Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the version 2 of the GNU General Public License
  8 * as published by the Free Software Foundation
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/kernel.h>
 21#include <linux/slab.h>
 22#include <linux/netdevice.h>
 23#include <linux/if_arp.h>
 24#include <linux/can.h>
 25#include <linux/can/dev.h>
 26#include <linux/can/skb.h>
 27#include <linux/can/netlink.h>
 28#include <linux/can/led.h>
 29#include <net/rtnetlink.h>
 30
 31#define MOD_DESC "CAN device driver interface"
 32
 33MODULE_DESCRIPTION(MOD_DESC);
 34MODULE_LICENSE("GPL v2");
 35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
 36
 37/* CAN DLC to real data length conversion helpers */
 38
 39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
 40			     8, 12, 16, 20, 24, 32, 48, 64};
 41
 42/* get data length from can_dlc with sanitized can_dlc */
 43u8 can_dlc2len(u8 can_dlc)
 44{
 45	return dlc2len[can_dlc & 0x0F];
 46}
 47EXPORT_SYMBOL_GPL(can_dlc2len);
 48
 49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
 50			     9, 9, 9, 9,			/* 9 - 12 */
 51			     10, 10, 10, 10,			/* 13 - 16 */
 52			     11, 11, 11, 11,			/* 17 - 20 */
 53			     12, 12, 12, 12,			/* 21 - 24 */
 54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
 55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
 56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
 57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
 58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
 59
 60/* map the sanitized data length to an appropriate data length code */
 61u8 can_len2dlc(u8 len)
 62{
 63	if (unlikely(len > 64))
 64		return 0xF;
 65
 66	return len2dlc[len];
 67}
 68EXPORT_SYMBOL_GPL(can_len2dlc);
 69
 70#ifdef CONFIG_CAN_CALC_BITTIMING
 71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
 72
 73/*
 74 * Bit-timing calculation derived from:
 75 *
 76 * Code based on LinCAN sources and H8S2638 project
 77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
 78 * Copyright 2005      Stanislav Marek
 79 * email: pisa@cmp.felk.cvut.cz
 80 *
 81 * Calculates proper bit-timing parameters for a specified bit-rate
 82 * and sample-point, which can then be used to set the bit-timing
 83 * registers of the CAN controller. You can find more information
 84 * in the header file linux/can/netlink.h.
 85 */
 86static int can_update_spt(const struct can_bittiming_const *btc,
 87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
 88{
 89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
 90	if (*tseg2 < btc->tseg2_min)
 91		*tseg2 = btc->tseg2_min;
 92	if (*tseg2 > btc->tseg2_max)
 93		*tseg2 = btc->tseg2_max;
 94	*tseg1 = tseg - *tseg2;
 95	if (*tseg1 > btc->tseg1_max) {
 96		*tseg1 = btc->tseg1_max;
 97		*tseg2 = tseg - *tseg1;
 98	}
 99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100}
101
102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
103			      const struct can_bittiming_const *btc)
104{
105	struct can_priv *priv = netdev_priv(dev);
 
106	long rate, best_rate = 0;
107	long best_error = 1000000000, error = 0;
108	int best_tseg = 0, best_brp = 0, brp = 0;
109	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110	int spt_error = 1000, spt = 0, sampl_pt;
111	u64 v64;
112
 
 
 
113	/* Use CIA recommended sample points */
114	if (bt->sample_point) {
115		sampl_pt = bt->sample_point;
116	} else {
117		if (bt->bitrate > 800000)
118			sampl_pt = 750;
119		else if (bt->bitrate > 500000)
120			sampl_pt = 800;
121		else
122			sampl_pt = 875;
123	}
124
125	/* tseg even = round down, odd = round up */
126	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
127	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
128		tsegall = 1 + tseg / 2;
129		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
131		/* chose brp step which is possible in system */
132		brp = (brp / btc->brp_inc) * btc->brp_inc;
133		if ((brp < btc->brp_min) || (brp > btc->brp_max))
134			continue;
135		rate = priv->clock.freq / (brp * tsegall);
136		error = bt->bitrate - rate;
137		/* tseg brp biterror */
138		if (error < 0)
139			error = -error;
140		if (error > best_error)
141			continue;
142		best_error = error;
143		if (error == 0) {
144			spt = can_update_spt(btc, sampl_pt, tseg / 2,
145					     &tseg1, &tseg2);
146			error = sampl_pt - spt;
147			if (error < 0)
148				error = -error;
149			if (error > spt_error)
150				continue;
151			spt_error = error;
152		}
153		best_tseg = tseg / 2;
154		best_brp = brp;
155		best_rate = rate;
156		if (error == 0)
157			break;
158	}
159
160	if (best_error) {
161		/* Error in one-tenth of a percent */
162		error = (best_error * 1000) / bt->bitrate;
163		if (error > CAN_CALC_MAX_ERROR) {
164			netdev_err(dev,
165				   "bitrate error %ld.%ld%% too high\n",
166				   error / 10, error % 10);
167			return -EDOM;
168		} else {
169			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
170				    error / 10, error % 10);
171		}
172	}
173
174	/* real sample point */
175	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
176					  &tseg1, &tseg2);
177
178	v64 = (u64)best_brp * 1000000000UL;
179	do_div(v64, priv->clock.freq);
180	bt->tq = (u32)v64;
181	bt->prop_seg = tseg1 / 2;
182	bt->phase_seg1 = tseg1 - bt->prop_seg;
183	bt->phase_seg2 = tseg2;
184
185	/* check for sjw user settings */
186	if (!bt->sjw || !btc->sjw_max)
187		bt->sjw = 1;
188	else {
189		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
190		if (bt->sjw > btc->sjw_max)
191			bt->sjw = btc->sjw_max;
192		/* bt->sjw must not be higher than tseg2 */
193		if (tseg2 < bt->sjw)
194			bt->sjw = tseg2;
195	}
196
197	bt->brp = best_brp;
198	/* real bit-rate */
199	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
200
201	return 0;
202}
203#else /* !CONFIG_CAN_CALC_BITTIMING */
204static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
205			      const struct can_bittiming_const *btc)
206{
207	netdev_err(dev, "bit-timing calculation not available\n");
208	return -EINVAL;
209}
210#endif /* CONFIG_CAN_CALC_BITTIMING */
211
212/*
213 * Checks the validity of the specified bit-timing parameters prop_seg,
214 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
215 * prescaler value brp. You can find more information in the header
216 * file linux/can/netlink.h.
217 */
218static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
219			       const struct can_bittiming_const *btc)
220{
221	struct can_priv *priv = netdev_priv(dev);
 
222	int tseg1, alltseg;
223	u64 brp64;
224
 
 
 
225	tseg1 = bt->prop_seg + bt->phase_seg1;
226	if (!bt->sjw)
227		bt->sjw = 1;
228	if (bt->sjw > btc->sjw_max ||
229	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
230	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
231		return -ERANGE;
232
233	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
234	if (btc->brp_inc > 1)
235		do_div(brp64, btc->brp_inc);
236	brp64 += 500000000UL - 1;
237	do_div(brp64, 1000000000UL); /* the practicable BRP */
238	if (btc->brp_inc > 1)
239		brp64 *= btc->brp_inc;
240	bt->brp = (u32)brp64;
241
242	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
243		return -EINVAL;
244
245	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
246	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
247	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
248
249	return 0;
250}
251
252static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
253			     const struct can_bittiming_const *btc)
254{
 
255	int err;
256
257	/* Check if the CAN device has bit-timing parameters */
258	if (!btc)
259		return -EOPNOTSUPP;
260
261	/*
262	 * Depending on the given can_bittiming parameter structure the CAN
263	 * timing parameters are calculated based on the provided bitrate OR
264	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
265	 * provided directly which are then checked and fixed up.
266	 */
267	if (!bt->tq && bt->bitrate)
268		err = can_calc_bittiming(dev, bt, btc);
269	else if (bt->tq && !bt->bitrate)
270		err = can_fixup_bittiming(dev, bt, btc);
271	else
272		err = -EINVAL;
273
274	return err;
275}
276
277/*
278 * Local echo of CAN messages
279 *
280 * CAN network devices *should* support a local echo functionality
281 * (see Documentation/networking/can.txt). To test the handling of CAN
282 * interfaces that do not support the local echo both driver types are
283 * implemented. In the case that the driver does not support the echo
284 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
285 * to perform the echo as a fallback solution.
286 */
287static void can_flush_echo_skb(struct net_device *dev)
288{
289	struct can_priv *priv = netdev_priv(dev);
290	struct net_device_stats *stats = &dev->stats;
291	int i;
292
293	for (i = 0; i < priv->echo_skb_max; i++) {
294		if (priv->echo_skb[i]) {
295			kfree_skb(priv->echo_skb[i]);
296			priv->echo_skb[i] = NULL;
297			stats->tx_dropped++;
298			stats->tx_aborted_errors++;
299		}
300	}
301}
302
303/*
304 * Put the skb on the stack to be looped backed locally lateron
305 *
306 * The function is typically called in the start_xmit function
307 * of the device driver. The driver must protect access to
308 * priv->echo_skb, if necessary.
309 */
310void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
311		      unsigned int idx)
312{
313	struct can_priv *priv = netdev_priv(dev);
314
315	BUG_ON(idx >= priv->echo_skb_max);
316
317	/* check flag whether this packet has to be looped back */
318	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
319	    (skb->protocol != htons(ETH_P_CAN) &&
320	     skb->protocol != htons(ETH_P_CANFD))) {
321		kfree_skb(skb);
322		return;
323	}
324
325	if (!priv->echo_skb[idx]) {
 
 
 
 
 
 
 
 
 
 
 
326
327		skb = can_create_echo_skb(skb);
328		if (!skb)
329			return;
330
331		/* make settings for echo to reduce code in irq context */
 
332		skb->pkt_type = PACKET_BROADCAST;
333		skb->ip_summed = CHECKSUM_UNNECESSARY;
334		skb->dev = dev;
335
336		/* save this skb for tx interrupt echo handling */
337		priv->echo_skb[idx] = skb;
338	} else {
339		/* locking problem with netif_stop_queue() ?? */
340		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
341		kfree_skb(skb);
342	}
343}
344EXPORT_SYMBOL_GPL(can_put_echo_skb);
345
346/*
347 * Get the skb from the stack and loop it back locally
348 *
349 * The function is typically called when the TX done interrupt
350 * is handled in the device driver. The driver must protect
351 * access to priv->echo_skb, if necessary.
352 */
353unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
354{
355	struct can_priv *priv = netdev_priv(dev);
356
357	BUG_ON(idx >= priv->echo_skb_max);
358
359	if (priv->echo_skb[idx]) {
360		struct sk_buff *skb = priv->echo_skb[idx];
361		struct can_frame *cf = (struct can_frame *)skb->data;
362		u8 dlc = cf->can_dlc;
363
364		netif_rx(priv->echo_skb[idx]);
365		priv->echo_skb[idx] = NULL;
366
367		return dlc;
368	}
369
370	return 0;
371}
372EXPORT_SYMBOL_GPL(can_get_echo_skb);
373
374/*
375  * Remove the skb from the stack and free it.
376  *
377  * The function is typically called when TX failed.
378  */
379void can_free_echo_skb(struct net_device *dev, unsigned int idx)
380{
381	struct can_priv *priv = netdev_priv(dev);
382
383	BUG_ON(idx >= priv->echo_skb_max);
384
385	if (priv->echo_skb[idx]) {
386		kfree_skb(priv->echo_skb[idx]);
387		priv->echo_skb[idx] = NULL;
388	}
389}
390EXPORT_SYMBOL_GPL(can_free_echo_skb);
391
392/*
393 * CAN device restart for bus-off recovery
394 */
395static void can_restart(unsigned long data)
396{
397	struct net_device *dev = (struct net_device *)data;
398	struct can_priv *priv = netdev_priv(dev);
399	struct net_device_stats *stats = &dev->stats;
400	struct sk_buff *skb;
401	struct can_frame *cf;
402	int err;
403
404	BUG_ON(netif_carrier_ok(dev));
405
406	/*
407	 * No synchronization needed because the device is bus-off and
408	 * no messages can come in or go out.
409	 */
410	can_flush_echo_skb(dev);
411
412	/* send restart message upstream */
413	skb = alloc_can_err_skb(dev, &cf);
414	if (skb == NULL) {
415		err = -ENOMEM;
416		goto restart;
417	}
418	cf->can_id |= CAN_ERR_RESTARTED;
419
420	netif_rx(skb);
421
422	stats->rx_packets++;
423	stats->rx_bytes += cf->can_dlc;
424
425restart:
426	netdev_dbg(dev, "restarted\n");
427	priv->can_stats.restarts++;
428
429	/* Now restart the device */
430	err = priv->do_set_mode(dev, CAN_MODE_START);
431
432	netif_carrier_on(dev);
433	if (err)
434		netdev_err(dev, "Error %d during restart", err);
435}
436
437int can_restart_now(struct net_device *dev)
438{
439	struct can_priv *priv = netdev_priv(dev);
440
441	/*
442	 * A manual restart is only permitted if automatic restart is
443	 * disabled and the device is in the bus-off state
444	 */
445	if (priv->restart_ms)
446		return -EINVAL;
447	if (priv->state != CAN_STATE_BUS_OFF)
448		return -EBUSY;
449
450	/* Runs as soon as possible in the timer context */
451	mod_timer(&priv->restart_timer, jiffies);
452
453	return 0;
454}
455
456/*
457 * CAN bus-off
458 *
459 * This functions should be called when the device goes bus-off to
460 * tell the netif layer that no more packets can be sent or received.
461 * If enabled, a timer is started to trigger bus-off recovery.
462 */
463void can_bus_off(struct net_device *dev)
464{
465	struct can_priv *priv = netdev_priv(dev);
466
467	netdev_dbg(dev, "bus-off\n");
468
469	netif_carrier_off(dev);
470	priv->can_stats.bus_off++;
471
472	if (priv->restart_ms)
473		mod_timer(&priv->restart_timer,
474			  jiffies + (priv->restart_ms * HZ) / 1000);
475}
476EXPORT_SYMBOL_GPL(can_bus_off);
477
478static void can_setup(struct net_device *dev)
479{
480	dev->type = ARPHRD_CAN;
481	dev->mtu = CAN_MTU;
482	dev->hard_header_len = 0;
483	dev->addr_len = 0;
484	dev->tx_queue_len = 10;
485
486	/* New-style flags. */
487	dev->flags = IFF_NOARP;
488	dev->features = NETIF_F_HW_CSUM;
489}
490
491struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
492{
493	struct sk_buff *skb;
494
495	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
496			       sizeof(struct can_frame));
497	if (unlikely(!skb))
498		return NULL;
499
500	skb->protocol = htons(ETH_P_CAN);
501	skb->pkt_type = PACKET_BROADCAST;
502	skb->ip_summed = CHECKSUM_UNNECESSARY;
503
504	can_skb_reserve(skb);
505	can_skb_prv(skb)->ifindex = dev->ifindex;
506
507	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
508	memset(*cf, 0, sizeof(struct can_frame));
509
510	return skb;
511}
512EXPORT_SYMBOL_GPL(alloc_can_skb);
513
514struct sk_buff *alloc_canfd_skb(struct net_device *dev,
515				struct canfd_frame **cfd)
516{
517	struct sk_buff *skb;
518
519	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
520			       sizeof(struct canfd_frame));
521	if (unlikely(!skb))
522		return NULL;
523
524	skb->protocol = htons(ETH_P_CANFD);
525	skb->pkt_type = PACKET_BROADCAST;
526	skb->ip_summed = CHECKSUM_UNNECESSARY;
527
528	can_skb_reserve(skb);
529	can_skb_prv(skb)->ifindex = dev->ifindex;
530
531	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
532	memset(*cfd, 0, sizeof(struct canfd_frame));
533
534	return skb;
535}
536EXPORT_SYMBOL_GPL(alloc_canfd_skb);
537
538struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
539{
540	struct sk_buff *skb;
541
542	skb = alloc_can_skb(dev, cf);
543	if (unlikely(!skb))
544		return NULL;
545
546	(*cf)->can_id = CAN_ERR_FLAG;
547	(*cf)->can_dlc = CAN_ERR_DLC;
548
549	return skb;
550}
551EXPORT_SYMBOL_GPL(alloc_can_err_skb);
552
553/*
554 * Allocate and setup space for the CAN network device
555 */
556struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
557{
558	struct net_device *dev;
559	struct can_priv *priv;
560	int size;
561
562	if (echo_skb_max)
563		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
564			echo_skb_max * sizeof(struct sk_buff *);
565	else
566		size = sizeof_priv;
567
568	dev = alloc_netdev(size, "can%d", can_setup);
569	if (!dev)
570		return NULL;
571
572	priv = netdev_priv(dev);
573
574	if (echo_skb_max) {
575		priv->echo_skb_max = echo_skb_max;
576		priv->echo_skb = (void *)priv +
577			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
578	}
579
580	priv->state = CAN_STATE_STOPPED;
581
582	init_timer(&priv->restart_timer);
583
584	return dev;
585}
586EXPORT_SYMBOL_GPL(alloc_candev);
587
588/*
589 * Free space of the CAN network device
590 */
591void free_candev(struct net_device *dev)
592{
593	free_netdev(dev);
594}
595EXPORT_SYMBOL_GPL(free_candev);
596
597/*
598 * changing MTU and control mode for CAN/CANFD devices
599 */
600int can_change_mtu(struct net_device *dev, int new_mtu)
601{
602	struct can_priv *priv = netdev_priv(dev);
603
604	/* Do not allow changing the MTU while running */
605	if (dev->flags & IFF_UP)
606		return -EBUSY;
607
608	/* allow change of MTU according to the CANFD ability of the device */
609	switch (new_mtu) {
610	case CAN_MTU:
611		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
612		break;
613
614	case CANFD_MTU:
615		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
616			return -EINVAL;
617
618		priv->ctrlmode |= CAN_CTRLMODE_FD;
619		break;
620
621	default:
622		return -EINVAL;
623	}
624
625	dev->mtu = new_mtu;
626	return 0;
627}
628EXPORT_SYMBOL_GPL(can_change_mtu);
629
630/*
631 * Common open function when the device gets opened.
632 *
633 * This function should be called in the open function of the device
634 * driver.
635 */
636int open_candev(struct net_device *dev)
637{
638	struct can_priv *priv = netdev_priv(dev);
639
640	if (!priv->bittiming.bitrate) {
641		netdev_err(dev, "bit-timing not yet defined\n");
642		return -EINVAL;
643	}
644
645	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
646	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
647	    (!priv->data_bittiming.bitrate ||
648	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
649		netdev_err(dev, "incorrect/missing data bit-timing\n");
650		return -EINVAL;
651	}
652
653	/* Switch carrier on if device was stopped while in bus-off state */
654	if (!netif_carrier_ok(dev))
655		netif_carrier_on(dev);
656
657	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
658
659	return 0;
660}
661EXPORT_SYMBOL_GPL(open_candev);
662
663/*
664 * Common close function for cleanup before the device gets closed.
665 *
666 * This function should be called in the close function of the device
667 * driver.
668 */
669void close_candev(struct net_device *dev)
670{
671	struct can_priv *priv = netdev_priv(dev);
672
673	del_timer_sync(&priv->restart_timer);
 
674	can_flush_echo_skb(dev);
675}
676EXPORT_SYMBOL_GPL(close_candev);
677
678/*
679 * CAN netlink interface
680 */
681static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
682	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
683	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
684	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
685	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
686	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
687	[IFLA_CAN_BITTIMING_CONST]
688				= { .len = sizeof(struct can_bittiming_const) },
689	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
690	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
691	[IFLA_CAN_DATA_BITTIMING]
692				= { .len = sizeof(struct can_bittiming) },
693	[IFLA_CAN_DATA_BITTIMING_CONST]
694				= { .len = sizeof(struct can_bittiming_const) },
695};
696
697static int can_changelink(struct net_device *dev,
698			  struct nlattr *tb[], struct nlattr *data[])
699{
700	struct can_priv *priv = netdev_priv(dev);
701	int err;
702
703	/* We need synchronization with dev->stop() */
704	ASSERT_RTNL();
705
 
 
 
 
 
 
 
 
 
 
 
 
 
706	if (data[IFLA_CAN_BITTIMING]) {
707		struct can_bittiming bt;
708
709		/* Do not allow changing bittiming while running */
710		if (dev->flags & IFF_UP)
711			return -EBUSY;
712		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
713		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
 
 
714		if (err)
715			return err;
716		memcpy(&priv->bittiming, &bt, sizeof(bt));
717
718		if (priv->do_set_bittiming) {
719			/* Finally, set the bit-timing registers */
720			err = priv->do_set_bittiming(dev);
721			if (err)
722				return err;
723		}
724	}
725
726	if (data[IFLA_CAN_CTRLMODE]) {
727		struct can_ctrlmode *cm;
728
729		/* Do not allow changing controller mode while running */
730		if (dev->flags & IFF_UP)
731			return -EBUSY;
732		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
733		if (cm->flags & ~priv->ctrlmode_supported)
734			return -EOPNOTSUPP;
735		priv->ctrlmode &= ~cm->mask;
736		priv->ctrlmode |= cm->flags;
737
738		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
739		if (priv->ctrlmode & CAN_CTRLMODE_FD)
740			dev->mtu = CANFD_MTU;
741		else
742			dev->mtu = CAN_MTU;
743	}
744
745	if (data[IFLA_CAN_RESTART_MS]) {
746		/* Do not allow changing restart delay while running */
747		if (dev->flags & IFF_UP)
748			return -EBUSY;
749		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
750	}
751
752	if (data[IFLA_CAN_RESTART]) {
753		/* Do not allow a restart while not running */
754		if (!(dev->flags & IFF_UP))
755			return -EINVAL;
756		err = can_restart_now(dev);
757		if (err)
758			return err;
759	}
760
761	if (data[IFLA_CAN_DATA_BITTIMING]) {
762		struct can_bittiming dbt;
763
764		/* Do not allow changing bittiming while running */
765		if (dev->flags & IFF_UP)
766			return -EBUSY;
767		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
768		       sizeof(dbt));
769		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
770		if (err)
771			return err;
772		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
773
774		if (priv->do_set_data_bittiming) {
775			/* Finally, set the bit-timing registers */
776			err = priv->do_set_data_bittiming(dev);
777			if (err)
778				return err;
779		}
780	}
781
782	return 0;
783}
784
785static size_t can_get_size(const struct net_device *dev)
786{
787	struct can_priv *priv = netdev_priv(dev);
788	size_t size = 0;
789
790	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
791		size += nla_total_size(sizeof(struct can_bittiming));
792	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
793		size += nla_total_size(sizeof(struct can_bittiming_const));
794	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
795	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
796	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
797	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
798	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
799		size += nla_total_size(sizeof(struct can_berr_counter));
800	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
801		size += nla_total_size(sizeof(struct can_bittiming));
802	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
803		size += nla_total_size(sizeof(struct can_bittiming_const));
804
805	return size;
806}
807
808static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
809{
810	struct can_priv *priv = netdev_priv(dev);
811	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
812	struct can_berr_counter bec;
813	enum can_state state = priv->state;
814
815	if (priv->do_get_state)
816		priv->do_get_state(dev, &state);
817
818	if ((priv->bittiming.bitrate &&
819	     nla_put(skb, IFLA_CAN_BITTIMING,
820		     sizeof(priv->bittiming), &priv->bittiming)) ||
821
822	    (priv->bittiming_const &&
823	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
824		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
825
826	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
827	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
828	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
829	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
830
 
 
831	    (priv->do_get_berr_counter &&
832	     !priv->do_get_berr_counter(dev, &bec) &&
833	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
834
835	    (priv->data_bittiming.bitrate &&
836	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
837		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
838
839	    (priv->data_bittiming_const &&
840	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
841		     sizeof(*priv->data_bittiming_const),
842		     priv->data_bittiming_const)))
843		return -EMSGSIZE;
844
845	return 0;
 
 
 
846}
847
848static size_t can_get_xstats_size(const struct net_device *dev)
849{
850	return sizeof(struct can_device_stats);
851}
852
853static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
854{
855	struct can_priv *priv = netdev_priv(dev);
856
857	if (nla_put(skb, IFLA_INFO_XSTATS,
858		    sizeof(priv->can_stats), &priv->can_stats))
859		goto nla_put_failure;
860	return 0;
861
862nla_put_failure:
863	return -EMSGSIZE;
864}
865
866static int can_newlink(struct net *src_net, struct net_device *dev,
867		       struct nlattr *tb[], struct nlattr *data[])
868{
869	return -EOPNOTSUPP;
870}
871
872static struct rtnl_link_ops can_link_ops __read_mostly = {
873	.kind		= "can",
874	.maxtype	= IFLA_CAN_MAX,
875	.policy		= can_policy,
876	.setup		= can_setup,
877	.newlink	= can_newlink,
878	.changelink	= can_changelink,
879	.get_size	= can_get_size,
880	.fill_info	= can_fill_info,
881	.get_xstats_size = can_get_xstats_size,
882	.fill_xstats	= can_fill_xstats,
883};
884
885/*
886 * Register the CAN network device
887 */
888int register_candev(struct net_device *dev)
889{
890	dev->rtnl_link_ops = &can_link_ops;
891	return register_netdev(dev);
892}
893EXPORT_SYMBOL_GPL(register_candev);
894
895/*
896 * Unregister the CAN network device
897 */
898void unregister_candev(struct net_device *dev)
899{
900	unregister_netdev(dev);
901}
902EXPORT_SYMBOL_GPL(unregister_candev);
903
904/*
905 * Test if a network device is a candev based device
906 * and return the can_priv* if so.
907 */
908struct can_priv *safe_candev_priv(struct net_device *dev)
909{
910	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
911		return NULL;
912
913	return netdev_priv(dev);
914}
915EXPORT_SYMBOL_GPL(safe_candev_priv);
916
917static __init int can_dev_init(void)
918{
919	int err;
920
921	can_led_notifier_init();
922
923	err = rtnl_link_register(&can_link_ops);
924	if (!err)
925		printk(KERN_INFO MOD_DESC "\n");
926
927	return err;
928}
929module_init(can_dev_init);
930
931static __exit void can_dev_exit(void)
932{
933	rtnl_link_unregister(&can_link_ops);
934
935	can_led_notifier_exit();
936}
937module_exit(can_dev_exit);
938
939MODULE_ALIAS_RTNL_LINK("can");
v3.5.6
  1/*
  2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the version 2 of the GNU General Public License
  8 * as published by the Free Software Foundation
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/kernel.h>
 22#include <linux/slab.h>
 23#include <linux/netdevice.h>
 24#include <linux/if_arp.h>
 25#include <linux/can.h>
 26#include <linux/can/dev.h>
 
 27#include <linux/can/netlink.h>
 
 28#include <net/rtnetlink.h>
 29
 30#define MOD_DESC "CAN device driver interface"
 31
 32MODULE_DESCRIPTION(MOD_DESC);
 33MODULE_LICENSE("GPL v2");
 34MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
 35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36#ifdef CONFIG_CAN_CALC_BITTIMING
 37#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
 38
 39/*
 40 * Bit-timing calculation derived from:
 41 *
 42 * Code based on LinCAN sources and H8S2638 project
 43 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
 44 * Copyright 2005      Stanislav Marek
 45 * email: pisa@cmp.felk.cvut.cz
 46 *
 47 * Calculates proper bit-timing parameters for a specified bit-rate
 48 * and sample-point, which can then be used to set the bit-timing
 49 * registers of the CAN controller. You can find more information
 50 * in the header file linux/can/netlink.h.
 51 */
 52static int can_update_spt(const struct can_bittiming_const *btc,
 53			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
 54{
 55	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
 56	if (*tseg2 < btc->tseg2_min)
 57		*tseg2 = btc->tseg2_min;
 58	if (*tseg2 > btc->tseg2_max)
 59		*tseg2 = btc->tseg2_max;
 60	*tseg1 = tseg - *tseg2;
 61	if (*tseg1 > btc->tseg1_max) {
 62		*tseg1 = btc->tseg1_max;
 63		*tseg2 = tseg - *tseg1;
 64	}
 65	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
 66}
 67
 68static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
 69{
 70	struct can_priv *priv = netdev_priv(dev);
 71	const struct can_bittiming_const *btc = priv->bittiming_const;
 72	long rate, best_rate = 0;
 73	long best_error = 1000000000, error = 0;
 74	int best_tseg = 0, best_brp = 0, brp = 0;
 75	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
 76	int spt_error = 1000, spt = 0, sampl_pt;
 77	u64 v64;
 78
 79	if (!priv->bittiming_const)
 80		return -ENOTSUPP;
 81
 82	/* Use CIA recommended sample points */
 83	if (bt->sample_point) {
 84		sampl_pt = bt->sample_point;
 85	} else {
 86		if (bt->bitrate > 800000)
 87			sampl_pt = 750;
 88		else if (bt->bitrate > 500000)
 89			sampl_pt = 800;
 90		else
 91			sampl_pt = 875;
 92	}
 93
 94	/* tseg even = round down, odd = round up */
 95	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 96	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 97		tsegall = 1 + tseg / 2;
 98		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 99		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
100		/* chose brp step which is possible in system */
101		brp = (brp / btc->brp_inc) * btc->brp_inc;
102		if ((brp < btc->brp_min) || (brp > btc->brp_max))
103			continue;
104		rate = priv->clock.freq / (brp * tsegall);
105		error = bt->bitrate - rate;
106		/* tseg brp biterror */
107		if (error < 0)
108			error = -error;
109		if (error > best_error)
110			continue;
111		best_error = error;
112		if (error == 0) {
113			spt = can_update_spt(btc, sampl_pt, tseg / 2,
114					     &tseg1, &tseg2);
115			error = sampl_pt - spt;
116			if (error < 0)
117				error = -error;
118			if (error > spt_error)
119				continue;
120			spt_error = error;
121		}
122		best_tseg = tseg / 2;
123		best_brp = brp;
124		best_rate = rate;
125		if (error == 0)
126			break;
127	}
128
129	if (best_error) {
130		/* Error in one-tenth of a percent */
131		error = (best_error * 1000) / bt->bitrate;
132		if (error > CAN_CALC_MAX_ERROR) {
133			netdev_err(dev,
134				   "bitrate error %ld.%ld%% too high\n",
135				   error / 10, error % 10);
136			return -EDOM;
137		} else {
138			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
139				    error / 10, error % 10);
140		}
141	}
142
143	/* real sample point */
144	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
145					  &tseg1, &tseg2);
146
147	v64 = (u64)best_brp * 1000000000UL;
148	do_div(v64, priv->clock.freq);
149	bt->tq = (u32)v64;
150	bt->prop_seg = tseg1 / 2;
151	bt->phase_seg1 = tseg1 - bt->prop_seg;
152	bt->phase_seg2 = tseg2;
153
154	/* check for sjw user settings */
155	if (!bt->sjw || !btc->sjw_max)
156		bt->sjw = 1;
157	else {
158		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
159		if (bt->sjw > btc->sjw_max)
160			bt->sjw = btc->sjw_max;
161		/* bt->sjw must not be higher than tseg2 */
162		if (tseg2 < bt->sjw)
163			bt->sjw = tseg2;
164	}
165
166	bt->brp = best_brp;
167	/* real bit-rate */
168	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
169
170	return 0;
171}
172#else /* !CONFIG_CAN_CALC_BITTIMING */
173static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
174{
175	netdev_err(dev, "bit-timing calculation not available\n");
176	return -EINVAL;
177}
178#endif /* CONFIG_CAN_CALC_BITTIMING */
179
180/*
181 * Checks the validity of the specified bit-timing parameters prop_seg,
182 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
183 * prescaler value brp. You can find more information in the header
184 * file linux/can/netlink.h.
185 */
186static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
187{
188	struct can_priv *priv = netdev_priv(dev);
189	const struct can_bittiming_const *btc = priv->bittiming_const;
190	int tseg1, alltseg;
191	u64 brp64;
192
193	if (!priv->bittiming_const)
194		return -ENOTSUPP;
195
196	tseg1 = bt->prop_seg + bt->phase_seg1;
197	if (!bt->sjw)
198		bt->sjw = 1;
199	if (bt->sjw > btc->sjw_max ||
200	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
201	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
202		return -ERANGE;
203
204	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
205	if (btc->brp_inc > 1)
206		do_div(brp64, btc->brp_inc);
207	brp64 += 500000000UL - 1;
208	do_div(brp64, 1000000000UL); /* the practicable BRP */
209	if (btc->brp_inc > 1)
210		brp64 *= btc->brp_inc;
211	bt->brp = (u32)brp64;
212
213	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
214		return -EINVAL;
215
216	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
217	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
218	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
219
220	return 0;
221}
222
223static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
 
224{
225	struct can_priv *priv = netdev_priv(dev);
226	int err;
227
228	/* Check if the CAN device has bit-timing parameters */
229	if (priv->bittiming_const) {
 
230
231		/* Non-expert mode? Check if the bitrate has been pre-defined */
232		if (!bt->tq)
233			/* Determine bit-timing parameters */
234			err = can_calc_bittiming(dev, bt);
235		else
236			/* Check bit-timing params and calculate proper brp */
237			err = can_fixup_bittiming(dev, bt);
238		if (err)
239			return err;
240	}
 
 
241
242	return 0;
243}
244
245/*
246 * Local echo of CAN messages
247 *
248 * CAN network devices *should* support a local echo functionality
249 * (see Documentation/networking/can.txt). To test the handling of CAN
250 * interfaces that do not support the local echo both driver types are
251 * implemented. In the case that the driver does not support the echo
252 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
253 * to perform the echo as a fallback solution.
254 */
255static void can_flush_echo_skb(struct net_device *dev)
256{
257	struct can_priv *priv = netdev_priv(dev);
258	struct net_device_stats *stats = &dev->stats;
259	int i;
260
261	for (i = 0; i < priv->echo_skb_max; i++) {
262		if (priv->echo_skb[i]) {
263			kfree_skb(priv->echo_skb[i]);
264			priv->echo_skb[i] = NULL;
265			stats->tx_dropped++;
266			stats->tx_aborted_errors++;
267		}
268	}
269}
270
271/*
272 * Put the skb on the stack to be looped backed locally lateron
273 *
274 * The function is typically called in the start_xmit function
275 * of the device driver. The driver must protect access to
276 * priv->echo_skb, if necessary.
277 */
278void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
279		      unsigned int idx)
280{
281	struct can_priv *priv = netdev_priv(dev);
282
283	BUG_ON(idx >= priv->echo_skb_max);
284
285	/* check flag whether this packet has to be looped back */
286	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
 
 
287		kfree_skb(skb);
288		return;
289	}
290
291	if (!priv->echo_skb[idx]) {
292		struct sock *srcsk = skb->sk;
293
294		if (atomic_read(&skb->users) != 1) {
295			struct sk_buff *old_skb = skb;
296
297			skb = skb_clone(old_skb, GFP_ATOMIC);
298			kfree_skb(old_skb);
299			if (!skb)
300				return;
301		} else
302			skb_orphan(skb);
303
304		skb->sk = srcsk;
 
 
305
306		/* make settings for echo to reduce code in irq context */
307		skb->protocol = htons(ETH_P_CAN);
308		skb->pkt_type = PACKET_BROADCAST;
309		skb->ip_summed = CHECKSUM_UNNECESSARY;
310		skb->dev = dev;
311
312		/* save this skb for tx interrupt echo handling */
313		priv->echo_skb[idx] = skb;
314	} else {
315		/* locking problem with netif_stop_queue() ?? */
316		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
317		kfree_skb(skb);
318	}
319}
320EXPORT_SYMBOL_GPL(can_put_echo_skb);
321
322/*
323 * Get the skb from the stack and loop it back locally
324 *
325 * The function is typically called when the TX done interrupt
326 * is handled in the device driver. The driver must protect
327 * access to priv->echo_skb, if necessary.
328 */
329unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
330{
331	struct can_priv *priv = netdev_priv(dev);
332
333	BUG_ON(idx >= priv->echo_skb_max);
334
335	if (priv->echo_skb[idx]) {
336		struct sk_buff *skb = priv->echo_skb[idx];
337		struct can_frame *cf = (struct can_frame *)skb->data;
338		u8 dlc = cf->can_dlc;
339
340		netif_rx(priv->echo_skb[idx]);
341		priv->echo_skb[idx] = NULL;
342
343		return dlc;
344	}
345
346	return 0;
347}
348EXPORT_SYMBOL_GPL(can_get_echo_skb);
349
350/*
351  * Remove the skb from the stack and free it.
352  *
353  * The function is typically called when TX failed.
354  */
355void can_free_echo_skb(struct net_device *dev, unsigned int idx)
356{
357	struct can_priv *priv = netdev_priv(dev);
358
359	BUG_ON(idx >= priv->echo_skb_max);
360
361	if (priv->echo_skb[idx]) {
362		kfree_skb(priv->echo_skb[idx]);
363		priv->echo_skb[idx] = NULL;
364	}
365}
366EXPORT_SYMBOL_GPL(can_free_echo_skb);
367
368/*
369 * CAN device restart for bus-off recovery
370 */
371void can_restart(unsigned long data)
372{
373	struct net_device *dev = (struct net_device *)data;
374	struct can_priv *priv = netdev_priv(dev);
375	struct net_device_stats *stats = &dev->stats;
376	struct sk_buff *skb;
377	struct can_frame *cf;
378	int err;
379
380	BUG_ON(netif_carrier_ok(dev));
381
382	/*
383	 * No synchronization needed because the device is bus-off and
384	 * no messages can come in or go out.
385	 */
386	can_flush_echo_skb(dev);
387
388	/* send restart message upstream */
389	skb = alloc_can_err_skb(dev, &cf);
390	if (skb == NULL) {
391		err = -ENOMEM;
392		goto restart;
393	}
394	cf->can_id |= CAN_ERR_RESTARTED;
395
396	netif_rx(skb);
397
398	stats->rx_packets++;
399	stats->rx_bytes += cf->can_dlc;
400
401restart:
402	netdev_dbg(dev, "restarted\n");
403	priv->can_stats.restarts++;
404
405	/* Now restart the device */
406	err = priv->do_set_mode(dev, CAN_MODE_START);
407
408	netif_carrier_on(dev);
409	if (err)
410		netdev_err(dev, "Error %d during restart", err);
411}
412
413int can_restart_now(struct net_device *dev)
414{
415	struct can_priv *priv = netdev_priv(dev);
416
417	/*
418	 * A manual restart is only permitted if automatic restart is
419	 * disabled and the device is in the bus-off state
420	 */
421	if (priv->restart_ms)
422		return -EINVAL;
423	if (priv->state != CAN_STATE_BUS_OFF)
424		return -EBUSY;
425
426	/* Runs as soon as possible in the timer context */
427	mod_timer(&priv->restart_timer, jiffies);
428
429	return 0;
430}
431
432/*
433 * CAN bus-off
434 *
435 * This functions should be called when the device goes bus-off to
436 * tell the netif layer that no more packets can be sent or received.
437 * If enabled, a timer is started to trigger bus-off recovery.
438 */
439void can_bus_off(struct net_device *dev)
440{
441	struct can_priv *priv = netdev_priv(dev);
442
443	netdev_dbg(dev, "bus-off\n");
444
445	netif_carrier_off(dev);
446	priv->can_stats.bus_off++;
447
448	if (priv->restart_ms)
449		mod_timer(&priv->restart_timer,
450			  jiffies + (priv->restart_ms * HZ) / 1000);
451}
452EXPORT_SYMBOL_GPL(can_bus_off);
453
454static void can_setup(struct net_device *dev)
455{
456	dev->type = ARPHRD_CAN;
457	dev->mtu = sizeof(struct can_frame);
458	dev->hard_header_len = 0;
459	dev->addr_len = 0;
460	dev->tx_queue_len = 10;
461
462	/* New-style flags. */
463	dev->flags = IFF_NOARP;
464	dev->features = NETIF_F_HW_CSUM;
465}
466
467struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
468{
469	struct sk_buff *skb;
470
471	skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
 
472	if (unlikely(!skb))
473		return NULL;
474
475	skb->protocol = htons(ETH_P_CAN);
476	skb->pkt_type = PACKET_BROADCAST;
477	skb->ip_summed = CHECKSUM_UNNECESSARY;
 
 
 
 
478	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
479	memset(*cf, 0, sizeof(struct can_frame));
480
481	return skb;
482}
483EXPORT_SYMBOL_GPL(alloc_can_skb);
484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
486{
487	struct sk_buff *skb;
488
489	skb = alloc_can_skb(dev, cf);
490	if (unlikely(!skb))
491		return NULL;
492
493	(*cf)->can_id = CAN_ERR_FLAG;
494	(*cf)->can_dlc = CAN_ERR_DLC;
495
496	return skb;
497}
498EXPORT_SYMBOL_GPL(alloc_can_err_skb);
499
500/*
501 * Allocate and setup space for the CAN network device
502 */
503struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
504{
505	struct net_device *dev;
506	struct can_priv *priv;
507	int size;
508
509	if (echo_skb_max)
510		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
511			echo_skb_max * sizeof(struct sk_buff *);
512	else
513		size = sizeof_priv;
514
515	dev = alloc_netdev(size, "can%d", can_setup);
516	if (!dev)
517		return NULL;
518
519	priv = netdev_priv(dev);
520
521	if (echo_skb_max) {
522		priv->echo_skb_max = echo_skb_max;
523		priv->echo_skb = (void *)priv +
524			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
525	}
526
527	priv->state = CAN_STATE_STOPPED;
528
529	init_timer(&priv->restart_timer);
530
531	return dev;
532}
533EXPORT_SYMBOL_GPL(alloc_candev);
534
535/*
536 * Free space of the CAN network device
537 */
538void free_candev(struct net_device *dev)
539{
540	free_netdev(dev);
541}
542EXPORT_SYMBOL_GPL(free_candev);
543
544/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545 * Common open function when the device gets opened.
546 *
547 * This function should be called in the open function of the device
548 * driver.
549 */
550int open_candev(struct net_device *dev)
551{
552	struct can_priv *priv = netdev_priv(dev);
553
554	if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
555		netdev_err(dev, "bit-timing not yet defined\n");
556		return -EINVAL;
557	}
558
 
 
 
 
 
 
 
 
559	/* Switch carrier on if device was stopped while in bus-off state */
560	if (!netif_carrier_ok(dev))
561		netif_carrier_on(dev);
562
563	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
564
565	return 0;
566}
567EXPORT_SYMBOL_GPL(open_candev);
568
569/*
570 * Common close function for cleanup before the device gets closed.
571 *
572 * This function should be called in the close function of the device
573 * driver.
574 */
575void close_candev(struct net_device *dev)
576{
577	struct can_priv *priv = netdev_priv(dev);
578
579	if (del_timer_sync(&priv->restart_timer))
580		dev_put(dev);
581	can_flush_echo_skb(dev);
582}
583EXPORT_SYMBOL_GPL(close_candev);
584
585/*
586 * CAN netlink interface
587 */
588static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
589	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
590	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
591	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
592	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
593	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
594	[IFLA_CAN_BITTIMING_CONST]
595				= { .len = sizeof(struct can_bittiming_const) },
596	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
597	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 
 
 
 
598};
599
600static int can_changelink(struct net_device *dev,
601			  struct nlattr *tb[], struct nlattr *data[])
602{
603	struct can_priv *priv = netdev_priv(dev);
604	int err;
605
606	/* We need synchronization with dev->stop() */
607	ASSERT_RTNL();
608
609	if (data[IFLA_CAN_CTRLMODE]) {
610		struct can_ctrlmode *cm;
611
612		/* Do not allow changing controller mode while running */
613		if (dev->flags & IFF_UP)
614			return -EBUSY;
615		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
616		if (cm->flags & ~priv->ctrlmode_supported)
617			return -EOPNOTSUPP;
618		priv->ctrlmode &= ~cm->mask;
619		priv->ctrlmode |= cm->flags;
620	}
621
622	if (data[IFLA_CAN_BITTIMING]) {
623		struct can_bittiming bt;
624
625		/* Do not allow changing bittiming while running */
626		if (dev->flags & IFF_UP)
627			return -EBUSY;
628		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
629		if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
630			return -EINVAL;
631		err = can_get_bittiming(dev, &bt);
632		if (err)
633			return err;
634		memcpy(&priv->bittiming, &bt, sizeof(bt));
635
636		if (priv->do_set_bittiming) {
637			/* Finally, set the bit-timing registers */
638			err = priv->do_set_bittiming(dev);
639			if (err)
640				return err;
641		}
642	}
643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644	if (data[IFLA_CAN_RESTART_MS]) {
645		/* Do not allow changing restart delay while running */
646		if (dev->flags & IFF_UP)
647			return -EBUSY;
648		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
649	}
650
651	if (data[IFLA_CAN_RESTART]) {
652		/* Do not allow a restart while not running */
653		if (!(dev->flags & IFF_UP))
654			return -EINVAL;
655		err = can_restart_now(dev);
656		if (err)
657			return err;
658	}
659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660	return 0;
661}
662
663static size_t can_get_size(const struct net_device *dev)
664{
665	struct can_priv *priv = netdev_priv(dev);
666	size_t size;
667
668	size = nla_total_size(sizeof(u32));   /* IFLA_CAN_STATE */
669	size += sizeof(struct can_ctrlmode);  /* IFLA_CAN_CTRLMODE */
670	size += nla_total_size(sizeof(u32));  /* IFLA_CAN_RESTART_MS */
671	size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
672	size += sizeof(struct can_clock);     /* IFLA_CAN_CLOCK */
673	if (priv->do_get_berr_counter)        /* IFLA_CAN_BERR_COUNTER */
674		size += sizeof(struct can_berr_counter);
675	if (priv->bittiming_const)	      /* IFLA_CAN_BITTIMING_CONST */
676		size += sizeof(struct can_bittiming_const);
 
 
 
 
 
677
678	return size;
679}
680
681static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
682{
683	struct can_priv *priv = netdev_priv(dev);
684	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
685	struct can_berr_counter bec;
686	enum can_state state = priv->state;
687
688	if (priv->do_get_state)
689		priv->do_get_state(dev, &state);
690	if (nla_put_u32(skb, IFLA_CAN_STATE, state) ||
 
 
 
 
 
 
 
 
 
 
691	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
692	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
693	    nla_put(skb, IFLA_CAN_BITTIMING,
694		    sizeof(priv->bittiming), &priv->bittiming) ||
695	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
696	    (priv->do_get_berr_counter &&
697	     !priv->do_get_berr_counter(dev, &bec) &&
698	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
699	    (priv->bittiming_const &&
700	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
701		     sizeof(*priv->bittiming_const), priv->bittiming_const)))
702		goto nla_put_failure;
 
 
 
 
 
 
 
703	return 0;
704
705nla_put_failure:
706	return -EMSGSIZE;
707}
708
709static size_t can_get_xstats_size(const struct net_device *dev)
710{
711	return sizeof(struct can_device_stats);
712}
713
714static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
715{
716	struct can_priv *priv = netdev_priv(dev);
717
718	if (nla_put(skb, IFLA_INFO_XSTATS,
719		    sizeof(priv->can_stats), &priv->can_stats))
720		goto nla_put_failure;
721	return 0;
722
723nla_put_failure:
724	return -EMSGSIZE;
725}
726
727static int can_newlink(struct net *src_net, struct net_device *dev,
728		       struct nlattr *tb[], struct nlattr *data[])
729{
730	return -EOPNOTSUPP;
731}
732
733static struct rtnl_link_ops can_link_ops __read_mostly = {
734	.kind		= "can",
735	.maxtype	= IFLA_CAN_MAX,
736	.policy		= can_policy,
737	.setup		= can_setup,
738	.newlink	= can_newlink,
739	.changelink	= can_changelink,
740	.get_size	= can_get_size,
741	.fill_info	= can_fill_info,
742	.get_xstats_size = can_get_xstats_size,
743	.fill_xstats	= can_fill_xstats,
744};
745
746/*
747 * Register the CAN network device
748 */
749int register_candev(struct net_device *dev)
750{
751	dev->rtnl_link_ops = &can_link_ops;
752	return register_netdev(dev);
753}
754EXPORT_SYMBOL_GPL(register_candev);
755
756/*
757 * Unregister the CAN network device
758 */
759void unregister_candev(struct net_device *dev)
760{
761	unregister_netdev(dev);
762}
763EXPORT_SYMBOL_GPL(unregister_candev);
764
 
 
 
 
 
 
 
 
 
 
 
 
 
765static __init int can_dev_init(void)
766{
767	int err;
768
 
 
769	err = rtnl_link_register(&can_link_ops);
770	if (!err)
771		printk(KERN_INFO MOD_DESC "\n");
772
773	return err;
774}
775module_init(can_dev_init);
776
777static __exit void can_dev_exit(void)
778{
779	rtnl_link_unregister(&can_link_ops);
 
 
780}
781module_exit(can_dev_exit);
782
783MODULE_ALIAS_RTNL_LINK("can");