810
 811	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 812	if (ret < 0)
 813		goto out;
 814	BUG_ON(ret == 0);
 815
 816	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
 817		/*
 818		 * look if there are updates for this ref queued and lock the
 819		 * head
 820		 */
 821		delayed_refs = &trans->transaction->delayed_refs;
 822		spin_lock(&delayed_refs->lock);
 823		head = btrfs_find_delayed_ref_head(trans, bytenr);
 824		if (head) {
 825			if (!mutex_trylock(&head->mutex)) {
 826				atomic_inc(&head->node.refs);
 827				spin_unlock(&delayed_refs->lock);
 828
 829				btrfs_release_path(path);
 830
 831				/*
 832				 * Mutex was contended, block until it's
 833				 * released and try again
 834				 */
 835				mutex_lock(&head->mutex);
 836				mutex_unlock(&head->mutex);
 837				btrfs_put_delayed_ref(&head->node);
 838				goto again;
 839			}
 840			ret = __add_delayed_refs(head, delayed_ref_seq,
 841						 &prefs_delayed);
 
 842			mutex_unlock(&head->mutex);
 843			if (ret) {
 844				spin_unlock(&delayed_refs->lock);
 845				goto out;
 846			}
 
 847		}
 848		spin_unlock(&delayed_refs->lock);
 849	}
 850
 851	if (path->slots[0]) {
 852		struct extent_buffer *leaf;
 853		int slot;
 854
 855		path->slots[0]--;
 856		leaf = path->nodes[0];
 857		slot = path->slots[0];
 858		btrfs_item_key_to_cpu(leaf, &key, slot);
 859		if (key.objectid == bytenr &&
 860		    key.type == BTRFS_EXTENT_ITEM_KEY) {
 
 861			ret = __add_inline_refs(fs_info, path, bytenr,
 862						&info_level, &prefs);
 
 863			if (ret)
 864				goto out;
 865			ret = __add_keyed_refs(fs_info, path, bytenr,
 866					       info_level, &prefs);
 867			if (ret)
 868				goto out;
 869		}
 870	}
 871	btrfs_release_path(path);
 872
 873	list_splice_init(&prefs_delayed, &prefs);
 874
 875	ret = __add_missing_keys(fs_info, &prefs);
 876	if (ret)
 877		goto out;
 878
 879	ret = __merge_refs(&prefs, 1);
 880	if (ret)
 881		goto out;
 882
 883	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
 884				      &prefs, extent_item_pos);
 885	if (ret)
 886		goto out;
 887
 888	ret = __merge_refs(&prefs, 2);
 889	if (ret)
 890		goto out;
 891
 892	while (!list_empty(&prefs)) {
 893		ref = list_first_entry(&prefs, struct __prelim_ref, list);
 894		list_del(&ref->list);
 895		if (ref->count < 0)
 896			WARN_ON(1);
 897		if (ref->count && ref->root_id && ref->parent == 0) {
 898			/* no parent == root of tree */
 899			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
 900			BUG_ON(ret < 0);
 
 901		}
 902		if (ref->count && ref->parent) {
 903			struct extent_inode_elem *eie = NULL;
 904			if (extent_item_pos && !ref->inode_list) {
 905				u32 bsz;
 906				struct extent_buffer *eb;
 907				bsz = btrfs_level_size(fs_info->extent_root,
 908							info_level);
 909				eb = read_tree_block(fs_info->extent_root,
 910							   ref->parent, bsz, 0);
 911				BUG_ON(!eb);
 
 
 
 
 912				ret = find_extent_in_eb(eb, bytenr,
 913							*extent_item_pos, &eie);
 
 
 
 914				ref->inode_list = eie;
 915				free_extent_buffer(eb);
 916			}
 917			ret = ulist_add_merge(refs, ref->parent,
 918					      (unsigned long)ref->inode_list,
 919					      (unsigned long *)&eie, GFP_NOFS);
 
 
 920			if (!ret && extent_item_pos) {
 921				/*
 922				 * we've recorded that parent, so we must extend
 923				 * its inode list here
 924				 */
 925				BUG_ON(!eie);
 926				while (eie->next)
 927					eie = eie->next;
 928				eie->next = ref->inode_list;
 929			}
 930			BUG_ON(ret < 0);
 931		}
 932		kfree(ref);
 
 933	}
 934
 935out:
 936	btrfs_free_path(path);
 937	while (!list_empty(&prefs)) {
 938		ref = list_first_entry(&prefs, struct __prelim_ref, list);
 939		list_del(&ref->list);
 940		kfree(ref);
 941	}
 942	while (!list_empty(&prefs_delayed)) {
 943		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
 944				       list);
 945		list_del(&ref->list);
 946		kfree(ref);
 947	}
 948
 
 949	return ret;
 950}
 951
 952static void free_leaf_list(struct ulist *blocks)
 953{
 954	struct ulist_node *node = NULL;
 955	struct extent_inode_elem *eie;
 956	struct extent_inode_elem *eie_next;
 957	struct ulist_iterator uiter;
 958
 959	ULIST_ITER_INIT(&uiter);
 960	while ((node = ulist_next(blocks, &uiter))) {
 961		if (!node->aux)
 962			continue;
 963		eie = (struct extent_inode_elem *)node->aux;
 964		for (; eie; eie = eie_next) {
 965			eie_next = eie->next;
 966			kfree(eie);
 967		}
 968		node->aux = 0;
 969	}
 970
 971	ulist_free(blocks);
 972}
 973
 974/*
 975 * Finds all leafs with a reference to the specified combination of bytenr and
 976 * offset. key_list_head will point to a list of corresponding keys (caller must
 977 * free each list element). The leafs will be stored in the leafs ulist, which
 978 * must be freed with ulist_free.
 979 *
 980 * returns 0 on success, <0 on error
 981 */
 982static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
 983				struct btrfs_fs_info *fs_info, u64 bytenr,
 984				u64 delayed_ref_seq, u64 time_seq,
 985				struct ulist **leafs,
 986				const u64 *extent_item_pos)
 987{
 988	struct ulist *tmp;
 989	int ret;
 990
 991	tmp = ulist_alloc(GFP_NOFS);
 992	if (!tmp)
 993		return -ENOMEM;
 994	*leafs = ulist_alloc(GFP_NOFS);
 995	if (!*leafs) {
 996		ulist_free(tmp);
 997		return -ENOMEM;
 998	}
 999
1000	ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
1001				time_seq, *leafs, tmp, extent_item_pos);
1002	ulist_free(tmp);
1003
 
 
1004	if (ret < 0 && ret != -ENOENT) {
1005		free_leaf_list(*leafs);
1006		return ret;
1007	}
1008
1009	return 0;
1010}
1011
1012/*
1013 * walk all backrefs for a given extent to find all roots that reference this
1014 * extent. Walking a backref means finding all extents that reference this
1015 * extent and in turn walk the backrefs of those, too. Naturally this is a
1016 * recursive process, but here it is implemented in an iterative fashion: We
1017 * find all referencing extents for the extent in question and put them on a
1018 * list. In turn, we find all referencing extents for those, further appending
1019 * to the list. The way we iterate the list allows adding more elements after
1020 * the current while iterating. The process stops when we reach the end of the
1021 * list. Found roots are added to the roots list.
1022 *
1023 * returns 0 on success, < 0 on error.
1024 */
1025int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1026				struct btrfs_fs_info *fs_info, u64 bytenr,
1027				u64 delayed_ref_seq, u64 time_seq,
1028				struct ulist **roots)
1029{
1030	struct ulist *tmp;
1031	struct ulist_node *node = NULL;
1032	struct ulist_iterator uiter;
1033	int ret;
1034
1035	tmp = ulist_alloc(GFP_NOFS);
1036	if (!tmp)
1037		return -ENOMEM;
1038	*roots = ulist_alloc(GFP_NOFS);
1039	if (!*roots) {
1040		ulist_free(tmp);
1041		return -ENOMEM;
1042	}
1043
1044	ULIST_ITER_INIT(&uiter);
1045	while (1) {
1046		ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
1047					time_seq, tmp, *roots, NULL);
1048		if (ret < 0 && ret != -ENOENT) {
1049			ulist_free(tmp);
1050			ulist_free(*roots);
1051			return ret;
1052		}
1053		node = ulist_next(tmp, &uiter);
1054		if (!node)
1055			break;
1056		bytenr = node->val;
 
1057	}
1058
1059	ulist_free(tmp);
1060	return 0;
1061}
1062
1063
1064static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1065			struct btrfs_root *fs_root, struct btrfs_path *path,
1066			struct btrfs_key *found_key)
1067{
1068	int ret;
1069	struct btrfs_key key;
1070	struct extent_buffer *eb;
1071
1072	key.type = key_type;
1073	key.objectid = inum;
1074	key.offset = ioff;
1075
1076	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1077	if (ret < 0)
1078		return ret;
1079
1080	eb = path->nodes[0];
1081	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1082		ret = btrfs_next_leaf(fs_root, path);
1083		if (ret)
1084			return ret;
1085		eb = path->nodes[0];
1086	}
1087
1088	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1089	if (found_key->type != key.type || found_key->objectid != key.objectid)
1090		return 1;
1091
1092	return 0;
1093}
1094
1095/*
1096 * this makes the path point to (inum INODE_ITEM ioff)
1097 */
1098int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1099			struct btrfs_path *path)
1100{
1101	struct btrfs_key key;
1102	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1103				&key);
1104}
1105
1106static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1107				struct btrfs_path *path,
1108				struct btrfs_key *found_key)
1109{
1110	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1111				found_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112}
1113
1114/*
1115 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1116 * of the path are separated by '/' and the path is guaranteed to be
1117 * 0-terminated. the path is only given within the current file system.
1118 * Therefore, it never starts with a '/'. the caller is responsible to provide
1119 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1120 * the start point of the resulting string is returned. this pointer is within
1121 * dest, normally.
1122 * in case the path buffer would overflow, the pointer is decremented further
1123 * as if output was written to the buffer, though no more output is actually
1124 * generated. that way, the caller can determine how much space would be
1125 * required for the path to fit into the buffer. in that case, the returned
1126 * value will be smaller than dest. callers must check this!
1127 */
1128static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1129				struct btrfs_inode_ref *iref,
1130				struct extent_buffer *eb_in, u64 parent,
1131				char *dest, u32 size)
1132{
1133	u32 len;
1134	int slot;
1135	u64 next_inum;
1136	int ret;
1137	s64 bytes_left = size - 1;
1138	struct extent_buffer *eb = eb_in;
1139	struct btrfs_key found_key;
1140	int leave_spinning = path->leave_spinning;
 
1141
1142	if (bytes_left >= 0)
1143		dest[bytes_left] = '\0';
1144
1145	path->leave_spinning = 1;
1146	while (1) {
1147		len = btrfs_inode_ref_name_len(eb, iref);
1148		bytes_left -= len;
1149		if (bytes_left >= 0)
1150			read_extent_buffer(eb, dest + bytes_left,
1151						(unsigned long)(iref + 1), len);
1152		if (eb != eb_in) {
1153			btrfs_tree_read_unlock_blocking(eb);
1154			free_extent_buffer(eb);
1155		}
1156		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1157		if (ret > 0)
1158			ret = -ENOENT;
1159		if (ret)
1160			break;
 
1161		next_inum = found_key.offset;
1162
1163		/* regular exit ahead */
1164		if (parent == next_inum)
1165			break;
1166
1167		slot = path->slots[0];
1168		eb = path->nodes[0];
1169		/* make sure we can use eb after releasing the path */
1170		if (eb != eb_in) {
1171			atomic_inc(&eb->refs);
1172			btrfs_tree_read_lock(eb);
1173			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1174		}
1175		btrfs_release_path(path);
 
 
 
 
1176
1177		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1178		parent = next_inum;
1179		--bytes_left;
1180		if (bytes_left >= 0)
1181			dest[bytes_left] = '/';
1182	}
1183
1184	btrfs_release_path(path);
1185	path->leave_spinning = leave_spinning;
1186
1187	if (ret)
1188		return ERR_PTR(ret);
1189
1190	return dest + bytes_left;
1191}
1192
1193/*
1194 * this makes the path point to (logical EXTENT_ITEM *)
1195 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1196 * tree blocks and <0 on error.
1197 */
1198int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1199			struct btrfs_path *path, struct btrfs_key *found_key)
 
1200{
1201	int ret;
1202	u64 flags;
 
1203	u32 item_size;
1204	struct extent_buffer *eb;
1205	struct btrfs_extent_item *ei;
1206	struct btrfs_key key;
1207
1208	key.type = BTRFS_EXTENT_ITEM_KEY;
 
 
 
1209	key.objectid = logical;
1210	key.offset = (u64)-1;
1211
1212	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1213	if (ret < 0)
1214		return ret;
1215	ret = btrfs_previous_item(fs_info->extent_root, path,
1216					0, BTRFS_EXTENT_ITEM_KEY);
1217	if (ret < 0)
 
 
1218		return ret;
1219
1220	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1221	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1222	    found_key->objectid > logical ||
1223	    found_key->objectid + found_key->offset <= logical) {
1224		pr_debug("logical %llu is not within any extent\n",
1225			 (unsigned long long)logical);
 
 
 
1226		return -ENOENT;
1227	}
1228
1229	eb = path->nodes[0];
1230	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1231	BUG_ON(item_size < sizeof(*ei));
1232
1233	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1234	flags = btrfs_extent_flags(eb, ei);
1235
1236	pr_debug("logical %llu is at position %llu within the extent (%llu "
1237		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1238		 (unsigned long long)logical,
1239		 (unsigned long long)(logical - found_key->objectid),
1240		 (unsigned long long)found_key->objectid,
1241		 (unsigned long long)found_key->offset,
1242		 (unsigned long long)flags, item_size);
1243	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1244		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
1245	if (flags & BTRFS_EXTENT_FLAG_DATA)
1246		return BTRFS_EXTENT_FLAG_DATA;
 
 
 
 
1247
1248	return -EIO;
1249}
1250
1251/*
1252 * helper function to iterate extent inline refs. ptr must point to a 0 value
1253 * for the first call and may be modified. it is used to track state.
1254 * if more refs exist, 0 is returned and the next call to
1255 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1256 * next ref. after the last ref was processed, 1 is returned.
1257 * returns <0 on error
1258 */
1259static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1260				struct btrfs_extent_item *ei, u32 item_size,
1261				struct btrfs_extent_inline_ref **out_eiref,
1262				int *out_type)
1263{
1264	unsigned long end;
1265	u64 flags;
1266	struct btrfs_tree_block_info *info;
1267
1268	if (!*ptr) {
1269		/* first call */
1270		flags = btrfs_extent_flags(eb, ei);
1271		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1272			info = (struct btrfs_tree_block_info *)(ei + 1);
1273			*out_eiref =
1274				(struct btrfs_extent_inline_ref *)(info + 1);
1275		} else {
1276			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1277		}
1278		*ptr = (unsigned long)*out_eiref;
1279		if ((void *)*ptr >= (void *)ei + item_size)
1280			return -ENOENT;
1281	}
1282
1283	end = (unsigned long)ei + item_size;
1284	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1285	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1286
1287	*ptr += btrfs_extent_inline_ref_size(*out_type);
1288	WARN_ON(*ptr > end);
1289	if (*ptr == end)
1290		return 1; /* last */
1291
1292	return 0;
1293}
1294
1295/*
1296 * reads the tree block backref for an extent. tree level and root are returned
1297 * through out_level and out_root. ptr must point to a 0 value for the first
1298 * call and may be modified (see __get_extent_inline_ref comment).
1299 * returns 0 if data was provided, 1 if there was no more data to provide or
1300 * <0 on error.
1301 */
1302int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1303				struct btrfs_extent_item *ei, u32 item_size,
1304				u64 *out_root, u8 *out_level)
1305{
1306	int ret;
1307	int type;
1308	struct btrfs_tree_block_info *info;
1309	struct btrfs_extent_inline_ref *eiref;
1310
1311	if (*ptr == (unsigned long)-1)
1312		return 1;
1313
1314	while (1) {
1315		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1316						&eiref, &type);
1317		if (ret < 0)
1318			return ret;
1319
1320		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1321		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1322			break;
1323
1324		if (ret == 1)
1325			return 1;
1326	}
1327
1328	/* we can treat both ref types equally here */
1329	info = (struct btrfs_tree_block_info *)(ei + 1);
1330	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1331	*out_level = btrfs_tree_block_level(eb, info);
1332
1333	if (ret == 1)
1334		*ptr = (unsigned long)-1;
1335
1336	return 0;
1337}
1338
1339static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1340				u64 root, u64 extent_item_objectid,
1341				iterate_extent_inodes_t *iterate, void *ctx)
1342{
1343	struct extent_inode_elem *eie;
1344	int ret = 0;
1345
1346	for (eie = inode_list; eie; eie = eie->next) {
1347		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1348			 "root %llu\n", extent_item_objectid,
1349			 eie->inum, eie->offset, root);
1350		ret = iterate(eie->inum, eie->offset, root, ctx);
1351		if (ret) {
1352			pr_debug("stopping iteration for %llu due to ret=%d\n",
1353				 extent_item_objectid, ret);
1354			break;
1355		}
1356	}
1357
1358	return ret;
1359}
1360
1361/*
1362 * calls iterate() for every inode that references the extent identified by
1363 * the given parameters.
1364 * when the iterator function returns a non-zero value, iteration stops.
1365 */
1366int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1367				u64 extent_item_objectid, u64 extent_item_pos,
1368				int search_commit_root,
1369				iterate_extent_inodes_t *iterate, void *ctx)
1370{
1371	int ret;
1372	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1373	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1374	struct btrfs_trans_handle *trans;
1375	struct ulist *refs = NULL;
1376	struct ulist *roots = NULL;
1377	struct ulist_node *ref_node = NULL;
1378	struct ulist_node *root_node = NULL;
1379	struct seq_list seq_elem = {};
1380	struct seq_list tree_mod_seq_elem = {};
1381	struct ulist_iterator ref_uiter;
1382	struct ulist_iterator root_uiter;
1383	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1384
1385	pr_debug("resolving all inodes for extent %llu\n",
1386			extent_item_objectid);
1387
1388	if (search_commit_root) {
1389		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1390	} else {
1391		trans = btrfs_join_transaction(fs_info->extent_root);
1392		if (IS_ERR(trans))
1393			return PTR_ERR(trans);
1394
1395		delayed_refs = &trans->transaction->delayed_refs;
1396		spin_lock(&delayed_refs->lock);
1397		btrfs_get_delayed_seq(delayed_refs, &seq_elem);
1398		spin_unlock(&delayed_refs->lock);
1399		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
 
 
1400	}
1401
1402	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1403				   seq_elem.seq, tree_mod_seq_elem.seq, &refs,
1404				   &extent_item_pos);
1405	if (ret)
1406		goto out;
1407
1408	ULIST_ITER_INIT(&ref_uiter);
1409	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1410		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1411						seq_elem.seq,
1412						tree_mod_seq_elem.seq, &roots);
1413		if (ret)
1414			break;
1415		ULIST_ITER_INIT(&root_uiter);
1416		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1417			pr_debug("root %llu references leaf %llu, data list "
1418				 "%#lx\n", root_node->val, ref_node->val,
1419				 ref_node->aux);
1420			ret = iterate_leaf_refs(
1421				(struct extent_inode_elem *)ref_node->aux,
1422				root_node->val, extent_item_objectid,
1423				iterate, ctx);
 
1424		}
1425		ulist_free(roots);
1426		roots = NULL;
1427	}
1428
1429	free_leaf_list(refs);
1430	ulist_free(roots);
1431out:
1432	if (!search_commit_root) {
1433		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1434		btrfs_put_delayed_seq(delayed_refs, &seq_elem);
1435		btrfs_end_transaction(trans, fs_info->extent_root);
 
 
1436	}
1437
1438	return ret;
1439}
1440
1441int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1442				struct btrfs_path *path,
1443				iterate_extent_inodes_t *iterate, void *ctx)
1444{
1445	int ret;
1446	u64 extent_item_pos;
 
1447	struct btrfs_key found_key;
1448	int search_commit_root = path->search_commit_root;
1449
1450	ret = extent_from_logical(fs_info, logical, path,
1451					&found_key);
1452	btrfs_release_path(path);
1453	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1454		ret = -EINVAL;
1455	if (ret < 0)
1456		return ret;
 
 
1457
1458	extent_item_pos = logical - found_key.objectid;
1459	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1460					extent_item_pos, search_commit_root,
1461					iterate, ctx);
1462
1463	return ret;
1464}
1465
1466static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1467				struct btrfs_path *path,
1468				iterate_irefs_t *iterate, void *ctx)
 
 
 
1469{
1470	int ret = 0;
1471	int slot;
1472	u32 cur;
1473	u32 len;
1474	u32 name_len;
1475	u64 parent = 0;
1476	int found = 0;
1477	struct extent_buffer *eb;
1478	struct btrfs_item *item;
1479	struct btrfs_inode_ref *iref;
1480	struct btrfs_key found_key;
1481
1482	while (!ret) {
1483		path->leave_spinning = 1;
1484		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1485					&found_key);
1486		if (ret < 0)
1487			break;
1488		if (ret) {
1489			ret = found ? 0 : -ENOENT;
1490			break;
1491		}
1492		++found;
1493
1494		parent = found_key.offset;
1495		slot = path->slots[0];
1496		eb = path->nodes[0];
1497		/* make sure we can use eb after releasing the path */
1498		atomic_inc(&eb->refs);
 
 
 
1499		btrfs_tree_read_lock(eb);
1500		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1501		btrfs_release_path(path);
1502
1503		item = btrfs_item_nr(eb, slot);
1504		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1505
1506		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1507			name_len = btrfs_inode_ref_name_len(eb, iref);
1508			/* path must be released before calling iterate()! */
1509			pr_debug("following ref at offset %u for inode %llu in "
1510				 "tree %llu\n", cur,
1511				 (unsigned long long)found_key.objectid,
1512				 (unsigned long long)fs_root->objectid);
1513			ret = iterate(parent, iref, eb, ctx);
1514			if (ret)
1515				break;
1516			len = sizeof(*iref) + name_len;
1517			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1518		}
1519		btrfs_tree_read_unlock_blocking(eb);
1520		free_extent_buffer(eb);
1521	}
1522
1523	btrfs_release_path(path);
1524
1525	return ret;
1526}
1527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528/*
1529 * returns 0 if the path could be dumped (probably truncated)
1530 * returns <0 in case of an error
1531 */
1532static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1533				struct extent_buffer *eb, void *ctx)
1534{
1535	struct inode_fs_paths *ipath = ctx;
1536	char *fspath;
1537	char *fspath_min;
1538	int i = ipath->fspath->elem_cnt;
1539	const int s_ptr = sizeof(char *);
1540	u32 bytes_left;
1541
1542	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1543					ipath->fspath->bytes_left - s_ptr : 0;
1544
1545	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1546	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1547				inum, fspath_min, bytes_left);
1548	if (IS_ERR(fspath))
1549		return PTR_ERR(fspath);
1550
1551	if (fspath > fspath_min) {
1552		pr_debug("path resolved: %s\n", fspath);
1553		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1554		++ipath->fspath->elem_cnt;
1555		ipath->fspath->bytes_left = fspath - fspath_min;
1556	} else {
1557		pr_debug("missed path, not enough space. missing bytes: %lu, "
1558			 "constructed so far: %s\n",
1559			 (unsigned long)(fspath_min - fspath), fspath_min);
1560		++ipath->fspath->elem_missed;
1561		ipath->fspath->bytes_missing += fspath_min - fspath;
1562		ipath->fspath->bytes_left = 0;
1563	}
1564
1565	return 0;
1566}
1567
1568/*
1569 * this dumps all file system paths to the inode into the ipath struct, provided
1570 * is has been created large enough. each path is zero-terminated and accessed
1571 * from ipath->fspath->val[i].
1572 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1573 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1574 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1575 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1576 * have been needed to return all paths.
1577 */
1578int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1579{
1580	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1581				inode_to_path, ipath);
1582}
1583
1584struct btrfs_data_container *init_data_container(u32 total_bytes)
1585{
1586	struct btrfs_data_container *data;
1587	size_t alloc_bytes;
1588
1589	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1590	data = kmalloc(alloc_bytes, GFP_NOFS);
1591	if (!data)
1592		return ERR_PTR(-ENOMEM);
1593
1594	if (total_bytes >= sizeof(*data)) {
1595		data->bytes_left = total_bytes - sizeof(*data);
1596		data->bytes_missing = 0;
1597	} else {
1598		data->bytes_missing = sizeof(*data) - total_bytes;
1599		data->bytes_left = 0;
1600	}
1601
1602	data->elem_cnt = 0;
1603	data->elem_missed = 0;
1604
1605	return data;
1606}
1607
1608/*
1609 * allocates space to return multiple file system paths for an inode.
1610 * total_bytes to allocate are passed, note that space usable for actual path
1611 * information will be total_bytes - sizeof(struct inode_fs_paths).
1612 * the returned pointer must be freed with free_ipath() in the end.
1613 */
1614struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1615					struct btrfs_path *path)
1616{
1617	struct inode_fs_paths *ifp;
1618	struct btrfs_data_container *fspath;
1619
1620	fspath = init_data_container(total_bytes);
1621	if (IS_ERR(fspath))
1622		return (void *)fspath;
1623
1624	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1625	if (!ifp) {
1626		kfree(fspath);
1627		return ERR_PTR(-ENOMEM);
1628	}
1629
1630	ifp->btrfs_path = path;
1631	ifp->fspath = fspath;
1632	ifp->fs_root = fs_root;
1633
1634	return ifp;
1635}
1636
1637void free_ipath(struct inode_fs_paths *ipath)
1638{
1639	if (!ipath)
1640		return;
1641	kfree(ipath->fspath);
1642	kfree(ipath);
1643}