Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * 6pack.c	This module implements the 6pack protocol for kernel-based
   3 *		devices like TTY. It interfaces between a raw TTY and the
   4 *		kernel's AX.25 protocol layers.
   5 *
   6 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
   7 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   8 *
   9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  10 *
  11 *		Laurence Culhane, <loz@holmes.demon.co.uk>
  12 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  13 */
  14
  15#include <linux/module.h>
  16#include <asm/uaccess.h>
  17#include <linux/bitops.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/interrupt.h>
  21#include <linux/in.h>
  22#include <linux/tty.h>
  23#include <linux/errno.h>
  24#include <linux/netdevice.h>
  25#include <linux/timer.h>
  26#include <linux/slab.h>
  27#include <net/ax25.h>
  28#include <linux/etherdevice.h>
  29#include <linux/skbuff.h>
  30#include <linux/rtnetlink.h>
  31#include <linux/spinlock.h>
  32#include <linux/if_arp.h>
  33#include <linux/init.h>
  34#include <linux/ip.h>
  35#include <linux/tcp.h>
  36#include <linux/semaphore.h>
  37#include <linux/compat.h>
  38#include <linux/atomic.h>
  39
  40#define SIXPACK_VERSION    "Revision: 0.3.0"
  41
  42/* sixpack priority commands */
  43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
  44#define SIXP_TX_URUN		0x48	/* transmit overrun */
  45#define SIXP_RX_ORUN		0x50	/* receive overrun */
  46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
  47
  48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
  49
  50/* masks to get certain bits out of the status bytes sent by the TNC */
  51
  52#define SIXP_CMD_MASK		0xC0
  53#define SIXP_CHN_MASK		0x07
  54#define SIXP_PRIO_CMD_MASK	0x80
  55#define SIXP_STD_CMD_MASK	0x40
  56#define SIXP_PRIO_DATA_MASK	0x38
  57#define SIXP_TX_MASK		0x20
  58#define SIXP_RX_MASK		0x10
  59#define SIXP_RX_DCD_MASK	0x18
  60#define SIXP_LEDS_ON		0x78
  61#define SIXP_LEDS_OFF		0x60
  62#define SIXP_CON		0x08
  63#define SIXP_STA		0x10
  64
  65#define SIXP_FOUND_TNC		0xe9
  66#define SIXP_CON_ON		0x68
  67#define SIXP_DCD_MASK		0x08
  68#define SIXP_DAMA_OFF		0
  69
  70/* default level 2 parameters */
  71#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
  72#define SIXP_PERSIST			50	/* in 256ths */
  73#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
  74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
  75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
  76
  77/* 6pack configuration. */
  78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
  79#define SIXP_MTU			256	/* Default MTU */
  80
  81enum sixpack_flags {
  82	SIXPF_ERROR,	/* Parity, etc. error	*/
  83};
  84
  85struct sixpack {
  86	/* Various fields. */
  87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
  88	struct net_device	*dev;		/* easy for intr handling  */
  89
  90	/* These are pointers to the malloc()ed frame buffers. */
  91	unsigned char		*rbuff;		/* receiver buffer	*/
  92	int			rcount;         /* received chars counter  */
  93	unsigned char		*xbuff;		/* transmitter buffer	*/
  94	unsigned char		*xhead;         /* next byte to XMIT */
  95	int			xleft;          /* bytes left in XMIT queue  */
  96
  97	unsigned char		raw_buf[4];
  98	unsigned char		cooked_buf[400];
  99
 100	unsigned int		rx_count;
 101	unsigned int		rx_count_cooked;
 102
 103	int			mtu;		/* Our mtu (to spot changes!) */
 104	int			buffsize;       /* Max buffers sizes */
 105
 106	unsigned long		flags;		/* Flag values/ mode etc */
 107	unsigned char		mode;		/* 6pack mode */
 108
 109	/* 6pack stuff */
 110	unsigned char		tx_delay;
 111	unsigned char		persistence;
 112	unsigned char		slottime;
 113	unsigned char		duplex;
 114	unsigned char		led_state;
 115	unsigned char		status;
 116	unsigned char		status1;
 117	unsigned char		status2;
 118	unsigned char		tx_enable;
 119	unsigned char		tnc_state;
 120
 121	struct timer_list	tx_t;
 122	struct timer_list	resync_t;
 123	atomic_t		refcnt;
 124	struct semaphore	dead_sem;
 125	spinlock_t		lock;
 126};
 127
 128#define AX25_6PACK_HEADER_LEN 0
 129
 130static void sixpack_decode(struct sixpack *, unsigned char[], int);
 131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 132
 133/*
 134 * Perform the persistence/slottime algorithm for CSMA access. If the
 135 * persistence check was successful, write the data to the serial driver.
 136 * Note that in case of DAMA operation, the data is not sent here.
 137 */
 138
 139static void sp_xmit_on_air(unsigned long channel)
 140{
 141	struct sixpack *sp = (struct sixpack *) channel;
 142	int actual, when = sp->slottime;
 143	static unsigned char random;
 144
 145	random = random * 17 + 41;
 146
 147	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 148		sp->led_state = 0x70;
 149		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 150		sp->tx_enable = 1;
 151		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 152		sp->xleft -= actual;
 153		sp->xhead += actual;
 154		sp->led_state = 0x60;
 155		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 156		sp->status2 = 0;
 157	} else
 158		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 159}
 160
 161/* ----> 6pack timer interrupt handler and friends. <---- */
 162
 163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 165{
 166	unsigned char *msg, *p = icp;
 167	int actual, count;
 168
 169	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 170		msg = "oversized transmit packet!";
 171		goto out_drop;
 172	}
 173
 174	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 175		msg = "oversized transmit packet!";
 176		goto out_drop;
 177	}
 178
 179	if (p[0] > 5) {
 180		msg = "invalid KISS command";
 181		goto out_drop;
 182	}
 183
 184	if ((p[0] != 0) && (len > 2)) {
 185		msg = "KISS control packet too long";
 186		goto out_drop;
 187	}
 188
 189	if ((p[0] == 0) && (len < 15)) {
 190		msg = "bad AX.25 packet to transmit";
 191		goto out_drop;
 192	}
 193
 194	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 195	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 196
 197	switch (p[0]) {
 198	case 1:	sp->tx_delay = p[1];
 199		return;
 200	case 2:	sp->persistence = p[1];
 201		return;
 202	case 3:	sp->slottime = p[1];
 203		return;
 204	case 4:	/* ignored */
 205		return;
 206	case 5:	sp->duplex = p[1];
 207		return;
 208	}
 209
 210	if (p[0] != 0)
 211		return;
 212
 213	/*
 214	 * In case of fullduplex or DAMA operation, we don't take care about the
 215	 * state of the DCD or of any timers, as the determination of the
 216	 * correct time to send is the job of the AX.25 layer. We send
 217	 * immediately after data has arrived.
 218	 */
 219	if (sp->duplex == 1) {
 220		sp->led_state = 0x70;
 221		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 222		sp->tx_enable = 1;
 223		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 224		sp->xleft = count - actual;
 225		sp->xhead = sp->xbuff + actual;
 226		sp->led_state = 0x60;
 227		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 228	} else {
 229		sp->xleft = count;
 230		sp->xhead = sp->xbuff;
 231		sp->status2 = count;
 232		sp_xmit_on_air((unsigned long)sp);
 233	}
 234
 235	return;
 236
 237out_drop:
 238	sp->dev->stats.tx_dropped++;
 239	netif_start_queue(sp->dev);
 240	if (net_ratelimit())
 241		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 242}
 243
 244/* Encapsulate an IP datagram and kick it into a TTY queue. */
 245
 246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 247{
 248	struct sixpack *sp = netdev_priv(dev);
 249
 250	spin_lock_bh(&sp->lock);
 251	/* We were not busy, so we are now... :-) */
 252	netif_stop_queue(dev);
 253	dev->stats.tx_bytes += skb->len;
 254	sp_encaps(sp, skb->data, skb->len);
 255	spin_unlock_bh(&sp->lock);
 256
 257	dev_kfree_skb(skb);
 258
 259	return NETDEV_TX_OK;
 260}
 261
 262static int sp_open_dev(struct net_device *dev)
 263{
 264	struct sixpack *sp = netdev_priv(dev);
 265
 266	if (sp->tty == NULL)
 267		return -ENODEV;
 268	return 0;
 269}
 270
 271/* Close the low-level part of the 6pack channel. */
 272static int sp_close(struct net_device *dev)
 273{
 274	struct sixpack *sp = netdev_priv(dev);
 275
 276	spin_lock_bh(&sp->lock);
 277	if (sp->tty) {
 278		/* TTY discipline is running. */
 279		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 280	}
 281	netif_stop_queue(dev);
 282	spin_unlock_bh(&sp->lock);
 283
 284	return 0;
 285}
 286
 287/* Return the frame type ID */
 288static int sp_header(struct sk_buff *skb, struct net_device *dev,
 289		     unsigned short type, const void *daddr,
 290		     const void *saddr, unsigned len)
 291{
 292#ifdef CONFIG_INET
 293	if (type != ETH_P_AX25)
 294		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
 295#endif
 296	return 0;
 297}
 298
 299static int sp_set_mac_address(struct net_device *dev, void *addr)
 300{
 301	struct sockaddr_ax25 *sa = addr;
 302
 303	netif_tx_lock_bh(dev);
 304	netif_addr_lock(dev);
 305	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 306	netif_addr_unlock(dev);
 307	netif_tx_unlock_bh(dev);
 308
 309	return 0;
 310}
 311
 312static int sp_rebuild_header(struct sk_buff *skb)
 313{
 314#ifdef CONFIG_INET
 315	return ax25_rebuild_header(skb);
 316#else
 317	return 0;
 318#endif
 319}
 320
 321static const struct header_ops sp_header_ops = {
 322	.create		= sp_header,
 323	.rebuild	= sp_rebuild_header,
 324};
 325
 326static const struct net_device_ops sp_netdev_ops = {
 327	.ndo_open		= sp_open_dev,
 328	.ndo_stop		= sp_close,
 329	.ndo_start_xmit		= sp_xmit,
 330	.ndo_set_mac_address    = sp_set_mac_address,
 331};
 332
 333static void sp_setup(struct net_device *dev)
 334{
 335	/* Finish setting up the DEVICE info. */
 336	dev->netdev_ops		= &sp_netdev_ops;
 337	dev->destructor		= free_netdev;
 338	dev->mtu		= SIXP_MTU;
 339	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
 340	dev->header_ops 	= &sp_header_ops;
 341
 342	dev->addr_len		= AX25_ADDR_LEN;
 343	dev->type		= ARPHRD_AX25;
 344	dev->tx_queue_len	= 10;
 345
 346	/* Only activated in AX.25 mode */
 347	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 348	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 349
 350	dev->flags		= 0;
 351}
 352
 353/* Send one completely decapsulated IP datagram to the IP layer. */
 354
 355/*
 356 * This is the routine that sends the received data to the kernel AX.25.
 357 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 358 */
 359
 360static void sp_bump(struct sixpack *sp, char cmd)
 361{
 362	struct sk_buff *skb;
 363	int count;
 364	unsigned char *ptr;
 365
 366	count = sp->rcount + 1;
 367
 368	sp->dev->stats.rx_bytes += count;
 369
 370	if ((skb = dev_alloc_skb(count)) == NULL)
 371		goto out_mem;
 372
 373	ptr = skb_put(skb, count);
 374	*ptr++ = cmd;	/* KISS command */
 375
 376	memcpy(ptr, sp->cooked_buf + 1, count);
 377	skb->protocol = ax25_type_trans(skb, sp->dev);
 378	netif_rx(skb);
 379	sp->dev->stats.rx_packets++;
 380
 381	return;
 382
 383out_mem:
 384	sp->dev->stats.rx_dropped++;
 385}
 386
 387
 388/* ----------------------------------------------------------------------- */
 389
 390/*
 391 * We have a potential race on dereferencing tty->disc_data, because the tty
 392 * layer provides no locking at all - thus one cpu could be running
 393 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 394 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 395 * best way to fix this is to use a rwlock in the tty struct, but for now we
 396 * use a single global rwlock for all ttys in ppp line discipline.
 397 */
 398static DEFINE_RWLOCK(disc_data_lock);
 399                                                                                
 400static struct sixpack *sp_get(struct tty_struct *tty)
 401{
 402	struct sixpack *sp;
 403
 404	read_lock(&disc_data_lock);
 405	sp = tty->disc_data;
 406	if (sp)
 407		atomic_inc(&sp->refcnt);
 408	read_unlock(&disc_data_lock);
 409
 410	return sp;
 411}
 412
 413static void sp_put(struct sixpack *sp)
 414{
 415	if (atomic_dec_and_test(&sp->refcnt))
 416		up(&sp->dead_sem);
 417}
 418
 419/*
 420 * Called by the TTY driver when there's room for more data.  If we have
 421 * more packets to send, we send them here.
 422 */
 423static void sixpack_write_wakeup(struct tty_struct *tty)
 424{
 425	struct sixpack *sp = sp_get(tty);
 426	int actual;
 427
 428	if (!sp)
 429		return;
 430	if (sp->xleft <= 0)  {
 431		/* Now serial buffer is almost free & we can start
 432		 * transmission of another packet */
 433		sp->dev->stats.tx_packets++;
 434		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 435		sp->tx_enable = 0;
 436		netif_wake_queue(sp->dev);
 437		goto out;
 438	}
 439
 440	if (sp->tx_enable) {
 441		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 442		sp->xleft -= actual;
 443		sp->xhead += actual;
 444	}
 445
 446out:
 447	sp_put(sp);
 448}
 449
 450/* ----------------------------------------------------------------------- */
 451
 452/*
 453 * Handle the 'receiver data ready' interrupt.
 454 * This function is called by the 'tty_io' module in the kernel when
 455 * a block of 6pack data has been received, which can now be decapsulated
 456 * and sent on to some IP layer for further processing.
 457 */
 458static void sixpack_receive_buf(struct tty_struct *tty,
 459	const unsigned char *cp, char *fp, int count)
 460{
 461	struct sixpack *sp;
 462	unsigned char buf[512];
 463	int count1;
 464
 465	if (!count)
 466		return;
 467
 468	sp = sp_get(tty);
 469	if (!sp)
 470		return;
 471
 472	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
 473
 474	/* Read the characters out of the buffer */
 475
 476	count1 = count;
 477	while (count) {
 478		count--;
 479		if (fp && *fp++) {
 480			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 481				sp->dev->stats.rx_errors++;
 482			continue;
 483		}
 484	}
 485	sixpack_decode(sp, buf, count1);
 486
 487	sp_put(sp);
 488	tty_unthrottle(tty);
 489}
 490
 491/*
 492 * Try to resync the TNC. Called by the resync timer defined in
 493 * decode_prio_command
 494 */
 495
 496#define TNC_UNINITIALIZED	0
 497#define TNC_UNSYNC_STARTUP	1
 498#define TNC_UNSYNCED		2
 499#define TNC_IN_SYNC		3
 500
 501static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 502{
 503	char *msg;
 504
 505	switch (new_tnc_state) {
 506	default:			/* gcc oh piece-o-crap ... */
 507	case TNC_UNSYNC_STARTUP:
 508		msg = "Synchronizing with TNC";
 509		break;
 510	case TNC_UNSYNCED:
 511		msg = "Lost synchronization with TNC\n";
 512		break;
 513	case TNC_IN_SYNC:
 514		msg = "Found TNC";
 515		break;
 516	}
 517
 518	sp->tnc_state = new_tnc_state;
 519	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 520}
 521
 522static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 523{
 524	int old_tnc_state = sp->tnc_state;
 525
 526	if (old_tnc_state != new_tnc_state)
 527		__tnc_set_sync_state(sp, new_tnc_state);
 528}
 529
 530static void resync_tnc(unsigned long channel)
 531{
 532	struct sixpack *sp = (struct sixpack *) channel;
 533	static char resync_cmd = 0xe8;
 534
 535	/* clear any data that might have been received */
 536
 537	sp->rx_count = 0;
 538	sp->rx_count_cooked = 0;
 539
 540	/* reset state machine */
 541
 542	sp->status = 1;
 543	sp->status1 = 1;
 544	sp->status2 = 0;
 545
 546	/* resync the TNC */
 547
 548	sp->led_state = 0x60;
 549	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 550	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 551
 552
 553	/* Start resync timer again -- the TNC might be still absent */
 554
 555	del_timer(&sp->resync_t);
 556	sp->resync_t.data	= (unsigned long) sp;
 557	sp->resync_t.function	= resync_tnc;
 558	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
 559	add_timer(&sp->resync_t);
 560}
 561
 562static inline int tnc_init(struct sixpack *sp)
 563{
 564	unsigned char inbyte = 0xe8;
 565
 566	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 567
 568	sp->tty->ops->write(sp->tty, &inbyte, 1);
 569
 570	del_timer(&sp->resync_t);
 571	sp->resync_t.data = (unsigned long) sp;
 572	sp->resync_t.function = resync_tnc;
 573	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
 574	add_timer(&sp->resync_t);
 575
 576	return 0;
 577}
 578
 579/*
 580 * Open the high-level part of the 6pack channel.
 581 * This function is called by the TTY module when the
 582 * 6pack line discipline is called for.  Because we are
 583 * sure the tty line exists, we only have to link it to
 584 * a free 6pcack channel...
 585 */
 586static int sixpack_open(struct tty_struct *tty)
 587{
 588	char *rbuff = NULL, *xbuff = NULL;
 589	struct net_device *dev;
 590	struct sixpack *sp;
 591	unsigned long len;
 592	int err = 0;
 593
 594	if (!capable(CAP_NET_ADMIN))
 595		return -EPERM;
 596	if (tty->ops->write == NULL)
 597		return -EOPNOTSUPP;
 598
 599	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
 600	if (!dev) {
 601		err = -ENOMEM;
 602		goto out;
 603	}
 604
 605	sp = netdev_priv(dev);
 606	sp->dev = dev;
 607
 608	spin_lock_init(&sp->lock);
 609	atomic_set(&sp->refcnt, 1);
 610	sema_init(&sp->dead_sem, 0);
 611
 612	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 613
 614	len = dev->mtu * 2;
 615
 616	rbuff = kmalloc(len + 4, GFP_KERNEL);
 617	xbuff = kmalloc(len + 4, GFP_KERNEL);
 618
 619	if (rbuff == NULL || xbuff == NULL) {
 620		err = -ENOBUFS;
 621		goto out_free;
 622	}
 623
 624	spin_lock_bh(&sp->lock);
 625
 626	sp->tty = tty;
 627
 628	sp->rbuff	= rbuff;
 629	sp->xbuff	= xbuff;
 630
 631	sp->mtu		= AX25_MTU + 73;
 632	sp->buffsize	= len;
 633	sp->rcount	= 0;
 634	sp->rx_count	= 0;
 635	sp->rx_count_cooked = 0;
 636	sp->xleft	= 0;
 637
 638	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
 639
 640	sp->duplex	= 0;
 641	sp->tx_delay    = SIXP_TXDELAY;
 642	sp->persistence = SIXP_PERSIST;
 643	sp->slottime    = SIXP_SLOTTIME;
 644	sp->led_state   = 0x60;
 645	sp->status      = 1;
 646	sp->status1     = 1;
 647	sp->status2     = 0;
 648	sp->tx_enable   = 0;
 649
 650	netif_start_queue(dev);
 651
 652	init_timer(&sp->tx_t);
 653	sp->tx_t.function = sp_xmit_on_air;
 654	sp->tx_t.data = (unsigned long) sp;
 655
 656	init_timer(&sp->resync_t);
 657
 658	spin_unlock_bh(&sp->lock);
 659
 660	/* Done.  We have linked the TTY line to a channel. */
 661	tty->disc_data = sp;
 662	tty->receive_room = 65536;
 663
 664	/* Now we're ready to register. */
 665	err = register_netdev(dev);
 666	if (err)
 667		goto out_free;
 668
 669	tnc_init(sp);
 670
 671	return 0;
 672
 673out_free:
 674	kfree(xbuff);
 675	kfree(rbuff);
 676
 677	if (dev)
 678		free_netdev(dev);
 679
 680out:
 681	return err;
 682}
 683
 684
 685/*
 686 * Close down a 6pack channel.
 687 * This means flushing out any pending queues, and then restoring the
 688 * TTY line discipline to what it was before it got hooked to 6pack
 689 * (which usually is TTY again).
 690 */
 691static void sixpack_close(struct tty_struct *tty)
 692{
 693	struct sixpack *sp;
 694
 695	write_lock_bh(&disc_data_lock);
 696	sp = tty->disc_data;
 697	tty->disc_data = NULL;
 698	write_unlock_bh(&disc_data_lock);
 699	if (!sp)
 700		return;
 701
 702	/*
 703	 * We have now ensured that nobody can start using ap from now on, but
 704	 * we have to wait for all existing users to finish.
 705	 */
 706	if (!atomic_dec_and_test(&sp->refcnt))
 707		down(&sp->dead_sem);
 708
 709	unregister_netdev(sp->dev);
 710
 711	del_timer(&sp->tx_t);
 712	del_timer(&sp->resync_t);
 713
 714	/* Free all 6pack frame buffers. */
 715	kfree(sp->rbuff);
 716	kfree(sp->xbuff);
 717}
 718
 719/* Perform I/O control on an active 6pack channel. */
 720static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 721	unsigned int cmd, unsigned long arg)
 722{
 723	struct sixpack *sp = sp_get(tty);
 724	struct net_device *dev;
 725	unsigned int tmp, err;
 726
 727	if (!sp)
 728		return -ENXIO;
 729	dev = sp->dev;
 730
 731	switch(cmd) {
 732	case SIOCGIFNAME:
 733		err = copy_to_user((void __user *) arg, dev->name,
 734		                   strlen(dev->name) + 1) ? -EFAULT : 0;
 735		break;
 736
 737	case SIOCGIFENCAP:
 738		err = put_user(0, (int __user *) arg);
 739		break;
 740
 741	case SIOCSIFENCAP:
 742		if (get_user(tmp, (int __user *) arg)) {
 743			err = -EFAULT;
 744			break;
 745		}
 746
 747		sp->mode = tmp;
 748		dev->addr_len        = AX25_ADDR_LEN;
 749		dev->hard_header_len = AX25_KISS_HEADER_LEN +
 750		                       AX25_MAX_HEADER_LEN + 3;
 751		dev->type            = ARPHRD_AX25;
 752
 753		err = 0;
 754		break;
 755
 756	 case SIOCSIFHWADDR: {
 757		char addr[AX25_ADDR_LEN];
 758
 759		if (copy_from_user(&addr,
 760		                   (void __user *) arg, AX25_ADDR_LEN)) {
 761				err = -EFAULT;
 762				break;
 763			}
 764
 765			netif_tx_lock_bh(dev);
 766			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 767			netif_tx_unlock_bh(dev);
 768
 769			err = 0;
 770			break;
 771		}
 772
 773	default:
 774		err = tty_mode_ioctl(tty, file, cmd, arg);
 775	}
 776
 777	sp_put(sp);
 778
 779	return err;
 780}
 781
 782#ifdef CONFIG_COMPAT
 783static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
 784				unsigned int cmd, unsigned long arg)
 785{
 786	switch (cmd) {
 787	case SIOCGIFNAME:
 788	case SIOCGIFENCAP:
 789	case SIOCSIFENCAP:
 790	case SIOCSIFHWADDR:
 791		return sixpack_ioctl(tty, file, cmd,
 792				(unsigned long)compat_ptr(arg));
 793	}
 794
 795	return -ENOIOCTLCMD;
 796}
 797#endif
 798
 799static struct tty_ldisc_ops sp_ldisc = {
 800	.owner		= THIS_MODULE,
 801	.magic		= TTY_LDISC_MAGIC,
 802	.name		= "6pack",
 803	.open		= sixpack_open,
 804	.close		= sixpack_close,
 805	.ioctl		= sixpack_ioctl,
 806#ifdef CONFIG_COMPAT
 807	.compat_ioctl	= sixpack_compat_ioctl,
 808#endif
 809	.receive_buf	= sixpack_receive_buf,
 810	.write_wakeup	= sixpack_write_wakeup,
 811};
 812
 813/* Initialize 6pack control device -- register 6pack line discipline */
 814
 815static const char msg_banner[]  __initconst = KERN_INFO \
 816	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 817static const char msg_regfail[] __initconst = KERN_ERR  \
 818	"6pack: can't register line discipline (err = %d)\n";
 819
 820static int __init sixpack_init_driver(void)
 821{
 822	int status;
 823
 824	printk(msg_banner);
 825
 826	/* Register the provided line protocol discipline */
 827	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 828		printk(msg_regfail, status);
 829
 830	return status;
 831}
 832
 833static const char msg_unregfail[] = KERN_ERR \
 834	"6pack: can't unregister line discipline (err = %d)\n";
 835
 836static void __exit sixpack_exit_driver(void)
 837{
 838	int ret;
 839
 840	if ((ret = tty_unregister_ldisc(N_6PACK)))
 841		printk(msg_unregfail, ret);
 842}
 843
 844/* encode an AX.25 packet into 6pack */
 845
 846static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 847	int length, unsigned char tx_delay)
 848{
 849	int count = 0;
 850	unsigned char checksum = 0, buf[400];
 851	int raw_count = 0;
 852
 853	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 854	tx_buf_raw[raw_count++] = SIXP_SEOF;
 855
 856	buf[0] = tx_delay;
 857	for (count = 1; count < length; count++)
 858		buf[count] = tx_buf[count];
 859
 860	for (count = 0; count < length; count++)
 861		checksum += buf[count];
 862	buf[length] = (unsigned char) 0xff - checksum;
 863
 864	for (count = 0; count <= length; count++) {
 865		if ((count % 3) == 0) {
 866			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 867			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 868		} else if ((count % 3) == 1) {
 869			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 870			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
 871		} else {
 872			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 873			tx_buf_raw[raw_count++] = (buf[count] >> 2);
 874		}
 875	}
 876	if ((length % 3) != 2)
 877		raw_count++;
 878	tx_buf_raw[raw_count++] = SIXP_SEOF;
 879	return raw_count;
 880}
 881
 882/* decode 4 sixpack-encoded bytes into 3 data bytes */
 883
 884static void decode_data(struct sixpack *sp, unsigned char inbyte)
 885{
 886	unsigned char *buf;
 887
 888	if (sp->rx_count != 3) {
 889		sp->raw_buf[sp->rx_count++] = inbyte;
 890
 891		return;
 892	}
 893
 894	buf = sp->raw_buf;
 895	sp->cooked_buf[sp->rx_count_cooked++] =
 896		buf[0] | ((buf[1] << 2) & 0xc0);
 897	sp->cooked_buf[sp->rx_count_cooked++] =
 898		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 899	sp->cooked_buf[sp->rx_count_cooked++] =
 900		(buf[2] & 0x03) | (inbyte << 2);
 901	sp->rx_count = 0;
 902}
 903
 904/* identify and execute a 6pack priority command byte */
 905
 906static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 907{
 908	unsigned char channel;
 909	int actual;
 910
 911	channel = cmd & SIXP_CHN_MASK;
 912	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 913
 914	/* RX and DCD flags can only be set in the same prio command,
 915	   if the DCD flag has been set without the RX flag in the previous
 916	   prio command. If DCD has not been set before, something in the
 917	   transmission has gone wrong. In this case, RX and DCD are
 918	   cleared in order to prevent the decode_data routine from
 919	   reading further data that might be corrupt. */
 920
 921		if (((sp->status & SIXP_DCD_MASK) == 0) &&
 922			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 923				if (sp->status != 1)
 924					printk(KERN_DEBUG "6pack: protocol violation\n");
 925				else
 926					sp->status = 0;
 927				cmd &= ~SIXP_RX_DCD_MASK;
 928		}
 929		sp->status = cmd & SIXP_PRIO_DATA_MASK;
 930	} else { /* output watchdog char if idle */
 931		if ((sp->status2 != 0) && (sp->duplex == 1)) {
 932			sp->led_state = 0x70;
 933			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 934			sp->tx_enable = 1;
 935			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 936			sp->xleft -= actual;
 937			sp->xhead += actual;
 938			sp->led_state = 0x60;
 939			sp->status2 = 0;
 940
 941		}
 942	}
 943
 944	/* needed to trigger the TNC watchdog */
 945	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 946
 947        /* if the state byte has been received, the TNC is present,
 948           so the resync timer can be reset. */
 949
 950	if (sp->tnc_state == TNC_IN_SYNC) {
 951		del_timer(&sp->resync_t);
 952		sp->resync_t.data	= (unsigned long) sp;
 953		sp->resync_t.function	= resync_tnc;
 954		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
 955		add_timer(&sp->resync_t);
 956	}
 957
 958	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 959}
 960
 961/* identify and execute a standard 6pack command byte */
 962
 963static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 964{
 965	unsigned char checksum = 0, rest = 0, channel;
 966	short i;
 967
 968	channel = cmd & SIXP_CHN_MASK;
 969	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 970	case SIXP_SEOF:
 971		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 972			if ((sp->status & SIXP_RX_DCD_MASK) ==
 973				SIXP_RX_DCD_MASK) {
 974				sp->led_state = 0x68;
 975				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 976			}
 977		} else {
 978			sp->led_state = 0x60;
 979			/* fill trailing bytes with zeroes */
 980			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 981			rest = sp->rx_count;
 982			if (rest != 0)
 983				 for (i = rest; i <= 3; i++)
 984					decode_data(sp, 0);
 985			if (rest == 2)
 986				sp->rx_count_cooked -= 2;
 987			else if (rest == 3)
 988				sp->rx_count_cooked -= 1;
 989			for (i = 0; i < sp->rx_count_cooked; i++)
 990				checksum += sp->cooked_buf[i];
 991			if (checksum != SIXP_CHKSUM) {
 992				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 993			} else {
 994				sp->rcount = sp->rx_count_cooked-2;
 995				sp_bump(sp, 0);
 996			}
 997			sp->rx_count_cooked = 0;
 998		}
 999		break;
1000	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1001		break;
1002	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1003		break;
1004	case SIXP_RX_BUF_OVL:
1005		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1006	}
1007}
1008
1009/* decode a 6pack packet */
1010
1011static void
1012sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013{
1014	unsigned char inbyte;
1015	int count1;
1016
1017	for (count1 = 0; count1 < count; count1++) {
1018		inbyte = pre_rbuff[count1];
1019		if (inbyte == SIXP_FOUND_TNC) {
1020			tnc_set_sync_state(sp, TNC_IN_SYNC);
1021			del_timer(&sp->resync_t);
1022		}
1023		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1024			decode_prio_command(sp, inbyte);
1025		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1026			decode_std_command(sp, inbyte);
1027		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1028			decode_data(sp, inbyte);
1029	}
1030}
1031
1032MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1033MODULE_DESCRIPTION("6pack driver for AX.25");
1034MODULE_LICENSE("GPL");
1035MODULE_ALIAS_LDISC(N_6PACK);
1036
1037module_init(sixpack_init_driver);
1038module_exit(sixpack_exit_driver);
v3.5.6
   1/*
   2 * 6pack.c	This module implements the 6pack protocol for kernel-based
   3 *		devices like TTY. It interfaces between a raw TTY and the
   4 *		kernel's AX.25 protocol layers.
   5 *
   6 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
   7 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   8 *
   9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  10 *
  11 *		Laurence Culhane, <loz@holmes.demon.co.uk>
  12 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  13 */
  14
  15#include <linux/module.h>
  16#include <asm/uaccess.h>
  17#include <linux/bitops.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/interrupt.h>
  21#include <linux/in.h>
  22#include <linux/tty.h>
  23#include <linux/errno.h>
  24#include <linux/netdevice.h>
  25#include <linux/timer.h>
  26#include <linux/slab.h>
  27#include <net/ax25.h>
  28#include <linux/etherdevice.h>
  29#include <linux/skbuff.h>
  30#include <linux/rtnetlink.h>
  31#include <linux/spinlock.h>
  32#include <linux/if_arp.h>
  33#include <linux/init.h>
  34#include <linux/ip.h>
  35#include <linux/tcp.h>
  36#include <linux/semaphore.h>
  37#include <linux/compat.h>
  38#include <linux/atomic.h>
  39
  40#define SIXPACK_VERSION    "Revision: 0.3.0"
  41
  42/* sixpack priority commands */
  43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
  44#define SIXP_TX_URUN		0x48	/* transmit overrun */
  45#define SIXP_RX_ORUN		0x50	/* receive overrun */
  46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
  47
  48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
  49
  50/* masks to get certain bits out of the status bytes sent by the TNC */
  51
  52#define SIXP_CMD_MASK		0xC0
  53#define SIXP_CHN_MASK		0x07
  54#define SIXP_PRIO_CMD_MASK	0x80
  55#define SIXP_STD_CMD_MASK	0x40
  56#define SIXP_PRIO_DATA_MASK	0x38
  57#define SIXP_TX_MASK		0x20
  58#define SIXP_RX_MASK		0x10
  59#define SIXP_RX_DCD_MASK	0x18
  60#define SIXP_LEDS_ON		0x78
  61#define SIXP_LEDS_OFF		0x60
  62#define SIXP_CON		0x08
  63#define SIXP_STA		0x10
  64
  65#define SIXP_FOUND_TNC		0xe9
  66#define SIXP_CON_ON		0x68
  67#define SIXP_DCD_MASK		0x08
  68#define SIXP_DAMA_OFF		0
  69
  70/* default level 2 parameters */
  71#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
  72#define SIXP_PERSIST			50	/* in 256ths */
  73#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
  74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
  75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
  76
  77/* 6pack configuration. */
  78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
  79#define SIXP_MTU			256	/* Default MTU */
  80
  81enum sixpack_flags {
  82	SIXPF_ERROR,	/* Parity, etc. error	*/
  83};
  84
  85struct sixpack {
  86	/* Various fields. */
  87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
  88	struct net_device	*dev;		/* easy for intr handling  */
  89
  90	/* These are pointers to the malloc()ed frame buffers. */
  91	unsigned char		*rbuff;		/* receiver buffer	*/
  92	int			rcount;         /* received chars counter  */
  93	unsigned char		*xbuff;		/* transmitter buffer	*/
  94	unsigned char		*xhead;         /* next byte to XMIT */
  95	int			xleft;          /* bytes left in XMIT queue  */
  96
  97	unsigned char		raw_buf[4];
  98	unsigned char		cooked_buf[400];
  99
 100	unsigned int		rx_count;
 101	unsigned int		rx_count_cooked;
 102
 103	int			mtu;		/* Our mtu (to spot changes!) */
 104	int			buffsize;       /* Max buffers sizes */
 105
 106	unsigned long		flags;		/* Flag values/ mode etc */
 107	unsigned char		mode;		/* 6pack mode */
 108
 109	/* 6pack stuff */
 110	unsigned char		tx_delay;
 111	unsigned char		persistence;
 112	unsigned char		slottime;
 113	unsigned char		duplex;
 114	unsigned char		led_state;
 115	unsigned char		status;
 116	unsigned char		status1;
 117	unsigned char		status2;
 118	unsigned char		tx_enable;
 119	unsigned char		tnc_state;
 120
 121	struct timer_list	tx_t;
 122	struct timer_list	resync_t;
 123	atomic_t		refcnt;
 124	struct semaphore	dead_sem;
 125	spinlock_t		lock;
 126};
 127
 128#define AX25_6PACK_HEADER_LEN 0
 129
 130static void sixpack_decode(struct sixpack *, unsigned char[], int);
 131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 132
 133/*
 134 * Perform the persistence/slottime algorithm for CSMA access. If the
 135 * persistence check was successful, write the data to the serial driver.
 136 * Note that in case of DAMA operation, the data is not sent here.
 137 */
 138
 139static void sp_xmit_on_air(unsigned long channel)
 140{
 141	struct sixpack *sp = (struct sixpack *) channel;
 142	int actual, when = sp->slottime;
 143	static unsigned char random;
 144
 145	random = random * 17 + 41;
 146
 147	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 148		sp->led_state = 0x70;
 149		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 150		sp->tx_enable = 1;
 151		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 152		sp->xleft -= actual;
 153		sp->xhead += actual;
 154		sp->led_state = 0x60;
 155		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 156		sp->status2 = 0;
 157	} else
 158		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 159}
 160
 161/* ----> 6pack timer interrupt handler and friends. <---- */
 162
 163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 165{
 166	unsigned char *msg, *p = icp;
 167	int actual, count;
 168
 169	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 170		msg = "oversized transmit packet!";
 171		goto out_drop;
 172	}
 173
 174	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 175		msg = "oversized transmit packet!";
 176		goto out_drop;
 177	}
 178
 179	if (p[0] > 5) {
 180		msg = "invalid KISS command";
 181		goto out_drop;
 182	}
 183
 184	if ((p[0] != 0) && (len > 2)) {
 185		msg = "KISS control packet too long";
 186		goto out_drop;
 187	}
 188
 189	if ((p[0] == 0) && (len < 15)) {
 190		msg = "bad AX.25 packet to transmit";
 191		goto out_drop;
 192	}
 193
 194	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 195	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 196
 197	switch (p[0]) {
 198	case 1:	sp->tx_delay = p[1];
 199		return;
 200	case 2:	sp->persistence = p[1];
 201		return;
 202	case 3:	sp->slottime = p[1];
 203		return;
 204	case 4:	/* ignored */
 205		return;
 206	case 5:	sp->duplex = p[1];
 207		return;
 208	}
 209
 210	if (p[0] != 0)
 211		return;
 212
 213	/*
 214	 * In case of fullduplex or DAMA operation, we don't take care about the
 215	 * state of the DCD or of any timers, as the determination of the
 216	 * correct time to send is the job of the AX.25 layer. We send
 217	 * immediately after data has arrived.
 218	 */
 219	if (sp->duplex == 1) {
 220		sp->led_state = 0x70;
 221		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 222		sp->tx_enable = 1;
 223		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 224		sp->xleft = count - actual;
 225		sp->xhead = sp->xbuff + actual;
 226		sp->led_state = 0x60;
 227		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 228	} else {
 229		sp->xleft = count;
 230		sp->xhead = sp->xbuff;
 231		sp->status2 = count;
 232		sp_xmit_on_air((unsigned long)sp);
 233	}
 234
 235	return;
 236
 237out_drop:
 238	sp->dev->stats.tx_dropped++;
 239	netif_start_queue(sp->dev);
 240	if (net_ratelimit())
 241		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 242}
 243
 244/* Encapsulate an IP datagram and kick it into a TTY queue. */
 245
 246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 247{
 248	struct sixpack *sp = netdev_priv(dev);
 249
 250	spin_lock_bh(&sp->lock);
 251	/* We were not busy, so we are now... :-) */
 252	netif_stop_queue(dev);
 253	dev->stats.tx_bytes += skb->len;
 254	sp_encaps(sp, skb->data, skb->len);
 255	spin_unlock_bh(&sp->lock);
 256
 257	dev_kfree_skb(skb);
 258
 259	return NETDEV_TX_OK;
 260}
 261
 262static int sp_open_dev(struct net_device *dev)
 263{
 264	struct sixpack *sp = netdev_priv(dev);
 265
 266	if (sp->tty == NULL)
 267		return -ENODEV;
 268	return 0;
 269}
 270
 271/* Close the low-level part of the 6pack channel. */
 272static int sp_close(struct net_device *dev)
 273{
 274	struct sixpack *sp = netdev_priv(dev);
 275
 276	spin_lock_bh(&sp->lock);
 277	if (sp->tty) {
 278		/* TTY discipline is running. */
 279		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 280	}
 281	netif_stop_queue(dev);
 282	spin_unlock_bh(&sp->lock);
 283
 284	return 0;
 285}
 286
 287/* Return the frame type ID */
 288static int sp_header(struct sk_buff *skb, struct net_device *dev,
 289		     unsigned short type, const void *daddr,
 290		     const void *saddr, unsigned len)
 291{
 292#ifdef CONFIG_INET
 293	if (type != ETH_P_AX25)
 294		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
 295#endif
 296	return 0;
 297}
 298
 299static int sp_set_mac_address(struct net_device *dev, void *addr)
 300{
 301	struct sockaddr_ax25 *sa = addr;
 302
 303	netif_tx_lock_bh(dev);
 304	netif_addr_lock(dev);
 305	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 306	netif_addr_unlock(dev);
 307	netif_tx_unlock_bh(dev);
 308
 309	return 0;
 310}
 311
 312static int sp_rebuild_header(struct sk_buff *skb)
 313{
 314#ifdef CONFIG_INET
 315	return ax25_rebuild_header(skb);
 316#else
 317	return 0;
 318#endif
 319}
 320
 321static const struct header_ops sp_header_ops = {
 322	.create		= sp_header,
 323	.rebuild	= sp_rebuild_header,
 324};
 325
 326static const struct net_device_ops sp_netdev_ops = {
 327	.ndo_open		= sp_open_dev,
 328	.ndo_stop		= sp_close,
 329	.ndo_start_xmit		= sp_xmit,
 330	.ndo_set_mac_address    = sp_set_mac_address,
 331};
 332
 333static void sp_setup(struct net_device *dev)
 334{
 335	/* Finish setting up the DEVICE info. */
 336	dev->netdev_ops		= &sp_netdev_ops;
 337	dev->destructor		= free_netdev;
 338	dev->mtu		= SIXP_MTU;
 339	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
 340	dev->header_ops 	= &sp_header_ops;
 341
 342	dev->addr_len		= AX25_ADDR_LEN;
 343	dev->type		= ARPHRD_AX25;
 344	dev->tx_queue_len	= 10;
 345
 346	/* Only activated in AX.25 mode */
 347	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 348	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 349
 350	dev->flags		= 0;
 351}
 352
 353/* Send one completely decapsulated IP datagram to the IP layer. */
 354
 355/*
 356 * This is the routine that sends the received data to the kernel AX.25.
 357 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 358 */
 359
 360static void sp_bump(struct sixpack *sp, char cmd)
 361{
 362	struct sk_buff *skb;
 363	int count;
 364	unsigned char *ptr;
 365
 366	count = sp->rcount + 1;
 367
 368	sp->dev->stats.rx_bytes += count;
 369
 370	if ((skb = dev_alloc_skb(count)) == NULL)
 371		goto out_mem;
 372
 373	ptr = skb_put(skb, count);
 374	*ptr++ = cmd;	/* KISS command */
 375
 376	memcpy(ptr, sp->cooked_buf + 1, count);
 377	skb->protocol = ax25_type_trans(skb, sp->dev);
 378	netif_rx(skb);
 379	sp->dev->stats.rx_packets++;
 380
 381	return;
 382
 383out_mem:
 384	sp->dev->stats.rx_dropped++;
 385}
 386
 387
 388/* ----------------------------------------------------------------------- */
 389
 390/*
 391 * We have a potential race on dereferencing tty->disc_data, because the tty
 392 * layer provides no locking at all - thus one cpu could be running
 393 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 394 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 395 * best way to fix this is to use a rwlock in the tty struct, but for now we
 396 * use a single global rwlock for all ttys in ppp line discipline.
 397 */
 398static DEFINE_RWLOCK(disc_data_lock);
 399                                                                                
 400static struct sixpack *sp_get(struct tty_struct *tty)
 401{
 402	struct sixpack *sp;
 403
 404	read_lock(&disc_data_lock);
 405	sp = tty->disc_data;
 406	if (sp)
 407		atomic_inc(&sp->refcnt);
 408	read_unlock(&disc_data_lock);
 409
 410	return sp;
 411}
 412
 413static void sp_put(struct sixpack *sp)
 414{
 415	if (atomic_dec_and_test(&sp->refcnt))
 416		up(&sp->dead_sem);
 417}
 418
 419/*
 420 * Called by the TTY driver when there's room for more data.  If we have
 421 * more packets to send, we send them here.
 422 */
 423static void sixpack_write_wakeup(struct tty_struct *tty)
 424{
 425	struct sixpack *sp = sp_get(tty);
 426	int actual;
 427
 428	if (!sp)
 429		return;
 430	if (sp->xleft <= 0)  {
 431		/* Now serial buffer is almost free & we can start
 432		 * transmission of another packet */
 433		sp->dev->stats.tx_packets++;
 434		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 435		sp->tx_enable = 0;
 436		netif_wake_queue(sp->dev);
 437		goto out;
 438	}
 439
 440	if (sp->tx_enable) {
 441		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 442		sp->xleft -= actual;
 443		sp->xhead += actual;
 444	}
 445
 446out:
 447	sp_put(sp);
 448}
 449
 450/* ----------------------------------------------------------------------- */
 451
 452/*
 453 * Handle the 'receiver data ready' interrupt.
 454 * This function is called by the 'tty_io' module in the kernel when
 455 * a block of 6pack data has been received, which can now be decapsulated
 456 * and sent on to some IP layer for further processing.
 457 */
 458static void sixpack_receive_buf(struct tty_struct *tty,
 459	const unsigned char *cp, char *fp, int count)
 460{
 461	struct sixpack *sp;
 462	unsigned char buf[512];
 463	int count1;
 464
 465	if (!count)
 466		return;
 467
 468	sp = sp_get(tty);
 469	if (!sp)
 470		return;
 471
 472	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
 473
 474	/* Read the characters out of the buffer */
 475
 476	count1 = count;
 477	while (count) {
 478		count--;
 479		if (fp && *fp++) {
 480			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 481				sp->dev->stats.rx_errors++;
 482			continue;
 483		}
 484	}
 485	sixpack_decode(sp, buf, count1);
 486
 487	sp_put(sp);
 488	tty_unthrottle(tty);
 489}
 490
 491/*
 492 * Try to resync the TNC. Called by the resync timer defined in
 493 * decode_prio_command
 494 */
 495
 496#define TNC_UNINITIALIZED	0
 497#define TNC_UNSYNC_STARTUP	1
 498#define TNC_UNSYNCED		2
 499#define TNC_IN_SYNC		3
 500
 501static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 502{
 503	char *msg;
 504
 505	switch (new_tnc_state) {
 506	default:			/* gcc oh piece-o-crap ... */
 507	case TNC_UNSYNC_STARTUP:
 508		msg = "Synchronizing with TNC";
 509		break;
 510	case TNC_UNSYNCED:
 511		msg = "Lost synchronization with TNC\n";
 512		break;
 513	case TNC_IN_SYNC:
 514		msg = "Found TNC";
 515		break;
 516	}
 517
 518	sp->tnc_state = new_tnc_state;
 519	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 520}
 521
 522static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 523{
 524	int old_tnc_state = sp->tnc_state;
 525
 526	if (old_tnc_state != new_tnc_state)
 527		__tnc_set_sync_state(sp, new_tnc_state);
 528}
 529
 530static void resync_tnc(unsigned long channel)
 531{
 532	struct sixpack *sp = (struct sixpack *) channel;
 533	static char resync_cmd = 0xe8;
 534
 535	/* clear any data that might have been received */
 536
 537	sp->rx_count = 0;
 538	sp->rx_count_cooked = 0;
 539
 540	/* reset state machine */
 541
 542	sp->status = 1;
 543	sp->status1 = 1;
 544	sp->status2 = 0;
 545
 546	/* resync the TNC */
 547
 548	sp->led_state = 0x60;
 549	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 550	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 551
 552
 553	/* Start resync timer again -- the TNC might be still absent */
 554
 555	del_timer(&sp->resync_t);
 556	sp->resync_t.data	= (unsigned long) sp;
 557	sp->resync_t.function	= resync_tnc;
 558	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
 559	add_timer(&sp->resync_t);
 560}
 561
 562static inline int tnc_init(struct sixpack *sp)
 563{
 564	unsigned char inbyte = 0xe8;
 565
 566	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 567
 568	sp->tty->ops->write(sp->tty, &inbyte, 1);
 569
 570	del_timer(&sp->resync_t);
 571	sp->resync_t.data = (unsigned long) sp;
 572	sp->resync_t.function = resync_tnc;
 573	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
 574	add_timer(&sp->resync_t);
 575
 576	return 0;
 577}
 578
 579/*
 580 * Open the high-level part of the 6pack channel.
 581 * This function is called by the TTY module when the
 582 * 6pack line discipline is called for.  Because we are
 583 * sure the tty line exists, we only have to link it to
 584 * a free 6pcack channel...
 585 */
 586static int sixpack_open(struct tty_struct *tty)
 587{
 588	char *rbuff = NULL, *xbuff = NULL;
 589	struct net_device *dev;
 590	struct sixpack *sp;
 591	unsigned long len;
 592	int err = 0;
 593
 594	if (!capable(CAP_NET_ADMIN))
 595		return -EPERM;
 596	if (tty->ops->write == NULL)
 597		return -EOPNOTSUPP;
 598
 599	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
 600	if (!dev) {
 601		err = -ENOMEM;
 602		goto out;
 603	}
 604
 605	sp = netdev_priv(dev);
 606	sp->dev = dev;
 607
 608	spin_lock_init(&sp->lock);
 609	atomic_set(&sp->refcnt, 1);
 610	sema_init(&sp->dead_sem, 0);
 611
 612	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 613
 614	len = dev->mtu * 2;
 615
 616	rbuff = kmalloc(len + 4, GFP_KERNEL);
 617	xbuff = kmalloc(len + 4, GFP_KERNEL);
 618
 619	if (rbuff == NULL || xbuff == NULL) {
 620		err = -ENOBUFS;
 621		goto out_free;
 622	}
 623
 624	spin_lock_bh(&sp->lock);
 625
 626	sp->tty = tty;
 627
 628	sp->rbuff	= rbuff;
 629	sp->xbuff	= xbuff;
 630
 631	sp->mtu		= AX25_MTU + 73;
 632	sp->buffsize	= len;
 633	sp->rcount	= 0;
 634	sp->rx_count	= 0;
 635	sp->rx_count_cooked = 0;
 636	sp->xleft	= 0;
 637
 638	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
 639
 640	sp->duplex	= 0;
 641	sp->tx_delay    = SIXP_TXDELAY;
 642	sp->persistence = SIXP_PERSIST;
 643	sp->slottime    = SIXP_SLOTTIME;
 644	sp->led_state   = 0x60;
 645	sp->status      = 1;
 646	sp->status1     = 1;
 647	sp->status2     = 0;
 648	sp->tx_enable   = 0;
 649
 650	netif_start_queue(dev);
 651
 652	init_timer(&sp->tx_t);
 653	sp->tx_t.function = sp_xmit_on_air;
 654	sp->tx_t.data = (unsigned long) sp;
 655
 656	init_timer(&sp->resync_t);
 657
 658	spin_unlock_bh(&sp->lock);
 659
 660	/* Done.  We have linked the TTY line to a channel. */
 661	tty->disc_data = sp;
 662	tty->receive_room = 65536;
 663
 664	/* Now we're ready to register. */
 665	if (register_netdev(dev))
 
 666		goto out_free;
 667
 668	tnc_init(sp);
 669
 670	return 0;
 671
 672out_free:
 673	kfree(xbuff);
 674	kfree(rbuff);
 675
 676	if (dev)
 677		free_netdev(dev);
 678
 679out:
 680	return err;
 681}
 682
 683
 684/*
 685 * Close down a 6pack channel.
 686 * This means flushing out any pending queues, and then restoring the
 687 * TTY line discipline to what it was before it got hooked to 6pack
 688 * (which usually is TTY again).
 689 */
 690static void sixpack_close(struct tty_struct *tty)
 691{
 692	struct sixpack *sp;
 693
 694	write_lock_bh(&disc_data_lock);
 695	sp = tty->disc_data;
 696	tty->disc_data = NULL;
 697	write_unlock_bh(&disc_data_lock);
 698	if (!sp)
 699		return;
 700
 701	/*
 702	 * We have now ensured that nobody can start using ap from now on, but
 703	 * we have to wait for all existing users to finish.
 704	 */
 705	if (!atomic_dec_and_test(&sp->refcnt))
 706		down(&sp->dead_sem);
 707
 708	unregister_netdev(sp->dev);
 709
 710	del_timer(&sp->tx_t);
 711	del_timer(&sp->resync_t);
 712
 713	/* Free all 6pack frame buffers. */
 714	kfree(sp->rbuff);
 715	kfree(sp->xbuff);
 716}
 717
 718/* Perform I/O control on an active 6pack channel. */
 719static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 720	unsigned int cmd, unsigned long arg)
 721{
 722	struct sixpack *sp = sp_get(tty);
 723	struct net_device *dev;
 724	unsigned int tmp, err;
 725
 726	if (!sp)
 727		return -ENXIO;
 728	dev = sp->dev;
 729
 730	switch(cmd) {
 731	case SIOCGIFNAME:
 732		err = copy_to_user((void __user *) arg, dev->name,
 733		                   strlen(dev->name) + 1) ? -EFAULT : 0;
 734		break;
 735
 736	case SIOCGIFENCAP:
 737		err = put_user(0, (int __user *) arg);
 738		break;
 739
 740	case SIOCSIFENCAP:
 741		if (get_user(tmp, (int __user *) arg)) {
 742			err = -EFAULT;
 743			break;
 744		}
 745
 746		sp->mode = tmp;
 747		dev->addr_len        = AX25_ADDR_LEN;
 748		dev->hard_header_len = AX25_KISS_HEADER_LEN +
 749		                       AX25_MAX_HEADER_LEN + 3;
 750		dev->type            = ARPHRD_AX25;
 751
 752		err = 0;
 753		break;
 754
 755	 case SIOCSIFHWADDR: {
 756		char addr[AX25_ADDR_LEN];
 757
 758		if (copy_from_user(&addr,
 759		                   (void __user *) arg, AX25_ADDR_LEN)) {
 760				err = -EFAULT;
 761				break;
 762			}
 763
 764			netif_tx_lock_bh(dev);
 765			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 766			netif_tx_unlock_bh(dev);
 767
 768			err = 0;
 769			break;
 770		}
 771
 772	default:
 773		err = tty_mode_ioctl(tty, file, cmd, arg);
 774	}
 775
 776	sp_put(sp);
 777
 778	return err;
 779}
 780
 781#ifdef CONFIG_COMPAT
 782static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
 783				unsigned int cmd, unsigned long arg)
 784{
 785	switch (cmd) {
 786	case SIOCGIFNAME:
 787	case SIOCGIFENCAP:
 788	case SIOCSIFENCAP:
 789	case SIOCSIFHWADDR:
 790		return sixpack_ioctl(tty, file, cmd,
 791				(unsigned long)compat_ptr(arg));
 792	}
 793
 794	return -ENOIOCTLCMD;
 795}
 796#endif
 797
 798static struct tty_ldisc_ops sp_ldisc = {
 799	.owner		= THIS_MODULE,
 800	.magic		= TTY_LDISC_MAGIC,
 801	.name		= "6pack",
 802	.open		= sixpack_open,
 803	.close		= sixpack_close,
 804	.ioctl		= sixpack_ioctl,
 805#ifdef CONFIG_COMPAT
 806	.compat_ioctl	= sixpack_compat_ioctl,
 807#endif
 808	.receive_buf	= sixpack_receive_buf,
 809	.write_wakeup	= sixpack_write_wakeup,
 810};
 811
 812/* Initialize 6pack control device -- register 6pack line discipline */
 813
 814static const char msg_banner[]  __initdata = KERN_INFO \
 815	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 816static const char msg_regfail[] __initdata = KERN_ERR  \
 817	"6pack: can't register line discipline (err = %d)\n";
 818
 819static int __init sixpack_init_driver(void)
 820{
 821	int status;
 822
 823	printk(msg_banner);
 824
 825	/* Register the provided line protocol discipline */
 826	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 827		printk(msg_regfail, status);
 828
 829	return status;
 830}
 831
 832static const char msg_unregfail[] __exitdata = KERN_ERR \
 833	"6pack: can't unregister line discipline (err = %d)\n";
 834
 835static void __exit sixpack_exit_driver(void)
 836{
 837	int ret;
 838
 839	if ((ret = tty_unregister_ldisc(N_6PACK)))
 840		printk(msg_unregfail, ret);
 841}
 842
 843/* encode an AX.25 packet into 6pack */
 844
 845static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 846	int length, unsigned char tx_delay)
 847{
 848	int count = 0;
 849	unsigned char checksum = 0, buf[400];
 850	int raw_count = 0;
 851
 852	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 853	tx_buf_raw[raw_count++] = SIXP_SEOF;
 854
 855	buf[0] = tx_delay;
 856	for (count = 1; count < length; count++)
 857		buf[count] = tx_buf[count];
 858
 859	for (count = 0; count < length; count++)
 860		checksum += buf[count];
 861	buf[length] = (unsigned char) 0xff - checksum;
 862
 863	for (count = 0; count <= length; count++) {
 864		if ((count % 3) == 0) {
 865			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 866			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 867		} else if ((count % 3) == 1) {
 868			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 869			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
 870		} else {
 871			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 872			tx_buf_raw[raw_count++] = (buf[count] >> 2);
 873		}
 874	}
 875	if ((length % 3) != 2)
 876		raw_count++;
 877	tx_buf_raw[raw_count++] = SIXP_SEOF;
 878	return raw_count;
 879}
 880
 881/* decode 4 sixpack-encoded bytes into 3 data bytes */
 882
 883static void decode_data(struct sixpack *sp, unsigned char inbyte)
 884{
 885	unsigned char *buf;
 886
 887	if (sp->rx_count != 3) {
 888		sp->raw_buf[sp->rx_count++] = inbyte;
 889
 890		return;
 891	}
 892
 893	buf = sp->raw_buf;
 894	sp->cooked_buf[sp->rx_count_cooked++] =
 895		buf[0] | ((buf[1] << 2) & 0xc0);
 896	sp->cooked_buf[sp->rx_count_cooked++] =
 897		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 898	sp->cooked_buf[sp->rx_count_cooked++] =
 899		(buf[2] & 0x03) | (inbyte << 2);
 900	sp->rx_count = 0;
 901}
 902
 903/* identify and execute a 6pack priority command byte */
 904
 905static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 906{
 907	unsigned char channel;
 908	int actual;
 909
 910	channel = cmd & SIXP_CHN_MASK;
 911	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 912
 913	/* RX and DCD flags can only be set in the same prio command,
 914	   if the DCD flag has been set without the RX flag in the previous
 915	   prio command. If DCD has not been set before, something in the
 916	   transmission has gone wrong. In this case, RX and DCD are
 917	   cleared in order to prevent the decode_data routine from
 918	   reading further data that might be corrupt. */
 919
 920		if (((sp->status & SIXP_DCD_MASK) == 0) &&
 921			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 922				if (sp->status != 1)
 923					printk(KERN_DEBUG "6pack: protocol violation\n");
 924				else
 925					sp->status = 0;
 926				cmd &= ~SIXP_RX_DCD_MASK;
 927		}
 928		sp->status = cmd & SIXP_PRIO_DATA_MASK;
 929	} else { /* output watchdog char if idle */
 930		if ((sp->status2 != 0) && (sp->duplex == 1)) {
 931			sp->led_state = 0x70;
 932			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 933			sp->tx_enable = 1;
 934			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 935			sp->xleft -= actual;
 936			sp->xhead += actual;
 937			sp->led_state = 0x60;
 938			sp->status2 = 0;
 939
 940		}
 941	}
 942
 943	/* needed to trigger the TNC watchdog */
 944	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 945
 946        /* if the state byte has been received, the TNC is present,
 947           so the resync timer can be reset. */
 948
 949	if (sp->tnc_state == TNC_IN_SYNC) {
 950		del_timer(&sp->resync_t);
 951		sp->resync_t.data	= (unsigned long) sp;
 952		sp->resync_t.function	= resync_tnc;
 953		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
 954		add_timer(&sp->resync_t);
 955	}
 956
 957	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 958}
 959
 960/* identify and execute a standard 6pack command byte */
 961
 962static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 963{
 964	unsigned char checksum = 0, rest = 0, channel;
 965	short i;
 966
 967	channel = cmd & SIXP_CHN_MASK;
 968	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 969	case SIXP_SEOF:
 970		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 971			if ((sp->status & SIXP_RX_DCD_MASK) ==
 972				SIXP_RX_DCD_MASK) {
 973				sp->led_state = 0x68;
 974				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 975			}
 976		} else {
 977			sp->led_state = 0x60;
 978			/* fill trailing bytes with zeroes */
 979			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 980			rest = sp->rx_count;
 981			if (rest != 0)
 982				 for (i = rest; i <= 3; i++)
 983					decode_data(sp, 0);
 984			if (rest == 2)
 985				sp->rx_count_cooked -= 2;
 986			else if (rest == 3)
 987				sp->rx_count_cooked -= 1;
 988			for (i = 0; i < sp->rx_count_cooked; i++)
 989				checksum += sp->cooked_buf[i];
 990			if (checksum != SIXP_CHKSUM) {
 991				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 992			} else {
 993				sp->rcount = sp->rx_count_cooked-2;
 994				sp_bump(sp, 0);
 995			}
 996			sp->rx_count_cooked = 0;
 997		}
 998		break;
 999	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1000		break;
1001	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1002		break;
1003	case SIXP_RX_BUF_OVL:
1004		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1005	}
1006}
1007
1008/* decode a 6pack packet */
1009
1010static void
1011sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1012{
1013	unsigned char inbyte;
1014	int count1;
1015
1016	for (count1 = 0; count1 < count; count1++) {
1017		inbyte = pre_rbuff[count1];
1018		if (inbyte == SIXP_FOUND_TNC) {
1019			tnc_set_sync_state(sp, TNC_IN_SYNC);
1020			del_timer(&sp->resync_t);
1021		}
1022		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1023			decode_prio_command(sp, inbyte);
1024		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1025			decode_std_command(sp, inbyte);
1026		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1027			decode_data(sp, inbyte);
1028	}
1029}
1030
1031MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1032MODULE_DESCRIPTION("6pack driver for AX.25");
1033MODULE_LICENSE("GPL");
1034MODULE_ALIAS_LDISC(N_6PACK);
1035
1036module_init(sixpack_init_driver);
1037module_exit(sixpack_exit_driver);