Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27#include <linux/dma-mapping.h>
  28
  29#include "xhci.h"
  30#include "xhci-trace.h"
  31
  32/*
  33 * Allocates a generic ring segment from the ring pool, sets the dma address,
  34 * initializes the segment to zero, and sets the private next pointer to NULL.
  35 *
  36 * Section 4.11.1.1:
  37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  38 */
  39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  40					unsigned int cycle_state, gfp_t flags)
  41{
  42	struct xhci_segment *seg;
  43	dma_addr_t	dma;
  44	int		i;
  45
  46	seg = kzalloc(sizeof *seg, flags);
  47	if (!seg)
  48		return NULL;
  49
  50	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  51	if (!seg->trbs) {
  52		kfree(seg);
  53		return NULL;
  54	}
  55
  56	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
  57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58	if (cycle_state == 0) {
  59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61	}
  62	seg->dma = dma;
  63	seg->next = NULL;
  64
  65	return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
  70	if (seg->trbs) {
  71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72		seg->trbs = NULL;
  73	}
  74	kfree(seg);
  75}
  76
  77static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  78				struct xhci_segment *first)
  79{
  80	struct xhci_segment *seg;
  81
  82	seg = first->next;
  83	while (seg != first) {
  84		struct xhci_segment *next = seg->next;
  85		xhci_segment_free(xhci, seg);
  86		seg = next;
  87	}
  88	xhci_segment_free(xhci, first);
  89}
  90
  91/*
  92 * Make the prev segment point to the next segment.
  93 *
  94 * Change the last TRB in the prev segment to be a Link TRB which points to the
  95 * DMA address of the next segment.  The caller needs to set any Link TRB
  96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  97 */
  98static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  99		struct xhci_segment *next, enum xhci_ring_type type)
 100{
 101	u32 val;
 102
 103	if (!prev || !next)
 104		return;
 105	prev->next = next;
 106	if (type != TYPE_EVENT) {
 107		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 108			cpu_to_le64(next->dma);
 109
 110		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 111		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 112		val &= ~TRB_TYPE_BITMASK;
 113		val |= TRB_TYPE(TRB_LINK);
 114		/* Always set the chain bit with 0.95 hardware */
 115		/* Set chain bit for isoc rings on AMD 0.96 host */
 116		if (xhci_link_trb_quirk(xhci) ||
 117				(type == TYPE_ISOC &&
 118				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 119			val |= TRB_CHAIN;
 120		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 121	}
 122}
 123
 124/*
 125 * Link the ring to the new segments.
 126 * Set Toggle Cycle for the new ring if needed.
 127 */
 128static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 129		struct xhci_segment *first, struct xhci_segment *last,
 130		unsigned int num_segs)
 131{
 132	struct xhci_segment *next;
 133
 134	if (!ring || !first || !last)
 135		return;
 136
 137	next = ring->enq_seg->next;
 138	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 139	xhci_link_segments(xhci, last, next, ring->type);
 140	ring->num_segs += num_segs;
 141	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 142
 143	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 144		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 145			&= ~cpu_to_le32(LINK_TOGGLE);
 146		last->trbs[TRBS_PER_SEGMENT-1].link.control
 147			|= cpu_to_le32(LINK_TOGGLE);
 148		ring->last_seg = last;
 149	}
 150}
 151
 152/*
 153 * We need a radix tree for mapping physical addresses of TRBs to which stream
 154 * ID they belong to.  We need to do this because the host controller won't tell
 155 * us which stream ring the TRB came from.  We could store the stream ID in an
 156 * event data TRB, but that doesn't help us for the cancellation case, since the
 157 * endpoint may stop before it reaches that event data TRB.
 158 *
 159 * The radix tree maps the upper portion of the TRB DMA address to a ring
 160 * segment that has the same upper portion of DMA addresses.  For example, say I
 161 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 162 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 163 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 164 * pass the radix tree a key to get the right stream ID:
 165 *
 166 *	0x10c90fff >> 10 = 0x43243
 167 *	0x10c912c0 >> 10 = 0x43244
 168 *	0x10c91400 >> 10 = 0x43245
 169 *
 170 * Obviously, only those TRBs with DMA addresses that are within the segment
 171 * will make the radix tree return the stream ID for that ring.
 172 *
 173 * Caveats for the radix tree:
 174 *
 175 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 177 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 179 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 180 * extended systems (where the DMA address can be bigger than 32-bits),
 181 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 182 */
 183static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 184		struct xhci_ring *ring,
 185		struct xhci_segment *seg,
 186		gfp_t mem_flags)
 187{
 188	unsigned long key;
 189	int ret;
 190
 191	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 192	/* Skip any segments that were already added. */
 193	if (radix_tree_lookup(trb_address_map, key))
 194		return 0;
 195
 196	ret = radix_tree_maybe_preload(mem_flags);
 197	if (ret)
 198		return ret;
 199	ret = radix_tree_insert(trb_address_map,
 200			key, ring);
 201	radix_tree_preload_end();
 202	return ret;
 203}
 204
 205static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 206		struct xhci_segment *seg)
 207{
 208	unsigned long key;
 209
 210	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 211	if (radix_tree_lookup(trb_address_map, key))
 212		radix_tree_delete(trb_address_map, key);
 213}
 214
 215static int xhci_update_stream_segment_mapping(
 216		struct radix_tree_root *trb_address_map,
 217		struct xhci_ring *ring,
 218		struct xhci_segment *first_seg,
 219		struct xhci_segment *last_seg,
 220		gfp_t mem_flags)
 221{
 222	struct xhci_segment *seg;
 223	struct xhci_segment *failed_seg;
 224	int ret;
 225
 226	if (WARN_ON_ONCE(trb_address_map == NULL))
 227		return 0;
 228
 229	seg = first_seg;
 230	do {
 231		ret = xhci_insert_segment_mapping(trb_address_map,
 232				ring, seg, mem_flags);
 233		if (ret)
 234			goto remove_streams;
 235		if (seg == last_seg)
 236			return 0;
 237		seg = seg->next;
 238	} while (seg != first_seg);
 239
 240	return 0;
 241
 242remove_streams:
 243	failed_seg = seg;
 244	seg = first_seg;
 245	do {
 246		xhci_remove_segment_mapping(trb_address_map, seg);
 247		if (seg == failed_seg)
 248			return ret;
 249		seg = seg->next;
 250	} while (seg != first_seg);
 251
 252	return ret;
 253}
 254
 255static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 256{
 257	struct xhci_segment *seg;
 258
 259	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 260		return;
 261
 262	seg = ring->first_seg;
 263	do {
 264		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 265		seg = seg->next;
 266	} while (seg != ring->first_seg);
 267}
 268
 269static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 270{
 271	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 272			ring->first_seg, ring->last_seg, mem_flags);
 273}
 274
 275/* XXX: Do we need the hcd structure in all these functions? */
 276void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 277{
 278	if (!ring)
 279		return;
 280
 281	if (ring->first_seg) {
 282		if (ring->type == TYPE_STREAM)
 283			xhci_remove_stream_mapping(ring);
 284		xhci_free_segments_for_ring(xhci, ring->first_seg);
 285	}
 286
 287	kfree(ring);
 288}
 289
 290static void xhci_initialize_ring_info(struct xhci_ring *ring,
 291					unsigned int cycle_state)
 292{
 293	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 294	ring->enqueue = ring->first_seg->trbs;
 295	ring->enq_seg = ring->first_seg;
 296	ring->dequeue = ring->enqueue;
 297	ring->deq_seg = ring->first_seg;
 298	/* The ring is initialized to 0. The producer must write 1 to the cycle
 299	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 300	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 301	 *
 302	 * New rings are initialized with cycle state equal to 1; if we are
 303	 * handling ring expansion, set the cycle state equal to the old ring.
 304	 */
 305	ring->cycle_state = cycle_state;
 306	/* Not necessary for new rings, but needed for re-initialized rings */
 307	ring->enq_updates = 0;
 308	ring->deq_updates = 0;
 309
 310	/*
 311	 * Each segment has a link TRB, and leave an extra TRB for SW
 312	 * accounting purpose
 313	 */
 314	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 315}
 316
 317/* Allocate segments and link them for a ring */
 318static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 319		struct xhci_segment **first, struct xhci_segment **last,
 320		unsigned int num_segs, unsigned int cycle_state,
 321		enum xhci_ring_type type, gfp_t flags)
 322{
 323	struct xhci_segment *prev;
 324
 325	prev = xhci_segment_alloc(xhci, cycle_state, flags);
 326	if (!prev)
 327		return -ENOMEM;
 328	num_segs--;
 329
 330	*first = prev;
 331	while (num_segs > 0) {
 332		struct xhci_segment	*next;
 333
 334		next = xhci_segment_alloc(xhci, cycle_state, flags);
 335		if (!next) {
 336			prev = *first;
 337			while (prev) {
 338				next = prev->next;
 339				xhci_segment_free(xhci, prev);
 340				prev = next;
 341			}
 342			return -ENOMEM;
 343		}
 344		xhci_link_segments(xhci, prev, next, type);
 345
 346		prev = next;
 347		num_segs--;
 348	}
 349	xhci_link_segments(xhci, prev, *first, type);
 350	*last = prev;
 351
 352	return 0;
 353}
 354
 355/**
 356 * Create a new ring with zero or more segments.
 357 *
 358 * Link each segment together into a ring.
 359 * Set the end flag and the cycle toggle bit on the last segment.
 360 * See section 4.9.1 and figures 15 and 16.
 361 */
 362static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 363		unsigned int num_segs, unsigned int cycle_state,
 364		enum xhci_ring_type type, gfp_t flags)
 365{
 366	struct xhci_ring	*ring;
 367	int ret;
 368
 369	ring = kzalloc(sizeof *(ring), flags);
 370	if (!ring)
 371		return NULL;
 372
 373	ring->num_segs = num_segs;
 374	INIT_LIST_HEAD(&ring->td_list);
 375	ring->type = type;
 376	if (num_segs == 0)
 377		return ring;
 378
 379	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 380			&ring->last_seg, num_segs, cycle_state, type, flags);
 381	if (ret)
 382		goto fail;
 383
 384	/* Only event ring does not use link TRB */
 385	if (type != TYPE_EVENT) {
 386		/* See section 4.9.2.1 and 6.4.4.1 */
 387		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 388			cpu_to_le32(LINK_TOGGLE);
 389	}
 390	xhci_initialize_ring_info(ring, cycle_state);
 391	return ring;
 392
 393fail:
 394	kfree(ring);
 395	return NULL;
 396}
 397
 398void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 399		struct xhci_virt_device *virt_dev,
 400		unsigned int ep_index)
 401{
 402	int rings_cached;
 403
 404	rings_cached = virt_dev->num_rings_cached;
 405	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 406		virt_dev->ring_cache[rings_cached] =
 407			virt_dev->eps[ep_index].ring;
 408		virt_dev->num_rings_cached++;
 409		xhci_dbg(xhci, "Cached old ring, "
 410				"%d ring%s cached\n",
 411				virt_dev->num_rings_cached,
 412				(virt_dev->num_rings_cached > 1) ? "s" : "");
 413	} else {
 414		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 415		xhci_dbg(xhci, "Ring cache full (%d rings), "
 416				"freeing ring\n",
 417				virt_dev->num_rings_cached);
 418	}
 419	virt_dev->eps[ep_index].ring = NULL;
 420}
 421
 422/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 423 * pointers to the beginning of the ring.
 424 */
 425static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 426			struct xhci_ring *ring, unsigned int cycle_state,
 427			enum xhci_ring_type type)
 428{
 429	struct xhci_segment	*seg = ring->first_seg;
 430	int i;
 431
 432	do {
 433		memset(seg->trbs, 0,
 434				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 435		if (cycle_state == 0) {
 436			for (i = 0; i < TRBS_PER_SEGMENT; i++)
 437				seg->trbs[i].link.control |=
 438					cpu_to_le32(TRB_CYCLE);
 439		}
 440		/* All endpoint rings have link TRBs */
 441		xhci_link_segments(xhci, seg, seg->next, type);
 442		seg = seg->next;
 443	} while (seg != ring->first_seg);
 444	ring->type = type;
 445	xhci_initialize_ring_info(ring, cycle_state);
 446	/* td list should be empty since all URBs have been cancelled,
 447	 * but just in case...
 448	 */
 449	INIT_LIST_HEAD(&ring->td_list);
 450}
 451
 452/*
 453 * Expand an existing ring.
 454 * Look for a cached ring or allocate a new ring which has same segment numbers
 455 * and link the two rings.
 456 */
 457int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 458				unsigned int num_trbs, gfp_t flags)
 459{
 460	struct xhci_segment	*first;
 461	struct xhci_segment	*last;
 462	unsigned int		num_segs;
 463	unsigned int		num_segs_needed;
 464	int			ret;
 465
 466	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 467				(TRBS_PER_SEGMENT - 1);
 468
 469	/* Allocate number of segments we needed, or double the ring size */
 470	num_segs = ring->num_segs > num_segs_needed ?
 471			ring->num_segs : num_segs_needed;
 472
 473	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 474			num_segs, ring->cycle_state, ring->type, flags);
 475	if (ret)
 476		return -ENOMEM;
 477
 478	if (ring->type == TYPE_STREAM)
 479		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 480						ring, first, last, flags);
 481	if (ret) {
 482		struct xhci_segment *next;
 483		do {
 484			next = first->next;
 485			xhci_segment_free(xhci, first);
 486			if (first == last)
 487				break;
 488			first = next;
 489		} while (true);
 490		return ret;
 491	}
 492
 493	xhci_link_rings(xhci, ring, first, last, num_segs);
 494	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 495			"ring expansion succeed, now has %d segments",
 496			ring->num_segs);
 497
 498	return 0;
 499}
 500
 501#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 502
 503static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 504						    int type, gfp_t flags)
 505{
 506	struct xhci_container_ctx *ctx;
 507
 508	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 509		return NULL;
 510
 511	ctx = kzalloc(sizeof(*ctx), flags);
 512	if (!ctx)
 513		return NULL;
 514
 
 515	ctx->type = type;
 516	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 517	if (type == XHCI_CTX_TYPE_INPUT)
 518		ctx->size += CTX_SIZE(xhci->hcc_params);
 519
 520	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 521	if (!ctx->bytes) {
 522		kfree(ctx);
 523		return NULL;
 524	}
 525	memset(ctx->bytes, 0, ctx->size);
 526	return ctx;
 527}
 528
 529static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 530			     struct xhci_container_ctx *ctx)
 531{
 532	if (!ctx)
 533		return;
 534	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 535	kfree(ctx);
 536}
 537
 538struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 539					      struct xhci_container_ctx *ctx)
 540{
 541	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 542		return NULL;
 543
 544	return (struct xhci_input_control_ctx *)ctx->bytes;
 545}
 546
 547struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 548					struct xhci_container_ctx *ctx)
 549{
 550	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 551		return (struct xhci_slot_ctx *)ctx->bytes;
 552
 553	return (struct xhci_slot_ctx *)
 554		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 555}
 556
 557struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 558				    struct xhci_container_ctx *ctx,
 559				    unsigned int ep_index)
 560{
 561	/* increment ep index by offset of start of ep ctx array */
 562	ep_index++;
 563	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 564		ep_index++;
 565
 566	return (struct xhci_ep_ctx *)
 567		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 568}
 569
 570
 571/***************** Streams structures manipulation *************************/
 572
 573static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 574		unsigned int num_stream_ctxs,
 575		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 576{
 577	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 578	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 579
 580	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 581		dma_free_coherent(dev, size,
 
 582				stream_ctx, dma);
 583	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 584		return dma_pool_free(xhci->small_streams_pool,
 585				stream_ctx, dma);
 586	else
 587		return dma_pool_free(xhci->medium_streams_pool,
 588				stream_ctx, dma);
 589}
 590
 591/*
 592 * The stream context array for each endpoint with bulk streams enabled can
 593 * vary in size, based on:
 594 *  - how many streams the endpoint supports,
 595 *  - the maximum primary stream array size the host controller supports,
 596 *  - and how many streams the device driver asks for.
 597 *
 598 * The stream context array must be a power of 2, and can be as small as
 599 * 64 bytes or as large as 1MB.
 600 */
 601static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 602		unsigned int num_stream_ctxs, dma_addr_t *dma,
 603		gfp_t mem_flags)
 604{
 605	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 606	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 607
 608	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 609		return dma_alloc_coherent(dev, size,
 
 610				dma, mem_flags);
 611	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 612		return dma_pool_alloc(xhci->small_streams_pool,
 613				mem_flags, dma);
 614	else
 615		return dma_pool_alloc(xhci->medium_streams_pool,
 616				mem_flags, dma);
 617}
 618
 619struct xhci_ring *xhci_dma_to_transfer_ring(
 620		struct xhci_virt_ep *ep,
 621		u64 address)
 622{
 623	if (ep->ep_state & EP_HAS_STREAMS)
 624		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 625				address >> TRB_SEGMENT_SHIFT);
 626	return ep->ring;
 627}
 628
 
 
 
 
 
 
 
 
 
 
 
 629struct xhci_ring *xhci_stream_id_to_ring(
 630		struct xhci_virt_device *dev,
 631		unsigned int ep_index,
 632		unsigned int stream_id)
 633{
 634	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 635
 636	if (stream_id == 0)
 637		return ep->ring;
 638	if (!ep->stream_info)
 639		return NULL;
 640
 641	if (stream_id > ep->stream_info->num_streams)
 642		return NULL;
 643	return ep->stream_info->stream_rings[stream_id];
 644}
 645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646/*
 647 * Change an endpoint's internal structure so it supports stream IDs.  The
 648 * number of requested streams includes stream 0, which cannot be used by device
 649 * drivers.
 650 *
 651 * The number of stream contexts in the stream context array may be bigger than
 652 * the number of streams the driver wants to use.  This is because the number of
 653 * stream context array entries must be a power of two.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654 */
 655struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 656		unsigned int num_stream_ctxs,
 657		unsigned int num_streams, gfp_t mem_flags)
 658{
 659	struct xhci_stream_info *stream_info;
 660	u32 cur_stream;
 661	struct xhci_ring *cur_ring;
 
 662	u64 addr;
 663	int ret;
 664
 665	xhci_dbg(xhci, "Allocating %u streams and %u "
 666			"stream context array entries.\n",
 667			num_streams, num_stream_ctxs);
 668	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 669		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 670		return NULL;
 671	}
 672	xhci->cmd_ring_reserved_trbs++;
 673
 674	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 675	if (!stream_info)
 676		goto cleanup_trbs;
 677
 678	stream_info->num_streams = num_streams;
 679	stream_info->num_stream_ctxs = num_stream_ctxs;
 680
 681	/* Initialize the array of virtual pointers to stream rings. */
 682	stream_info->stream_rings = kzalloc(
 683			sizeof(struct xhci_ring *)*num_streams,
 684			mem_flags);
 685	if (!stream_info->stream_rings)
 686		goto cleanup_info;
 687
 688	/* Initialize the array of DMA addresses for stream rings for the HW. */
 689	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 690			num_stream_ctxs, &stream_info->ctx_array_dma,
 691			mem_flags);
 692	if (!stream_info->stream_ctx_array)
 693		goto cleanup_ctx;
 694	memset(stream_info->stream_ctx_array, 0,
 695			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 696
 697	/* Allocate everything needed to free the stream rings later */
 698	stream_info->free_streams_command =
 699		xhci_alloc_command(xhci, true, true, mem_flags);
 700	if (!stream_info->free_streams_command)
 701		goto cleanup_ctx;
 702
 703	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 704
 705	/* Allocate rings for all the streams that the driver will use,
 706	 * and add their segment DMA addresses to the radix tree.
 707	 * Stream 0 is reserved.
 708	 */
 709	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 710		stream_info->stream_rings[cur_stream] =
 711			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 712		cur_ring = stream_info->stream_rings[cur_stream];
 713		if (!cur_ring)
 714			goto cleanup_rings;
 715		cur_ring->stream_id = cur_stream;
 716		cur_ring->trb_address_map = &stream_info->trb_address_map;
 717		/* Set deq ptr, cycle bit, and stream context type */
 718		addr = cur_ring->first_seg->dma |
 719			SCT_FOR_CTX(SCT_PRI_TR) |
 720			cur_ring->cycle_state;
 721		stream_info->stream_ctx_array[cur_stream].stream_ring =
 722			cpu_to_le64(addr);
 723		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 724				cur_stream, (unsigned long long) addr);
 725
 726		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 
 
 
 727		if (ret) {
 728			xhci_ring_free(xhci, cur_ring);
 729			stream_info->stream_rings[cur_stream] = NULL;
 730			goto cleanup_rings;
 731		}
 732	}
 733	/* Leave the other unused stream ring pointers in the stream context
 734	 * array initialized to zero.  This will cause the xHC to give us an
 735	 * error if the device asks for a stream ID we don't have setup (if it
 736	 * was any other way, the host controller would assume the ring is
 737	 * "empty" and wait forever for data to be queued to that stream ID).
 738	 */
 
 
 
 
 
 
 
 739
 740	return stream_info;
 741
 742cleanup_rings:
 743	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 744		cur_ring = stream_info->stream_rings[cur_stream];
 745		if (cur_ring) {
 
 
 
 746			xhci_ring_free(xhci, cur_ring);
 747			stream_info->stream_rings[cur_stream] = NULL;
 748		}
 749	}
 750	xhci_free_command(xhci, stream_info->free_streams_command);
 751cleanup_ctx:
 752	kfree(stream_info->stream_rings);
 753cleanup_info:
 754	kfree(stream_info);
 755cleanup_trbs:
 756	xhci->cmd_ring_reserved_trbs--;
 757	return NULL;
 758}
 759/*
 760 * Sets the MaxPStreams field and the Linear Stream Array field.
 761 * Sets the dequeue pointer to the stream context array.
 762 */
 763void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 764		struct xhci_ep_ctx *ep_ctx,
 765		struct xhci_stream_info *stream_info)
 766{
 767	u32 max_primary_streams;
 768	/* MaxPStreams is the number of stream context array entries, not the
 769	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 770	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 771	 */
 772	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 773	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 774			"Setting number of stream ctx array entries to %u",
 775			1 << (max_primary_streams + 1));
 776	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 777	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 778				       | EP_HAS_LSA);
 779	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 780}
 781
 782/*
 783 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 784 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 785 * not at the beginning of the ring).
 786 */
 787void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 788		struct xhci_ep_ctx *ep_ctx,
 789		struct xhci_virt_ep *ep)
 790{
 791	dma_addr_t addr;
 792	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 793	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 794	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 795}
 796
 797/* Frees all stream contexts associated with the endpoint,
 798 *
 799 * Caller should fix the endpoint context streams fields.
 800 */
 801void xhci_free_stream_info(struct xhci_hcd *xhci,
 802		struct xhci_stream_info *stream_info)
 803{
 804	int cur_stream;
 805	struct xhci_ring *cur_ring;
 
 806
 807	if (!stream_info)
 808		return;
 809
 810	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 811			cur_stream++) {
 812		cur_ring = stream_info->stream_rings[cur_stream];
 813		if (cur_ring) {
 
 
 
 814			xhci_ring_free(xhci, cur_ring);
 815			stream_info->stream_rings[cur_stream] = NULL;
 816		}
 817	}
 818	xhci_free_command(xhci, stream_info->free_streams_command);
 819	xhci->cmd_ring_reserved_trbs--;
 820	if (stream_info->stream_ctx_array)
 821		xhci_free_stream_ctx(xhci,
 822				stream_info->num_stream_ctxs,
 823				stream_info->stream_ctx_array,
 824				stream_info->ctx_array_dma);
 825
 826	kfree(stream_info->stream_rings);
 
 827	kfree(stream_info);
 828}
 829
 830
 831/***************** Device context manipulation *************************/
 832
 833static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 834		struct xhci_virt_ep *ep)
 835{
 836	init_timer(&ep->stop_cmd_timer);
 837	ep->stop_cmd_timer.data = (unsigned long) ep;
 838	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 839	ep->xhci = xhci;
 840}
 841
 842static void xhci_free_tt_info(struct xhci_hcd *xhci,
 843		struct xhci_virt_device *virt_dev,
 844		int slot_id)
 845{
 846	struct list_head *tt_list_head;
 847	struct xhci_tt_bw_info *tt_info, *next;
 848	bool slot_found = false;
 849
 850	/* If the device never made it past the Set Address stage,
 851	 * it may not have the real_port set correctly.
 852	 */
 853	if (virt_dev->real_port == 0 ||
 854			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 855		xhci_dbg(xhci, "Bad real port.\n");
 856		return;
 857	}
 858
 859	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 860	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 861		/* Multi-TT hubs will have more than one entry */
 862		if (tt_info->slot_id == slot_id) {
 863			slot_found = true;
 864			list_del(&tt_info->tt_list);
 865			kfree(tt_info);
 866		} else if (slot_found) {
 867			break;
 868		}
 869	}
 870}
 871
 872int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 873		struct xhci_virt_device *virt_dev,
 874		struct usb_device *hdev,
 875		struct usb_tt *tt, gfp_t mem_flags)
 876{
 877	struct xhci_tt_bw_info		*tt_info;
 878	unsigned int			num_ports;
 879	int				i, j;
 880
 881	if (!tt->multi)
 882		num_ports = 1;
 883	else
 884		num_ports = hdev->maxchild;
 885
 886	for (i = 0; i < num_ports; i++, tt_info++) {
 887		struct xhci_interval_bw_table *bw_table;
 888
 889		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 890		if (!tt_info)
 891			goto free_tts;
 892		INIT_LIST_HEAD(&tt_info->tt_list);
 893		list_add(&tt_info->tt_list,
 894				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 895		tt_info->slot_id = virt_dev->udev->slot_id;
 896		if (tt->multi)
 897			tt_info->ttport = i+1;
 898		bw_table = &tt_info->bw_table;
 899		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 900			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 901	}
 902	return 0;
 903
 904free_tts:
 905	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 906	return -ENOMEM;
 907}
 908
 909
 910/* All the xhci_tds in the ring's TD list should be freed at this point.
 911 * Should be called with xhci->lock held if there is any chance the TT lists
 912 * will be manipulated by the configure endpoint, allocate device, or update
 913 * hub functions while this function is removing the TT entries from the list.
 914 */
 915void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 916{
 917	struct xhci_virt_device *dev;
 918	int i;
 919	int old_active_eps = 0;
 920
 921	/* Slot ID 0 is reserved */
 922	if (slot_id == 0 || !xhci->devs[slot_id])
 923		return;
 924
 925	dev = xhci->devs[slot_id];
 926	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 927	if (!dev)
 928		return;
 929
 930	if (dev->tt_info)
 931		old_active_eps = dev->tt_info->active_eps;
 932
 933	for (i = 0; i < 31; ++i) {
 934		if (dev->eps[i].ring)
 935			xhci_ring_free(xhci, dev->eps[i].ring);
 936		if (dev->eps[i].stream_info)
 937			xhci_free_stream_info(xhci,
 938					dev->eps[i].stream_info);
 939		/* Endpoints on the TT/root port lists should have been removed
 940		 * when usb_disable_device() was called for the device.
 941		 * We can't drop them anyway, because the udev might have gone
 942		 * away by this point, and we can't tell what speed it was.
 943		 */
 944		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 945			xhci_warn(xhci, "Slot %u endpoint %u "
 946					"not removed from BW list!\n",
 947					slot_id, i);
 948	}
 949	/* If this is a hub, free the TT(s) from the TT list */
 950	xhci_free_tt_info(xhci, dev, slot_id);
 951	/* If necessary, update the number of active TTs on this root port */
 952	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 953
 954	if (dev->ring_cache) {
 955		for (i = 0; i < dev->num_rings_cached; i++)
 956			xhci_ring_free(xhci, dev->ring_cache[i]);
 957		kfree(dev->ring_cache);
 958	}
 959
 960	if (dev->in_ctx)
 961		xhci_free_container_ctx(xhci, dev->in_ctx);
 962	if (dev->out_ctx)
 963		xhci_free_container_ctx(xhci, dev->out_ctx);
 964
 965	kfree(xhci->devs[slot_id]);
 966	xhci->devs[slot_id] = NULL;
 967}
 968
 969int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 970		struct usb_device *udev, gfp_t flags)
 971{
 972	struct xhci_virt_device *dev;
 973	int i;
 974
 975	/* Slot ID 0 is reserved */
 976	if (slot_id == 0 || xhci->devs[slot_id]) {
 977		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 978		return 0;
 979	}
 980
 981	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 982	if (!xhci->devs[slot_id])
 983		return 0;
 984	dev = xhci->devs[slot_id];
 985
 986	/* Allocate the (output) device context that will be used in the HC. */
 987	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 988	if (!dev->out_ctx)
 989		goto fail;
 990
 991	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 992			(unsigned long long)dev->out_ctx->dma);
 993
 994	/* Allocate the (input) device context for address device command */
 995	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 996	if (!dev->in_ctx)
 997		goto fail;
 998
 999	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1000			(unsigned long long)dev->in_ctx->dma);
1001
1002	/* Initialize the cancellation list and watchdog timers for each ep */
1003	for (i = 0; i < 31; i++) {
1004		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1005		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007	}
1008
1009	/* Allocate endpoint 0 ring */
1010	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1011	if (!dev->eps[0].ring)
1012		goto fail;
1013
1014	/* Allocate pointers to the ring cache */
1015	dev->ring_cache = kzalloc(
1016			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1017			flags);
1018	if (!dev->ring_cache)
1019		goto fail;
1020	dev->num_rings_cached = 0;
1021
1022	init_completion(&dev->cmd_completion);
1023	INIT_LIST_HEAD(&dev->cmd_list);
1024	dev->udev = udev;
1025
1026	/* Point to output device context in dcbaa. */
1027	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1028	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1029		 slot_id,
1030		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1031		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1032
1033	return 1;
1034fail:
1035	xhci_free_virt_device(xhci, slot_id);
1036	return 0;
1037}
1038
1039void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1040		struct usb_device *udev)
1041{
1042	struct xhci_virt_device *virt_dev;
1043	struct xhci_ep_ctx	*ep0_ctx;
1044	struct xhci_ring	*ep_ring;
1045
1046	virt_dev = xhci->devs[udev->slot_id];
1047	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1048	ep_ring = virt_dev->eps[0].ring;
1049	/*
1050	 * FIXME we don't keep track of the dequeue pointer very well after a
1051	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1052	 * host to our enqueue pointer.  This should only be called after a
1053	 * configured device has reset, so all control transfers should have
1054	 * been completed or cancelled before the reset.
1055	 */
1056	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1057							ep_ring->enqueue)
1058				   | ep_ring->cycle_state);
1059}
1060
1061/*
1062 * The xHCI roothub may have ports of differing speeds in any order in the port
1063 * status registers.  xhci->port_array provides an array of the port speed for
1064 * each offset into the port status registers.
1065 *
1066 * The xHCI hardware wants to know the roothub port number that the USB device
1067 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1068 * know is the index of that port under either the USB 2.0 or the USB 3.0
1069 * roothub, but that doesn't give us the real index into the HW port status
1070 * registers. Call xhci_find_raw_port_number() to get real index.
 
1071 */
1072static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1073		struct usb_device *udev)
1074{
1075	struct usb_device *top_dev;
1076	struct usb_hcd *hcd;
1077
1078	if (udev->speed == USB_SPEED_SUPER)
1079		hcd = xhci->shared_hcd;
1080	else
1081		hcd = xhci->main_hcd;
1082
1083	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1084			top_dev = top_dev->parent)
1085		/* Found device below root hub */;
 
 
 
 
 
 
 
 
 
 
 
1086
1087	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
 
 
 
 
 
 
 
 
 
 
 
1088}
1089
1090/* Setup an xHCI virtual device for a Set Address command */
1091int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1092{
1093	struct xhci_virt_device *dev;
1094	struct xhci_ep_ctx	*ep0_ctx;
1095	struct xhci_slot_ctx    *slot_ctx;
1096	u32			port_num;
1097	u32			max_packets;
1098	struct usb_device *top_dev;
1099
1100	dev = xhci->devs[udev->slot_id];
1101	/* Slot ID 0 is reserved */
1102	if (udev->slot_id == 0 || !dev) {
1103		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1104				udev->slot_id);
1105		return -EINVAL;
1106	}
1107	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1108	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1109
1110	/* 3) Only the control endpoint is valid - one endpoint context */
1111	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1112	switch (udev->speed) {
1113	case USB_SPEED_SUPER:
1114		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1115		max_packets = MAX_PACKET(512);
1116		break;
1117	case USB_SPEED_HIGH:
1118		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1119		max_packets = MAX_PACKET(64);
1120		break;
1121	/* USB core guesses at a 64-byte max packet first for FS devices */
1122	case USB_SPEED_FULL:
1123		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1124		max_packets = MAX_PACKET(64);
1125		break;
1126	case USB_SPEED_LOW:
1127		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1128		max_packets = MAX_PACKET(8);
1129		break;
1130	case USB_SPEED_WIRELESS:
1131		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1132		return -EINVAL;
1133		break;
1134	default:
1135		/* Speed was set earlier, this shouldn't happen. */
1136		return -EINVAL;
1137	}
1138	/* Find the root hub port this device is under */
1139	port_num = xhci_find_real_port_number(xhci, udev);
1140	if (!port_num)
1141		return -EINVAL;
1142	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143	/* Set the port number in the virtual_device to the faked port number */
1144	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145			top_dev = top_dev->parent)
1146		/* Found device below root hub */;
1147	dev->fake_port = top_dev->portnum;
1148	dev->real_port = port_num;
1149	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151
1152	/* Find the right bandwidth table that this device will be a part of.
1153	 * If this is a full speed device attached directly to a root port (or a
1154	 * decendent of one), it counts as a primary bandwidth domain, not a
1155	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1156	 * will never be created for the HS root hub.
1157	 */
1158	if (!udev->tt || !udev->tt->hub->parent) {
1159		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160	} else {
1161		struct xhci_root_port_bw_info *rh_bw;
1162		struct xhci_tt_bw_info *tt_bw;
1163
1164		rh_bw = &xhci->rh_bw[port_num - 1];
1165		/* Find the right TT. */
1166		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168				continue;
1169
1170			if (!dev->udev->tt->multi ||
1171					(udev->tt->multi &&
1172					 tt_bw->ttport == dev->udev->ttport)) {
1173				dev->bw_table = &tt_bw->bw_table;
1174				dev->tt_info = tt_bw;
1175				break;
1176			}
1177		}
1178		if (!dev->tt_info)
1179			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180	}
1181
1182	/* Is this a LS/FS device under an external HS hub? */
1183	if (udev->tt && udev->tt->hub->parent) {
1184		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185						(udev->ttport << 8));
1186		if (udev->tt->multi)
1187			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188	}
1189	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191
1192	/* Step 4 - ring already allocated */
1193	/* Step 5 */
1194	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198					 max_packets);
1199
1200	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201				   dev->eps[0].ring->cycle_state);
1202
1203	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1204
1205	return 0;
1206}
1207
1208/*
1209 * Convert interval expressed as 2^(bInterval - 1) == interval into
1210 * straight exponent value 2^n == interval.
1211 *
1212 */
1213static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1214		struct usb_host_endpoint *ep)
1215{
1216	unsigned int interval;
1217
1218	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1219	if (interval != ep->desc.bInterval - 1)
1220		dev_warn(&udev->dev,
1221			 "ep %#x - rounding interval to %d %sframes\n",
1222			 ep->desc.bEndpointAddress,
1223			 1 << interval,
1224			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1225
1226	if (udev->speed == USB_SPEED_FULL) {
1227		/*
1228		 * Full speed isoc endpoints specify interval in frames,
1229		 * not microframes. We are using microframes everywhere,
1230		 * so adjust accordingly.
1231		 */
1232		interval += 3;	/* 1 frame = 2^3 uframes */
1233	}
1234
1235	return interval;
1236}
1237
1238/*
1239 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1240 * microframes, rounded down to nearest power of 2.
1241 */
1242static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1243		struct usb_host_endpoint *ep, unsigned int desc_interval,
1244		unsigned int min_exponent, unsigned int max_exponent)
1245{
1246	unsigned int interval;
1247
1248	interval = fls(desc_interval) - 1;
1249	interval = clamp_val(interval, min_exponent, max_exponent);
1250	if ((1 << interval) != desc_interval)
1251		dev_warn(&udev->dev,
1252			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1253			 ep->desc.bEndpointAddress,
1254			 1 << interval,
1255			 desc_interval);
1256
1257	return interval;
1258}
1259
1260static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1261		struct usb_host_endpoint *ep)
1262{
1263	if (ep->desc.bInterval == 0)
1264		return 0;
1265	return xhci_microframes_to_exponent(udev, ep,
1266			ep->desc.bInterval, 0, 15);
1267}
1268
1269
1270static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1271		struct usb_host_endpoint *ep)
1272{
1273	return xhci_microframes_to_exponent(udev, ep,
1274			ep->desc.bInterval * 8, 3, 10);
1275}
1276
1277/* Return the polling or NAK interval.
1278 *
1279 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1280 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281 *
1282 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283 * is set to 0.
1284 */
1285static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1286		struct usb_host_endpoint *ep)
1287{
1288	unsigned int interval = 0;
1289
1290	switch (udev->speed) {
1291	case USB_SPEED_HIGH:
1292		/* Max NAK rate */
1293		if (usb_endpoint_xfer_control(&ep->desc) ||
1294		    usb_endpoint_xfer_bulk(&ep->desc)) {
1295			interval = xhci_parse_microframe_interval(udev, ep);
1296			break;
1297		}
1298		/* Fall through - SS and HS isoc/int have same decoding */
1299
1300	case USB_SPEED_SUPER:
1301		if (usb_endpoint_xfer_int(&ep->desc) ||
1302		    usb_endpoint_xfer_isoc(&ep->desc)) {
1303			interval = xhci_parse_exponent_interval(udev, ep);
1304		}
1305		break;
1306
1307	case USB_SPEED_FULL:
1308		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309			interval = xhci_parse_exponent_interval(udev, ep);
1310			break;
1311		}
1312		/*
1313		 * Fall through for interrupt endpoint interval decoding
1314		 * since it uses the same rules as low speed interrupt
1315		 * endpoints.
1316		 */
1317
1318	case USB_SPEED_LOW:
1319		if (usb_endpoint_xfer_int(&ep->desc) ||
1320		    usb_endpoint_xfer_isoc(&ep->desc)) {
1321
1322			interval = xhci_parse_frame_interval(udev, ep);
1323		}
1324		break;
1325
1326	default:
1327		BUG();
1328	}
1329	return EP_INTERVAL(interval);
1330}
1331
1332/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333 * High speed endpoint descriptors can define "the number of additional
1334 * transaction opportunities per microframe", but that goes in the Max Burst
1335 * endpoint context field.
1336 */
1337static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338		struct usb_host_endpoint *ep)
1339{
1340	if (udev->speed != USB_SPEED_SUPER ||
1341			!usb_endpoint_xfer_isoc(&ep->desc))
1342		return 0;
1343	return ep->ss_ep_comp.bmAttributes;
1344}
1345
1346static u32 xhci_get_endpoint_type(struct usb_device *udev,
1347		struct usb_host_endpoint *ep)
1348{
1349	int in;
1350	u32 type;
1351
1352	in = usb_endpoint_dir_in(&ep->desc);
1353	if (usb_endpoint_xfer_control(&ep->desc)) {
1354		type = EP_TYPE(CTRL_EP);
1355	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1356		if (in)
1357			type = EP_TYPE(BULK_IN_EP);
1358		else
1359			type = EP_TYPE(BULK_OUT_EP);
1360	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1361		if (in)
1362			type = EP_TYPE(ISOC_IN_EP);
1363		else
1364			type = EP_TYPE(ISOC_OUT_EP);
1365	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1366		if (in)
1367			type = EP_TYPE(INT_IN_EP);
1368		else
1369			type = EP_TYPE(INT_OUT_EP);
1370	} else {
1371		type = 0;
1372	}
1373	return type;
1374}
1375
1376/* Return the maximum endpoint service interval time (ESIT) payload.
1377 * Basically, this is the maxpacket size, multiplied by the burst size
1378 * and mult size.
1379 */
1380static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1381		struct usb_device *udev,
1382		struct usb_host_endpoint *ep)
1383{
1384	int max_burst;
1385	int max_packet;
1386
1387	/* Only applies for interrupt or isochronous endpoints */
1388	if (usb_endpoint_xfer_control(&ep->desc) ||
1389			usb_endpoint_xfer_bulk(&ep->desc))
1390		return 0;
1391
1392	if (udev->speed == USB_SPEED_SUPER)
1393		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1394
1395	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1396	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1397	/* A 0 in max burst means 1 transfer per ESIT */
1398	return max_packet * (max_burst + 1);
1399}
1400
1401/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1402 * Drivers will have to call usb_alloc_streams() to do that.
1403 */
1404int xhci_endpoint_init(struct xhci_hcd *xhci,
1405		struct xhci_virt_device *virt_dev,
1406		struct usb_device *udev,
1407		struct usb_host_endpoint *ep,
1408		gfp_t mem_flags)
1409{
1410	unsigned int ep_index;
1411	struct xhci_ep_ctx *ep_ctx;
1412	struct xhci_ring *ep_ring;
1413	unsigned int max_packet;
1414	unsigned int max_burst;
1415	enum xhci_ring_type type;
1416	u32 max_esit_payload;
1417	u32 endpoint_type;
1418
1419	ep_index = xhci_get_endpoint_index(&ep->desc);
1420	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1421
1422	endpoint_type = xhci_get_endpoint_type(udev, ep);
1423	if (!endpoint_type)
1424		return -EINVAL;
1425	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1426
1427	type = usb_endpoint_type(&ep->desc);
1428	/* Set up the endpoint ring */
1429	virt_dev->eps[ep_index].new_ring =
1430		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1431	if (!virt_dev->eps[ep_index].new_ring) {
1432		/* Attempt to use the ring cache */
1433		if (virt_dev->num_rings_cached == 0)
1434			return -ENOMEM;
1435		virt_dev->eps[ep_index].new_ring =
1436			virt_dev->ring_cache[virt_dev->num_rings_cached];
1437		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1438		virt_dev->num_rings_cached--;
1439		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1440					1, type);
1441	}
1442	virt_dev->eps[ep_index].skip = false;
1443	ep_ring = virt_dev->eps[ep_index].new_ring;
1444	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1445
1446	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1447				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1448
1449	/* FIXME dig Mult and streams info out of ep companion desc */
1450
1451	/* Allow 3 retries for everything but isoc;
1452	 * CErr shall be set to 0 for Isoch endpoints.
1453	 */
1454	if (!usb_endpoint_xfer_isoc(&ep->desc))
1455		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1456	else
1457		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
 
 
1458
1459	/* Set the max packet size and max burst */
1460	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1461	max_burst = 0;
1462	switch (udev->speed) {
1463	case USB_SPEED_SUPER:
 
 
1464		/* dig out max burst from ep companion desc */
1465		max_burst = ep->ss_ep_comp.bMaxBurst;
 
1466		break;
1467	case USB_SPEED_HIGH:
1468		/* Some devices get this wrong */
1469		if (usb_endpoint_xfer_bulk(&ep->desc))
1470			max_packet = 512;
1471		/* bits 11:12 specify the number of additional transaction
1472		 * opportunities per microframe (USB 2.0, section 9.6.6)
1473		 */
1474		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1475				usb_endpoint_xfer_int(&ep->desc)) {
1476			max_burst = (usb_endpoint_maxp(&ep->desc)
1477				     & 0x1800) >> 11;
 
1478		}
1479		break;
1480	case USB_SPEED_FULL:
1481	case USB_SPEED_LOW:
 
 
1482		break;
1483	default:
1484		BUG();
1485	}
1486	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1487			MAX_BURST(max_burst));
1488	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1489	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1490
1491	/*
1492	 * XXX no idea how to calculate the average TRB buffer length for bulk
1493	 * endpoints, as the driver gives us no clue how big each scatter gather
1494	 * list entry (or buffer) is going to be.
1495	 *
1496	 * For isochronous and interrupt endpoints, we set it to the max
1497	 * available, until we have new API in the USB core to allow drivers to
1498	 * declare how much bandwidth they actually need.
1499	 *
1500	 * Normally, it would be calculated by taking the total of the buffer
1501	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1502	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1503	 * use Event Data TRBs, and we don't chain in a link TRB on short
1504	 * transfers, we're basically dividing by 1.
1505	 *
1506	 * xHCI 1.0 specification indicates that the Average TRB Length should
1507	 * be set to 8 for control endpoints.
1508	 */
1509	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1510		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1511	else
1512		ep_ctx->tx_info |=
1513			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1514
1515	/* FIXME Debug endpoint context */
1516	return 0;
1517}
1518
1519void xhci_endpoint_zero(struct xhci_hcd *xhci,
1520		struct xhci_virt_device *virt_dev,
1521		struct usb_host_endpoint *ep)
1522{
1523	unsigned int ep_index;
1524	struct xhci_ep_ctx *ep_ctx;
1525
1526	ep_index = xhci_get_endpoint_index(&ep->desc);
1527	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1528
1529	ep_ctx->ep_info = 0;
1530	ep_ctx->ep_info2 = 0;
1531	ep_ctx->deq = 0;
1532	ep_ctx->tx_info = 0;
1533	/* Don't free the endpoint ring until the set interface or configuration
1534	 * request succeeds.
1535	 */
1536}
1537
1538void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1539{
1540	bw_info->ep_interval = 0;
1541	bw_info->mult = 0;
1542	bw_info->num_packets = 0;
1543	bw_info->max_packet_size = 0;
1544	bw_info->type = 0;
1545	bw_info->max_esit_payload = 0;
1546}
1547
1548void xhci_update_bw_info(struct xhci_hcd *xhci,
1549		struct xhci_container_ctx *in_ctx,
1550		struct xhci_input_control_ctx *ctrl_ctx,
1551		struct xhci_virt_device *virt_dev)
1552{
1553	struct xhci_bw_info *bw_info;
1554	struct xhci_ep_ctx *ep_ctx;
1555	unsigned int ep_type;
1556	int i;
1557
1558	for (i = 1; i < 31; ++i) {
1559		bw_info = &virt_dev->eps[i].bw_info;
1560
1561		/* We can't tell what endpoint type is being dropped, but
1562		 * unconditionally clearing the bandwidth info for non-periodic
1563		 * endpoints should be harmless because the info will never be
1564		 * set in the first place.
1565		 */
1566		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1567			/* Dropped endpoint */
1568			xhci_clear_endpoint_bw_info(bw_info);
1569			continue;
1570		}
1571
1572		if (EP_IS_ADDED(ctrl_ctx, i)) {
1573			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1574			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1575
1576			/* Ignore non-periodic endpoints */
1577			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1578					ep_type != ISOC_IN_EP &&
1579					ep_type != INT_IN_EP)
1580				continue;
1581
1582			/* Added or changed endpoint */
1583			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1584					le32_to_cpu(ep_ctx->ep_info));
1585			/* Number of packets and mult are zero-based in the
1586			 * input context, but we want one-based for the
1587			 * interval table.
1588			 */
1589			bw_info->mult = CTX_TO_EP_MULT(
1590					le32_to_cpu(ep_ctx->ep_info)) + 1;
1591			bw_info->num_packets = CTX_TO_MAX_BURST(
1592					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1593			bw_info->max_packet_size = MAX_PACKET_DECODED(
1594					le32_to_cpu(ep_ctx->ep_info2));
1595			bw_info->type = ep_type;
1596			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1597					le32_to_cpu(ep_ctx->tx_info));
1598		}
1599	}
1600}
1601
1602/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1603 * Useful when you want to change one particular aspect of the endpoint and then
1604 * issue a configure endpoint command.
1605 */
1606void xhci_endpoint_copy(struct xhci_hcd *xhci,
1607		struct xhci_container_ctx *in_ctx,
1608		struct xhci_container_ctx *out_ctx,
1609		unsigned int ep_index)
1610{
1611	struct xhci_ep_ctx *out_ep_ctx;
1612	struct xhci_ep_ctx *in_ep_ctx;
1613
1614	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1615	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1616
1617	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1618	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1619	in_ep_ctx->deq = out_ep_ctx->deq;
1620	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1621}
1622
1623/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624 * Useful when you want to change one particular aspect of the endpoint and then
1625 * issue a configure endpoint command.  Only the context entries field matters,
1626 * but we'll copy the whole thing anyway.
1627 */
1628void xhci_slot_copy(struct xhci_hcd *xhci,
1629		struct xhci_container_ctx *in_ctx,
1630		struct xhci_container_ctx *out_ctx)
1631{
1632	struct xhci_slot_ctx *in_slot_ctx;
1633	struct xhci_slot_ctx *out_slot_ctx;
1634
1635	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637
1638	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642}
1643
1644/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646{
1647	int i;
1648	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1649	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650
1651	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652			"Allocating %d scratchpad buffers", num_sp);
1653
1654	if (!num_sp)
1655		return 0;
1656
1657	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1658	if (!xhci->scratchpad)
1659		goto fail_sp;
1660
1661	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1662				     num_sp * sizeof(u64),
1663				     &xhci->scratchpad->sp_dma, flags);
1664	if (!xhci->scratchpad->sp_array)
1665		goto fail_sp2;
1666
1667	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1668	if (!xhci->scratchpad->sp_buffers)
1669		goto fail_sp3;
1670
1671	xhci->scratchpad->sp_dma_buffers =
1672		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1673
1674	if (!xhci->scratchpad->sp_dma_buffers)
1675		goto fail_sp4;
1676
1677	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1678	for (i = 0; i < num_sp; i++) {
1679		dma_addr_t dma;
1680		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1681				flags);
1682		if (!buf)
1683			goto fail_sp5;
1684
1685		xhci->scratchpad->sp_array[i] = dma;
1686		xhci->scratchpad->sp_buffers[i] = buf;
1687		xhci->scratchpad->sp_dma_buffers[i] = dma;
1688	}
1689
1690	return 0;
1691
1692 fail_sp5:
1693	for (i = i - 1; i >= 0; i--) {
1694		dma_free_coherent(dev, xhci->page_size,
1695				    xhci->scratchpad->sp_buffers[i],
1696				    xhci->scratchpad->sp_dma_buffers[i]);
1697	}
1698	kfree(xhci->scratchpad->sp_dma_buffers);
1699
1700 fail_sp4:
1701	kfree(xhci->scratchpad->sp_buffers);
1702
1703 fail_sp3:
1704	dma_free_coherent(dev, num_sp * sizeof(u64),
1705			    xhci->scratchpad->sp_array,
1706			    xhci->scratchpad->sp_dma);
1707
1708 fail_sp2:
1709	kfree(xhci->scratchpad);
1710	xhci->scratchpad = NULL;
1711
1712 fail_sp:
1713	return -ENOMEM;
1714}
1715
1716static void scratchpad_free(struct xhci_hcd *xhci)
1717{
1718	int num_sp;
1719	int i;
1720	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1721
1722	if (!xhci->scratchpad)
1723		return;
1724
1725	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1726
1727	for (i = 0; i < num_sp; i++) {
1728		dma_free_coherent(dev, xhci->page_size,
1729				    xhci->scratchpad->sp_buffers[i],
1730				    xhci->scratchpad->sp_dma_buffers[i]);
1731	}
1732	kfree(xhci->scratchpad->sp_dma_buffers);
1733	kfree(xhci->scratchpad->sp_buffers);
1734	dma_free_coherent(dev, num_sp * sizeof(u64),
1735			    xhci->scratchpad->sp_array,
1736			    xhci->scratchpad->sp_dma);
1737	kfree(xhci->scratchpad);
1738	xhci->scratchpad = NULL;
1739}
1740
1741struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1742		bool allocate_in_ctx, bool allocate_completion,
1743		gfp_t mem_flags)
1744{
1745	struct xhci_command *command;
1746
1747	command = kzalloc(sizeof(*command), mem_flags);
1748	if (!command)
1749		return NULL;
1750
1751	if (allocate_in_ctx) {
1752		command->in_ctx =
1753			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1754					mem_flags);
1755		if (!command->in_ctx) {
1756			kfree(command);
1757			return NULL;
1758		}
1759	}
1760
1761	if (allocate_completion) {
1762		command->completion =
1763			kzalloc(sizeof(struct completion), mem_flags);
1764		if (!command->completion) {
1765			xhci_free_container_ctx(xhci, command->in_ctx);
1766			kfree(command);
1767			return NULL;
1768		}
1769		init_completion(command->completion);
1770	}
1771
1772	command->status = 0;
1773	INIT_LIST_HEAD(&command->cmd_list);
1774	return command;
1775}
1776
1777void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1778{
1779	if (urb_priv) {
1780		kfree(urb_priv->td[0]);
1781		kfree(urb_priv);
1782	}
1783}
1784
1785void xhci_free_command(struct xhci_hcd *xhci,
1786		struct xhci_command *command)
1787{
1788	xhci_free_container_ctx(xhci,
1789			command->in_ctx);
1790	kfree(command->completion);
1791	kfree(command);
1792}
1793
1794void xhci_mem_cleanup(struct xhci_hcd *xhci)
1795{
1796	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
 
1797	struct xhci_cd  *cur_cd, *next_cd;
 
1798	int size;
1799	int i, j, num_ports;
1800
1801	/* Free the Event Ring Segment Table and the actual Event Ring */
1802	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1803	if (xhci->erst.entries)
1804		dma_free_coherent(dev, size,
1805				xhci->erst.entries, xhci->erst.erst_dma_addr);
1806	xhci->erst.entries = NULL;
1807	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808	if (xhci->event_ring)
1809		xhci_ring_free(xhci, xhci->event_ring);
1810	xhci->event_ring = NULL;
1811	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1812
1813	if (xhci->lpm_command)
1814		xhci_free_command(xhci, xhci->lpm_command);
 
1815	if (xhci->cmd_ring)
1816		xhci_ring_free(xhci, xhci->cmd_ring);
1817	xhci->cmd_ring = NULL;
1818	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1819	list_for_each_entry_safe(cur_cd, next_cd,
1820			&xhci->cancel_cmd_list, cancel_cmd_list) {
1821		list_del(&cur_cd->cancel_cmd_list);
1822		kfree(cur_cd);
1823	}
1824
1825	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1826	for (i = 0; i < num_ports; i++) {
1827		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1828		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1829			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1830			while (!list_empty(ep))
1831				list_del_init(ep->next);
1832		}
1833	}
1834
1835	for (i = 1; i < MAX_HC_SLOTS; ++i)
1836		xhci_free_virt_device(xhci, i);
1837
1838	if (xhci->segment_pool)
1839		dma_pool_destroy(xhci->segment_pool);
1840	xhci->segment_pool = NULL;
1841	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1842
1843	if (xhci->device_pool)
1844		dma_pool_destroy(xhci->device_pool);
1845	xhci->device_pool = NULL;
1846	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1847
1848	if (xhci->small_streams_pool)
1849		dma_pool_destroy(xhci->small_streams_pool);
1850	xhci->small_streams_pool = NULL;
1851	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1852			"Freed small stream array pool");
1853
1854	if (xhci->medium_streams_pool)
1855		dma_pool_destroy(xhci->medium_streams_pool);
1856	xhci->medium_streams_pool = NULL;
1857	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1858			"Freed medium stream array pool");
1859
1860	if (xhci->dcbaa)
1861		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1862				xhci->dcbaa, xhci->dcbaa->dma);
1863	xhci->dcbaa = NULL;
1864
1865	scratchpad_free(xhci);
1866
1867	if (!xhci->rh_bw)
1868		goto no_bw;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869
1870	for (i = 0; i < num_ports; i++) {
1871		struct xhci_tt_bw_info *tt, *n;
1872		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1873			list_del(&tt->tt_list);
1874			kfree(tt);
1875		}
1876	}
1877
1878no_bw:
1879	xhci->cmd_ring_reserved_trbs = 0;
1880	xhci->num_usb2_ports = 0;
1881	xhci->num_usb3_ports = 0;
1882	xhci->num_active_eps = 0;
1883	kfree(xhci->usb2_ports);
1884	kfree(xhci->usb3_ports);
1885	kfree(xhci->port_array);
1886	kfree(xhci->rh_bw);
1887	kfree(xhci->ext_caps);
1888
1889	xhci->page_size = 0;
1890	xhci->page_shift = 0;
1891	xhci->bus_state[0].bus_suspended = 0;
1892	xhci->bus_state[1].bus_suspended = 0;
1893}
1894
1895static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1896		struct xhci_segment *input_seg,
1897		union xhci_trb *start_trb,
1898		union xhci_trb *end_trb,
1899		dma_addr_t input_dma,
1900		struct xhci_segment *result_seg,
1901		char *test_name, int test_number)
1902{
1903	unsigned long long start_dma;
1904	unsigned long long end_dma;
1905	struct xhci_segment *seg;
1906
1907	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1908	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1909
1910	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1911	if (seg != result_seg) {
1912		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1913				test_name, test_number);
1914		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1915				"input DMA 0x%llx\n",
1916				input_seg,
1917				(unsigned long long) input_dma);
1918		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1919				"ending TRB %p (0x%llx DMA)\n",
1920				start_trb, start_dma,
1921				end_trb, end_dma);
1922		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1923				result_seg, seg);
1924		return -1;
1925	}
1926	return 0;
1927}
1928
1929/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1930static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1931{
1932	struct {
1933		dma_addr_t		input_dma;
1934		struct xhci_segment	*result_seg;
1935	} simple_test_vector [] = {
1936		/* A zeroed DMA field should fail */
1937		{ 0, NULL },
1938		/* One TRB before the ring start should fail */
1939		{ xhci->event_ring->first_seg->dma - 16, NULL },
1940		/* One byte before the ring start should fail */
1941		{ xhci->event_ring->first_seg->dma - 1, NULL },
1942		/* Starting TRB should succeed */
1943		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1944		/* Ending TRB should succeed */
1945		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1946			xhci->event_ring->first_seg },
1947		/* One byte after the ring end should fail */
1948		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1949		/* One TRB after the ring end should fail */
1950		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1951		/* An address of all ones should fail */
1952		{ (dma_addr_t) (~0), NULL },
1953	};
1954	struct {
1955		struct xhci_segment	*input_seg;
1956		union xhci_trb		*start_trb;
1957		union xhci_trb		*end_trb;
1958		dma_addr_t		input_dma;
1959		struct xhci_segment	*result_seg;
1960	} complex_test_vector [] = {
1961		/* Test feeding a valid DMA address from a different ring */
1962		{	.input_seg = xhci->event_ring->first_seg,
1963			.start_trb = xhci->event_ring->first_seg->trbs,
1964			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1965			.input_dma = xhci->cmd_ring->first_seg->dma,
1966			.result_seg = NULL,
1967		},
1968		/* Test feeding a valid end TRB from a different ring */
1969		{	.input_seg = xhci->event_ring->first_seg,
1970			.start_trb = xhci->event_ring->first_seg->trbs,
1971			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1972			.input_dma = xhci->cmd_ring->first_seg->dma,
1973			.result_seg = NULL,
1974		},
1975		/* Test feeding a valid start and end TRB from a different ring */
1976		{	.input_seg = xhci->event_ring->first_seg,
1977			.start_trb = xhci->cmd_ring->first_seg->trbs,
1978			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1979			.input_dma = xhci->cmd_ring->first_seg->dma,
1980			.result_seg = NULL,
1981		},
1982		/* TRB in this ring, but after this TD */
1983		{	.input_seg = xhci->event_ring->first_seg,
1984			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1985			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1986			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1987			.result_seg = NULL,
1988		},
1989		/* TRB in this ring, but before this TD */
1990		{	.input_seg = xhci->event_ring->first_seg,
1991			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1992			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1993			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1994			.result_seg = NULL,
1995		},
1996		/* TRB in this ring, but after this wrapped TD */
1997		{	.input_seg = xhci->event_ring->first_seg,
1998			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1999			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2000			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2001			.result_seg = NULL,
2002		},
2003		/* TRB in this ring, but before this wrapped TD */
2004		{	.input_seg = xhci->event_ring->first_seg,
2005			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2006			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2007			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2008			.result_seg = NULL,
2009		},
2010		/* TRB not in this ring, and we have a wrapped TD */
2011		{	.input_seg = xhci->event_ring->first_seg,
2012			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2013			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2014			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2015			.result_seg = NULL,
2016		},
2017	};
2018
2019	unsigned int num_tests;
2020	int i, ret;
2021
2022	num_tests = ARRAY_SIZE(simple_test_vector);
2023	for (i = 0; i < num_tests; i++) {
2024		ret = xhci_test_trb_in_td(xhci,
2025				xhci->event_ring->first_seg,
2026				xhci->event_ring->first_seg->trbs,
2027				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2028				simple_test_vector[i].input_dma,
2029				simple_test_vector[i].result_seg,
2030				"Simple", i);
2031		if (ret < 0)
2032			return ret;
2033	}
2034
2035	num_tests = ARRAY_SIZE(complex_test_vector);
2036	for (i = 0; i < num_tests; i++) {
2037		ret = xhci_test_trb_in_td(xhci,
2038				complex_test_vector[i].input_seg,
2039				complex_test_vector[i].start_trb,
2040				complex_test_vector[i].end_trb,
2041				complex_test_vector[i].input_dma,
2042				complex_test_vector[i].result_seg,
2043				"Complex", i);
2044		if (ret < 0)
2045			return ret;
2046	}
2047	xhci_dbg(xhci, "TRB math tests passed.\n");
2048	return 0;
2049}
2050
2051static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2052{
2053	u64 temp;
2054	dma_addr_t deq;
2055
2056	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2057			xhci->event_ring->dequeue);
2058	if (deq == 0 && !in_interrupt())
2059		xhci_warn(xhci, "WARN something wrong with SW event ring "
2060				"dequeue ptr.\n");
2061	/* Update HC event ring dequeue pointer */
2062	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2063	temp &= ERST_PTR_MASK;
2064	/* Don't clear the EHB bit (which is RW1C) because
2065	 * there might be more events to service.
2066	 */
2067	temp &= ~ERST_EHB;
2068	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2069			"// Write event ring dequeue pointer, "
2070			"preserving EHB bit");
2071	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2072			&xhci->ir_set->erst_dequeue);
2073}
2074
2075static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2076		__le32 __iomem *addr, u8 major_revision, int max_caps)
2077{
2078	u32 temp, port_offset, port_count;
2079	int i;
2080
2081	if (major_revision > 0x03) {
2082		xhci_warn(xhci, "Ignoring unknown port speed, "
2083				"Ext Cap %p, revision = 0x%x\n",
2084				addr, major_revision);
2085		/* Ignoring port protocol we can't understand. FIXME */
2086		return;
2087	}
2088
2089	/* Port offset and count in the third dword, see section 7.2 */
2090	temp = readl(addr + 2);
2091	port_offset = XHCI_EXT_PORT_OFF(temp);
2092	port_count = XHCI_EXT_PORT_COUNT(temp);
2093	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2094			"Ext Cap %p, port offset = %u, "
2095			"count = %u, revision = 0x%x",
2096			addr, port_offset, port_count, major_revision);
2097	/* Port count includes the current port offset */
2098	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2099		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2100		return;
2101
2102	/* cache usb2 port capabilities */
2103	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2104		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2105
2106	/* Check the host's USB2 LPM capability */
2107	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2108			(temp & XHCI_L1C)) {
2109		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2110				"xHCI 0.96: support USB2 software lpm");
2111		xhci->sw_lpm_support = 1;
2112	}
2113
2114	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2115		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2116				"xHCI 1.0: support USB2 software lpm");
2117		xhci->sw_lpm_support = 1;
2118		if (temp & XHCI_HLC) {
2119			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2120					"xHCI 1.0: support USB2 hardware lpm");
2121			xhci->hw_lpm_support = 1;
2122		}
2123	}
2124
2125	port_offset--;
2126	for (i = port_offset; i < (port_offset + port_count); i++) {
2127		/* Duplicate entry.  Ignore the port if the revisions differ. */
2128		if (xhci->port_array[i] != 0) {
2129			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2130					" port %u\n", addr, i);
2131			xhci_warn(xhci, "Port was marked as USB %u, "
2132					"duplicated as USB %u\n",
2133					xhci->port_array[i], major_revision);
2134			/* Only adjust the roothub port counts if we haven't
2135			 * found a similar duplicate.
2136			 */
2137			if (xhci->port_array[i] != major_revision &&
2138				xhci->port_array[i] != DUPLICATE_ENTRY) {
2139				if (xhci->port_array[i] == 0x03)
2140					xhci->num_usb3_ports--;
2141				else
2142					xhci->num_usb2_ports--;
2143				xhci->port_array[i] = DUPLICATE_ENTRY;
2144			}
2145			/* FIXME: Should we disable the port? */
2146			continue;
2147		}
2148		xhci->port_array[i] = major_revision;
2149		if (major_revision == 0x03)
2150			xhci->num_usb3_ports++;
2151		else
2152			xhci->num_usb2_ports++;
2153	}
2154	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2155}
2156
2157/*
2158 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2159 * specify what speeds each port is supposed to be.  We can't count on the port
2160 * speed bits in the PORTSC register being correct until a device is connected,
2161 * but we need to set up the two fake roothubs with the correct number of USB
2162 * 3.0 and USB 2.0 ports at host controller initialization time.
2163 */
2164static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2165{
2166	__le32 __iomem *addr, *tmp_addr;
2167	u32 offset, tmp_offset;
2168	unsigned int num_ports;
2169	int i, j, port_index;
2170	int cap_count = 0;
2171
2172	addr = &xhci->cap_regs->hcc_params;
2173	offset = XHCI_HCC_EXT_CAPS(readl(addr));
2174	if (offset == 0) {
2175		xhci_err(xhci, "No Extended Capability registers, "
2176				"unable to set up roothub.\n");
2177		return -ENODEV;
2178	}
2179
2180	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2181	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2182	if (!xhci->port_array)
2183		return -ENOMEM;
2184
2185	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2186	if (!xhci->rh_bw)
2187		return -ENOMEM;
2188	for (i = 0; i < num_ports; i++) {
2189		struct xhci_interval_bw_table *bw_table;
2190
2191		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2192		bw_table = &xhci->rh_bw[i].bw_table;
2193		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2194			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2195	}
2196
2197	/*
2198	 * For whatever reason, the first capability offset is from the
2199	 * capability register base, not from the HCCPARAMS register.
2200	 * See section 5.3.6 for offset calculation.
2201	 */
2202	addr = &xhci->cap_regs->hc_capbase + offset;
2203
2204	tmp_addr = addr;
2205	tmp_offset = offset;
2206
2207	/* count extended protocol capability entries for later caching */
2208	do {
2209		u32 cap_id;
2210		cap_id = readl(tmp_addr);
2211		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2212			cap_count++;
2213		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2214		tmp_addr += tmp_offset;
2215	} while (tmp_offset);
2216
2217	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2218	if (!xhci->ext_caps)
2219		return -ENOMEM;
2220
2221	while (1) {
2222		u32 cap_id;
2223
2224		cap_id = readl(addr);
2225		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2226			xhci_add_in_port(xhci, num_ports, addr,
2227					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2228					cap_count);
2229		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2230		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2231				== num_ports)
2232			break;
2233		/*
2234		 * Once you're into the Extended Capabilities, the offset is
2235		 * always relative to the register holding the offset.
2236		 */
2237		addr += offset;
2238	}
2239
2240	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2241		xhci_warn(xhci, "No ports on the roothubs?\n");
2242		return -ENODEV;
2243	}
2244	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2245			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2246			xhci->num_usb2_ports, xhci->num_usb3_ports);
2247
2248	/* Place limits on the number of roothub ports so that the hub
2249	 * descriptors aren't longer than the USB core will allocate.
2250	 */
2251	if (xhci->num_usb3_ports > 15) {
2252		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253				"Limiting USB 3.0 roothub ports to 15.");
2254		xhci->num_usb3_ports = 15;
2255	}
2256	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2257		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2258				"Limiting USB 2.0 roothub ports to %u.",
2259				USB_MAXCHILDREN);
2260		xhci->num_usb2_ports = USB_MAXCHILDREN;
2261	}
2262
2263	/*
2264	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2265	 * Not sure how the USB core will handle a hub with no ports...
2266	 */
2267	if (xhci->num_usb2_ports) {
2268		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2269				xhci->num_usb2_ports, flags);
2270		if (!xhci->usb2_ports)
2271			return -ENOMEM;
2272
2273		port_index = 0;
2274		for (i = 0; i < num_ports; i++) {
2275			if (xhci->port_array[i] == 0x03 ||
2276					xhci->port_array[i] == 0 ||
2277					xhci->port_array[i] == DUPLICATE_ENTRY)
2278				continue;
2279
2280			xhci->usb2_ports[port_index] =
2281				&xhci->op_regs->port_status_base +
2282				NUM_PORT_REGS*i;
2283			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2284					"USB 2.0 port at index %u, "
2285					"addr = %p", i,
2286					xhci->usb2_ports[port_index]);
2287			port_index++;
2288			if (port_index == xhci->num_usb2_ports)
2289				break;
2290		}
2291	}
2292	if (xhci->num_usb3_ports) {
2293		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2294				xhci->num_usb3_ports, flags);
2295		if (!xhci->usb3_ports)
2296			return -ENOMEM;
2297
2298		port_index = 0;
2299		for (i = 0; i < num_ports; i++)
2300			if (xhci->port_array[i] == 0x03) {
2301				xhci->usb3_ports[port_index] =
2302					&xhci->op_regs->port_status_base +
2303					NUM_PORT_REGS*i;
2304				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2305						"USB 3.0 port at index %u, "
2306						"addr = %p", i,
2307						xhci->usb3_ports[port_index]);
2308				port_index++;
2309				if (port_index == xhci->num_usb3_ports)
2310					break;
2311			}
2312	}
2313	return 0;
2314}
2315
2316int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2317{
2318	dma_addr_t	dma;
2319	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2320	unsigned int	val, val2;
2321	u64		val_64;
2322	struct xhci_segment	*seg;
2323	u32 page_size, temp;
2324	int i;
2325
2326	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2327
2328	page_size = readl(&xhci->op_regs->page_size);
2329	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2330			"Supported page size register = 0x%x", page_size);
2331	for (i = 0; i < 16; i++) {
2332		if ((0x1 & page_size) != 0)
2333			break;
2334		page_size = page_size >> 1;
2335	}
2336	if (i < 16)
2337		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338			"Supported page size of %iK", (1 << (i+12)) / 1024);
2339	else
2340		xhci_warn(xhci, "WARN: no supported page size\n");
2341	/* Use 4K pages, since that's common and the minimum the HC supports */
2342	xhci->page_shift = 12;
2343	xhci->page_size = 1 << xhci->page_shift;
2344	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2345			"HCD page size set to %iK", xhci->page_size / 1024);
2346
2347	/*
2348	 * Program the Number of Device Slots Enabled field in the CONFIG
2349	 * register with the max value of slots the HC can handle.
2350	 */
2351	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2352	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2353			"// xHC can handle at most %d device slots.", val);
2354	val2 = readl(&xhci->op_regs->config_reg);
2355	val |= (val2 & ~HCS_SLOTS_MASK);
2356	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357			"// Setting Max device slots reg = 0x%x.", val);
2358	writel(val, &xhci->op_regs->config_reg);
2359
2360	/*
2361	 * Section 5.4.8 - doorbell array must be
2362	 * "physically contiguous and 64-byte (cache line) aligned".
2363	 */
2364	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2365			GFP_KERNEL);
2366	if (!xhci->dcbaa)
2367		goto fail;
2368	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2369	xhci->dcbaa->dma = dma;
2370	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2371			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2372			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2373	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2374
2375	/*
2376	 * Initialize the ring segment pool.  The ring must be a contiguous
2377	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2378	 * however, the command ring segment needs 64-byte aligned segments
2379	 * and our use of dma addresses in the trb_address_map radix tree needs
2380	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2381	 */
2382	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2383			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2384
2385	/* See Table 46 and Note on Figure 55 */
2386	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2387			2112, 64, xhci->page_size);
2388	if (!xhci->segment_pool || !xhci->device_pool)
2389		goto fail;
2390
2391	/* Linear stream context arrays don't have any boundary restrictions,
2392	 * and only need to be 16-byte aligned.
2393	 */
2394	xhci->small_streams_pool =
2395		dma_pool_create("xHCI 256 byte stream ctx arrays",
2396			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2397	xhci->medium_streams_pool =
2398		dma_pool_create("xHCI 1KB stream ctx arrays",
2399			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2400	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2401	 * will be allocated with dma_alloc_coherent()
2402	 */
2403
2404	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2405		goto fail;
2406
2407	/* Set up the command ring to have one segments for now. */
2408	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2409	if (!xhci->cmd_ring)
2410		goto fail;
2411	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412			"Allocated command ring at %p", xhci->cmd_ring);
2413	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2414			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2415
2416	/* Set the address in the Command Ring Control register */
2417	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2418	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2419		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2420		xhci->cmd_ring->cycle_state;
2421	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422			"// Setting command ring address to 0x%x", val);
2423	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2424	xhci_dbg_cmd_ptrs(xhci);
2425
2426	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2427	if (!xhci->lpm_command)
2428		goto fail;
2429
2430	/* Reserve one command ring TRB for disabling LPM.
2431	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2432	 * disabling LPM, we only need to reserve one TRB for all devices.
2433	 */
2434	xhci->cmd_ring_reserved_trbs++;
2435
2436	val = readl(&xhci->cap_regs->db_off);
2437	val &= DBOFF_MASK;
2438	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439			"// Doorbell array is located at offset 0x%x"
2440			" from cap regs base addr", val);
2441	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2442	xhci_dbg_regs(xhci);
2443	xhci_print_run_regs(xhci);
2444	/* Set ir_set to interrupt register set 0 */
2445	xhci->ir_set = &xhci->run_regs->ir_set[0];
2446
2447	/*
2448	 * Event ring setup: Allocate a normal ring, but also setup
2449	 * the event ring segment table (ERST).  Section 4.9.3.
2450	 */
2451	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2452	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2453						flags);
2454	if (!xhci->event_ring)
2455		goto fail;
2456	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2457		goto fail;
2458
2459	xhci->erst.entries = dma_alloc_coherent(dev,
2460			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2461			GFP_KERNEL);
2462	if (!xhci->erst.entries)
2463		goto fail;
2464	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2465			"// Allocated event ring segment table at 0x%llx",
2466			(unsigned long long)dma);
2467
2468	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2469	xhci->erst.num_entries = ERST_NUM_SEGS;
2470	xhci->erst.erst_dma_addr = dma;
2471	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2473			xhci->erst.num_entries,
2474			xhci->erst.entries,
2475			(unsigned long long)xhci->erst.erst_dma_addr);
2476
2477	/* set ring base address and size for each segment table entry */
2478	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2479		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2480		entry->seg_addr = cpu_to_le64(seg->dma);
2481		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2482		entry->rsvd = 0;
2483		seg = seg->next;
2484	}
2485
2486	/* set ERST count with the number of entries in the segment table */
2487	val = readl(&xhci->ir_set->erst_size);
2488	val &= ERST_SIZE_MASK;
2489	val |= ERST_NUM_SEGS;
2490	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2491			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2492			val);
2493	writel(val, &xhci->ir_set->erst_size);
2494
2495	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496			"// Set ERST entries to point to event ring.");
2497	/* set the segment table base address */
2498	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2499			"// Set ERST base address for ir_set 0 = 0x%llx",
2500			(unsigned long long)xhci->erst.erst_dma_addr);
2501	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2502	val_64 &= ERST_PTR_MASK;
2503	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2504	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2505
2506	/* Set the event ring dequeue address */
2507	xhci_set_hc_event_deq(xhci);
2508	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509			"Wrote ERST address to ir_set 0.");
2510	xhci_print_ir_set(xhci, 0);
2511
2512	/*
2513	 * XXX: Might need to set the Interrupter Moderation Register to
2514	 * something other than the default (~1ms minimum between interrupts).
2515	 * See section 5.5.1.2.
2516	 */
2517	init_completion(&xhci->addr_dev);
2518	for (i = 0; i < MAX_HC_SLOTS; ++i)
2519		xhci->devs[i] = NULL;
2520	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2521		xhci->bus_state[0].resume_done[i] = 0;
2522		xhci->bus_state[1].resume_done[i] = 0;
2523		/* Only the USB 2.0 completions will ever be used. */
2524		init_completion(&xhci->bus_state[1].rexit_done[i]);
2525	}
2526
2527	if (scratchpad_alloc(xhci, flags))
2528		goto fail;
2529	if (xhci_setup_port_arrays(xhci, flags))
2530		goto fail;
2531
 
 
2532	/* Enable USB 3.0 device notifications for function remote wake, which
2533	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2534	 * U3 (device suspend).
2535	 */
2536	temp = readl(&xhci->op_regs->dev_notification);
2537	temp &= ~DEV_NOTE_MASK;
2538	temp |= DEV_NOTE_FWAKE;
2539	writel(temp, &xhci->op_regs->dev_notification);
2540
2541	return 0;
2542
2543fail:
2544	xhci_warn(xhci, "Couldn't initialize memory\n");
2545	xhci_halt(xhci);
2546	xhci_reset(xhci);
2547	xhci_mem_cleanup(xhci);
2548	return -ENOMEM;
2549}
v3.5.6
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
 
  27
  28#include "xhci.h"
 
  29
  30/*
  31 * Allocates a generic ring segment from the ring pool, sets the dma address,
  32 * initializes the segment to zero, and sets the private next pointer to NULL.
  33 *
  34 * Section 4.11.1.1:
  35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  36 */
  37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  38					unsigned int cycle_state, gfp_t flags)
  39{
  40	struct xhci_segment *seg;
  41	dma_addr_t	dma;
  42	int		i;
  43
  44	seg = kzalloc(sizeof *seg, flags);
  45	if (!seg)
  46		return NULL;
  47
  48	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  49	if (!seg->trbs) {
  50		kfree(seg);
  51		return NULL;
  52	}
  53
  54	memset(seg->trbs, 0, SEGMENT_SIZE);
  55	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  56	if (cycle_state == 0) {
  57		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  58			seg->trbs[i].link.control |= TRB_CYCLE;
  59	}
  60	seg->dma = dma;
  61	seg->next = NULL;
  62
  63	return seg;
  64}
  65
  66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  67{
  68	if (seg->trbs) {
  69		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70		seg->trbs = NULL;
  71	}
  72	kfree(seg);
  73}
  74
  75static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  76				struct xhci_segment *first)
  77{
  78	struct xhci_segment *seg;
  79
  80	seg = first->next;
  81	while (seg != first) {
  82		struct xhci_segment *next = seg->next;
  83		xhci_segment_free(xhci, seg);
  84		seg = next;
  85	}
  86	xhci_segment_free(xhci, first);
  87}
  88
  89/*
  90 * Make the prev segment point to the next segment.
  91 *
  92 * Change the last TRB in the prev segment to be a Link TRB which points to the
  93 * DMA address of the next segment.  The caller needs to set any Link TRB
  94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  95 */
  96static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  97		struct xhci_segment *next, enum xhci_ring_type type)
  98{
  99	u32 val;
 100
 101	if (!prev || !next)
 102		return;
 103	prev->next = next;
 104	if (type != TYPE_EVENT) {
 105		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 106			cpu_to_le64(next->dma);
 107
 108		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 109		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 110		val &= ~TRB_TYPE_BITMASK;
 111		val |= TRB_TYPE(TRB_LINK);
 112		/* Always set the chain bit with 0.95 hardware */
 113		/* Set chain bit for isoc rings on AMD 0.96 host */
 114		if (xhci_link_trb_quirk(xhci) ||
 115				(type == TYPE_ISOC &&
 116				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 117			val |= TRB_CHAIN;
 118		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 119	}
 120}
 121
 122/*
 123 * Link the ring to the new segments.
 124 * Set Toggle Cycle for the new ring if needed.
 125 */
 126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 127		struct xhci_segment *first, struct xhci_segment *last,
 128		unsigned int num_segs)
 129{
 130	struct xhci_segment *next;
 131
 132	if (!ring || !first || !last)
 133		return;
 134
 135	next = ring->enq_seg->next;
 136	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 137	xhci_link_segments(xhci, last, next, ring->type);
 138	ring->num_segs += num_segs;
 139	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 140
 141	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 142		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 143			&= ~cpu_to_le32(LINK_TOGGLE);
 144		last->trbs[TRBS_PER_SEGMENT-1].link.control
 145			|= cpu_to_le32(LINK_TOGGLE);
 146		ring->last_seg = last;
 147	}
 148}
 149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150/* XXX: Do we need the hcd structure in all these functions? */
 151void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 152{
 153	if (!ring)
 154		return;
 155
 156	if (ring->first_seg)
 
 
 157		xhci_free_segments_for_ring(xhci, ring->first_seg);
 
 158
 159	kfree(ring);
 160}
 161
 162static void xhci_initialize_ring_info(struct xhci_ring *ring,
 163					unsigned int cycle_state)
 164{
 165	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 166	ring->enqueue = ring->first_seg->trbs;
 167	ring->enq_seg = ring->first_seg;
 168	ring->dequeue = ring->enqueue;
 169	ring->deq_seg = ring->first_seg;
 170	/* The ring is initialized to 0. The producer must write 1 to the cycle
 171	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 172	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 173	 *
 174	 * New rings are initialized with cycle state equal to 1; if we are
 175	 * handling ring expansion, set the cycle state equal to the old ring.
 176	 */
 177	ring->cycle_state = cycle_state;
 178	/* Not necessary for new rings, but needed for re-initialized rings */
 179	ring->enq_updates = 0;
 180	ring->deq_updates = 0;
 181
 182	/*
 183	 * Each segment has a link TRB, and leave an extra TRB for SW
 184	 * accounting purpose
 185	 */
 186	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 187}
 188
 189/* Allocate segments and link them for a ring */
 190static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 191		struct xhci_segment **first, struct xhci_segment **last,
 192		unsigned int num_segs, unsigned int cycle_state,
 193		enum xhci_ring_type type, gfp_t flags)
 194{
 195	struct xhci_segment *prev;
 196
 197	prev = xhci_segment_alloc(xhci, cycle_state, flags);
 198	if (!prev)
 199		return -ENOMEM;
 200	num_segs--;
 201
 202	*first = prev;
 203	while (num_segs > 0) {
 204		struct xhci_segment	*next;
 205
 206		next = xhci_segment_alloc(xhci, cycle_state, flags);
 207		if (!next) {
 208			xhci_free_segments_for_ring(xhci, *first);
 
 
 
 
 
 209			return -ENOMEM;
 210		}
 211		xhci_link_segments(xhci, prev, next, type);
 212
 213		prev = next;
 214		num_segs--;
 215	}
 216	xhci_link_segments(xhci, prev, *first, type);
 217	*last = prev;
 218
 219	return 0;
 220}
 221
 222/**
 223 * Create a new ring with zero or more segments.
 224 *
 225 * Link each segment together into a ring.
 226 * Set the end flag and the cycle toggle bit on the last segment.
 227 * See section 4.9.1 and figures 15 and 16.
 228 */
 229static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 230		unsigned int num_segs, unsigned int cycle_state,
 231		enum xhci_ring_type type, gfp_t flags)
 232{
 233	struct xhci_ring	*ring;
 234	int ret;
 235
 236	ring = kzalloc(sizeof *(ring), flags);
 237	if (!ring)
 238		return NULL;
 239
 240	ring->num_segs = num_segs;
 241	INIT_LIST_HEAD(&ring->td_list);
 242	ring->type = type;
 243	if (num_segs == 0)
 244		return ring;
 245
 246	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 247			&ring->last_seg, num_segs, cycle_state, type, flags);
 248	if (ret)
 249		goto fail;
 250
 251	/* Only event ring does not use link TRB */
 252	if (type != TYPE_EVENT) {
 253		/* See section 4.9.2.1 and 6.4.4.1 */
 254		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 255			cpu_to_le32(LINK_TOGGLE);
 256	}
 257	xhci_initialize_ring_info(ring, cycle_state);
 258	return ring;
 259
 260fail:
 261	xhci_ring_free(xhci, ring);
 262	return NULL;
 263}
 264
 265void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 266		struct xhci_virt_device *virt_dev,
 267		unsigned int ep_index)
 268{
 269	int rings_cached;
 270
 271	rings_cached = virt_dev->num_rings_cached;
 272	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 273		virt_dev->ring_cache[rings_cached] =
 274			virt_dev->eps[ep_index].ring;
 275		virt_dev->num_rings_cached++;
 276		xhci_dbg(xhci, "Cached old ring, "
 277				"%d ring%s cached\n",
 278				virt_dev->num_rings_cached,
 279				(virt_dev->num_rings_cached > 1) ? "s" : "");
 280	} else {
 281		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 282		xhci_dbg(xhci, "Ring cache full (%d rings), "
 283				"freeing ring\n",
 284				virt_dev->num_rings_cached);
 285	}
 286	virt_dev->eps[ep_index].ring = NULL;
 287}
 288
 289/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 290 * pointers to the beginning of the ring.
 291 */
 292static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 293			struct xhci_ring *ring, unsigned int cycle_state,
 294			enum xhci_ring_type type)
 295{
 296	struct xhci_segment	*seg = ring->first_seg;
 297	int i;
 298
 299	do {
 300		memset(seg->trbs, 0,
 301				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 302		if (cycle_state == 0) {
 303			for (i = 0; i < TRBS_PER_SEGMENT; i++)
 304				seg->trbs[i].link.control |= TRB_CYCLE;
 
 305		}
 306		/* All endpoint rings have link TRBs */
 307		xhci_link_segments(xhci, seg, seg->next, type);
 308		seg = seg->next;
 309	} while (seg != ring->first_seg);
 310	ring->type = type;
 311	xhci_initialize_ring_info(ring, cycle_state);
 312	/* td list should be empty since all URBs have been cancelled,
 313	 * but just in case...
 314	 */
 315	INIT_LIST_HEAD(&ring->td_list);
 316}
 317
 318/*
 319 * Expand an existing ring.
 320 * Look for a cached ring or allocate a new ring which has same segment numbers
 321 * and link the two rings.
 322 */
 323int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 324				unsigned int num_trbs, gfp_t flags)
 325{
 326	struct xhci_segment	*first;
 327	struct xhci_segment	*last;
 328	unsigned int		num_segs;
 329	unsigned int		num_segs_needed;
 330	int			ret;
 331
 332	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 333				(TRBS_PER_SEGMENT - 1);
 334
 335	/* Allocate number of segments we needed, or double the ring size */
 336	num_segs = ring->num_segs > num_segs_needed ?
 337			ring->num_segs : num_segs_needed;
 338
 339	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 340			num_segs, ring->cycle_state, ring->type, flags);
 341	if (ret)
 342		return -ENOMEM;
 343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344	xhci_link_rings(xhci, ring, first, last, num_segs);
 345	xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
 
 346			ring->num_segs);
 347
 348	return 0;
 349}
 350
 351#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 352
 353static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 354						    int type, gfp_t flags)
 355{
 356	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
 
 
 
 
 
 357	if (!ctx)
 358		return NULL;
 359
 360	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
 361	ctx->type = type;
 362	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 363	if (type == XHCI_CTX_TYPE_INPUT)
 364		ctx->size += CTX_SIZE(xhci->hcc_params);
 365
 366	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 
 
 
 
 367	memset(ctx->bytes, 0, ctx->size);
 368	return ctx;
 369}
 370
 371static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 372			     struct xhci_container_ctx *ctx)
 373{
 374	if (!ctx)
 375		return;
 376	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 377	kfree(ctx);
 378}
 379
 380struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 381					      struct xhci_container_ctx *ctx)
 382{
 383	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
 
 
 384	return (struct xhci_input_control_ctx *)ctx->bytes;
 385}
 386
 387struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 388					struct xhci_container_ctx *ctx)
 389{
 390	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 391		return (struct xhci_slot_ctx *)ctx->bytes;
 392
 393	return (struct xhci_slot_ctx *)
 394		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 395}
 396
 397struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 398				    struct xhci_container_ctx *ctx,
 399				    unsigned int ep_index)
 400{
 401	/* increment ep index by offset of start of ep ctx array */
 402	ep_index++;
 403	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 404		ep_index++;
 405
 406	return (struct xhci_ep_ctx *)
 407		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 408}
 409
 410
 411/***************** Streams structures manipulation *************************/
 412
 413static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 414		unsigned int num_stream_ctxs,
 415		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 416{
 417	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 418
 419	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 420		dma_free_coherent(&pdev->dev,
 421				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 422				stream_ctx, dma);
 423	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 424		return dma_pool_free(xhci->small_streams_pool,
 425				stream_ctx, dma);
 426	else
 427		return dma_pool_free(xhci->medium_streams_pool,
 428				stream_ctx, dma);
 429}
 430
 431/*
 432 * The stream context array for each endpoint with bulk streams enabled can
 433 * vary in size, based on:
 434 *  - how many streams the endpoint supports,
 435 *  - the maximum primary stream array size the host controller supports,
 436 *  - and how many streams the device driver asks for.
 437 *
 438 * The stream context array must be a power of 2, and can be as small as
 439 * 64 bytes or as large as 1MB.
 440 */
 441static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 442		unsigned int num_stream_ctxs, dma_addr_t *dma,
 443		gfp_t mem_flags)
 444{
 445	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 
 446
 447	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 448		return dma_alloc_coherent(&pdev->dev,
 449				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 450				dma, mem_flags);
 451	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 452		return dma_pool_alloc(xhci->small_streams_pool,
 453				mem_flags, dma);
 454	else
 455		return dma_pool_alloc(xhci->medium_streams_pool,
 456				mem_flags, dma);
 457}
 458
 459struct xhci_ring *xhci_dma_to_transfer_ring(
 460		struct xhci_virt_ep *ep,
 461		u64 address)
 462{
 463	if (ep->ep_state & EP_HAS_STREAMS)
 464		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 465				address >> SEGMENT_SHIFT);
 466	return ep->ring;
 467}
 468
 469/* Only use this when you know stream_info is valid */
 470#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 471static struct xhci_ring *dma_to_stream_ring(
 472		struct xhci_stream_info *stream_info,
 473		u64 address)
 474{
 475	return radix_tree_lookup(&stream_info->trb_address_map,
 476			address >> SEGMENT_SHIFT);
 477}
 478#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 479
 480struct xhci_ring *xhci_stream_id_to_ring(
 481		struct xhci_virt_device *dev,
 482		unsigned int ep_index,
 483		unsigned int stream_id)
 484{
 485	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 486
 487	if (stream_id == 0)
 488		return ep->ring;
 489	if (!ep->stream_info)
 490		return NULL;
 491
 492	if (stream_id > ep->stream_info->num_streams)
 493		return NULL;
 494	return ep->stream_info->stream_rings[stream_id];
 495}
 496
 497#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 498static int xhci_test_radix_tree(struct xhci_hcd *xhci,
 499		unsigned int num_streams,
 500		struct xhci_stream_info *stream_info)
 501{
 502	u32 cur_stream;
 503	struct xhci_ring *cur_ring;
 504	u64 addr;
 505
 506	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 507		struct xhci_ring *mapped_ring;
 508		int trb_size = sizeof(union xhci_trb);
 509
 510		cur_ring = stream_info->stream_rings[cur_stream];
 511		for (addr = cur_ring->first_seg->dma;
 512				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
 513				addr += trb_size) {
 514			mapped_ring = dma_to_stream_ring(stream_info, addr);
 515			if (cur_ring != mapped_ring) {
 516				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
 517						"didn't map to stream ID %u; "
 518						"mapped to ring %p\n",
 519						(unsigned long long) addr,
 520						cur_stream,
 521						mapped_ring);
 522				return -EINVAL;
 523			}
 524		}
 525		/* One TRB after the end of the ring segment shouldn't return a
 526		 * pointer to the current ring (although it may be a part of a
 527		 * different ring).
 528		 */
 529		mapped_ring = dma_to_stream_ring(stream_info, addr);
 530		if (mapped_ring != cur_ring) {
 531			/* One TRB before should also fail */
 532			addr = cur_ring->first_seg->dma - trb_size;
 533			mapped_ring = dma_to_stream_ring(stream_info, addr);
 534		}
 535		if (mapped_ring == cur_ring) {
 536			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
 537					"mapped to valid stream ID %u; "
 538					"mapped ring = %p\n",
 539					(unsigned long long) addr,
 540					cur_stream,
 541					mapped_ring);
 542			return -EINVAL;
 543		}
 544	}
 545	return 0;
 546}
 547#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
 548
 549/*
 550 * Change an endpoint's internal structure so it supports stream IDs.  The
 551 * number of requested streams includes stream 0, which cannot be used by device
 552 * drivers.
 553 *
 554 * The number of stream contexts in the stream context array may be bigger than
 555 * the number of streams the driver wants to use.  This is because the number of
 556 * stream context array entries must be a power of two.
 557 *
 558 * We need a radix tree for mapping physical addresses of TRBs to which stream
 559 * ID they belong to.  We need to do this because the host controller won't tell
 560 * us which stream ring the TRB came from.  We could store the stream ID in an
 561 * event data TRB, but that doesn't help us for the cancellation case, since the
 562 * endpoint may stop before it reaches that event data TRB.
 563 *
 564 * The radix tree maps the upper portion of the TRB DMA address to a ring
 565 * segment that has the same upper portion of DMA addresses.  For example, say I
 566 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 567 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 568 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 569 * pass the radix tree a key to get the right stream ID:
 570 *
 571 * 	0x10c90fff >> 10 = 0x43243
 572 * 	0x10c912c0 >> 10 = 0x43244
 573 * 	0x10c91400 >> 10 = 0x43245
 574 *
 575 * Obviously, only those TRBs with DMA addresses that are within the segment
 576 * will make the radix tree return the stream ID for that ring.
 577 *
 578 * Caveats for the radix tree:
 579 *
 580 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 581 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 582 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 583 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 584 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 585 * extended systems (where the DMA address can be bigger than 32-bits),
 586 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 587 */
 588struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 589		unsigned int num_stream_ctxs,
 590		unsigned int num_streams, gfp_t mem_flags)
 591{
 592	struct xhci_stream_info *stream_info;
 593	u32 cur_stream;
 594	struct xhci_ring *cur_ring;
 595	unsigned long key;
 596	u64 addr;
 597	int ret;
 598
 599	xhci_dbg(xhci, "Allocating %u streams and %u "
 600			"stream context array entries.\n",
 601			num_streams, num_stream_ctxs);
 602	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 603		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 604		return NULL;
 605	}
 606	xhci->cmd_ring_reserved_trbs++;
 607
 608	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 609	if (!stream_info)
 610		goto cleanup_trbs;
 611
 612	stream_info->num_streams = num_streams;
 613	stream_info->num_stream_ctxs = num_stream_ctxs;
 614
 615	/* Initialize the array of virtual pointers to stream rings. */
 616	stream_info->stream_rings = kzalloc(
 617			sizeof(struct xhci_ring *)*num_streams,
 618			mem_flags);
 619	if (!stream_info->stream_rings)
 620		goto cleanup_info;
 621
 622	/* Initialize the array of DMA addresses for stream rings for the HW. */
 623	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 624			num_stream_ctxs, &stream_info->ctx_array_dma,
 625			mem_flags);
 626	if (!stream_info->stream_ctx_array)
 627		goto cleanup_ctx;
 628	memset(stream_info->stream_ctx_array, 0,
 629			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 630
 631	/* Allocate everything needed to free the stream rings later */
 632	stream_info->free_streams_command =
 633		xhci_alloc_command(xhci, true, true, mem_flags);
 634	if (!stream_info->free_streams_command)
 635		goto cleanup_ctx;
 636
 637	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 638
 639	/* Allocate rings for all the streams that the driver will use,
 640	 * and add their segment DMA addresses to the radix tree.
 641	 * Stream 0 is reserved.
 642	 */
 643	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 644		stream_info->stream_rings[cur_stream] =
 645			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 646		cur_ring = stream_info->stream_rings[cur_stream];
 647		if (!cur_ring)
 648			goto cleanup_rings;
 649		cur_ring->stream_id = cur_stream;
 
 650		/* Set deq ptr, cycle bit, and stream context type */
 651		addr = cur_ring->first_seg->dma |
 652			SCT_FOR_CTX(SCT_PRI_TR) |
 653			cur_ring->cycle_state;
 654		stream_info->stream_ctx_array[cur_stream].stream_ring =
 655			cpu_to_le64(addr);
 656		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 657				cur_stream, (unsigned long long) addr);
 658
 659		key = (unsigned long)
 660			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
 661		ret = radix_tree_insert(&stream_info->trb_address_map,
 662				key, cur_ring);
 663		if (ret) {
 664			xhci_ring_free(xhci, cur_ring);
 665			stream_info->stream_rings[cur_stream] = NULL;
 666			goto cleanup_rings;
 667		}
 668	}
 669	/* Leave the other unused stream ring pointers in the stream context
 670	 * array initialized to zero.  This will cause the xHC to give us an
 671	 * error if the device asks for a stream ID we don't have setup (if it
 672	 * was any other way, the host controller would assume the ring is
 673	 * "empty" and wait forever for data to be queued to that stream ID).
 674	 */
 675#if XHCI_DEBUG
 676	/* Do a little test on the radix tree to make sure it returns the
 677	 * correct values.
 678	 */
 679	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
 680		goto cleanup_rings;
 681#endif
 682
 683	return stream_info;
 684
 685cleanup_rings:
 686	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 687		cur_ring = stream_info->stream_rings[cur_stream];
 688		if (cur_ring) {
 689			addr = cur_ring->first_seg->dma;
 690			radix_tree_delete(&stream_info->trb_address_map,
 691					addr >> SEGMENT_SHIFT);
 692			xhci_ring_free(xhci, cur_ring);
 693			stream_info->stream_rings[cur_stream] = NULL;
 694		}
 695	}
 696	xhci_free_command(xhci, stream_info->free_streams_command);
 697cleanup_ctx:
 698	kfree(stream_info->stream_rings);
 699cleanup_info:
 700	kfree(stream_info);
 701cleanup_trbs:
 702	xhci->cmd_ring_reserved_trbs--;
 703	return NULL;
 704}
 705/*
 706 * Sets the MaxPStreams field and the Linear Stream Array field.
 707 * Sets the dequeue pointer to the stream context array.
 708 */
 709void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 710		struct xhci_ep_ctx *ep_ctx,
 711		struct xhci_stream_info *stream_info)
 712{
 713	u32 max_primary_streams;
 714	/* MaxPStreams is the number of stream context array entries, not the
 715	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 716	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 717	 */
 718	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 719	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
 
 720			1 << (max_primary_streams + 1));
 721	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 722	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 723				       | EP_HAS_LSA);
 724	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 725}
 726
 727/*
 728 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 729 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 730 * not at the beginning of the ring).
 731 */
 732void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 733		struct xhci_ep_ctx *ep_ctx,
 734		struct xhci_virt_ep *ep)
 735{
 736	dma_addr_t addr;
 737	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 738	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 739	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 740}
 741
 742/* Frees all stream contexts associated with the endpoint,
 743 *
 744 * Caller should fix the endpoint context streams fields.
 745 */
 746void xhci_free_stream_info(struct xhci_hcd *xhci,
 747		struct xhci_stream_info *stream_info)
 748{
 749	int cur_stream;
 750	struct xhci_ring *cur_ring;
 751	dma_addr_t addr;
 752
 753	if (!stream_info)
 754		return;
 755
 756	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 757			cur_stream++) {
 758		cur_ring = stream_info->stream_rings[cur_stream];
 759		if (cur_ring) {
 760			addr = cur_ring->first_seg->dma;
 761			radix_tree_delete(&stream_info->trb_address_map,
 762					addr >> SEGMENT_SHIFT);
 763			xhci_ring_free(xhci, cur_ring);
 764			stream_info->stream_rings[cur_stream] = NULL;
 765		}
 766	}
 767	xhci_free_command(xhci, stream_info->free_streams_command);
 768	xhci->cmd_ring_reserved_trbs--;
 769	if (stream_info->stream_ctx_array)
 770		xhci_free_stream_ctx(xhci,
 771				stream_info->num_stream_ctxs,
 772				stream_info->stream_ctx_array,
 773				stream_info->ctx_array_dma);
 774
 775	if (stream_info)
 776		kfree(stream_info->stream_rings);
 777	kfree(stream_info);
 778}
 779
 780
 781/***************** Device context manipulation *************************/
 782
 783static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 784		struct xhci_virt_ep *ep)
 785{
 786	init_timer(&ep->stop_cmd_timer);
 787	ep->stop_cmd_timer.data = (unsigned long) ep;
 788	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 789	ep->xhci = xhci;
 790}
 791
 792static void xhci_free_tt_info(struct xhci_hcd *xhci,
 793		struct xhci_virt_device *virt_dev,
 794		int slot_id)
 795{
 796	struct list_head *tt_list_head;
 797	struct xhci_tt_bw_info *tt_info, *next;
 798	bool slot_found = false;
 799
 800	/* If the device never made it past the Set Address stage,
 801	 * it may not have the real_port set correctly.
 802	 */
 803	if (virt_dev->real_port == 0 ||
 804			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 805		xhci_dbg(xhci, "Bad real port.\n");
 806		return;
 807	}
 808
 809	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 810	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 811		/* Multi-TT hubs will have more than one entry */
 812		if (tt_info->slot_id == slot_id) {
 813			slot_found = true;
 814			list_del(&tt_info->tt_list);
 815			kfree(tt_info);
 816		} else if (slot_found) {
 817			break;
 818		}
 819	}
 820}
 821
 822int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 823		struct xhci_virt_device *virt_dev,
 824		struct usb_device *hdev,
 825		struct usb_tt *tt, gfp_t mem_flags)
 826{
 827	struct xhci_tt_bw_info		*tt_info;
 828	unsigned int			num_ports;
 829	int				i, j;
 830
 831	if (!tt->multi)
 832		num_ports = 1;
 833	else
 834		num_ports = hdev->maxchild;
 835
 836	for (i = 0; i < num_ports; i++, tt_info++) {
 837		struct xhci_interval_bw_table *bw_table;
 838
 839		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 840		if (!tt_info)
 841			goto free_tts;
 842		INIT_LIST_HEAD(&tt_info->tt_list);
 843		list_add(&tt_info->tt_list,
 844				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 845		tt_info->slot_id = virt_dev->udev->slot_id;
 846		if (tt->multi)
 847			tt_info->ttport = i+1;
 848		bw_table = &tt_info->bw_table;
 849		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 850			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 851	}
 852	return 0;
 853
 854free_tts:
 855	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 856	return -ENOMEM;
 857}
 858
 859
 860/* All the xhci_tds in the ring's TD list should be freed at this point.
 861 * Should be called with xhci->lock held if there is any chance the TT lists
 862 * will be manipulated by the configure endpoint, allocate device, or update
 863 * hub functions while this function is removing the TT entries from the list.
 864 */
 865void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 866{
 867	struct xhci_virt_device *dev;
 868	int i;
 869	int old_active_eps = 0;
 870
 871	/* Slot ID 0 is reserved */
 872	if (slot_id == 0 || !xhci->devs[slot_id])
 873		return;
 874
 875	dev = xhci->devs[slot_id];
 876	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 877	if (!dev)
 878		return;
 879
 880	if (dev->tt_info)
 881		old_active_eps = dev->tt_info->active_eps;
 882
 883	for (i = 0; i < 31; ++i) {
 884		if (dev->eps[i].ring)
 885			xhci_ring_free(xhci, dev->eps[i].ring);
 886		if (dev->eps[i].stream_info)
 887			xhci_free_stream_info(xhci,
 888					dev->eps[i].stream_info);
 889		/* Endpoints on the TT/root port lists should have been removed
 890		 * when usb_disable_device() was called for the device.
 891		 * We can't drop them anyway, because the udev might have gone
 892		 * away by this point, and we can't tell what speed it was.
 893		 */
 894		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 895			xhci_warn(xhci, "Slot %u endpoint %u "
 896					"not removed from BW list!\n",
 897					slot_id, i);
 898	}
 899	/* If this is a hub, free the TT(s) from the TT list */
 900	xhci_free_tt_info(xhci, dev, slot_id);
 901	/* If necessary, update the number of active TTs on this root port */
 902	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 903
 904	if (dev->ring_cache) {
 905		for (i = 0; i < dev->num_rings_cached; i++)
 906			xhci_ring_free(xhci, dev->ring_cache[i]);
 907		kfree(dev->ring_cache);
 908	}
 909
 910	if (dev->in_ctx)
 911		xhci_free_container_ctx(xhci, dev->in_ctx);
 912	if (dev->out_ctx)
 913		xhci_free_container_ctx(xhci, dev->out_ctx);
 914
 915	kfree(xhci->devs[slot_id]);
 916	xhci->devs[slot_id] = NULL;
 917}
 918
 919int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 920		struct usb_device *udev, gfp_t flags)
 921{
 922	struct xhci_virt_device *dev;
 923	int i;
 924
 925	/* Slot ID 0 is reserved */
 926	if (slot_id == 0 || xhci->devs[slot_id]) {
 927		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 928		return 0;
 929	}
 930
 931	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 932	if (!xhci->devs[slot_id])
 933		return 0;
 934	dev = xhci->devs[slot_id];
 935
 936	/* Allocate the (output) device context that will be used in the HC. */
 937	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 938	if (!dev->out_ctx)
 939		goto fail;
 940
 941	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 942			(unsigned long long)dev->out_ctx->dma);
 943
 944	/* Allocate the (input) device context for address device command */
 945	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 946	if (!dev->in_ctx)
 947		goto fail;
 948
 949	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 950			(unsigned long long)dev->in_ctx->dma);
 951
 952	/* Initialize the cancellation list and watchdog timers for each ep */
 953	for (i = 0; i < 31; i++) {
 954		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 955		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 956		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 957	}
 958
 959	/* Allocate endpoint 0 ring */
 960	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
 961	if (!dev->eps[0].ring)
 962		goto fail;
 963
 964	/* Allocate pointers to the ring cache */
 965	dev->ring_cache = kzalloc(
 966			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
 967			flags);
 968	if (!dev->ring_cache)
 969		goto fail;
 970	dev->num_rings_cached = 0;
 971
 972	init_completion(&dev->cmd_completion);
 973	INIT_LIST_HEAD(&dev->cmd_list);
 974	dev->udev = udev;
 975
 976	/* Point to output device context in dcbaa. */
 977	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 978	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 979		 slot_id,
 980		 &xhci->dcbaa->dev_context_ptrs[slot_id],
 981		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 982
 983	return 1;
 984fail:
 985	xhci_free_virt_device(xhci, slot_id);
 986	return 0;
 987}
 988
 989void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
 990		struct usb_device *udev)
 991{
 992	struct xhci_virt_device *virt_dev;
 993	struct xhci_ep_ctx	*ep0_ctx;
 994	struct xhci_ring	*ep_ring;
 995
 996	virt_dev = xhci->devs[udev->slot_id];
 997	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
 998	ep_ring = virt_dev->eps[0].ring;
 999	/*
1000	 * FIXME we don't keep track of the dequeue pointer very well after a
1001	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1002	 * host to our enqueue pointer.  This should only be called after a
1003	 * configured device has reset, so all control transfers should have
1004	 * been completed or cancelled before the reset.
1005	 */
1006	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1007							ep_ring->enqueue)
1008				   | ep_ring->cycle_state);
1009}
1010
1011/*
1012 * The xHCI roothub may have ports of differing speeds in any order in the port
1013 * status registers.  xhci->port_array provides an array of the port speed for
1014 * each offset into the port status registers.
1015 *
1016 * The xHCI hardware wants to know the roothub port number that the USB device
1017 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1018 * know is the index of that port under either the USB 2.0 or the USB 3.0
1019 * roothub, but that doesn't give us the real index into the HW port status
1020 * registers.  Scan through the xHCI roothub port array, looking for the Nth
1021 * entry of the correct port speed.  Return the port number of that entry.
1022 */
1023static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1024		struct usb_device *udev)
1025{
1026	struct usb_device *top_dev;
1027	unsigned int num_similar_speed_ports;
1028	unsigned int faked_port_num;
1029	int i;
 
 
 
1030
1031	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1032			top_dev = top_dev->parent)
1033		/* Found device below root hub */;
1034	faked_port_num = top_dev->portnum;
1035	for (i = 0, num_similar_speed_ports = 0;
1036			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1037		u8 port_speed = xhci->port_array[i];
1038
1039		/*
1040		 * Skip ports that don't have known speeds, or have duplicate
1041		 * Extended Capabilities port speed entries.
1042		 */
1043		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1044			continue;
1045
1046		/*
1047		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1048		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1049		 * matches the device speed, it's a similar speed port.
1050		 */
1051		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1052			num_similar_speed_ports++;
1053		if (num_similar_speed_ports == faked_port_num)
1054			/* Roothub ports are numbered from 1 to N */
1055			return i+1;
1056	}
1057	return 0;
1058}
1059
1060/* Setup an xHCI virtual device for a Set Address command */
1061int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1062{
1063	struct xhci_virt_device *dev;
1064	struct xhci_ep_ctx	*ep0_ctx;
1065	struct xhci_slot_ctx    *slot_ctx;
1066	u32			port_num;
 
1067	struct usb_device *top_dev;
1068
1069	dev = xhci->devs[udev->slot_id];
1070	/* Slot ID 0 is reserved */
1071	if (udev->slot_id == 0 || !dev) {
1072		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1073				udev->slot_id);
1074		return -EINVAL;
1075	}
1076	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1077	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1078
1079	/* 3) Only the control endpoint is valid - one endpoint context */
1080	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1081	switch (udev->speed) {
1082	case USB_SPEED_SUPER:
1083		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
 
1084		break;
1085	case USB_SPEED_HIGH:
1086		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
 
1087		break;
 
1088	case USB_SPEED_FULL:
1089		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
 
1090		break;
1091	case USB_SPEED_LOW:
1092		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
 
1093		break;
1094	case USB_SPEED_WIRELESS:
1095		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1096		return -EINVAL;
1097		break;
1098	default:
1099		/* Speed was set earlier, this shouldn't happen. */
1100		BUG();
1101	}
1102	/* Find the root hub port this device is under */
1103	port_num = xhci_find_real_port_number(xhci, udev);
1104	if (!port_num)
1105		return -EINVAL;
1106	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1107	/* Set the port number in the virtual_device to the faked port number */
1108	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1109			top_dev = top_dev->parent)
1110		/* Found device below root hub */;
1111	dev->fake_port = top_dev->portnum;
1112	dev->real_port = port_num;
1113	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1114	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1115
1116	/* Find the right bandwidth table that this device will be a part of.
1117	 * If this is a full speed device attached directly to a root port (or a
1118	 * decendent of one), it counts as a primary bandwidth domain, not a
1119	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1120	 * will never be created for the HS root hub.
1121	 */
1122	if (!udev->tt || !udev->tt->hub->parent) {
1123		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1124	} else {
1125		struct xhci_root_port_bw_info *rh_bw;
1126		struct xhci_tt_bw_info *tt_bw;
1127
1128		rh_bw = &xhci->rh_bw[port_num - 1];
1129		/* Find the right TT. */
1130		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1131			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1132				continue;
1133
1134			if (!dev->udev->tt->multi ||
1135					(udev->tt->multi &&
1136					 tt_bw->ttport == dev->udev->ttport)) {
1137				dev->bw_table = &tt_bw->bw_table;
1138				dev->tt_info = tt_bw;
1139				break;
1140			}
1141		}
1142		if (!dev->tt_info)
1143			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1144	}
1145
1146	/* Is this a LS/FS device under an external HS hub? */
1147	if (udev->tt && udev->tt->hub->parent) {
1148		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1149						(udev->ttport << 8));
1150		if (udev->tt->multi)
1151			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1152	}
1153	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1154	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1155
1156	/* Step 4 - ring already allocated */
1157	/* Step 5 */
1158	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1159	/*
1160	 * XXX: Not sure about wireless USB devices.
1161	 */
1162	switch (udev->speed) {
1163	case USB_SPEED_SUPER:
1164		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1165		break;
1166	case USB_SPEED_HIGH:
1167	/* USB core guesses at a 64-byte max packet first for FS devices */
1168	case USB_SPEED_FULL:
1169		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1170		break;
1171	case USB_SPEED_LOW:
1172		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1173		break;
1174	case USB_SPEED_WIRELESS:
1175		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1176		return -EINVAL;
1177		break;
1178	default:
1179		/* New speed? */
1180		BUG();
1181	}
1182	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1183	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
 
1184
1185	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1186				   dev->eps[0].ring->cycle_state);
1187
1188	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1189
1190	return 0;
1191}
1192
1193/*
1194 * Convert interval expressed as 2^(bInterval - 1) == interval into
1195 * straight exponent value 2^n == interval.
1196 *
1197 */
1198static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1199		struct usb_host_endpoint *ep)
1200{
1201	unsigned int interval;
1202
1203	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1204	if (interval != ep->desc.bInterval - 1)
1205		dev_warn(&udev->dev,
1206			 "ep %#x - rounding interval to %d %sframes\n",
1207			 ep->desc.bEndpointAddress,
1208			 1 << interval,
1209			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1210
1211	if (udev->speed == USB_SPEED_FULL) {
1212		/*
1213		 * Full speed isoc endpoints specify interval in frames,
1214		 * not microframes. We are using microframes everywhere,
1215		 * so adjust accordingly.
1216		 */
1217		interval += 3;	/* 1 frame = 2^3 uframes */
1218	}
1219
1220	return interval;
1221}
1222
1223/*
1224 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1225 * microframes, rounded down to nearest power of 2.
1226 */
1227static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1228		struct usb_host_endpoint *ep, unsigned int desc_interval,
1229		unsigned int min_exponent, unsigned int max_exponent)
1230{
1231	unsigned int interval;
1232
1233	interval = fls(desc_interval) - 1;
1234	interval = clamp_val(interval, min_exponent, max_exponent);
1235	if ((1 << interval) != desc_interval)
1236		dev_warn(&udev->dev,
1237			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1238			 ep->desc.bEndpointAddress,
1239			 1 << interval,
1240			 desc_interval);
1241
1242	return interval;
1243}
1244
1245static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1246		struct usb_host_endpoint *ep)
1247{
 
 
1248	return xhci_microframes_to_exponent(udev, ep,
1249			ep->desc.bInterval, 0, 15);
1250}
1251
1252
1253static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1254		struct usb_host_endpoint *ep)
1255{
1256	return xhci_microframes_to_exponent(udev, ep,
1257			ep->desc.bInterval * 8, 3, 10);
1258}
1259
1260/* Return the polling or NAK interval.
1261 *
1262 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1263 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1264 *
1265 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1266 * is set to 0.
1267 */
1268static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1269		struct usb_host_endpoint *ep)
1270{
1271	unsigned int interval = 0;
1272
1273	switch (udev->speed) {
1274	case USB_SPEED_HIGH:
1275		/* Max NAK rate */
1276		if (usb_endpoint_xfer_control(&ep->desc) ||
1277		    usb_endpoint_xfer_bulk(&ep->desc)) {
1278			interval = xhci_parse_microframe_interval(udev, ep);
1279			break;
1280		}
1281		/* Fall through - SS and HS isoc/int have same decoding */
1282
1283	case USB_SPEED_SUPER:
1284		if (usb_endpoint_xfer_int(&ep->desc) ||
1285		    usb_endpoint_xfer_isoc(&ep->desc)) {
1286			interval = xhci_parse_exponent_interval(udev, ep);
1287		}
1288		break;
1289
1290	case USB_SPEED_FULL:
1291		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1292			interval = xhci_parse_exponent_interval(udev, ep);
1293			break;
1294		}
1295		/*
1296		 * Fall through for interrupt endpoint interval decoding
1297		 * since it uses the same rules as low speed interrupt
1298		 * endpoints.
1299		 */
1300
1301	case USB_SPEED_LOW:
1302		if (usb_endpoint_xfer_int(&ep->desc) ||
1303		    usb_endpoint_xfer_isoc(&ep->desc)) {
1304
1305			interval = xhci_parse_frame_interval(udev, ep);
1306		}
1307		break;
1308
1309	default:
1310		BUG();
1311	}
1312	return EP_INTERVAL(interval);
1313}
1314
1315/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1316 * High speed endpoint descriptors can define "the number of additional
1317 * transaction opportunities per microframe", but that goes in the Max Burst
1318 * endpoint context field.
1319 */
1320static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1321		struct usb_host_endpoint *ep)
1322{
1323	if (udev->speed != USB_SPEED_SUPER ||
1324			!usb_endpoint_xfer_isoc(&ep->desc))
1325		return 0;
1326	return ep->ss_ep_comp.bmAttributes;
1327}
1328
1329static u32 xhci_get_endpoint_type(struct usb_device *udev,
1330		struct usb_host_endpoint *ep)
1331{
1332	int in;
1333	u32 type;
1334
1335	in = usb_endpoint_dir_in(&ep->desc);
1336	if (usb_endpoint_xfer_control(&ep->desc)) {
1337		type = EP_TYPE(CTRL_EP);
1338	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1339		if (in)
1340			type = EP_TYPE(BULK_IN_EP);
1341		else
1342			type = EP_TYPE(BULK_OUT_EP);
1343	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1344		if (in)
1345			type = EP_TYPE(ISOC_IN_EP);
1346		else
1347			type = EP_TYPE(ISOC_OUT_EP);
1348	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1349		if (in)
1350			type = EP_TYPE(INT_IN_EP);
1351		else
1352			type = EP_TYPE(INT_OUT_EP);
1353	} else {
1354		BUG();
1355	}
1356	return type;
1357}
1358
1359/* Return the maximum endpoint service interval time (ESIT) payload.
1360 * Basically, this is the maxpacket size, multiplied by the burst size
1361 * and mult size.
1362 */
1363static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1364		struct usb_device *udev,
1365		struct usb_host_endpoint *ep)
1366{
1367	int max_burst;
1368	int max_packet;
1369
1370	/* Only applies for interrupt or isochronous endpoints */
1371	if (usb_endpoint_xfer_control(&ep->desc) ||
1372			usb_endpoint_xfer_bulk(&ep->desc))
1373		return 0;
1374
1375	if (udev->speed == USB_SPEED_SUPER)
1376		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1377
1378	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1379	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1380	/* A 0 in max burst means 1 transfer per ESIT */
1381	return max_packet * (max_burst + 1);
1382}
1383
1384/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1385 * Drivers will have to call usb_alloc_streams() to do that.
1386 */
1387int xhci_endpoint_init(struct xhci_hcd *xhci,
1388		struct xhci_virt_device *virt_dev,
1389		struct usb_device *udev,
1390		struct usb_host_endpoint *ep,
1391		gfp_t mem_flags)
1392{
1393	unsigned int ep_index;
1394	struct xhci_ep_ctx *ep_ctx;
1395	struct xhci_ring *ep_ring;
1396	unsigned int max_packet;
1397	unsigned int max_burst;
1398	enum xhci_ring_type type;
1399	u32 max_esit_payload;
 
1400
1401	ep_index = xhci_get_endpoint_index(&ep->desc);
1402	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1403
 
 
 
 
 
1404	type = usb_endpoint_type(&ep->desc);
1405	/* Set up the endpoint ring */
1406	virt_dev->eps[ep_index].new_ring =
1407		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1408	if (!virt_dev->eps[ep_index].new_ring) {
1409		/* Attempt to use the ring cache */
1410		if (virt_dev->num_rings_cached == 0)
1411			return -ENOMEM;
1412		virt_dev->eps[ep_index].new_ring =
1413			virt_dev->ring_cache[virt_dev->num_rings_cached];
1414		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1415		virt_dev->num_rings_cached--;
1416		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1417					1, type);
1418	}
1419	virt_dev->eps[ep_index].skip = false;
1420	ep_ring = virt_dev->eps[ep_index].new_ring;
1421	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1422
1423	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1424				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1425
1426	/* FIXME dig Mult and streams info out of ep companion desc */
1427
1428	/* Allow 3 retries for everything but isoc;
1429	 * CErr shall be set to 0 for Isoch endpoints.
1430	 */
1431	if (!usb_endpoint_xfer_isoc(&ep->desc))
1432		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1433	else
1434		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1435
1436	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1437
1438	/* Set the max packet size and max burst */
 
 
1439	switch (udev->speed) {
1440	case USB_SPEED_SUPER:
1441		max_packet = usb_endpoint_maxp(&ep->desc);
1442		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1443		/* dig out max burst from ep companion desc */
1444		max_packet = ep->ss_ep_comp.bMaxBurst;
1445		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1446		break;
1447	case USB_SPEED_HIGH:
 
 
 
1448		/* bits 11:12 specify the number of additional transaction
1449		 * opportunities per microframe (USB 2.0, section 9.6.6)
1450		 */
1451		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1452				usb_endpoint_xfer_int(&ep->desc)) {
1453			max_burst = (usb_endpoint_maxp(&ep->desc)
1454				     & 0x1800) >> 11;
1455			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1456		}
1457		/* Fall through */
1458	case USB_SPEED_FULL:
1459	case USB_SPEED_LOW:
1460		max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1461		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1462		break;
1463	default:
1464		BUG();
1465	}
 
 
1466	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1467	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1468
1469	/*
1470	 * XXX no idea how to calculate the average TRB buffer length for bulk
1471	 * endpoints, as the driver gives us no clue how big each scatter gather
1472	 * list entry (or buffer) is going to be.
1473	 *
1474	 * For isochronous and interrupt endpoints, we set it to the max
1475	 * available, until we have new API in the USB core to allow drivers to
1476	 * declare how much bandwidth they actually need.
1477	 *
1478	 * Normally, it would be calculated by taking the total of the buffer
1479	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1480	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1481	 * use Event Data TRBs, and we don't chain in a link TRB on short
1482	 * transfers, we're basically dividing by 1.
1483	 *
1484	 * xHCI 1.0 specification indicates that the Average TRB Length should
1485	 * be set to 8 for control endpoints.
1486	 */
1487	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1488		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1489	else
1490		ep_ctx->tx_info |=
1491			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1492
1493	/* FIXME Debug endpoint context */
1494	return 0;
1495}
1496
1497void xhci_endpoint_zero(struct xhci_hcd *xhci,
1498		struct xhci_virt_device *virt_dev,
1499		struct usb_host_endpoint *ep)
1500{
1501	unsigned int ep_index;
1502	struct xhci_ep_ctx *ep_ctx;
1503
1504	ep_index = xhci_get_endpoint_index(&ep->desc);
1505	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1506
1507	ep_ctx->ep_info = 0;
1508	ep_ctx->ep_info2 = 0;
1509	ep_ctx->deq = 0;
1510	ep_ctx->tx_info = 0;
1511	/* Don't free the endpoint ring until the set interface or configuration
1512	 * request succeeds.
1513	 */
1514}
1515
1516void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1517{
1518	bw_info->ep_interval = 0;
1519	bw_info->mult = 0;
1520	bw_info->num_packets = 0;
1521	bw_info->max_packet_size = 0;
1522	bw_info->type = 0;
1523	bw_info->max_esit_payload = 0;
1524}
1525
1526void xhci_update_bw_info(struct xhci_hcd *xhci,
1527		struct xhci_container_ctx *in_ctx,
1528		struct xhci_input_control_ctx *ctrl_ctx,
1529		struct xhci_virt_device *virt_dev)
1530{
1531	struct xhci_bw_info *bw_info;
1532	struct xhci_ep_ctx *ep_ctx;
1533	unsigned int ep_type;
1534	int i;
1535
1536	for (i = 1; i < 31; ++i) {
1537		bw_info = &virt_dev->eps[i].bw_info;
1538
1539		/* We can't tell what endpoint type is being dropped, but
1540		 * unconditionally clearing the bandwidth info for non-periodic
1541		 * endpoints should be harmless because the info will never be
1542		 * set in the first place.
1543		 */
1544		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1545			/* Dropped endpoint */
1546			xhci_clear_endpoint_bw_info(bw_info);
1547			continue;
1548		}
1549
1550		if (EP_IS_ADDED(ctrl_ctx, i)) {
1551			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1552			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1553
1554			/* Ignore non-periodic endpoints */
1555			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1556					ep_type != ISOC_IN_EP &&
1557					ep_type != INT_IN_EP)
1558				continue;
1559
1560			/* Added or changed endpoint */
1561			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1562					le32_to_cpu(ep_ctx->ep_info));
1563			/* Number of packets and mult are zero-based in the
1564			 * input context, but we want one-based for the
1565			 * interval table.
1566			 */
1567			bw_info->mult = CTX_TO_EP_MULT(
1568					le32_to_cpu(ep_ctx->ep_info)) + 1;
1569			bw_info->num_packets = CTX_TO_MAX_BURST(
1570					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1571			bw_info->max_packet_size = MAX_PACKET_DECODED(
1572					le32_to_cpu(ep_ctx->ep_info2));
1573			bw_info->type = ep_type;
1574			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1575					le32_to_cpu(ep_ctx->tx_info));
1576		}
1577	}
1578}
1579
1580/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1581 * Useful when you want to change one particular aspect of the endpoint and then
1582 * issue a configure endpoint command.
1583 */
1584void xhci_endpoint_copy(struct xhci_hcd *xhci,
1585		struct xhci_container_ctx *in_ctx,
1586		struct xhci_container_ctx *out_ctx,
1587		unsigned int ep_index)
1588{
1589	struct xhci_ep_ctx *out_ep_ctx;
1590	struct xhci_ep_ctx *in_ep_ctx;
1591
1592	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1593	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1594
1595	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1596	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1597	in_ep_ctx->deq = out_ep_ctx->deq;
1598	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1599}
1600
1601/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602 * Useful when you want to change one particular aspect of the endpoint and then
1603 * issue a configure endpoint command.  Only the context entries field matters,
1604 * but we'll copy the whole thing anyway.
1605 */
1606void xhci_slot_copy(struct xhci_hcd *xhci,
1607		struct xhci_container_ctx *in_ctx,
1608		struct xhci_container_ctx *out_ctx)
1609{
1610	struct xhci_slot_ctx *in_slot_ctx;
1611	struct xhci_slot_ctx *out_slot_ctx;
1612
1613	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1614	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1615
1616	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620}
1621
1622/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624{
1625	int i;
1626	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1627	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628
1629	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
 
1630
1631	if (!num_sp)
1632		return 0;
1633
1634	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1635	if (!xhci->scratchpad)
1636		goto fail_sp;
1637
1638	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1639				     num_sp * sizeof(u64),
1640				     &xhci->scratchpad->sp_dma, flags);
1641	if (!xhci->scratchpad->sp_array)
1642		goto fail_sp2;
1643
1644	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1645	if (!xhci->scratchpad->sp_buffers)
1646		goto fail_sp3;
1647
1648	xhci->scratchpad->sp_dma_buffers =
1649		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1650
1651	if (!xhci->scratchpad->sp_dma_buffers)
1652		goto fail_sp4;
1653
1654	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1655	for (i = 0; i < num_sp; i++) {
1656		dma_addr_t dma;
1657		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1658				flags);
1659		if (!buf)
1660			goto fail_sp5;
1661
1662		xhci->scratchpad->sp_array[i] = dma;
1663		xhci->scratchpad->sp_buffers[i] = buf;
1664		xhci->scratchpad->sp_dma_buffers[i] = dma;
1665	}
1666
1667	return 0;
1668
1669 fail_sp5:
1670	for (i = i - 1; i >= 0; i--) {
1671		dma_free_coherent(dev, xhci->page_size,
1672				    xhci->scratchpad->sp_buffers[i],
1673				    xhci->scratchpad->sp_dma_buffers[i]);
1674	}
1675	kfree(xhci->scratchpad->sp_dma_buffers);
1676
1677 fail_sp4:
1678	kfree(xhci->scratchpad->sp_buffers);
1679
1680 fail_sp3:
1681	dma_free_coherent(dev, num_sp * sizeof(u64),
1682			    xhci->scratchpad->sp_array,
1683			    xhci->scratchpad->sp_dma);
1684
1685 fail_sp2:
1686	kfree(xhci->scratchpad);
1687	xhci->scratchpad = NULL;
1688
1689 fail_sp:
1690	return -ENOMEM;
1691}
1692
1693static void scratchpad_free(struct xhci_hcd *xhci)
1694{
1695	int num_sp;
1696	int i;
1697	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1698
1699	if (!xhci->scratchpad)
1700		return;
1701
1702	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703
1704	for (i = 0; i < num_sp; i++) {
1705		dma_free_coherent(&pdev->dev, xhci->page_size,
1706				    xhci->scratchpad->sp_buffers[i],
1707				    xhci->scratchpad->sp_dma_buffers[i]);
1708	}
1709	kfree(xhci->scratchpad->sp_dma_buffers);
1710	kfree(xhci->scratchpad->sp_buffers);
1711	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1712			    xhci->scratchpad->sp_array,
1713			    xhci->scratchpad->sp_dma);
1714	kfree(xhci->scratchpad);
1715	xhci->scratchpad = NULL;
1716}
1717
1718struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1719		bool allocate_in_ctx, bool allocate_completion,
1720		gfp_t mem_flags)
1721{
1722	struct xhci_command *command;
1723
1724	command = kzalloc(sizeof(*command), mem_flags);
1725	if (!command)
1726		return NULL;
1727
1728	if (allocate_in_ctx) {
1729		command->in_ctx =
1730			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1731					mem_flags);
1732		if (!command->in_ctx) {
1733			kfree(command);
1734			return NULL;
1735		}
1736	}
1737
1738	if (allocate_completion) {
1739		command->completion =
1740			kzalloc(sizeof(struct completion), mem_flags);
1741		if (!command->completion) {
1742			xhci_free_container_ctx(xhci, command->in_ctx);
1743			kfree(command);
1744			return NULL;
1745		}
1746		init_completion(command->completion);
1747	}
1748
1749	command->status = 0;
1750	INIT_LIST_HEAD(&command->cmd_list);
1751	return command;
1752}
1753
1754void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1755{
1756	if (urb_priv) {
1757		kfree(urb_priv->td[0]);
1758		kfree(urb_priv);
1759	}
1760}
1761
1762void xhci_free_command(struct xhci_hcd *xhci,
1763		struct xhci_command *command)
1764{
1765	xhci_free_container_ctx(xhci,
1766			command->in_ctx);
1767	kfree(command->completion);
1768	kfree(command);
1769}
1770
1771void xhci_mem_cleanup(struct xhci_hcd *xhci)
1772{
1773	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1774	struct dev_info	*dev_info, *next;
1775	struct xhci_cd  *cur_cd, *next_cd;
1776	unsigned long	flags;
1777	int size;
1778	int i, j, num_ports;
1779
1780	/* Free the Event Ring Segment Table and the actual Event Ring */
1781	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1782	if (xhci->erst.entries)
1783		dma_free_coherent(&pdev->dev, size,
1784				xhci->erst.entries, xhci->erst.erst_dma_addr);
1785	xhci->erst.entries = NULL;
1786	xhci_dbg(xhci, "Freed ERST\n");
1787	if (xhci->event_ring)
1788		xhci_ring_free(xhci, xhci->event_ring);
1789	xhci->event_ring = NULL;
1790	xhci_dbg(xhci, "Freed event ring\n");
1791
1792	if (xhci->lpm_command)
1793		xhci_free_command(xhci, xhci->lpm_command);
1794	xhci->cmd_ring_reserved_trbs = 0;
1795	if (xhci->cmd_ring)
1796		xhci_ring_free(xhci, xhci->cmd_ring);
1797	xhci->cmd_ring = NULL;
1798	xhci_dbg(xhci, "Freed command ring\n");
1799	list_for_each_entry_safe(cur_cd, next_cd,
1800			&xhci->cancel_cmd_list, cancel_cmd_list) {
1801		list_del(&cur_cd->cancel_cmd_list);
1802		kfree(cur_cd);
1803	}
1804
 
 
 
 
 
 
 
 
 
 
1805	for (i = 1; i < MAX_HC_SLOTS; ++i)
1806		xhci_free_virt_device(xhci, i);
1807
1808	if (xhci->segment_pool)
1809		dma_pool_destroy(xhci->segment_pool);
1810	xhci->segment_pool = NULL;
1811	xhci_dbg(xhci, "Freed segment pool\n");
1812
1813	if (xhci->device_pool)
1814		dma_pool_destroy(xhci->device_pool);
1815	xhci->device_pool = NULL;
1816	xhci_dbg(xhci, "Freed device context pool\n");
1817
1818	if (xhci->small_streams_pool)
1819		dma_pool_destroy(xhci->small_streams_pool);
1820	xhci->small_streams_pool = NULL;
1821	xhci_dbg(xhci, "Freed small stream array pool\n");
 
1822
1823	if (xhci->medium_streams_pool)
1824		dma_pool_destroy(xhci->medium_streams_pool);
1825	xhci->medium_streams_pool = NULL;
1826	xhci_dbg(xhci, "Freed medium stream array pool\n");
 
1827
1828	if (xhci->dcbaa)
1829		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1830				xhci->dcbaa, xhci->dcbaa->dma);
1831	xhci->dcbaa = NULL;
1832
1833	scratchpad_free(xhci);
1834
1835	spin_lock_irqsave(&xhci->lock, flags);
1836	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1837		list_del(&dev_info->list);
1838		kfree(dev_info);
1839	}
1840	spin_unlock_irqrestore(&xhci->lock, flags);
1841
1842	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1843	for (i = 0; i < num_ports; i++) {
1844		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1845		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1846			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1847			while (!list_empty(ep))
1848				list_del_init(ep->next);
1849		}
1850	}
1851
1852	for (i = 0; i < num_ports; i++) {
1853		struct xhci_tt_bw_info *tt, *n;
1854		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1855			list_del(&tt->tt_list);
1856			kfree(tt);
1857		}
1858	}
1859
 
 
1860	xhci->num_usb2_ports = 0;
1861	xhci->num_usb3_ports = 0;
1862	xhci->num_active_eps = 0;
1863	kfree(xhci->usb2_ports);
1864	kfree(xhci->usb3_ports);
1865	kfree(xhci->port_array);
1866	kfree(xhci->rh_bw);
 
1867
1868	xhci->page_size = 0;
1869	xhci->page_shift = 0;
1870	xhci->bus_state[0].bus_suspended = 0;
1871	xhci->bus_state[1].bus_suspended = 0;
1872}
1873
1874static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1875		struct xhci_segment *input_seg,
1876		union xhci_trb *start_trb,
1877		union xhci_trb *end_trb,
1878		dma_addr_t input_dma,
1879		struct xhci_segment *result_seg,
1880		char *test_name, int test_number)
1881{
1882	unsigned long long start_dma;
1883	unsigned long long end_dma;
1884	struct xhci_segment *seg;
1885
1886	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1887	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1888
1889	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1890	if (seg != result_seg) {
1891		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1892				test_name, test_number);
1893		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1894				"input DMA 0x%llx\n",
1895				input_seg,
1896				(unsigned long long) input_dma);
1897		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1898				"ending TRB %p (0x%llx DMA)\n",
1899				start_trb, start_dma,
1900				end_trb, end_dma);
1901		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1902				result_seg, seg);
1903		return -1;
1904	}
1905	return 0;
1906}
1907
1908/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1909static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1910{
1911	struct {
1912		dma_addr_t		input_dma;
1913		struct xhci_segment	*result_seg;
1914	} simple_test_vector [] = {
1915		/* A zeroed DMA field should fail */
1916		{ 0, NULL },
1917		/* One TRB before the ring start should fail */
1918		{ xhci->event_ring->first_seg->dma - 16, NULL },
1919		/* One byte before the ring start should fail */
1920		{ xhci->event_ring->first_seg->dma - 1, NULL },
1921		/* Starting TRB should succeed */
1922		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1923		/* Ending TRB should succeed */
1924		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1925			xhci->event_ring->first_seg },
1926		/* One byte after the ring end should fail */
1927		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1928		/* One TRB after the ring end should fail */
1929		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1930		/* An address of all ones should fail */
1931		{ (dma_addr_t) (~0), NULL },
1932	};
1933	struct {
1934		struct xhci_segment	*input_seg;
1935		union xhci_trb		*start_trb;
1936		union xhci_trb		*end_trb;
1937		dma_addr_t		input_dma;
1938		struct xhci_segment	*result_seg;
1939	} complex_test_vector [] = {
1940		/* Test feeding a valid DMA address from a different ring */
1941		{	.input_seg = xhci->event_ring->first_seg,
1942			.start_trb = xhci->event_ring->first_seg->trbs,
1943			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1944			.input_dma = xhci->cmd_ring->first_seg->dma,
1945			.result_seg = NULL,
1946		},
1947		/* Test feeding a valid end TRB from a different ring */
1948		{	.input_seg = xhci->event_ring->first_seg,
1949			.start_trb = xhci->event_ring->first_seg->trbs,
1950			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1951			.input_dma = xhci->cmd_ring->first_seg->dma,
1952			.result_seg = NULL,
1953		},
1954		/* Test feeding a valid start and end TRB from a different ring */
1955		{	.input_seg = xhci->event_ring->first_seg,
1956			.start_trb = xhci->cmd_ring->first_seg->trbs,
1957			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1958			.input_dma = xhci->cmd_ring->first_seg->dma,
1959			.result_seg = NULL,
1960		},
1961		/* TRB in this ring, but after this TD */
1962		{	.input_seg = xhci->event_ring->first_seg,
1963			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1964			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1965			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1966			.result_seg = NULL,
1967		},
1968		/* TRB in this ring, but before this TD */
1969		{	.input_seg = xhci->event_ring->first_seg,
1970			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1971			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1972			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1973			.result_seg = NULL,
1974		},
1975		/* TRB in this ring, but after this wrapped TD */
1976		{	.input_seg = xhci->event_ring->first_seg,
1977			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1978			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1979			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1980			.result_seg = NULL,
1981		},
1982		/* TRB in this ring, but before this wrapped TD */
1983		{	.input_seg = xhci->event_ring->first_seg,
1984			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1985			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1986			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1987			.result_seg = NULL,
1988		},
1989		/* TRB not in this ring, and we have a wrapped TD */
1990		{	.input_seg = xhci->event_ring->first_seg,
1991			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1992			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1993			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1994			.result_seg = NULL,
1995		},
1996	};
1997
1998	unsigned int num_tests;
1999	int i, ret;
2000
2001	num_tests = ARRAY_SIZE(simple_test_vector);
2002	for (i = 0; i < num_tests; i++) {
2003		ret = xhci_test_trb_in_td(xhci,
2004				xhci->event_ring->first_seg,
2005				xhci->event_ring->first_seg->trbs,
2006				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2007				simple_test_vector[i].input_dma,
2008				simple_test_vector[i].result_seg,
2009				"Simple", i);
2010		if (ret < 0)
2011			return ret;
2012	}
2013
2014	num_tests = ARRAY_SIZE(complex_test_vector);
2015	for (i = 0; i < num_tests; i++) {
2016		ret = xhci_test_trb_in_td(xhci,
2017				complex_test_vector[i].input_seg,
2018				complex_test_vector[i].start_trb,
2019				complex_test_vector[i].end_trb,
2020				complex_test_vector[i].input_dma,
2021				complex_test_vector[i].result_seg,
2022				"Complex", i);
2023		if (ret < 0)
2024			return ret;
2025	}
2026	xhci_dbg(xhci, "TRB math tests passed.\n");
2027	return 0;
2028}
2029
2030static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2031{
2032	u64 temp;
2033	dma_addr_t deq;
2034
2035	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2036			xhci->event_ring->dequeue);
2037	if (deq == 0 && !in_interrupt())
2038		xhci_warn(xhci, "WARN something wrong with SW event ring "
2039				"dequeue ptr.\n");
2040	/* Update HC event ring dequeue pointer */
2041	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2042	temp &= ERST_PTR_MASK;
2043	/* Don't clear the EHB bit (which is RW1C) because
2044	 * there might be more events to service.
2045	 */
2046	temp &= ~ERST_EHB;
2047	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2048			"preserving EHB bit\n");
 
2049	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2050			&xhci->ir_set->erst_dequeue);
2051}
2052
2053static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2054		__le32 __iomem *addr, u8 major_revision)
2055{
2056	u32 temp, port_offset, port_count;
2057	int i;
2058
2059	if (major_revision > 0x03) {
2060		xhci_warn(xhci, "Ignoring unknown port speed, "
2061				"Ext Cap %p, revision = 0x%x\n",
2062				addr, major_revision);
2063		/* Ignoring port protocol we can't understand. FIXME */
2064		return;
2065	}
2066
2067	/* Port offset and count in the third dword, see section 7.2 */
2068	temp = xhci_readl(xhci, addr + 2);
2069	port_offset = XHCI_EXT_PORT_OFF(temp);
2070	port_count = XHCI_EXT_PORT_COUNT(temp);
2071	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2072			"count = %u, revision = 0x%x\n",
 
2073			addr, port_offset, port_count, major_revision);
2074	/* Port count includes the current port offset */
2075	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2076		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2077		return;
2078
 
 
 
 
2079	/* Check the host's USB2 LPM capability */
2080	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2081			(temp & XHCI_L1C)) {
2082		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
 
2083		xhci->sw_lpm_support = 1;
2084	}
2085
2086	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2087		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
 
2088		xhci->sw_lpm_support = 1;
2089		if (temp & XHCI_HLC) {
2090			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
 
2091			xhci->hw_lpm_support = 1;
2092		}
2093	}
2094
2095	port_offset--;
2096	for (i = port_offset; i < (port_offset + port_count); i++) {
2097		/* Duplicate entry.  Ignore the port if the revisions differ. */
2098		if (xhci->port_array[i] != 0) {
2099			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2100					" port %u\n", addr, i);
2101			xhci_warn(xhci, "Port was marked as USB %u, "
2102					"duplicated as USB %u\n",
2103					xhci->port_array[i], major_revision);
2104			/* Only adjust the roothub port counts if we haven't
2105			 * found a similar duplicate.
2106			 */
2107			if (xhci->port_array[i] != major_revision &&
2108				xhci->port_array[i] != DUPLICATE_ENTRY) {
2109				if (xhci->port_array[i] == 0x03)
2110					xhci->num_usb3_ports--;
2111				else
2112					xhci->num_usb2_ports--;
2113				xhci->port_array[i] = DUPLICATE_ENTRY;
2114			}
2115			/* FIXME: Should we disable the port? */
2116			continue;
2117		}
2118		xhci->port_array[i] = major_revision;
2119		if (major_revision == 0x03)
2120			xhci->num_usb3_ports++;
2121		else
2122			xhci->num_usb2_ports++;
2123	}
2124	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2125}
2126
2127/*
2128 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2129 * specify what speeds each port is supposed to be.  We can't count on the port
2130 * speed bits in the PORTSC register being correct until a device is connected,
2131 * but we need to set up the two fake roothubs with the correct number of USB
2132 * 3.0 and USB 2.0 ports at host controller initialization time.
2133 */
2134static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2135{
2136	__le32 __iomem *addr;
2137	u32 offset;
2138	unsigned int num_ports;
2139	int i, j, port_index;
 
2140
2141	addr = &xhci->cap_regs->hcc_params;
2142	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2143	if (offset == 0) {
2144		xhci_err(xhci, "No Extended Capability registers, "
2145				"unable to set up roothub.\n");
2146		return -ENODEV;
2147	}
2148
2149	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2150	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2151	if (!xhci->port_array)
2152		return -ENOMEM;
2153
2154	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2155	if (!xhci->rh_bw)
2156		return -ENOMEM;
2157	for (i = 0; i < num_ports; i++) {
2158		struct xhci_interval_bw_table *bw_table;
2159
2160		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2161		bw_table = &xhci->rh_bw[i].bw_table;
2162		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2163			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2164	}
2165
2166	/*
2167	 * For whatever reason, the first capability offset is from the
2168	 * capability register base, not from the HCCPARAMS register.
2169	 * See section 5.3.6 for offset calculation.
2170	 */
2171	addr = &xhci->cap_regs->hc_capbase + offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172	while (1) {
2173		u32 cap_id;
2174
2175		cap_id = xhci_readl(xhci, addr);
2176		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2177			xhci_add_in_port(xhci, num_ports, addr,
2178					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
 
2179		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2180		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2181				== num_ports)
2182			break;
2183		/*
2184		 * Once you're into the Extended Capabilities, the offset is
2185		 * always relative to the register holding the offset.
2186		 */
2187		addr += offset;
2188	}
2189
2190	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2191		xhci_warn(xhci, "No ports on the roothubs?\n");
2192		return -ENODEV;
2193	}
2194	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
 
2195			xhci->num_usb2_ports, xhci->num_usb3_ports);
2196
2197	/* Place limits on the number of roothub ports so that the hub
2198	 * descriptors aren't longer than the USB core will allocate.
2199	 */
2200	if (xhci->num_usb3_ports > 15) {
2201		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
 
2202		xhci->num_usb3_ports = 15;
2203	}
2204	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2205		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
 
2206				USB_MAXCHILDREN);
2207		xhci->num_usb2_ports = USB_MAXCHILDREN;
2208	}
2209
2210	/*
2211	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2212	 * Not sure how the USB core will handle a hub with no ports...
2213	 */
2214	if (xhci->num_usb2_ports) {
2215		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2216				xhci->num_usb2_ports, flags);
2217		if (!xhci->usb2_ports)
2218			return -ENOMEM;
2219
2220		port_index = 0;
2221		for (i = 0; i < num_ports; i++) {
2222			if (xhci->port_array[i] == 0x03 ||
2223					xhci->port_array[i] == 0 ||
2224					xhci->port_array[i] == DUPLICATE_ENTRY)
2225				continue;
2226
2227			xhci->usb2_ports[port_index] =
2228				&xhci->op_regs->port_status_base +
2229				NUM_PORT_REGS*i;
2230			xhci_dbg(xhci, "USB 2.0 port at index %u, "
2231					"addr = %p\n", i,
 
2232					xhci->usb2_ports[port_index]);
2233			port_index++;
2234			if (port_index == xhci->num_usb2_ports)
2235				break;
2236		}
2237	}
2238	if (xhci->num_usb3_ports) {
2239		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2240				xhci->num_usb3_ports, flags);
2241		if (!xhci->usb3_ports)
2242			return -ENOMEM;
2243
2244		port_index = 0;
2245		for (i = 0; i < num_ports; i++)
2246			if (xhci->port_array[i] == 0x03) {
2247				xhci->usb3_ports[port_index] =
2248					&xhci->op_regs->port_status_base +
2249					NUM_PORT_REGS*i;
2250				xhci_dbg(xhci, "USB 3.0 port at index %u, "
2251						"addr = %p\n", i,
 
2252						xhci->usb3_ports[port_index]);
2253				port_index++;
2254				if (port_index == xhci->num_usb3_ports)
2255					break;
2256			}
2257	}
2258	return 0;
2259}
2260
2261int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2262{
2263	dma_addr_t	dma;
2264	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2265	unsigned int	val, val2;
2266	u64		val_64;
2267	struct xhci_segment	*seg;
2268	u32 page_size, temp;
2269	int i;
2270
2271	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2272	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
 
 
 
2273	for (i = 0; i < 16; i++) {
2274		if ((0x1 & page_size) != 0)
2275			break;
2276		page_size = page_size >> 1;
2277	}
2278	if (i < 16)
2279		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
 
2280	else
2281		xhci_warn(xhci, "WARN: no supported page size\n");
2282	/* Use 4K pages, since that's common and the minimum the HC supports */
2283	xhci->page_shift = 12;
2284	xhci->page_size = 1 << xhci->page_shift;
2285	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
 
2286
2287	/*
2288	 * Program the Number of Device Slots Enabled field in the CONFIG
2289	 * register with the max value of slots the HC can handle.
2290	 */
2291	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2292	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2293			(unsigned int) val);
2294	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2295	val |= (val2 & ~HCS_SLOTS_MASK);
2296	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2297			(unsigned int) val);
2298	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2299
2300	/*
2301	 * Section 5.4.8 - doorbell array must be
2302	 * "physically contiguous and 64-byte (cache line) aligned".
2303	 */
2304	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2305			GFP_KERNEL);
2306	if (!xhci->dcbaa)
2307		goto fail;
2308	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2309	xhci->dcbaa->dma = dma;
2310	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
 
2311			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2312	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2313
2314	/*
2315	 * Initialize the ring segment pool.  The ring must be a contiguous
2316	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2317	 * however, the command ring segment needs 64-byte aligned segments,
2318	 * so we pick the greater alignment need.
 
2319	 */
2320	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2321			SEGMENT_SIZE, 64, xhci->page_size);
2322
2323	/* See Table 46 and Note on Figure 55 */
2324	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2325			2112, 64, xhci->page_size);
2326	if (!xhci->segment_pool || !xhci->device_pool)
2327		goto fail;
2328
2329	/* Linear stream context arrays don't have any boundary restrictions,
2330	 * and only need to be 16-byte aligned.
2331	 */
2332	xhci->small_streams_pool =
2333		dma_pool_create("xHCI 256 byte stream ctx arrays",
2334			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2335	xhci->medium_streams_pool =
2336		dma_pool_create("xHCI 1KB stream ctx arrays",
2337			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2338	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2339	 * will be allocated with dma_alloc_coherent()
2340	 */
2341
2342	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2343		goto fail;
2344
2345	/* Set up the command ring to have one segments for now. */
2346	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2347	if (!xhci->cmd_ring)
2348		goto fail;
2349	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2350	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2351	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2352			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2353
2354	/* Set the address in the Command Ring Control register */
2355	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2356	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2357		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2358		xhci->cmd_ring->cycle_state;
2359	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
 
2360	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2361	xhci_dbg_cmd_ptrs(xhci);
2362
2363	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2364	if (!xhci->lpm_command)
2365		goto fail;
2366
2367	/* Reserve one command ring TRB for disabling LPM.
2368	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2369	 * disabling LPM, we only need to reserve one TRB for all devices.
2370	 */
2371	xhci->cmd_ring_reserved_trbs++;
2372
2373	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2374	val &= DBOFF_MASK;
2375	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2376			" from cap regs base addr\n", val);
 
2377	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2378	xhci_dbg_regs(xhci);
2379	xhci_print_run_regs(xhci);
2380	/* Set ir_set to interrupt register set 0 */
2381	xhci->ir_set = &xhci->run_regs->ir_set[0];
2382
2383	/*
2384	 * Event ring setup: Allocate a normal ring, but also setup
2385	 * the event ring segment table (ERST).  Section 4.9.3.
2386	 */
2387	xhci_dbg(xhci, "// Allocating event ring\n");
2388	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2389						flags);
2390	if (!xhci->event_ring)
2391		goto fail;
2392	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2393		goto fail;
2394
2395	xhci->erst.entries = dma_alloc_coherent(dev,
2396			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2397			GFP_KERNEL);
2398	if (!xhci->erst.entries)
2399		goto fail;
2400	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
 
2401			(unsigned long long)dma);
2402
2403	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2404	xhci->erst.num_entries = ERST_NUM_SEGS;
2405	xhci->erst.erst_dma_addr = dma;
2406	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
 
2407			xhci->erst.num_entries,
2408			xhci->erst.entries,
2409			(unsigned long long)xhci->erst.erst_dma_addr);
2410
2411	/* set ring base address and size for each segment table entry */
2412	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2413		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2414		entry->seg_addr = cpu_to_le64(seg->dma);
2415		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2416		entry->rsvd = 0;
2417		seg = seg->next;
2418	}
2419
2420	/* set ERST count with the number of entries in the segment table */
2421	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2422	val &= ERST_SIZE_MASK;
2423	val |= ERST_NUM_SEGS;
2424	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
 
2425			val);
2426	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2427
2428	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
 
2429	/* set the segment table base address */
2430	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
 
2431			(unsigned long long)xhci->erst.erst_dma_addr);
2432	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2433	val_64 &= ERST_PTR_MASK;
2434	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2435	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2436
2437	/* Set the event ring dequeue address */
2438	xhci_set_hc_event_deq(xhci);
2439	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
 
2440	xhci_print_ir_set(xhci, 0);
2441
2442	/*
2443	 * XXX: Might need to set the Interrupter Moderation Register to
2444	 * something other than the default (~1ms minimum between interrupts).
2445	 * See section 5.5.1.2.
2446	 */
2447	init_completion(&xhci->addr_dev);
2448	for (i = 0; i < MAX_HC_SLOTS; ++i)
2449		xhci->devs[i] = NULL;
2450	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2451		xhci->bus_state[0].resume_done[i] = 0;
2452		xhci->bus_state[1].resume_done[i] = 0;
 
 
2453	}
2454
2455	if (scratchpad_alloc(xhci, flags))
2456		goto fail;
2457	if (xhci_setup_port_arrays(xhci, flags))
2458		goto fail;
2459
2460	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2461
2462	/* Enable USB 3.0 device notifications for function remote wake, which
2463	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2464	 * U3 (device suspend).
2465	 */
2466	temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2467	temp &= ~DEV_NOTE_MASK;
2468	temp |= DEV_NOTE_FWAKE;
2469	xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2470
2471	return 0;
2472
2473fail:
2474	xhci_warn(xhci, "Couldn't initialize memory\n");
2475	xhci_halt(xhci);
2476	xhci_reset(xhci);
2477	xhci_mem_cleanup(xhci);
2478	return -ENOMEM;
2479}