Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/rbtree.h>
  19#include <linux/sched.h>
  20
  21#define CREATE_TRACE_POINTS
  22#include <trace/events/regmap.h>
  23
  24#include "internal.h"
  25
  26/*
  27 * Sometimes for failures during very early init the trace
  28 * infrastructure isn't available early enough to be used.  For this
  29 * sort of problem defining LOG_DEVICE will add printks for basic
  30 * register I/O on a specific device.
  31 */
  32#undef LOG_DEVICE
  33
  34static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  35			       unsigned int mask, unsigned int val,
  36			       bool *change);
  37
  38static int _regmap_bus_read(void *context, unsigned int reg,
  39			    unsigned int *val);
  40static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  41				       unsigned int val);
  42static int _regmap_bus_raw_write(void *context, unsigned int reg,
  43				 unsigned int val);
  44
  45bool regmap_reg_in_ranges(unsigned int reg,
  46			  const struct regmap_range *ranges,
  47			  unsigned int nranges)
  48{
  49	const struct regmap_range *r;
  50	int i;
  51
  52	for (i = 0, r = ranges; i < nranges; i++, r++)
  53		if (regmap_reg_in_range(reg, r))
  54			return true;
  55	return false;
  56}
  57EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  58
  59bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  60			      const struct regmap_access_table *table)
  61{
  62	/* Check "no ranges" first */
  63	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  64		return false;
  65
  66	/* In case zero "yes ranges" are supplied, any reg is OK */
  67	if (!table->n_yes_ranges)
  68		return true;
  69
  70	return regmap_reg_in_ranges(reg, table->yes_ranges,
  71				    table->n_yes_ranges);
  72}
  73EXPORT_SYMBOL_GPL(regmap_check_range_table);
  74
  75bool regmap_writeable(struct regmap *map, unsigned int reg)
  76{
  77	if (map->max_register && reg > map->max_register)
  78		return false;
  79
  80	if (map->writeable_reg)
  81		return map->writeable_reg(map->dev, reg);
  82
  83	if (map->wr_table)
  84		return regmap_check_range_table(map, reg, map->wr_table);
  85
  86	return true;
  87}
  88
  89bool regmap_readable(struct regmap *map, unsigned int reg)
  90{
  91	if (map->max_register && reg > map->max_register)
  92		return false;
  93
  94	if (map->format.format_write)
  95		return false;
  96
  97	if (map->readable_reg)
  98		return map->readable_reg(map->dev, reg);
  99
 100	if (map->rd_table)
 101		return regmap_check_range_table(map, reg, map->rd_table);
 102
 103	return true;
 104}
 105
 106bool regmap_volatile(struct regmap *map, unsigned int reg)
 107{
 108	if (!regmap_readable(map, reg))
 109		return false;
 110
 111	if (map->volatile_reg)
 112		return map->volatile_reg(map->dev, reg);
 113
 114	if (map->volatile_table)
 115		return regmap_check_range_table(map, reg, map->volatile_table);
 116
 117	if (map->cache_ops)
 118		return false;
 119	else
 120		return true;
 121}
 122
 123bool regmap_precious(struct regmap *map, unsigned int reg)
 124{
 125	if (!regmap_readable(map, reg))
 126		return false;
 127
 128	if (map->precious_reg)
 129		return map->precious_reg(map->dev, reg);
 130
 131	if (map->precious_table)
 132		return regmap_check_range_table(map, reg, map->precious_table);
 133
 134	return false;
 135}
 136
 137static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 138	size_t num)
 139{
 140	unsigned int i;
 141
 142	for (i = 0; i < num; i++)
 143		if (!regmap_volatile(map, reg + i))
 144			return false;
 145
 146	return true;
 147}
 148
 149static void regmap_format_2_6_write(struct regmap *map,
 150				     unsigned int reg, unsigned int val)
 151{
 152	u8 *out = map->work_buf;
 153
 154	*out = (reg << 6) | val;
 155}
 156
 157static void regmap_format_4_12_write(struct regmap *map,
 158				     unsigned int reg, unsigned int val)
 159{
 160	__be16 *out = map->work_buf;
 161	*out = cpu_to_be16((reg << 12) | val);
 162}
 163
 164static void regmap_format_7_9_write(struct regmap *map,
 165				    unsigned int reg, unsigned int val)
 166{
 167	__be16 *out = map->work_buf;
 168	*out = cpu_to_be16((reg << 9) | val);
 169}
 170
 171static void regmap_format_10_14_write(struct regmap *map,
 172				    unsigned int reg, unsigned int val)
 173{
 174	u8 *out = map->work_buf;
 175
 176	out[2] = val;
 177	out[1] = (val >> 8) | (reg << 6);
 178	out[0] = reg >> 2;
 179}
 180
 181static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 182{
 183	u8 *b = buf;
 184
 185	b[0] = val << shift;
 186}
 187
 188static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 189{
 190	__be16 *b = buf;
 191
 192	b[0] = cpu_to_be16(val << shift);
 193}
 194
 195static void regmap_format_16_native(void *buf, unsigned int val,
 196				    unsigned int shift)
 197{
 198	*(u16 *)buf = val << shift;
 199}
 200
 201static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 202{
 203	u8 *b = buf;
 204
 205	val <<= shift;
 206
 207	b[0] = val >> 16;
 208	b[1] = val >> 8;
 209	b[2] = val;
 210}
 211
 212static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 213{
 214	__be32 *b = buf;
 215
 216	b[0] = cpu_to_be32(val << shift);
 217}
 218
 219static void regmap_format_32_native(void *buf, unsigned int val,
 220				    unsigned int shift)
 221{
 222	*(u32 *)buf = val << shift;
 223}
 224
 225static void regmap_parse_inplace_noop(void *buf)
 226{
 227}
 228
 229static unsigned int regmap_parse_8(const void *buf)
 230{
 231	const u8 *b = buf;
 232
 233	return b[0];
 234}
 235
 236static unsigned int regmap_parse_16_be(const void *buf)
 237{
 238	const __be16 *b = buf;
 239
 240	return be16_to_cpu(b[0]);
 241}
 242
 243static void regmap_parse_16_be_inplace(void *buf)
 244{
 245	__be16 *b = buf;
 246
 247	b[0] = be16_to_cpu(b[0]);
 248}
 249
 250static unsigned int regmap_parse_16_native(const void *buf)
 251{
 252	return *(u16 *)buf;
 253}
 254
 255static unsigned int regmap_parse_24(const void *buf)
 256{
 257	const u8 *b = buf;
 258	unsigned int ret = b[2];
 259	ret |= ((unsigned int)b[1]) << 8;
 260	ret |= ((unsigned int)b[0]) << 16;
 261
 262	return ret;
 263}
 264
 265static unsigned int regmap_parse_32_be(const void *buf)
 266{
 267	const __be32 *b = buf;
 268
 269	return be32_to_cpu(b[0]);
 270}
 271
 272static void regmap_parse_32_be_inplace(void *buf)
 273{
 274	__be32 *b = buf;
 275
 276	b[0] = be32_to_cpu(b[0]);
 277}
 278
 279static unsigned int regmap_parse_32_native(const void *buf)
 280{
 281	return *(u32 *)buf;
 282}
 283
 284static void regmap_lock_mutex(void *__map)
 285{
 286	struct regmap *map = __map;
 287	mutex_lock(&map->mutex);
 288}
 289
 290static void regmap_unlock_mutex(void *__map)
 291{
 292	struct regmap *map = __map;
 293	mutex_unlock(&map->mutex);
 294}
 295
 296static void regmap_lock_spinlock(void *__map)
 297__acquires(&map->spinlock)
 298{
 299	struct regmap *map = __map;
 300	unsigned long flags;
 301
 302	spin_lock_irqsave(&map->spinlock, flags);
 303	map->spinlock_flags = flags;
 304}
 305
 306static void regmap_unlock_spinlock(void *__map)
 307__releases(&map->spinlock)
 308{
 309	struct regmap *map = __map;
 310	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 311}
 312
 313static void dev_get_regmap_release(struct device *dev, void *res)
 314{
 315	/*
 316	 * We don't actually have anything to do here; the goal here
 317	 * is not to manage the regmap but to provide a simple way to
 318	 * get the regmap back given a struct device.
 319	 */
 320}
 321
 322static bool _regmap_range_add(struct regmap *map,
 323			      struct regmap_range_node *data)
 324{
 325	struct rb_root *root = &map->range_tree;
 326	struct rb_node **new = &(root->rb_node), *parent = NULL;
 327
 328	while (*new) {
 329		struct regmap_range_node *this =
 330			container_of(*new, struct regmap_range_node, node);
 331
 332		parent = *new;
 333		if (data->range_max < this->range_min)
 334			new = &((*new)->rb_left);
 335		else if (data->range_min > this->range_max)
 336			new = &((*new)->rb_right);
 337		else
 338			return false;
 339	}
 340
 341	rb_link_node(&data->node, parent, new);
 342	rb_insert_color(&data->node, root);
 343
 344	return true;
 345}
 346
 347static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 348						      unsigned int reg)
 349{
 350	struct rb_node *node = map->range_tree.rb_node;
 351
 352	while (node) {
 353		struct regmap_range_node *this =
 354			container_of(node, struct regmap_range_node, node);
 355
 356		if (reg < this->range_min)
 357			node = node->rb_left;
 358		else if (reg > this->range_max)
 359			node = node->rb_right;
 360		else
 361			return this;
 362	}
 363
 364	return NULL;
 365}
 366
 367static void regmap_range_exit(struct regmap *map)
 368{
 369	struct rb_node *next;
 370	struct regmap_range_node *range_node;
 371
 372	next = rb_first(&map->range_tree);
 373	while (next) {
 374		range_node = rb_entry(next, struct regmap_range_node, node);
 375		next = rb_next(&range_node->node);
 376		rb_erase(&range_node->node, &map->range_tree);
 377		kfree(range_node);
 378	}
 379
 380	kfree(map->selector_work_buf);
 381}
 382
 383int regmap_attach_dev(struct device *dev, struct regmap *map,
 384		      const struct regmap_config *config)
 385{
 386	struct regmap **m;
 387
 388	map->dev = dev;
 389
 390	regmap_debugfs_init(map, config->name);
 391
 392	/* Add a devres resource for dev_get_regmap() */
 393	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 394	if (!m) {
 395		regmap_debugfs_exit(map);
 396		return -ENOMEM;
 397	}
 398	*m = map;
 399	devres_add(dev, m);
 400
 401	return 0;
 402}
 403EXPORT_SYMBOL_GPL(regmap_attach_dev);
 404
 405/**
 406 * regmap_init(): Initialise register map
 407 *
 408 * @dev: Device that will be interacted with
 409 * @bus: Bus-specific callbacks to use with device
 410 * @bus_context: Data passed to bus-specific callbacks
 411 * @config: Configuration for register map
 412 *
 413 * The return value will be an ERR_PTR() on error or a valid pointer to
 414 * a struct regmap.  This function should generally not be called
 415 * directly, it should be called by bus-specific init functions.
 416 */
 417struct regmap *regmap_init(struct device *dev,
 418			   const struct regmap_bus *bus,
 419			   void *bus_context,
 420			   const struct regmap_config *config)
 421{
 422	struct regmap *map;
 423	int ret = -EINVAL;
 424	enum regmap_endian reg_endian, val_endian;
 425	int i, j;
 426
 427	if (!config)
 428		goto err;
 429
 430	map = kzalloc(sizeof(*map), GFP_KERNEL);
 431	if (map == NULL) {
 432		ret = -ENOMEM;
 433		goto err;
 434	}
 435
 436	if (config->lock && config->unlock) {
 437		map->lock = config->lock;
 438		map->unlock = config->unlock;
 439		map->lock_arg = config->lock_arg;
 440	} else {
 441		if ((bus && bus->fast_io) ||
 442		    config->fast_io) {
 443			spin_lock_init(&map->spinlock);
 444			map->lock = regmap_lock_spinlock;
 445			map->unlock = regmap_unlock_spinlock;
 446		} else {
 447			mutex_init(&map->mutex);
 448			map->lock = regmap_lock_mutex;
 449			map->unlock = regmap_unlock_mutex;
 450		}
 451		map->lock_arg = map;
 452	}
 453	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 454	map->format.pad_bytes = config->pad_bits / 8;
 455	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 456	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 457			config->val_bits + config->pad_bits, 8);
 458	map->reg_shift = config->pad_bits % 8;
 459	if (config->reg_stride)
 460		map->reg_stride = config->reg_stride;
 461	else
 462		map->reg_stride = 1;
 463	map->use_single_rw = config->use_single_rw;
 464	map->can_multi_write = config->can_multi_write;
 465	map->dev = dev;
 466	map->bus = bus;
 467	map->bus_context = bus_context;
 468	map->max_register = config->max_register;
 469	map->wr_table = config->wr_table;
 470	map->rd_table = config->rd_table;
 471	map->volatile_table = config->volatile_table;
 472	map->precious_table = config->precious_table;
 473	map->writeable_reg = config->writeable_reg;
 474	map->readable_reg = config->readable_reg;
 475	map->volatile_reg = config->volatile_reg;
 476	map->precious_reg = config->precious_reg;
 477	map->cache_type = config->cache_type;
 478	map->name = config->name;
 479
 480	spin_lock_init(&map->async_lock);
 481	INIT_LIST_HEAD(&map->async_list);
 482	INIT_LIST_HEAD(&map->async_free);
 483	init_waitqueue_head(&map->async_waitq);
 484
 485	if (config->read_flag_mask || config->write_flag_mask) {
 486		map->read_flag_mask = config->read_flag_mask;
 487		map->write_flag_mask = config->write_flag_mask;
 488	} else if (bus) {
 489		map->read_flag_mask = bus->read_flag_mask;
 490	}
 491
 492	if (!bus) {
 493		map->reg_read  = config->reg_read;
 494		map->reg_write = config->reg_write;
 495
 496		map->defer_caching = false;
 497		goto skip_format_initialization;
 498	} else {
 499		map->reg_read  = _regmap_bus_read;
 500	}
 501
 502	reg_endian = config->reg_format_endian;
 503	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 504		reg_endian = bus->reg_format_endian_default;
 505	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
 506		reg_endian = REGMAP_ENDIAN_BIG;
 507
 508	val_endian = config->val_format_endian;
 509	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 510		val_endian = bus->val_format_endian_default;
 511	if (val_endian == REGMAP_ENDIAN_DEFAULT)
 512		val_endian = REGMAP_ENDIAN_BIG;
 513
 514	switch (config->reg_bits + map->reg_shift) {
 515	case 2:
 516		switch (config->val_bits) {
 517		case 6:
 518			map->format.format_write = regmap_format_2_6_write;
 519			break;
 520		default:
 521			goto err_map;
 522		}
 523		break;
 524
 525	case 4:
 526		switch (config->val_bits) {
 527		case 12:
 528			map->format.format_write = regmap_format_4_12_write;
 529			break;
 530		default:
 531			goto err_map;
 532		}
 533		break;
 534
 535	case 7:
 536		switch (config->val_bits) {
 537		case 9:
 538			map->format.format_write = regmap_format_7_9_write;
 539			break;
 540		default:
 541			goto err_map;
 542		}
 543		break;
 544
 545	case 10:
 546		switch (config->val_bits) {
 547		case 14:
 548			map->format.format_write = regmap_format_10_14_write;
 549			break;
 550		default:
 551			goto err_map;
 552		}
 553		break;
 554
 555	case 8:
 556		map->format.format_reg = regmap_format_8;
 557		break;
 558
 559	case 16:
 560		switch (reg_endian) {
 561		case REGMAP_ENDIAN_BIG:
 562			map->format.format_reg = regmap_format_16_be;
 563			break;
 564		case REGMAP_ENDIAN_NATIVE:
 565			map->format.format_reg = regmap_format_16_native;
 566			break;
 567		default:
 568			goto err_map;
 569		}
 570		break;
 571
 572	case 24:
 573		if (reg_endian != REGMAP_ENDIAN_BIG)
 574			goto err_map;
 575		map->format.format_reg = regmap_format_24;
 576		break;
 577
 578	case 32:
 579		switch (reg_endian) {
 580		case REGMAP_ENDIAN_BIG:
 581			map->format.format_reg = regmap_format_32_be;
 582			break;
 583		case REGMAP_ENDIAN_NATIVE:
 584			map->format.format_reg = regmap_format_32_native;
 585			break;
 586		default:
 587			goto err_map;
 588		}
 589		break;
 590
 591	default:
 592		goto err_map;
 593	}
 594
 595	if (val_endian == REGMAP_ENDIAN_NATIVE)
 596		map->format.parse_inplace = regmap_parse_inplace_noop;
 597
 598	switch (config->val_bits) {
 599	case 8:
 600		map->format.format_val = regmap_format_8;
 601		map->format.parse_val = regmap_parse_8;
 602		map->format.parse_inplace = regmap_parse_inplace_noop;
 603		break;
 604	case 16:
 605		switch (val_endian) {
 606		case REGMAP_ENDIAN_BIG:
 607			map->format.format_val = regmap_format_16_be;
 608			map->format.parse_val = regmap_parse_16_be;
 609			map->format.parse_inplace = regmap_parse_16_be_inplace;
 610			break;
 611		case REGMAP_ENDIAN_NATIVE:
 612			map->format.format_val = regmap_format_16_native;
 613			map->format.parse_val = regmap_parse_16_native;
 614			break;
 615		default:
 616			goto err_map;
 617		}
 618		break;
 619	case 24:
 620		if (val_endian != REGMAP_ENDIAN_BIG)
 621			goto err_map;
 622		map->format.format_val = regmap_format_24;
 623		map->format.parse_val = regmap_parse_24;
 624		break;
 625	case 32:
 626		switch (val_endian) {
 627		case REGMAP_ENDIAN_BIG:
 628			map->format.format_val = regmap_format_32_be;
 629			map->format.parse_val = regmap_parse_32_be;
 630			map->format.parse_inplace = regmap_parse_32_be_inplace;
 631			break;
 632		case REGMAP_ENDIAN_NATIVE:
 633			map->format.format_val = regmap_format_32_native;
 634			map->format.parse_val = regmap_parse_32_native;
 635			break;
 636		default:
 637			goto err_map;
 638		}
 639		break;
 640	}
 641
 642	if (map->format.format_write) {
 643		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 644		    (val_endian != REGMAP_ENDIAN_BIG))
 645			goto err_map;
 646		map->use_single_rw = true;
 647	}
 648
 649	if (!map->format.format_write &&
 650	    !(map->format.format_reg && map->format.format_val))
 651		goto err_map;
 652
 653	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 654	if (map->work_buf == NULL) {
 655		ret = -ENOMEM;
 656		goto err_map;
 657	}
 658
 659	if (map->format.format_write) {
 660		map->defer_caching = false;
 661		map->reg_write = _regmap_bus_formatted_write;
 662	} else if (map->format.format_val) {
 663		map->defer_caching = true;
 664		map->reg_write = _regmap_bus_raw_write;
 665	}
 666
 667skip_format_initialization:
 668
 669	map->range_tree = RB_ROOT;
 670	for (i = 0; i < config->num_ranges; i++) {
 671		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 672		struct regmap_range_node *new;
 673
 674		/* Sanity check */
 675		if (range_cfg->range_max < range_cfg->range_min) {
 676			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 677				range_cfg->range_max, range_cfg->range_min);
 678			goto err_range;
 679		}
 680
 681		if (range_cfg->range_max > map->max_register) {
 682			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 683				range_cfg->range_max, map->max_register);
 684			goto err_range;
 685		}
 686
 687		if (range_cfg->selector_reg > map->max_register) {
 688			dev_err(map->dev,
 689				"Invalid range %d: selector out of map\n", i);
 690			goto err_range;
 691		}
 692
 693		if (range_cfg->window_len == 0) {
 694			dev_err(map->dev, "Invalid range %d: window_len 0\n",
 695				i);
 696			goto err_range;
 697		}
 698
 699		/* Make sure, that this register range has no selector
 700		   or data window within its boundary */
 701		for (j = 0; j < config->num_ranges; j++) {
 702			unsigned sel_reg = config->ranges[j].selector_reg;
 703			unsigned win_min = config->ranges[j].window_start;
 704			unsigned win_max = win_min +
 705					   config->ranges[j].window_len - 1;
 706
 707			/* Allow data window inside its own virtual range */
 708			if (j == i)
 709				continue;
 710
 711			if (range_cfg->range_min <= sel_reg &&
 712			    sel_reg <= range_cfg->range_max) {
 713				dev_err(map->dev,
 714					"Range %d: selector for %d in window\n",
 715					i, j);
 716				goto err_range;
 717			}
 718
 719			if (!(win_max < range_cfg->range_min ||
 720			      win_min > range_cfg->range_max)) {
 721				dev_err(map->dev,
 722					"Range %d: window for %d in window\n",
 723					i, j);
 724				goto err_range;
 725			}
 726		}
 727
 728		new = kzalloc(sizeof(*new), GFP_KERNEL);
 729		if (new == NULL) {
 730			ret = -ENOMEM;
 731			goto err_range;
 732		}
 733
 734		new->map = map;
 735		new->name = range_cfg->name;
 736		new->range_min = range_cfg->range_min;
 737		new->range_max = range_cfg->range_max;
 738		new->selector_reg = range_cfg->selector_reg;
 739		new->selector_mask = range_cfg->selector_mask;
 740		new->selector_shift = range_cfg->selector_shift;
 741		new->window_start = range_cfg->window_start;
 742		new->window_len = range_cfg->window_len;
 743
 744		if (!_regmap_range_add(map, new)) {
 745			dev_err(map->dev, "Failed to add range %d\n", i);
 746			kfree(new);
 747			goto err_range;
 748		}
 749
 750		if (map->selector_work_buf == NULL) {
 751			map->selector_work_buf =
 752				kzalloc(map->format.buf_size, GFP_KERNEL);
 753			if (map->selector_work_buf == NULL) {
 754				ret = -ENOMEM;
 755				goto err_range;
 756			}
 757		}
 758	}
 759
 760	ret = regcache_init(map, config);
 761	if (ret != 0)
 762		goto err_range;
 763
 764	if (dev) {
 765		ret = regmap_attach_dev(dev, map, config);
 766		if (ret != 0)
 767			goto err_regcache;
 
 768	}
 
 
 769
 770	return map;
 771
 772err_regcache:
 773	regcache_exit(map);
 774err_range:
 775	regmap_range_exit(map);
 776	kfree(map->work_buf);
 777err_map:
 778	kfree(map);
 779err:
 780	return ERR_PTR(ret);
 781}
 782EXPORT_SYMBOL_GPL(regmap_init);
 783
 784static void devm_regmap_release(struct device *dev, void *res)
 785{
 786	regmap_exit(*(struct regmap **)res);
 787}
 788
 789/**
 790 * devm_regmap_init(): Initialise managed register map
 791 *
 792 * @dev: Device that will be interacted with
 793 * @bus: Bus-specific callbacks to use with device
 794 * @bus_context: Data passed to bus-specific callbacks
 795 * @config: Configuration for register map
 796 *
 797 * The return value will be an ERR_PTR() on error or a valid pointer
 798 * to a struct regmap.  This function should generally not be called
 799 * directly, it should be called by bus-specific init functions.  The
 800 * map will be automatically freed by the device management code.
 801 */
 802struct regmap *devm_regmap_init(struct device *dev,
 803				const struct regmap_bus *bus,
 804				void *bus_context,
 805				const struct regmap_config *config)
 806{
 807	struct regmap **ptr, *regmap;
 808
 809	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
 810	if (!ptr)
 811		return ERR_PTR(-ENOMEM);
 812
 813	regmap = regmap_init(dev, bus, bus_context, config);
 814	if (!IS_ERR(regmap)) {
 815		*ptr = regmap;
 816		devres_add(dev, ptr);
 817	} else {
 818		devres_free(ptr);
 819	}
 820
 821	return regmap;
 822}
 823EXPORT_SYMBOL_GPL(devm_regmap_init);
 824
 825static void regmap_field_init(struct regmap_field *rm_field,
 826	struct regmap *regmap, struct reg_field reg_field)
 827{
 828	int field_bits = reg_field.msb - reg_field.lsb + 1;
 829	rm_field->regmap = regmap;
 830	rm_field->reg = reg_field.reg;
 831	rm_field->shift = reg_field.lsb;
 832	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
 833	rm_field->id_size = reg_field.id_size;
 834	rm_field->id_offset = reg_field.id_offset;
 835}
 836
 837/**
 838 * devm_regmap_field_alloc(): Allocate and initialise a register field
 839 * in a register map.
 840 *
 841 * @dev: Device that will be interacted with
 842 * @regmap: regmap bank in which this register field is located.
 843 * @reg_field: Register field with in the bank.
 844 *
 845 * The return value will be an ERR_PTR() on error or a valid pointer
 846 * to a struct regmap_field. The regmap_field will be automatically freed
 847 * by the device management code.
 848 */
 849struct regmap_field *devm_regmap_field_alloc(struct device *dev,
 850		struct regmap *regmap, struct reg_field reg_field)
 851{
 852	struct regmap_field *rm_field = devm_kzalloc(dev,
 853					sizeof(*rm_field), GFP_KERNEL);
 854	if (!rm_field)
 855		return ERR_PTR(-ENOMEM);
 856
 857	regmap_field_init(rm_field, regmap, reg_field);
 858
 859	return rm_field;
 860
 861}
 862EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
 863
 864/**
 865 * devm_regmap_field_free(): Free register field allocated using
 866 * devm_regmap_field_alloc. Usally drivers need not call this function,
 867 * as the memory allocated via devm will be freed as per device-driver
 868 * life-cyle.
 869 *
 870 * @dev: Device that will be interacted with
 871 * @field: regmap field which should be freed.
 872 */
 873void devm_regmap_field_free(struct device *dev,
 874	struct regmap_field *field)
 875{
 876	devm_kfree(dev, field);
 877}
 878EXPORT_SYMBOL_GPL(devm_regmap_field_free);
 879
 880/**
 881 * regmap_field_alloc(): Allocate and initialise a register field
 882 * in a register map.
 883 *
 884 * @regmap: regmap bank in which this register field is located.
 885 * @reg_field: Register field with in the bank.
 886 *
 887 * The return value will be an ERR_PTR() on error or a valid pointer
 888 * to a struct regmap_field. The regmap_field should be freed by the
 889 * user once its finished working with it using regmap_field_free().
 890 */
 891struct regmap_field *regmap_field_alloc(struct regmap *regmap,
 892		struct reg_field reg_field)
 893{
 894	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
 895
 896	if (!rm_field)
 897		return ERR_PTR(-ENOMEM);
 898
 899	regmap_field_init(rm_field, regmap, reg_field);
 900
 901	return rm_field;
 902}
 903EXPORT_SYMBOL_GPL(regmap_field_alloc);
 904
 905/**
 906 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 907 *
 908 * @field: regmap field which should be freed.
 909 */
 910void regmap_field_free(struct regmap_field *field)
 911{
 912	kfree(field);
 913}
 914EXPORT_SYMBOL_GPL(regmap_field_free);
 915
 916/**
 917 * regmap_reinit_cache(): Reinitialise the current register cache
 918 *
 919 * @map: Register map to operate on.
 920 * @config: New configuration.  Only the cache data will be used.
 921 *
 922 * Discard any existing register cache for the map and initialize a
 923 * new cache.  This can be used to restore the cache to defaults or to
 924 * update the cache configuration to reflect runtime discovery of the
 925 * hardware.
 926 *
 927 * No explicit locking is done here, the user needs to ensure that
 928 * this function will not race with other calls to regmap.
 929 */
 930int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
 931{
 
 
 
 
 932	regcache_exit(map);
 933	regmap_debugfs_exit(map);
 934
 935	map->max_register = config->max_register;
 936	map->writeable_reg = config->writeable_reg;
 937	map->readable_reg = config->readable_reg;
 938	map->volatile_reg = config->volatile_reg;
 939	map->precious_reg = config->precious_reg;
 940	map->cache_type = config->cache_type;
 941
 942	regmap_debugfs_init(map, config->name);
 943
 944	map->cache_bypass = false;
 945	map->cache_only = false;
 946
 947	return regcache_init(map, config);
 
 
 
 
 948}
 949EXPORT_SYMBOL_GPL(regmap_reinit_cache);
 950
 951/**
 952 * regmap_exit(): Free a previously allocated register map
 953 */
 954void regmap_exit(struct regmap *map)
 955{
 956	struct regmap_async *async;
 957
 958	regcache_exit(map);
 959	regmap_debugfs_exit(map);
 960	regmap_range_exit(map);
 961	if (map->bus && map->bus->free_context)
 962		map->bus->free_context(map->bus_context);
 963	kfree(map->work_buf);
 964	while (!list_empty(&map->async_free)) {
 965		async = list_first_entry_or_null(&map->async_free,
 966						 struct regmap_async,
 967						 list);
 968		list_del(&async->list);
 969		kfree(async->work_buf);
 970		kfree(async);
 971	}
 972	kfree(map);
 973}
 974EXPORT_SYMBOL_GPL(regmap_exit);
 975
 976static int dev_get_regmap_match(struct device *dev, void *res, void *data)
 977{
 978	struct regmap **r = res;
 979	if (!r || !*r) {
 980		WARN_ON(!r || !*r);
 981		return 0;
 982	}
 983
 984	/* If the user didn't specify a name match any */
 985	if (data)
 986		return (*r)->name == data;
 987	else
 988		return 1;
 989}
 990
 991/**
 992 * dev_get_regmap(): Obtain the regmap (if any) for a device
 993 *
 994 * @dev: Device to retrieve the map for
 995 * @name: Optional name for the register map, usually NULL.
 996 *
 997 * Returns the regmap for the device if one is present, or NULL.  If
 998 * name is specified then it must match the name specified when
 999 * registering the device, if it is NULL then the first regmap found
1000 * will be used.  Devices with multiple register maps are very rare,
1001 * generic code should normally not need to specify a name.
1002 */
1003struct regmap *dev_get_regmap(struct device *dev, const char *name)
1004{
1005	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1006					dev_get_regmap_match, (void *)name);
1007
1008	if (!r)
1009		return NULL;
1010	return *r;
1011}
1012EXPORT_SYMBOL_GPL(dev_get_regmap);
1013
1014static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1015			       struct regmap_range_node *range,
1016			       unsigned int val_num)
1017{
1018	void *orig_work_buf;
1019	unsigned int win_offset;
1020	unsigned int win_page;
1021	bool page_chg;
1022	int ret;
1023
1024	win_offset = (*reg - range->range_min) % range->window_len;
1025	win_page = (*reg - range->range_min) / range->window_len;
1026
1027	if (val_num > 1) {
1028		/* Bulk write shouldn't cross range boundary */
1029		if (*reg + val_num - 1 > range->range_max)
1030			return -EINVAL;
1031
1032		/* ... or single page boundary */
1033		if (val_num > range->window_len - win_offset)
1034			return -EINVAL;
1035	}
1036
1037	/* It is possible to have selector register inside data window.
1038	   In that case, selector register is located on every page and
1039	   it needs no page switching, when accessed alone. */
1040	if (val_num > 1 ||
1041	    range->window_start + win_offset != range->selector_reg) {
1042		/* Use separate work_buf during page switching */
1043		orig_work_buf = map->work_buf;
1044		map->work_buf = map->selector_work_buf;
1045
1046		ret = _regmap_update_bits(map, range->selector_reg,
1047					  range->selector_mask,
1048					  win_page << range->selector_shift,
1049					  &page_chg);
1050
1051		map->work_buf = orig_work_buf;
1052
1053		if (ret != 0)
1054			return ret;
1055	}
1056
1057	*reg = range->window_start + win_offset;
1058
1059	return 0;
1060}
1061
1062int _regmap_raw_write(struct regmap *map, unsigned int reg,
1063		      const void *val, size_t val_len)
1064{
1065	struct regmap_range_node *range;
1066	unsigned long flags;
1067	u8 *u8 = map->work_buf;
1068	void *work_val = map->work_buf + map->format.reg_bytes +
1069		map->format.pad_bytes;
1070	void *buf;
1071	int ret = -ENOTSUPP;
1072	size_t len;
1073	int i;
1074
1075	WARN_ON(!map->bus);
1076
1077	/* Check for unwritable registers before we start */
1078	if (map->writeable_reg)
1079		for (i = 0; i < val_len / map->format.val_bytes; i++)
1080			if (!map->writeable_reg(map->dev,
1081						reg + (i * map->reg_stride)))
1082				return -EINVAL;
1083
1084	if (!map->cache_bypass && map->format.parse_val) {
1085		unsigned int ival;
1086		int val_bytes = map->format.val_bytes;
1087		for (i = 0; i < val_len / val_bytes; i++) {
1088			ival = map->format.parse_val(val + (i * val_bytes));
 
1089			ret = regcache_write(map, reg + (i * map->reg_stride),
1090					     ival);
1091			if (ret) {
1092				dev_err(map->dev,
1093					"Error in caching of register: %x ret: %d\n",
1094					reg + i, ret);
1095				return ret;
1096			}
1097		}
1098		if (map->cache_only) {
1099			map->cache_dirty = true;
1100			return 0;
1101		}
1102	}
1103
1104	range = _regmap_range_lookup(map, reg);
1105	if (range) {
1106		int val_num = val_len / map->format.val_bytes;
1107		int win_offset = (reg - range->range_min) % range->window_len;
1108		int win_residue = range->window_len - win_offset;
1109
1110		/* If the write goes beyond the end of the window split it */
1111		while (val_num > win_residue) {
1112			dev_dbg(map->dev, "Writing window %d/%zu\n",
1113				win_residue, val_len / map->format.val_bytes);
1114			ret = _regmap_raw_write(map, reg, val, win_residue *
1115						map->format.val_bytes);
1116			if (ret != 0)
1117				return ret;
1118
1119			reg += win_residue;
1120			val_num -= win_residue;
1121			val += win_residue * map->format.val_bytes;
1122			val_len -= win_residue * map->format.val_bytes;
1123
1124			win_offset = (reg - range->range_min) %
1125				range->window_len;
1126			win_residue = range->window_len - win_offset;
1127		}
1128
1129		ret = _regmap_select_page(map, &reg, range, val_num);
1130		if (ret != 0)
1131			return ret;
1132	}
1133
1134	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1135
1136	u8[0] |= map->write_flag_mask;
1137
1138	/*
1139	 * Essentially all I/O mechanisms will be faster with a single
1140	 * buffer to write.  Since register syncs often generate raw
1141	 * writes of single registers optimise that case.
1142	 */
1143	if (val != work_val && val_len == map->format.val_bytes) {
1144		memcpy(work_val, val, map->format.val_bytes);
1145		val = work_val;
1146	}
1147
1148	if (map->async && map->bus->async_write) {
1149		struct regmap_async *async;
1150
1151		trace_regmap_async_write_start(map->dev, reg, val_len);
1152
1153		spin_lock_irqsave(&map->async_lock, flags);
1154		async = list_first_entry_or_null(&map->async_free,
1155						 struct regmap_async,
1156						 list);
1157		if (async)
1158			list_del(&async->list);
1159		spin_unlock_irqrestore(&map->async_lock, flags);
1160
1161		if (!async) {
1162			async = map->bus->async_alloc();
1163			if (!async)
1164				return -ENOMEM;
1165
1166			async->work_buf = kzalloc(map->format.buf_size,
1167						  GFP_KERNEL | GFP_DMA);
1168			if (!async->work_buf) {
1169				kfree(async);
1170				return -ENOMEM;
1171			}
1172		}
1173
1174		async->map = map;
1175
1176		/* If the caller supplied the value we can use it safely. */
1177		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1178		       map->format.reg_bytes + map->format.val_bytes);
1179
1180		spin_lock_irqsave(&map->async_lock, flags);
1181		list_add_tail(&async->list, &map->async_list);
1182		spin_unlock_irqrestore(&map->async_lock, flags);
1183
1184		if (val != work_val)
1185			ret = map->bus->async_write(map->bus_context,
1186						    async->work_buf,
1187						    map->format.reg_bytes +
1188						    map->format.pad_bytes,
1189						    val, val_len, async);
1190		else
1191			ret = map->bus->async_write(map->bus_context,
1192						    async->work_buf,
1193						    map->format.reg_bytes +
1194						    map->format.pad_bytes +
1195						    val_len, NULL, 0, async);
1196
1197		if (ret != 0) {
1198			dev_err(map->dev, "Failed to schedule write: %d\n",
1199				ret);
1200
1201			spin_lock_irqsave(&map->async_lock, flags);
1202			list_move(&async->list, &map->async_free);
1203			spin_unlock_irqrestore(&map->async_lock, flags);
1204		}
1205
1206		return ret;
1207	}
1208
1209	trace_regmap_hw_write_start(map->dev, reg,
1210				    val_len / map->format.val_bytes);
1211
1212	/* If we're doing a single register write we can probably just
1213	 * send the work_buf directly, otherwise try to do a gather
1214	 * write.
1215	 */
1216	if (val == work_val)
 
1217		ret = map->bus->write(map->bus_context, map->work_buf,
1218				      map->format.reg_bytes +
1219				      map->format.pad_bytes +
1220				      val_len);
1221	else if (map->bus->gather_write)
1222		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1223					     map->format.reg_bytes +
1224					     map->format.pad_bytes,
1225					     val, val_len);
1226
1227	/* If that didn't work fall back on linearising by hand. */
1228	if (ret == -ENOTSUPP) {
1229		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1230		buf = kzalloc(len, GFP_KERNEL);
1231		if (!buf)
1232			return -ENOMEM;
1233
1234		memcpy(buf, map->work_buf, map->format.reg_bytes);
1235		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1236		       val, val_len);
1237		ret = map->bus->write(map->bus_context, buf, len);
1238
1239		kfree(buf);
1240	}
1241
1242	trace_regmap_hw_write_done(map->dev, reg,
1243				   val_len / map->format.val_bytes);
1244
1245	return ret;
1246}
1247
1248/**
1249 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1250 *
1251 * @map: Map to check.
1252 */
1253bool regmap_can_raw_write(struct regmap *map)
1254{
1255	return map->bus && map->format.format_val && map->format.format_reg;
1256}
1257EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1258
1259static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1260				       unsigned int val)
1261{
1262	int ret;
1263	struct regmap_range_node *range;
1264	struct regmap *map = context;
1265
1266	WARN_ON(!map->bus || !map->format.format_write);
1267
1268	range = _regmap_range_lookup(map, reg);
1269	if (range) {
1270		ret = _regmap_select_page(map, &reg, range, 1);
1271		if (ret != 0)
1272			return ret;
1273	}
1274
1275	map->format.format_write(map, reg, val);
1276
1277	trace_regmap_hw_write_start(map->dev, reg, 1);
1278
1279	ret = map->bus->write(map->bus_context, map->work_buf,
1280			      map->format.buf_size);
1281
1282	trace_regmap_hw_write_done(map->dev, reg, 1);
1283
1284	return ret;
1285}
1286
1287static int _regmap_bus_raw_write(void *context, unsigned int reg,
1288				 unsigned int val)
1289{
1290	struct regmap *map = context;
1291
1292	WARN_ON(!map->bus || !map->format.format_val);
1293
1294	map->format.format_val(map->work_buf + map->format.reg_bytes
1295			       + map->format.pad_bytes, val, 0);
1296	return _regmap_raw_write(map, reg,
1297				 map->work_buf +
1298				 map->format.reg_bytes +
1299				 map->format.pad_bytes,
1300				 map->format.val_bytes);
1301}
1302
1303static inline void *_regmap_map_get_context(struct regmap *map)
1304{
1305	return (map->bus) ? map : map->bus_context;
1306}
1307
1308int _regmap_write(struct regmap *map, unsigned int reg,
1309		  unsigned int val)
1310{
1311	int ret;
1312	void *context = _regmap_map_get_context(map);
1313
1314	if (!regmap_writeable(map, reg))
1315		return -EIO;
1316
1317	if (!map->cache_bypass && !map->defer_caching) {
1318		ret = regcache_write(map, reg, val);
1319		if (ret != 0)
1320			return ret;
1321		if (map->cache_only) {
1322			map->cache_dirty = true;
1323			return 0;
1324		}
1325	}
1326
1327#ifdef LOG_DEVICE
1328	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1329		dev_info(map->dev, "%x <= %x\n", reg, val);
1330#endif
1331
1332	trace_regmap_reg_write(map->dev, reg, val);
1333
1334	return map->reg_write(context, reg, val);
1335}
1336
1337/**
1338 * regmap_write(): Write a value to a single register
1339 *
1340 * @map: Register map to write to
1341 * @reg: Register to write to
1342 * @val: Value to be written
1343 *
1344 * A value of zero will be returned on success, a negative errno will
1345 * be returned in error cases.
1346 */
1347int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1348{
1349	int ret;
1350
1351	if (reg % map->reg_stride)
1352		return -EINVAL;
1353
1354	map->lock(map->lock_arg);
1355
1356	ret = _regmap_write(map, reg, val);
 
1357
1358	map->unlock(map->lock_arg);
1359
1360	return ret;
 
 
 
 
 
 
 
 
 
1361}
1362EXPORT_SYMBOL_GPL(regmap_write);
1363
1364/**
1365 * regmap_write_async(): Write a value to a single register asynchronously
1366 *
1367 * @map: Register map to write to
1368 * @reg: Register to write to
1369 * @val: Value to be written
1370 *
1371 * A value of zero will be returned on success, a negative errno will
1372 * be returned in error cases.
1373 */
1374int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1375{
1376	int ret;
1377
1378	if (reg % map->reg_stride)
1379		return -EINVAL;
1380
1381	map->lock(map->lock_arg);
1382
1383	map->async = true;
1384
1385	ret = _regmap_write(map, reg, val);
1386
1387	map->async = false;
1388
1389	map->unlock(map->lock_arg);
1390
1391	return ret;
1392}
1393EXPORT_SYMBOL_GPL(regmap_write_async);
1394
1395/**
1396 * regmap_raw_write(): Write raw values to one or more registers
1397 *
1398 * @map: Register map to write to
1399 * @reg: Initial register to write to
1400 * @val: Block of data to be written, laid out for direct transmission to the
1401 *       device
1402 * @val_len: Length of data pointed to by val.
1403 *
1404 * This function is intended to be used for things like firmware
1405 * download where a large block of data needs to be transferred to the
1406 * device.  No formatting will be done on the data provided.
1407 *
1408 * A value of zero will be returned on success, a negative errno will
1409 * be returned in error cases.
1410 */
1411int regmap_raw_write(struct regmap *map, unsigned int reg,
1412		     const void *val, size_t val_len)
1413{
1414	int ret;
1415
1416	if (!regmap_can_raw_write(map))
1417		return -EINVAL;
1418	if (val_len % map->format.val_bytes)
1419		return -EINVAL;
 
 
1420
1421	map->lock(map->lock_arg);
1422
1423	ret = _regmap_raw_write(map, reg, val, val_len);
1424
1425	map->unlock(map->lock_arg);
1426
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(regmap_raw_write);
1430
1431/**
1432 * regmap_field_write(): Write a value to a single register field
1433 *
1434 * @field: Register field to write to
1435 * @val: Value to be written
1436 *
1437 * A value of zero will be returned on success, a negative errno will
1438 * be returned in error cases.
1439 */
1440int regmap_field_write(struct regmap_field *field, unsigned int val)
1441{
1442	return regmap_update_bits(field->regmap, field->reg,
1443				field->mask, val << field->shift);
1444}
1445EXPORT_SYMBOL_GPL(regmap_field_write);
1446
1447/**
1448 * regmap_field_update_bits():	Perform a read/modify/write cycle
1449 *                              on the register field
1450 *
1451 * @field: Register field to write to
1452 * @mask: Bitmask to change
1453 * @val: Value to be written
1454 *
1455 * A value of zero will be returned on success, a negative errno will
1456 * be returned in error cases.
1457 */
1458int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1459{
1460	mask = (mask << field->shift) & field->mask;
1461
1462	return regmap_update_bits(field->regmap, field->reg,
1463				  mask, val << field->shift);
1464}
1465EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1466
1467/**
1468 * regmap_fields_write(): Write a value to a single register field with port ID
1469 *
1470 * @field: Register field to write to
1471 * @id: port ID
1472 * @val: Value to be written
1473 *
1474 * A value of zero will be returned on success, a negative errno will
1475 * be returned in error cases.
1476 */
1477int regmap_fields_write(struct regmap_field *field, unsigned int id,
1478			unsigned int val)
1479{
1480	if (id >= field->id_size)
1481		return -EINVAL;
1482
1483	return regmap_update_bits(field->regmap,
1484				  field->reg + (field->id_offset * id),
1485				  field->mask, val << field->shift);
1486}
1487EXPORT_SYMBOL_GPL(regmap_fields_write);
1488
1489/**
1490 * regmap_fields_update_bits():	Perform a read/modify/write cycle
1491 *                              on the register field
1492 *
1493 * @field: Register field to write to
1494 * @id: port ID
1495 * @mask: Bitmask to change
1496 * @val: Value to be written
1497 *
1498 * A value of zero will be returned on success, a negative errno will
1499 * be returned in error cases.
1500 */
1501int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1502			      unsigned int mask, unsigned int val)
1503{
1504	if (id >= field->id_size)
1505		return -EINVAL;
1506
1507	mask = (mask << field->shift) & field->mask;
1508
1509	return regmap_update_bits(field->regmap,
1510				  field->reg + (field->id_offset * id),
1511				  mask, val << field->shift);
1512}
1513EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1514
1515/*
1516 * regmap_bulk_write(): Write multiple registers to the device
1517 *
1518 * @map: Register map to write to
1519 * @reg: First register to be write from
1520 * @val: Block of data to be written, in native register size for device
1521 * @val_count: Number of registers to write
1522 *
1523 * This function is intended to be used for writing a large block of
1524 * data to the device either in single transfer or multiple transfer.
1525 *
1526 * A value of zero will be returned on success, a negative errno will
1527 * be returned in error cases.
1528 */
1529int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1530		     size_t val_count)
1531{
1532	int ret = 0, i;
1533	size_t val_bytes = map->format.val_bytes;
 
1534
1535	if (map->bus && !map->format.parse_inplace)
1536		return -EINVAL;
1537	if (reg % map->reg_stride)
1538		return -EINVAL;
1539
1540	/*
1541	 * Some devices don't support bulk write, for
1542	 * them we have a series of single write operations.
1543	 */
1544	if (!map->bus || map->use_single_rw) {
1545		map->lock(map->lock_arg);
1546		for (i = 0; i < val_count; i++) {
1547			unsigned int ival;
1548
1549			switch (val_bytes) {
1550			case 1:
1551				ival = *(u8 *)(val + (i * val_bytes));
1552				break;
1553			case 2:
1554				ival = *(u16 *)(val + (i * val_bytes));
1555				break;
1556			case 4:
1557				ival = *(u32 *)(val + (i * val_bytes));
1558				break;
1559#ifdef CONFIG_64BIT
1560			case 8:
1561				ival = *(u64 *)(val + (i * val_bytes));
1562				break;
1563#endif
1564			default:
1565				ret = -EINVAL;
1566				goto out;
1567			}
1568
1569			ret = _regmap_write(map, reg + (i * map->reg_stride),
1570					ival);
1571			if (ret != 0)
1572				goto out;
1573		}
1574out:
1575		map->unlock(map->lock_arg);
1576	} else {
1577		void *wval;
1578
1579		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1580		if (!wval) {
 
1581			dev_err(map->dev, "Error in memory allocation\n");
1582			return -ENOMEM;
1583		}
1584		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1585			map->format.parse_inplace(wval + i);
1586
1587		map->lock(map->lock_arg);
1588		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1589		map->unlock(map->lock_arg);
1590
1591		kfree(wval);
1592	}
1593	return ret;
1594}
1595EXPORT_SYMBOL_GPL(regmap_bulk_write);
1596
1597/*
1598 * _regmap_raw_multi_reg_write()
1599 *
1600 * the (register,newvalue) pairs in regs have not been formatted, but
1601 * they are all in the same page and have been changed to being page
1602 * relative. The page register has been written if that was neccessary.
1603 */
1604static int _regmap_raw_multi_reg_write(struct regmap *map,
1605				       const struct reg_default *regs,
1606				       size_t num_regs)
1607{
1608	int ret;
1609	void *buf;
1610	int i;
1611	u8 *u8;
1612	size_t val_bytes = map->format.val_bytes;
1613	size_t reg_bytes = map->format.reg_bytes;
1614	size_t pad_bytes = map->format.pad_bytes;
1615	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1616	size_t len = pair_size * num_regs;
1617
1618	buf = kzalloc(len, GFP_KERNEL);
1619	if (!buf)
1620		return -ENOMEM;
1621
1622	/* We have to linearise by hand. */
1623
1624	u8 = buf;
1625
1626	for (i = 0; i < num_regs; i++) {
1627		int reg = regs[i].reg;
1628		int val = regs[i].def;
1629		trace_regmap_hw_write_start(map->dev, reg, 1);
1630		map->format.format_reg(u8, reg, map->reg_shift);
1631		u8 += reg_bytes + pad_bytes;
1632		map->format.format_val(u8, val, 0);
1633		u8 += val_bytes;
1634	}
1635	u8 = buf;
1636	*u8 |= map->write_flag_mask;
1637
1638	ret = map->bus->write(map->bus_context, buf, len);
1639
1640	kfree(buf);
1641
1642	for (i = 0; i < num_regs; i++) {
1643		int reg = regs[i].reg;
1644		trace_regmap_hw_write_done(map->dev, reg, 1);
1645	}
1646	return ret;
1647}
1648
1649static unsigned int _regmap_register_page(struct regmap *map,
1650					  unsigned int reg,
1651					  struct regmap_range_node *range)
1652{
1653	unsigned int win_page = (reg - range->range_min) / range->window_len;
1654
1655	return win_page;
1656}
1657
1658static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1659					       struct reg_default *regs,
1660					       size_t num_regs)
1661{
1662	int ret;
1663	int i, n;
1664	struct reg_default *base;
1665	unsigned int this_page;
1666	/*
1667	 * the set of registers are not neccessarily in order, but
1668	 * since the order of write must be preserved this algorithm
1669	 * chops the set each time the page changes
1670	 */
1671	base = regs;
1672	for (i = 0, n = 0; i < num_regs; i++, n++) {
1673		unsigned int reg = regs[i].reg;
1674		struct regmap_range_node *range;
1675
1676		range = _regmap_range_lookup(map, reg);
1677		if (range) {
1678			unsigned int win_page = _regmap_register_page(map, reg,
1679								      range);
1680
1681			if (i == 0)
1682				this_page = win_page;
1683			if (win_page != this_page) {
1684				this_page = win_page;
1685				ret = _regmap_raw_multi_reg_write(map, base, n);
1686				if (ret != 0)
1687					return ret;
1688				base += n;
1689				n = 0;
1690			}
1691			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1692			if (ret != 0)
1693				return ret;
1694		}
1695	}
1696	if (n > 0)
1697		return _regmap_raw_multi_reg_write(map, base, n);
1698	return 0;
1699}
1700
1701static int _regmap_multi_reg_write(struct regmap *map,
1702				   const struct reg_default *regs,
1703				   size_t num_regs)
1704{
1705	int i;
1706	int ret;
1707
1708	if (!map->can_multi_write) {
1709		for (i = 0; i < num_regs; i++) {
1710			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1711			if (ret != 0)
1712				return ret;
1713		}
1714		return 0;
1715	}
1716
1717	if (!map->format.parse_inplace)
1718		return -EINVAL;
1719
1720	if (map->writeable_reg)
1721		for (i = 0; i < num_regs; i++) {
1722			int reg = regs[i].reg;
1723			if (!map->writeable_reg(map->dev, reg))
1724				return -EINVAL;
1725			if (reg % map->reg_stride)
1726				return -EINVAL;
1727		}
1728
1729	if (!map->cache_bypass) {
1730		for (i = 0; i < num_regs; i++) {
1731			unsigned int val = regs[i].def;
1732			unsigned int reg = regs[i].reg;
1733			ret = regcache_write(map, reg, val);
1734			if (ret) {
1735				dev_err(map->dev,
1736				"Error in caching of register: %x ret: %d\n",
1737								reg, ret);
1738				return ret;
1739			}
1740		}
1741		if (map->cache_only) {
1742			map->cache_dirty = true;
1743			return 0;
1744		}
1745	}
1746
1747	WARN_ON(!map->bus);
1748
1749	for (i = 0; i < num_regs; i++) {
1750		unsigned int reg = regs[i].reg;
1751		struct regmap_range_node *range;
1752		range = _regmap_range_lookup(map, reg);
1753		if (range) {
1754			size_t len = sizeof(struct reg_default)*num_regs;
1755			struct reg_default *base = kmemdup(regs, len,
1756							   GFP_KERNEL);
1757			if (!base)
1758				return -ENOMEM;
1759			ret = _regmap_range_multi_paged_reg_write(map, base,
1760								  num_regs);
1761			kfree(base);
1762
1763			return ret;
1764		}
1765	}
1766	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1767}
1768
1769/*
1770 * regmap_multi_reg_write(): Write multiple registers to the device
1771 *
1772 * where the set of register,value pairs are supplied in any order,
1773 * possibly not all in a single range.
1774 *
1775 * @map: Register map to write to
1776 * @regs: Array of structures containing register,value to be written
1777 * @num_regs: Number of registers to write
1778 *
1779 * The 'normal' block write mode will send ultimately send data on the
1780 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1781 * addressed. However, this alternative block multi write mode will send
1782 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1783 * must of course support the mode.
1784 *
1785 * A value of zero will be returned on success, a negative errno will be
1786 * returned in error cases.
1787 */
1788int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1789			   int num_regs)
1790{
1791	int ret;
1792
1793	map->lock(map->lock_arg);
1794
1795	ret = _regmap_multi_reg_write(map, regs, num_regs);
1796
1797	map->unlock(map->lock_arg);
1798
1799	return ret;
1800}
1801EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1802
1803/*
1804 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1805 *                                    device but not the cache
1806 *
1807 * where the set of register are supplied in any order
1808 *
1809 * @map: Register map to write to
1810 * @regs: Array of structures containing register,value to be written
1811 * @num_regs: Number of registers to write
1812 *
1813 * This function is intended to be used for writing a large block of data
1814 * atomically to the device in single transfer for those I2C client devices
1815 * that implement this alternative block write mode.
1816 *
1817 * A value of zero will be returned on success, a negative errno will
1818 * be returned in error cases.
1819 */
1820int regmap_multi_reg_write_bypassed(struct regmap *map,
1821				    const struct reg_default *regs,
1822				    int num_regs)
1823{
1824	int ret;
1825	bool bypass;
1826
1827	map->lock(map->lock_arg);
1828
1829	bypass = map->cache_bypass;
1830	map->cache_bypass = true;
1831
1832	ret = _regmap_multi_reg_write(map, regs, num_regs);
1833
1834	map->cache_bypass = bypass;
1835
1836	map->unlock(map->lock_arg);
1837
1838	return ret;
1839}
1840EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1841
1842/**
1843 * regmap_raw_write_async(): Write raw values to one or more registers
1844 *                           asynchronously
1845 *
1846 * @map: Register map to write to
1847 * @reg: Initial register to write to
1848 * @val: Block of data to be written, laid out for direct transmission to the
1849 *       device.  Must be valid until regmap_async_complete() is called.
1850 * @val_len: Length of data pointed to by val.
1851 *
1852 * This function is intended to be used for things like firmware
1853 * download where a large block of data needs to be transferred to the
1854 * device.  No formatting will be done on the data provided.
1855 *
1856 * If supported by the underlying bus the write will be scheduled
1857 * asynchronously, helping maximise I/O speed on higher speed buses
1858 * like SPI.  regmap_async_complete() can be called to ensure that all
1859 * asynchrnous writes have been completed.
1860 *
1861 * A value of zero will be returned on success, a negative errno will
1862 * be returned in error cases.
1863 */
1864int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1865			   const void *val, size_t val_len)
1866{
1867	int ret;
1868
1869	if (val_len % map->format.val_bytes)
1870		return -EINVAL;
1871	if (reg % map->reg_stride)
1872		return -EINVAL;
1873
1874	map->lock(map->lock_arg);
1875
1876	map->async = true;
1877
1878	ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880	map->async = false;
1881
1882	map->unlock(map->lock_arg);
1883
 
 
1884	return ret;
1885}
1886EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1887
1888static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1889			    unsigned int val_len)
1890{
1891	struct regmap_range_node *range;
1892	u8 *u8 = map->work_buf;
1893	int ret;
1894
1895	WARN_ON(!map->bus);
1896
1897	range = _regmap_range_lookup(map, reg);
1898	if (range) {
1899		ret = _regmap_select_page(map, &reg, range,
1900					  val_len / map->format.val_bytes);
1901		if (ret != 0)
1902			return ret;
1903	}
1904
1905	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1906
1907	/*
1908	 * Some buses or devices flag reads by setting the high bits in the
1909	 * register addresss; since it's always the high bits for all
1910	 * current formats we can do this here rather than in
1911	 * formatting.  This may break if we get interesting formats.
1912	 */
1913	u8[0] |= map->read_flag_mask;
1914
1915	trace_regmap_hw_read_start(map->dev, reg,
1916				   val_len / map->format.val_bytes);
1917
1918	ret = map->bus->read(map->bus_context, map->work_buf,
1919			     map->format.reg_bytes + map->format.pad_bytes,
1920			     val, val_len);
1921
1922	trace_regmap_hw_read_done(map->dev, reg,
1923				  val_len / map->format.val_bytes);
1924
1925	return ret;
1926}
1927
1928static int _regmap_bus_read(void *context, unsigned int reg,
1929			    unsigned int *val)
1930{
1931	int ret;
1932	struct regmap *map = context;
1933
1934	if (!map->format.parse_val)
1935		return -EINVAL;
1936
1937	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1938	if (ret == 0)
1939		*val = map->format.parse_val(map->work_buf);
1940
1941	return ret;
1942}
1943
1944static int _regmap_read(struct regmap *map, unsigned int reg,
1945			unsigned int *val)
1946{
1947	int ret;
1948	void *context = _regmap_map_get_context(map);
1949
1950	WARN_ON(!map->reg_read);
1951
1952	if (!map->cache_bypass) {
1953		ret = regcache_read(map, reg, val);
1954		if (ret == 0)
1955			return 0;
1956	}
1957
 
 
 
1958	if (map->cache_only)
1959		return -EBUSY;
1960
1961	if (!regmap_readable(map, reg))
1962		return -EIO;
1963
1964	ret = map->reg_read(context, reg, val);
1965	if (ret == 0) {
1966#ifdef LOG_DEVICE
1967		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1968			dev_info(map->dev, "%x => %x\n", reg, *val);
1969#endif
1970
1971		trace_regmap_reg_read(map->dev, reg, *val);
1972
1973		if (!map->cache_bypass)
1974			regcache_write(map, reg, *val);
1975	}
1976
 
 
 
1977	return ret;
1978}
1979
1980/**
1981 * regmap_read(): Read a value from a single register
1982 *
1983 * @map: Register map to read from
1984 * @reg: Register to be read from
1985 * @val: Pointer to store read value
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1991{
1992	int ret;
1993
1994	if (reg % map->reg_stride)
1995		return -EINVAL;
1996
1997	map->lock(map->lock_arg);
1998
1999	ret = _regmap_read(map, reg, val);
2000
2001	map->unlock(map->lock_arg);
2002
2003	return ret;
2004}
2005EXPORT_SYMBOL_GPL(regmap_read);
2006
2007/**
2008 * regmap_raw_read(): Read raw data from the device
2009 *
2010 * @map: Register map to read from
2011 * @reg: First register to be read from
2012 * @val: Pointer to store read value
2013 * @val_len: Size of data to read
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2019		    size_t val_len)
2020{
2021	size_t val_bytes = map->format.val_bytes;
2022	size_t val_count = val_len / val_bytes;
2023	unsigned int v;
2024	int ret, i;
2025
2026	if (!map->bus)
2027		return -EINVAL;
2028	if (val_len % map->format.val_bytes)
2029		return -EINVAL;
2030	if (reg % map->reg_stride)
2031		return -EINVAL;
2032
2033	map->lock(map->lock_arg);
2034
2035	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2036	    map->cache_type == REGCACHE_NONE) {
2037		/* Physical block read if there's no cache involved */
2038		ret = _regmap_raw_read(map, reg, val, val_len);
2039
2040	} else {
2041		/* Otherwise go word by word for the cache; should be low
2042		 * cost as we expect to hit the cache.
2043		 */
2044		for (i = 0; i < val_count; i++) {
2045			ret = _regmap_read(map, reg + (i * map->reg_stride),
2046					   &v);
2047			if (ret != 0)
2048				goto out;
2049
2050			map->format.format_val(val + (i * val_bytes), v, 0);
2051		}
2052	}
2053
2054 out:
2055	map->unlock(map->lock_arg);
2056
2057	return ret;
2058}
2059EXPORT_SYMBOL_GPL(regmap_raw_read);
2060
2061/**
2062 * regmap_field_read(): Read a value to a single register field
2063 *
2064 * @field: Register field to read from
2065 * @val: Pointer to store read value
2066 *
2067 * A value of zero will be returned on success, a negative errno will
2068 * be returned in error cases.
2069 */
2070int regmap_field_read(struct regmap_field *field, unsigned int *val)
2071{
2072	int ret;
2073	unsigned int reg_val;
2074	ret = regmap_read(field->regmap, field->reg, &reg_val);
2075	if (ret != 0)
2076		return ret;
2077
2078	reg_val &= field->mask;
2079	reg_val >>= field->shift;
2080	*val = reg_val;
2081
2082	return ret;
2083}
2084EXPORT_SYMBOL_GPL(regmap_field_read);
2085
2086/**
2087 * regmap_fields_read(): Read a value to a single register field with port ID
2088 *
2089 * @field: Register field to read from
2090 * @id: port ID
2091 * @val: Pointer to store read value
2092 *
2093 * A value of zero will be returned on success, a negative errno will
2094 * be returned in error cases.
2095 */
2096int regmap_fields_read(struct regmap_field *field, unsigned int id,
2097		       unsigned int *val)
2098{
2099	int ret;
2100	unsigned int reg_val;
2101
2102	if (id >= field->id_size)
2103		return -EINVAL;
2104
2105	ret = regmap_read(field->regmap,
2106			  field->reg + (field->id_offset * id),
2107			  &reg_val);
2108	if (ret != 0)
2109		return ret;
2110
2111	reg_val &= field->mask;
2112	reg_val >>= field->shift;
2113	*val = reg_val;
2114
2115	return ret;
2116}
2117EXPORT_SYMBOL_GPL(regmap_fields_read);
2118
2119/**
2120 * regmap_bulk_read(): Read multiple registers from the device
2121 *
2122 * @map: Register map to read from
2123 * @reg: First register to be read from
2124 * @val: Pointer to store read value, in native register size for device
2125 * @val_count: Number of registers to read
2126 *
2127 * A value of zero will be returned on success, a negative errno will
2128 * be returned in error cases.
2129 */
2130int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2131		     size_t val_count)
2132{
2133	int ret, i;
2134	size_t val_bytes = map->format.val_bytes;
2135	bool vol = regmap_volatile_range(map, reg, val_count);
2136
 
 
2137	if (reg % map->reg_stride)
2138		return -EINVAL;
2139
2140	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2141		/*
2142		 * Some devices does not support bulk read, for
2143		 * them we have a series of single read operations.
2144		 */
2145		if (map->use_single_rw) {
2146			for (i = 0; i < val_count; i++) {
2147				ret = regmap_raw_read(map,
2148						reg + (i * map->reg_stride),
2149						val + (i * val_bytes),
2150						val_bytes);
2151				if (ret != 0)
2152					return ret;
2153			}
2154		} else {
2155			ret = regmap_raw_read(map, reg, val,
2156					      val_bytes * val_count);
2157			if (ret != 0)
2158				return ret;
2159		}
2160
2161		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2162			map->format.parse_inplace(val + i);
2163	} else {
2164		for (i = 0; i < val_count; i++) {
2165			unsigned int ival;
2166			ret = regmap_read(map, reg + (i * map->reg_stride),
2167					  &ival);
2168			if (ret != 0)
2169				return ret;
2170			memcpy(val + (i * val_bytes), &ival, val_bytes);
2171		}
2172	}
2173
2174	return 0;
2175}
2176EXPORT_SYMBOL_GPL(regmap_bulk_read);
2177
2178static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2179			       unsigned int mask, unsigned int val,
2180			       bool *change)
2181{
2182	int ret;
2183	unsigned int tmp, orig;
2184
 
 
2185	ret = _regmap_read(map, reg, &orig);
2186	if (ret != 0)
2187		return ret;
2188
2189	tmp = orig & ~mask;
2190	tmp |= val & mask;
2191
2192	if (tmp != orig) {
2193		ret = _regmap_write(map, reg, tmp);
2194		if (change)
2195			*change = true;
2196	} else {
2197		if (change)
2198			*change = false;
2199	}
2200
 
 
 
2201	return ret;
2202}
2203
2204/**
2205 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2206 *
2207 * @map: Register map to update
2208 * @reg: Register to update
2209 * @mask: Bitmask to change
2210 * @val: New value for bitmask
2211 *
2212 * Returns zero for success, a negative number on error.
2213 */
2214int regmap_update_bits(struct regmap *map, unsigned int reg,
2215		       unsigned int mask, unsigned int val)
2216{
2217	int ret;
2218
2219	map->lock(map->lock_arg);
2220	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2221	map->unlock(map->lock_arg);
2222
2223	return ret;
2224}
2225EXPORT_SYMBOL_GPL(regmap_update_bits);
2226
2227/**
2228 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2229 *                           map asynchronously
2230 *
2231 * @map: Register map to update
2232 * @reg: Register to update
2233 * @mask: Bitmask to change
2234 * @val: New value for bitmask
2235 *
2236 * With most buses the read must be done synchronously so this is most
2237 * useful for devices with a cache which do not need to interact with
2238 * the hardware to determine the current register value.
2239 *
2240 * Returns zero for success, a negative number on error.
2241 */
2242int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2243			     unsigned int mask, unsigned int val)
2244{
2245	int ret;
2246
2247	map->lock(map->lock_arg);
2248
2249	map->async = true;
2250
2251	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2252
2253	map->async = false;
2254
2255	map->unlock(map->lock_arg);
2256
2257	return ret;
2258}
2259EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2260
2261/**
2262 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2263 *                           register map and report if updated
2264 *
2265 * @map: Register map to update
2266 * @reg: Register to update
2267 * @mask: Bitmask to change
2268 * @val: New value for bitmask
2269 * @change: Boolean indicating if a write was done
2270 *
2271 * Returns zero for success, a negative number on error.
2272 */
2273int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2274			     unsigned int mask, unsigned int val,
2275			     bool *change)
2276{
2277	int ret;
2278
2279	map->lock(map->lock_arg);
2280	ret = _regmap_update_bits(map, reg, mask, val, change);
2281	map->unlock(map->lock_arg);
2282	return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2285
2286/**
2287 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2288 *                                 register map asynchronously and report if
2289 *                                 updated
2290 *
2291 * @map: Register map to update
2292 * @reg: Register to update
2293 * @mask: Bitmask to change
2294 * @val: New value for bitmask
2295 * @change: Boolean indicating if a write was done
2296 *
2297 * With most buses the read must be done synchronously so this is most
2298 * useful for devices with a cache which do not need to interact with
2299 * the hardware to determine the current register value.
2300 *
2301 * Returns zero for success, a negative number on error.
2302 */
2303int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2304				   unsigned int mask, unsigned int val,
2305				   bool *change)
2306{
2307	int ret;
2308
2309	map->lock(map->lock_arg);
2310
2311	map->async = true;
2312
2313	ret = _regmap_update_bits(map, reg, mask, val, change);
2314
2315	map->async = false;
2316
2317	map->unlock(map->lock_arg);
2318
2319	return ret;
2320}
2321EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2322
2323void regmap_async_complete_cb(struct regmap_async *async, int ret)
2324{
2325	struct regmap *map = async->map;
2326	bool wake;
2327
2328	trace_regmap_async_io_complete(map->dev);
2329
2330	spin_lock(&map->async_lock);
2331	list_move(&async->list, &map->async_free);
2332	wake = list_empty(&map->async_list);
2333
2334	if (ret != 0)
2335		map->async_ret = ret;
2336
2337	spin_unlock(&map->async_lock);
2338
2339	if (wake)
2340		wake_up(&map->async_waitq);
2341}
2342EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2343
2344static int regmap_async_is_done(struct regmap *map)
2345{
2346	unsigned long flags;
2347	int ret;
2348
2349	spin_lock_irqsave(&map->async_lock, flags);
2350	ret = list_empty(&map->async_list);
2351	spin_unlock_irqrestore(&map->async_lock, flags);
2352
2353	return ret;
2354}
2355
2356/**
2357 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2358 *
2359 * @map: Map to operate on.
2360 *
2361 * Blocks until any pending asynchronous I/O has completed.  Returns
2362 * an error code for any failed I/O operations.
2363 */
2364int regmap_async_complete(struct regmap *map)
2365{
2366	unsigned long flags;
2367	int ret;
2368
2369	/* Nothing to do with no async support */
2370	if (!map->bus || !map->bus->async_write)
2371		return 0;
2372
2373	trace_regmap_async_complete_start(map->dev);
2374
2375	wait_event(map->async_waitq, regmap_async_is_done(map));
2376
2377	spin_lock_irqsave(&map->async_lock, flags);
2378	ret = map->async_ret;
2379	map->async_ret = 0;
2380	spin_unlock_irqrestore(&map->async_lock, flags);
2381
2382	trace_regmap_async_complete_done(map->dev);
2383
2384	return ret;
2385}
2386EXPORT_SYMBOL_GPL(regmap_async_complete);
2387
2388/**
2389 * regmap_register_patch: Register and apply register updates to be applied
2390 *                        on device initialistion
2391 *
2392 * @map: Register map to apply updates to.
2393 * @regs: Values to update.
2394 * @num_regs: Number of entries in regs.
2395 *
2396 * Register a set of register updates to be applied to the device
2397 * whenever the device registers are synchronised with the cache and
2398 * apply them immediately.  Typically this is used to apply
2399 * corrections to be applied to the device defaults on startup, such
2400 * as the updates some vendors provide to undocumented registers.
2401 *
2402 * The caller must ensure that this function cannot be called
2403 * concurrently with either itself or regcache_sync().
2404 */
2405int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2406			  int num_regs)
2407{
2408	struct reg_default *p;
2409	int ret;
2410	bool bypass;
2411
2412	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2413	    num_regs))
2414		return 0;
2415
2416	p = krealloc(map->patch,
2417		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2418		     GFP_KERNEL);
2419	if (p) {
2420		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2421		map->patch = p;
2422		map->patch_regs += num_regs;
2423	} else {
2424		return -ENOMEM;
2425	}
2426
2427	map->lock(map->lock_arg);
2428
2429	bypass = map->cache_bypass;
2430
2431	map->cache_bypass = true;
2432	map->async = true;
2433
2434	ret = _regmap_multi_reg_write(map, regs, num_regs);
2435	if (ret != 0)
2436		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2437
2438out:
2439	map->async = false;
2440	map->cache_bypass = bypass;
2441
2442	map->unlock(map->lock_arg);
2443
2444	regmap_async_complete(map);
2445
2446	return ret;
2447}
2448EXPORT_SYMBOL_GPL(regmap_register_patch);
2449
2450/*
2451 * regmap_get_val_bytes(): Report the size of a register value
2452 *
2453 * Report the size of a register value, mainly intended to for use by
2454 * generic infrastructure built on top of regmap.
2455 */
2456int regmap_get_val_bytes(struct regmap *map)
2457{
2458	if (map->format.format_write)
2459		return -EINVAL;
2460
2461	return map->format.val_bytes;
2462}
2463EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2464
2465int regmap_parse_val(struct regmap *map, const void *buf,
2466			unsigned int *val)
2467{
2468	if (!map->format.parse_val)
2469		return -EINVAL;
2470
2471	*val = map->format.parse_val(buf);
2472
2473	return 0;
2474}
2475EXPORT_SYMBOL_GPL(regmap_parse_val);
2476
2477static int __init regmap_initcall(void)
2478{
2479	regmap_debugfs_initcall();
2480
2481	return 0;
2482}
2483postcore_initcall(regmap_initcall);
v3.5.6
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
 
 
  18
  19#define CREATE_TRACE_POINTS
  20#include <trace/events/regmap.h>
  21
  22#include "internal.h"
  23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24bool regmap_writeable(struct regmap *map, unsigned int reg)
  25{
  26	if (map->max_register && reg > map->max_register)
  27		return false;
  28
  29	if (map->writeable_reg)
  30		return map->writeable_reg(map->dev, reg);
  31
 
 
 
  32	return true;
  33}
  34
  35bool regmap_readable(struct regmap *map, unsigned int reg)
  36{
  37	if (map->max_register && reg > map->max_register)
  38		return false;
  39
  40	if (map->format.format_write)
  41		return false;
  42
  43	if (map->readable_reg)
  44		return map->readable_reg(map->dev, reg);
  45
 
 
 
  46	return true;
  47}
  48
  49bool regmap_volatile(struct regmap *map, unsigned int reg)
  50{
  51	if (!regmap_readable(map, reg))
  52		return false;
  53
  54	if (map->volatile_reg)
  55		return map->volatile_reg(map->dev, reg);
  56
  57	return true;
 
 
 
 
 
 
  58}
  59
  60bool regmap_precious(struct regmap *map, unsigned int reg)
  61{
  62	if (!regmap_readable(map, reg))
  63		return false;
  64
  65	if (map->precious_reg)
  66		return map->precious_reg(map->dev, reg);
  67
 
 
 
  68	return false;
  69}
  70
  71static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
  72	unsigned int num)
  73{
  74	unsigned int i;
  75
  76	for (i = 0; i < num; i++)
  77		if (!regmap_volatile(map, reg + i))
  78			return false;
  79
  80	return true;
  81}
  82
  83static void regmap_format_2_6_write(struct regmap *map,
  84				     unsigned int reg, unsigned int val)
  85{
  86	u8 *out = map->work_buf;
  87
  88	*out = (reg << 6) | val;
  89}
  90
  91static void regmap_format_4_12_write(struct regmap *map,
  92				     unsigned int reg, unsigned int val)
  93{
  94	__be16 *out = map->work_buf;
  95	*out = cpu_to_be16((reg << 12) | val);
  96}
  97
  98static void regmap_format_7_9_write(struct regmap *map,
  99				    unsigned int reg, unsigned int val)
 100{
 101	__be16 *out = map->work_buf;
 102	*out = cpu_to_be16((reg << 9) | val);
 103}
 104
 105static void regmap_format_10_14_write(struct regmap *map,
 106				    unsigned int reg, unsigned int val)
 107{
 108	u8 *out = map->work_buf;
 109
 110	out[2] = val;
 111	out[1] = (val >> 8) | (reg << 6);
 112	out[0] = reg >> 2;
 113}
 114
 115static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 116{
 117	u8 *b = buf;
 118
 119	b[0] = val << shift;
 120}
 121
 122static void regmap_format_16(void *buf, unsigned int val, unsigned int shift)
 123{
 124	__be16 *b = buf;
 125
 126	b[0] = cpu_to_be16(val << shift);
 127}
 128
 
 
 
 
 
 
 129static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 130{
 131	u8 *b = buf;
 132
 133	val <<= shift;
 134
 135	b[0] = val >> 16;
 136	b[1] = val >> 8;
 137	b[2] = val;
 138}
 139
 140static void regmap_format_32(void *buf, unsigned int val, unsigned int shift)
 141{
 142	__be32 *b = buf;
 143
 144	b[0] = cpu_to_be32(val << shift);
 145}
 146
 147static unsigned int regmap_parse_8(void *buf)
 
 
 
 
 
 
 
 
 
 
 148{
 149	u8 *b = buf;
 150
 151	return b[0];
 152}
 153
 154static unsigned int regmap_parse_16(void *buf)
 
 
 
 
 
 
 
 155{
 156	__be16 *b = buf;
 157
 158	b[0] = be16_to_cpu(b[0]);
 
 159
 160	return b[0];
 
 
 161}
 162
 163static unsigned int regmap_parse_24(void *buf)
 164{
 165	u8 *b = buf;
 166	unsigned int ret = b[2];
 167	ret |= ((unsigned int)b[1]) << 8;
 168	ret |= ((unsigned int)b[0]) << 16;
 169
 170	return ret;
 171}
 172
 173static unsigned int regmap_parse_32(void *buf)
 
 
 
 
 
 
 
 174{
 175	__be32 *b = buf;
 176
 177	b[0] = be32_to_cpu(b[0]);
 
 178
 179	return b[0];
 
 
 180}
 181
 182static void regmap_lock_mutex(struct regmap *map)
 183{
 
 184	mutex_lock(&map->mutex);
 185}
 186
 187static void regmap_unlock_mutex(struct regmap *map)
 188{
 
 189	mutex_unlock(&map->mutex);
 190}
 191
 192static void regmap_lock_spinlock(struct regmap *map)
 
 193{
 194	spin_lock(&map->spinlock);
 
 
 
 
 195}
 196
 197static void regmap_unlock_spinlock(struct regmap *map)
 
 198{
 199	spin_unlock(&map->spinlock);
 
 200}
 201
 202static void dev_get_regmap_release(struct device *dev, void *res)
 203{
 204	/*
 205	 * We don't actually have anything to do here; the goal here
 206	 * is not to manage the regmap but to provide a simple way to
 207	 * get the regmap back given a struct device.
 208	 */
 209}
 210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211/**
 212 * regmap_init(): Initialise register map
 213 *
 214 * @dev: Device that will be interacted with
 215 * @bus: Bus-specific callbacks to use with device
 216 * @bus_context: Data passed to bus-specific callbacks
 217 * @config: Configuration for register map
 218 *
 219 * The return value will be an ERR_PTR() on error or a valid pointer to
 220 * a struct regmap.  This function should generally not be called
 221 * directly, it should be called by bus-specific init functions.
 222 */
 223struct regmap *regmap_init(struct device *dev,
 224			   const struct regmap_bus *bus,
 225			   void *bus_context,
 226			   const struct regmap_config *config)
 227{
 228	struct regmap *map, **m;
 229	int ret = -EINVAL;
 
 
 230
 231	if (!bus || !config)
 232		goto err;
 233
 234	map = kzalloc(sizeof(*map), GFP_KERNEL);
 235	if (map == NULL) {
 236		ret = -ENOMEM;
 237		goto err;
 238	}
 239
 240	if (bus->fast_io) {
 241		spin_lock_init(&map->spinlock);
 242		map->lock = regmap_lock_spinlock;
 243		map->unlock = regmap_unlock_spinlock;
 244	} else {
 245		mutex_init(&map->mutex);
 246		map->lock = regmap_lock_mutex;
 247		map->unlock = regmap_unlock_mutex;
 
 
 
 
 
 
 
 
 248	}
 249	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 250	map->format.pad_bytes = config->pad_bits / 8;
 251	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 252	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 253			config->val_bits + config->pad_bits, 8);
 254	map->reg_shift = config->pad_bits % 8;
 255	if (config->reg_stride)
 256		map->reg_stride = config->reg_stride;
 257	else
 258		map->reg_stride = 1;
 259	map->use_single_rw = config->use_single_rw;
 
 260	map->dev = dev;
 261	map->bus = bus;
 262	map->bus_context = bus_context;
 263	map->max_register = config->max_register;
 
 
 
 
 264	map->writeable_reg = config->writeable_reg;
 265	map->readable_reg = config->readable_reg;
 266	map->volatile_reg = config->volatile_reg;
 267	map->precious_reg = config->precious_reg;
 268	map->cache_type = config->cache_type;
 269	map->name = config->name;
 270
 
 
 
 
 
 271	if (config->read_flag_mask || config->write_flag_mask) {
 272		map->read_flag_mask = config->read_flag_mask;
 273		map->write_flag_mask = config->write_flag_mask;
 
 
 
 
 
 
 
 
 
 
 274	} else {
 275		map->read_flag_mask = bus->read_flag_mask;
 276	}
 277
 
 
 
 
 
 
 
 
 
 
 
 
 278	switch (config->reg_bits + map->reg_shift) {
 279	case 2:
 280		switch (config->val_bits) {
 281		case 6:
 282			map->format.format_write = regmap_format_2_6_write;
 283			break;
 284		default:
 285			goto err_map;
 286		}
 287		break;
 288
 289	case 4:
 290		switch (config->val_bits) {
 291		case 12:
 292			map->format.format_write = regmap_format_4_12_write;
 293			break;
 294		default:
 295			goto err_map;
 296		}
 297		break;
 298
 299	case 7:
 300		switch (config->val_bits) {
 301		case 9:
 302			map->format.format_write = regmap_format_7_9_write;
 303			break;
 304		default:
 305			goto err_map;
 306		}
 307		break;
 308
 309	case 10:
 310		switch (config->val_bits) {
 311		case 14:
 312			map->format.format_write = regmap_format_10_14_write;
 313			break;
 314		default:
 315			goto err_map;
 316		}
 317		break;
 318
 319	case 8:
 320		map->format.format_reg = regmap_format_8;
 321		break;
 322
 323	case 16:
 324		map->format.format_reg = regmap_format_16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325		break;
 326
 327	case 32:
 328		map->format.format_reg = regmap_format_32;
 
 
 
 
 
 
 
 
 
 329		break;
 330
 331	default:
 332		goto err_map;
 333	}
 334
 
 
 
 335	switch (config->val_bits) {
 336	case 8:
 337		map->format.format_val = regmap_format_8;
 338		map->format.parse_val = regmap_parse_8;
 
 339		break;
 340	case 16:
 341		map->format.format_val = regmap_format_16;
 342		map->format.parse_val = regmap_parse_16;
 
 
 
 
 
 
 
 
 
 
 
 343		break;
 344	case 24:
 
 
 345		map->format.format_val = regmap_format_24;
 346		map->format.parse_val = regmap_parse_24;
 347		break;
 348	case 32:
 349		map->format.format_val = regmap_format_32;
 350		map->format.parse_val = regmap_parse_32;
 
 
 
 
 
 
 
 
 
 
 
 351		break;
 352	}
 353
 354	if (map->format.format_write)
 
 
 
 355		map->use_single_rw = true;
 
 356
 357	if (!map->format.format_write &&
 358	    !(map->format.format_reg && map->format.format_val))
 359		goto err_map;
 360
 361	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 362	if (map->work_buf == NULL) {
 363		ret = -ENOMEM;
 364		goto err_map;
 365	}
 366
 367	regmap_debugfs_init(map, config->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368
 369	ret = regcache_init(map, config);
 370	if (ret < 0)
 371		goto err_debugfs;
 372
 373	/* Add a devres resource for dev_get_regmap() */
 374	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 375	if (!m) {
 376		ret = -ENOMEM;
 377		goto err_cache;
 378	}
 379	*m = map;
 380	devres_add(dev, m);
 381
 382	return map;
 383
 384err_cache:
 385	regcache_exit(map);
 386err_debugfs:
 387	regmap_debugfs_exit(map);
 388	kfree(map->work_buf);
 389err_map:
 390	kfree(map);
 391err:
 392	return ERR_PTR(ret);
 393}
 394EXPORT_SYMBOL_GPL(regmap_init);
 395
 396static void devm_regmap_release(struct device *dev, void *res)
 397{
 398	regmap_exit(*(struct regmap **)res);
 399}
 400
 401/**
 402 * devm_regmap_init(): Initialise managed register map
 403 *
 404 * @dev: Device that will be interacted with
 405 * @bus: Bus-specific callbacks to use with device
 406 * @bus_context: Data passed to bus-specific callbacks
 407 * @config: Configuration for register map
 408 *
 409 * The return value will be an ERR_PTR() on error or a valid pointer
 410 * to a struct regmap.  This function should generally not be called
 411 * directly, it should be called by bus-specific init functions.  The
 412 * map will be automatically freed by the device management code.
 413 */
 414struct regmap *devm_regmap_init(struct device *dev,
 415				const struct regmap_bus *bus,
 416				void *bus_context,
 417				const struct regmap_config *config)
 418{
 419	struct regmap **ptr, *regmap;
 420
 421	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
 422	if (!ptr)
 423		return ERR_PTR(-ENOMEM);
 424
 425	regmap = regmap_init(dev, bus, bus_context, config);
 426	if (!IS_ERR(regmap)) {
 427		*ptr = regmap;
 428		devres_add(dev, ptr);
 429	} else {
 430		devres_free(ptr);
 431	}
 432
 433	return regmap;
 434}
 435EXPORT_SYMBOL_GPL(devm_regmap_init);
 436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437/**
 438 * regmap_reinit_cache(): Reinitialise the current register cache
 439 *
 440 * @map: Register map to operate on.
 441 * @config: New configuration.  Only the cache data will be used.
 442 *
 443 * Discard any existing register cache for the map and initialize a
 444 * new cache.  This can be used to restore the cache to defaults or to
 445 * update the cache configuration to reflect runtime discovery of the
 446 * hardware.
 
 
 
 447 */
 448int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
 449{
 450	int ret;
 451
 452	map->lock(map);
 453
 454	regcache_exit(map);
 455	regmap_debugfs_exit(map);
 456
 457	map->max_register = config->max_register;
 458	map->writeable_reg = config->writeable_reg;
 459	map->readable_reg = config->readable_reg;
 460	map->volatile_reg = config->volatile_reg;
 461	map->precious_reg = config->precious_reg;
 462	map->cache_type = config->cache_type;
 463
 464	regmap_debugfs_init(map, config->name);
 465
 466	map->cache_bypass = false;
 467	map->cache_only = false;
 468
 469	ret = regcache_init(map, config);
 470
 471	map->unlock(map);
 472
 473	return ret;
 474}
 475EXPORT_SYMBOL_GPL(regmap_reinit_cache);
 476
 477/**
 478 * regmap_exit(): Free a previously allocated register map
 479 */
 480void regmap_exit(struct regmap *map)
 481{
 
 
 482	regcache_exit(map);
 483	regmap_debugfs_exit(map);
 484	if (map->bus->free_context)
 
 485		map->bus->free_context(map->bus_context);
 486	kfree(map->work_buf);
 
 
 
 
 
 
 
 
 487	kfree(map);
 488}
 489EXPORT_SYMBOL_GPL(regmap_exit);
 490
 491static int dev_get_regmap_match(struct device *dev, void *res, void *data)
 492{
 493	struct regmap **r = res;
 494	if (!r || !*r) {
 495		WARN_ON(!r || !*r);
 496		return 0;
 497	}
 498
 499	/* If the user didn't specify a name match any */
 500	if (data)
 501		return (*r)->name == data;
 502	else
 503		return 1;
 504}
 505
 506/**
 507 * dev_get_regmap(): Obtain the regmap (if any) for a device
 508 *
 509 * @dev: Device to retrieve the map for
 510 * @name: Optional name for the register map, usually NULL.
 511 *
 512 * Returns the regmap for the device if one is present, or NULL.  If
 513 * name is specified then it must match the name specified when
 514 * registering the device, if it is NULL then the first regmap found
 515 * will be used.  Devices with multiple register maps are very rare,
 516 * generic code should normally not need to specify a name.
 517 */
 518struct regmap *dev_get_regmap(struct device *dev, const char *name)
 519{
 520	struct regmap **r = devres_find(dev, dev_get_regmap_release,
 521					dev_get_regmap_match, (void *)name);
 522
 523	if (!r)
 524		return NULL;
 525	return *r;
 526}
 527EXPORT_SYMBOL_GPL(dev_get_regmap);
 528
 529static int _regmap_raw_write(struct regmap *map, unsigned int reg,
 530			     const void *val, size_t val_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531{
 
 
 532	u8 *u8 = map->work_buf;
 
 
 533	void *buf;
 534	int ret = -ENOTSUPP;
 535	size_t len;
 536	int i;
 537
 
 
 538	/* Check for unwritable registers before we start */
 539	if (map->writeable_reg)
 540		for (i = 0; i < val_len / map->format.val_bytes; i++)
 541			if (!map->writeable_reg(map->dev,
 542						reg + (i * map->reg_stride)))
 543				return -EINVAL;
 544
 545	if (!map->cache_bypass && map->format.parse_val) {
 546		unsigned int ival;
 547		int val_bytes = map->format.val_bytes;
 548		for (i = 0; i < val_len / val_bytes; i++) {
 549			memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
 550			ival = map->format.parse_val(map->work_buf);
 551			ret = regcache_write(map, reg + (i * map->reg_stride),
 552					     ival);
 553			if (ret) {
 554				dev_err(map->dev,
 555				   "Error in caching of register: %u ret: %d\n",
 556					reg + i, ret);
 557				return ret;
 558			}
 559		}
 560		if (map->cache_only) {
 561			map->cache_dirty = true;
 562			return 0;
 563		}
 564	}
 565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566	map->format.format_reg(map->work_buf, reg, map->reg_shift);
 567
 568	u8[0] |= map->write_flag_mask;
 569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570	trace_regmap_hw_write_start(map->dev, reg,
 571				    val_len / map->format.val_bytes);
 572
 573	/* If we're doing a single register write we can probably just
 574	 * send the work_buf directly, otherwise try to do a gather
 575	 * write.
 576	 */
 577	if (val == (map->work_buf + map->format.pad_bytes +
 578		    map->format.reg_bytes))
 579		ret = map->bus->write(map->bus_context, map->work_buf,
 580				      map->format.reg_bytes +
 581				      map->format.pad_bytes +
 582				      val_len);
 583	else if (map->bus->gather_write)
 584		ret = map->bus->gather_write(map->bus_context, map->work_buf,
 585					     map->format.reg_bytes +
 586					     map->format.pad_bytes,
 587					     val, val_len);
 588
 589	/* If that didn't work fall back on linearising by hand. */
 590	if (ret == -ENOTSUPP) {
 591		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
 592		buf = kzalloc(len, GFP_KERNEL);
 593		if (!buf)
 594			return -ENOMEM;
 595
 596		memcpy(buf, map->work_buf, map->format.reg_bytes);
 597		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
 598		       val, val_len);
 599		ret = map->bus->write(map->bus_context, buf, len);
 600
 601		kfree(buf);
 602	}
 603
 604	trace_regmap_hw_write_done(map->dev, reg,
 605				   val_len / map->format.val_bytes);
 606
 607	return ret;
 608}
 609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610int _regmap_write(struct regmap *map, unsigned int reg,
 611		  unsigned int val)
 612{
 613	int ret;
 614	BUG_ON(!map->format.format_write && !map->format.format_val);
 615
 616	if (!map->cache_bypass && map->format.format_write) {
 
 
 
 617		ret = regcache_write(map, reg, val);
 618		if (ret != 0)
 619			return ret;
 620		if (map->cache_only) {
 621			map->cache_dirty = true;
 622			return 0;
 623		}
 624	}
 625
 
 
 
 
 
 626	trace_regmap_reg_write(map->dev, reg, val);
 627
 628	if (map->format.format_write) {
 629		map->format.format_write(map, reg, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630
 631		trace_regmap_hw_write_start(map->dev, reg, 1);
 632
 633		ret = map->bus->write(map->bus_context, map->work_buf,
 634				      map->format.buf_size);
 635
 636		trace_regmap_hw_write_done(map->dev, reg, 1);
 637
 638		return ret;
 639	} else {
 640		map->format.format_val(map->work_buf + map->format.reg_bytes
 641				       + map->format.pad_bytes, val, 0);
 642		return _regmap_raw_write(map, reg,
 643					 map->work_buf +
 644					 map->format.reg_bytes +
 645					 map->format.pad_bytes,
 646					 map->format.val_bytes);
 647	}
 648}
 
 649
 650/**
 651 * regmap_write(): Write a value to a single register
 652 *
 653 * @map: Register map to write to
 654 * @reg: Register to write to
 655 * @val: Value to be written
 656 *
 657 * A value of zero will be returned on success, a negative errno will
 658 * be returned in error cases.
 659 */
 660int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
 661{
 662	int ret;
 663
 664	if (reg % map->reg_stride)
 665		return -EINVAL;
 666
 667	map->lock(map);
 
 
 668
 669	ret = _regmap_write(map, reg, val);
 670
 671	map->unlock(map);
 
 
 672
 673	return ret;
 674}
 675EXPORT_SYMBOL_GPL(regmap_write);
 676
 677/**
 678 * regmap_raw_write(): Write raw values to one or more registers
 679 *
 680 * @map: Register map to write to
 681 * @reg: Initial register to write to
 682 * @val: Block of data to be written, laid out for direct transmission to the
 683 *       device
 684 * @val_len: Length of data pointed to by val.
 685 *
 686 * This function is intended to be used for things like firmware
 687 * download where a large block of data needs to be transferred to the
 688 * device.  No formatting will be done on the data provided.
 689 *
 690 * A value of zero will be returned on success, a negative errno will
 691 * be returned in error cases.
 692 */
 693int regmap_raw_write(struct regmap *map, unsigned int reg,
 694		     const void *val, size_t val_len)
 695{
 696	int ret;
 697
 
 
 698	if (val_len % map->format.val_bytes)
 699		return -EINVAL;
 700	if (reg % map->reg_stride)
 701		return -EINVAL;
 702
 703	map->lock(map);
 704
 705	ret = _regmap_raw_write(map, reg, val, val_len);
 706
 707	map->unlock(map);
 708
 709	return ret;
 710}
 711EXPORT_SYMBOL_GPL(regmap_raw_write);
 712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713/*
 714 * regmap_bulk_write(): Write multiple registers to the device
 715 *
 716 * @map: Register map to write to
 717 * @reg: First register to be write from
 718 * @val: Block of data to be written, in native register size for device
 719 * @val_count: Number of registers to write
 720 *
 721 * This function is intended to be used for writing a large block of
 722 * data to be device either in single transfer or multiple transfer.
 723 *
 724 * A value of zero will be returned on success, a negative errno will
 725 * be returned in error cases.
 726 */
 727int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
 728		     size_t val_count)
 729{
 730	int ret = 0, i;
 731	size_t val_bytes = map->format.val_bytes;
 732	void *wval;
 733
 734	if (!map->format.parse_val)
 735		return -EINVAL;
 736	if (reg % map->reg_stride)
 737		return -EINVAL;
 738
 739	map->lock(map);
 
 
 
 
 
 
 
 740
 741	/* No formatting is require if val_byte is 1 */
 742	if (val_bytes == 1) {
 743		wval = (void *)val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744	} else {
 
 
 745		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
 746		if (!wval) {
 747			ret = -ENOMEM;
 748			dev_err(map->dev, "Error in memory allocation\n");
 749			goto out;
 750		}
 751		for (i = 0; i < val_count * val_bytes; i += val_bytes)
 752			map->format.parse_val(wval + i);
 
 
 
 
 
 
 753	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754	/*
 755	 * Some devices does not support bulk write, for
 756	 * them we have a series of single write operations.
 
 757	 */
 758	if (map->use_single_rw) {
 759		for (i = 0; i < val_count; i++) {
 760			ret = regmap_raw_write(map,
 761						reg + (i * map->reg_stride),
 762						val + (i * val_bytes),
 763						val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764			if (ret != 0)
 765				return ret;
 766		}
 767	} else {
 768		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770
 771	if (val_bytes != 1)
 772		kfree(wval);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773
 774out:
 775	map->unlock(map);
 776	return ret;
 777}
 778EXPORT_SYMBOL_GPL(regmap_bulk_write);
 779
 780static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
 781			    unsigned int val_len)
 782{
 
 783	u8 *u8 = map->work_buf;
 784	int ret;
 785
 
 
 
 
 
 
 
 
 
 
 786	map->format.format_reg(map->work_buf, reg, map->reg_shift);
 787
 788	/*
 789	 * Some buses or devices flag reads by setting the high bits in the
 790	 * register addresss; since it's always the high bits for all
 791	 * current formats we can do this here rather than in
 792	 * formatting.  This may break if we get interesting formats.
 793	 */
 794	u8[0] |= map->read_flag_mask;
 795
 796	trace_regmap_hw_read_start(map->dev, reg,
 797				   val_len / map->format.val_bytes);
 798
 799	ret = map->bus->read(map->bus_context, map->work_buf,
 800			     map->format.reg_bytes + map->format.pad_bytes,
 801			     val, val_len);
 802
 803	trace_regmap_hw_read_done(map->dev, reg,
 804				  val_len / map->format.val_bytes);
 805
 806	return ret;
 807}
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809static int _regmap_read(struct regmap *map, unsigned int reg,
 810			unsigned int *val)
 811{
 812	int ret;
 
 
 
 813
 814	if (!map->cache_bypass) {
 815		ret = regcache_read(map, reg, val);
 816		if (ret == 0)
 817			return 0;
 818	}
 819
 820	if (!map->format.parse_val)
 821		return -EINVAL;
 822
 823	if (map->cache_only)
 824		return -EBUSY;
 825
 826	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
 
 
 
 827	if (ret == 0) {
 828		*val = map->format.parse_val(map->work_buf);
 
 
 
 
 829		trace_regmap_reg_read(map->dev, reg, *val);
 
 
 
 830	}
 831
 832	if (ret == 0 && !map->cache_bypass)
 833		regcache_write(map, reg, *val);
 834
 835	return ret;
 836}
 837
 838/**
 839 * regmap_read(): Read a value from a single register
 840 *
 841 * @map: Register map to write to
 842 * @reg: Register to be read from
 843 * @val: Pointer to store read value
 844 *
 845 * A value of zero will be returned on success, a negative errno will
 846 * be returned in error cases.
 847 */
 848int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
 849{
 850	int ret;
 851
 852	if (reg % map->reg_stride)
 853		return -EINVAL;
 854
 855	map->lock(map);
 856
 857	ret = _regmap_read(map, reg, val);
 858
 859	map->unlock(map);
 860
 861	return ret;
 862}
 863EXPORT_SYMBOL_GPL(regmap_read);
 864
 865/**
 866 * regmap_raw_read(): Read raw data from the device
 867 *
 868 * @map: Register map to write to
 869 * @reg: First register to be read from
 870 * @val: Pointer to store read value
 871 * @val_len: Size of data to read
 872 *
 873 * A value of zero will be returned on success, a negative errno will
 874 * be returned in error cases.
 875 */
 876int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
 877		    size_t val_len)
 878{
 879	size_t val_bytes = map->format.val_bytes;
 880	size_t val_count = val_len / val_bytes;
 881	unsigned int v;
 882	int ret, i;
 883
 
 
 884	if (val_len % map->format.val_bytes)
 885		return -EINVAL;
 886	if (reg % map->reg_stride)
 887		return -EINVAL;
 888
 889	map->lock(map);
 890
 891	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
 892	    map->cache_type == REGCACHE_NONE) {
 893		/* Physical block read if there's no cache involved */
 894		ret = _regmap_raw_read(map, reg, val, val_len);
 895
 896	} else {
 897		/* Otherwise go word by word for the cache; should be low
 898		 * cost as we expect to hit the cache.
 899		 */
 900		for (i = 0; i < val_count; i++) {
 901			ret = _regmap_read(map, reg + (i * map->reg_stride),
 902					   &v);
 903			if (ret != 0)
 904				goto out;
 905
 906			map->format.format_val(val + (i * val_bytes), v, 0);
 907		}
 908	}
 909
 910 out:
 911	map->unlock(map);
 912
 913	return ret;
 914}
 915EXPORT_SYMBOL_GPL(regmap_raw_read);
 916
 917/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918 * regmap_bulk_read(): Read multiple registers from the device
 919 *
 920 * @map: Register map to write to
 921 * @reg: First register to be read from
 922 * @val: Pointer to store read value, in native register size for device
 923 * @val_count: Number of registers to read
 924 *
 925 * A value of zero will be returned on success, a negative errno will
 926 * be returned in error cases.
 927 */
 928int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
 929		     size_t val_count)
 930{
 931	int ret, i;
 932	size_t val_bytes = map->format.val_bytes;
 933	bool vol = regmap_volatile_range(map, reg, val_count);
 934
 935	if (!map->format.parse_val)
 936		return -EINVAL;
 937	if (reg % map->reg_stride)
 938		return -EINVAL;
 939
 940	if (vol || map->cache_type == REGCACHE_NONE) {
 941		/*
 942		 * Some devices does not support bulk read, for
 943		 * them we have a series of single read operations.
 944		 */
 945		if (map->use_single_rw) {
 946			for (i = 0; i < val_count; i++) {
 947				ret = regmap_raw_read(map,
 948						reg + (i * map->reg_stride),
 949						val + (i * val_bytes),
 950						val_bytes);
 951				if (ret != 0)
 952					return ret;
 953			}
 954		} else {
 955			ret = regmap_raw_read(map, reg, val,
 956					      val_bytes * val_count);
 957			if (ret != 0)
 958				return ret;
 959		}
 960
 961		for (i = 0; i < val_count * val_bytes; i += val_bytes)
 962			map->format.parse_val(val + i);
 963	} else {
 964		for (i = 0; i < val_count; i++) {
 965			unsigned int ival;
 966			ret = regmap_read(map, reg + (i * map->reg_stride),
 967					  &ival);
 968			if (ret != 0)
 969				return ret;
 970			memcpy(val + (i * val_bytes), &ival, val_bytes);
 971		}
 972	}
 973
 974	return 0;
 975}
 976EXPORT_SYMBOL_GPL(regmap_bulk_read);
 977
 978static int _regmap_update_bits(struct regmap *map, unsigned int reg,
 979			       unsigned int mask, unsigned int val,
 980			       bool *change)
 981{
 982	int ret;
 983	unsigned int tmp, orig;
 984
 985	map->lock(map);
 986
 987	ret = _regmap_read(map, reg, &orig);
 988	if (ret != 0)
 989		goto out;
 990
 991	tmp = orig & ~mask;
 992	tmp |= val & mask;
 993
 994	if (tmp != orig) {
 995		ret = _regmap_write(map, reg, tmp);
 996		*change = true;
 
 997	} else {
 998		*change = false;
 
 999	}
1000
1001out:
1002	map->unlock(map);
1003
1004	return ret;
1005}
1006
1007/**
1008 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1009 *
1010 * @map: Register map to update
1011 * @reg: Register to update
1012 * @mask: Bitmask to change
1013 * @val: New value for bitmask
1014 *
1015 * Returns zero for success, a negative number on error.
1016 */
1017int regmap_update_bits(struct regmap *map, unsigned int reg,
1018		       unsigned int mask, unsigned int val)
1019{
1020	bool change;
1021	return _regmap_update_bits(map, reg, mask, val, &change);
 
 
 
 
 
1022}
1023EXPORT_SYMBOL_GPL(regmap_update_bits);
1024
1025/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026 * regmap_update_bits_check: Perform a read/modify/write cycle on the
1027 *                           register map and report if updated
1028 *
1029 * @map: Register map to update
1030 * @reg: Register to update
1031 * @mask: Bitmask to change
1032 * @val: New value for bitmask
1033 * @change: Boolean indicating if a write was done
1034 *
1035 * Returns zero for success, a negative number on error.
1036 */
1037int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1038			     unsigned int mask, unsigned int val,
1039			     bool *change)
1040{
1041	return _regmap_update_bits(map, reg, mask, val, change);
 
 
 
 
 
1042}
1043EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1044
1045/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046 * regmap_register_patch: Register and apply register updates to be applied
1047 *                        on device initialistion
1048 *
1049 * @map: Register map to apply updates to.
1050 * @regs: Values to update.
1051 * @num_regs: Number of entries in regs.
1052 *
1053 * Register a set of register updates to be applied to the device
1054 * whenever the device registers are synchronised with the cache and
1055 * apply them immediately.  Typically this is used to apply
1056 * corrections to be applied to the device defaults on startup, such
1057 * as the updates some vendors provide to undocumented registers.
 
 
 
1058 */
1059int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1060			  int num_regs)
1061{
1062	int i, ret;
 
1063	bool bypass;
1064
1065	/* If needed the implementation can be extended to support this */
1066	if (map->patch)
1067		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
1068
1069	map->lock(map);
1070
1071	bypass = map->cache_bypass;
1072
1073	map->cache_bypass = true;
 
1074
1075	/* Write out first; it's useful to apply even if we fail later. */
1076	for (i = 0; i < num_regs; i++) {
1077		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1078		if (ret != 0) {
1079			dev_err(map->dev, "Failed to write %x = %x: %d\n",
1080				regs[i].reg, regs[i].def, ret);
1081			goto out;
1082		}
1083	}
1084
1085	map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1086	if (map->patch != NULL) {
1087		memcpy(map->patch, regs,
1088		       num_regs * sizeof(struct reg_default));
1089		map->patch_regs = num_regs;
1090	} else {
1091		ret = -ENOMEM;
1092	}
1093
1094out:
 
1095	map->cache_bypass = bypass;
1096
1097	map->unlock(map);
 
 
1098
1099	return ret;
1100}
1101EXPORT_SYMBOL_GPL(regmap_register_patch);
1102
1103/*
1104 * regmap_get_val_bytes(): Report the size of a register value
1105 *
1106 * Report the size of a register value, mainly intended to for use by
1107 * generic infrastructure built on top of regmap.
1108 */
1109int regmap_get_val_bytes(struct regmap *map)
1110{
1111	if (map->format.format_write)
1112		return -EINVAL;
1113
1114	return map->format.val_bytes;
1115}
1116EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
1117
1118static int __init regmap_initcall(void)
1119{
1120	regmap_debugfs_initcall();
1121
1122	return 0;
1123}
1124postcore_initcall(regmap_initcall);