Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * This file is part of the Chelsio FCoE driver for Linux.
   3 *
   4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/device.h>
  36#include <linux/delay.h>
  37#include <linux/ctype.h>
  38#include <linux/kernel.h>
  39#include <linux/slab.h>
  40#include <linux/string.h>
  41#include <linux/compiler.h>
  42#include <linux/export.h>
  43#include <linux/module.h>
  44#include <asm/unaligned.h>
  45#include <asm/page.h>
  46#include <scsi/scsi.h>
  47#include <scsi/scsi_device.h>
  48#include <scsi/scsi_transport_fc.h>
  49
  50#include "csio_hw.h"
  51#include "csio_lnode.h"
  52#include "csio_rnode.h"
  53#include "csio_scsi.h"
  54#include "csio_init.h"
  55
  56int csio_scsi_eqsize = 65536;
  57int csio_scsi_iqlen = 128;
  58int csio_scsi_ioreqs = 2048;
  59uint32_t csio_max_scan_tmo;
  60uint32_t csio_delta_scan_tmo = 5;
  61int csio_lun_qdepth = 32;
  62
  63static int csio_ddp_descs = 128;
  64
  65static int csio_do_abrt_cls(struct csio_hw *,
  66				      struct csio_ioreq *, bool);
  67
  68static void csio_scsis_uninit(struct csio_ioreq *, enum csio_scsi_ev);
  69static void csio_scsis_io_active(struct csio_ioreq *, enum csio_scsi_ev);
  70static void csio_scsis_tm_active(struct csio_ioreq *, enum csio_scsi_ev);
  71static void csio_scsis_aborting(struct csio_ioreq *, enum csio_scsi_ev);
  72static void csio_scsis_closing(struct csio_ioreq *, enum csio_scsi_ev);
  73static void csio_scsis_shost_cmpl_await(struct csio_ioreq *, enum csio_scsi_ev);
  74
  75/*
  76 * csio_scsi_match_io - Match an ioreq with the given SCSI level data.
  77 * @ioreq: The I/O request
  78 * @sld: Level information
  79 *
  80 * Should be called with lock held.
  81 *
  82 */
  83static bool
  84csio_scsi_match_io(struct csio_ioreq *ioreq, struct csio_scsi_level_data *sld)
  85{
  86	struct scsi_cmnd *scmnd = csio_scsi_cmnd(ioreq);
  87
  88	switch (sld->level) {
  89	case CSIO_LEV_LUN:
  90		if (scmnd == NULL)
  91			return false;
  92
  93		return ((ioreq->lnode == sld->lnode) &&
  94			(ioreq->rnode == sld->rnode) &&
  95			((uint64_t)scmnd->device->lun == sld->oslun));
  96
  97	case CSIO_LEV_RNODE:
  98		return ((ioreq->lnode == sld->lnode) &&
  99				(ioreq->rnode == sld->rnode));
 100	case CSIO_LEV_LNODE:
 101		return (ioreq->lnode == sld->lnode);
 102	case CSIO_LEV_ALL:
 103		return true;
 104	default:
 105		return false;
 106	}
 107}
 108
 109/*
 110 * csio_scsi_gather_active_ios - Gather active I/Os based on level
 111 * @scm: SCSI module
 112 * @sld: Level information
 113 * @dest: The queue where these I/Os have to be gathered.
 114 *
 115 * Should be called with lock held.
 116 */
 117static void
 118csio_scsi_gather_active_ios(struct csio_scsim *scm,
 119			    struct csio_scsi_level_data *sld,
 120			    struct list_head *dest)
 121{
 122	struct list_head *tmp, *next;
 123
 124	if (list_empty(&scm->active_q))
 125		return;
 126
 127	/* Just splice the entire active_q into dest */
 128	if (sld->level == CSIO_LEV_ALL) {
 129		list_splice_tail_init(&scm->active_q, dest);
 130		return;
 131	}
 132
 133	list_for_each_safe(tmp, next, &scm->active_q) {
 134		if (csio_scsi_match_io((struct csio_ioreq *)tmp, sld)) {
 135			list_del_init(tmp);
 136			list_add_tail(tmp, dest);
 137		}
 138	}
 139}
 140
 141static inline bool
 142csio_scsi_itnexus_loss_error(uint16_t error)
 143{
 144	switch (error) {
 145	case FW_ERR_LINK_DOWN:
 146	case FW_RDEV_NOT_READY:
 147	case FW_ERR_RDEV_LOST:
 148	case FW_ERR_RDEV_LOGO:
 149	case FW_ERR_RDEV_IMPL_LOGO:
 150		return 1;
 151	}
 152	return 0;
 153}
 154
 155static inline void
 156csio_scsi_tag(struct scsi_cmnd *scmnd, uint8_t *tag, uint8_t hq,
 157	      uint8_t oq, uint8_t sq)
 158{
 159	char stag[2];
 160
 161	if (scsi_populate_tag_msg(scmnd, stag)) {
 162		switch (stag[0]) {
 163		case HEAD_OF_QUEUE_TAG:
 164			*tag = hq;
 165			break;
 166		case ORDERED_QUEUE_TAG:
 167			*tag = oq;
 168			break;
 169		default:
 170			*tag = sq;
 171			break;
 172		}
 173	} else
 174		*tag = 0;
 175}
 176
 177/*
 178 * csio_scsi_fcp_cmnd - Frame the SCSI FCP command paylod.
 179 * @req: IO req structure.
 180 * @addr: DMA location to place the payload.
 181 *
 182 * This routine is shared between FCP_WRITE, FCP_READ and FCP_CMD requests.
 183 */
 184static inline void
 185csio_scsi_fcp_cmnd(struct csio_ioreq *req, void *addr)
 186{
 187	struct fcp_cmnd *fcp_cmnd = (struct fcp_cmnd *)addr;
 188	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
 189
 190	/* Check for Task Management */
 191	if (likely(scmnd->SCp.Message == 0)) {
 192		int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun);
 193		fcp_cmnd->fc_tm_flags = 0;
 194		fcp_cmnd->fc_cmdref = 0;
 195		fcp_cmnd->fc_pri_ta = 0;
 196
 197		memcpy(fcp_cmnd->fc_cdb, scmnd->cmnd, 16);
 198		csio_scsi_tag(scmnd, &fcp_cmnd->fc_pri_ta,
 199			      FCP_PTA_HEADQ, FCP_PTA_ORDERED, FCP_PTA_SIMPLE);
 200		fcp_cmnd->fc_dl = cpu_to_be32(scsi_bufflen(scmnd));
 201
 202		if (req->nsge)
 203			if (req->datadir == DMA_TO_DEVICE)
 204				fcp_cmnd->fc_flags = FCP_CFL_WRDATA;
 205			else
 206				fcp_cmnd->fc_flags = FCP_CFL_RDDATA;
 207		else
 208			fcp_cmnd->fc_flags = 0;
 209	} else {
 210		memset(fcp_cmnd, 0, sizeof(*fcp_cmnd));
 211		int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun);
 212		fcp_cmnd->fc_tm_flags = (uint8_t)scmnd->SCp.Message;
 213	}
 214}
 215
 216/*
 217 * csio_scsi_init_cmd_wr - Initialize the SCSI CMD WR.
 218 * @req: IO req structure.
 219 * @addr: DMA location to place the payload.
 220 * @size: Size of WR (including FW WR + immed data + rsp SG entry
 221 *
 222 * Wrapper for populating fw_scsi_cmd_wr.
 223 */
 224static inline void
 225csio_scsi_init_cmd_wr(struct csio_ioreq *req, void *addr, uint32_t size)
 226{
 227	struct csio_hw *hw = req->lnode->hwp;
 228	struct csio_rnode *rn = req->rnode;
 229	struct fw_scsi_cmd_wr *wr = (struct fw_scsi_cmd_wr *)addr;
 230	struct csio_dma_buf *dma_buf;
 231	uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
 232
 233	wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_CMD_WR) |
 234					  FW_SCSI_CMD_WR_IMMDLEN(imm));
 235	wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) |
 236					    FW_WR_LEN16(
 237						DIV_ROUND_UP(size, 16)));
 238
 239	wr->cookie = (uintptr_t) req;
 240	wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
 241	wr->tmo_val = (uint8_t) req->tmo;
 242	wr->r3 = 0;
 243	memset(&wr->r5, 0, 8);
 244
 245	/* Get RSP DMA buffer */
 246	dma_buf = &req->dma_buf;
 247
 248	/* Prepare RSP SGL */
 249	wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
 250	wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
 251
 252	wr->r6 = 0;
 253
 254	wr->u.fcoe.ctl_pri = 0;
 255	wr->u.fcoe.cp_en_class = 0;
 256	wr->u.fcoe.r4_lo[0] = 0;
 257	wr->u.fcoe.r4_lo[1] = 0;
 258
 259	/* Frame a FCP command */
 260	csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)addr +
 261				    sizeof(struct fw_scsi_cmd_wr)));
 262}
 263
 264#define CSIO_SCSI_CMD_WR_SZ(_imm)					\
 265	(sizeof(struct fw_scsi_cmd_wr) +		/* WR size */	\
 266	 ALIGN((_imm), 16))				/* Immed data */
 267
 268#define CSIO_SCSI_CMD_WR_SZ_16(_imm)					\
 269			(ALIGN(CSIO_SCSI_CMD_WR_SZ((_imm)), 16))
 270
 271/*
 272 * csio_scsi_cmd - Create a SCSI CMD WR.
 273 * @req: IO req structure.
 274 *
 275 * Gets a WR slot in the ingress queue and initializes it with SCSI CMD WR.
 276 *
 277 */
 278static inline void
 279csio_scsi_cmd(struct csio_ioreq *req)
 280{
 281	struct csio_wr_pair wrp;
 282	struct csio_hw *hw = req->lnode->hwp;
 283	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
 284	uint32_t size = CSIO_SCSI_CMD_WR_SZ_16(scsim->proto_cmd_len);
 285
 286	req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
 287	if (unlikely(req->drv_status != 0))
 288		return;
 289
 290	if (wrp.size1 >= size) {
 291		/* Initialize WR in one shot */
 292		csio_scsi_init_cmd_wr(req, wrp.addr1, size);
 293	} else {
 294		uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
 295
 296		/*
 297		 * Make a temporary copy of the WR and write back
 298		 * the copy into the WR pair.
 299		 */
 300		csio_scsi_init_cmd_wr(req, (void *)tmpwr, size);
 301		memcpy(wrp.addr1, tmpwr, wrp.size1);
 302		memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
 303	}
 304}
 305
 306/*
 307 * csio_scsi_init_ulptx_dsgl - Fill in a ULP_TX_SC_DSGL
 308 * @hw: HW module
 309 * @req: IO request
 310 * @sgl: ULP TX SGL pointer.
 311 *
 312 */
 313static inline void
 314csio_scsi_init_ultptx_dsgl(struct csio_hw *hw, struct csio_ioreq *req,
 315			   struct ulptx_sgl *sgl)
 316{
 317	struct ulptx_sge_pair *sge_pair = NULL;
 318	struct scatterlist *sgel;
 319	uint32_t i = 0;
 320	uint32_t xfer_len;
 321	struct list_head *tmp;
 322	struct csio_dma_buf *dma_buf;
 323	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
 324
 325	sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_MORE |
 326				     ULPTX_NSGE(req->nsge));
 327	/* Now add the data SGLs */
 328	if (likely(!req->dcopy)) {
 329		scsi_for_each_sg(scmnd, sgel, req->nsge, i) {
 330			if (i == 0) {
 331				sgl->addr0 = cpu_to_be64(sg_dma_address(sgel));
 332				sgl->len0 = cpu_to_be32(sg_dma_len(sgel));
 333				sge_pair = (struct ulptx_sge_pair *)(sgl + 1);
 334				continue;
 335			}
 336			if ((i - 1) & 0x1) {
 337				sge_pair->addr[1] = cpu_to_be64(
 338							sg_dma_address(sgel));
 339				sge_pair->len[1] = cpu_to_be32(
 340							sg_dma_len(sgel));
 341				sge_pair++;
 342			} else {
 343				sge_pair->addr[0] = cpu_to_be64(
 344							sg_dma_address(sgel));
 345				sge_pair->len[0] = cpu_to_be32(
 346							sg_dma_len(sgel));
 347			}
 348		}
 349	} else {
 350		/* Program sg elements with driver's DDP buffer */
 351		xfer_len = scsi_bufflen(scmnd);
 352		list_for_each(tmp, &req->gen_list) {
 353			dma_buf = (struct csio_dma_buf *)tmp;
 354			if (i == 0) {
 355				sgl->addr0 = cpu_to_be64(dma_buf->paddr);
 356				sgl->len0 = cpu_to_be32(
 357						min(xfer_len, dma_buf->len));
 358				sge_pair = (struct ulptx_sge_pair *)(sgl + 1);
 359			} else if ((i - 1) & 0x1) {
 360				sge_pair->addr[1] = cpu_to_be64(dma_buf->paddr);
 361				sge_pair->len[1] = cpu_to_be32(
 362						min(xfer_len, dma_buf->len));
 363				sge_pair++;
 364			} else {
 365				sge_pair->addr[0] = cpu_to_be64(dma_buf->paddr);
 366				sge_pair->len[0] = cpu_to_be32(
 367						min(xfer_len, dma_buf->len));
 368			}
 369			xfer_len -= min(xfer_len, dma_buf->len);
 370			i++;
 371		}
 372	}
 373}
 374
 375/*
 376 * csio_scsi_init_read_wr - Initialize the READ SCSI WR.
 377 * @req: IO req structure.
 378 * @wrp: DMA location to place the payload.
 379 * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL
 380 *
 381 * Wrapper for populating fw_scsi_read_wr.
 382 */
 383static inline void
 384csio_scsi_init_read_wr(struct csio_ioreq *req, void *wrp, uint32_t size)
 385{
 386	struct csio_hw *hw = req->lnode->hwp;
 387	struct csio_rnode *rn = req->rnode;
 388	struct fw_scsi_read_wr *wr = (struct fw_scsi_read_wr *)wrp;
 389	struct ulptx_sgl *sgl;
 390	struct csio_dma_buf *dma_buf;
 391	uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
 392	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
 393
 394	wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_READ_WR) |
 395				     FW_SCSI_READ_WR_IMMDLEN(imm));
 396	wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) |
 397				       FW_WR_LEN16(DIV_ROUND_UP(size, 16)));
 398	wr->cookie = (uintptr_t)req;
 399	wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
 400	wr->tmo_val = (uint8_t)(req->tmo);
 401	wr->use_xfer_cnt = 1;
 402	wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
 403	wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
 404	/* Get RSP DMA buffer */
 405	dma_buf = &req->dma_buf;
 406
 407	/* Prepare RSP SGL */
 408	wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
 409	wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
 410
 411	wr->r4 = 0;
 412
 413	wr->u.fcoe.ctl_pri = 0;
 414	wr->u.fcoe.cp_en_class = 0;
 415	wr->u.fcoe.r3_lo[0] = 0;
 416	wr->u.fcoe.r3_lo[1] = 0;
 417	csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp +
 418					sizeof(struct fw_scsi_read_wr)));
 419
 420	/* Move WR pointer past command and immediate data */
 421	sgl = (struct ulptx_sgl *)((uintptr_t)wrp +
 422			      sizeof(struct fw_scsi_read_wr) + ALIGN(imm, 16));
 423
 424	/* Fill in the DSGL */
 425	csio_scsi_init_ultptx_dsgl(hw, req, sgl);
 426}
 427
 428/*
 429 * csio_scsi_init_write_wr - Initialize the WRITE SCSI WR.
 430 * @req: IO req structure.
 431 * @wrp: DMA location to place the payload.
 432 * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL
 433 *
 434 * Wrapper for populating fw_scsi_write_wr.
 435 */
 436static inline void
 437csio_scsi_init_write_wr(struct csio_ioreq *req, void *wrp, uint32_t size)
 438{
 439	struct csio_hw *hw = req->lnode->hwp;
 440	struct csio_rnode *rn = req->rnode;
 441	struct fw_scsi_write_wr *wr = (struct fw_scsi_write_wr *)wrp;
 442	struct ulptx_sgl *sgl;
 443	struct csio_dma_buf *dma_buf;
 444	uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
 445	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
 446
 447	wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_WRITE_WR) |
 448				     FW_SCSI_WRITE_WR_IMMDLEN(imm));
 449	wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) |
 450				       FW_WR_LEN16(DIV_ROUND_UP(size, 16)));
 451	wr->cookie = (uintptr_t)req;
 452	wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
 453	wr->tmo_val = (uint8_t)(req->tmo);
 454	wr->use_xfer_cnt = 1;
 455	wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
 456	wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
 457	/* Get RSP DMA buffer */
 458	dma_buf = &req->dma_buf;
 459
 460	/* Prepare RSP SGL */
 461	wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
 462	wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
 463
 464	wr->r4 = 0;
 465
 466	wr->u.fcoe.ctl_pri = 0;
 467	wr->u.fcoe.cp_en_class = 0;
 468	wr->u.fcoe.r3_lo[0] = 0;
 469	wr->u.fcoe.r3_lo[1] = 0;
 470	csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp +
 471					sizeof(struct fw_scsi_write_wr)));
 472
 473	/* Move WR pointer past command and immediate data */
 474	sgl = (struct ulptx_sgl *)((uintptr_t)wrp +
 475			      sizeof(struct fw_scsi_write_wr) + ALIGN(imm, 16));
 476
 477	/* Fill in the DSGL */
 478	csio_scsi_init_ultptx_dsgl(hw, req, sgl);
 479}
 480
 481/* Calculate WR size needed for fw_scsi_read_wr/fw_scsi_write_wr */
 482#define CSIO_SCSI_DATA_WRSZ(req, oper, sz, imm)				       \
 483do {									       \
 484	(sz) = sizeof(struct fw_scsi_##oper##_wr) +	/* WR size */          \
 485	       ALIGN((imm), 16) +			/* Immed data */       \
 486	       sizeof(struct ulptx_sgl);		/* ulptx_sgl */	       \
 487									       \
 488	if (unlikely((req)->nsge > 1))				               \
 489		(sz) += (sizeof(struct ulptx_sge_pair) *		       \
 490				(ALIGN(((req)->nsge - 1), 2) / 2));            \
 491							/* Data SGE */	       \
 492} while (0)
 493
 494/*
 495 * csio_scsi_read - Create a SCSI READ WR.
 496 * @req: IO req structure.
 497 *
 498 * Gets a WR slot in the ingress queue and initializes it with
 499 * SCSI READ WR.
 500 *
 501 */
 502static inline void
 503csio_scsi_read(struct csio_ioreq *req)
 504{
 505	struct csio_wr_pair wrp;
 506	uint32_t size;
 507	struct csio_hw *hw = req->lnode->hwp;
 508	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
 509
 510	CSIO_SCSI_DATA_WRSZ(req, read, size, scsim->proto_cmd_len);
 511	size = ALIGN(size, 16);
 512
 513	req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
 514	if (likely(req->drv_status == 0)) {
 515		if (likely(wrp.size1 >= size)) {
 516			/* Initialize WR in one shot */
 517			csio_scsi_init_read_wr(req, wrp.addr1, size);
 518		} else {
 519			uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
 520			/*
 521			 * Make a temporary copy of the WR and write back
 522			 * the copy into the WR pair.
 523			 */
 524			csio_scsi_init_read_wr(req, (void *)tmpwr, size);
 525			memcpy(wrp.addr1, tmpwr, wrp.size1);
 526			memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
 527		}
 528	}
 529}
 530
 531/*
 532 * csio_scsi_write - Create a SCSI WRITE WR.
 533 * @req: IO req structure.
 534 *
 535 * Gets a WR slot in the ingress queue and initializes it with
 536 * SCSI WRITE WR.
 537 *
 538 */
 539static inline void
 540csio_scsi_write(struct csio_ioreq *req)
 541{
 542	struct csio_wr_pair wrp;
 543	uint32_t size;
 544	struct csio_hw *hw = req->lnode->hwp;
 545	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
 546
 547	CSIO_SCSI_DATA_WRSZ(req, write, size, scsim->proto_cmd_len);
 548	size = ALIGN(size, 16);
 549
 550	req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
 551	if (likely(req->drv_status == 0)) {
 552		if (likely(wrp.size1 >= size)) {
 553			/* Initialize WR in one shot */
 554			csio_scsi_init_write_wr(req, wrp.addr1, size);
 555		} else {
 556			uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
 557			/*
 558			 * Make a temporary copy of the WR and write back
 559			 * the copy into the WR pair.
 560			 */
 561			csio_scsi_init_write_wr(req, (void *)tmpwr, size);
 562			memcpy(wrp.addr1, tmpwr, wrp.size1);
 563			memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
 564		}
 565	}
 566}
 567
 568/*
 569 * csio_setup_ddp - Setup DDP buffers for Read request.
 570 * @req: IO req structure.
 571 *
 572 * Checks SGLs/Data buffers are virtually contiguous required for DDP.
 573 * If contiguous,driver posts SGLs in the WR otherwise post internal
 574 * buffers for such request for DDP.
 575 */
 576static inline void
 577csio_setup_ddp(struct csio_scsim *scsim, struct csio_ioreq *req)
 578{
 579#ifdef __CSIO_DEBUG__
 580	struct csio_hw *hw = req->lnode->hwp;
 581#endif
 582	struct scatterlist *sgel = NULL;
 583	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
 584	uint64_t sg_addr = 0;
 585	uint32_t ddp_pagesz = 4096;
 586	uint32_t buf_off;
 587	struct csio_dma_buf *dma_buf = NULL;
 588	uint32_t alloc_len = 0;
 589	uint32_t xfer_len = 0;
 590	uint32_t sg_len = 0;
 591	uint32_t i;
 592
 593	scsi_for_each_sg(scmnd, sgel, req->nsge, i) {
 594		sg_addr = sg_dma_address(sgel);
 595		sg_len	= sg_dma_len(sgel);
 596
 597		buf_off = sg_addr & (ddp_pagesz - 1);
 598
 599		/* Except 1st buffer,all buffer addr have to be Page aligned */
 600		if (i != 0 && buf_off) {
 601			csio_dbg(hw, "SGL addr not DDP aligned (%llx:%d)\n",
 602				 sg_addr, sg_len);
 603			goto unaligned;
 604		}
 605
 606		/* Except last buffer,all buffer must end on page boundary */
 607		if ((i != (req->nsge - 1)) &&
 608			((buf_off + sg_len) & (ddp_pagesz - 1))) {
 609			csio_dbg(hw,
 610				 "SGL addr not ending on page boundary"
 611				 "(%llx:%d)\n", sg_addr, sg_len);
 612			goto unaligned;
 613		}
 614	}
 615
 616	/* SGL's are virtually contiguous. HW will DDP to SGLs */
 617	req->dcopy = 0;
 618	csio_scsi_read(req);
 619
 620	return;
 621
 622unaligned:
 623	CSIO_INC_STATS(scsim, n_unaligned);
 624	/*
 625	 * For unaligned SGLs, driver will allocate internal DDP buffer.
 626	 * Once command is completed data from DDP buffer copied to SGLs
 627	 */
 628	req->dcopy = 1;
 629
 630	/* Use gen_list to store the DDP buffers */
 631	INIT_LIST_HEAD(&req->gen_list);
 632	xfer_len = scsi_bufflen(scmnd);
 633
 634	i = 0;
 635	/* Allocate ddp buffers for this request */
 636	while (alloc_len < xfer_len) {
 637		dma_buf = csio_get_scsi_ddp(scsim);
 638		if (dma_buf == NULL || i > scsim->max_sge) {
 639			req->drv_status = -EBUSY;
 640			break;
 641		}
 642		alloc_len += dma_buf->len;
 643		/* Added to IO req */
 644		list_add_tail(&dma_buf->list, &req->gen_list);
 645		i++;
 646	}
 647
 648	if (!req->drv_status) {
 649		/* set number of ddp bufs used */
 650		req->nsge = i;
 651		csio_scsi_read(req);
 652		return;
 653	}
 654
 655	 /* release dma descs */
 656	if (i > 0)
 657		csio_put_scsi_ddp_list(scsim, &req->gen_list, i);
 658}
 659
 660/*
 661 * csio_scsi_init_abrt_cls_wr - Initialize an ABORT/CLOSE WR.
 662 * @req: IO req structure.
 663 * @addr: DMA location to place the payload.
 664 * @size: Size of WR
 665 * @abort: abort OR close
 666 *
 667 * Wrapper for populating fw_scsi_cmd_wr.
 668 */
 669static inline void
 670csio_scsi_init_abrt_cls_wr(struct csio_ioreq *req, void *addr, uint32_t size,
 671			   bool abort)
 672{
 673	struct csio_hw *hw = req->lnode->hwp;
 674	struct csio_rnode *rn = req->rnode;
 675	struct fw_scsi_abrt_cls_wr *wr = (struct fw_scsi_abrt_cls_wr *)addr;
 676
 677	wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_ABRT_CLS_WR));
 678	wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) |
 679					    FW_WR_LEN16(
 680						DIV_ROUND_UP(size, 16)));
 681
 682	wr->cookie = (uintptr_t) req;
 683	wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
 684	wr->tmo_val = (uint8_t) req->tmo;
 685	/* 0 for CHK_ALL_IO tells FW to look up t_cookie */
 686	wr->sub_opcode_to_chk_all_io =
 687				(FW_SCSI_ABRT_CLS_WR_SUB_OPCODE(abort) |
 688				 FW_SCSI_ABRT_CLS_WR_CHK_ALL_IO(0));
 689	wr->r3[0] = 0;
 690	wr->r3[1] = 0;
 691	wr->r3[2] = 0;
 692	wr->r3[3] = 0;
 693	/* Since we re-use the same ioreq for abort as well */
 694	wr->t_cookie = (uintptr_t) req;
 695}
 696
 697static inline void
 698csio_scsi_abrt_cls(struct csio_ioreq *req, bool abort)
 699{
 700	struct csio_wr_pair wrp;
 701	struct csio_hw *hw = req->lnode->hwp;
 702	uint32_t size = ALIGN(sizeof(struct fw_scsi_abrt_cls_wr), 16);
 703
 704	req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
 705	if (req->drv_status != 0)
 706		return;
 707
 708	if (wrp.size1 >= size) {
 709		/* Initialize WR in one shot */
 710		csio_scsi_init_abrt_cls_wr(req, wrp.addr1, size, abort);
 711	} else {
 712		uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
 713		/*
 714		 * Make a temporary copy of the WR and write back
 715		 * the copy into the WR pair.
 716		 */
 717		csio_scsi_init_abrt_cls_wr(req, (void *)tmpwr, size, abort);
 718		memcpy(wrp.addr1, tmpwr, wrp.size1);
 719		memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
 720	}
 721}
 722
 723/*****************************************************************************/
 724/* START: SCSI SM                                                            */
 725/*****************************************************************************/
 726static void
 727csio_scsis_uninit(struct csio_ioreq *req, enum csio_scsi_ev evt)
 728{
 729	struct csio_hw *hw = req->lnode->hwp;
 730	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
 731
 732	switch (evt) {
 733	case CSIO_SCSIE_START_IO:
 734
 735		if (req->nsge) {
 736			if (req->datadir == DMA_TO_DEVICE) {
 737				req->dcopy = 0;
 738				csio_scsi_write(req);
 739			} else
 740				csio_setup_ddp(scsim, req);
 741		} else {
 742			csio_scsi_cmd(req);
 743		}
 744
 745		if (likely(req->drv_status == 0)) {
 746			/* change state and enqueue on active_q */
 747			csio_set_state(&req->sm, csio_scsis_io_active);
 748			list_add_tail(&req->sm.sm_list, &scsim->active_q);
 749			csio_wr_issue(hw, req->eq_idx, false);
 750			CSIO_INC_STATS(scsim, n_active);
 751
 752			return;
 753		}
 754		break;
 755
 756	case CSIO_SCSIE_START_TM:
 757		csio_scsi_cmd(req);
 758		if (req->drv_status == 0) {
 759			/*
 760			 * NOTE: We collect the affected I/Os prior to issuing
 761			 * LUN reset, and not after it. This is to prevent
 762			 * aborting I/Os that get issued after the LUN reset,
 763			 * but prior to LUN reset completion (in the event that
 764			 * the host stack has not blocked I/Os to a LUN that is
 765			 * being reset.
 766			 */
 767			csio_set_state(&req->sm, csio_scsis_tm_active);
 768			list_add_tail(&req->sm.sm_list, &scsim->active_q);
 769			csio_wr_issue(hw, req->eq_idx, false);
 770			CSIO_INC_STATS(scsim, n_tm_active);
 771		}
 772		return;
 773
 774	case CSIO_SCSIE_ABORT:
 775	case CSIO_SCSIE_CLOSE:
 776		/*
 777		 * NOTE:
 778		 * We could get here due to  :
 779		 * - a window in the cleanup path of the SCSI module
 780		 *   (csio_scsi_abort_io()). Please see NOTE in this function.
 781		 * - a window in the time we tried to issue an abort/close
 782		 *   of a request to FW, and the FW completed the request
 783		 *   itself.
 784		 *   Print a message for now, and return INVAL either way.
 785		 */
 786		req->drv_status = -EINVAL;
 787		csio_warn(hw, "Trying to abort/close completed IO:%p!\n", req);
 788		break;
 789
 790	default:
 791		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
 792		CSIO_DB_ASSERT(0);
 793	}
 794}
 795
 796static void
 797csio_scsis_io_active(struct csio_ioreq *req, enum csio_scsi_ev evt)
 798{
 799	struct csio_hw *hw = req->lnode->hwp;
 800	struct csio_scsim *scm = csio_hw_to_scsim(hw);
 801	struct csio_rnode *rn;
 802
 803	switch (evt) {
 804	case CSIO_SCSIE_COMPLETED:
 805		CSIO_DEC_STATS(scm, n_active);
 806		list_del_init(&req->sm.sm_list);
 807		csio_set_state(&req->sm, csio_scsis_uninit);
 808		/*
 809		 * In MSIX mode, with multiple queues, the SCSI compeltions
 810		 * could reach us sooner than the FW events sent to indicate
 811		 * I-T nexus loss (link down, remote device logo etc). We
 812		 * dont want to be returning such I/Os to the upper layer
 813		 * immediately, since we wouldnt have reported the I-T nexus
 814		 * loss itself. This forces us to serialize such completions
 815		 * with the reporting of the I-T nexus loss. Therefore, we
 816		 * internally queue up such up such completions in the rnode.
 817		 * The reporting of I-T nexus loss to the upper layer is then
 818		 * followed by the returning of I/Os in this internal queue.
 819		 * Having another state alongwith another queue helps us take
 820		 * actions for events such as ABORT received while we are
 821		 * in this rnode queue.
 822		 */
 823		if (unlikely(req->wr_status != FW_SUCCESS)) {
 824			rn = req->rnode;
 825			/*
 826			 * FW says remote device is lost, but rnode
 827			 * doesnt reflect it.
 828			 */
 829			if (csio_scsi_itnexus_loss_error(req->wr_status) &&
 830						csio_is_rnode_ready(rn)) {
 831				csio_set_state(&req->sm,
 832						csio_scsis_shost_cmpl_await);
 833				list_add_tail(&req->sm.sm_list,
 834					      &rn->host_cmpl_q);
 835			}
 836		}
 837
 838		break;
 839
 840	case CSIO_SCSIE_ABORT:
 841		csio_scsi_abrt_cls(req, SCSI_ABORT);
 842		if (req->drv_status == 0) {
 843			csio_wr_issue(hw, req->eq_idx, false);
 844			csio_set_state(&req->sm, csio_scsis_aborting);
 845		}
 846		break;
 847
 848	case CSIO_SCSIE_CLOSE:
 849		csio_scsi_abrt_cls(req, SCSI_CLOSE);
 850		if (req->drv_status == 0) {
 851			csio_wr_issue(hw, req->eq_idx, false);
 852			csio_set_state(&req->sm, csio_scsis_closing);
 853		}
 854		break;
 855
 856	case CSIO_SCSIE_DRVCLEANUP:
 857		req->wr_status = FW_HOSTERROR;
 858		CSIO_DEC_STATS(scm, n_active);
 859		csio_set_state(&req->sm, csio_scsis_uninit);
 860		break;
 861
 862	default:
 863		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
 864		CSIO_DB_ASSERT(0);
 865	}
 866}
 867
 868static void
 869csio_scsis_tm_active(struct csio_ioreq *req, enum csio_scsi_ev evt)
 870{
 871	struct csio_hw *hw = req->lnode->hwp;
 872	struct csio_scsim *scm = csio_hw_to_scsim(hw);
 873
 874	switch (evt) {
 875	case CSIO_SCSIE_COMPLETED:
 876		CSIO_DEC_STATS(scm, n_tm_active);
 877		list_del_init(&req->sm.sm_list);
 878		csio_set_state(&req->sm, csio_scsis_uninit);
 879
 880		break;
 881
 882	case CSIO_SCSIE_ABORT:
 883		csio_scsi_abrt_cls(req, SCSI_ABORT);
 884		if (req->drv_status == 0) {
 885			csio_wr_issue(hw, req->eq_idx, false);
 886			csio_set_state(&req->sm, csio_scsis_aborting);
 887		}
 888		break;
 889
 890
 891	case CSIO_SCSIE_CLOSE:
 892		csio_scsi_abrt_cls(req, SCSI_CLOSE);
 893		if (req->drv_status == 0) {
 894			csio_wr_issue(hw, req->eq_idx, false);
 895			csio_set_state(&req->sm, csio_scsis_closing);
 896		}
 897		break;
 898
 899	case CSIO_SCSIE_DRVCLEANUP:
 900		req->wr_status = FW_HOSTERROR;
 901		CSIO_DEC_STATS(scm, n_tm_active);
 902		csio_set_state(&req->sm, csio_scsis_uninit);
 903		break;
 904
 905	default:
 906		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
 907		CSIO_DB_ASSERT(0);
 908	}
 909}
 910
 911static void
 912csio_scsis_aborting(struct csio_ioreq *req, enum csio_scsi_ev evt)
 913{
 914	struct csio_hw *hw = req->lnode->hwp;
 915	struct csio_scsim *scm = csio_hw_to_scsim(hw);
 916
 917	switch (evt) {
 918	case CSIO_SCSIE_COMPLETED:
 919		csio_dbg(hw,
 920			 "ioreq %p recvd cmpltd (wr_status:%d) "
 921			 "in aborting st\n", req, req->wr_status);
 922		/*
 923		 * Use -ECANCELED to explicitly tell the ABORTED event that
 924		 * the original I/O was returned to driver by FW.
 925		 * We dont really care if the I/O was returned with success by
 926		 * FW (because the ABORT and completion of the I/O crossed each
 927		 * other), or any other return value. Once we are in aborting
 928		 * state, the success or failure of the I/O is unimportant to
 929		 * us.
 930		 */
 931		req->drv_status = -ECANCELED;
 932		break;
 933
 934	case CSIO_SCSIE_ABORT:
 935		CSIO_INC_STATS(scm, n_abrt_dups);
 936		break;
 937
 938	case CSIO_SCSIE_ABORTED:
 939
 940		csio_dbg(hw, "abort of %p return status:0x%x drv_status:%x\n",
 941			 req, req->wr_status, req->drv_status);
 942		/*
 943		 * Check if original I/O WR completed before the Abort
 944		 * completion.
 945		 */
 946		if (req->drv_status != -ECANCELED) {
 947			csio_warn(hw,
 948				  "Abort completed before original I/O,"
 949				   " req:%p\n", req);
 950			CSIO_DB_ASSERT(0);
 951		}
 952
 953		/*
 954		 * There are the following possible scenarios:
 955		 * 1. The abort completed successfully, FW returned FW_SUCCESS.
 956		 * 2. The completion of an I/O and the receipt of
 957		 *    abort for that I/O by the FW crossed each other.
 958		 *    The FW returned FW_EINVAL. The original I/O would have
 959		 *    returned with FW_SUCCESS or any other SCSI error.
 960		 * 3. The FW couldnt sent the abort out on the wire, as there
 961		 *    was an I-T nexus loss (link down, remote device logged
 962		 *    out etc). FW sent back an appropriate IT nexus loss status
 963		 *    for the abort.
 964		 * 4. FW sent an abort, but abort timed out (remote device
 965		 *    didnt respond). FW replied back with
 966		 *    FW_SCSI_ABORT_TIMEDOUT.
 967		 * 5. FW couldnt genuinely abort the request for some reason,
 968		 *    and sent us an error.
 969		 *
 970		 * The first 3 scenarios are treated as  succesful abort
 971		 * operations by the host, while the last 2 are failed attempts
 972		 * to abort. Manipulate the return value of the request
 973		 * appropriately, so that host can convey these results
 974		 * back to the upper layer.
 975		 */
 976		if ((req->wr_status == FW_SUCCESS) ||
 977		    (req->wr_status == FW_EINVAL) ||
 978		    csio_scsi_itnexus_loss_error(req->wr_status))
 979			req->wr_status = FW_SCSI_ABORT_REQUESTED;
 980
 981		CSIO_DEC_STATS(scm, n_active);
 982		list_del_init(&req->sm.sm_list);
 983		csio_set_state(&req->sm, csio_scsis_uninit);
 984		break;
 985
 986	case CSIO_SCSIE_DRVCLEANUP:
 987		req->wr_status = FW_HOSTERROR;
 988		CSIO_DEC_STATS(scm, n_active);
 989		csio_set_state(&req->sm, csio_scsis_uninit);
 990		break;
 991
 992	case CSIO_SCSIE_CLOSE:
 993		/*
 994		 * We can receive this event from the module
 995		 * cleanup paths, if the FW forgot to reply to the ABORT WR
 996		 * and left this ioreq in this state. For now, just ignore
 997		 * the event. The CLOSE event is sent to this state, as
 998		 * the LINK may have already gone down.
 999		 */
1000		break;
1001
1002	default:
1003		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
1004		CSIO_DB_ASSERT(0);
1005	}
1006}
1007
1008static void
1009csio_scsis_closing(struct csio_ioreq *req, enum csio_scsi_ev evt)
1010{
1011	struct csio_hw *hw = req->lnode->hwp;
1012	struct csio_scsim *scm = csio_hw_to_scsim(hw);
1013
1014	switch (evt) {
1015	case CSIO_SCSIE_COMPLETED:
1016		csio_dbg(hw,
1017			 "ioreq %p recvd cmpltd (wr_status:%d) "
1018			 "in closing st\n", req, req->wr_status);
1019		/*
1020		 * Use -ECANCELED to explicitly tell the CLOSED event that
1021		 * the original I/O was returned to driver by FW.
1022		 * We dont really care if the I/O was returned with success by
1023		 * FW (because the CLOSE and completion of the I/O crossed each
1024		 * other), or any other return value. Once we are in aborting
1025		 * state, the success or failure of the I/O is unimportant to
1026		 * us.
1027		 */
1028		req->drv_status = -ECANCELED;
1029		break;
1030
1031	case CSIO_SCSIE_CLOSED:
1032		/*
1033		 * Check if original I/O WR completed before the Close
1034		 * completion.
1035		 */
1036		if (req->drv_status != -ECANCELED) {
1037			csio_fatal(hw,
1038				   "Close completed before original I/O,"
1039				   " req:%p\n", req);
1040			CSIO_DB_ASSERT(0);
1041		}
1042
1043		/*
1044		 * Either close succeeded, or we issued close to FW at the
1045		 * same time FW compelted it to us. Either way, the I/O
1046		 * is closed.
1047		 */
1048		CSIO_DB_ASSERT((req->wr_status == FW_SUCCESS) ||
1049					(req->wr_status == FW_EINVAL));
1050		req->wr_status = FW_SCSI_CLOSE_REQUESTED;
1051
1052		CSIO_DEC_STATS(scm, n_active);
1053		list_del_init(&req->sm.sm_list);
1054		csio_set_state(&req->sm, csio_scsis_uninit);
1055		break;
1056
1057	case CSIO_SCSIE_CLOSE:
1058		break;
1059
1060	case CSIO_SCSIE_DRVCLEANUP:
1061		req->wr_status = FW_HOSTERROR;
1062		CSIO_DEC_STATS(scm, n_active);
1063		csio_set_state(&req->sm, csio_scsis_uninit);
1064		break;
1065
1066	default:
1067		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
1068		CSIO_DB_ASSERT(0);
1069	}
1070}
1071
1072static void
1073csio_scsis_shost_cmpl_await(struct csio_ioreq *req, enum csio_scsi_ev evt)
1074{
1075	switch (evt) {
1076	case CSIO_SCSIE_ABORT:
1077	case CSIO_SCSIE_CLOSE:
1078		/*
1079		 * Just succeed the abort request, and hope that
1080		 * the remote device unregister path will cleanup
1081		 * this I/O to the upper layer within a sane
1082		 * amount of time.
1083		 */
1084		/*
1085		 * A close can come in during a LINK DOWN. The FW would have
1086		 * returned us the I/O back, but not the remote device lost
1087		 * FW event. In this interval, if the I/O times out at the upper
1088		 * layer, a close can come in. Take the same action as abort:
1089		 * return success, and hope that the remote device unregister
1090		 * path will cleanup this I/O. If the FW still doesnt send
1091		 * the msg, the close times out, and the upper layer resorts
1092		 * to the next level of error recovery.
1093		 */
1094		req->drv_status = 0;
1095		break;
1096	case CSIO_SCSIE_DRVCLEANUP:
1097		csio_set_state(&req->sm, csio_scsis_uninit);
1098		break;
1099	default:
1100		csio_dbg(req->lnode->hwp, "Unhandled event:%d sent to req:%p\n",
1101			 evt, req);
1102		CSIO_DB_ASSERT(0);
1103	}
1104}
1105
1106/*
1107 * csio_scsi_cmpl_handler - WR completion handler for SCSI.
1108 * @hw: HW module.
1109 * @wr: The completed WR from the ingress queue.
1110 * @len: Length of the WR.
1111 * @flb: Freelist buffer array.
1112 * @priv: Private object
1113 * @scsiwr: Pointer to SCSI WR.
1114 *
1115 * This is the WR completion handler called per completion from the
1116 * ISR. It is called with lock held. It walks past the RSS and CPL message
1117 * header where the actual WR is present.
1118 * It then gets the status, WR handle (ioreq pointer) and the len of
1119 * the WR, based on WR opcode. Only on a non-good status is the entire
1120 * WR copied into the WR cache (ioreq->fw_wr).
1121 * The ioreq corresponding to the WR is returned to the caller.
1122 * NOTE: The SCSI queue doesnt allocate a freelist today, hence
1123 * no freelist buffer is expected.
1124 */
1125struct csio_ioreq *
1126csio_scsi_cmpl_handler(struct csio_hw *hw, void *wr, uint32_t len,
1127		     struct csio_fl_dma_buf *flb, void *priv, uint8_t **scsiwr)
1128{
1129	struct csio_ioreq *ioreq = NULL;
1130	struct cpl_fw6_msg *cpl;
1131	uint8_t *tempwr;
1132	uint8_t	status;
1133	struct csio_scsim *scm = csio_hw_to_scsim(hw);
1134
1135	/* skip RSS header */
1136	cpl = (struct cpl_fw6_msg *)((uintptr_t)wr + sizeof(__be64));
1137
1138	if (unlikely(cpl->opcode != CPL_FW6_MSG)) {
1139		csio_warn(hw, "Error: Invalid CPL msg %x recvd on SCSI q\n",
1140			  cpl->opcode);
1141		CSIO_INC_STATS(scm, n_inval_cplop);
1142		return NULL;
1143	}
1144
1145	tempwr = (uint8_t *)(cpl->data);
1146	status = csio_wr_status(tempwr);
1147	*scsiwr = tempwr;
1148
1149	if (likely((*tempwr == FW_SCSI_READ_WR) ||
1150			(*tempwr == FW_SCSI_WRITE_WR) ||
1151			(*tempwr == FW_SCSI_CMD_WR))) {
1152		ioreq = (struct csio_ioreq *)((uintptr_t)
1153				 (((struct fw_scsi_read_wr *)tempwr)->cookie));
1154		CSIO_DB_ASSERT(virt_addr_valid(ioreq));
1155
1156		ioreq->wr_status = status;
1157
1158		return ioreq;
1159	}
1160
1161	if (*tempwr == FW_SCSI_ABRT_CLS_WR) {
1162		ioreq = (struct csio_ioreq *)((uintptr_t)
1163			 (((struct fw_scsi_abrt_cls_wr *)tempwr)->cookie));
1164		CSIO_DB_ASSERT(virt_addr_valid(ioreq));
1165
1166		ioreq->wr_status = status;
1167		return ioreq;
1168	}
1169
1170	csio_warn(hw, "WR with invalid opcode in SCSI IQ: %x\n", *tempwr);
1171	CSIO_INC_STATS(scm, n_inval_scsiop);
1172	return NULL;
1173}
1174
1175/*
1176 * csio_scsi_cleanup_io_q - Cleanup the given queue.
1177 * @scm: SCSI module.
1178 * @q: Queue to be cleaned up.
1179 *
1180 * Called with lock held. Has to exit with lock held.
1181 */
1182void
1183csio_scsi_cleanup_io_q(struct csio_scsim *scm, struct list_head *q)
1184{
1185	struct csio_hw *hw = scm->hw;
1186	struct csio_ioreq *ioreq;
1187	struct list_head *tmp, *next;
1188	struct scsi_cmnd *scmnd;
1189
1190	/* Call back the completion routines of the active_q */
1191	list_for_each_safe(tmp, next, q) {
1192		ioreq = (struct csio_ioreq *)tmp;
1193		csio_scsi_drvcleanup(ioreq);
1194		list_del_init(&ioreq->sm.sm_list);
1195		scmnd = csio_scsi_cmnd(ioreq);
1196		spin_unlock_irq(&hw->lock);
1197
1198		/*
1199		 * Upper layers may have cleared this command, hence this
1200		 * check to avoid accessing stale references.
1201		 */
1202		if (scmnd != NULL)
1203			ioreq->io_cbfn(hw, ioreq);
1204
1205		spin_lock_irq(&scm->freelist_lock);
1206		csio_put_scsi_ioreq(scm, ioreq);
1207		spin_unlock_irq(&scm->freelist_lock);
1208
1209		spin_lock_irq(&hw->lock);
1210	}
1211}
1212
1213#define CSIO_SCSI_ABORT_Q_POLL_MS		2000
1214
1215static void
1216csio_abrt_cls(struct csio_ioreq *ioreq, struct scsi_cmnd *scmnd)
1217{
1218	struct csio_lnode *ln = ioreq->lnode;
1219	struct csio_hw *hw = ln->hwp;
1220	int ready = 0;
1221	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
1222	int rv;
1223
1224	if (csio_scsi_cmnd(ioreq) != scmnd) {
1225		CSIO_INC_STATS(scsim, n_abrt_race_comp);
1226		return;
1227	}
1228
1229	ready = csio_is_lnode_ready(ln);
1230
1231	rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE));
1232	if (rv != 0) {
1233		if (ready)
1234			CSIO_INC_STATS(scsim, n_abrt_busy_error);
1235		else
1236			CSIO_INC_STATS(scsim, n_cls_busy_error);
1237	}
1238}
1239
1240/*
1241 * csio_scsi_abort_io_q - Abort all I/Os on given queue
1242 * @scm: SCSI module.
1243 * @q: Queue to abort.
1244 * @tmo: Timeout in ms
1245 *
1246 * Attempt to abort all I/Os on given queue, and wait for a max
1247 * of tmo milliseconds for them to complete. Returns success
1248 * if all I/Os are aborted. Else returns -ETIMEDOUT.
1249 * Should be entered with lock held. Exits with lock held.
1250 * NOTE:
1251 * Lock has to be held across the loop that aborts I/Os, since dropping the lock
1252 * in between can cause the list to be corrupted. As a result, the caller
1253 * of this function has to ensure that the number of I/os to be aborted
1254 * is finite enough to not cause lock-held-for-too-long issues.
1255 */
1256static int
1257csio_scsi_abort_io_q(struct csio_scsim *scm, struct list_head *q, uint32_t tmo)
1258{
1259	struct csio_hw *hw = scm->hw;
1260	struct list_head *tmp, *next;
1261	int count = DIV_ROUND_UP(tmo, CSIO_SCSI_ABORT_Q_POLL_MS);
1262	struct scsi_cmnd *scmnd;
1263
1264	if (list_empty(q))
1265		return 0;
1266
1267	csio_dbg(hw, "Aborting SCSI I/Os\n");
1268
1269	/* Now abort/close I/Os in the queue passed */
1270	list_for_each_safe(tmp, next, q) {
1271		scmnd = csio_scsi_cmnd((struct csio_ioreq *)tmp);
1272		csio_abrt_cls((struct csio_ioreq *)tmp, scmnd);
1273	}
1274
1275	/* Wait till all active I/Os are completed/aborted/closed */
1276	while (!list_empty(q) && count--) {
1277		spin_unlock_irq(&hw->lock);
1278		msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
1279		spin_lock_irq(&hw->lock);
1280	}
1281
1282	/* all aborts completed */
1283	if (list_empty(q))
1284		return 0;
1285
1286	return -ETIMEDOUT;
1287}
1288
1289/*
1290 * csio_scsim_cleanup_io - Cleanup all I/Os in SCSI module.
1291 * @scm: SCSI module.
1292 * @abort: abort required.
1293 * Called with lock held, should exit with lock held.
1294 * Can sleep when waiting for I/Os to complete.
1295 */
1296int
1297csio_scsim_cleanup_io(struct csio_scsim *scm, bool abort)
1298{
1299	struct csio_hw *hw = scm->hw;
1300	int rv = 0;
1301	int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS);
1302
1303	/* No I/Os pending */
1304	if (list_empty(&scm->active_q))
1305		return 0;
1306
1307	/* Wait until all active I/Os are completed */
1308	while (!list_empty(&scm->active_q) && count--) {
1309		spin_unlock_irq(&hw->lock);
1310		msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
1311		spin_lock_irq(&hw->lock);
1312	}
1313
1314	/* all I/Os completed */
1315	if (list_empty(&scm->active_q))
1316		return 0;
1317
1318	/* Else abort */
1319	if (abort) {
1320		rv = csio_scsi_abort_io_q(scm, &scm->active_q, 30000);
1321		if (rv == 0)
1322			return rv;
1323		csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n");
1324	}
1325
1326	csio_scsi_cleanup_io_q(scm, &scm->active_q);
1327
1328	CSIO_DB_ASSERT(list_empty(&scm->active_q));
1329
1330	return rv;
1331}
1332
1333/*
1334 * csio_scsim_cleanup_io_lnode - Cleanup all I/Os of given lnode.
1335 * @scm: SCSI module.
1336 * @lnode: lnode
1337 *
1338 * Called with lock held, should exit with lock held.
1339 * Can sleep (with dropped lock) when waiting for I/Os to complete.
1340 */
1341int
1342csio_scsim_cleanup_io_lnode(struct csio_scsim *scm, struct csio_lnode *ln)
1343{
1344	struct csio_hw *hw = scm->hw;
1345	struct csio_scsi_level_data sld;
1346	int rv;
1347	int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS);
1348
1349	csio_dbg(hw, "Gathering all SCSI I/Os on lnode %p\n", ln);
1350
1351	sld.level = CSIO_LEV_LNODE;
1352	sld.lnode = ln;
1353	INIT_LIST_HEAD(&ln->cmpl_q);
1354	csio_scsi_gather_active_ios(scm, &sld, &ln->cmpl_q);
1355
1356	/* No I/Os pending on this lnode  */
1357	if (list_empty(&ln->cmpl_q))
1358		return 0;
1359
1360	/* Wait until all active I/Os on this lnode are completed */
1361	while (!list_empty(&ln->cmpl_q) && count--) {
1362		spin_unlock_irq(&hw->lock);
1363		msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
1364		spin_lock_irq(&hw->lock);
1365	}
1366
1367	/* all I/Os completed */
1368	if (list_empty(&ln->cmpl_q))
1369		return 0;
1370
1371	csio_dbg(hw, "Some I/Os pending on ln:%p, aborting them..\n", ln);
1372
1373	/* I/Os are pending, abort them */
1374	rv = csio_scsi_abort_io_q(scm, &ln->cmpl_q, 30000);
1375	if (rv != 0) {
1376		csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n");
1377		csio_scsi_cleanup_io_q(scm, &ln->cmpl_q);
1378	}
1379
1380	CSIO_DB_ASSERT(list_empty(&ln->cmpl_q));
1381
1382	return rv;
1383}
1384
1385static ssize_t
1386csio_show_hw_state(struct device *dev,
1387		   struct device_attribute *attr, char *buf)
1388{
1389	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1390	struct csio_hw *hw = csio_lnode_to_hw(ln);
1391
1392	if (csio_is_hw_ready(hw))
1393		return snprintf(buf, PAGE_SIZE, "ready\n");
1394	else
1395		return snprintf(buf, PAGE_SIZE, "not ready\n");
1396}
1397
1398/* Device reset */
1399static ssize_t
1400csio_device_reset(struct device *dev,
1401		   struct device_attribute *attr, const char *buf, size_t count)
1402{
1403	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1404	struct csio_hw *hw = csio_lnode_to_hw(ln);
1405
1406	if (*buf != '1')
1407		return -EINVAL;
1408
1409	/* Delete NPIV lnodes */
1410	 csio_lnodes_exit(hw, 1);
1411
1412	/* Block upper IOs */
1413	csio_lnodes_block_request(hw);
1414
1415	spin_lock_irq(&hw->lock);
1416	csio_hw_reset(hw);
1417	spin_unlock_irq(&hw->lock);
1418
1419	/* Unblock upper IOs */
1420	csio_lnodes_unblock_request(hw);
1421	return count;
1422}
1423
1424/* disable port */
1425static ssize_t
1426csio_disable_port(struct device *dev,
1427		   struct device_attribute *attr, const char *buf, size_t count)
1428{
1429	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1430	struct csio_hw *hw = csio_lnode_to_hw(ln);
1431	bool disable;
1432
1433	if (*buf == '1' || *buf == '0')
1434		disable = (*buf == '1') ? true : false;
1435	else
1436		return -EINVAL;
1437
1438	/* Block upper IOs */
1439	csio_lnodes_block_by_port(hw, ln->portid);
1440
1441	spin_lock_irq(&hw->lock);
1442	csio_disable_lnodes(hw, ln->portid, disable);
1443	spin_unlock_irq(&hw->lock);
1444
1445	/* Unblock upper IOs */
1446	csio_lnodes_unblock_by_port(hw, ln->portid);
1447	return count;
1448}
1449
1450/* Show debug level */
1451static ssize_t
1452csio_show_dbg_level(struct device *dev,
1453		   struct device_attribute *attr, char *buf)
1454{
1455	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1456
1457	return snprintf(buf, PAGE_SIZE, "%x\n", ln->params.log_level);
1458}
1459
1460/* Store debug level */
1461static ssize_t
1462csio_store_dbg_level(struct device *dev,
1463		   struct device_attribute *attr, const char *buf, size_t count)
1464{
1465	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1466	struct csio_hw *hw = csio_lnode_to_hw(ln);
1467	uint32_t dbg_level = 0;
1468
1469	if (!isdigit(buf[0]))
1470		return -EINVAL;
1471
1472	if (sscanf(buf, "%i", &dbg_level))
1473		return -EINVAL;
1474
1475	ln->params.log_level = dbg_level;
1476	hw->params.log_level = dbg_level;
1477
1478	return 0;
1479}
1480
1481static DEVICE_ATTR(hw_state, S_IRUGO, csio_show_hw_state, NULL);
1482static DEVICE_ATTR(device_reset, S_IWUSR, NULL, csio_device_reset);
1483static DEVICE_ATTR(disable_port, S_IWUSR, NULL, csio_disable_port);
1484static DEVICE_ATTR(dbg_level, S_IRUGO | S_IWUSR, csio_show_dbg_level,
1485		  csio_store_dbg_level);
1486
1487static struct device_attribute *csio_fcoe_lport_attrs[] = {
1488	&dev_attr_hw_state,
1489	&dev_attr_device_reset,
1490	&dev_attr_disable_port,
1491	&dev_attr_dbg_level,
1492	NULL,
1493};
1494
1495static ssize_t
1496csio_show_num_reg_rnodes(struct device *dev,
1497		     struct device_attribute *attr, char *buf)
1498{
1499	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1500
1501	return snprintf(buf, PAGE_SIZE, "%d\n", ln->num_reg_rnodes);
1502}
1503
1504static DEVICE_ATTR(num_reg_rnodes, S_IRUGO, csio_show_num_reg_rnodes, NULL);
1505
1506static struct device_attribute *csio_fcoe_vport_attrs[] = {
1507	&dev_attr_num_reg_rnodes,
1508	&dev_attr_dbg_level,
1509	NULL,
1510};
1511
1512static inline uint32_t
1513csio_scsi_copy_to_sgl(struct csio_hw *hw, struct csio_ioreq *req)
1514{
1515	struct scsi_cmnd *scmnd  = (struct scsi_cmnd *)csio_scsi_cmnd(req);
1516	struct scatterlist *sg;
1517	uint32_t bytes_left;
1518	uint32_t bytes_copy;
1519	uint32_t buf_off = 0;
1520	uint32_t start_off = 0;
1521	uint32_t sg_off = 0;
1522	void *sg_addr;
1523	void *buf_addr;
1524	struct csio_dma_buf *dma_buf;
1525
1526	bytes_left = scsi_bufflen(scmnd);
1527	sg = scsi_sglist(scmnd);
1528	dma_buf = (struct csio_dma_buf *)csio_list_next(&req->gen_list);
1529
1530	/* Copy data from driver buffer to SGs of SCSI CMD */
1531	while (bytes_left > 0 && sg && dma_buf) {
1532		if (buf_off >= dma_buf->len) {
1533			buf_off = 0;
1534			dma_buf = (struct csio_dma_buf *)
1535					csio_list_next(dma_buf);
1536			continue;
1537		}
1538
1539		if (start_off >= sg->length) {
1540			start_off -= sg->length;
1541			sg = sg_next(sg);
1542			continue;
1543		}
1544
1545		buf_addr = dma_buf->vaddr + buf_off;
1546		sg_off = sg->offset + start_off;
1547		bytes_copy = min((dma_buf->len - buf_off),
1548				sg->length - start_off);
1549		bytes_copy = min((uint32_t)(PAGE_SIZE - (sg_off & ~PAGE_MASK)),
1550				 bytes_copy);
1551
1552		sg_addr = kmap_atomic(sg_page(sg) + (sg_off >> PAGE_SHIFT));
1553		if (!sg_addr) {
1554			csio_err(hw, "failed to kmap sg:%p of ioreq:%p\n",
1555				sg, req);
1556			break;
1557		}
1558
1559		csio_dbg(hw, "copy_to_sgl:sg_addr %p sg_off %d buf %p len %d\n",
1560				sg_addr, sg_off, buf_addr, bytes_copy);
1561		memcpy(sg_addr + (sg_off & ~PAGE_MASK), buf_addr, bytes_copy);
1562		kunmap_atomic(sg_addr);
1563
1564		start_off +=  bytes_copy;
1565		buf_off += bytes_copy;
1566		bytes_left -= bytes_copy;
1567	}
1568
1569	if (bytes_left > 0)
1570		return DID_ERROR;
1571	else
1572		return DID_OK;
1573}
1574
1575/*
1576 * csio_scsi_err_handler - SCSI error handler.
1577 * @hw: HW module.
1578 * @req: IO request.
1579 *
1580 */
1581static inline void
1582csio_scsi_err_handler(struct csio_hw *hw, struct csio_ioreq *req)
1583{
1584	struct scsi_cmnd *cmnd  = (struct scsi_cmnd *)csio_scsi_cmnd(req);
1585	struct csio_scsim *scm = csio_hw_to_scsim(hw);
1586	struct fcp_resp_with_ext *fcp_resp;
1587	struct fcp_resp_rsp_info *rsp_info;
1588	struct csio_dma_buf *dma_buf;
1589	uint8_t flags, scsi_status = 0;
1590	uint32_t host_status = DID_OK;
1591	uint32_t rsp_len = 0, sns_len = 0;
1592	struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
1593
1594
1595	switch (req->wr_status) {
1596	case FW_HOSTERROR:
1597		if (unlikely(!csio_is_hw_ready(hw)))
1598			return;
1599
1600		host_status = DID_ERROR;
1601		CSIO_INC_STATS(scm, n_hosterror);
1602
1603		break;
1604	case FW_SCSI_RSP_ERR:
1605		dma_buf = &req->dma_buf;
1606		fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr;
1607		rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1);
1608		flags = fcp_resp->resp.fr_flags;
1609		scsi_status = fcp_resp->resp.fr_status;
1610
1611		if (flags & FCP_RSP_LEN_VAL) {
1612			rsp_len = be32_to_cpu(fcp_resp->ext.fr_rsp_len);
1613			if ((rsp_len != 0 && rsp_len != 4 && rsp_len != 8) ||
1614				(rsp_info->rsp_code != FCP_TMF_CMPL)) {
1615				host_status = DID_ERROR;
1616				goto out;
1617			}
1618		}
1619
1620		if ((flags & FCP_SNS_LEN_VAL) && fcp_resp->ext.fr_sns_len) {
1621			sns_len = be32_to_cpu(fcp_resp->ext.fr_sns_len);
1622			if (sns_len > SCSI_SENSE_BUFFERSIZE)
1623				sns_len = SCSI_SENSE_BUFFERSIZE;
1624
1625			memcpy(cmnd->sense_buffer,
1626			       &rsp_info->_fr_resvd[0] + rsp_len, sns_len);
1627			CSIO_INC_STATS(scm, n_autosense);
1628		}
1629
1630		scsi_set_resid(cmnd, 0);
1631
1632		/* Under run */
1633		if (flags & FCP_RESID_UNDER) {
1634			scsi_set_resid(cmnd,
1635				       be32_to_cpu(fcp_resp->ext.fr_resid));
1636
1637			if (!(flags & FCP_SNS_LEN_VAL) &&
1638			    (scsi_status == SAM_STAT_GOOD) &&
1639			    ((scsi_bufflen(cmnd) - scsi_get_resid(cmnd))
1640							< cmnd->underflow))
1641				host_status = DID_ERROR;
1642		} else if (flags & FCP_RESID_OVER)
1643			host_status = DID_ERROR;
1644
1645		CSIO_INC_STATS(scm, n_rsperror);
1646		break;
1647
1648	case FW_SCSI_OVER_FLOW_ERR:
1649		csio_warn(hw,
1650			  "Over-flow error,cmnd:0x%x expected len:0x%x"
1651			  " resid:0x%x\n", cmnd->cmnd[0],
1652			  scsi_bufflen(cmnd), scsi_get_resid(cmnd));
1653		host_status = DID_ERROR;
1654		CSIO_INC_STATS(scm, n_ovflerror);
1655		break;
1656
1657	case FW_SCSI_UNDER_FLOW_ERR:
1658		csio_warn(hw,
1659			  "Under-flow error,cmnd:0x%x expected"
1660			  " len:0x%x resid:0x%x lun:0x%x ssn:0x%x\n",
1661			  cmnd->cmnd[0], scsi_bufflen(cmnd),
1662			  scsi_get_resid(cmnd), cmnd->device->lun,
1663			  rn->flowid);
1664		host_status = DID_ERROR;
1665		CSIO_INC_STATS(scm, n_unflerror);
1666		break;
1667
1668	case FW_SCSI_ABORT_REQUESTED:
1669	case FW_SCSI_ABORTED:
1670	case FW_SCSI_CLOSE_REQUESTED:
1671		csio_dbg(hw, "Req %p cmd:%p op:%x %s\n", req, cmnd,
1672			     cmnd->cmnd[0],
1673			    (req->wr_status == FW_SCSI_CLOSE_REQUESTED) ?
1674			    "closed" : "aborted");
1675		/*
1676		 * csio_eh_abort_handler checks this value to
1677		 * succeed or fail the abort request.
1678		 */
1679		host_status = DID_REQUEUE;
1680		if (req->wr_status == FW_SCSI_CLOSE_REQUESTED)
1681			CSIO_INC_STATS(scm, n_closed);
1682		else
1683			CSIO_INC_STATS(scm, n_aborted);
1684		break;
1685
1686	case FW_SCSI_ABORT_TIMEDOUT:
1687		/* FW timed out the abort itself */
1688		csio_dbg(hw, "FW timed out abort req:%p cmnd:%p status:%x\n",
1689			 req, cmnd, req->wr_status);
1690		host_status = DID_ERROR;
1691		CSIO_INC_STATS(scm, n_abrt_timedout);
1692		break;
1693
1694	case FW_RDEV_NOT_READY:
1695		/*
1696		 * In firmware, a RDEV can get into this state
1697		 * temporarily, before moving into dissapeared/lost
1698		 * state. So, the driver should complete the request equivalent
1699		 * to device-disappeared!
1700		 */
1701		CSIO_INC_STATS(scm, n_rdev_nr_error);
1702		host_status = DID_ERROR;
1703		break;
1704
1705	case FW_ERR_RDEV_LOST:
1706		CSIO_INC_STATS(scm, n_rdev_lost_error);
1707		host_status = DID_ERROR;
1708		break;
1709
1710	case FW_ERR_RDEV_LOGO:
1711		CSIO_INC_STATS(scm, n_rdev_logo_error);
1712		host_status = DID_ERROR;
1713		break;
1714
1715	case FW_ERR_RDEV_IMPL_LOGO:
1716		host_status = DID_ERROR;
1717		break;
1718
1719	case FW_ERR_LINK_DOWN:
1720		CSIO_INC_STATS(scm, n_link_down_error);
1721		host_status = DID_ERROR;
1722		break;
1723
1724	case FW_FCOE_NO_XCHG:
1725		CSIO_INC_STATS(scm, n_no_xchg_error);
1726		host_status = DID_ERROR;
1727		break;
1728
1729	default:
1730		csio_err(hw, "Unknown SCSI FW WR status:%d req:%p cmnd:%p\n",
1731			    req->wr_status, req, cmnd);
1732		CSIO_DB_ASSERT(0);
1733
1734		CSIO_INC_STATS(scm, n_unknown_error);
1735		host_status = DID_ERROR;
1736		break;
1737	}
1738
1739out:
1740	if (req->nsge > 0)
1741		scsi_dma_unmap(cmnd);
1742
1743	cmnd->result = (((host_status) << 16) | scsi_status);
1744	cmnd->scsi_done(cmnd);
1745
1746	/* Wake up waiting threads */
1747	csio_scsi_cmnd(req) = NULL;
1748	complete_all(&req->cmplobj);
1749}
1750
1751/*
1752 * csio_scsi_cbfn - SCSI callback function.
1753 * @hw: HW module.
1754 * @req: IO request.
1755 *
1756 */
1757static void
1758csio_scsi_cbfn(struct csio_hw *hw, struct csio_ioreq *req)
1759{
1760	struct scsi_cmnd *cmnd  = (struct scsi_cmnd *)csio_scsi_cmnd(req);
1761	uint8_t scsi_status = SAM_STAT_GOOD;
1762	uint32_t host_status = DID_OK;
1763
1764	if (likely(req->wr_status == FW_SUCCESS)) {
1765		if (req->nsge > 0) {
1766			scsi_dma_unmap(cmnd);
1767			if (req->dcopy)
1768				host_status = csio_scsi_copy_to_sgl(hw, req);
1769		}
1770
1771		cmnd->result = (((host_status) << 16) | scsi_status);
1772		cmnd->scsi_done(cmnd);
1773		csio_scsi_cmnd(req) = NULL;
1774		CSIO_INC_STATS(csio_hw_to_scsim(hw), n_tot_success);
1775	} else {
1776		/* Error handling */
1777		csio_scsi_err_handler(hw, req);
1778	}
1779}
1780
1781/**
1782 * csio_queuecommand - Entry point to kickstart an I/O request.
1783 * @host:	The scsi_host pointer.
1784 * @cmnd:	The I/O request from ML.
1785 *
1786 * This routine does the following:
1787 *	- Checks for HW and Rnode module readiness.
1788 *	- Gets a free ioreq structure (which is already initialized
1789 *	  to uninit during its allocation).
1790 *	- Maps SG elements.
1791 *	- Initializes ioreq members.
1792 *	- Kicks off the SCSI state machine for this IO.
1793 *	- Returns busy status on error.
1794 */
1795static int
1796csio_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmnd)
1797{
1798	struct csio_lnode *ln = shost_priv(host);
1799	struct csio_hw *hw = csio_lnode_to_hw(ln);
1800	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
1801	struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
1802	struct csio_ioreq *ioreq = NULL;
1803	unsigned long flags;
1804	int nsge = 0;
1805	int rv = SCSI_MLQUEUE_HOST_BUSY, nr;
1806	int retval;
1807	int cpu;
1808	struct csio_scsi_qset *sqset;
1809	struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
1810
1811	if (!blk_rq_cpu_valid(cmnd->request))
1812		cpu = smp_processor_id();
1813	else
1814		cpu = cmnd->request->cpu;
1815
1816	sqset = &hw->sqset[ln->portid][cpu];
1817
1818	nr = fc_remote_port_chkready(rport);
1819	if (nr) {
1820		cmnd->result = nr;
1821		CSIO_INC_STATS(scsim, n_rn_nr_error);
1822		goto err_done;
1823	}
1824
1825	if (unlikely(!csio_is_hw_ready(hw))) {
1826		cmnd->result = (DID_REQUEUE << 16);
1827		CSIO_INC_STATS(scsim, n_hw_nr_error);
1828		goto err_done;
1829	}
1830
1831	/* Get req->nsge, if there are SG elements to be mapped  */
1832	nsge = scsi_dma_map(cmnd);
1833	if (unlikely(nsge < 0)) {
1834		CSIO_INC_STATS(scsim, n_dmamap_error);
1835		goto err;
1836	}
1837
1838	/* Do we support so many mappings? */
1839	if (unlikely(nsge > scsim->max_sge)) {
1840		csio_warn(hw,
1841			  "More SGEs than can be supported."
1842			  " SGEs: %d, Max SGEs: %d\n", nsge, scsim->max_sge);
1843		CSIO_INC_STATS(scsim, n_unsupp_sge_error);
1844		goto err_dma_unmap;
1845	}
1846
1847	/* Get a free ioreq structure - SM is already set to uninit */
1848	ioreq = csio_get_scsi_ioreq_lock(hw, scsim);
1849	if (!ioreq) {
1850		csio_err(hw, "Out of I/O request elements. Active #:%d\n",
1851			 scsim->stats.n_active);
1852		CSIO_INC_STATS(scsim, n_no_req_error);
1853		goto err_dma_unmap;
1854	}
1855
1856	ioreq->nsge		= nsge;
1857	ioreq->lnode		= ln;
1858	ioreq->rnode		= rn;
1859	ioreq->iq_idx		= sqset->iq_idx;
1860	ioreq->eq_idx		= sqset->eq_idx;
1861	ioreq->wr_status	= 0;
1862	ioreq->drv_status	= 0;
1863	csio_scsi_cmnd(ioreq)	= (void *)cmnd;
1864	ioreq->tmo		= 0;
1865	ioreq->datadir		= cmnd->sc_data_direction;
1866
1867	if (cmnd->sc_data_direction == DMA_TO_DEVICE) {
1868		CSIO_INC_STATS(ln, n_output_requests);
1869		ln->stats.n_output_bytes += scsi_bufflen(cmnd);
1870	} else if (cmnd->sc_data_direction == DMA_FROM_DEVICE) {
1871		CSIO_INC_STATS(ln, n_input_requests);
1872		ln->stats.n_input_bytes += scsi_bufflen(cmnd);
1873	} else
1874		CSIO_INC_STATS(ln, n_control_requests);
1875
1876	/* Set cbfn */
1877	ioreq->io_cbfn = csio_scsi_cbfn;
1878
1879	/* Needed during abort */
1880	cmnd->host_scribble = (unsigned char *)ioreq;
1881	cmnd->SCp.Message = 0;
1882
1883	/* Kick off SCSI IO SM on the ioreq */
1884	spin_lock_irqsave(&hw->lock, flags);
1885	retval = csio_scsi_start_io(ioreq);
1886	spin_unlock_irqrestore(&hw->lock, flags);
1887
1888	if (retval != 0) {
1889		csio_err(hw, "ioreq: %p couldnt be started, status:%d\n",
1890			 ioreq, retval);
1891		CSIO_INC_STATS(scsim, n_busy_error);
1892		goto err_put_req;
1893	}
1894
1895	return 0;
1896
1897err_put_req:
1898	csio_put_scsi_ioreq_lock(hw, scsim, ioreq);
1899err_dma_unmap:
1900	if (nsge > 0)
1901		scsi_dma_unmap(cmnd);
1902err:
1903	return rv;
1904
1905err_done:
1906	cmnd->scsi_done(cmnd);
1907	return 0;
1908}
1909
1910static int
1911csio_do_abrt_cls(struct csio_hw *hw, struct csio_ioreq *ioreq, bool abort)
1912{
1913	int rv;
1914	int cpu = smp_processor_id();
1915	struct csio_lnode *ln = ioreq->lnode;
1916	struct csio_scsi_qset *sqset = &hw->sqset[ln->portid][cpu];
1917
1918	ioreq->tmo = CSIO_SCSI_ABRT_TMO_MS;
1919	/*
1920	 * Use current processor queue for posting the abort/close, but retain
1921	 * the ingress queue ID of the original I/O being aborted/closed - we
1922	 * need the abort/close completion to be received on the same queue
1923	 * as the original I/O.
1924	 */
1925	ioreq->eq_idx = sqset->eq_idx;
1926
1927	if (abort == SCSI_ABORT)
1928		rv = csio_scsi_abort(ioreq);
1929	else
1930		rv = csio_scsi_close(ioreq);
1931
1932	return rv;
1933}
1934
1935static int
1936csio_eh_abort_handler(struct scsi_cmnd *cmnd)
1937{
1938	struct csio_ioreq *ioreq;
1939	struct csio_lnode *ln = shost_priv(cmnd->device->host);
1940	struct csio_hw *hw = csio_lnode_to_hw(ln);
1941	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
1942	int ready = 0, ret;
1943	unsigned long tmo = 0;
1944	int rv;
1945	struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
1946
1947	ret = fc_block_scsi_eh(cmnd);
1948	if (ret)
1949		return ret;
1950
1951	ioreq = (struct csio_ioreq *)cmnd->host_scribble;
1952	if (!ioreq)
1953		return SUCCESS;
1954
1955	if (!rn)
1956		return FAILED;
1957
1958	csio_dbg(hw,
1959		 "Request to abort ioreq:%p cmd:%p cdb:%08llx"
1960		 " ssni:0x%x lun:%d iq:0x%x\n",
1961		ioreq, cmnd, *((uint64_t *)cmnd->cmnd), rn->flowid,
1962		cmnd->device->lun, csio_q_physiqid(hw, ioreq->iq_idx));
1963
1964	if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) != cmnd) {
1965		CSIO_INC_STATS(scsim, n_abrt_race_comp);
1966		return SUCCESS;
1967	}
1968
1969	ready = csio_is_lnode_ready(ln);
1970	tmo = CSIO_SCSI_ABRT_TMO_MS;
1971
1972	spin_lock_irq(&hw->lock);
1973	rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE));
1974	spin_unlock_irq(&hw->lock);
1975
1976	if (rv != 0) {
1977		if (rv == -EINVAL) {
1978			/* Return success, if abort/close request issued on
1979			 * already completed IO
1980			 */
1981			return SUCCESS;
1982		}
1983		if (ready)
1984			CSIO_INC_STATS(scsim, n_abrt_busy_error);
1985		else
1986			CSIO_INC_STATS(scsim, n_cls_busy_error);
1987
1988		goto inval_scmnd;
1989	}
1990
1991	/* Wait for completion */
1992	init_completion(&ioreq->cmplobj);
1993	wait_for_completion_timeout(&ioreq->cmplobj, msecs_to_jiffies(tmo));
1994
1995	/* FW didnt respond to abort within our timeout */
1996	if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) {
1997
1998		csio_err(hw, "Abort timed out -- req: %p\n", ioreq);
1999		CSIO_INC_STATS(scsim, n_abrt_timedout);
2000
2001inval_scmnd:
2002		if (ioreq->nsge > 0)
2003			scsi_dma_unmap(cmnd);
2004
2005		spin_lock_irq(&hw->lock);
2006		csio_scsi_cmnd(ioreq) = NULL;
2007		spin_unlock_irq(&hw->lock);
2008
2009		cmnd->result = (DID_ERROR << 16);
2010		cmnd->scsi_done(cmnd);
2011
2012		return FAILED;
2013	}
2014
2015	/* FW successfully aborted the request */
2016	if (host_byte(cmnd->result) == DID_REQUEUE) {
2017		csio_info(hw,
2018			"Aborted SCSI command to (%d:%d) serial#:0x%lx\n",
2019			cmnd->device->id, cmnd->device->lun,
2020			cmnd->serial_number);
2021		return SUCCESS;
2022	} else {
2023		csio_info(hw,
2024			"Failed to abort SCSI command, (%d:%d) serial#:0x%lx\n",
2025			cmnd->device->id, cmnd->device->lun,
2026			cmnd->serial_number);
2027		return FAILED;
2028	}
2029}
2030
2031/*
2032 * csio_tm_cbfn - TM callback function.
2033 * @hw: HW module.
2034 * @req: IO request.
2035 *
2036 * Cache the result in 'cmnd', since ioreq will be freed soon
2037 * after we return from here, and the waiting thread shouldnt trust
2038 * the ioreq contents.
2039 */
2040static void
2041csio_tm_cbfn(struct csio_hw *hw, struct csio_ioreq *req)
2042{
2043	struct scsi_cmnd *cmnd  = (struct scsi_cmnd *)csio_scsi_cmnd(req);
2044	struct csio_dma_buf *dma_buf;
2045	uint8_t flags = 0;
2046	struct fcp_resp_with_ext *fcp_resp;
2047	struct fcp_resp_rsp_info *rsp_info;
2048
2049	csio_dbg(hw, "req: %p in csio_tm_cbfn status: %d\n",
2050		      req, req->wr_status);
2051
2052	/* Cache FW return status */
2053	cmnd->SCp.Status = req->wr_status;
2054
2055	/* Special handling based on FCP response */
2056
2057	/*
2058	 * FW returns us this error, if flags were set. FCP4 says
2059	 * FCP_RSP_LEN_VAL in flags shall be set for TM completions.
2060	 * So if a target were to set this bit, we expect that the
2061	 * rsp_code is set to FCP_TMF_CMPL for a successful TM
2062	 * completion. Any other rsp_code means TM operation failed.
2063	 * If a target were to just ignore setting flags, we treat
2064	 * the TM operation as success, and FW returns FW_SUCCESS.
2065	 */
2066	if (req->wr_status == FW_SCSI_RSP_ERR) {
2067		dma_buf = &req->dma_buf;
2068		fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr;
2069		rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1);
2070
2071		flags = fcp_resp->resp.fr_flags;
2072
2073		/* Modify return status if flags indicate success */
2074		if (flags & FCP_RSP_LEN_VAL)
2075			if (rsp_info->rsp_code == FCP_TMF_CMPL)
2076				cmnd->SCp.Status = FW_SUCCESS;
2077
2078		csio_dbg(hw, "TM FCP rsp code: %d\n", rsp_info->rsp_code);
2079	}
2080
2081	/* Wake up the TM handler thread */
2082	csio_scsi_cmnd(req) = NULL;
2083}
2084
2085static int
2086csio_eh_lun_reset_handler(struct scsi_cmnd *cmnd)
2087{
2088	struct csio_lnode *ln = shost_priv(cmnd->device->host);
2089	struct csio_hw *hw = csio_lnode_to_hw(ln);
2090	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
2091	struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
2092	struct csio_ioreq *ioreq = NULL;
2093	struct csio_scsi_qset *sqset;
2094	unsigned long flags;
2095	int retval;
2096	int count, ret;
2097	LIST_HEAD(local_q);
2098	struct csio_scsi_level_data sld;
2099
2100	if (!rn)
2101		goto fail;
2102
2103	csio_dbg(hw, "Request to reset LUN:%d (ssni:0x%x tgtid:%d)\n",
2104		      cmnd->device->lun, rn->flowid, rn->scsi_id);
2105
2106	if (!csio_is_lnode_ready(ln)) {
2107		csio_err(hw,
2108			 "LUN reset cannot be issued on non-ready"
2109			 " local node vnpi:0x%x (LUN:%d)\n",
2110			 ln->vnp_flowid, cmnd->device->lun);
2111		goto fail;
2112	}
2113
2114	/* Lnode is ready, now wait on rport node readiness */
2115	ret = fc_block_scsi_eh(cmnd);
2116	if (ret)
2117		return ret;
2118
2119	/*
2120	 * If we have blocked in the previous call, at this point, either the
2121	 * remote node has come back online, or device loss timer has fired
2122	 * and the remote node is destroyed. Allow the LUN reset only for
2123	 * the former case, since LUN reset is a TMF I/O on the wire, and we
2124	 * need a valid session to issue it.
2125	 */
2126	if (fc_remote_port_chkready(rn->rport)) {
2127		csio_err(hw,
2128			 "LUN reset cannot be issued on non-ready"
2129			 " remote node ssni:0x%x (LUN:%d)\n",
2130			 rn->flowid, cmnd->device->lun);
2131		goto fail;
2132	}
2133
2134	/* Get a free ioreq structure - SM is already set to uninit */
2135	ioreq = csio_get_scsi_ioreq_lock(hw, scsim);
2136
2137	if (!ioreq) {
2138		csio_err(hw, "Out of IO request elements. Active # :%d\n",
2139			 scsim->stats.n_active);
2140		goto fail;
2141	}
2142
2143	sqset			= &hw->sqset[ln->portid][smp_processor_id()];
2144	ioreq->nsge		= 0;
2145	ioreq->lnode		= ln;
2146	ioreq->rnode		= rn;
2147	ioreq->iq_idx		= sqset->iq_idx;
2148	ioreq->eq_idx		= sqset->eq_idx;
2149
2150	csio_scsi_cmnd(ioreq)	= cmnd;
2151	cmnd->host_scribble	= (unsigned char *)ioreq;
2152	cmnd->SCp.Status	= 0;
2153
2154	cmnd->SCp.Message	= FCP_TMF_LUN_RESET;
2155	ioreq->tmo		= CSIO_SCSI_LUNRST_TMO_MS / 1000;
2156
2157	/*
2158	 * FW times the LUN reset for ioreq->tmo, so we got to wait a little
2159	 * longer (10s for now) than that to allow FW to return the timed
2160	 * out command.
2161	 */
2162	count = DIV_ROUND_UP((ioreq->tmo + 10) * 1000, CSIO_SCSI_TM_POLL_MS);
2163
2164	/* Set cbfn */
2165	ioreq->io_cbfn = csio_tm_cbfn;
2166
2167	/* Save of the ioreq info for later use */
2168	sld.level = CSIO_LEV_LUN;
2169	sld.lnode = ioreq->lnode;
2170	sld.rnode = ioreq->rnode;
2171	sld.oslun = (uint64_t)cmnd->device->lun;
2172
2173	spin_lock_irqsave(&hw->lock, flags);
2174	/* Kick off TM SM on the ioreq */
2175	retval = csio_scsi_start_tm(ioreq);
2176	spin_unlock_irqrestore(&hw->lock, flags);
2177
2178	if (retval != 0) {
2179		csio_err(hw, "Failed to issue LUN reset, req:%p, status:%d\n",
2180			    ioreq, retval);
2181		goto fail_ret_ioreq;
2182	}
2183
2184	csio_dbg(hw, "Waiting max %d secs for LUN reset completion\n",
2185		    count * (CSIO_SCSI_TM_POLL_MS / 1000));
2186	/* Wait for completion */
2187	while ((((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd)
2188								&& count--)
2189		msleep(CSIO_SCSI_TM_POLL_MS);
2190
2191	/* LUN reset timed-out */
2192	if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) {
2193		csio_err(hw, "LUN reset (%d:%d) timed out\n",
2194			 cmnd->device->id, cmnd->device->lun);
2195
2196		spin_lock_irq(&hw->lock);
2197		csio_scsi_drvcleanup(ioreq);
2198		list_del_init(&ioreq->sm.sm_list);
2199		spin_unlock_irq(&hw->lock);
2200
2201		goto fail_ret_ioreq;
2202	}
2203
2204	/* LUN reset returned, check cached status */
2205	if (cmnd->SCp.Status != FW_SUCCESS) {
2206		csio_err(hw, "LUN reset failed (%d:%d), status: %d\n",
2207			 cmnd->device->id, cmnd->device->lun, cmnd->SCp.Status);
2208		goto fail;
2209	}
2210
2211	/* LUN reset succeeded, Start aborting affected I/Os */
2212	/*
2213	 * Since the host guarantees during LUN reset that there
2214	 * will not be any more I/Os to that LUN, until the LUN reset
2215	 * completes, we gather pending I/Os after the LUN reset.
2216	 */
2217	spin_lock_irq(&hw->lock);
2218	csio_scsi_gather_active_ios(scsim, &sld, &local_q);
2219
2220	retval = csio_scsi_abort_io_q(scsim, &local_q, 30000);
2221	spin_unlock_irq(&hw->lock);
2222
2223	/* Aborts may have timed out */
2224	if (retval != 0) {
2225		csio_err(hw,
2226			 "Attempt to abort I/Os during LUN reset of %d"
2227			 " returned %d\n", cmnd->device->lun, retval);
2228		/* Return I/Os back to active_q */
2229		spin_lock_irq(&hw->lock);
2230		list_splice_tail_init(&local_q, &scsim->active_q);
2231		spin_unlock_irq(&hw->lock);
2232		goto fail;
2233	}
2234
2235	CSIO_INC_STATS(rn, n_lun_rst);
2236
2237	csio_info(hw, "LUN reset occurred (%d:%d)\n",
2238		  cmnd->device->id, cmnd->device->lun);
2239
2240	return SUCCESS;
2241
2242fail_ret_ioreq:
2243	csio_put_scsi_ioreq_lock(hw, scsim, ioreq);
2244fail:
2245	CSIO_INC_STATS(rn, n_lun_rst_fail);
2246	return FAILED;
2247}
2248
2249static int
2250csio_slave_alloc(struct scsi_device *sdev)
2251{
2252	struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
2253
2254	if (!rport || fc_remote_port_chkready(rport))
2255		return -ENXIO;
2256
2257	sdev->hostdata = *((struct csio_lnode **)(rport->dd_data));
2258
2259	return 0;
2260}
2261
2262static int
2263csio_slave_configure(struct scsi_device *sdev)
2264{
2265	if (sdev->tagged_supported)
2266		scsi_activate_tcq(sdev, csio_lun_qdepth);
2267	else
2268		scsi_deactivate_tcq(sdev, csio_lun_qdepth);
2269
2270	return 0;
2271}
2272
2273static void
2274csio_slave_destroy(struct scsi_device *sdev)
2275{
2276	sdev->hostdata = NULL;
2277}
2278
2279static int
2280csio_scan_finished(struct Scsi_Host *shost, unsigned long time)
2281{
2282	struct csio_lnode *ln = shost_priv(shost);
2283	int rv = 1;
2284
2285	spin_lock_irq(shost->host_lock);
2286	if (!ln->hwp || csio_list_deleted(&ln->sm.sm_list))
2287		goto out;
2288
2289	rv = csio_scan_done(ln, jiffies, time, csio_max_scan_tmo * HZ,
2290			    csio_delta_scan_tmo * HZ);
2291out:
2292	spin_unlock_irq(shost->host_lock);
2293
2294	return rv;
2295}
2296
2297struct scsi_host_template csio_fcoe_shost_template = {
2298	.module			= THIS_MODULE,
2299	.name			= CSIO_DRV_DESC,
2300	.proc_name		= KBUILD_MODNAME,
2301	.queuecommand		= csio_queuecommand,
2302	.eh_abort_handler	= csio_eh_abort_handler,
2303	.eh_device_reset_handler = csio_eh_lun_reset_handler,
2304	.slave_alloc		= csio_slave_alloc,
2305	.slave_configure	= csio_slave_configure,
2306	.slave_destroy		= csio_slave_destroy,
2307	.scan_finished		= csio_scan_finished,
2308	.this_id		= -1,
2309	.sg_tablesize		= CSIO_SCSI_MAX_SGE,
2310	.cmd_per_lun		= CSIO_MAX_CMD_PER_LUN,
2311	.use_clustering		= ENABLE_CLUSTERING,
2312	.shost_attrs		= csio_fcoe_lport_attrs,
2313	.max_sectors		= CSIO_MAX_SECTOR_SIZE,
2314};
2315
2316struct scsi_host_template csio_fcoe_shost_vport_template = {
2317	.module			= THIS_MODULE,
2318	.name			= CSIO_DRV_DESC,
2319	.proc_name		= KBUILD_MODNAME,
2320	.queuecommand		= csio_queuecommand,
2321	.eh_abort_handler	= csio_eh_abort_handler,
2322	.eh_device_reset_handler = csio_eh_lun_reset_handler,
2323	.slave_alloc		= csio_slave_alloc,
2324	.slave_configure	= csio_slave_configure,
2325	.slave_destroy		= csio_slave_destroy,
2326	.scan_finished		= csio_scan_finished,
2327	.this_id		= -1,
2328	.sg_tablesize		= CSIO_SCSI_MAX_SGE,
2329	.cmd_per_lun		= CSIO_MAX_CMD_PER_LUN,
2330	.use_clustering		= ENABLE_CLUSTERING,
2331	.shost_attrs		= csio_fcoe_vport_attrs,
2332	.max_sectors		= CSIO_MAX_SECTOR_SIZE,
2333};
2334
2335/*
2336 * csio_scsi_alloc_ddp_bufs - Allocate buffers for DDP of unaligned SGLs.
2337 * @scm: SCSI Module
2338 * @hw: HW device.
2339 * @buf_size: buffer size
2340 * @num_buf : Number of buffers.
2341 *
2342 * This routine allocates DMA buffers required for SCSI Data xfer, if
2343 * each SGL buffer for a SCSI Read request posted by SCSI midlayer are
2344 * not virtually contiguous.
2345 */
2346static int
2347csio_scsi_alloc_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw,
2348			 int buf_size, int num_buf)
2349{
2350	int n = 0;
2351	struct list_head *tmp;
2352	struct csio_dma_buf *ddp_desc = NULL;
2353	uint32_t unit_size = 0;
2354
2355	if (!num_buf)
2356		return 0;
2357
2358	if (!buf_size)
2359		return -EINVAL;
2360
2361	INIT_LIST_HEAD(&scm->ddp_freelist);
2362
2363	/* Align buf size to page size */
2364	buf_size = (buf_size + PAGE_SIZE - 1) & PAGE_MASK;
2365	/* Initialize dma descriptors */
2366	for (n = 0; n < num_buf; n++) {
2367		/* Set unit size to request size */
2368		unit_size = buf_size;
2369		ddp_desc = kzalloc(sizeof(struct csio_dma_buf), GFP_KERNEL);
2370		if (!ddp_desc) {
2371			csio_err(hw,
2372				 "Failed to allocate ddp descriptors,"
2373				 " Num allocated = %d.\n",
2374				 scm->stats.n_free_ddp);
2375			goto no_mem;
2376		}
2377
2378		/* Allocate Dma buffers for DDP */
2379		ddp_desc->vaddr = pci_alloc_consistent(hw->pdev, unit_size,
2380							&ddp_desc->paddr);
2381		if (!ddp_desc->vaddr) {
2382			csio_err(hw,
2383				 "SCSI response DMA buffer (ddp) allocation"
2384				 " failed!\n");
2385			kfree(ddp_desc);
2386			goto no_mem;
2387		}
2388
2389		ddp_desc->len = unit_size;
2390
2391		/* Added it to scsi ddp freelist */
2392		list_add_tail(&ddp_desc->list, &scm->ddp_freelist);
2393		CSIO_INC_STATS(scm, n_free_ddp);
2394	}
2395
2396	return 0;
2397no_mem:
2398	/* release dma descs back to freelist and free dma memory */
2399	list_for_each(tmp, &scm->ddp_freelist) {
2400		ddp_desc = (struct csio_dma_buf *) tmp;
2401		tmp = csio_list_prev(tmp);
2402		pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr,
2403				    ddp_desc->paddr);
2404		list_del_init(&ddp_desc->list);
2405		kfree(ddp_desc);
2406	}
2407	scm->stats.n_free_ddp = 0;
2408
2409	return -ENOMEM;
2410}
2411
2412/*
2413 * csio_scsi_free_ddp_bufs - free DDP buffers of unaligned SGLs.
2414 * @scm: SCSI Module
2415 * @hw: HW device.
2416 *
2417 * This routine frees ddp buffers.
2418 */
2419static void
2420csio_scsi_free_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw)
2421{
2422	struct list_head *tmp;
2423	struct csio_dma_buf *ddp_desc;
2424
2425	/* release dma descs back to freelist and free dma memory */
2426	list_for_each(tmp, &scm->ddp_freelist) {
2427		ddp_desc = (struct csio_dma_buf *) tmp;
2428		tmp = csio_list_prev(tmp);
2429		pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr,
2430				    ddp_desc->paddr);
2431		list_del_init(&ddp_desc->list);
2432		kfree(ddp_desc);
2433	}
2434	scm->stats.n_free_ddp = 0;
2435}
2436
2437/**
2438 * csio_scsim_init - Initialize SCSI Module
2439 * @scm:	SCSI Module
2440 * @hw:		HW module
2441 *
2442 */
2443int
2444csio_scsim_init(struct csio_scsim *scm, struct csio_hw *hw)
2445{
2446	int i;
2447	struct csio_ioreq *ioreq;
2448	struct csio_dma_buf *dma_buf;
2449
2450	INIT_LIST_HEAD(&scm->active_q);
2451	scm->hw = hw;
2452
2453	scm->proto_cmd_len = sizeof(struct fcp_cmnd);
2454	scm->proto_rsp_len = CSIO_SCSI_RSP_LEN;
2455	scm->max_sge = CSIO_SCSI_MAX_SGE;
2456
2457	spin_lock_init(&scm->freelist_lock);
2458
2459	/* Pre-allocate ioreqs and initialize them */
2460	INIT_LIST_HEAD(&scm->ioreq_freelist);
2461	for (i = 0; i < csio_scsi_ioreqs; i++) {
2462
2463		ioreq = kzalloc(sizeof(struct csio_ioreq), GFP_KERNEL);
2464		if (!ioreq) {
2465			csio_err(hw,
2466				 "I/O request element allocation failed, "
2467				 " Num allocated = %d.\n",
2468				 scm->stats.n_free_ioreq);
2469
2470			goto free_ioreq;
2471		}
2472
2473		/* Allocate Dma buffers for Response Payload */
2474		dma_buf = &ioreq->dma_buf;
2475		dma_buf->vaddr = pci_pool_alloc(hw->scsi_pci_pool, GFP_KERNEL,
2476						&dma_buf->paddr);
2477		if (!dma_buf->vaddr) {
2478			csio_err(hw,
2479				 "SCSI response DMA buffer allocation"
2480				 " failed!\n");
2481			kfree(ioreq);
2482			goto free_ioreq;
2483		}
2484
2485		dma_buf->len = scm->proto_rsp_len;
2486
2487		/* Set state to uninit */
2488		csio_init_state(&ioreq->sm, csio_scsis_uninit);
2489		INIT_LIST_HEAD(&ioreq->gen_list);
2490		init_completion(&ioreq->cmplobj);
2491
2492		list_add_tail(&ioreq->sm.sm_list, &scm->ioreq_freelist);
2493		CSIO_INC_STATS(scm, n_free_ioreq);
2494	}
2495
2496	if (csio_scsi_alloc_ddp_bufs(scm, hw, PAGE_SIZE, csio_ddp_descs))
2497		goto free_ioreq;
2498
2499	return 0;
2500
2501free_ioreq:
2502	/*
2503	 * Free up existing allocations, since an error
2504	 * from here means we are returning for good
2505	 */
2506	while (!list_empty(&scm->ioreq_freelist)) {
2507		struct csio_sm *tmp;
2508
2509		tmp = list_first_entry(&scm->ioreq_freelist,
2510				       struct csio_sm, sm_list);
2511		list_del_init(&tmp->sm_list);
2512		ioreq = (struct csio_ioreq *)tmp;
2513
2514		dma_buf = &ioreq->dma_buf;
2515		pci_pool_free(hw->scsi_pci_pool, dma_buf->vaddr,
2516			      dma_buf->paddr);
2517
2518		kfree(ioreq);
2519	}
2520
2521	scm->stats.n_free_ioreq = 0;
2522
2523	return -ENOMEM;
2524}
2525
2526/**
2527 * csio_scsim_exit: Uninitialize SCSI Module
2528 * @scm: SCSI Module
2529 *
2530 */
2531void
2532csio_scsim_exit(struct csio_scsim *scm)
2533{
2534	struct csio_ioreq *ioreq;
2535	struct csio_dma_buf *dma_buf;
2536
2537	while (!list_empty(&scm->ioreq_freelist)) {
2538		struct csio_sm *tmp;
2539
2540		tmp = list_first_entry(&scm->ioreq_freelist,
2541				       struct csio_sm, sm_list);
2542		list_del_init(&tmp->sm_list);
2543		ioreq = (struct csio_ioreq *)tmp;
2544
2545		dma_buf = &ioreq->dma_buf;
2546		pci_pool_free(scm->hw->scsi_pci_pool, dma_buf->vaddr,
2547			      dma_buf->paddr);
2548
2549		kfree(ioreq);
2550	}
2551
2552	scm->stats.n_free_ioreq = 0;
2553
2554	csio_scsi_free_ddp_bufs(scm, scm->hw);
2555}